
Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph
Description

Ralph Debusmann

Programming Systems Lab, Saarbrücken

IGK Colloquium, December 1st, 2005

Dependency Grammar as Multigraph Description

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

Introduction

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

Introduction

Two Trends

Two Trends

Two trends in computational linguistics
1 dependency grammar
2 multi-layered linguistic description

Dependency Grammar as Multigraph Description

Introduction

Two Trends

Dependency Grammar

collection of ideas, often attributed to (Tesniere 1959)
1:1-mapping words:nodes
head-dependent asymmetry
lexicalization
valency

grammar formalisms: have already incorporated most of
the ideas (e.g. CCG, HPSG, LFG, TAG)
statistical parsing: often crucially relies on some of the
ideas
treebanks: some already dependency-based (PDT, Danish
DTB), some even being converted (TiGer TB → TiGer
DTB)

Dependency Grammar as Multigraph Description

Introduction

Two Trends

Multi-layered Linguistic Description

modular approach to linguistics
largely independent of syntax: research on e.g.

predicate-argument structure
quantifier scope
prosodic structure
information structure
discourse structure

treebanks: additional layers, e.g.
PDT: predicate-argument structure, information structure
TiGer: predicate-argument structure (SALSA) (Erk et al.
2003)
Penn TB: predicate-argument structure (PropBank),
discourse structure (Penn DTB)

Dependency Grammar as Multigraph Description

Introduction

Two Trends

Multi-layered Dependency Grammar

brings the two trends together
result: Extensible Dependency Grammar (XDG)
(Debusmann et al. 2004 COLING), XDG Development Kit
(XDK) (Debusmann et al. 2004 Mozart)
main problems:

1 no complete formalization
2 no efficient large-scale parsing

this talk: first complete formalization of XDG
how: as a description language for multigraphs, based on
simply typed lambda calculus (Church40)

Dependency Grammar as Multigraph Description

Multigraphs

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

Multigraphs

Dependency Graphs

Dependency Graphs

example dependency graph:

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

adv subj vinf

objpart

Dependency Grammar as Multigraph Description

Multigraphs

Dependency Graphs

Dependency Graphs (2)

not restricted to syntactic structure alone:

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

th

ag
th

ag pat

Dependency Grammar as Multigraph Description

Multigraphs

Multigraphs

Multigraphs

multi-layered/multi-dimensional dependency graph:
consists of an arbitrary number of dependency graphs
called dimensions
all dimensions share the same set of nodes

Dependency Grammar as Multigraph Description

Multigraphs

Multigraphs

Multigraphs (2)

example two-dimensional multigraph (syntax and
semantics):

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

adv subj vinf

objpart

1

today

2

Peter

3

wants

4

to

5

eat

6

spaghetti

th

ag
th

ag pat

Dependency Grammar as Multigraph Description

Multigraphs

Formalization

Formalization

a multigraph is a tuple (V,Dim ,Word ,W,Lab, E,Attr , A)

Components

1 finite set V of nodes (finite interval of the natural numbers
starting with 1, therefore totally ordered)

2 finite set Word of words

3 the node-word mapping W ∈ V → Word

4 a finite set Lab of edge labels

5 a set E ⊆ V × V × Dim × Lab of labeled directed edges

6 a finite set Attr of attributes

7 the node-attributes mapping A ∈ V → Dim → Attr

Dependency Grammar as Multigraph Description

Multigraphs

Relations

Relations

each dimension d ∈ Dim associated with four relations:

Four Relations

1 labeled edge: ·

−→d

2 edge: →
d

3 dominance (strict): →+

d

4 precedence: v ≺ v′

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Types

Types

T ∈ Ty given a set At of atoms (arbitrary symbols):

Types

T ::= B boolean
| V node
| T1 → T2 function
| {a1, . . . , an} finite domain
| {a1 : T1, . . . , an : Tn} record

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Interpretation

Interpretation

B as {0, 1}

V as (finite interval of the natural numbers starting with 1)
T1 → T2 as the set of all functions from the interpretation of
T1 to the interpretation of T2

