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The generalized continuum hypothesis in Zermelo-Fraenkel set theory states
that no cardinality lies strictly between that of any infinite set and its power
set. The axiom of choice states that for every set A of nonempty sets, there
is a choice function that maps each B ∈ A to an element of B. Both are
independent of the Zermelo-Fraenkel axioms but Sierpiński’s theorem [5]
states that the generalized continuum hypothesis implies the axiom of choice.
We present a proof of that result in a second-order axiomatization of Zermelo-
Fraenkel set theory in the type theory of Coq. Large parts of the proof depend
on the axiom of excluded middle. For convenience, we also assume function
extensionality. All presented results are formalized.

First, we introduce the axioms of the set theory and some basic constructions
(Section 1). We continue with important facts about the cardinality of sets
and classes (Section 2). As a key step of our main theorem, we will show
that the generalized continuum hypothesis implies the well-ordering theorem:
Every set has a well-order. We prepare this step with some observations
about ordinals as unique representatives of isomorphism classes of well-orders
(Section 3). The core of the proof can be found in Sections 4 and 5.

1 Elementary Set Theory
We assume a type S of objects that we call sets. We think of those as collections of
other sets and assume a binary relation that tells us if one set is an element of another.
General collections of sets that are defined by an arbitrary predicate of type S → P

are called classes. By a notation of the form {x | P (x)}, we denote the class of all sets
x that satisfy the property P : S → P. By x ∈ A, we express that a set x is an element
of a class A. Furthermore, we use other common set-theoretic notations without explicit
introduction. We identify every set with the class of its elements, which is justified by
the axiom of extensionality (1.1) below. Moreover, we identify every class A with the
refinement type

∑
y. y ∈ A of its elements. For example, when we talk about functions

from a class A to a class B, we mean functions that take a set that is an element of A as
input and return a set that is an element of B as output.
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1.1 Basic Axioms
We introduce now our axiomatization of second-order Zermelo-Fraenkel set theory and
some basic set constructions. The axiomatization is inspired by that of Kirst and Smolka
[4] which in turn is close to that of Barras [1]. Some of the definitions and proofs in this
and the following sections are adapted from Smullyan and Fitting [6].

1.1 Axiom of Extensionality. Two sets are equal if they contain the same elements.

1.2 Axiom of Empty Set. The empty class is a set.

1.3 Definition. For class A, we define the union of A as⋃
A := {x | ∃B ∈ A, x ∈ B}.

1.4 Axiom of Union. The union of every set is a set.

1.5 Definition. We say that a class A is subclass of a class B if all elements of A are
also in B. Sometimes, we write this as A ⊆ B. If A is a set then we call it a subset.

1.6 Definition. We define the power class of a class A as the class of all subsets

P(A) := {x | x ⊆ A}.

1.7 Axiom of Power Set. If A is a set then the power class P(A) is also a set. We
call it the power set of A.

1.8 Axiom of Replacement. Let A be a set and R : S → S → P be a functional
relation on all sets, that is, for every set x, there is at most one set y that satisfies
R(x, y). In this context, the class

{y | ∃x ∈ A.R(x, y)}

is a set.

This is our first axiom that deviates significantly from the standard axiomatization of
Zermelo-Fraenkel set theory in first-order logic because we can use all the power of Coq
to define the relation R, not just first-order statements. Since the relation does not need
to be total, we get the principle of separation as an immediate consequence:

1.9 Fact (Separation). Given a set A and a predicate P : A→ P, the class

{x ∈ A | P (x)}

is a set.

The next axiom asserts that the element relation on sets is well founded, which gives
us a useful induction principle. First-order axiomatizations typically use the axiom of
regularity instead that is equivalent under excluded middle but seems less natural. As
preparation for the axiom, we define what it means for a relation to be well-founded.
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1.10 Definition. Fix a type A and a relation R : A → A → P on A. We define
inductively that an element x : A is accessible through R if all its predecessors are
accessible, that is, all y : A with R(y, x). We say that R is well-founded if all elements
of A are accessible through R.

1.11 Axiom of Foundation. The element relation on the type of sets is well-founded.

This implies the principle of well-founded induction:

1.12 Fact (Well-founded induction). If we want to show a property for all sets, it suffices
to show the property for a fixed but arbitrary set under the assumption that it holds on
all of its elements.

