
1

A new approach to control and
raising

Ralph Debusmann
Programming Systems Lab
Saarland University

Research program

� To get us from words to what they mean (in a
logical formalism, e.g. CLLS)

� Requirements:
– Simplicity
– Concurrency

� To this end: need an appropriate grammar
formalism

Some grammar formalisms

� So plenty of them already exist. Why not
simply pick one of them?

GB (Chomsky 86)
HPSG (Pollard/Sag 94)
LFG (Bresnan/Kaplan 82)
TAG (Joshi 87)

FGD (Sgall et al 86)
MTT (Melcuk 88)

CCG (Ades/Steedman 82)

Problems of existing grammar
formalisms

� Tend to conflate levels of representation
– Syntactic function
– Word order
– Predicate-argument structure

� Lack of language-independence (esp.
Problems with free word order languages)

� Lack of simplicity (matter of taste)

Solving these problems

� Claim: dependency-based formalisms have the
prerequisites to solve these problems:

– Levels of representation distinguished more
properly

– Less problems with free word order languages (in
fact FGD and MTT developed for Czech/Russian)

– Simpler

� But do they really?

Unfortunately not

� Dependency-based formalisms like FGD and
MTT have serious problems:

– Lack of declarativity (esp. when it comes to handling
word order)

– No (concurrent) syntax-semantics interface

2

From PS to DG

� Current dependency-based grammar
formalisms cannot solve the problems of PS-
based ones

� One idea: equip PS-based grammar
formalisms with ideas from dependency-based
ones

From PS to DG

� In fact: PS-based grammar formalisms have
picked up more and more ideas from
dependency-based ones:

– GB: X-bar theory
– HPSG: DEPS-feature in new versions
– f-structure
– Derivation tree represents dependency-like

structure

PS and MS-DOS

� But why shall we keep the PS-backbone at all
(like hanging on to MS-DOS)?

� E.g. TAG: why do we need the derived tree
when all we need for semantics construction is
encoded in the derivation tree?

� What we do: develop a new dependency-
based grammar formalism: Topological
Dependency Grammar (TDG)

TDG solves some problems

� Lack of declarativity (esp. when it comes to
handling word order):

– TDG 2001: Debusmann 2001 MSc,
Duchier/Debusmann 2001 ACL

� No (concurrent) syntax-semantics interface:
– TDG 2002+: PhD research, Korthals/Debusmann

2002 COLING

� Today: introduce the main building block of the
interface: the argument structure level

TDG architecture

� Multiple clearly separated levels:
– Dependency tree
– Topology tree
– Argument-structure

� Constraint-based, concurrent
� Well-formedness conditions:

– Shape vs. lexicalized constraints
– Within vs. across constraints

Dependency tree level

tries to sleepPeter

subj vinf

prt

� Basic assumptions:
– 1:1 mapping from word occurrences to nodes
– Labeled directed edges (labels: syntactic functions)

3

Well-formedness conditions:
Shape constraints

� General constraints on the shape of the
structure

� E.g. the dependency tree must be a tree (in the
graph-theoretical sense), and the argument
structure must be a DAG

Well-formedness conditions:
Lexicalized constraints

� Each node is assigned a lexical entry

� The lexical entry contains lexical attributes and
their values

� Lexical ambiguity dealt with nicely by the
Selection Constraint (Duchier 99)

� Lexicalized constraints: make statements
about the lexical attributes

Example lexical entries

{ }
{ }

��
��
�

�

�

��
��
�

�

� ��
���

�

=
...arg

top
out

in
dep

tries ...
 vinfsubj,

{ }
{ }

��
��
�

�

�

��
��
�

�

� ��
���

�

=
...arg

top
out

in
dep

sleep ...
prt

vinf

Lexicalized constraints:
The out-constraint

� Determines number and type of outgoing
edges:

lvoutl labelededgesoutgoing0then)(∉

lvoutl labelededgeoutgoing1then)(∈

Lexicalized constraints:
The in-constraint

� Determines type of incoming edge:

)'(ifonly' vinlvv l ∈→

In and out-constraints: example

{ }
{ }��

���
�=

vinfsubj,out

in
tries

{ }
{ } ��

���
�=

prt

vinf

out

in
sleep

{ }
{ } ��

���
�=
out

in
to

prt

{ }
{ } ��

���
�=
out

in
Peter

iobjobj,subj,

tries to sleepPeter

subj vinf

prt

4

Levels of representation

Peter tries to sleep

vinfsubj
prt

Levels of representation

Peter tries to sleep

vinfsubj
prt

Tree
In
Out

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Tree
In
Out

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Tree
In
Out
Order

Tree
In
Out

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Peter tries to sleep

triedtryer
sleeper

Tree
In
Out
Order

Tree
In
Out

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Peter tries to sleep

triedtryer
sleeper

Tree
In
Out
Order

DAG
In
Out

Tree
In
Out

5

Within vs. across-constraints

� So far: well-formedness conditions for the three
levels kept separate: only within-level
constraints

� How can we establish a mutual relationship
between the levels?

