Chapter 1

Dependency Grammar:
Classification and Exploration

Ralph Debusmann and Marco Kuhlmann

Abstract Grammar formalisms built on the notion of word-to-word dependencies
make attractive alternatives to formalisms built on phrase structure representations.
However, little is known about the formal properties of dependency grammars, and
few such grammars have been implemented. We present results from two strands
of research that address these issues. The aims of this research were to classify
dependency grammars in terms of their generative capacity and parsing complexity,
and to systematically explore their expressive power in the context of a practical
system for grammar development and parsing.

1.1 Introduction

Syntactic representations based on word-to-word dependencies have a long tradition
in descriptive linguistics [29]. In recent years, they have also become increasingly
used in computational tasks, such as information extraction [5], machine translation
[43], and parsing [42]. Among the purported advantages of dependency over phrase
structure representations are conciseness, intuitive appeal, and closeness to semantic
representations such as predicate-argument structures. On the more practical side,
dependency representations are attractive due to the increasing availability of large
corpora of dependency analyses, such as the Prague Dependency Treebank [19].

The recent interest in dependency representations has revealed several gaps in the
research on grammar formalisms based on these representations: First, while several
linguistic theories of dependency grammars exist (examples are Functional Gener-
ative Description [48], Meaning-Text Theory [36], and Word Grammar [24]), there
are few results on their formal properties—in particular, it is not clear how they can
be related to the more well-known phrase structure-based formalisms. Second, few
dependency grammars have been implemented in practical systems, and no tools for
the development and exploration of new grammars are available.
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In this chapter, we present results from two strands of research on dependency
grammar that addresses the above issues. The aims of this research were to classify
dependency grammars in terms of their generative capacity and parsing complexity,
and to systematically explore their expressive power in the context of a practical sys-
tem for grammar development and parsing. Our classificatory results provide funda-
mental insights into the relation between dependency grammars and phrase structure
grammars. Our exploratory work shows how dependency-based representations can
be used to model the complex interactions between different dimensions of linguis-
tic description, such as word-order, quantifier scope, and information structure.

Structure of the chapter. The remainder of this chapter is structured as follows.
In Sect. 1.2, we introduce dependency structures as the objects of description in
dependency grammar, and identify three classes of such structures that are particu-
larly relevant for practical applications. We then show how dependency structures
can be related to phrase structure-based formalisms via the concept of lexicalization
(Sect. 1.3). Section 1.4 introduces Extensible Dependency Grammar (XDG), a meta-
grammatical framework designed to facilitate the development of novel dependency
grammars. In Sect. 1.5, we apply XDG to obtain an elegant model of complex word
order phenomena, in Sect. 1.6 develop a relational syntax-semantics interface, and
in Sect. 1.7 present an XDG model of regular dependency grammars. We apply the
ideas behind this modeling in Sect. 1.8, where we introduce the grammar develop-
ment environment for XDG and investigate its practical utility with an experiment
on large-scale parsing. Section 1.9 concludes the chapter.

1.2 Dependency Structures

The basic assumptions behind the notion of dependency are summarized in the fol-
lowing sentences from the seminal work of Tesniere [51]:

The sentence is an organized whole; its constituent parts are the words. Every word that
functions as part of a sentence is no longer isolated as in the dictionary: the mind perceives
connections between the word and its neighbours; the totality of these connections forms
the scaffolding of the sentence. The structural connections establish relations of dependency
among the words. Each such connection in principle links a superior term and an inferior
term. The superior term receives the name governor (régissant); the inferior term receives
the name dependent (subordonné). (ch. 1, §§2-4; ch. 2, §§ 1-2)

We can represent the dependency relations among the words of a sentence as a
graph. More specifically, the dependency structure for a sentence w = wy ---w;, is
the directed graph on the set of positions of w that contains an edge i — j if and
only if the word w; depends on the word w;. In this way, just like strings and parse
trees, dependency structures can capture information about certain aspects of the
linguistic structure of a sentence. As an example, consider Fig. 1.1. In this graph,
the edge between the word likes and the word Dan encodes the syntactic informa-
tion that Dan is the subject of likes. When visualizing dependency structures, we
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represent (occurrences of) words by circles, and dependencies among them by ar-
rows: the source of an arrow marks the governor of the corresponding dependency,
the target marks the dependent. Furthermore, following Hays [21], we use dotted
lines to indicate the left-to-right ordering of the words in the sentence.

Q

Dan  likes frésh parsnips

Fig. 1.1: A dependency structure

With the concept of a dependency structure at hand, we can express linguistic
universals in terms of structural constraints on graphs. The most widely used such
constraint is to require the dependency structure to form a tree. This requirement
models the stipulations that no word should depend on itself, not even transitively,
that each word should have at most one governor, and that a dependency analy-
sis should cover all the words in the sentence. The dependency analysis shown in
Fig. 1.1 satisfies the treeness constraint.

Another well-known constraint on dependency structures is projectivity [34]. In
contrast to treeness, which imposes restrictions on dependency as such, projectivity
concerns the relation between dependency and the left-to-right order of the words
in the sentence. Specifically, it requires each dependency subtree to cover a con-
tiguous region of the sentence. As an example, consider the dependency structure in
Fig. 1.2a. Projectivity is interesting because the close relation between dependency
and word order that it enforces can be exploited in parsing algorithms [17]. How-
ever, in recent literature, there is a growing interest in non-projective dependency
structures, in which a subtree may be spread out over a discontinuous region of the
sentence. Such representations naturally arise in the syntactic analysis of linguistic
phenomena such as extraction, topicalization and extraposition; they are particu-
larly frequent in the analysis of languages with flexible word order, such as Czech
[22, 52]. Unfortunately, without any further restrictions, non-projective dependency
parsing is intractable [40, 35].