Of course, an equivalent statement holds on all types with well-founded relations. We
highlight one significant consequence that we need later.

1.13 Fact. No set contains itself.

In Coq, there is a difference between the propositional inhabitation of a type and the
ability to give a concrete element. In general, the first does not imply the second. When
talking about sets, however, if we have the propositional existence of a unique set that
satisfies a given property then we can also obtain such a set from the axioms:

1.14 Fact (Description). Fix a class A and a predicate P : A → P on A. If there is
propositionally a unique element of A that satisfies P , then we can construct this element
explicitly from the axioms of sets.

In addition to the constructions defined so far, we use the common constructions of sets
like union, intersection and set difference and write finite sets in the form {x1, . . . , xn} by
the list of their elements. By f [A], we denote the image of a class A under a function f .

1.2 Numerals
Until now, we have no way to construct infinite sets. The typical axiom of infinity in
first-order logic would state that there is a set that contains the empty set and is closed
under a suitable successor function. Again, we use the features of Coq for a similar but
slightly more natural formulation. We will define an encoding of natural numbers as
sets. We call the encoded numbers numerals and assume axiomatically that the class of
numerals is a set. We encode 0 as the empty set and use the following successor function.

1.15 Definition. We define the successor function by σ(x) := x ∪ {x} for all sets x.

We will not only use this for numerals but also for ordinals in Section 3.

1.16 Definition. We define an encoding of natural numbers by

encodeN(0) := ∅
encodeN(1 + n) := σ(encodeN(n)).

The sets in the image of this encoding are called numerals. From here on, we leave the
encoding implicit and write the natural number in place of its encoding.

3



Note that for every natural number n, the corresponding numeral contains exactly n
elements. This allows us to use numerals not just as representatives for natural numbers
but also as canonical sets of any finite cardinality.

1.17 Axiom of Infinity. The class of numerals is a set.

We list the three most important facts to work with numerals:

1.18 Fact. The encoding of natural numbers is injective.

This is an important ingredient for the following observations and makes sure that the
set of numerals is actually infinite.

1.19 Fact (Recursion). If we want to define a function f : N → A for any class A, it
suffices to give a base value x ∈ A and a step function g : N → A → A. The resulting
function satisfies the computation rules

f(∅) = x

f(σ(n)) = g(n, f(n)).

In the statement of this fact, it is important that A needs to be a class, not an arbitrary
type. For arbitrary types, this does not seem to be true since we cannot easily define a
function that maps numerals back to their corresponding natural numbers.

1.20 Fact (Induction). If we want to prove a property P on all numerals, it suffices to
prove P (∅) and to show that P (n) implies P (σ(n)) for all numerals n.

1.3 Cartesian Product
In this subsection, we introduce the Cartesian product of two sets which is a set that
consists of encoded pairs. We start with the definition of the encoding function.

1.21 Definition. We define an encoding of pairs of sets by encode×(x, y) := {{x}, {x, y}}.
Like the encoding of natural numbers, we usually leave this implicit. We define the
Cartesian product of two sets A and B as the set of all encoded pairs

A×B := {(x, y) | x ∈ A ∧ y ∈ B}.

1.22 Fact. The encoding of pairs is injective.

1.23 Definition. Fix two sets A and B and an element z ∈ A×B. We define the left
projection π1(z) by description (Fact 1.14) as the unique x ∈ A such that there is a
y ∈ B with z = (x, y). In a similar way, we define the right projection π2(z) ∈ B.

We conclude with a remark that may not seem useful at the moment but becomes
crucial in Section 4.
1.24 Remark. For all sets A, it holds that A×A ⊆ P2(A).
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1.4 Disjoint Union
When working with sets, it is sometimes useful to assume without loss of generality that
two sets are disjoint before one builds the union of both. In this subsection, we present
one way to make that more precise. Our solution is analogous to sum types in type
theory.

1.25 Definition. We define the left injection of a set x by inj1(x) := (0, x) and
the right injection by inj2(x) := (1, x). For given sets A and B, the set A + B :=
inj1[A] ∪ inj2[B] is called the disjoint union of A and B.

