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Declarative grammar formalisms

• long tradition for modeling natural language (Kay 1979),
(Bresnan/Kaplan 1982)

• idea: specify linguistic knowledge in grammars independent
from processing

• parsers/generators: can be generically created for all
grammars in the formalism

• examples:
◦ Lexical Functional Grammar (LFG) (Bresnan/Kaplan

1982)
◦ Head-driven Phrase Structure Grammar (HPSG)

(Pollard/Sag 1994)
◦ Tree Adjoining Grammar (TAG) (Joshi et al. 1975),

(Joshi 1985)
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Grammar development systems

• tools for grammar creation
• concrete syntax for grammar specification
• parsers
• generators
• debugging facilities
• examples:

◦ Grammar Writer’s Workbench (Kaplan/Maxwell 1996) for
LFG

◦ LKB (Copestake 2002) for HSPG
◦ XTAG (XTAG Group 2001) for TAG
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Constraint programming

• existing grammar formalisms rely on first-order unification of
feature structures

• Smolka (Smolka/Uszkoreit 1996): Could more advanced
constraint programming techniques improve linguistic
processing?

• motivation: languages with freer word order than English
(e.g. German, Czech, Hindi etc.) pose problems for existing
formalisms
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Axiomatization of dependency trees

• (Duchier 1999): axiomatization of valid dependency trees
using finite set constraints

• parsing: reduced to finite set constraint programming
• (Duchier/Debusmann 2001): Topological Dependency

Grammar (TDG)
• elegant treatment of German word order
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Extensible Dependency Grammar (XDG)

• (Debusmann et al. 2004): generalization of TDG
• graph description language flexible for modeling multiple

levels of linguistic structure
• same parsing methods by constraint programming (Duchier

2003)
• allows to extend TDG with a concurrent syntax-semantics

interface
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XDG Grammar Development Kit (XDK)

• first grammar development system for XDG
• new lexicon specification language
• implemented in Mozart/Oz, published in MOGUL (Duchier

2004)
• comprehensive suite of facilities:

◦ concrete syntaxes (XML, UL, IL)
◦ solver for parsing and generation
◦ GUI
◦ graphical output tools
◦ debugging facilities
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Graphs

• XDG describes labeled graphs
• uses the linguistic notion of dependency grammar
• example dependency graph:

every programmer should like Mozart

det obj

vcompsubj
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Multiple graphs

• XDG typically describes an arbitrary number of graphs
called dimensions

• same set of nodes, different edges
• elegant treatment of word order (Duchier/Debusmann 2001)
• concurrent syntax-semantics interface (Debusmann et al.

2004)
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Example

• Syntax tree:

every programmer should like Mozart

det obj

vcompsubj

• Semantic dag:

every programmer should like Mozart

patag

prop
ag

det

The XDG Grammar Development Kit – p.12



Graph description language

• well-formedness conditions: interaction of principles and the
lexicon

• principles: restrictions on one or more dimensions
• controlled by feature structures, assigned to the nodes by

the lexicon
• principles: subset of an extensible principle library
• library covers large fragments of German and English,

smaller fragments of Arabic, Czech and Dutch
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Example principles

• tree: Dimension i must be a tree
• dag: Dimension i must be a dag
• valency: For each node on dimension i, the incoming edges

must be licensed by the in specification, and the outgoing
edges by the out specification

• order: Constrains the order of words on dimension i, e.g.
subjects precede objects

• linking: Constrains how arguments on dimension i

(semantics) must be realized on dimension j (syntax)
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Lexical entry

• lexical entry for like:

Like =





















syn :

[

in : {vcomp?}

out : {obj!}

]

sem :











in : {prop?}

out : {ag!, pat!}

link : {ag 7→ {subj}

pat 7→ {obj}































The XDG Grammar Development Kit – p.15



Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.16



Lexicalization

• XDG: linguistic information mostly specified in the lexicon
• widely accepted in computational linguistics
• lexicon grows huge even for medium-sized grammars
• need facilities for adequate modularization and factorization
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Lexical types

• flexible system to define various types of lexical information
• each type: set L and partial function u : L × L → L

(combination function of L)
• u: typically greatest lower bound
• domains, records, valencies, sets, tuples, strings
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Domain types

• e.g. set of edge labels:

syn.label = {det, subj, obj, vcomp}

• combination function: a u a = a, a u b undefined for a 6= b
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Record types

• given set of features (fi)i=1...n and types Ti = (Li,ui):

[f1 : v1, . . . , fn : vn]

where vi ∈ Li.
• combination operation defined feature-wise:

[f1 : v1, . . . , fn : vn] u [f1 : v′
1
, . . . , fn : v′n] =

[f1 : v1 u1 v′
1
, . . . , fn : vn un v′n]

when vi ui v′
i

defined, undefined otherwise.
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Valency types

• e.g. in and out specifications:

syn.valency = valency(syn.label)

• defines syn.valency to be the record type:

[det : mode, subj : mode, obj : mode, vcomp : mode]

• mode = {0, ?, !, ∗}

• notation:

[det : 0, subj :!, obj :?, vcomp : 0] = [subj!, obj?]

