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Resurgent interest

• resurgent interest in Dependency Grammar (DG) (Tesnière
59; Sgall et al. 86; Mel’čuk 88)

• core DG concepts incorporated into most grammar
formalisms, also phrase structure-based (HPSG, LFG, TAG)

• new DG-based grammar formalisms (Nasr 95; Heinecke et
al. 98; Bröker 99; Gerdes and Kahane 01; Kruijff 01; Joshi
and Rambow 03)
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A controversy

• assume a 1:1-correspondence between words and nodes in
the dependency graph?

• simplifies the formalization of DGs substantially
• but: breaks when modeling semantics
• e.g. multiword expressions (MWEs): one semantic node

corresponds to more than one word
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Weakening the 1:1-assumption

• most DG grammarians interested in semantics have
weakened the 1:1-assumption

• Tesnière: nuclei group together sets of nodes
• Sgall et al: deletion of solely syntactically motivated nodes
• Mel’čuk: paraphrasing rules
• but: these attempts to weaken the 1:1-correspondence

have not yet been formalized declaratively
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Extensible Dependency Grammar (XDG)

• new grammar formalism (Debusmann et al. 04) based on
Topological Dependency Grammar (TDG) (Duchier and
Debusmann 01)

• declaratively formalized
• formalization used directly in the XDG solver for parsing

and generation
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XDG and the 1:1-assumption

• XDG solving efficient at least for our smaller-scale
handwritten example grammars

• but: good results hinge substantially on the
1:1-correspondence

• as XDG has been created to cover not only syntax but also
semantics, we have no choice: we must weaken the
1:1-correspondence too
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Weakening the 1:1-assumption for XDG

• in this talk, we show how to weaken the 1:1-assumption for
XDG, without sacrificing the potential for efficient parsing
and generation

• new layer of lexical organization called groups, above the
basic XDG lexicon

• groups describe MWEs as tuples of dependency subgraphs
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Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions
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Extensible Dependency Grammar (XDG)

• new grammar formalism (Debusmann et al. 04)
• characterizes linguistic structure along arbitrary many

dimensions
• all dimensions correspond to dependency graphs, sharing

the same set of nodes but having different edges
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Well-formedness conditions

• well-formedness conditions determined by principles
• principles can be one-dimensional (applying to a single

dimension only), or multi-dimensional (constraining the
relation between several dimensions)

• basic one-dimensional principle: valency
• basic multi-dimensional principle: linking (syntactic

realization of semantic arguments)
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The lexicon

• XDG is highly lexicalized
• lexical entries serve as the parameters for the principles
• since a lexical entry constrains all dimensions

simultaneously, it can also help to synchronize the various
dimensions
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Example analysis

• two-dimensional XDG analysis of “He dates her” (syntax
left, semantics right):.

He dates her

objsubj

.

He dates her

arg1 arg2

• used principles:
1. syntactic valency
2. semantic valency
3. linking
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1. Syntactic valency

• syntactic analysis:

in: {subj?}
out: {}

in: {obj?}
out: {}

in: {}
out: {subj!, obj!}

.

He dates her

objsubj

Multiword expressions as dependency subgraphs – p.13



2. Semantic valency

• semantic analysis:

in: {}
out: {arg1!, arg2!}

in: {arg1*}
out: {}

in: {arg2*}
out: {}

.

He dates her

arg1 arg2
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3. Linking

• semantic and syntactic analyses:.

He dates her

objsubj

.

He dates her

arg1 arg2

link: {arg1: {subj}, arg2: {obj}}
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Parsing and generation

• XDG solver
• implements a declarative axiomatization of XDG as a

constraint satisfaction problem (Duchier 03)
• XDG solving is NP-complete (Koller and Striegnitz 02)
• average-case complexity polynomial for smaller-scale

handwritten grammars
• research on XDG solving of large-scale grammars in

progress
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Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions
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MWEs as contiguous substrings?

• example paraphrase:
1. “He dates her.”
2. “He takes her out.”

• XDG analysis:

.

He takes her out

obj partsubj

.

He takes her out

arg1 arg2

• i.e. we cannot treat MWEs as contiguous word strings:
“takes out” interrupted by object “her”
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MWEs as dependency subgraphs!