In search of a balance between the benefit of more expressivity and the penalty
of increased processing complexity, several authors have proposed structural con-
straints that relax the projectivity restriction, but at the same time ensure that the
resulting classes of structures are computationally well-behaved [56, 41, 20]. Such
constraints identify classes of what we may call mildly non-projective dependency
structures. The block-degree restriction [22] relaxes projectivity such that depen-
dency subtrees can be distributed over more than one interval. For example, in
Fig. 1.2b, each of the marked subtrees spans two intervals. The third structural con-
straint that we have investigated is original to our research: well-nestedness [4] is the
restriction that pairs of disjoint dependency subtrees must not cross, which means
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Fig. 1.2: Three dependency structures

that there must not be nodes 1,7, in the first subtree and nodes ji, j» in the sec-
ond such that i; < j; < iy < jp. The dependency structure depicted in Fig. 1.2c is
well-nested, while the structure depicted in Fig. 1.2b is not.

To investigate the practical relevance of the three structural constraints, we did
an empirical evaluation on two versions of the Prague Dependency Treebank [33]
(Table 1.1). This evaluation shows that while projectivity is too strong a constraint
on dependency structures (it excludes almost 23% of the analyses in both versions
of the treebank), already a small step beyond projectivity covers virtually all of
the data. In particular, even the rather restricted class of well-nested dependency
structures with block-degree at most 2 has a coverage of almost 99.5%.

PDT 1.0 PDT 2.0

block-degree unrestricted well-nested unrestricted well-nested

1 (projective) 56168 76.85% 56168 76.85% 52805 77.02% 52805 77.02%
2 16608 22.72% 16539 22.63% 15467 22.56% 15393 22.45%
3 307 0.42% 300 0.41% 288  0.42% 282 0.41%
4 4 0.01% 2 <0.01% 2 <0.01% - -
5 1 <0.01% 1 <0.01% 1 <0.01% 1 <0.01%
TOTAL 73088 100.00% 73010 99.89% 68562 100.00% 68481 99.88%

Table 1.1: Structural properties of dependency structures in the Prague Dependency Treebank

1.3 Dependency Structures and Lexicalized Grammars

One of the fundamental questions that we can ask about a grammar formalism is,
whether it adequately models natural language. We can answer this question by
studying the generative capacity of the formalism: when we interpret grammars as
generators of sets of linguistic structures (such as strings, parse trees, or predicate-
argument structures), then we can call a grammar adequate, if it generates exactly
those structures that we consider relevant for the description of natural language.
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Grammars may be adequate with respect to one type of expression, but inadequate
with respect to another. Here we are interested in the generative capacity of gram-
mars when we interpret them as generators for sets of dependency structures:

Which grammars generate which sets of dependency structures?

An answer to this question is interesting for at least two reasons. First, dependency
structures make an attractive measure of the generative capacity of a grammar: they
are more informative than strings, but less formalism-specific and arguably closer to
a semantic representation than parse trees. Second, an answer to the question allows
us to tap the rich resource of formal results about generative grammar formalisms
and to transfer them to the work on dependency grammar. Specifically, it enables
us to import the expertise in developing parsing algorithms for lexicalized grammar
formalisms. This can help us identify the polynomial fragments of non-projective
dependency parsing.

1.3.1 Lexicalized Grammars Induce Dependency Structures

In order to relate grammar formalisms and dependency representations, we first need
to specify in what sense we can consider a grammar as a generator of dependency
structures. To focus our discussion, let us consider the well-known case of context-
free grammars (CFGs). As our running example, Fig. 1.3 shows a small CFG together
with a parse tree for a simple English sentence.

S

T

SUBJ  likes OBJ

S — SUBIJ likes OBJ
SUB] — Dan | /\
OBJ — MOD parsnips Dan MOD parsnips
MOD — fresh |
fresh

Fig. 1.3: A context-free grammar and a parse tree generated by this grammar

An interesting property of our sample grammar is that it is lexicalized: every
rule of the grammar contains exactly one terminal symbol. Lexicalized grammars
play a significant role in contemporary linguistic theories and practical applications.
Crucially for us, every such grammar can be understood as a generator for sets of
dependency structures, in the following sense. Consider a derivation of a terminal
string by means of a context-free grammar. A derivation tree for this derivation is
a tree in which the nodes are labelled with (occurrences of) the productions used in
the derivation, and the edges indicate how these productions were combined. The
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S — SUBJ likes OBJ

B """"""""""

SUBJ — Dan OBIJ — MOD parsnips

R 1___5,'_'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'5 """"" """"" :

MOD — fresh Dan  likes  fresh parsnips

Fig. 1.4: Lexicalized derivations induce dependency structures

left half of Fig. 1.4 shows the derivation tree for the parse tree from our example.
If the underlying grammar is lexicalized, then there is a one-to-one correspondence
between the nodes in the derivation tree and the positions in the derived string: each
occurrence of a production participating in the derivation contributes exactly one
terminal symbol to this string. If we order the nodes of the derivation tree according
to the string positions of their corresponding terminal symbols, we get a dependency
tree. For our example, this procedure results in the tree depicted in Fig. 1.1. We say
that this dependency structure is induced by the derivation d.

