
The XDG Grammar Development Kit

Ralph Debusmann1

Denys Duchier2

Joachim Niehren3

1 Programming Systems Lab, Saarbrücken, Germany
2 LORIA, Nancy, France

3 INRIA Futurs, Lille, France

The XDG Grammar Development Kit – p.1

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.2

Declarative grammar formalisms

• long tradition for modeling natural language (Kay 1979),
(Bresnan/Kaplan 1982)

• idea: specify linguistic knowledge in grammars independent
from processing

• parsers/generators: can be generically created for all
grammars in the formalism

• examples:
◦ Lexical Functional Grammar (LFG) (Bresnan/Kaplan

1982)
◦ Head-driven Phrase Structure Grammar (HPSG)

(Pollard/Sag 1994)
◦ Tree Adjoining Grammar (TAG) (Joshi et al. 1975),

(Joshi 1985)

The XDG Grammar Development Kit – p.3

Grammar development systems

• tools for grammar creation
• concrete syntax for grammar specification
• parsers
• generators
• debugging facilities
• examples:

◦ Grammar Writer’s Workbench (Kaplan/Maxwell 1996) for
LFG

◦ LKB (Copestake 2002) for HSPG
◦ XTAG (XTAG Group 2001) for TAG

The XDG Grammar Development Kit – p.4

Constraint programming

• existing grammar formalisms rely on first-order unification of
feature structures

• Smolka (Smolka/Uszkoreit 1996): Could more advanced
constraint programming techniques improve linguistic
processing?

• motivation: languages with freer word order than English
(e.g. German, Czech, Hindi etc.) pose problems for existing
formalisms

The XDG Grammar Development Kit – p.5

Axiomatization of dependency trees

• (Duchier 1999): axiomatization of valid dependency trees
using finite set constraints

• parsing: reduced to finite set constraint programming
• (Duchier/Debusmann 2001): Topological Dependency

Grammar (TDG)
• elegant treatment of German word order

The XDG Grammar Development Kit – p.6

Extensible Dependency Grammar (XDG)

• (Debusmann et al. 2004): generalization of TDG
• graph description language flexible for modeling multiple

levels of linguistic structure
• same parsing methods by constraint programming (Duchier

2003)
• allows to extend TDG with a concurrent syntax-semantics

interface

The XDG Grammar Development Kit – p.7

XDG Grammar Development Kit (XDK)

• first grammar development system for XDG
• new lexicon specification language
• implemented in Mozart/Oz, published in MOGUL (Duchier

2004)
• comprehensive suite of facilities:

◦ concrete syntaxes (XML, UL, IL)
◦ solver for parsing and generation
◦ GUI
◦ graphical output tools
◦ debugging facilities

The XDG Grammar Development Kit – p.8

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.9

Graphs

• XDG describes labeled graphs
• uses the linguistic notion of dependency grammar
• example dependency graph:

every programmer should like Mozart

det obj

vcompsubj

The XDG Grammar Development Kit – p.10

Multiple graphs

• XDG typically describes an arbitrary number of graphs
called dimensions

• same set of nodes, different edges
• elegant treatment of word order (Duchier/Debusmann 2001)
• concurrent syntax-semantics interface (Debusmann et al.

2004)

The XDG Grammar Development Kit – p.11

Example

• Syntax tree:

every programmer should like Mozart

det obj

vcompsubj

• Semantic dag:

every programmer should like Mozart

patag

prop
ag

det

The XDG Grammar Development Kit – p.12

Graph description language

• well-formedness conditions: interaction of principles and the
lexicon

• principles: restrictions on one or more dimensions
• controlled by feature structures, assigned to the nodes by

the lexicon
• principles: subset of an extensible principle library
• library covers large fragments of German and English,

smaller fragments of Arabic, Czech and Dutch

The XDG Grammar Development Kit – p.13

Example principles

• tree: Dimension i must be a tree
• dag: Dimension i must be a dag
• valency: For each node on dimension i, the incoming edges

must be licensed by the in specification, and the outgoing
edges by the out specification

• order: Constrains the order of words on dimension i, e.g.
subjects precede objects

• linking: Constrains how arguments on dimension i

(semantics) must be realized on dimension j (syntax)

The XDG Grammar Development Kit – p.14

Lexical entry

• lexical entry for like:

Like =

syn :

[

in : {vcomp?}

out : {obj!}

]

sem :

in : {prop?}

out : {ag!, pat!}

link : {ag 7→ {subj}

pat 7→ {obj}

The XDG Grammar Development Kit – p.15

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.16

Lexicalization

• XDG: linguistic information mostly specified in the lexicon
• widely accepted in computational linguistics
• lexicon grows huge even for medium-sized grammars
• need facilities for adequate modularization and factorization

The XDG Grammar Development Kit – p.17

Lexical types

• flexible system to define various types of lexical information
• each type: set L and partial function u : L × L → L

(combination function of L)
• u: typically greatest lower bound
• domains, records, valencies, sets, tuples, strings

The XDG Grammar Development Kit – p.18

Domain types

• e.g. set of edge labels:

syn.label = {det, subj, obj, vcomp}

• combination function: a u a = a, a u b undefined for a 6= b

The XDG Grammar Development Kit – p.19

Record types

• given set of features (fi)i=1...n and types Ti = (Li,ui):

[f1 : v1, . . . , fn : vn]

where vi ∈ Li.
• combination operation defined feature-wise:

[f1 : v1, . . . , fn : vn] u [f1 : v′
1
, . . . , fn : v′n] =

[f1 : v1 u1 v′
1
, . . . , fn : vn un v′n]

when vi ui v′
i

defined, undefined otherwise.

The XDG Grammar Development Kit – p.20

Valency types

• e.g. in and out specifications:

syn.valency = valency(syn.label)

• defines syn.valency to be the record type:

[det : mode, subj : mode, obj : mode, vcomp : mode]

• mode = {0, ?, !, ∗}

• notation:

[det : 0, subj :!, obj :?, vcomp : 0] = [subj!, obj?]

• commutative combination operation:

0 u x = x ∗ u! =! ∗ u? =? ?u! =!
The XDG Grammar Development Kit – p.21

Meta Grammars

• used for lexicon specification
• CFG-like descriptive device:

Clause ::= Name → Goal
Goal ::= Goal ∧ Goal | Goal ∨ Goal | Name | c

• Clause defines a non-terminal Name
• Goal: non-terminal (lexical class)
• c ∈ L: terminal (feature structure)

The XDG Grammar Development Kit – p.22

Example (1)

• finite verbs can be roots or the root of a relative clause:

finite → root ∨ rel

root →
[

syn :
[

in : {}
]]

rel →
[

syn :
[

in : {relcl?}
]]

The XDG Grammar Development Kit – p.23

Example (2)

• finite verbs may be either intransitive, transitive or
ditransitive:

verb → intr ∨ tr ∨ ditr

intr →
[

syn :
[

out : {subj!}
]]

tr → intr ∧
[

syn :
[

out : {obj!}
]]

ditr → tr ∧
[

syn :
[

out : {iobj!}
]]

The XDG Grammar Development Kit – p.24

Example (3)

• finite verb:
finite.verb → finite ∧ verb

• generative process with start symbol finite.verb:

(root ∧ intr) (root ∧ tr) (root ∧ ditr)

(rel ∧ intr) (rel ∧ tr) (rel ∧ ditr)

• e.g.:

rel ∧ ditr →

[

syn :

[

in : {relcl?}

out : {subj!, obj!, iobj!}

]]

The XDG Grammar Development Kit – p.25

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.26

Concrete syntax

• three concrete syntaxes for different purposes:
◦ XML language: automated grammar development
◦ User Language (UL): handcrafted grammars
◦ Intermediate Language (IL): record-based language,

tailored for Mozart/Oz and further processing within the
XDK

• UL, XML, IL: conversion into each other

The XDG Grammar Development Kit – p.27

Grammar file compiler

• fast static grammar checker
• fast grammar file compilation
• implemented for IL: i.e. also used for XML language, UL
• compiled grammars stored as pickles (portable) or using

Denys Duchier’s GNU GDBM interface (faster)

The XDG Grammar Development Kit – p.28

Graphical interfaces

• comprehensive GUI
• solver search tree visualization: Oz Explorer (Schulte

1997), IOzSeF (Tack 2003)
• visualization of partial/full analyses: output library:

◦ Tcl/Tk dag display
◦ LaTeX dag output (using Denys Duchier’s dtree.sty)
◦ internal solver language output using the Oz Inspector

