Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph

Description

Ralph Debusmann

Programming Systems Lab, Saarbriicken

IGK Colloquium, December 1st, 2005

Dependency Grammar as Multigraph Description

Overview

ﬂ Introduction

9 Multigraphs

9 A Description Language for Multigraphs

e Dependency Grammar as Multigraph Description

9 Conclusions

Dependency Grammar as Multigraph Description

L Introduction

Overview

0 Introduction

Dependency Grammar as Multigraph Description
L Introduction
|—Two Trends

Two Trends

Two trends in computational linguistics

@ dependency grammar
@ multi-layered linguistic description

Dependency Grammar as Multigraph Description
L Introduction
|—Two Trends

Dependency Grammar

@ collection of ideas, often attributed to (Tesniere 1959)
@ 1:1-mapping words:nodes
@ head-dependent asymmetry
@ lexicalization
@ valency
@ grammar formalisms: have already incorporated most of
the ideas (e.g. CCG, HPSG, LFG, TAG)

@ statistical parsing: often crucially relies on some of the
ideas

@ treebanks: some already dependency-based (PDT, Danish
DTB), some even being converted (TiGer TB — TiGer
DTB)

Dependency Grammar as Multigraph Description
L Introduction
|—Two Trends

Multi-layered Linguistic Description

@ modular approach to linguistics
@ largely independent of syntax: research on e.g.
@ predicate-argument structure
@ quantifier scope
@ prosodic structure
@ information structure
@ discourse structure
@ treebanks: additional layers, e.g.
o PDT: predicate-argument structure, information structure
@ TiGer: predicate-argument structure (SALSA) (Erk et al.
2003)
@ Penn TB: predicate-argument structure (PropBank),
discourse structure (Penn DTB)

Dependency Grammar as Multigraph Description
L Introduction
|—Two Trends

Multi-layered Dependency Grammar

@ Dbrings the two trends together

@ result: Extensible Dependency Grammar (XDG)
(Debusmann et al. 2004 COLING), XDG Development Kit
(XDK) (Debusmann et al. 2004 Mozart)

@ main problems:

@ no complete formalization
@ no efficient large-scale parsing
@ this talk: first complete formalization of XDG

@ how: as a description language for multigraphs, based on
simply typed lambda calculus (Church40)

Dependency Grammar as Multigraph Description
|—Multigraphs

Overview

9 Multigraphs

Dependency Grammar as Multigraph Description
|—Multigraphs
|—Dependency Graphs

Dependency Graphs

@ example dependency graph:

Q/ ac)d\l//go‘d\%\ vin f—

1 2 3 4 5 6

today Peter wants to eat spaghetti

Dependency Grammar as Multigraph Description
|—Multigraphs
|—Dependency Graphs

Dependency Graphs (2)

@ not restricted to syntactic structure alone:

C;)\th ©

T ;
0‘5/?\167/\‘0\
AT T~

1 5 3 4 5 6

today Peter wants to eat spaghetti

Dependency Grammar as Multigraph Description
|—Multigraphs
|—Multigraphs

Multigraphs

@ multi-layered/multi-dimensional dependency graph:

@ consists of an arbitrary number of dependency graphs
called dimensions

@ all dimensions share the same set of nodes

Dependency Grammar as Multigraph Description
|—Multigraphs
|—Multigraphs

Multigraphs (2)

@ example two-dimensional multigraph (syntax and

semantics):
o— a(%\ij@ : Vinf—___
. i T 0p;
: : o2t b
: : o~ ™0
1 2 3 4 5 6
today Peter wants to eat spaghetti

today Peter wants to eat spaghetti

Dependency Grammar as Multigraph Description
|—Multigraphs

|—Formalization

Formalization

@ a multigraph is a tuple (V, Dim, Word, W, Lab, E, Attr, A)

@ finite set VV of nodes (finite interval of the natural numbers
starting with 1, therefore totally ordered)

@ finite set Word of words

© the node-word mapping W € V. — Word

@ afinite set Lab of edge labels

@ aset ECV xV x Dim x Lab of labeled directed edges
© afinite set Attr of attributes