Not all practically relevant dependency structures can be induced by derivations
in lexicalized context-free grammars. A famous counterexample is provided by the
verb-argument dependencies in German and Dutch subordinate clauses: context-
free grammar can only characterize the ‘nested’ dependencies of German, but not
the ‘cross-serial’ assignments of Dutch. This observation goes along with argu-
ments [25, 49] that certain constructions in Swiss German require grammar for-
malisms that adequately model these constructions to generate the so-called copy
language, which is beyond even the string-generative capacity of CFGs. If we ac-
cept this analysis, then we must conclude that context-free grammars are not ade-
quate for the description of natural language, and that we should look out for more
powerful formalisms. This conclusion is widely accepted today. Unfortunately, the
first class in Chomsky’s hierarchy of formal languages that does contain the copy
language, the class of context-sensitive languages, also contains many languages
that are considered to be beyond human capacity. Also, while CFGs can be parsed
in polynomial time, parsing of context-sensitive grammars is PSPACE-complete. In
search of a class of grammars that extends context-free grammar by the minimal
amount of generative power that is needed to account for natural language, sev-
eral so-called mildly context-sensitive grammar formalisms have been developed;
perhaps the best-known among these is Tree Adjoining Grammar (TAG) [27]. The
class of string languages generated by TAGs contains the copy language, but unlike
context-sensitive grammars, TAGs can be parsed in polynomial time. More impor-
tant to us than their increased string-generative capacity however is their stronger
power with respect to dependency representations: derivations in (lexicalized) TAGs
can induce the ‘cross-serial’ dependencies of Dutch [26]. The principal goal of our
classificatory work is to make the relations between grammars and the dependency
structures that they can induce precise.
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In spite of the apparent connection between the generative capacity of a gram-
mar formalism and the structural properties of the dependency structures that this
formalism can induce, there have been only few results that link the two research
areas. A fundamental reason for the lack of such bridging results is that, while struc-
tural constraints on dependency structures are internal properties in the sense that
they concern the nodes of the graph and their connections, grammars take an ex-
ternal perspective on the objects that they manipulate—the internal structure of an
object is determined by the internal structure of its constituent parts and the opera-
tions that are used to combine them. An example for the difference between the two
views is given by the perspectives on trees that we find in graph theory and universal
algebra. In graph theory, a tree is a special graph with an internal structure that meets
certain constraints; in algebra, trees are abstract objects that can be composed and
decomposed using a certain set of operations. One of the central technical questions
that we need to answer in order to connect grammars and structures is, how classes
of dependency structures can be given an algebraic structure.

1.3.2 The Algebraic View on Dependency Structures

In order to link structural constraints to generative grammar formalisms, we need to
view dependency structures as the outcomes of compositional processes. Under this
view, structural constraints do not only apply to fully specified dependency trees,
but already to the composition operations by which these trees are constructed. We
formalized the compositional view in two steps. In the first step, we showed that
dependency structures can be encoded into terms over a certain signature of order
annotations in such a way that the three different classes of dependency structures
that we have discussed above stand in one-to-one correspondence with terms over
specific subsets of this signature [31]. In the second step, we defined the concept
of a dependency algebra. In these algebras, order annotations are interpreted as
composition operations on dependency structures [30, 32]. We have proved that
each dependency algebra is isomorphic to the corresponding term algebra, which
means that the composition of dependency structures can be freely simulated by the
usual composition operations on terms, such as substitution.

To give an intuition for the algebraic framework, Fig. 1.5 shows the terms that
correspond to the dependency structures in Fig. 1.2. Each order annotation in these
terms encodes node-specific information about the linear order on the nodes. As
an example, the constructor (0, 1) in Fig. 1.5b represents the information that the
marked subtrees in Fig. 1.2b each consist of two intervals (the two components of
the tuple (0, 1)), with the root node (represented by the symbol 0) situated in the
left interval, and the subtree rooted at the first child (represented by the symbol 1)
in the right interval. Under this encoding, the block-degree measure corresponds to
the maximal number of components per tuple, and the well-nestedness condition
corresponds to the absence of certain ‘forbidden substrings’ in the individual order
annotations, such as the substring 1212 in the term in Fig. 1.5b.
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(012) (01212) (0121)
PN PN PN
01y  (01) (0,1) (0,1) (0,1) (01)
| | | | | |
© (0 0 (0 0 (0

(a) 1 b) (©) 13

Fig. 1.5: Terms for the dependency structures in Fig. 1.2

Our algebraic framework enables us to classify the dependency structures that
are induced by various lexicalized grammar formalisms. In particular, we can ex-
tend Gaifman’s result [18] that projective dependency structures correspond to lex-
icalized context-free grammars into the realm of the mildly context-sensitive: the
classes of block-restricted dependency structures correspond to Linear Context-Free
Rewriting Systems [53, 54], the classes of well-nested block-restricted structures
correspond to Coupled Context-Free Grammar [23]. As a special case, the class of
well-nested dependency structures with a block-degree of at most 2 is characteris-
tic for derivations in Lexicalized Tree Adjoining Grammar [27, 4]. This result is
particularly interesting in the context of our treebank evaluation.

1.3.3 Regular Dependency Grammars

We can now lift our results from individual dependency structures to sets of such
structures. The key to this transfer is the concept of regular sets of dependency struc-
tures [31], which we define as the recognizable subsets of dependency algebras in
the sense of Mezei and Wright [37]. Based on the isomorphism between dependency
algebras and term algebras, we obtain a natural grammar formalism for dependency
structures from the concept of a regular term grammar.

Definition 1. A regular dependency grammar is a construct G = (N, X, S, P), where
N is aranked alphabet of non-terminal symbols, X is a finite set of order annotations,
S € N is a distinguished start symbol, and P is a finite set of productions of the form
A — t, where A € Ny is a non-terminal symbol, and ¢ € Ty  is a well-formed term
over X of sort k, for some k € N.

To illustrate the definition, we give two examples of regular dependency grammars.
The sets of dependency structures generated by these grammars mimic the verb-
argument relations found in German and Dutch subordinate clauses, respectively:
grammar G generates structures with nested dependencies, grammar G, generates
structures with crossing dependencies. We only give the two sets of productions.