{a1, . . . , an} as the set {a1, . . . , an}

{a1 : T1, . . . , an : Tn} as the set of all functions f with
1 Dom f = {a1, . . . , an}
2 for all 1 ≤ i ≤ n, f ai is an element of the interpretation of Ti

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Multigraph Type

Multigraph Type

multigraphs can be distinguished by their: dimensions,
words, labels, attributes
multigraph type: tuple M = (dim ,word , lab, attr), where:

Multigraph Type

1 dim ∈ Ty is a finite domain of dimensions

2 word ∈ Ty is a finite domain of words

3 lab ∈ dim → Ty is a function from dimensions to label types, i.e.
the finite domain of the edge labels on that dimension

4 attr ∈ dim → Ty is a function from dimensions to attributes
types, i.e. the (arbitrary) type of the attributes on that dimension

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Multigraph Type

Multigraphs and Multigraph Types

M T : the interpretation of type T over M
a multigraph M = (V,Dim ,Word ,W,Lab , E,Attr , A) has
multigraph type M = (dim ,word , lab, attr) iff

Conditions
1 The dimensions are the same

2 The words are the same

3 The edges in E have the right edge labels for their dimension
according to lab

4 The nodes have the right attributes for their dimension according
to attr

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Terms

Terms

defined given set At of atoms and Con of constants:

Terms
t ::= x variable

| c constant
| λx : T.t abstraction
| t1 t2 application
| a atom
| {a1 = t1, . . . , an = tn} record
| t.a record selection

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Signature

Signature

determined by a multigraph type M = (dim ,word , lab, attr)

two parts:
1 the logical constants
2 the multigraph constants

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Signature

Logical Constants

include the type constant B and the following term
constants:

Logical Constants

0 : B false
1 : B true
¬ : B → B negation

∨,∧,⇒,⇔ : B → B → B disjunction,conjunction etc.
.
=T , ˙6= : T → T → B equality, inequality

∃T ,∃1
T
,∀T : (T → B) → B quantification

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Signature

Multigraph Constants

include the type constant V and the following term
constants:

Multigraph Constants
·

−→d : V → V → lab d → B labeled edge
→

d
: V → V → B edge

→+

d
: V → V → B dominance

≺ : V → V → B precedence
(word ·) : V → word word

(d ·) : V → attr d attributes

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Signature

Multigraph Constants (2)

where we interpret:

Interpretation
·

−→
d

as the labeled edge relation on dimension d.

→
d

as the edge relation on d.

→+

d
as the dominance relation on d.

≺ as the precedence relation

(word ·) as the word

(d ·) as the attributes on d.

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Grammar

Grammar

an XDG grammar G = (M,P) is defined by:
1 a multigraph type M
2 a set P of formulas called principles

each principle must be formulated according to the
signature M

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Models

Models

the models of a grammar G = (M,P) are all multigraphs
that:

1 have multigraph type M
2 satisfy all principles P

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

String Language

String Language

given a grammar G = (M,P), the string language L(G) is
the set of strings s = w1 . . . wn such that:

1 there is a model of G with equally many nodes as words:

V = {1, . . . , n}

2 the concatenation of the words of the nodes of this model
yields s:

(word 1) . . . (word n) = s

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Recognition Problem

Recognition Problem

two kinds (Trautwein 1995):

Recognition Problem

1 universal recognition problem: given a pair (G, s) where G is a
grammar and s a string, is s in the language generated by G?

2 fixed recognition problem: let there be a fixed grammar G. Given
a string s, is s in the language generated by G?