@ the node-attributes mapping A € V. — Dim — Attr

Dependency Grammar as Multigraph Description
|—Multigraphs
|—Relations

Relations

@ each dimension d € Dim associated with four relations:

Four Relations

@ labeled edge: —
Q edge: —,
© dominance (strict): —}

© precedence: v < v’

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

Overview

9 A Description Language for Multigraphs

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Types

Types

® T € Ty given a set At of atoms (arbitrary symbols):

T:= B boolean
| V node
| Th — Tz function
| {a1,...,a,} finite domain
| {a1:Th,...,an : Ty} record

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
L Interpretation

Interpretation

@ Bas {0,1}
@ V as (finite interval of the natural numbers starting with 1)
@ 71 — T, as the set of all functions from the interpretation of
T; to the interpretation of 1%
® {ay,...,a,} astheset{as,...,a,}
@ {a1:T1,...,a,:T,} as the set of all functions f with
@ Dom f={as,...,an}

@ forall1 <i<n, f a;is an element of the interpretation of 7;

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Multigraph Type

Multigraph Type

@ multigraphs can be distinguished by their: dimensions,
words, labels, attributes

@ multigraph type: tuple M = (dim, word, lab, attr), where:

Multigraph Type

@ dim € Ty is a finite domain of dimensions

@ word € Ty is a finite domain of words

© lab € dim — Ty is a function from dimensions to label types, i.e.
the finite domain of the edge labels on that dimension

© uttr € dim — Ty is a function from dimensions to attributes
types, i.e. the (arbitrary) type of the attributes on that dimension

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Multigraph Type

Multigraphs and Multigraph Types

@ M T: the interpretation of type T over M
@ a multigraph M = (V, Dim, Word, W, Lab, E, Attr, A) has
multigraph type M = (dim, word, lab, attr) iff

@ The dimensions are the same

© The words are the same

© The edges in E have the right edge labels for their dimension
according to lab

© The nodes have the right attributes for their dimension according
to atir

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

|—Terms

Terms

@ defined given set At of atoms and Con of constants:

Terms

ti= =z variable
| ¢ constant
| Az:T.t abstraction
| t1to application
| a atom
| {a1=t1,...,an =1tn} record
| ta record selection

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Signature

Signature

@ determined by a multigraph type M = (dim, word, lab, attr)
@ two parts:

@ the logical constants
© the multigraph constants

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

|—Signature

Logical Constants

@ include the type constant B and the following term

constants:
Logical Constants
0 : B false
1 : B true
- : B—B negation

V,A\,=,& : B—B— B disjunction,conjunction etc.
=r,# : T —T — B equality, inequality
3r,3%,Vr : (T — B) — B quantification

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Signature

Multigraph Constants

@ include the type constant V and the following term
constants:

Multigraph Constants

—; V—=V —labd— B labeled edge

—; V=V—=B edge
- Vo>V->B dominance
< : V—=V—B precedence
(word -) : V — word word

(d) : V—attrd attributes

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

|—Signature

Multigraph Constants (2)

@ where we interpret:

Interpretation

@ ——, as the labeled edge relation on dimension d.

©

—, as the edge relation on d.

©

—7 as the dominance relation on d.

©

=< as the precedence relation
@ (word -) as the word

@ (d) as the attributes on d.

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs

|—Grammar

Grammar

@ an XDG grammar G = (M, P) is defined by:

@ a multigraph type M
© aset P of formulas called principles

@ each principle must be formulated according to the
signature M

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Models

Models

@ the models of a grammar G = (M, P) are all multigraphs
that:
@ have multigraph type M
@ satisfy all principles P

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—String Language

String Language

@ given a grammar G = (M, P), the string language L(G) is
the set of strings s = wy ... w, such that:
@ there is a model of G with equally many nodes as words:

vV = {1,...,n}

© the concatenation of the words of the nodes of this model
yields s:
(word 1)...(word n) = s

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

|—Recognition Problem

Recognition Problem

@ two kinds (Trautwein 1995):

Recognition Problem

@ universal recognition problem: given a pair (G, s) where G is a
grammar and s a string, is s in the language generated by G?

Q fixed recognition problem: let there be a fixed grammar G. Given
a string s, is s in the language generated by G?

