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Abstract

This thesis presents formalisations of results about the axiom of choice and the generalised
continuum hypothesis in two different versions of Zermelo-Fraenkel set theory, all within
the language of the Coq proof assistant. The work is divided into three major parts.
The first part describes the formalisation of Sierpiński’s theorem which states that

the generalised continuum hypothesis implies the axiom of choice. We consider this
theorem in the second-order version of set theory ZF2 that is intended to make internal
constructions and proofs easy. It contains versions of the axiom of separation and the
axiom of replacement which, in contrast to the standard first-order axiom schemes, accept
arbitrary Coq-definable relations instead of just first-order formulas.
In the second part, we introduce the weaker axiomatisation of set theory ZF′ that

gives us more freedom for model construction. This axiomatisation is equivalent to the
typical one in first-order logic, except that we require well-foundedness of sets in the
external sense. The only fundamental difference to ZF2 lies in the axioms of separation
and replacement which assume predicates and functions expressed as first-order formulas.
To make formulations of complex statements in first-order logic feasible, we introduce
a compositional reification framework that covers a large subset of the Coq language,
including higher-order functions and dependent types. This allows us to formulate
statements in the way that seems most natural in Coq and construct their first-order
representation later. In many cases, the construction of those representations is routine
and can be automated.

In the third part, we present a proof of the relative consistency of the axiom of choice
over ZF′. Assuming any model of ZF′, we define an internal model L that is known as
the constructible universe. We then show that L satisfies the axiom of choice. To this
end, we need to formalise first-order logic in ZF′, a strong case study for the reification
framework. The proof is not possible in ZF2 since we would not be able to show that L
is a model of ZF2. The formalisation of the consistency result is still work-in-progress.

7





Contents

1 Introduction 11

2 Preliminaries 15
2.1 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Second-order set theory 19
3.1 Core axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Exclusive ZF2 axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Important encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Ordinals for counting . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Ordinals as well-orders . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 GCH, AC and the well-ordering theorem . . . . . . . . . . . . . . . . . . . 30

4 Sierpiński’s theorem 31
4.1 The Hartogs numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Sierpiński’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 First-order set theory 37
5.1 Comparison to standard first-order formulation . . . . . . . . . . . . . . . 38
5.2 Evolution of first-order representations . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Basic idea (Version 1) . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Functions (Version 2) . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Quantification over class-like types (Version 3) . . . . . . . . . . . 46
5.2.4 Dependent functions (Version 4) . . . . . . . . . . . . . . . . . . . 48
5.2.5 Polymorphic functions (Version 5) . . . . . . . . . . . . . . . . . . 48

5.3 First-order representations (Final version) . . . . . . . . . . . . . . . . . . 50
5.4 Representations of logical operations . . . . . . . . . . . . . . . . . . . . . 52
5.5 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Representations of basic constructions . . . . . . . . . . . . . . . . . . . . 55

5.6.1 Ordered pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.2 Sum types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.4 Natural numbers and ordinals . . . . . . . . . . . . . . . . . . . . . 60
5.6.5 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9



Contents

6 Consistency of the axiom of choice 65
6.1 The constructible hierarchy L . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 L is a model of ZF′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 L satisfies the axiom of constructibility . . . . . . . . . . . . . . . . . . . . 70
6.4 L satisfies the axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Formalisation details 75

8 Related work 77

9 Conclusion 79

10



1 Introduction

In 1891, Georg Cantor showed that there is a set that is greater than the set N of all
natural numbers [4]. This leads to the question if there is a smallest set greater than N.
One candidate would be the power set P(N) that contains all sets of natural numbers. It
seems difficult to construct a set of size strictly between N and P(N), but it seems equally
difficult to disprove the existence of such a set. This observation led to the formulation
of the continuum hypothesis which states that P(N) is the smallest set greater that N.
This question is also known as Hilbert’s first problem [15]. But the observation is not
really specific to N. An obvious generalisation of the problem is the statement that for
all infinite sets A, the power set P(A) is the smallest set greater than A. This is called
the generalised continuum hypothesis (GCH).

