Containers
Constructing Strictly Positive Types

Felix Rech
Advisor: Steven Schafer

December 9, 2016

(Co-)Inductive Types in Coq

» Coq doesn't always generate a useful induction principle:

Inductive Tree := node : List Tree -> Tree

» Equality on co-inductive types is to weak:

CoFixpoint ones : stream nat := Cons 1 ones.
CoFixpoint zeroes : stream nat := Cons O zeroes.
Definition ones’ := map S zeroes.

» Syntactic conditions for (co-)inductive and (co-)recursive
definitions are hard to justify.

» Functions like size and map have to be rewritten for every
(co-)inductive definition.

We overcome those problems by a construction of types and type
constructors inside our type theory.

Type Equivalence

Definition (Equivalence)

Two types A and B are equivalent (A ~ B) iff there is an
isomorphism from A to B.

Examples

» Unit + Unit ~ Bool
» AxB—-C~A—B—C

Axiom (Univalence)

Equivalence is equivalent to equality between two types

Proposition

Univalence — Funext

Functor

A container type

Examples

» List
> Option

» Tree

Definition
A Functor consists of functions F' : Type — Type and
map : (A — B) - F' A — F B, that obey two rules:

1. map id =id
2. map (fog) =map fomap g

Inductive Types are Fixed Points

Every inductive type is fixed point of some non-trivial functor.

Example (Natural Numbers)

(0]
T

N + Unit ~ N
\/I
S

Fny X := X + Unit

Example (Binary Trees)

A+ (AXT xT)~T

Algebra

A type with a constructor

Definition (Algebra)

An algebra over a functor I consists of
» A type A (the carrier)
» A functiona: FA— A

Example (Natural Numbers)
ay : N+ Unit - N
ay (inl n) :==n+1
ay (inr tt) :==0

Initial Algebra
A type with a constructor an a unique recursion function
Definition (Initial Algebra)
An F-algebra (A, «) is initial iff for every F-algebra (A’,a/) there
is exactly one function h : A — A’ with

Example (Natural Numbers)
For A’ : Type and o' : A’ + Unit — A’ we define:

h:N— A
h0:=d (inr tt)
h (n+1):=d (inl (hn))

Initial Algebras are Unique

Proof Sketch
Fix two initial F-algebras A and A’
FA 2% A FA_2 o7
map h h
map (Woh)| F A" —% 4 A" |Woh map ida ida
map A/ B!
FA—2 44 FA—2 4

= h'oh= idy
hoh' =id 4 follows in the same way.
= h is an equivalence.

Initial Algebras are Fixed Points (Lambek's theorem)

Proof Sketch
Fix an initial F-algebra A.
F(FA 2% FA
map « @
map (hoc) FA—% v A hoa
map h h
\ map « /
map (aoh) | F(F A) —2% F A |aoh
map « «
FA—2 A

= « is an equivalence.

= hoa=1idp 4

= aqoh=1idy

Initial Algebra — Induction (On Natural Numbers)

Proof Sketch
We have P: N — Type, s: P0Oand f:][, Pn— P (n+1).

We want to obtain a function ind : [[,, P n just from initiality of N.

Outline
1. Construct a recursive function h : N — 5" Pn
2. Show 7 oh = idy to obtain a function ind : [[, P n

3. Prove -law for ind

o (inr tt) = (0, s)
o (inl (n,z)) = (n+1, fn x)

10

Initial Algebra — Induction (On Natural Numbers)

Proof Sketch
We have P: N — Type, s: POand f:][, Pn— P (n+1).
We want to obtain a function ind : [[,, P n just from initiality of N.

Outline
1. Construct a recursive function h : N — 3" Pn
2. Show 7y oh = idy to obtain a function ind : [[, P n

3. Prove -law for ind
FyN —2 N

map h h

map (w1 oh) | Fy (ann) L ann w1 oh

map T

~ ~

FyN—2 N
10

Unary Container

A polynomial-like normal form for strictly positive functors

Example (List)

List A~ Y [Billln— A= (N » [Bfl) A

n: N

In general
A unary container consists of:
» A type of shapes S
» A function . : S — Type

Semantics:
(]SPPDA:EZPS—)A
s:S

11

W-Types
Type of well-founded trees
A > Type) :=

Inductive W A (B :
sup (label : A) (subtrees : B label -> W A B) : W A B.

