A new approach to control and
raising

Ralph Debusmann
Programming Systems Lab
Saarland University

Some grammar formalisms
e
GB (Chomsky 86)
HPSG (Pollard/Sag 94) FGD (Sgall et al 86)

LFG (Bresnan/Kaplan 82) MTT (Melcuk 88)
TAG (Joshi 87)

CCG (Ades/Steedman 82)

e So plenty of them already exist. Why not
simply pick one of them?

Research program
. |
e To get us from words to what they mean (in a
logical formalism, e.g. CLLS)
e Requirements:
- Simplicity
- Concurrency

e To this end: need an appropriate grammar
formalism

Problems of existing grammar
formalisms
G
e Tend to conflate levels of representation
- Syntactic function
- Word order
- Predicate-argument structure
e Lack of language-independence (esp.
Problems with free word order languages)
e Lack of simplicity (matter of taste)

Solving these problems
G
e Claim: dependency-based formalisms have the
prerequisites to solve these problems:
- Levels of representation distinguished more
properly
- Less problems with free word order languages (in
fact FGD and MTT developed for Czech/Russian)
- Simpler

e But do they really?

Unfortunately not
N

e Dependency-based formalisms like FGD and
MTT have serious problems:

- Lack of declarativity (esp. when it comes to handling
word order)

- No (concurrent) syntax-semantics interface




From PS to DG
. |
e Current dependency-based grammar
formalisms cannot solve the problems of PS-
based ones
e One idea: equip PS-based grammar

formalisms with ideas from dependency-based
ones

PS and MS-DOS
e

e But why shall we keep the PS-backbone at all
(like hanging on to MS-DOS)?

e E.g. TAG: why do we need the derived tree
when all we need for semantics construction is
encoded in the derivation tree?

e \What we do: develop a new dependency-
based grammar formalism: Topological
Dependency Grammar (TDG)

From PSto DG
¢ ]

e In fact: PS-based grammar formalisms have
picked up more and more ideas from
dependency-based ones:

- GB: X-bar theory
- HPSG: DEPS-feature in new versions
- f-structure

- Derivation tree represents dependency-like
structure

TDG solves some problems
G
e Lack of declarativity (esp. when it comes to
handling word order):
- TDG 2001: Debusmann 2001 MSc,
Duchier/Debusmann 2001 ACL
e No (concurrent) syntax-semantics interface:
- TDG 2002+: PhD research, Korthals/Debusmann
2002 COLING
e Today: introduce the main building block of the
interface: the argument structure level

TDG architecture
C—
e Multiple clearly separated levels:
- Dependency tree
- Topology tree
- Argument-structure
e Constraint-based, concurrent
e Well-formedness conditions:
- Shape vs. lexicalized constraints
- Within vs. across constraints

Dependency tree level
N

subj vinf
o
D/
Peter tries to sleep
e Basic assumptions:

- 1:1 mapping from word occurrences to nodes
- Labeled directed edges (labels: syntactic functions)




Well-formedness conditions:
Shape constraints
R

e General constraints on the shape of the
structure

e E.g. the dependency tree must be a tree (in the
graph-theoretical sense), and the argument
structure must be a DAG

Well-formedness conditions:
Lexicalized constraints
. |

e Each node is assigned a lexical entry

e The lexical entry contains lexical attributes and
their values

e Lexical ambiguity dealt with nicely by the
Selection Constraint (Duchier 99)

e Lexicalized constraints: make statements
about the lexical attributes

Example lexical entries
e

7d in {}

P out {subj, vinf}
tries=|top ...

arg ..

-

seep=|top ..
arg ..

in {vinf}}

out {prt}

Lexicalized constraints:
The out-constraint
¢ ]

e Determines number and type of outgoing
edges:

| Oout(v) then 1outgoing edge labeled |
| Oout(v) then O outgoing edges labeled |

Lexicalized constraints:
The in-constraint
. ]

e Determines type of incoming edge:

vl - v' onlyif 10in(V)

In and out-constraints: example
N

subj S vinf
g T

Peter tries to sleep
m&s{in {} } Pe‘er{in {subj,obj,iobj}}

out {subj,vinf} out {}
in {vinf}} to:[in {prt}}

Sk-)(ap:{out {prt} out {}




Levels of representation
e

i vinf
o subj
me prt

Peter tries to sleep

Levels of representation
e

vinf Tree
o< prt In
Out

- subj

Peter tries to sleep

Levels of representation
e

vinf

e subj Tree
=< prt In
. Out
Peter tries to sleep
subjf T et
S
=4 prtf

Peter tries to sleep

Levels of representation
O

vinf

e subj Tree
=< prt In
. Out
Peter tries to sleep
subjf " vef Tree
=< prtf In
. Out
Peter tries  to sleep Order

Levels of representation
I

.« Subj vinf Tree
=< prt In
Out

Peter tries to sleep

subjf T et

Tree
o< prtf In
. Out
Peter tries to sleep Order
tryer T tried -
sleeper

Peter tries to sleep

Levels of representation
N

i vinf
- subj Tree
= prt In
. Out
Peter tries to sleep
subjf T v Tree
=< prif In
. Out
Peter tries to sleep Order
P
tryer tried DAG
sleeper = In
Out