S— (120)(N,V) V= (1200(N,V)  V—(10)(N) N—{(0) (G
S— (1202)(N,V)  V — (12,02)(N,V) V —(1,0)(N) N—{(0) (Gy)
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(120)
PN
© ) ? Pt
© (10 o
(0) ... dass Jan Marie Wim lesen helfen sah
(a) Grammar G, (nested dependencies)
(1202)
PN O
(0) (12,02) ‘O—O\
PN : :
O o) . o—
| i i i
(0) ... omdat Jan Marie Wim zag helpenlezen

(b) Grammar G, (cross-serial dependencies)

Fig. 1.6: Terms and structures generated by two regular dependency grammars

Figure 1.6 shows terms generated by these grammars, and the corresponding depen-
dency structures.

The sets of dependency structures generated by regular dependency grammars
have all the characteristic properties of mildly context-sensitive languages. Further-
more, it turns out that the structural constraints that we have discussed above have
direct implications for their string-generative capacity and parsing complexity. First,
the block-degree measure gives rise to an infinite hierarchy of ever more powerful
string languages; adding the well-nestedness constraint leads to a proper decrease of
string-generative power on nearly all levels of this hierarchy [32]. Certain string lan-
guages enforce structural properties in the dependency languages that project them:
For every natural number k, the language

COUNT (k) = {d{b}---a}b}|neN}.

requires every regular set of dependency structures that projects it to contain struc-
tures with a block-degree of at most k. Similarly, the language

RESP(k) := {a'by'cld}---ap'bcid; |m,n e N}

requires every regular set of dependency structures with block-degree at most k that
projects it to contain structures that are not well-nested. Second, while the parsing
problem of regular dependency languages is polynomial in the length of the input
string, the problem in which we take the grammar to be part of the input is still
NP-complete. Interestingly, for well-nested dependency languages, parsing is poly-
nomial even with the size of the grammar taken into account [30].
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1.4 Extensible Dependency Grammar

For the exploration of dependency grammars, we have developed a new meta-
grammatical framework called Extensible Dependency Grammar (XDG) [11, 8].
The main innovation of XDG is multi-dimensionality: an XDG analysis consists of
a tuple of dependency graphs all sharing the same set of nodes, called dependency
multigraph. The components of the multigraph are called dimensions. The multi-
dimensional metaphor was crucial for our formulations of a new, elegant model
of complex word order phenomena in German, and a new, relational model of the
syntax-semantics interface.

1.4.1 Dependency Multigraphs

To give an intuition, let us start with an example multigraph depicted in Fig. 1.7. The
multigraph has three dimensions called DEP (for dependency tree), QS (for quantifier
scope analysis) and DEP/QS (DEP/QS syntax-semantics interface). It is not necessary
to fully understand what we intend to model with these dimensions; they just serve
as an illustrative example, and are elucidated in more detail in Sect. 1.6 below.

In an XDG multigraph, each dimension is a dependency graph made up of a set of
nodes associated with indices, words and node attributes. The indices and words are
shared across all dimensions. For instance, the second node on the DEP dimension
is associated with the index 2, the word loves, and the node attributes in, out and
order. On the DEP/QS dimension, the node has the same index and word and the
node attribute dom. Node attributes always denote sets of tuples over finite domains
of atoms; their typical use is to model finite relations like functions and orders. The
nodes are connected by labeled edges. On the QS dimension for example, there is an
edge from node 3 to node 1 labeled sc, and another one from node 1 to node 2, also
labeled sc.

In the example, the DEP dimension states that everybody is the subject of loves,
and somebody the object. The in and out attributes represent the licensed incoming
and outgoing edges. For example, node 2 must not have any incoming edges, and it
must have one outgoing edge labeled subj and one labeled obj. The order attribute
represents a total order among the head () and its dependents: the subj dependents
must precede the head, and head must precede the obj dependents.

The QS dimension is an analysis of the scopal relationships of the quantifiers in
the sentence. It models the reading where somebody takes scope over everybody,
which in turn takes scope over loves. The DEP/QS analysis represents the syntax-
semantics interface between DEP and QS. The attribute dom is a set of those depen-
dents on the DEP dimension that must dominate the head on the QS dimension. For
example, the subj and obj dependents of node 2 on DEP must dominate 2 on QS.
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sub]/(?\obj\
o— : 0
1 2 3
everybody loves somebody
{ in : {(subj,!)} } { n : {} } { in : {(obj,!)} }
out : {} out : {(subj,!), (obj, 1)} out : {}
DEP order : {} order : {(subj, 1), (subj, obj), (1, obj)} order : {}
s:://(:D
O< :
z ? .
1 2 3
QS everybody loves somebody
o o o
2
everybody loves somebody
DEP/QS { dom : {} } { dom : {subj,obj} } { dom : {} }

Fig. 1.7: Dependency multigraph for Everybody loves somebody

1.4.2 Grammars

XDG is a model-theoretic framework: grammars first delineate the set of all candi-
date structures, and second, all structures which are not well-formed according to
a set of constraints are eliminated. The remaining structures are the models of the
grammar. This contrasts with approaches such as the regular dependency grammars
of Sect. 1.3.3, where the models are generated using a set of productions.

An XDG grammar G = (MT, lex, P) has three components: a multigraph type MT,
alexicon lex, and a set of principles P. The multigraph type specifies the dimensions,
words, edge labels and node attributes, and thus delineates the set of candidate struc-
tures of the grammar. The lexicon is a function from the words of the grammar to
sets of lexical entries, which determine the node attributes of the nodes with that
word. The principles are a set of formulas in first-order logic constituting the con-
straints of the grammar. Principles can talk about precedence, edges, dominances
(transitive closure! of the edge relation), the words associated to the nodes, and the
node attributes. Here is an example principle forbidding cycles on dimension DEP.
It states that no node may dominate itself:

Win(v—iy) (1.1)

The second example principle stipulates a constraint for all edges from v to v’ labeled
[ on dimension DEP: if [ is in the set denoted by the lexical attribute dom of v on
DEP/QS, then v/ must dominate v on QS:

! Transitive closures cannot be expressed in first-order logic. As in practice, the only transitive
closure that we need is the transitive closure of the edge relation, we have decided to encode it in
the multigraph model and thus stay in first-order logic [10].



