
Multiword expressions as dependency
subgraphs

Ralph Debusmann

Programming Systems Lab

Saarland University, Saarbrücken, Germany

Multiword expressions as dependency subgraphs – p.1



Resurgent interest

• resurgent interest in Dependency Grammar (DG) (Tesnière
59; Sgall et al. 86; Mel’čuk 88)

• core DG concepts incorporated into most grammar
formalisms, also phrase structure-based (HPSG, LFG, TAG)

• new DG-based grammar formalisms (Nasr 95; Heinecke et
al. 98; Bröker 99; Gerdes and Kahane 01; Kruijff 01; Joshi
and Rambow 03)

Multiword expressions as dependency subgraphs – p.2



A controversy

• assume a 1:1-correspondence between words and nodes in
the dependency graph?

• simplifies the formalization of DGs substantially
• but: breaks when modeling semantics
• e.g. multiword expressions (MWEs): one semantic node

corresponds to more than one word

Multiword expressions as dependency subgraphs – p.3



Weakening the 1:1-assumption

• most DG grammarians interested in semantics have
weakened the 1:1-assumption

• Tesnière: nuclei group together sets of nodes
• Sgall et al: deletion of solely syntactically motivated nodes
• Mel’čuk: paraphrasing rules
• but: these attempts to weaken the 1:1-correspondence

have not yet been formalized declaratively

Multiword expressions as dependency subgraphs – p.4



Extensible Dependency Grammar (XDG)

• new grammar formalism (Debusmann et al. 04) based on
Topological Dependency Grammar (TDG) (Duchier and
Debusmann 01)

• declaratively formalized
• formalization used directly in the XDG solver for parsing

and generation

Multiword expressions as dependency subgraphs – p.5



XDG and the 1:1-assumption

• XDG solving efficient at least for our smaller-scale
handwritten example grammars

• but: good results hinge substantially on the
1:1-correspondence

• as XDG has been created to cover not only syntax but also
semantics, we have no choice: we must weaken the
1:1-correspondence too

Multiword expressions as dependency subgraphs – p.6



Weakening the 1:1-assumption for XDG

• in this talk, we show how to weaken the 1:1-assumption for
XDG, without sacrificing the potential for efficient parsing
and generation

• new layer of lexical organization called groups, above the
basic XDG lexicon

• groups describe MWEs as tuples of dependency subgraphs

Multiword expressions as dependency subgraphs – p.7



Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions

Multiword expressions as dependency subgraphs – p.8



Extensible Dependency Grammar (XDG)

• new grammar formalism (Debusmann et al. 04)
• characterizes linguistic structure along arbitrary many

dimensions
• all dimensions correspond to dependency graphs, sharing

the same set of nodes but having different edges

Multiword expressions as dependency subgraphs – p.9



Well-formedness conditions

• well-formedness conditions determined by principles
• principles can be one-dimensional (applying to a single

dimension only), or multi-dimensional (constraining the
relation between several dimensions)

• basic one-dimensional principle: valency
• basic multi-dimensional principle: linking (syntactic

realization of semantic arguments)

Multiword expressions as dependency subgraphs – p.10



The lexicon

• XDG is highly lexicalized
• lexical entries serve as the parameters for the principles
• since a lexical entry constrains all dimensions

simultaneously, it can also help to synchronize the various
dimensions

Multiword expressions as dependency subgraphs – p.11



Example analysis

• two-dimensional XDG analysis of “He dates her” (syntax
left, semantics right):.

He dates her

objsubj

.

He dates her

arg1 arg2

• used principles:
1. syntactic valency
2. semantic valency
3. linking

Multiword expressions as dependency subgraphs – p.12



1. Syntactic valency

• syntactic analysis:

in: {subj?}
out: {}

in: {obj?}
out: {}

in: {}
out: {subj!, obj!}

.

He dates her

objsubj

Multiword expressions as dependency subgraphs – p.13



2. Semantic valency

• semantic analysis:

in: {}
out: {arg1!, arg2!}

in: {arg1*}
out: {}

in: {arg2*}
out: {}

.

He dates her

arg1 arg2

Multiword expressions as dependency subgraphs – p.14



3. Linking

• semantic and syntactic analyses:.

He dates her

objsubj

.

He dates her

arg1 arg2

link: {arg1: {subj}, arg2: {obj}}

Multiword expressions as dependency subgraphs – p.15



Parsing and generation

• XDG solver
• implements a declarative axiomatization of XDG as a

constraint satisfaction problem (Duchier 03)
• XDG solving is NP-complete (Koller and Striegnitz 02)
• average-case complexity polynomial for smaller-scale

handwritten grammars
• research on XDG solving of large-scale grammars in

progress

Multiword expressions as dependency subgraphs – p.16



Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions

Multiword expressions as dependency subgraphs – p.17



MWEs as contiguous substrings?

• example paraphrase:
1. “He dates her.”
2. “He takes her out.”

• XDG analysis:

.

He takes her out

obj partsubj

.

He takes her out

arg1 arg2

• i.e. we cannot treat MWEs as contiguous word strings:
“takes out” interrupted by object “her”

Multiword expressions as dependency subgraphs – p.18



MWEs as dependency subgraphs!

• instead, we implement the continuity hypothesis (Kay and
Fillmore 99)

• idea: model MWEs as dependency subgraphs
• new layer of lexical organization: groups
• a group is a tuple of dependency subgraphs covering one or

more node
• each of the components correspond to a dimension

Multiword expressions as dependency subgraphs – p.19



Example groups

• group for “dates” :.

dates

objsubj

.

dates

arg1 arg2

• group for “takes out” :.

takes out

obj partsubj

.

takes out

arg1 arg2

• groups can leave out nodes present in the syntax in the
semantics (here: “out” )

Multiword expressions as dependency subgraphs – p.20



Support verbs

• more complicated paraphrase:
1. “He argues with her.”
2. “He has an argument with her.”