The important point of this definition is that inj1 and inj2 are injective and their
images are always disjoint. Like for numerals, we have an eliminator and a form of
induction principle:

1.26 Fact (Match). If we want to define a function f : A+B → C for any sets A, B
and C then it suffices to give a function fA : A→ C and a function fB : B → C. The
resulting f satisfies the computation rules

f(inj1(x)) = fA(x)
f(inj2(y)) = fB(y).

1.27 Fact (Case analysis). If we want to prove a property P : A+B → P on all elements
of the disjoint union A+B of two sets A and B then it suffices to prove P (inj1(x)) for
all x ∈ A and P (inj2(y)) for all y ∈ B.

2 Cardinality
In this section, we define the types of bijections, injections and surjections as a means to
compare types by size. In addition, we provide some facts about the size of classes and
sets.

2.1 Definition. A bijection from a type A to a type B is a function f : A → B
for which we have a function g : B → A that satisfies f(g(y)) = y for all y ∈ B and
g(f(x)) = x for all x ∈ A.

If the type of bijections from A to B is inhabited then we say that A and B have the
same cardinality or that they are equipotent, abbreviated as A ∼ B.

2.2 Fact. Bijections satisfy three basic properties:

1. The identity function on any type is a bijection.

2. The composition of two bijections is a bijection.

3. Every bijection has an inverse bijection.

This implies that equipotency is an equivalence relation.
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2.3 Definition. An injection from a type A to a type B is a function f : A→ B such
that for all x, x′ ∈ A with f(x) = f(x′), it follows that x = x′. We denote the type of
injections from A to B by A ↪→ B.

If the type A ↪→ B is inhabited then we say that A has smaller or equal cardinality or
just that it is smaller or equal to B, abbreviated as A ≤ B.
2.4 Fact. Basic properties of injections are:

1. The identity function on any type is an injection.

2. The composition of two injections is an injection.
2.5 Lemma. Every bijection is also an injection.

We continue with an important fact about power sets.
2.6 Fact. P(A+B) ∼ P(A)× P(B).
Proof. We define functions in both directions by

f : P(A+B)→ P(A)× P(B)
f(C) := ({x ∈ A | inj1(x) ∈ C}, {y ∈ B | inj2(y) ∈ C})

g : P(A)× P(B)→ P(A+B)
g(A′, B′) := inj1[A′] ∪ inj2[B′].

With extensionality, we can show that those are mutually inverse.

Our next major goal is to describe a condition under which a set A satisfies the equation
A ∼ A + A (Fact 2.6). Under the axiom of choice, this holds for all infinite sets, but
without it, we will need to be more specific. We divide our proof into multiple steps.
First however, we have to define what it means for a set to be infinite. The most common
definition states that a set is infinite if it is not equipotent to a numeral. For our purpose,
the following is more convenient.
2.7 Definition. A set A is Dedekind-infinite or just infinite if N ≤ A.

Under the axiom of choice, both statements are equivalent, but without it, ours is
stronger.

Now, we want to show that every infinite set A satisfies A ∼ 1 +A. First, we show this
property for the set of numerals, then we use the fact that every infinite set is equipotent
to a disjoint union of the form N+ _ to generalize the result.
2.8 Lemma. N ∼ 1 + N.
Proof. We define functions in both directions by

f : N→ 1 + N g : 1 + N→ N
f(∅) := inj1(0) g(inj1(_)) := ∅

f(σ(n)) := inj2(n) g(inj2(n)) := σ(n).

By induction on the numerals and the disjoint union respectively, we can show that those
are mutually inverse.
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2.9 Lemma. If B ⊆ A then A = B ∪ (A \B).

2.10 Corollary. If B ⊆ A then A ∼ B + (A \B).

Proof. This follows with B ∪ (A \B) ∼ B + (A \B) which holds since B and A \B are
disjoint.

2.11 Fact. If A is an infinite set then A ∼ 1 +A.

Proof. Let B ⊆ A be the image of the injection from N to A. Then B ∼ N which implies
B ∼ 1 +B (Lemma 2.8). We conclude

A ∼ B + (A \B)
∼ (1 +B) + (A \B)
∼ 1 + (B + (A \B))
∼ 1 +A

by Corollary 2.10 and associativity of the disjoint union with respect to cardinality.