12 Ralph Debusmann and Marco Kuhlmann

YW VI VL)DEPV/ A L€ dompgpros(v) = VvV —dsv (1.2)

Observe that the principle is indeed satisfied in Fig. 1.7: the attribute dom for node
2 on DEP/QS includes subj and obj, and both the subj and the obj dependents of node
2 on DEP dominate node 2 on QS.

A multigraph is a model of a grammar G = (MT, lex, P) iff it is one of the candi-
date structures delineated by MT, it selects precisely one lexical entry from lex for
each node, and it satisfies all principles in P.

The string language L(G) of a grammar G is the set of yields of its models. The
recognition problem is the question given a grammar G and a string s, is s in L(G).
We have investigated the complexity of three kinds of recognition problems [9]: The
universal recognition problem where both G and s are variable is PSPACE-complete,
the fixed recognition problem where G is fixed and s is variable is NP-complete, and
the instance recognition problem where the principles are fixed, and the lexicon and
s are variable is also NP-complete. XDG parsing is NP-complete as well.

XDG is at least as expressive as CFG [8]. We have proven that the string languages
of XDG grammars are closed under union and intersection [10]. In Sect. 1.7, we
give a constructive proof that XDG is at least as expressive as the class of regular
dependency grammars introduced in Sect. 1.3.3, which entails through an encoding
of LCFRS in regular dependency grammars, that XDG is at least as expressive as
LCFRS. As XDG is able to model scrambling (see Sect. 1.5.2), which LCFRS is not
[3], it is indeed more expressive than LCFRS.

1.5 Modeling Complex Word Order Phenomena

The first application for the multi-dimensionality of XDG in CHORUS is the design
of a new, elegant model of complex word order phenomena such as scrambling.

1.5.1 Scrambling

In German, the word order in subordinate sentences is such that all verbs are posi-
tioned at the right end in the so-called verb cluster, and are preceded by all the non-
verbal dependents in the so-called Mittelfeld. Whereas the mutual order of the verbs
is fixed, that of the non-verbal dependents in the Mittelfeld is totally free.> This
leads to the phenomenon of scrambling. We show an example in Fig. 1.8, where the
subscripts indicate the dependencies between the verbs and their arguments.

In the dependency analysis in Fig. 1.9 (top), we can see that scrambling gives
rise to non-projectivity. In fact, scrambling even gives rise to an unbounded block-

2 These are of course simplifications: the order of the verbs can be subject to alternations such as
Oberfeldumstellung, and although all linearizations of the non-verbal dependents are grammatical,
some of them are clearly marked.
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| Mittelfeld | verb cluster |

(dass) Nilpferdes Maria, Hans; |fiitterns helfen,  soll;
(that) hipposs Maria, Hans,| feeds  helpy should;

| (that) Maria should help Hans feed hippos |

Fig. 1.8: Example for scrambling

degree (see Sect. 1.2), which means that it can neither be modeled by LCFRS, nor
by regular dependency grammars.

/sub] /\,\fﬁ?
o ! : :
o
PR b :
O : : :
DEP Nilpferde Maria Hans flittern helfen soll

TOP Nilpferde Maria Hans fiitt’crn helfen soll

Fig. 1.9: Dependency analysis (top) and topological analysis (bottom) of the scrambling example

1.5.2 A Topological Model of Scrambling

As we have proven [8], scrambling can be modeled in XDG. But how? There is
no straightforward way of articulating appropriate word order constraints on the
DEP dimension directly. At this point, we can make use of the multi-dimensionality
of XDG. The idea is to keep the dependency analysis on the DEP dimension as it
is, and move all ordering constraints to an additional dimension called TOP. The
models on TOP are projective trees which represent the topological structure of the
sentence as in Topological Dependency Grammar (TDG) [15]. A TOP analysis of
the example sentence is depicted in Fig. 1.9 (bottom). Here, the non-verbal depen-
dents Nilpferde, Maria and Hans are dependents of the finite verb soll labeled mf
for “Mittelfeld”. The verbal dependent of soll, helfen, and that of helfen, fiittern, are
labeled vcf for “verb cluster field”. With this additional dimension, articulating the
appropriate word order constraints is straightforward: all mf dependents of the finite
verb must precede its vcf dependents, and the mutual order of the mf dependents is
unconstrained.
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The relation between the DEP and TOP dimensions is such that the trees on TOP
are a flattening of the corresponding trees on DEP. We can express this in XDG by
requiring that the dominance relation on TOP is a subset of the dominance relation
on DEP:

VoW vV = vl
This principle is called the climbing principle [15], and gets its name from the ob-
servation that the non-verbal dependents seem to “climb up” from their position on
DEP to a higher position on TOP. For example, in Fig. 1.9, the noun Nilpferde is a
dependent of fiittern on DEP, and climbs up to become a dependent of the finite verb
soll on TOP.

Just using the climbing principle is too permissive. For example, in German,
extraction of determiners and adjectives out of noun phrases must be ruled out,
whereas relative clauses can be extracted. To this end, we apply a principle called
barriers principle [15], which allows each word to “block” certain dependents from
climbing up. This allows us to express that nouns block their determiner and adjec-
tive dependents from climbing up, but not their relative clause dependents.

