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Adding semantics to TDG

• starting point: TDG (Topological Dependency
Grammar) grammar formalism (Diplomarbeit
2001, Duchier/Debusmann ACL 2001)

• so far: only syntax and word order, but no
semantics

• goals of my dissertation:

– extend the grammar formalism
– develop a concurrent syntax-semantics interface

(to CLLS-semantics)
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Concurrent semantics construction

• vision: syntax-semantics interface for TDG shall
be concurrent

• concurrent means bi-directional: while parsing,
information from syntax can be used to
disambiguate semantics and vice versa

• provides the ideal basis for the integration of
preferences
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Overview of this talk

1. TDG summary

2. First ideas for a syntax-semantics interface

3. First ideas on how to incorporate preferences

4. Demo
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TDG summary

• dependency-based, lexicalized grammar formalism,
efficient constraint-based parser implementation

• fundamental: lexicalized principles of accepted

labels and valency

• two levels: dependency tree and topology tree:
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A syntax-semantics interface for TDG:

first ideas

• goal: obtain a CLLS-constraint from a list of
words

• two issues:

1. need to recover the λ-bindings
2. need to recover information on how to plug

CLLS-fragments together

• idea investigated so far: add two additional levels
of analysis:

1. thematic graph
2. CLLS-derivation tree
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Thematic graph

Jeder Mann will eine Frau lieben
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• ag = agent, pt = patient, go = goal

• used to recover the λ-bindings

• accepted labels and valency are again the most
important well-formedness conditions

• connected to syntax (dependency tree) by linking
constraints theory (mapping e.g. agent to subject)

• similar to: a-structure (LFG), HPSG: done in the
syntax
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CLLS-derivation tree

Jeder Mann eine Frau will lieben
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• q = quantifier, r = restriction, s = scope

• represents information on how to plug CLLS-
fragments together (a la TAG, substitution and
adjunction)

• accepted labels and valency once again the most
important well-formedness conditions

• connected to syntax by covariance constraints

• similar to: glue-structure (LFG), HPSG: MRS
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Partially solved CLLS-derivation tree

• do not need and do not want to enumerate all
possible CLLS-derivation trees

• if we do not enumerate, the partially solved CLLS-
derivation trees we obtain precisely correspond
to the underspecified semantic representations
(=CLLS-constraints) we want, e.g.:
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Reading off CLLS-constraints

• conjecture: there is an algorithm to read off
CLLS-constraints from (fully solved) thematic
graphs and (partially solved) CLLS-derivation
trees, where:

– the thematic graph provides the λ-binding
information

– the CLLS-derivation tree provides plugging
information
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Reading off CLLS-constraints: an

example

1. Nodes in the derivation tree correspond to CLLS-
fragments, and these fragments correspond to
CLLS-constraints:
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Reading off CLLS-constraints: an

example

2. We arrange the CLLS-constraints according to the
information contained in the CLLS-derivation tree:
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Reading off CLLS-constraints: an

example

3. Finally, we add the λ-binding constraints
according to the information contained in the
thematic graph:
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How to incorporate preferences

• idea: after all deterministic inferences have been
drawn, we export partial parse information to the
preferences module

• the preferences module acts as an oracle,
predicting e.g. where a PP can be attached, and
feeds this information back into the dependency
parser to resolve ambiguities

• process very similar to what Brandts/Duchier
already did for dependency parsing (1999):
distinguish edges that are determined and those
that are candidates, then let an “oracle” rank the
candidates, and then first try the highest ranked
ones
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Demo - state of the art

• the old TDG grammar development system was
rather inflexible:

– difficult to add e.g. new levels (thematic graph,
derivation tree)

– difficult to extend the grammar formalism (e.g.
add lexical rules)

• to be more flexible, we are reimplementing the
grammar development system from scratch

• state-of-the-art: parsing using all four analysis
structures (dependency tree, topology tree,
thematic graph, CLLS-derivation tree)

• yet missing: construction of CLLS-constraints,
lexical rules and other additions to the grammar
formalism, comprehensive GUI interface (can
mostly be taken over from the old demo)
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