
A concurrent syntax-semantics

interface for dependency

grammar: A first sketch

Ralph Debusmann
Universität des Saarlandes
Programming Systems Lab

rade@ps.uni-sb.de

Thursday, May 23rd 2002

A concurrent syntax-semantics interface for dependency grammar: A first sketch



Adding semantics to TDG

• starting point: TDG (Topological Dependency
Grammar) grammar formalism (Diplomarbeit
2001, Duchier/Debusmann ACL 2001)

• so far: only syntax and word order, but no
semantics

• goals of my dissertation:

– extend the grammar formalism
– develop a concurrent syntax-semantics interface

(to CLLS-semantics)

A concurrent syntax-semantics interface for dependency grammar: A first sketch 1



Concurrent semantics construction

• vision: syntax-semantics interface for TDG shall
be concurrent

• concurrent means bi-directional: while parsing,
information from syntax can be used to
disambiguate semantics and vice versa

• provides the ideal basis for the integration of
preferences

A concurrent syntax-semantics interface for dependency grammar: A first sketch 2



Overview of this talk

1. TDG summary

2. First ideas for a syntax-semantics interface

3. First ideas on how to incorporate preferences

4. Demo

A concurrent syntax-semantics interface for dependency grammar: A first sketch 3



TDG summary

• dependency-based, lexicalized grammar formalism,
efficient constraint-based parser implementation

• fundamental: lexicalized principles of accepted

labels and valency

• two levels: dependency tree and topology tree:

Jeder Mann will eine Frau lieben

det

sub
j vbse

det

obj

Jeder mann will eine Frau lieben

n
n

c

n
n v

df

vf mf vcf

df

A concurrent syntax-semantics interface for dependency grammar: A first sketch 4



A syntax-semantics interface for TDG:

first ideas

• goal: obtain a CLLS-constraint from a list of
words

• two issues:

1. need to recover the λ-bindings
2. need to recover information on how to plug

CLLS-fragments together

• idea investigated so far: add two additional levels
of analysis:

1. thematic graph
2. CLLS-derivation tree

A concurrent syntax-semantics interface for dependency grammar: A first sketch 5



Thematic graph

Jeder Mann will eine Frau lieben

ag
go

pt
ag

• ag = agent, pt = patient, go = goal

• used to recover the λ-bindings

• accepted labels and valency are again the most
important well-formedness conditions

• connected to syntax (dependency tree) by linking
constraints theory (mapping e.g. agent to subject)

• similar to: a-structure (LFG), HPSG: done in the
syntax

A concurrent syntax-semantics interface for dependency grammar: A first sketch 6



CLLS-derivation tree

Jeder Mann eine Frau will lieben

q

q

vs

s

s

• q = quantifier, r = restriction, s = scope

• represents information on how to plug CLLS-
fragments together (a la TAG, substitution and
adjunction)

• accepted labels and valency once again the most
important well-formedness conditions

• connected to syntax by covariance constraints

• similar to: glue-structure (LFG), HPSG: MRS

A concurrent syntax-semantics interface for dependency grammar: A first sketch 7



Partially solved CLLS-derivation tree

• do not need and do not want to enumerate all
possible CLLS-derivation trees

• if we do not enumerate, the partially solved CLLS-
derivation trees we obtain precisely correspond
to the underspecified semantic representations
(=CLLS-constraints) we want, e.g.:

Jeder Mann will eine Frau lieben

q q

vs

A concurrent syntax-semantics interface for dependency grammar: A first sketch 8



Reading off CLLS-constraints

• conjecture: there is an algorithm to read off
CLLS-constraints from (fully solved) thematic
graphs and (partially solved) CLLS-derivation
trees, where:

– the thematic graph provides the λ-binding
information

– the CLLS-derivation tree provides plugging
information

A concurrent syntax-semantics interface for dependency grammar: A first sketch 9



Reading off CLLS-constraints: an

example

1. Nodes in the derivation tree correspond to CLLS-
fragments, and these fragments correspond to
CLLS-constraints:

Mann 7→









� @
� @

X
q �

X
ru �

X
rd � mann’

X
s �

λ
�









jeder 7→
[

X
q � jeder’

]

wollen 7→









X
ag �

	 @

 @

� wollen’ X
vs �


 var









lieben 7→









X
pt �

X
ag �

X
vs � @

� @
� lieben’ � var

� var









A concurrent syntax-semantics interface for dependency grammar: A first sketch 10



Reading off CLLS-constraints: an

example

2. We arrange the CLLS-constraints according to the
information contained in the CLLS-derivation tree:

� @
� @

X
q � jeder’ X

r � mann’
X

s �

λ
�

� @
� @

X
q � eine’ X

r 	 frau’
X

s 


λ
�

� @

 @

� wollen’ X
vs � @

� @
� lieben’ � var

� var

� var

A concurrent syntax-semantics interface for dependency grammar: A first sketch 11



Reading off CLLS-constraints: an

example

3. Finally, we add the λ-binding constraints
according to the information contained in the
thematic graph:

� @
� @

X
q � jeder’ X

r � mann’
X

s �

λ
�

� @
� @

X
q � eine’ X

r 	 frau’
X

s 


λ
�

� @

 @

� wollen’ X
vs � @

� @
� lieben’ � var

� var

� var

A concurrent syntax-semantics interface for dependency grammar: A first sketch 12



How to incorporate preferences

• idea: after all deterministic inferences have been
drawn, we export partial parse information to the
preferences module

• the preferences module acts as an oracle,
predicting e.g. where a PP can be attached, and
feeds this information back into the dependency
parser to resolve ambiguities

• process very similar to what Brandts/Duchier
already did for dependency parsing (1999):
distinguish edges that are determined and those
that are candidates, then let an “oracle” rank the
candidates, and then first try the highest ranked
ones

A concurrent syntax-semantics interface for dependency grammar: A first sketch 13



Demo - state of the art

• the old TDG grammar development system was
rather inflexible:

– difficult to add e.g. new levels (thematic graph,
derivation tree)

– difficult to extend the grammar formalism (e.g.
add lexical rules)

• to be more flexible, we are reimplementing the
grammar development system from scratch

• state-of-the-art: parsing using all four analysis
structures (dependency tree, topology tree,
thematic graph, CLLS-derivation tree)

• yet missing: construction of CLLS-constraints,
lexical rules and other additions to the grammar
formalism, comprehensive GUI interface (can
mostly be taken over from the old demo)

A concurrent syntax-semantics interface for dependency grammar: A first sketch 14