Finally, we get our desired result:

2.12 Fact. If A is an infinite set then P(A) ∼ P(A) + P(A).

Proof. We deduce

P(A) ∼ P(1 +A)
∼ P(1)× P(A)
= 2× P(A)
= P(A) + P(A)

with Fact 2.11 and Fact 2.6.

We also define the concept of surjections with the exclusive goal to formulate a variant
of Cantor’s theorem that we need in Section 5.

2.13 Definition. A function f from a type A to a type B is a surjection if for all
y ∈ B there is an x ∈ A such that f(x) = y.

2.14 Cantor’s Theorem. There is no surjection from any set into its power set.

We end the section with an observation that will be useful to prove that a certain class
is actually a set.

2.15 Fact. Every class that is smaller than a set is itself also a set.

Proof. Fix an arbitrary class A and a set B that is larger or equal to A. By definition,
we have an injection f : A ↪→ B. The class A is the image of f−1 and thus a set by the
axiom of replacement (1.8).
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3 Orderings
We start this section with standard definitions of orders, well-orders and order iso-
morphisms. In the second half, we introduce ordinals as unique representatives for
isomorphism classes of well-orders.

3.1 Definition. A strict total order, or just order, on a type A is a binary relation
_ < _ : A→ A→ P, that satisfies three properties:

Transitivity: If x < y and y < z then x < z for all x, y, z : A.

Irreflexivity: It never holds that x < x for any x : A.

Trichotomy: All x, y : A satisfy x < y, x = y or x > y.

An ordered type is a type that has an order.

3.2 Definition. A well-order is an order that is well-founded (Definition 1.10).

3.3 Definition. An order isomorphism from an ordered type A to an ordered type
B is a bijection f : A→ B that preserves the order in both directions:

x < y ↔ f(x) < f(y).

If the type of such isomorphisms is inhabited, we say that A as ordered type is order
isomorphic to B, abbreviated as A ' B.

3.4 Fact. There are three basic laws of order isomorphisms:

1. The identity function on any ordered type is an order isomorphism.

2. The composition of any two order isomorphisms is an order isomorphism.

3. Every order isomorphism has an inverse order isomorphism.

This implies that isomorphism between ordered types is an equivalence relation.

3.1 Ordinals
Next, we define ordinals which we use as sets that uniquely represent well orders up
to isomorphism. They can also be seen as a generalization of numerals that allows
us to count past infinity. Our definition is quite unconventional and analogous to the
characterization of the cumulative hierarchy by Kirst and Smolka [4].

3.5 Definition. We define the class of ordinals inductively by the rules that

1. the successor σ(α) of an ordinal α is an ordinal and

2. the union
⋃
A of a set of ordinals A is an ordinal.
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The successor function σ in this case is the same that we used for the definition of
numerals (1.15). Note that the empty set is also an ordinal, which implies that all
numerals are ordinals. As announced before, ordinals represent well-orders:

3.6 Fact. Every ordinal is well-ordered by the element relation.

As representatives, they are unique by the following fact.

3.7 Fact. Isomorphic ordinals are equal.

We will also need a characterization of ordinals that differs from the definition. It
makes use of the concept of transitive sets:

3.8 Definition. We call a set A transitive if for all sets x and y, whenever x ∈ A and
y ∈ A then x ∈ A — in other words, if every element is also a subset.

Note that this is similar to transitivity of the element relation. Now we can formulate
the characterization of ordinals.

3.9 Fact. A set is an ordinal if and only if it is transitive and every element is an
ordinal.

4 Hartogs Number
Our goal for this section is to assign to every set an ordinal, the so-called Hartogs
number. If we assumed stronger axioms, such as the generalized continuum hypothesis
(Definition 5.1), then we could show that the Hartogs number of a set is always greater
than that set. Without further axioms, however, the closest thing that we can achieve
is to show that it is at least not smaller or equal in cardinality. As a by-product of the
construction, we will obtain an upper bound on the Hartogs number that will be crucial
in the next section.
Hartogs introduced the Hartogs number in 1915 [3], also with the goal to derive the

well-ordering theorem. The upper bound was first proved by Sierpiński [5]. We deviate
slightly from those works with the intention to make the construction a bit clearer.

4.1 Definition. We define the Hartogs number of a given set A as

ℵ(A) := {α ∈ ordinals | α ≤ A}.