• instead, we implement the continuity hypothesis (Kay and
Fillmore 99)

• idea: model MWEs as dependency subgraphs
• new layer of lexical organization: groups
• a group is a tuple of dependency subgraphs covering one or

more node
• each of the components correspond to a dimension
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Example groups

• group for “dates” :.

dates

objsubj

.

dates

arg1 arg2

• group for “takes out” :.

takes out

obj partsubj

.

takes out

arg1 arg2

• groups can leave out nodes present in the syntax in the
semantics (here: “out” )
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Support verbs

• more complicated paraphrase:
1. “He argues with her.”
2. “He has an argument with her.”

• in 2., “has” is a support verb; the semantic head of the
construction is the noun “argument”
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XDG analysis

• XDG analysis of the support verb construction:.

He has an argument with her

objsubj

det pmod
pcomp

.

He has an argument with her

arg1 arg2

• interdependencies: “argument” is the object of “has” in the
syntax, but the semantic head in the semantics
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Groups

• groups for the support verb construction:.

has an argument with

objsubj

det pmod
pcomp

.

has an argument with

arg1 arg2
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Groups are nice

• groups can capture difficult constructions such as the
support verb construction quite elegantly

• key aspect: multi-dimensionality, describing tuples of
dependency subgraphs over a shared set of nodes

• sharing: helps to express interdependencies between the
different dimensions

• groups can be regarded as a declarative formalization of
Mel’čuk’s paraphrasing rules (Mel’čuk 96)

• or as a realization of the extended domain of locality of TAG
(Joshi 87) for DG
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Compilation

• groups are a conservative extension to XDG
• can be compiled into simple XDG lexical entries for

individual words
• benefit: we can retain XDG in its entirety, including the XDG

solver for parsing and generation
• three steps:

1. node deletion
2. dependency subgraphs
3. group coherence
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1. Node deletion

• on each dimension, each word must correspond to
precisely one node in the dependency graph

• the groups shown above clearly violate this assumption:
nodes present in the syntax were omitted in the semantics

• idea: accommodate deletion of nodes by introducing an
additional root node in each analysis
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Node deletion example

• example: .

He has an argument with her

arg1 arg2

.

He has an argument with her .

arg1 arg2

del del delroot

• old root = root-daughter of the new root
• deleted nodes = del-daughters
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2. Dependency subgraphs

• second step: compile dependency subgraphs into lexical
entries for individual words

• idea: use valency (in and out features)
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Dependency subgraphs example (1/2)

• syntax:

in: {det?}
out: {}

in: {root?}
out: {subj!, obj!}

in: {obj?}
out: {det!, pmod!}

in: {pmod?}
out: {pcomp!}

.

has an argument with

objsubj

det pmod
pcomp
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Dependency subgraphs example (2/2)

• semantics:

out: {arg1! arg2!}
in: {root?}

in: {del?}
out: {}

.

has an argument with

arg1 arg2
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3. Group coherence

• ensure that inner group nodes stay together
• each node has feature denoting its group ID
• group IDs must match for each edge within a group
• expressed by a lexicalized principle
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Group coherence example
.

has an argument with

objsubj

det pmod
pcomp

• “an”, “argument” and “with” are inner nodes
• group IDs must match for the endpoints of the obj, det and

pmod edges
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Parsing

• for parsing, we use the existing XDG solver unchanged
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Generation

• we can use the same group lexicon as for parsing
• caveat: need to introduce a finite set of extra nodes to fill up

the groups
• to realize a semantic literal s, introduce as many nodes as

the largest group which verbalizes s

• assume argue’ can be realized either by “argue with” (2) or
“has an argument with” (4): introduce 4 nodes
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Conclusions

• groups allow to weaken the 1:1-correspondence between
nodes and words in XDG

• new layer of lexical organization
• powerful enough to handle complicated MWEs (e.g. support

verb constructions)
• benefits:

1. conservative extension: we can retain XDG in its
entirety, including the XDG solver

2. we can use the same group lexicon for both parsing and
generation
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Open questions

• integration of groups and the metagrammatical functionality
of the XDG lexicon for individual lexical entries

• how does this all scale up to large-scale grammars?
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