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� To get us from words to what they mean (in a 
logical formalism, e.g. CLLS)

� Requirements:
– Simplicity
– Concurrency

� To this end: need an appropriate grammar 
formalism

Some grammar formalisms

� So plenty of them already exist. Why not 
simply pick one of them?

GB (Chomsky 86)
HPSG (Pollard/Sag 94)
LFG (Bresnan/Kaplan 82)
TAG (Joshi 87)

FGD (Sgall et al 86)
MTT (Melcuk 88)

CCG (Ades/Steedman 82)

Problems of existing grammar 
formalisms 

� Tend to conflate levels of representation
– Syntactic function
– Word order
– Predicate-argument structure

� Lack of language-independence (esp. 
Problems with free word order languages)

� Lack of simplicity (matter of taste)

Solving these problems

� Claim: dependency-based formalisms have the 
prerequisites to solve these problems:

– Levels of representation distinguished more 
properly

– Less problems with free word order languages (in 
fact FGD and MTT developed for Czech/Russian)

– Simpler

� But do they really?

Unfortunately not

� Dependency-based formalisms like FGD and 
MTT have serious problems:

– Lack of declarativity (esp. when it comes to handling 
word order)

– No (concurrent) syntax-semantics interface



2

From PS to DG

� Current dependency-based grammar 
formalisms cannot solve the problems of PS-
based ones

� One idea: equip PS-based grammar 
formalisms with ideas from dependency-based 
ones

From PS to DG

� In fact: PS-based grammar formalisms have 
picked up more and more ideas from 
dependency-based ones:

– GB: X-bar theory
– HPSG: DEPS-feature in new versions
– f-structure
– Derivation tree represents dependency-like 

structure

PS and MS-DOS

� But why shall we keep the PS-backbone at all 
(like hanging on to MS-DOS)?

� E.g. TAG: why do we need the derived tree 
when all we need for semantics construction is 
encoded in the derivation tree?

� What we do: develop a new dependency-
based grammar formalism: Topological 
Dependency Grammar (TDG)

TDG solves some problems

� Lack of declarativity (esp. when it comes to 
handling word order):

– TDG 2001: Debusmann 2001 MSc, 
Duchier/Debusmann 2001 ACL

� No (concurrent) syntax-semantics interface:
– TDG 2002+: PhD research, Korthals/Debusmann 

2002 COLING

� Today: introduce the main building block of the 
interface: the argument structure level

TDG architecture

� Multiple clearly separated levels:
– Dependency tree
– Topology tree
– Argument-structure

� Constraint-based, concurrent
� Well-formedness conditions:

– Shape vs. lexicalized constraints
– Within vs. across constraints

Dependency tree level

tries to sleepPeter

subj vinf

prt

� Basic assumptions:
– 1:1 mapping from word occurrences to nodes
– Labeled directed edges (labels: syntactic functions)
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Well-formedness conditions:
Shape constraints

� General constraints on the shape of the 
structure

� E.g. the dependency tree must be a tree (in the 
graph-theoretical sense), and the argument 
structure must be a DAG

Well-formedness conditions:
Lexicalized constraints

� Each node is assigned a lexical entry

� The lexical entry contains lexical attributes and 
their values

� Lexical ambiguity dealt with nicely by the 
Selection Constraint (Duchier 99)

� Lexicalized constraints: make statements 
about the lexical attributes

Example lexical entries
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Lexicalized constraints:
The out-constraint

� Determines number and type of outgoing 
edges:

lvoutl labelededgesoutgoing0then)(∉

lvoutl labelededgeoutgoing1then)(∈

Lexicalized constraints:
The in-constraint

� Determines type of incoming edge:

)'(ifonly' vinlvv l ∈→

In and out-constraints: example
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Levels of representation
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Within vs. across-constraints

� So far: well-formedness conditions for the three 
levels kept separate: only within-level 
constraints

� How can we establish a mutual relationship 
between the levels?

Across-constraints

� Topology/Dependency
– Flattening
– Barriers

� Argument Structure/Dependency
– Linking

Levels of representation
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Linking

The argument structure-level

� dependency trees are already close to 
semantic argument structure, but not close 
enough

� E.g. control:

� Who is the sleeper?

Peter     tries      to      sleep

vinfsubj

prt
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The argument structure-level

� We introduce the argument structure-level to 
represent the argument structure information:

Peter     tries      to      sleep

vinfsubj

prt

Peter     tries      to      sleep

triedtryer

sleeper

Linking the argument structure to 
the dependency tree

� How do the argument structure and the 
dependency tree relate to each other?

� Idea: semantic arguments are realized by 
syntactic functions (e.g. the tryer is realized by 
the subject)

The link-feature

� The link-feature describes a function from 
semantic arguments to sets of syntactic 
functions which realize them, e.g.:
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Linking constraint (first version)

� Semantic arguments may only be realized by 
appropriate syntactic functions: 

 

)('ifonly' vlinkvvvv Θ
Θ ∈∧→→ ϕϕ

Control

� The linking principle given does not license the 
following analysis:

� There is no edge corresponding to the sleeper-
edge in the dependency tree

Peter     tries      to      sleep

vinfsubj

prt

Peter     tries      to      sleep

triedtryer

sleeper

What happened?

� Sleep does not have a subject in the 
dependency tree but has a sleeper-argument 
in the argument structure

� Tries offers its subject for the embedded verb 
to take

� Sleep takes the subject of tries as ist subject 
and realizes the sleeper therewith
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The offer-feature

� The offer-feature is a set of syntactic functions 
offered by a control-verb (for embedded verbs 
to take as their subject)
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Linking constraint (second version)

� Semantic arguments may only be realized by 
appropriate syntactic functions

� Embedded verbs can take offered dependents 
of control verbs as their argument
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Examples: object-control

� Here: persuades offers its object for sleep to 
take as the sleeper-argument 

Peter      persuades      Mary      to      sleep

persuader

sleeper

persuaded
persuadee

Peter      persuades      Mary      to      sleep

subj vinfobj
prt

Control vs. Raising

� Raising verbs do also offer a syntactic function 
for an embedded verb to take, but this 
argument is not theirs on the argument 
structure-level

Control vs. Raising
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Control vs. Raising
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Conclusions

� Introduced the TDG grammar formalism
� Went the first step towards a concurrent 

syntax-semantics interface: addition of the 
argument structure

� Control and raising-phenomena dealt with 
rather elegantly

� For the curious: parser implementation 
available on www.mozart-oz.org

Outlook

� Extend the syntax-semantics interface (esp. To 
handle modifiers more properly)

� Use argument structure to construct a 
semantics in a logical formalism (first choice: 
CLLS; CHORUS-project)

� Investigate in which ways concurrency can 
prove useful