If it turns out that the Hartogs number is an ordinal then ℵ(A) � A will follow
immediately from this definition, because otherwise, the Hartogs number would contain
itself. We proceed in three steps:

1. We show that ℵ(A) ≤ P6(A) which implies that the Hartogs number is a set.

2. We show that the Hartogs number is an ordinal.

3. We conclude that ℵ(A) � A.
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4.2 Fact. The Hartogs number of every set A satisfies the upper bound

ℵ(A) ≤ P6(A).

Proof. By the general upper bound on the Cartesian product (Remark 1.24), we have

P (P(A)× P(A×A)) ⊆ P
(
P(A)× P3(A)

)
≤ P

(
P3(A)× P3(A)

)
⊆ P6(A).

With transitivity, it suffices to define an injection

f : ℵ(A) ↪→ P(P(A)× P(A×A))
f(α) := {x ∈ P(A)× P(A×A) | x ' α},

where we treat every x ∈ P(A)× P(A×A) as a subset of A with a relation on it that
can satisfy x ' α if the relation is an order. To see that f is injective, fix two ordinals
α, β ∈ ℵ(A) with f(α) = f(β). By definition of the Hartogs number, there is an injection
α ↪→ A. We embed the order on α along this injection to obtain an x ∈ P(A)×P(A×A).
Note that x ' α. Therefore x ∈ f(α) = f(β) and hence, x ' β by definition of f .
Together, we have α ' x ' β which implies α = β since isomorphic ordinals are equal
(Fact 3.7).

As mentioned before, this upper bound is very generous. We could use a different
encoding of ordered subsets to get the bound down to P3(A). For our purpose, however,
this does not matter.

4.3 Corollary. The Hartogs number of a set is also a set.

Proof. This holds since a class that is smaller than a set, is itself also a set (Fact 2.15).

4.4 Fact. The Hartogs number of a set is an ordinal.

Proof. Fix a set A. We know that the Hartogs number ℵ(A) contains only ordinals by
definition and that it is a set by the previous corollary. With the characterization of
ordinals in Fact 3.9 it suffices to show that it is transitive. Fix two ordinals x and y with
y ∈ x ∈ ℵ(A). Our goal is to prove that y ∈ ℵ(A). By definition of the Hartogs number,
x ∈ ℵ(A) is an ordinal that satisfies x ≤ A and we have to show those properties for y.

1. As element of an ordinal, y is one too (Fact 3.9).

2. As element of an ordinal, y is also a subset (Fact 3.9). Hence, y ⊆ x ≤ ℵ(A).

4.5 Hartogs’ Theorem. For all sets A, we have ℵ(A) � A.

Proof. Assume that ℵ(A) ≤ A. By definition, we get that ℵ(A) ∈ ℵ(A), which is a
contradiction (Fact 1.13).
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5 Sierpiński’s Theorem
This section focuses on the statement and the proof of our main theorem. Our proof
is an adaption of that from Gillman [2] which in turn is a modified form of that from
Sierpiński [5]. The theorem relates the following two important statements that are
neither provable nor refutable under the axioms that we assumed so far.

5.1 Definition. The generalized continuum hypothesis states that there is no set
strictly between any infinite set A and the power set of A. In other words, for all infinite
sets A and B such that A ≤ B ≤ P(A), we have either A ∼ B or B ∼ P(A).

The specialized continuum hypothesis, in contrast, talks only about N instead of an
arbitrary set A.

5.2 Definition. The axiom of choice states that for every family F : I → S of
inhabited sets over an index set I, there is propositionally a choice function that maps
every i ∈ I to an element of F (i).

Our goal is to show that the generalized continuum hypothesis implies the axiom of
choice. During our proof, we will use the following statement as an intermediate step.

5.3 Definition. The well-ordering theorem states that every set has a well-order.

5.4 Theorem. The well-ordering theorem implies the axiom of choice.

We continue with a rather technical lemma.

5.5 Lemma. All sets A and B such that A ∼ A + A and A + B ∼ P(A) satisfy the
inequality P(A) ≤ B.

Proof. Without loss of generality, we assume that A and B are disjoint. From the
assumptions and Fact 2.6, we deduce

A ∪B ∼ A+B ∼ P(A) ∼ P(A+A) ∼ P(A)× P(A).