Peter tries to sleep




Within vs. across-constraints

e So far: well-formedness conditions for the three

levels kept separate: only within-level
constraints

e How can we establish a mutual relation
between the levels?

ship

Across-constraints
¢ |
e Topology/Dependency
- Flattening
- Barriers
e Argument Structure/Dependency
- Linking

Levels of representation

vinf

Levels of representation
O

vinf

e subj Tree
=< prt In
. Out
Peter tries to sleep
- subjf vef Tree
=< prif In
. Out
Peter tries  to sleep Order
. tryer T tried DAG

R —

sleeper

Peter tries to sleep

In
Out

- subj Tree
= prt In
. Out
Peter tries to sleep
subjf ~T " vef Tree Flattening
e prif n Barriers
. Out
Peter tries  to sleep Order
- tryer T tried DAG

R —

sleeper

Peter tries to sleep

In
Out

Levels of representation

vinf

e subj Tree
=< prt In
. Out
Peter tries to sleep
subjf "7 vef Tree Flattening
o< prif In Barriers
. Out
Peter tries to sleep Order
tryer T tied - DAG Linking

sleeper

Peter tries to sleep

In
Out

The argument structure-level

e dependency trees are already close to

semantic argument structure, but not close

enough
e E.g. control:

Peter  tries

e Who is the sleeper?

subj e vinf

sleep




The argument structure-level
e

e \We introduce the argument structure-level to
represent the argument structure information:

subj ™ vinf tryer ™ tried
D‘m sleeper l‘j

Peter tries to dleep Peter tries to sleep

Linking the argument structure to
the dependency tree
¢ |

e How do the argument structure and the
dependency tree relate to each other?

e |dea: semantic arguments are realized by
syntactic functions (e.qg. the tryer is realized by
the subject)

The link-feature
¢ ]

e The link-feature describes a function from
semantic arguments to sets of syntactic
functions which realize them, e.g.:

n
dep [out {a}mj,vinf}}

tries= [in {} }

arg |out {tryer,tried}

link {tryer — {subj},tried — {vinf}

Linking constraint (first version)
O

e Semantic arguments may only be realized by
appropriate syntactic functions:

vII?- v onlyif v - Vv L ¢@Olinke(V)

Control
¢ ]

e The linking principle given does not license the
following analysis:
subj — vinf tryer — tried
e prt sleeper
Peter tries to dleep Peter tries to Sleep

e There is no edge corresponding to the sleeper-
edge in the dependency tree

What happened?
N

e Sleep does not have a subject in the
dependency tree but has a sleeper-argument
in the argument structure

e Tries offers its subject for the embedded verb
to take

e Sleep takes the subject of tries as ist subject
and realizes the sleeper therewith




The offer-feature
¢ ]

e The offer-feature is a set of syntactic functions
offered by a control-verb (for embedded verbs
to take as their subject)

dep [Ionut }s}.lbj,vinf}}
tries= " t

arg out {tryer,tried}

link  {tryer - {subj},tried - {vinf}}
offer  {subj}

Linking constraint (second version)
e

e Semantic arguments may only be realized by
appropriate syntactic functions

e Embedded verbs can take offered dependents
of control verbs as their argument

vII?- Vv onlyif v - Vv L ¢Olinke(V)
orv's ..o vV VEE
@ Ooffer (v'") O subjOlinke(V)

Examples: object-control
e

e Here: persuades offers its object for sleep to
take as the sleeper-argument

o m i —
=)
L Pt
=

Peter persuades May to deep

ersuaded

0
persuader =
persuades B —

o

Peter  persuades Mary to sleep

Control vs. Raising
G
e Raising verbs do also offer a syntactic function
for an embedded verb to take, but this
argument is not theirs on the argument
structure-level

Control vs. Raising
e —

fin {}
dep lout  {subj, vinf )}
tries = n { }
out {tryer, tried }
9 ik {tryer - {subj}tried — {vinf }}
Loffer  {subj}

. n )
P Porl-t {Tbj' vinf J
seems = out  {seemed }
9 ik {seemed — {vinf }}
offer  {subj }

Control vs. Raising
e —

subj ™~ vinf tryer ~ tried

e prt ~ sleeper

Peter tries to Sleep Peter tries to deep

B = N
subj vinf seemed
Be—— sleeper —n

Peter seems to  sleep Peter seems to sleep




Conclusions Outlook

. | ¢ |
e Introduced the TDG grammar formalism e Extend the syntax-semantics interface (esp. To
e \Went the first step towards a concurrent handle modifiers more properly)

syntax-semantics interface: addition of the e Use argument structure to construct a

argument strugtgre . semantics in a logical formalism (first choice:
e Control and raising-phenomena dealt with CLLS; CHORUS-project)

rather elegantly '
e For the curious: parser implementation

available on www.mozart-0z.org

e Investigate in which ways concurrency can
prove useful