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Recognition Problem

Complexity of the Recognition Problems

fixed recognition problem: NP-hard
proof: reduction of the SAT problem
universal recognition problem: also NP-hard
proof: implied by the above proof, individually: by reduction
of the Hamiltonian Path problem, inspired by (Koller and
Striegnitz 2002)
no upper bound proven yet, with this formalization:
probably worse than NP for both, with reasonable
restrictions on the principles, conjecture: in NP

Dependency Grammar as Multigraph Description

A Description Language for Multigraphs

Recognition Problem

Parsing

constraint-based parser in the XDK implementation
already efficient for handcrafted grammars despite the
intractable complexity
but not suitable for large-scale parsing
finding polynomial fragments of XDG and improving the
efficiency of the parser: after my thesis

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Dependency Grammar

Dependency Grammar

collection of ideas, often attributed to (Tesniere 1959)
1:1-mapping words:nodes
head-dependent asymmetry
lexicalization
valency

in addition for XDG:
order
projectivity
multi-dimensionality

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

1:1-mapping words:nodes

1:1-mapping words:nodes

node-word mapping
recall: multigraphs are tuples
(V,Dim ,Word ,W,Lab, E,Attr , A)

Components

1 . . .

2 the node-word mapping W ∈ V → Word

3 . . .

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Head-Dependent Asymmetry

Head-Dependent Asymmetry

labeled directed edges
again recall: multigraphs are tuples
(V,Dim ,Word ,W,Lab, E,Attr , A)

Components

1 . . .

2 a set E ⊆ V × V × Dim × Lab of labeled directed edges

3 . . .

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Lexicalization

Lexicalization

idea: behavior of the nodes depends on the associated
words
to model lexicalization in XDG, we split the attributes into:

1 lexical attributes
2 non-lexical attributes

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Lexicalization

Attributes

formally, the attributes attr d of each dimension d must be
a record of the type:

attr d =















lex : L

a1 : . . .

. . .

an : . . .















where lex harbors the lexical attributes, which have type L,
and a1, . . . an the non-lexical attributes

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Lexicalization

Lexicon

the lexicon is a set of lexical entries of type E:

E =















word : word

d1 : L1

. . .

dm : Lm















where each lexical entry is associated with a word by
feature word , and specifies the lexical attributes of the
dimensions d1, . . . , dm

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Lexicalization

Lexicalization Principle

realizes lexicalization:
1 for each node, a lexical entry e must be selected from the

lexicon lexicon
2 e must be associated with same word with which the node

is associated.
3 e determines the lexical attributes

Lexicalization in XDG
1. ∃e ∈ lexicon ∧
2. e.word

.
= (word v) ∧

3. (d1 v).lex
.
= e.d1 ∧

. . .

(dm v).lex
.
= e.dm

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Valency

idea: lexically specify for each node its licensed incoming
and outgoing edges
leads to notion of configuration of fragments which need to
be assembled to yield analyses
example fragment:

a

a?

a?
b!

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Example Grammar

example grammar:

L1 = {w ∈ (a ∪ b)+ | |w|a = |w|b}

idea: use the following fragments:

a

a?

a?
b!

b

b!

models must be trees

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Example Analysis

example analysis:

a

1

b

2

b

3

a

4

b

5

a

6

a

a

b

b

b

intuitively: as arranged in a chain, each a must have one
outgoing edge to a b

this ensures that there are equally many as and bs

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Valency in XDG

no incoming edges labeled l for node v on dimension d:

in0 〈d〉 v l = ¬∃v′ : v′
l

−→d v

precisely one incoming edge labeled l:

in1 〈d〉 v l = ∃1v′ : v′
l

−→d v

at most one incoming edge labeled l:

in0or1 〈d〉 v l = (in0 〈d〉 v l) ∨ (in1 〈d〉 v l)

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Lexicalization of Valency

idea: express fragments by lexical entries
two lexical attributes in and out

map edge labels to cardinalities:
! (precisely one edge)
? (at most one edge)
∗ (arbitrary many edges)
0 (no edges)

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Lexicalization of Valency (2)

example fragment:

a

a?

a?
b!

corresponding lexical entry:






word = a

ID =

{

in = {a =?, b = 0}
out = {a =?, b =!}

}







Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Valency

Valency Principle

realizes lexicalized valency:

valency〈d〉 =
∀l :
(d v).lex .in .l

.
= 0 ⇒ in0 v l

(d v).lex .in .l
.
= ! ⇒ in1 v l

(d v).lex .in .l
.
= ? ⇒ in0or1 v l

(d v).lex .in .l
.
= 0 ⇒ out0 v l

(d v).lex .in .l
.
= ! ⇒ out1 v l

(d v).lex .in .l
.
= ? ⇒ out0or1 v l

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Order

idea: fragments so far unordered, now we make them
ordered
lexical order on the dependents of each node, in addition,
the mother is ordered with respect to its dependents:
additional edge label m (“mother”): position of the mother
with respect to its dependents

a

a?