Another difficult question of basic set theory is the validity of the so-called axiom of
choice (AC). The axiom states that for every collection of non-empty sets, it is possible
to choose one element from each at the same time. If the collection is finite, then this
is easy because we can just go through all the sets and choose elements one at a time.
If the collection is infinite then additional properties can help us make a choice. For
example, following Russell [16], from infinitely many pairs of shoes, we can simply choose
all the left ones. But it gets difficult when we have no way to distinguish elements. How
do we choose elements for infinitely many pairs of socks?

The axiom of choice is of great interest as a necessary ingredient for many important
theorems. Without AC, there might be surjections without a right-inverse. There might
be sets that are not comparable in their size. For example, there might be a set that is
neither smaller nor greater or equal to the set of natural numbers. This is important
because it explains why the proofs in Section 4.2 are difficult at all. But on the other
hand, AC also has some counter-intuitive consequences. For example, it allows us to
define a well-order on the set of real numbers or to decompose a ball into finitely many
pieces and reassemble them to obtain two balls of the same size [1].
The validity of GCH and AC depends very much on their exact formalisation. To

answer them, we need to make more precise what sets there are, when one set is greater
than another and what it means to choose elements from a collection of sets. That
is where Zermelo-Fraenkel set theory (ZF) [26, 34] comes in. ZF is a collection of
statements called axioms that tell us how we can create sets and what properties they
have. For example, one of the axioms states that there is an empty set and another one
states that sets are equal if they have the same elements.

Typically, ZF is treated in the formal language called first-order logic that goes a step
further and makes precise what a statement is and what it means for a statement to
be true. In this thesis, we use the more versatile language of the Coq proof assistant
instead. We work in two different versions of set theory. The first is a stronger second-
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1 Introduction

order formulation ZF2 [17] that is naturally embedded in Coq and more convenient to
use. The second version is ZF′, a compromise between ZF2 and the typical first-order
axiomatisation. Both share a common core but differ in the formulation of two axioms.
The first difference is in the axiom of separation, also called specification. It allows us
to build sets that we usually write in the form {x : A | P (x)}. In ZF′, the predicate
P has to be given by a first-order formula with a free variable for x. In ZF2, we allow
arbitrary predicates. The second difference is in the axiom of replacement which we use
to construct sets of the form {f(x) | x : A}. In ZF′, the function f has to be given by a
first-order formula with two free variables that describe the relation between the input
and output of f . In ZF2, we can use an arbitrary function.
From a metatheoretical perspective, ZF2 is a conservative extension of first-order ZF.

That means that they share the same theorems in first-order logic [21]. Hence, we can
easily prove such theorems in the more convenient ZF2 and know that they hold for
first-order ZF as well. ZF′, on the other hand, is useful when we build models because
it imposes fewer constraints. ZF2 is categorical in every cardinality, that is, equipotent
models are always isomorphic [17]. This makes it unlikely that we can at all construct
models that differ significantly.

Throughout this thesis, we assume four global axioms in addition to the standard rules
of Coq. We assume the law of excluded middle that tells us that every proposition is
either true or false. This assumption is standard in classical set theory. We also assume
the principle of definite description which states that, whenever a predicate has a unique
solution, we can actually work with this solution and use it for further definitions and
statements. This is important because ZF only asserts the existence of sets with certain
properties but doesn’t give us those sets explicitly, which is inconvenient. Moreover, the
axiom of definite description is our only way to use sets for the construction of many
other kinds of objects, for example, to construct a natural number from its set encoding.
The other axioms are the axioms of function extensionality and proposition extensionality.
They tell us that functions are equal if they are point-wise equal and propositions are
equal if they are equivalent. One motivation for those axioms is that they will give us
the right equality on classes of sets that are given by predicates.
We begin this thesis by the introduction of the common axioms and constructions of