1.6 A Relational Syntax-Semantics Interface

Our second application of XDG is the realization of a new, relational syntax-
semantics interface [11]. The interface is relational in the sense that it constrains
the relation between the syntax and the semantics, as opposed to the traditional
functional approach where the semantics is derived from syntax. In combination
with the constraint-based implementation of XDG, the main advantage of this ap-
proach is bi-directionality: the same grammar can be “reversed” and be used for
generation, and constraints and preferences can “flow back” from the semantics to
disambiguate the syntax. In this section, we introduce the subset of the full rela-
tional syntax-semantics interface for XDG [11], concerned only with the relation
between grammatical functions and quantifier scope. We model quantifier scope us-
ing dominance constraints, the integral part of the Constraint Language for Lambda
Structures (CLLS) [16].

1.6.1 Dominance Constraints

Dominance constraints can be applied to model the underspecification of scopal
relationships. For example, the sentence Everybody loves somebody has two scopal
readings: one where everybody loves the same somebody, and one where everybody
loves somebody else. The first reading is called the strong reading: here, somebody
takes scope over everybody, which in turn takes scope over loves. In the second
reading, the weak reading, everybody takes scope over somebody over loves. Using



1 Dependency Grammar: Classification and Exploration 15

dominance constraints, it is possible to model both readings in one underspecified
representation called dominance constraint:

X1 : everybody(X{) N X : loves N X3 : somebody(X3) A X| <*Xo A Xj <" X, (1.3)

The dominance constraint comprises three labeling literals and two dominance lit-
erals. A labeling literal such as X; : everybody(X]) assigns labels to node variables,
and constrains the daughters: X; must have the label everybody, and it must have
one daughter, viz. Xl’ . The dominance literals Xl' <* X, and X3’ <* X, stipulate that
the node variables X and X} must dominate (or be equal to) the node variable X5,
expressing that the node variables corresponding to everybody and somebody must
dominate /oves, but that their mutual dominance relationship is unknown.

The models of dominance constraints are trees called configurations. The ex-
ample dominance constraint (1.3) represents the two configurations displayed in
Fig. 1.10 (a) (strong reading) and (b) (weak reading).

X : somebody X, : everybody
X, : everybody X5 : somebody O\/sc/? ?\sc\/o
| | LT 5 5 o
X, : loves X, : loves -,l/hmi,/ loces ‘;1/!r<)/l;/ loces i Iy
(@ (b) © (@

Fig. 1.10: (a) Configuration representing the strong reading, (b) the weak reading of Everybody
loves somebody, (c) corresponding XDG dependency tree for the strong reading, (d) weak reading.

In XDG, we represent the configurations on a dimension called QS for quantifier
scope analysis. For example, the configuration in Fig. 1.10 (a) corresponds to the
XDG dependency tree in Fig. 1.10 (c), and (b) to (d). The QS dimension must satisfy
only one principle: it must have tree-shape.

We model the dominance constraint itself by translating the labeling literals into
constraints on the node-word mapping, and the dominance literals into dominance
predicates. Hereby, we conflate the node variables participating in labeling literals
such as X : everybody(X]) into individual nodes.? We translate the dominance con-
straint (1.3) into the following XDG principle:

w(1) = everybody N w(2) = loves A w(3) = somebody N 1—42 A 3—462 (1.4)

The set of QS tree structures which satisfy this principle corresponds precisely to the
set of configurations of the dominance constraint in (1.3), i.e., the two dependency
trees in Fig. 1.10 (c) and (d).

3 In our simple example, the labeling literals have at most one daughter. In a more realistic setting
[8], we distinguish the daughters of labeling literals with more than one daughter using distinct
edge labels.
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1.6.2 The Interface

We now apply this formalization of dominance constraints in XDG for building a
relational syntax-semantics interface. The interface relates DEP, a syntactic dimen-
sion representing grammatical functions, and QS, a semantic dimension representing
quantifier scope, and consists of two ingredients: the additional interface dimension
DEP/QS, and an additional interface principle. The models on DEP/QS have no edges,
as the sole purpose of this dimension is to carry the lexical attribute dom specifying
how the syntactic dependencies on DEP relate to the quantifier scope dependencies
on QS. The value of dom is a set of DEP edge labels, and for each node, all syn-
tactic dependents with a label in dom must dominate the node on QS. We call the
corresponding principle, already formalized in (1.2), dominance principle.

This kind of syntax-semantics interface is “two-way”, or bi-directional: infor-
mation does not only flow from syntax to semantics, but also vice versa. Like a
functional interface, given a syntactic representation, the relational interface is able
to derive the corresponding semantic representation. For example, the two syntactic
dependencies from node 2 (loves) to node 1 (labeled subj) and to node 3 (labeled
obj) in Fig. 1.7, together with the dominance principle, yield the information that
both the subject and the object of loves must dominate it on the QS dimension.

The relational syntax-semantics interface goes beyond the functional one in its
ability to let information from the semantics “flow back” to the syntax. For exam-
ple, assume that we start with a partial QS structure including the information that
everybody and somebody both dominate loves. Together with the dominance prin-
ciple, this excludes any edges from everybody to loves and from somebody to loves
on DEP.* Thus, information from the semantics has disambiguated the syntax. This
bi-directionality can also be exploited for “reversing” grammars to be used for gen-
eration as well as for parsing [28, 7].

1.7 Modeling Regular Dependency Grammars

In this section, we apply XDG to obtain a multi-dimensional model of regular depen-
dency grammars (REGDG). This not only gives us a lower bound of the expressivity
of XDG, but also yields techniques for parsing TAG grammars. We demonstrate the
application of the latter to large-scale parsing in Sect. 1.8.2.