b!
a?

m < a < b

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Example Grammar

example grammar:

L2 = {w ∈ anbn | n ≥ 1}

idea: use the following ordered fragments:

a

a?

b!
a?

m < a < b

b

b!

m

models must be trees

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Example Analysis

example analysis:

a

1

a

2

a

3

b

4

b

5

b

6

a

a

b

b

b

like before: as arranged in a chain, and each a must have
one outgoing edge to a b (equally many as and bs)
in addition: all as precede all bs, and all mothers precede
their dependents

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Order in XDG

make the daughters with incoming edge label a precede
those with incoming edge label b:

v
a

−→d v′ ∧ v
b

−→d v′′ ⇒ v′ ≺ v′′

make all mothers precede their daughters:

v→
d
v′ ⇒ v ≺ v′

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Lexicalization of Order

lexical attribute order , type: set of pairs of edge labels
(including m) representing a strict partial order
e.g. ordered fragment:

a

a?

b!
a?

m < a < b

corresponding lexical entry:














word = a

d =







in = {a =?, b = 0}
out = {a =?, b =!}

order = {(m,a), (m, b), (a, b)}





















Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Order

Order Principle

realizes lexicalized order:

order 〈d〉 =
∀(l, l′) ∈ (d v).lex .order :

v
l

−→d v′ ∧ v
l
′

−→d v′′ ⇒ v′ ≺ v′′ ∧

l
.
= m ∧ v

l′

−→d v′ ⇒ v ≺ v′ ∧

v
l

−→d v′ ∧ l′
.
= m ⇒ v′ ≺ v

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Projectivity

Projectivity

problem: locally ordering the daughters does not suffice to
model L2

counter example: all a-daughters precede the b-daughters,
and all mothers precede their daughters, yet not all as
precede all bs:

a

1

a

2

b

3

a

4

b

5

b

6

a b

ba

b

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Projectivity

Projectivity (2)

problem: we need to ensure that we do not only order the
daughters but entire subtrees
idea: forbid edges to cross projection edges of nodes
higher up in the graph, i.e. enforce projectivity

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Projectivity

Projectivity Principle

realizes projectivity:

projectivity〈d〉 =
v →

d
v′ ∧ v ≺ v′ ⇒ ∀v′′ : v ≺ v′′ ∧ v′′ ≺ v′ ⇒ v →+

d
v′′∧

v →
d
v′ ∧ v′ ≺ v ⇒ ∀v′′ : v′ ≺ v′′ ∧ v′′ ≺ v ⇒ v →+

d
v′′

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Multi-dimensionality

additional expressivity and modularity, e.g. to model other
layers of linguistic description
example here: two dimensions to model the
non-context-free language L3:

L3 = {w ∈ anbncn | n ≥ 1}

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

One Dimension is Not Enough

impossible to find one-dimensional analyses for blocks > 1
which are projective
if the root is an a or a c, there is no way to connect as and
cs of depth > 1 without crossing the projection edges of the
bs higher up:

a

1

a

2

b

3

b

4

c

5

c

6

a b c

b c

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

One Dimension is Not Enough (2)

if the root is a b, there is no way to connect the bs with
depth > 1 to both the corresponding as and cs without
crossing projection edges of the bs higher up:

a

1

a

2

b

3

b

4

c

5

c

6

b

a

a c

c

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

One Dimension is Not Enough (3)

cannot drop projectivity, because this would inevitably lead
to overgeneration, e.g.:

a

1

a

2

b

3

c

4

b

5

c

6

a b c

b c

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Multi-dimensionality to the Rescue

idea: disentangle counting and ordering using two
dimensions:

1 the Immediate Dominance (ID) dimension for counting, i.e.
to ensure that for each a, there is precisely one b and one c

2 the Linear Precedence (LP) dimension for ordering, i.e. to
ensure that all as precede all bs which precede all cs

ID dimension: unordered tree
LP dimension: ordered tree

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Grammar

a as the root (left: ID, right: LP):

a

b!
c!

a?

a

1*
2*

3*

m < 1 < 2 < 3

a as a dependent:

a

a?
b!

c!a!

a

1!

m

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Grammar (2)

b:

b

b!

b

2!

m

c:

c

c!

c

3!

m

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Example Analysis

top: ID, bottom: LP:

a

1

a

2

b

3

b

4

c

5

c

6

a b c

b c

a

1

a

2

b

3

b

4

c

5

c

6

1 2 2 3 3

Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description

Multi-dimensionality

Possible Extensions

interesting: grammar can be straightforwardly extended to
handle languages like e.g. anbncndn and anbncndnen

cannot be handled by e.g. TAG (Joshi 1987) and CCG
(Steedman 2000) (mildly context-sensitive)

Dependency Grammar as Multigraph Description

Conclusions

Overview

1 Introduction

2 Multigraphs

3 A Description Language for Multigraphs

4 Dependency Grammar as Multigraph Description

5 Conclusions

Dependency Grammar as Multigraph Description

Conclusions

Conclusions

XDG: very expressive and modular grammar formalism,
brings together two recent trends in computational
linguistics
presented first complete formalization
showed how to realize the ideas of dependency grammar
basis for future work on multi-dimensional dependency
grammar, in particular:

finding fragments with tractable complexity
developing more efficient parsers

Dependency Grammar as Multigraph Description

Conclusions

Thank you!

Thanks for your attention!

Dependency Grammar as Multigraph Description

Conclusions

References

References

Alonzo Church.
A Formulation of the Simple Theory of Types.
Journal of Symbolic Logic, (5):56–68, 1940.

Ralph Debusmann, Denys Duchier, Alexander Koller,
Marco Kuhlmann, Gert Smolka, and Stefan Thater.
A Relational Syntax-Semantics Interface Based on
Dependency Grammar.
In Proceedings of COLING 2004, Geneva/CH, 2004.

Ralph Debusmann, Denys Duchier, and Joachim Niehren.
The XDG Grammar Development Kit.
In Proceedings of the MOZ04 Conference, volume 3389 of
Lecture Notes in Computer Science, pages 190–201,
Charleroi/BE, 2004. Springer.

Dependency Grammar as Multigraph Description

Conclusions

References

References

Katrin Erk, Andrea Kowalski, Sebastian Pado, and Manfred
Pinkal.
Towards a Resource for Lexical Semantics: A Large
German Corpus with Extensive Semantic Annotation.
In Proceedings of ACL 2003, Sapporo/JP, 2003.

Aravind K. Joshi.
An Introduction to Tree-Adjoining Grammars.
In Alexis Manaster-Ramer, editor, Mathematics of
Language, pages 87–115. John Benjamins,
Amsterdam/NL, 1987.

Alexander Koller and Kristina Striegnitz.
Generation as Dependency Parsing.
In Proceedings of ACL 2002, Philadelphia/US, 2002.

Dependency Grammar as Multigraph Description

Conclusions

References

References

Mark Steedman.
The Syntactic Process.
MIT Press, Cambridge/US, 2000.

Lucien Tesnière.
Eléments de Syntaxe Structurale.
Klincksiek, Paris/FR, 1959.

	Introduction
	Two Trends

	Multigraphs
	Dependency Graphs
	Multigraphs
	Formalization
	Relations

	A Description Language for Multigraphs
	Types
	Interpretation
	Multigraph Type
	Terms
	Signature
	Grammar
	Models
	String Language
	Recognition Problem

	Dependency Grammar as Multigraph Description
	Dependency Grammar
	1:1-mapping words:nodes
	Head-Dependent Asymmetry
	Lexicalization
	Valency
	Order
	Projectivity
	Multi-dimensionality

	Conclusions
	Thank you!
	References