Dependency Grammar as Multigraph Description

|—A Description Language for Multigraphs

|—Recognition Problem

Complexity of the Recognition Problems

fixed recognition problem: NP-hard
proof: reduction of the SAT problem
universal recognition problem: also NP-hard

proof: implied by the above proof, individually: by reduction
of the Hamiltonian Path problem, inspired by (Koller and
Striegnitz 2002)

no upper bound proven yet, with this formalization:
probably worse than NP for both, with reasonable
restrictions on the principles, conjecture: in NP

Dependency Grammar as Multigraph Description
|—A Description Language for Multigraphs
|—Recognition Problem

Parsing

@ constraint-based parser in the XDK implementation
already efficient for handcrafted grammars despite the
intractable complexity

@ but not suitable for large-scale parsing

@ finding polynomial fragments of XDG and improving the
efficiency of the parser: after my thesis

Dependency Grammar as Multigraph Description

L Dependency Grammar as Multigraph Description

Overview

@ Dependency Grammar as Multigraph Description

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Dependency Grammar

Dependency Grammar

@ collection of ideas, often attributed to (Tesniere 1959)
@ 1:1-mapping words:nodes
@ head-dependent asymmetry

lexicalization

@ valency

@ in addition for XDG:
@ order
@ projectivity
o multi-dimensionality

(4

Dependency Grammar as Multigraph Description

L Dependency Grammar as Multigraph Description

L 1:1-mapping words:nodes

1:1-mapping words:nodes

@ node-word mapping

@ recall: multigraphs are tuples
(V, Dim, Word, W, Lab, E, Attr, A)

Components

Q ..

©Q the node-word mapping W € V. — Word

Q ...

Dependency Grammar as Multigraph Description

L Dependency Grammar as Multigraph Description

|—Head-Dependent Asymmetry

Head-Dependent Asymmetry

@ labeled directed edges

@ again recall: multigraphs are tuples
(V, Dim, Word, W, Lab, E, Attr, A)

Components

Q ..

@ aset ECV xV x Dim x Lab of labeled directed edges

Q ...

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Lexicalization

Lexicalization

@ idea: behavior of the nodes depends on the associated
words
@ to model lexicalization in XDG, we split the attributes into:

@ lexical attributes
@ non-lexical attributes

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Lexicalization

Attributes

@ formally, the attributes attr d of each dimension d must be
a record of the type:
lex : L

attr d = e

Qn

@ where lez harbors the lexical attributes, which have type L,
and aq, ... a, the non-lexical attributes

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Lexicalization

Lexicon

@ the lexicon is a set of lexical entries of type E:

word : word
B = dl . Ll
dm : Lm

@ where each lexical entry is associated with a word by
feature word, and specifies the lexical attributes of the
dimensions dy, ... ,dn

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Lexicalization

Lexicalization Principle

@ realizes lexicalization:

@ for each node, a lexical entry e must be selected from the
lexicon lexicon

© ¢ must be associated with same word with which the node
is associated.

© e determines the lexical attributes

Lexicalization in XDG

1. de € lexicon A
2. e.word = (word v) A
3. (dyw).lex =ed; A

(dm v).lex = e.dy,

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Valency

@ idea: lexically specify for each node its licensed incoming
and outgoing edges

@ leads to notion of configuration of fragments which need to
be assembled to yield analyses

@ example fragment:
N?\

=

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Example Grammar

@ example grammar:
Ly = {we(aub)" | |wla = |wls}

@ idea: use the following fragments:

@ models must be trees

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Example Analysis

@ example analysis:

O\b —a
: w\
o] : a
. : \).
: O/ .
a b b a b a
1 2 3 4 5 6

@ intuitively: as arranged in a chain, each a must have one
outgoing edgeto ab

@ this ensures that there are equally many as and bs

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Valency in XDG

@ no incoming edges labeled [for node v on dimension d:
in0(d)yvl = -3 Ldv

@ precisely one incoming edge labeled I:
ini{dyvl = 3 L>dv

@ at most one incoming edge labeled I:

inOorl{(d)y vl = (in0(d)vl)V (inl{d)vl)