Hence, there is a bijection f : A ∪ B → P(A) × P(A). We compose f with the first
projection to obtain a function π1 ◦ f : A → P(A). By Cantor’s theorem (2.14), this
cannot be a surjection, that is, there is an A1 ∈ P(A) that is not the first component of
any f(x) for x ∈ A. Conversely, for all A2 ∈ P(A), the preimage f−1(A1,A2) must come
from B. This leads us to the conclusion that the injection

P(A) ↪→ A ∪B
A2 7→ f−1(A1, A2)

is actually an injection of type P(A) ↪→ B.

Under the axiom of choice, we could replace the condition that A ∼ A + A by the
condition that A has to be infinite. Without the axiom of choice however, that does not
seem to be strong enough.
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5.6 Sierpiński’s Theorem. The generalized continuum hypothesis implies the axiom
of choice.

Proof. We assume the generalized continuum hypothesis and show the well-ordering
theorem which implies the axiom of choice (Theorem 5.4). Let us fix a set A that we
want to well-order. It suffices to find some ordinal greater than or equal to A.

Since the Hartogs number of A is at least not smaller, it seems like a reasonable
candidate. However, it will be useful to consider instead the Hartogs number of some
larger set B with the property that P i(B) is infinite and satisfies

P i(B) ∼ P i(B) + P i(B) (1)

for all natural numbers i. By Lemma 2.12 and the definition of infinity (2.7), B := P(A+N)
satisfies this property.
We know that P6(B) is an upper bound on the Hartogs number of B (Fact 4.2).

We show by induction that, in general, for all natural numbers i, the upper bound
ℵ(B) ≤ P i(B) implies the existence of a well ordering on A. The base case is simple
since the assumption that ℵ(B) ≤ P0(B) = B, contradicts Hartogs’ theorem (4.5).
For the inductive step, we fix a natural number i and assume the upper bound
ℵ(B) ≤ P i+1(B). We need an occasion to apply the generalized continuum hypothesis,
so we deduce

P i(B) ≤ ℵ(B) + P i(B) ≤ P i+1(B),

where the first inequality is trivial and the second one follows with Equation 1 as

ℵ(B) + P i(B) ≤ P i+1(B) + P i(B)
≤ P i+1(B) + P i+1(B)
≤ P i+1(B).

By the generalized continuum hypothesis, this leads to two possible cases:

Case 1. If ℵ(B) + P i(B) ∼ P i(B) then we can immediately conclude that ℵ(B) ≤
P i(B). This is exactly the condition for the inductive hypothesis which proves
our goal.

Case 2. If ℵ(B) + P i(B) ∼ P i+1(B) then P i+1(B) ≤ ℵ(B) by Lemma 5.5 with Equa-
tion 1. Hence, A ≤ B ≤ P i+1(B) ≤ ℵ(B) and since the Hartogs number is an
ordinal and therefore has a well-order, we conclude that A has a well-order
too.

12



References
[1] Bruno Barras. “Sets in Coq, Coq in sets”. In: Journal of Formalized Reasoning 3.1

(2010), pp. 29–48.
[2] Leonard Gillman. “Two classical surprises concerning the axiom of choice and the

continuum hypothesis”. In: The American Mathematical Monthly 109.6 (2002),
pp. 544–553.

[3] Friedrich Hartogs. “Über das Problem der Wohlordnung”. In:Mathematische Annalen
76.4 (1915), pp. 438–443.

[4] Dominik Kirst and Gert Smolka. “Categoricity results for second-order ZF in de-
pendent type theory”. In: International Conference on Interactive Theorem Proving.
Springer. 2017, pp. 304–318.

[5] Wacław Sierpiński. “L’hypothèse généralisée du continu et l’axiome du choix”. In:
Fundamenta Mathematicae 1.34 (1947), pp. 1–5.

[6] Raymond M. Smullyan and Melvin Fitting. Set theory and the continuum problem.
Dover Publications, 2010.

13


	1 Elementary Set Theory 
	1.1 Basic Axioms
	1.2 Numerals
	1.3 Cartesian Product
	1.4 Disjoint Union

	2 Cardinality 
	3 Orderings 
	3.1 Ordinals

	4 Hartogs Number 
	5 Sierpiński's Theorem 