ZF′ and ZF2. Then, we introduce full ZF2 which we use to prove our first main result,
Sierpiński’s theorem. It states that GCH implies AC. We loosely follow a presentation
of the proof by Gillman [8]. As an intermediate step, we prove that GCH implies the
well-ordering theorem which states that every set has a so-called well-order [33]. To prove
AC from the well-ordering theorem, is not difficult. For the other part of the proof, we
develop some cardinal arithmetic and introduce ordinal numbers which are special sets
that have well-orderings on them. To sketch this part, assume that GCH holds and fix a
set A for which we need a well-ordering. A notable step in our proof is the construction
of the Hartogs number of A. The Hartogs number is the least ordinal number that is
not smaller or equal to A. This property does not immediately imply that the Hartogs
number is greater than A; they could be incomparable. But we show that, in the context
of GCH, A is in fact greater. This allows us to transport the well-ordering from the
Hartogs number to A and we are finished.
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In the second major part, we define first-order logic and introduce the remaining
axioms of ZF′. The axiom of separation in ZF′ requires us to represent predicates by
first order-formulas. The axiom of replacement requires us to represent functions by
first-order formulas. Constructing those representations by hand is in many cases not
feasible. For that reason, we introduce a framework to construct such representations in
a compositional way. We generalise the notion of representations to other objects than
predicates and functions. Those include higher-order functions and dependent functions.
But the framework is also open for extension to other types. Representations can typically
be composed of representations of subterms. This approach makes automation easy. One
can automatically construct a representation of a term if one has representations for all
atomic subterms.

In the final part, we work towards the relative consistency of AC over ZF′. We loosely
follow a presentation of the proof by Smullyan and Fitting [26]. First, we assume that
we have any model of ZF′. We then define a class L, the constructible universe, in this
model [10]. We show that L forms itself a model of ZF′. The goal of the definition of L is
to keep L small and its structure mostly independent from the outer model. We achieve
this by an iterative process: In every step, we include only sets that can be constructed
by application of the axioms of ZF′ to sets that are already contained. We repeat this
step transfinitely often, to saturate L in the sense that every constructible set is already
included and, hence, L is closed under the set-construction axioms of ZF′. In the next
step, we show that the version of L inside of L as a model contains all sets. This is called
the axiom of constructibility. It gives us a concrete description of the collection of all
sets. From this description, we can put all sets in a well-order, which allows us to deduce
the axiom of choice.

Contribution. Our most novel contribution is the compositional and extensible reific-
ation framework for first-order logic. It allows us to reify a vast fragment of the Coq
language and can be adapted to other theories than first-order logic. The second con-
tribution is the formalisation of Sierpiński’s theorem over ZF2. Finally, we demonstrate
how the set theory ZF′, its embedding in Coq, and the reification framework can help
with the relative consistency proof of AC.

Outline. In Chapter 2, we introduce basic notations, and definitions related to cardinality
and orderings. In Chapter 3, we define the set theory ZF2 and many basic constructions
based on that theory. Towards the end of the chapter, we introduce ordinals and prove all
their general properties that we need. In Chapter 4, we construct the Hartogs number and
prove results immediately leading to Sierpiński’s theorem. In Chapter 5, we define the
set theory ZF′, referring to axioms from Chapter 3. We develop the reification framework
in and present the result in Section 5.2. Then, we apply the framework to construct
representations of all the basic constructions from Section 5.3. In Chapter 6, we present
the full proof of the relative consistency of AC. We end the thesis with remarks about
the formalisation(Chapter 7), related work (Chapter 8) an a conclusion (Chapter 9).
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2 Preliminaries

The implicit formal foundation for this whole thesis is the Calculus of Inductive Con-
structions, the formal language of the Coq proof assistant [28]. By P, we denote the
type of propositions and by Typei the type universe of level i but we typically leave the
universe level implicit.
For any function f : A → A and natural number n, we denote by fn the n-fold

iteration of f . We let 2A stand for the type of predicates A→ P and call the elements
of 2A subtypes of A. Sometimes, we use notations of the form (xi : Ai)i:I to mean
λi : I. xi : Ai when we want to take the emphasis from the argument i. We switch
implicitly between the curried and the uncurried style of function application when
convenient. We write some arguments as subscripts and leave some implicit for a cleaner
notation.

2.1 Cardinality
2.1.1 Definition. A bijection from a type A to a type B is a function f : A ∼→ B for
which there is an inverse, that is, a function f−1 : B → A satisfying f(f−1(y)) = y for
all y : B and f−1(f(x)) = x for all x : A.

If the type of bijections from A to B is inhabited then we say that A and B have the
same cardinality or that they are equipotent, abbreviated as A ∼ B.

2.1.2 Fact. Bijections satisfy three basic properties:

1. The identity function on any type is a bijection.

2. The composition of two bijections is a bijection.

3. Every bijection has an inverse bijection.

This implies that equipotency is an equivalence relation.