• commutative combination operation:

0 u x = x ∗ u! =! ∗ u? =? ?u! =!
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Meta Grammars

• used for lexicon specification
• CFG-like descriptive device:

Clause ::= Name → Goal
Goal ::= Goal ∧ Goal | Goal ∨ Goal | Name | c

• Clause defines a non-terminal Name
• Goal: non-terminal (lexical class)
• c ∈ L: terminal (feature structure)
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Example (1)

• finite verbs can be roots or the root of a relative clause:

finite → root ∨ rel

root →
[

syn :
[

in : {}
] ]

rel →
[

syn :
[

in : {relcl?}
] ]
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Example (2)

• finite verbs may be either intransitive, transitive or
ditransitive:

verb → intr ∨ tr ∨ ditr

intr →
[

syn :
[

out : {subj!}
] ]

tr → intr ∧
[

syn :
[

out : {obj!}
] ]

ditr → tr ∧
[

syn :
[

out : {iobj!}
] ]
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Example (3)

• finite verb:
finite.verb → finite ∧ verb

• generative process with start symbol finite.verb:

(root ∧ intr) (root ∧ tr) (root ∧ ditr)

(rel ∧ intr) (rel ∧ tr) (rel ∧ ditr)

• e.g.:

rel ∧ ditr →

[

syn :

[

in : {relcl?}

out : {subj!, obj!, iobj!}

] ]
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Concrete syntax

• three concrete syntaxes for different purposes:
◦ XML language: automated grammar development
◦ User Language (UL): handcrafted grammars
◦ Intermediate Language (IL): record-based language,

tailored for Mozart/Oz and further processing within the
XDK

• UL, XML, IL: conversion into each other
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Grammar file compiler

• fast static grammar checker
• fast grammar file compilation
• implemented for IL: i.e. also used for XML language, UL
• compiled grammars stored as pickles (portable) or using

Denys Duchier’s GNU GDBM interface (faster)

The XDG Grammar Development Kit – p.28



Graphical interfaces

• comprehensive GUI
• solver search tree visualization: Oz Explorer (Schulte

1997), IOzSeF (Tack 2003)
• visualization of partial/full analyses: output library:

◦ Tcl/Tk dag display
◦ LaTeX dag output (using Denys Duchier’s dtree.sty)
◦ internal solver language output using the Oz Inspector

(Brunklaus 2000)
• XML output for evaluation, further processing
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GUI
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Oz Explorer
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Dag
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Solver

• based on axiomatization of dependency parsing in (Duchier
99), (Duchier 2003)

• factorized into modular, extensible principle library
• principles: sets of constraint functors
• e.g. valency principle: in constraint and out constraint
• starting sequence regulated by global constraint priorities to

increase efficiency
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Preferences and search

• idea: guide the search for solutions by external knowledge
sources: oracles

• idea by Thorsten Brants and Denys Duchier, extended in
(Dienes et al. 2003)

• oracles interact with solver using sockets
• XDK: supports new standard oracle architecture created by

Marco Kuhlmann
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Finite set constraints

• model the graph configuration problem
• e.g. daughters of node w reached by traversing an edge

labeled obj represented by set variable obj(w)

• valency specification obj? corresponds to cardinality
constraint |obj(w)| ∈ {0, 1}
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Selection constraints

• efficient handling of ambiguity
• typically: word w has multiple lexical entries L1, . . . , Ln

• variable Ew: ultimately selected entry
• integer variable Iw: index of Ew in the sequence
• selection constraint:

Ew = 〈L1, . . . , Ln〉[Iw]

• declarative semantics: Ew = LIw

• can be trivially lifted to record types
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Deep guards in disjunctive propagators

• G1[]G2 enforces complex mutually exclusive
well-formedness conditions

• e.g. either a certain edge exists and satisfies additional
conditions (G1) or not (G2)

• disjunctive propagator for each possible edge
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Miscellaneous specialities

• ozmake for convenient compilation and deployment into
MOGUL

• principle and output libraries: dynamically linked functors
• two parsers for grammar compilation:

◦ flexible LR/LALR parser by Denys Duchier (Gump
replacement, fully written in Mozart/Oz)

◦ XML parser by Denys Duchier (Mozart Standard Library)
• GUI: Mozart Tcl/Tk interface
• Oz Explorer, IOzSeF, Oz Inspector
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Conclusions

• introduced XDG Development Kit (XDK)
• new lexicon specification language
• large number of development tools implemented in

Mozart/Oz
• extensive texinfo documentation (180+ pages)
• no other programming language provides the required

expressiveness to combine:
◦ set constraints
◦ selection constraints
◦ deep guards
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Future work

• solver: fairly efficient for handcrafted grammars, but not for
automatically generated ones

• why? grammar encoding or solver or both?
• theoretical investigation of fragments of XDG
• integration of the new faster GECODE constraint library

(Christian Schulte, Gabor Szokoli, Guido Tack)
• super-tagging (lexicon disambiguation before

parsing/generation)
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