Across-constraints

� Topology/Dependency
– Flattening
– Barriers

� Argument Structure/Dependency
– Linking

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Peter tries to sleep

triedtryer
sleeper

Tree
In
Out
Order

DAG
In
Out

Tree
In
Out

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Peter tries to sleep

triedtryer
sleeper

Tree
In
Out
Order

DAG
In
Out

Tree
In
Out

Flattening
Barriers

Levels of representation

Peter tries to sleep

vcfsubjf

prtf

Peter tries to sleep

vinfsubj
prt

Peter tries to sleep

triedtryer
sleeper

Tree
In
Out
Order

DAG
In
Out

Tree
In
Out

Flattening
Barriers

Linking

The argument structure-level

� dependency trees are already close to
semantic argument structure, but not close
enough

� E.g. control:

� Who is the sleeper?

Peter tries to sleep

vinfsubj

prt

6

The argument structure-level

� We introduce the argument structure-level to
represent the argument structure information:

Peter tries to sleep

vinfsubj

prt

Peter tries to sleep

triedtryer

sleeper

Linking the argument structure to
the dependency tree

� How do the argument structure and the
dependency tree relate to each other?

� Idea: semantic arguments are realized by
syntactic functions (e.g. the tryer is realized by
the subject)

The link-feature

� The link-feature describes a function from
semantic arguments to sets of syntactic
functions which realize them, e.g.:

{ }
{ }
{ }
{ }

{ } { }{ } ��
��
��

�

�

��
��
��

�

�

��
�
�

�

��
�
�

�

→→

��
���

�

=

vinftried,subjtryer

triedtryer,

vinfsubj,

link

out

in

arg

out

in
dep

tries

Linking constraint (first version)

� Semantic arguments may only be realized by
appropriate syntactic functions:

)('ifonly' vlinkvvvv Θ
Θ ∈∧→→ ϕϕ

Control

� The linking principle given does not license the
following analysis:

� There is no edge corresponding to the sleeper-
edge in the dependency tree

Peter tries to sleep

vinfsubj

prt

Peter tries to sleep

triedtryer

sleeper

What happened?

� Sleep does not have a subject in the
dependency tree but has a sleeper-argument
in the argument structure

� Tries offers its subject for the embedded verb
to take

� Sleep takes the subject of tries as ist subject
and realizes the sleeper therewith

7

The offer-feature

� The offer-feature is a set of syntactic functions
offered by a control-verb (for embedded verbs
to take as their subject)

{ }
{ }

{ }
{ }

{ } { }{ }
{ } ��

��
��
�

�

�

��
��
��
�

�

�

��
��

�

�

��
��

�

�

→→

��
���

�

=

subj

vinftried,subjtryer

triedtryer,

vinfsubj,

offer

link

out

in

arg

out

in
dep

tries

Linking constraint (second version)

� Semantic arguments may only be realized by
appropriate syntactic functions

� Embedded verbs can take offered dependents
of control verbs as their argument

)('ifonly' vlinkvvvv Θ
Θ ∈∧→→ ϕϕ

subj)''(

'''...''or

(v)linkvoffer

vvvv

Θ∈∧∈
∧→∧→→

ϕ

ϕ

Examples: object-control

� Here: persuades offers its object for sleep to
take as the sleeper-argument

Peter persuades Mary to sleep

persuader

sleeper

persuaded
persuadee

Peter persuades Mary to sleep

subj vinfobj
prt

Control vs. Raising

� Raising verbs do also offer a syntactic function
for an embedded verb to take, but this
argument is not theirs on the argument
structure-level

Control vs. Raising

{ }
{ }

{ }
{ }

{ } { }{ }
{ } ��

��
��
�

�

�

��
��
��
�

�

�

��
��

�

�

��
��

�

�

→→

��
���

�

=

subj

vinftried,subjtryer

triedtryer,

vinfsubj,

offer

link

out

in

arg

out

in
dep

tries

{ }
{ }

{ }
{ }

{ }{ }
{ } ��

��
��
�

�

�

��
��
��
�

�

�

��
��

�

�

��
��

�

�

→

��
���

�

=

subj

vinfseemed

seemed

vinfsubj,

offer

link

out

in

arg

out

in
dep

seems

Control vs. Raising

Peter seems to sleep

vinfsubj

prt

Peter seems to sleep

seemed

sleeper

Peter tries to sleep

vinfsubj

prt

Peter tries to sleep

triedtryer

sleeper

8

Conclusions

� Introduced the TDG grammar formalism
� Went the first step towards a concurrent

syntax-semantics interface: addition of the
argument structure

� Control and raising-phenomena dealt with
rather elegantly

� For the curious: parser implementation
available on www.mozart-oz.org

Outlook

� Extend the syntax-semantics interface (esp. To
handle modifiers more properly)

� Use argument structure to construct a
semantics in a logical formalism (first choice:
CLLS; CHORUS-project)

� Investigate in which ways concurrency can
prove useful