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Lexicalization of Valency

@ idea: express fragments by lexical entries

@ two lexical attributes in and out

@ map edge labels to cardinalities:
@ | (precisely one edge)

? (at most one edge)

x (arbitrary many edges)

0 (no edges)

e ¢ ¢

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Lexicalization of Valency (2)

@ example fragment:

@ corresponding lexical entry:

word = a
D — in ={a=70=0}
| out = {a=2b=!}

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Valency

Valency Principle

@ realizes lexicalized valency:

valency(d) =
Vi
(d v).lex.in.l
(d v).lex.in.l
(d v).lex.in.l

(dv).lex.in.l
(d v).lex.in.l
(dv).lex.in.l

L4y

4y

0 vl
nl vl
inlforl vl

out0 vl
outl vl
outOor! vl

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Order

@ idea: fragments so far unordered, now we make them
ordered

@ lexical order on the dependents of each node, in addition,
the mother is ordered with respect to its dependents:

@ additional edge label m (“mother”): position of the mother
with respect to its dependents

y?\

O\a?\b’-

m<ax<b

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Example Grammar

@ example grammar:
L, = {wea™|n>1}

@ idea: use the following ordered fragments:

QO

- °
a b
m<a<b m

@ models must be trees

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Example Analysis

@ example analysis:

Mb\»o
q b :
\O\b \O :

\O :
a a a b b b
1 2 3 4 5 6

@ like before: as arranged in a chain, and each a must have
one outgoing edge to a b (equally many as and bs)

@ in addition: all as precede all bs, and all mothers precede
their dependents

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Order in XDG

@ make the daughters with incoming edge label a precede
those with incoming edge label b:

b
O X S R
@ make all mothers precede their daughters:

v—yv = v=<

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Lexicalization of Order

@ lexical attribute order, type: set of pairs of edge labels
(including m) representing a strict partial order
@ e.g. ordered fragment:

y?\

O\\a?\b!s

a

m<a<b

@ corresponding lexical entry:

word = a
in ={a=7,b=0}
d= out = {a =7,b=!}
order = {(m,a),(m,b),(a,b)}

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Order

Order Principle

@ realizes lexicalized order:
order(d) =
V(1,1") € (d v).lex.order :
’
v#dv’ A Ul—>dv” = <V A
. 14
l=m AN v—yv = v=<v A

! .
v—gv N U'=m = v <

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

L Projectivity

Projectivity

@ problem: locally ordering the daughters does not suffice to
model L,

@ counter example: all a-daughters precede the b-daughters,
and all mothers precede their daughters, yet not all as
precede all bs:

(;)V\b\
. 9\?\ S
. o\?\
: 0O
a a b ¢:1 b b

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
L Projectivity

Projectivity (2)

@ problem: we need to ensure that we do not only order the
daughters but entire subtrees

@ idea: forbid edges to cross projection edges of nodes
higher up in the graph, i.e. enforce projectivity

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

L Projectivity

Projectivity Principle

@ realizes projectivity:

projectivity (d) =
v VA <V = VW iu <AV <Y = v—>ji'v”/\

v VAV v = VY <AV < = v—>jv”

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

Multi-dimensionality

@ additional expressivity and modularity, e.g. to model other
layers of linguistic description

@ example here: two dimensions to model the
non-context-free language Ls3:

Ly = {wea™'c|n>1}

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Multi»dimensionality

One Dimension is Not Enough

@ impossible to find one-dimensional analyses for blocks > 1
which are projective

@ if the root is an a or a ¢, there is no way to connect as and
cs of depth > 1 without crossing the projection edges of the

bs higher up:
WO
a a b b ¢ c

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

One Dimension is Not Enough (2)

@ if the root is a b, there is no way to connect the bs with
depth > 1 to both the corresponding as and c¢s without
crossing projection edges of the bs higher up:

/O\
a b\ c\
: O : : \O :
a a b b ¢ c

1 2 3 4 5 6

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

One Dimension is Not Enough (3)

@ cannot drop projectivity, because this would inevitably lead
to overgeneration, e.g.:

O~~~

L TSNo——o —0

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

Multi-dimensionality to the Rescue

@ idea: disentangle counting and ordering using two
dimensions:
@ the Immediate Dominance (ID) dimension for counting, i.e.
to ensure that for each «, there is precisely one b and one ¢
© the Linear Precedence (LP) dimension for ordering, i.e. to
ensure that all as precede all bs which precede all cs

@ |ID dimension: unordered tree
@ LP dimension: ordered tree

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

Grammar

@ q as the root (left: ID, right: LP):

c! O *

a m<1<2<3

@ a as a dependent:

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

Grammar (2)

“)
g
b! O
\O
‘ b
b m
9

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description
|—Multi»dimensionality

Example Analysis

@ top: ID, bottom: LP:

No—0 o0

1 2 3 4 5 6
N S Se= 0
a a b b c c

Dependency Grammar as Multigraph Description
L Dependency Grammar as Multigraph Description

|—Multi»dimensionality

Possible Extensions

@ interesting: grammar can be straightforwardly extended to
handle languages like e.g. a”b"c"d™ and a"b"c"d"e"

@ cannot be handled by e.g. TAG (Joshi 1987) and CCG
(Steedman 2000) (mildly context-sensitive)

Dependency Grammar as Multigraph Description

|—Conclusions

Overview

e Conclusions

Dependency Grammar as Multigraph Description

|—Conclusions

Conclusions

@ XDG: very expressive and modular grammar formalism,
brings together two recent trends in computational
linguistics

@ presented first complete formalization

@ showed how to realize the ideas of dependency grammar

@ basis for future work on multi-dimensional dependency
grammar, in particular:
o finding fragments with tractable complexity
@ developing more efficient parsers

Dependency Grammar as Multigraph Description
|—Conclusions
|—Thank you!

Thanks for your attention!

Dependency Grammar as Multigraph Description
|—Conclusions

L References

References

@ Alonzo Church.
A Formulation of the Simple Theory of Types.
Journal of Symbolic Logic, (5):56—68, 1940.

@ Ralph Debusmann, Denys Duchier, Alexander Koller,
Marco Kuhlmann, Gert Smolka, and Stefan Thater.
A Relational Syntax-Semantics Interface Based on
Dependency Grammar.
In Proceedings of COLING 2004, Geneva/CH, 2004.

@ Ralph Debusmann, Denys Duchier, and Joachim Niehren.
The XDG Grammar Development Kit.
In Proceedings of the MOZ04 Conference, volume 3389 of
Lecture Notes in Computer Science, pages 190-201,
Charleroi/BE, 2004. Springer.

Dependency Grammar as Multigraph Description
|—Conclusions

L References

References

@ Katrin Erk, Andrea Kowalski, Sebastian Pado, and Manfred
Pinkal.
Towards a Resource for Lexical Semantics: A Large
German Corpus with Extensive Semantic Annotation.
In Proceedings of ACL 2003, Sapporo/JP, 2003.

@ Aravind K. Joshi.
An Introduction to Tree-Adjoining Grammars.
In Alexis Manaster-Ramer, editor, Mathematics of
Language, pages 87—-115. John Benjamins,
Amsterdam/NL, 1987.

@ Alexander Koller and Kristina Striegnitz.
Generation as Dependency Parsing.
In Proceedings of ACL 2002, Philadelphia/US, 2002.

Dependency Grammar as Multigraph Description
|—Conclusions

L References

References

¥ Mark Steedman.
The Syntactic Process.
MIT Press, Cambridge/US, 2000.

¥ Lucien Tesniéere.
Eléments de Syntaxe Structurale.
Klincksiek, Paris/FR, 1959.

	Introduction
	Two Trends

	Multigraphs
	Dependency Graphs
	Multigraphs
	Formalization
	Relations

	A Description Language for Multigraphs
	Types
	Interpretation
	Multigraph Type
	Terms
	Signature
	Grammar
	Models
	String Language
	Recognition Problem

	Dependency Grammar as Multigraph Description
	Dependency Grammar
	1:1-mapping words:nodes
	Head-Dependent Asymmetry
	Lexicalization
	Valency
	Order
	Projectivity
	Multi-dimensionality

	Conclusions
	Thank you!
	References