2.1.3 Lemma. 2A+B ∼ 2A × 2B for all types A and B.

2.1.4 Definition. An injection from a type A to a type B is a function f : A → B
such that for all x, x′ : A with f(x) = f(x′), it follows that x = x′. We denote the type
of injections from A to B by A ↪→ B.

If the type A ↪→ B is inhabited then we say that A has smaller or equal cardinality or
just that it is smaller or equal to B, abbreviated as A ≤ B.

2.1.5 Fact. Basic properties of injections are:

15



2 Preliminaries

1. The identity function on any type is an injection.

2. The composition of two injections is an injection.

2.1.6 Lemma. Every bijection is also an injection.

We will talk about infinite types. There are different possible definitions of infinity
that are not equivalent without further axioms. The most common definition states that
a type is infinite if we cannot list its members. For our purpose, the following is more
convenient.

2.1.7 Definition. A type A is Dedekind-infinite or just infinite if N ≤ A.

We also define the concept of surjections with the exclusive goal to formulate a variant
of Cantor’s theorem that we will need in the proof of Sierpiński’s theorem.

2.1.8 Definition. A function f from a type A to a type B is a surjection if for all
y : B there is an x : A such that f(x) = y.

2.1.9 Cantor’s Theorem. There is no surjection from any type into its power type.

2.2 Orders
We define the notions of orders, order isomorphisms, well-foundedness and well-orders
and state some lemmas about those.

2.2.1 Definition. A strict total order, or just order, on a type A is a binary relation
_ < _ : A→ A→ P, that satisfies three properties:

Transitivity: If x < y and y < z then x < z for all x, y, z : A.

Trichotomy: All x, y : A satisfy exactly one of x < y, x = y or x > y.

An ordered type is a type that has an order.

2.2.2 Definition. An order isomorphism from an ordered type A to an ordered type
B is a bijection f : A ∼→ B that preserves the order in both directions:

x < y ↔ f(x) < f(y).

If the type of such isomorphisms is inhabited, we say that A as ordered type is order
isomorphic to B, abbreviated as A ' B.

2.2.3 Fact. There are three basic laws of order isomorphisms:

1. The identity function on any ordered type is an order isomorphism.

2. The composition of any two order isomorphisms is an order isomorphism.

3. Every order isomorphism has an inverse order isomorphism.

16



2.2 Orders

This implies that isomorphism between ordered types is an equivalence relation.

2.2.4 Definition. A relation R : A→ A→ P on a type A is well-founded if it satisfies
the principle of well-founded induction: To prove a property P : A → P on all
members of A, it suffices to show that an arbitrary but fixed x : A satisfies P under the
additional assumption that all y : A with y R x satisfy P . In symbolic notation:

∀P : A→ P.(
∀x : A.

(
∀y : A. y R x⇒ P (y)

)
⇒ P (x)

)
⇒ ∀x : A.P (x).

Next we state the principle of well-founded recursion which is just a constructive
version of well-founded induction.

2.2.5 Lemma (Well-founded recursion). Fix a well-founded relation R : A → A → P.
There is a function

recR :
∏

B:A→Type
(
∏
x:A

(
∏
y:A

y R x→ B(y))→ B(x))→
∏
x:A

B(x).

This function satisfies that recR(B, f, x) = f(x, (λy. λ_. recR(B, f, y))) for all B, f and
x.

Proof. The fundamental ingredient of this proof is the axiom of definite description. We
define inductively the concept of accessibility witnesses: An accessibility witness of a
member x : A is function that maps every member y : A with y R x to an accessibility
witness of y. We can prove by well-founded induction that every member of A has a
unique accessibility witness and we can obtain that witness by definite description. It is
then easy to define recR by recursion on the accessibility witnesses.

