Containers
Constructing Strictly Positive Types

Felix Rech

Advisor: Steven Schifer

June 30, 2016



Topic

Construction of types
Nested inductive and coinductive types

Based on simple primitives



Type Equivalence

Definition (Equivalence)

Two types A and B are equivalent (A = B) iff there is an
isomorphism from A to B.

Axiom (Univalence)

Equivalence is equivalent to equality between two types
Proposition

Univalence — Funext



Inductive Types

FX=14+X
N is a fixed point of F:

N=1+N
N is the least fixed point of F:
N=2ul+X

Least fixed points are exactly the inductive types.



Inductive Types

What about F' X := X — 07
Assume X = (X — 0)

> If X is empty, then X — 0 is inhabited.
» If X is inhabited, then X — 0 is empty.

= I has no least fixed point.

Solution: restriction to strictly positive types



Strictly Positive Type Expressions

er 33:1’|k‘|€]+€,[|€l><e/1 | k‘%el|l/¢60ption]|l/60ption]
x: 1, k: Type

» Parametrized by the type of free variables I

» They serve as a specification for types, that depends on an
environment I' : I — Type.

> Types for z, k, e + €/, er x € and k — ey are specified
explicitly.

> [1€O0ption I aNd VeQption 1 require more work.



-Expressions

Idea: preoption 1 describes the least fixed point of eoption 1
Problem: egption 1 Might contain more than one free variable.

More precisely:

» Fix an expression epption 7 and an environment I' : I — Type.

» Assume F' : Type — Type is a function such that F Y
corresponds to egption 7 in the environment I'; ;Y for all Y.

» If X is the least fixed point of F', then X corresponds to
HEOption I-

The specification for greatest fixed points works in the same way.



Containers
Definition (Unary Container)
A unary container consists of:

» A type of shapes S (constructors)

» A function P: S — Type
Assigns a type of positions to every shape (arities)

Notation: S » P

Definition (Unary Container Function)
() : UContainer — (T'ype — Type)
(S»P)X:=) Ps—X
5:9
Example
List X = (N » (An = Fin n)) X



Containers

Definition (Container)
A container for an index type I consists of:

> A type of shapes S (constructors)

» A function P: I — S — Type
Assigns a type of positions to every shape and index (arities)

Notation: S > P
Definition (Container Function)
[-] : Container I — ((I — T'ype) — Type)

[S>PIT:=> J[Pis—Ti

s:S I



Main Result

Theorem
Every strictly positive expression corresponds to a container.

We define this container by recursion.

10



Product Container

» By recursion we have containers S; > P, and Sy > Py
corresponding to ey and €.

» We need a container ¢ with
[(] T =2[S1> P T x[Sy > P] T for all environments T'.

ﬂSl I>P1]] I' x HSQ > PQ]] I

= [[Pis—=TiyxO_[[Ris—T

s:S1 1 s:S2 1

> (HPlislﬁPi)x(HPgiSQ—H“i)

(s1,82):S1xS2 @

= Z H(P1i31—>Fz')><(P2z'32—>I‘i)

(81,82):51 ><52 %
= Z H(P1i81+P2’i52)—>Fi
(51,82):51xS2 @

E[[51XSQI>/\iS:>P1181+P2i82]]F

1

11



W-Types (Well-Founded Trees)

Inductive W A (B : A -> Type) :=
sup (label : A) (subtrees : B label -> W AB) : WA B.

Example

BTree = W Bool (Ab = if b then Bool else 0)

true
true true
/\ /\
false false
true true

/\/\

false false false false

Lemma
W A B the least fixed point for (A » B).
12



1-Containers

By recursion we have a container S > P corresponding to eoption 1-
For every environment I" we need a least fixed point for

AX =[S P](T;;X)

= (]ZHP (some 7) s — I" i » P none o fst)
s:S @l

Representation as W-type:

(50, fo)

(Sl’fl) (547f4)
/\
(s2,f2) (s3,[3)

13



1-Containers

w (Z HP (some i) s = T z) (P none o fst)

s:S il
(s0, fo)
(51, f1) (54, fa)
/\

(s2,f2)  (s3,f3)

Shapes:
S, =W S (P none)

Positions:

P, i (sup rs):= P (some 1) r + Z P,i(sp)

p:P none r

14



M-Types (Non-Wellfounded Trees)
We want the greatest fixed point of ' := (A » B)).

Representation as a sequence of finite trees:

1«0 us| ) 3

°”m§%§%

E H Tip Tp41 = Tn

@[], Fr1 N

15



Conclusion

v

We wanted to construct nested inductive an coinductive types.

v

For the construction of fixed points we introduced:

» strictly positive type expressions
» their representation as containers

v

Every strictly positive type expression corresponds to a
container.

v

M-types can be constructed from inductive types.

16



Conclusion

What we used:

dependent functions

v

v

dependent pairs
> sums
» equalities
> W-types
What we didn't use:
» mutual inductive definitions

» coinductive definitions

17



References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3-27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

18