Our modeling of REGDG proceeds in two steps. In the first, we examine the struc-
tures that they talk about: totally ordered dependency trees. To ease the transition
to XDG, we replace the node labels in the REGDG dependency trees by edge la-
bels in the XDG dependency trees. Fig. 1.11 (top) shows such a dependency tree of
the string aaabbb. We call the XDG dependency tree dimension DEP. On the DEP
dimension, the models must have tree-shape but need not be projective.

4 For the example, we assume that the value of dom for everybody and somebody includes all edge
labels.
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: A B :
- B
: : ; B
: : : : : 0
1 2 3 4 5 6
DEP a a a b b b

BLOCK a a a b b b

Fig. 1.11: XDG dependency tree (top) and XDG block graph (bottom) for the string aaabbb

In the second step, we examine the rules of REGDG. They can be best explained
by example. Consider the rule:

A — (a,{(01,21))(A,B) (1.5)

which is expanded by the second a in Fig. 1.11. First, the rule stipulates that a head
with incoming edge label A associated with the word a must have two dependents:
one labeled A and one labeled B. Second, the rule stipulates the order of the yields
of the dependents and the head, where the yields are divided into contiguous sets
of nodes called blocks. In the order tuples (e.g. (01,21)), O represents the head, 1
the blocks in the yield of the first dependent (here: A), and 2 the blocks in the yield
of the second dependent (here: B). The tuple (01,21) from the example rule then
states: the yield of the A dependent must consist of two blocks (two occurrences of
1 in the tuple) and that of the B dependent of one block (one occurrence of 2), the
head must precede the first block of the A dependent, which must precede the first
(and only) block of the B dependent, which must precede the second block of the A
dependent, and the yield of the head must be divided into two blocks, where the gap
is between the first block of the A dependent and the first (and only) block of the B
dependent.

As REGDG do not only make statements on dependency structures but also on
the yields of the nodes, we exploit the multi-dimensionality of XDG and introduce
a second dimension called BLOCK. The structures on the BLOCK dimension are
graphs representing the function from nodes to their yields on DEP. That is, each
edge from v to v/ on BLOCK corresponds to a sequence of zero or more edges from
vto Vv on DEP:

WiW i v—ogV & vV
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An edge from v to V' labeled i on BLOCK states that v/ is in the ith block of the yield
of v on DEP.

We model that the blocks are contiguous sets of nodes by a principle stipulating
that for all pairs of edges, one from v to v/, and one from v to v, both labeled with
the same label /, the set of nodes between v/ and v/ must also be in the yield of v:

1 1
Vv W W VL (v——p00k V AV =510k V) = (W 0V <V AV <V = v V)

Fig. 1.11 (bottom) shows an example BLOCK graph complementing the DEP
tree in Fig. 1.11 (top). On DEP, the yield of the second a (node 2) consists of itself
and the third a (node 3) in the first block, and the second » and the third » (nodes
5 and 6) in the second block. Hence, on the BLOCK dimension, the node has four
dependents: itself and the third a are dependents labeled 1, and the second b and the
third b are dependents labeled 2.

We model the rules of the REGDG in XDG in four steps. First, we lexically con-
strain the incoming and outgoing edges of the nodes on DEP. For example, to model
the example rule (1.5), we stipulate that the node associated with the word a must
have precisely one incoming edge labeled A, and one A and one B dependent, as
shown in Fig. 1.12 (a).

Al 1% 2+
DEP \ Qs \ DEP, QS N
Al B! 1+ 2+ o A 2
1 1
a a a L

(a) (b) ()

Fig. 1.12: (a) Constraints on DEP, (b) BLOCK, and (c) on both DEP and BLOCK

Second, we lexically constrain the incoming and outgoing edges on BLOCK. As
each node on BLOCK can end up in any block of any other node, each node may
have arbitrary many incoming edges either labeled 1 or 2. The constraint on the
outgoing edges reflects the number of blocks into which the yield of the node must
be divided. For the example rule (1.5), the yield must be divided into two blocks,
and hence the node must have one or more dependents labeled 1, and one or more
labeled 2, as depicted in Fig. 1.12 (b).

Third, we lexically constrain the order of the blocks of the DEP dependents. We
do this by a constraint relating the DEP and BLOCK dimensions. For the example
rule (1.5), we must order the head to the left of the first block of the A dependent.
In terms of our XDG model, as illustrated in Fig. 1.12 (c), we must order the head
to the left of all 1 dependents on BLOCK of the A dependent on DEP. Similarly, we

3 For clarity, the graphical representation does not include the edges from each node to itself, and
all edges except those emanating from node 2 are ghosted.
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must order the 1 dependents of the A dependent to the left of the 1 dependents of the
B dependent, and these in turn to the left of the 2 dependents of the A dependent.

Fourth, we lexically model the location of the gaps between the blocks. In the
example rule (1.5), there is one gap between the first block of the A dependent and
the first (and only) block of the B dependent, as indicated in Fig. 1.12 (c).

1.8 Grammar Development Environment

We have complemented the theoretical exploration of dependency grammars using
XDG with the development of a comprehensive grammar development environment,
the XDG Development Kit (XDK) [13, 8, 47]. The XDK includes a parser, a powerful
grammar description language, an efficient compiler for it, various tools for testing
and debugging, and a graphical user interface, all geared towards rapid prototyping
and the verification of new ideas. It is written in MOZART/0Z [50, 38]. A snapshot
of the XDK is depicted in Fig. 1.13.

i
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Fig. 1.13: The XDG Development Kit (XDK)
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1.8.1 Parser

The included parser is based on constraint programming [45], a modern technique
for solving NP-complete problems. For efficient parsing, the applied constraints im-
plementing the XDG principles must be fine-tuned. Fine-tuned implementations of
the principles of the account of word order outlined in Sect. 1.5, and the relational
syntax-semantics interface outlined in Sect. 1.6 already exist, and have yielded effi-
ciently parsable, smaller-scale grammars for German [6, 2], and English [8]. Koller
and Striegnitz show that an implementation of TDG can be applied for efficient TAG
generation [28].