(Brunklaus 2000)
• XML output for evaluation, further processing

The XDG Grammar Development Kit – p.29

GUI

The XDG Grammar Development Kit – p.30

Oz Explorer

The XDG Grammar Development Kit – p.31

Dag

The XDG Grammar Development Kit – p.32

Solver

• based on axiomatization of dependency parsing in (Duchier
99), (Duchier 2003)

• factorized into modular, extensible principle library
• principles: sets of constraint functors
• e.g. valency principle: in constraint and out constraint
• starting sequence regulated by global constraint priorities to

increase efficiency

The XDG Grammar Development Kit – p.33

Preferences and search

• idea: guide the search for solutions by external knowledge
sources: oracles

• idea by Thorsten Brants and Denys Duchier, extended in
(Dienes et al. 2003)

• oracles interact with solver using sockets
• XDK: supports new standard oracle architecture created by

Marco Kuhlmann

The XDG Grammar Development Kit – p.34

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.35

Finite set constraints

• model the graph configuration problem
• e.g. daughters of node w reached by traversing an edge

labeled obj represented by set variable obj(w)

• valency specification obj? corresponds to cardinality
constraint |obj(w)| ∈ {0, 1}

The XDG Grammar Development Kit – p.36

Selection constraints

• efficient handling of ambiguity
• typically: word w has multiple lexical entries L1, . . . , Ln

• variable Ew: ultimately selected entry
• integer variable Iw: index of Ew in the sequence
• selection constraint:

Ew = 〈L1, . . . , Ln〉[Iw]

• declarative semantics: Ew = LIw

• can be trivially lifted to record types

The XDG Grammar Development Kit – p.37

Deep guards in disjunctive propagators

• G1[]G2 enforces complex mutually exclusive
well-formedness conditions

• e.g. either a certain edge exists and satisfies additional
conditions (G1) or not (G2)

• disjunctive propagator for each possible edge

The XDG Grammar Development Kit – p.38

Miscellaneous specialities

• ozmake for convenient compilation and deployment into
MOGUL

• principle and output libraries: dynamically linked functors
• two parsers for grammar compilation:

◦ flexible LR/LALR parser by Denys Duchier (Gump
replacement, fully written in Mozart/Oz)

◦ XML parser by Denys Duchier (Mozart Standard Library)
• GUI: Mozart Tcl/Tk interface
• Oz Explorer, IOzSeF, Oz Inspector

The XDG Grammar Development Kit – p.39

Overview

1. Introduction

2. Extensible Dependency Grammar (XDG)

3. Lexicon specification language

4. XDG Development Kit (XDK)

5. Mozart implementation

6. Conclusions

The XDG Grammar Development Kit – p.40

Conclusions

• introduced XDG Development Kit (XDK)
• new lexicon specification language
• large number of development tools implemented in

Mozart/Oz
• extensive texinfo documentation (180+ pages)
• no other programming language provides the required

expressiveness to combine:
◦ set constraints
◦ selection constraints
◦ deep guards

The XDG Grammar Development Kit – p.41

Future work

• solver: fairly efficient for handcrafted grammars, but not for
automatically generated ones

• why? grammar encoding or solver or both?
• theoretical investigation of fragments of XDG
• integration of the new faster GECODE constraint library

(Christian Schulte, Gabor Szokoli, Guido Tack)
• super-tagging (lexicon disambiguation before

parsing/generation)

The XDG Grammar Development Kit – p.42

	Overview
	Declarative grammar formalisms
	Grammar development systems
	Constraint programming
	Axiomatization of dependency trees
	Extensible Dependency Grammar (XDG)
	XDG Grammar Development Kit (XDK)
	Overview
	Graphs
	Multiple graphs
	Example
	Graph description language
	Example principles
	Lexical entry
	Overview
	Lexicalization
	Lexical types
	Domain types
	Record types
	Valency types
	Meta Grammars
	Example (1)
	Example (2)
	Example (3)
	Overview
	Concrete syntax
	Grammar file compiler
	Graphical interfaces
	GUI
	Oz Explorer
	Dag
	Solver
	Preferences and search
	Overview
	Finite set constraints
	Selection constraints
	Deep guards in disjunctive propagators
	Miscellaneous specialities
	Overview
	Conclusions
	Future work