• in 2., “has” is a support verb; the semantic head of the
construction is the noun “argument”

Multiword expressions as dependency subgraphs – p.21



XDG analysis

• XDG analysis of the support verb construction:.

He has an argument with her

objsubj

det pmod
pcomp

.

He has an argument with her

arg1 arg2

• interdependencies: “argument” is the object of “has” in the
syntax, but the semantic head in the semantics

Multiword expressions as dependency subgraphs – p.22



Groups

• groups for the support verb construction:.

has an argument with

objsubj

det pmod
pcomp

.

has an argument with

arg1 arg2

Multiword expressions as dependency subgraphs – p.23



Groups are nice

• groups can capture difficult constructions such as the
support verb construction quite elegantly

• key aspect: multi-dimensionality, describing tuples of
dependency subgraphs over a shared set of nodes

• sharing: helps to express interdependencies between the
different dimensions

• groups can be regarded as a declarative formalization of
Mel’čuk’s paraphrasing rules (Mel’čuk 96)

• or as a realization of the extended domain of locality of TAG
(Joshi 87) for DG

Multiword expressions as dependency subgraphs – p.24



Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions

Multiword expressions as dependency subgraphs – p.25



Compilation

• groups are a conservative extension to XDG
• can be compiled into simple XDG lexical entries for

individual words
• benefit: we can retain XDG in its entirety, including the XDG

solver for parsing and generation
• three steps:

1. node deletion
2. dependency subgraphs
3. group coherence

Multiword expressions as dependency subgraphs – p.26



1. Node deletion

• on each dimension, each word must correspond to
precisely one node in the dependency graph

• the groups shown above clearly violate this assumption:
nodes present in the syntax were omitted in the semantics

• idea: accommodate deletion of nodes by introducing an
additional root node in each analysis

Multiword expressions as dependency subgraphs – p.27



Node deletion example

• example: .

He has an argument with her

arg1 arg2

.

He has an argument with her .

arg1 arg2

del del delroot

• old root = root-daughter of the new root
• deleted nodes = del-daughters

Multiword expressions as dependency subgraphs – p.28



2. Dependency subgraphs

• second step: compile dependency subgraphs into lexical
entries for individual words

• idea: use valency (in and out features)

Multiword expressions as dependency subgraphs – p.29



Dependency subgraphs example (1/2)

• syntax:

in: {det?}
out: {}

in: {root?}
out: {subj!, obj!}

in: {obj?}
out: {det!, pmod!}

in: {pmod?}
out: {pcomp!}

.

has an argument with

objsubj

det pmod
pcomp

Multiword expressions as dependency subgraphs – p.30



Dependency subgraphs example (2/2)

• semantics:

out: {arg1! arg2!}
in: {root?}

in: {del?}
out: {}

.

has an argument with

arg1 arg2

Multiword expressions as dependency subgraphs – p.31



3. Group coherence

• ensure that inner group nodes stay together
• each node has feature denoting its group ID
• group IDs must match for each edge within a group
• expressed by a lexicalized principle

Multiword expressions as dependency subgraphs – p.32



Group coherence example
.

has an argument with

objsubj

det pmod
pcomp

• “an”, “argument” and “with” are inner nodes
• group IDs must match for the endpoints of the obj, det and

pmod edges

Multiword expressions as dependency subgraphs – p.33



Parsing

• for parsing, we use the existing XDG solver unchanged

Multiword expressions as dependency subgraphs – p.34



Generation

• we can use the same group lexicon as for parsing
• caveat: need to introduce a finite set of extra nodes to fill up

the groups
• to realize a semantic literal s, introduce as many nodes as

the largest group which verbalizes s

• assume argue’ can be realized either by “argue with” (2) or
“has an argument with” (4): introduce 4 nodes

Multiword expressions as dependency subgraphs – p.35



Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Groups

4. Compilation

5. Conclusions

Multiword expressions as dependency subgraphs – p.36



Conclusions

• groups allow to weaken the 1:1-correspondence between
nodes and words in XDG

• new layer of lexical organization
• powerful enough to handle complicated MWEs (e.g. support

verb constructions)
• benefits:

1. conservative extension: we can retain XDG in its
entirety, including the XDG solver

2. we can use the same group lexicon for both parsing and
generation

Multiword expressions as dependency subgraphs – p.37



Open questions

• integration of groups and the metagrammatical functionality
of the XDG lexicon for individual lexical entries

• how does this all scale up to large-scale grammars?

Multiword expressions as dependency subgraphs – p.38


	Resurgent interest
	A controversy
	Weakening the 1:1-assumption
	Extensible Dependency Grammar (XDG)
	XDG and the 1:1-assumption
	Weakening the 1:1-assumption for XDG
	Overview
	Extensible Dependency Grammar (XDG)
	Well-formedness conditions
	The lexicon
	Example analysis
	1. Syntactic valency
	2. Semantic valency
	3. Linking
	Parsing and generation
	Overview
	MWEs as contiguous substrings?
	MWEs as dependency subgraphs!
	Example groups
	Support verbs
	XDG analysis
	Groups
	Groups are nice
	Overview
	Compilation
	1. Node deletion
	Node deletion example
	2. Dependency subgraphs
	Dependency subgraphs example (1/2)
	Dependency subgraphs example (2/2)
	3. Group coherence
	Group coherence example
	Parsing
	Generation
	Overview
	Conclusions
	Open questions