Example
BTree ~ W Bool (Ab = if b then Bool else Empty)

true

T

true true

/\/\

false false
true true

/\/\

false false false false

Lemma
W' A B is the initial algebra for (A » B)).

12

Parameterized Initial Algebra

A Functor that produces initial algebras

Example (List)
For all A, List A is initial algebra of AX. (A x X) + Unit.

In general

Fix a multi-functor F' : (Option I — Type) — Type.

Define T := MA. F (I';; A) as the partial application of F to

I': I — Type.

A parameterized initial algebra of F' is a multi-functor

G : (I — Type) — Type such that G T is initial algebra of FT for
all T

13

Indexed Containers

Polynomial functors with multiple arguments

Example (Sum)

A+ B~ 2 (b = true — A) * (b = false — B)
b:Bool

In general

An I-indexed container for I : Type consists of:
» A type of shapes S
» A function P:I — S — Type

Semantics:

[SeP]T:=> [[Pis—Ti

s:S i

14

1-Containers

Containers that produce initial algebras

We have an Option I-indexed container S > P.
We want an I-indexed container ¢, such that [c,] I' is the initial
algebra of [S > P]r for all environments T'.
Outline
1. Fix I' and transform [[S > P]r into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in T’

15

1-Containers

Outline

1. Fix I' and transform [[S > P]r into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in T’

[SePlrx=>" [Pis—@;:X)i

s:S :Option [

QZ(HP(some i)s —I'i) x P none s -+ X
s:S 4l

~ Z P none (1 §') - X

sy T1; P (some) s—I' 4

15

1-Containers

Outline

1. Fix I' and transform [[S > P]r into polynomial form
2. Obtain the initial algebra as W-type
3. Transform the W-type into a polynomial in T’

w (ZHP(some i) s—>Fi> (P noneomy)

s:S il
(s0, fo)

(s1, /1) (54, fa)
PN
(s2,f2) (53, [3)

15

Tree Splitting
Given types A7 and Ay and a function B : A; — Type we want to
show:

decorate

T~

W (A1 * Ag) (Bom)~ > Addrw— Ay
w:WAlB

undecorate;

undecorates

Here Addr w is the inductively defined type of addresses in the tree
w.

16

Tree Splitting

decorate

W (Arx4g) (Bom)~ > Addrw— Ay

w:W A1 B
undecoratey

undecorates

Proof Obligations

» [, decorate (undecorate w) = w (by induction)

> p:]1,, s undecoratey (decorate (w, f)) = w (by induction)

g pr,f # (undecorates (decorate (w, f))) = f
w7f
< H(undecomteg (decorate (w, f))) = p;}f #f
w7f
< H (undecorates (decorate (w, f))) addr = f (pw,f # addr)
w, f,addr

(by induction with a recursive description of p,, s # addr) 17

Co-Inductive Types

The description of co-inductive types is dual to initial algebras.

Inductive

Algebras Type with constructor
Initial Algebra
FA—“*— A
maphi ih
FA — A
«

W-Types Well-founded trees

Coinductive

Coalgebra Type with destructor

Final Coalgebra
FA+«———A

T !
maphi hi
i i
FA «—— A

a

M-Types Potentially infinite trees

The proofs for uniqueness and the fixed point property are dual.
Instead of induction we have co-induction.

18

Conclusion

What you saw

» A general description of (co-)inductive types

» Construction of (co-)inductive types with containers

Next steps

» Indexed containers
» Construction of W-types from N

» Rational fixed points

19

Conclusion

What you saw

» A general description of (co-)inductive types

» Construction of (co-)inductive types with containers

Next steps

» Indexed containers
» Construction of W-types from N

» Rational fixed points

Thank you!

19

References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3-27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

20