1.8.2 Large-Scale Parsing

In this section, we answer the question whether the constraint parser of the XDK ac-
tually scales up for large-scale parsing. We find a positive answer to this question by
showing that the parser can be fine-tuned for parsing the large-scale TAG grammar
XTAG [55], such that most of the time, it finds the first parses of a sentence before a
fast TAG chart parser with polynomial time complexity. This is surprising given that
the XDK constraint parser has exponential time complexity in the worst case.

For our experiment, we applied the most recent version of the XTAG grammar
from February 2001, which has a full form lexicon of 45171 words and 1230 ele-
mentary treyes. The average lexical ambiguity is 28 elementary trees per word, and
the maximum lexical ambiguity 360 (for ger). Verbs are typically assigned more
than 100 elementary trees. We developed an encoding of the XTAG grammar into
XDG based on ideas from [12] and our encoding of regular dependency grammars
(Sect. 1.7), and implemented these ideas in the XDK.

We tested the XDK with this grammar on a subset of section 23 of the Penn
Treebank, where we manually replaced words not in the XTAG lexicon by appropri-
ate words from the XTAG lexicon. We compared our results with the official XTAG
parser: the LEM parser [44], a chart parser implementation with polynomial com-
plexity. For the LEM parser, we measured the time required for building up the
chart, and for the XDK parser, the time required for the first solution and the first
1000 solutions. Contrary to the LEM parser, the XDK parser does not build up a
chart representation for the efficient enumeration of parses. Hence one of the most
interesting questions was how long the XDK parser would take to find not only the
first but the first 1000 parses.

We did not use the supertagger included in the LEM package, which significantly
increases its efficiency at the cost of accuracy [44]. We must also note that longer
sentences are assigned up to millions of parses by the XTAG grammar, making it
unlikely that the first 1000 parses found by the constraint parser also include the best
parses. This could be remedied with sophisticated search techniques for constraint
parsing [14, 39].
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We parsed 596 sentences of section 23 of the Penn Treebank whose length ranged
from 1 to 30 on an Athlon 64 3000+ processor with 1 GByte of RAM. The average
sentence length was 12.36 words. From these 596 sentences, we first removed all
those which took longer than a timeout of 30 minutes using either the LEM or the
XDK parser. The LEM parser exceeded the timeout in 132 cases, and the XDK in 94
cases, where 52 of the timeouts were shared among both parsers. As a result, we
had to remove 174 sentences to end up with 422 sentences where neither LEM nor
the XDK had exceeded the timeout. They have an average length of 10.73 words.

The results of parsing these remaining 422 sentences is shown in Table 1.2.
Here, the second column shows the time the LEM parser required for building up
the chart, and the percentage of exceeded timeouts. The third and fourth column
show the times required by the standard XDK parser (using the constraint engine
of MOZART/0Z 1.3.2) for finding the first parse and the first 1000 parses, and the
percentage of exceeded timeouts. The fourth and fifth column show the times when
replacing the standard MOZART/OZ constraint engine with the new, faster GECODE
2.0.0 constraint library [46], and again the percentage of exceeded timeouts.

Interestingly, despite the polynomial complexity of the LEM parser, the XDK
parser not only less often ran into the 30 minute timeout, but was also faster than
LEM on the remaining sentences. Using the standard MOZART/OZ constraint engine,
the XDK found the first parse 3.2 times faster, and using GECODE, 16.8 times faster.
Even finding the first 1000 parses was 1.7 (MOZART/0Z) and 7.8 (GECODE) times
faster. The gap between LEM and the XDK parser increased with increased sentence
length. Of the sentences between 16 and 30 words, the LEM parser exceeded the
timeout in 82.14% of the cases, compared to 45.54% (MOZART/0Z) and 38.39%
(GECODE). Finding the first parse of the sentences between 16 and 30 words was
8.9 times faster using MOZART/0Z, and 41.1 times faster using GECODE. The XDK
parser also found the first 1000 parses of the longer sentences faster than LEM: 5.2
times faster using MOZART/0Z and 19.8 times faster using GECODE.

LEM XDK

MOZART/0Z GECODE
1 parse 1000 parses 1 parse 1000 parses
1 —30 words 200.47s 62.96s 117.29s 11.90s 25.72s
timeouts 132 (22.15%) 93 (15.60%) 94 (15.78%) 60 (10.07%) 60 (10.07%)
1 — 15 words 166.03s 60.48s 113.43s 11.30s 24.52s
timeouts 40 (8.26%) 42 (8.68%) 43 (8.88%) 17 (3.51%) 17 (3.51%)
16 — 30 words 1204.10s 135.24s 229.75s 29.33s 60.71s

timeouts 92 (82.14%) 51 (45.54%) 51 (45.54%) 43 (38.39%) 43 (38.39%)

Table 1.2: Results of the XTAG parsing experiment
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1.9 Conclusion

The goals of the research reported in this chapter were to classify dependency gram-
mars in terms of their generative capacity and parsing complexity, and to explore
their expressive power in the context of a practical system. To reach the first goal,
we have developed the framework of regular dependency grammars, which provides
a link between dependency structures on the one hand, and mildly context-sensitive
grammar formalisms such as TAG on the other. To reach the second goal, we have
designed a new meta grammar formalism, XDG, implemented a grammar develop-
ment environment for it, and used this to give novel accounts of linguistic phenom-
ena such as word order variation, and to develop a powerful syntax-semantics inter-
face. Taken together, our research has provided fundamental insights into both the
theoretical and the practical aspects of dependency grammars, and a more accurate
picture of their usability.
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