2.2.6 Definition. A well-order is an order that is well-founded (Definition 2.2.4).

2.2.7 Lemma. Every non-empty subtype of a well-ordered type has a least element.

Proof. Fix a non-empty subtype A of a well-ordered type and a member x : A. We apply
well-founded induction on x. Either x is the least element or there is a smaller element
y < x. In that case, we can apply the inductive hypothesis on y and are done.
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3 Second-order set theory

This chapter introduces ZF2, the first of our two set theories. We will pose the axioms
that characterise models of this theory. Those axioms are divided into two groups. The
first group contains core axioms which are shared by the set theory ZF′ which we will
introduce in Chapter 5. Most of those axioms are trivially equivalent to a corresponding
axiom from the typical formulation of Zermelo-Fraenkel set theory in first-order logic.
But two of them are slightly stronger, as we will see in Section 5.1. The second group
consists of the so-called axioms of separation and replacement which allow us to construct
sets from predicates or functions respectively. Those axioms cannot be formulated in
first-order logic since functions and predicates are not treated as objects there. In first-
order logic, one does typically use axiom schemes instead, that is, infinite sets of axioms
that follow a common pattern. But even those infinite axiom schemes are not as strong
as the second-order formulation of separation and replacement that we use here.
We start by definition of the basic logical structure that our axioms will talk about.

3.0.1 Definition. A ZF structure is a type with a binary relation. We represent this
relation by the infix operator ∈. We call the members of a ZF structure sets and think
of them as collections consisting of other members, where x ∈ y means that x is an
element of y.

For the rest of the chapter, we fix a ZF structure S . If we work with definitions or
notations that depend on a ZF structure and it is not clear which structure we mean,
then we indicate this as a superscript as in ∈S .

3.0.2 Definition. A class is a collection of sets given by a predicate P : S → P. We
denote such a class by {x | P (x)}.
We identify every set x with its corresponding class {y | y ∈ x} and generalise the

notation x ∈ A to mean that the set x is an element of the class A. A class is a set if
there is a set with the same elements. Moreover, we let every class stand for the type of
its elements. For example, if A and B are classes then A→ B is the type of functions
that take an element of class A and return an element of class B. If A is a class and
P : A→ P is a predicate then the statement ∀x : A.P (x) talks about all elements of the
class A.
By {f(x) | x : A}, we denote the class given as the image of a function f : A → S .

More generally, by {g(x1, . . . , xn) | x1 : A1, . . . , xn : An}, we denote the image of a
function g :

∏
x1:A1 . . .

∏
xn:An S where x1, . . . , xi may occur as free variables in Ai+1.

We will implicitly treat every class A as a ZF structure equipped with the element
relation ∈|A : A→ A→ P. In natural language, we will use formulations like ‘the element
relation over A’ or ‘classes over over A’.
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3 Second-order set theory

3.1 Core axioms
Most of the ZF2 axioms describe ways to construct sets. Our first two axioms are the
only exceptions. Those tell us something about the structure of sets.

3.1.1 Axiom of Extensionality. Two sets are equal if they contain the same elements.

Intuitively, this means that there is nothing more to a set but the collection of its
elements.

3.1.2 Axiom of Foundation. The element relation on the type of sets is well-founded
(Definition 2.2.4).

In other words, if we want to prove a property P on an arbitrary but fixed set then we
may additionally assume that P holds on all its elements. This has the following simple
but important consequence.

3.1.3 Lemma. No set contains itself.

Proof. We prove the statement by well-founded induction on the element relation. Fix
a set x and assume that x ∈ x. This allows us to apply the inductive hypothesis on x,
which tells us exactly x /∈ x.

Now, we start introducing different ways to construct sets. For each axiom, we define
a certain class and the corresponding axiom will provide a condition under which this
class is a set.

3.1.4 Definition. By ∅, we denote the empty class.

3.1.5 Axiom of Empty Set. The empty class is a set.

3.1.6 Definition. By {x1, . . . , xn}, we denote the class that contains exactly the elements
x1, . . . , xn. In the special case of only one element x, we call {x} the singleton with
element x. In the case of two elements x and y, we call {x, y} the unordered pair of x
and y.

3.1.7 Axiom of Pairing. The unordered pair of any two sets is a set.

This implies that every singleton is also a set since {x} = {x, x} by the axiom of
extensionality.

3.1.8 Definition. For a class A, we define the union of A as⋃
A := {x | ∃B ∈ A, x ∈ B}.

3.1.9 Axiom of Union. The union of any set is a set.

3.1.10 Definition. We say that a class A is a subclass of a class B if all elements of
A are also in B. In symbolic notation, we write this as A ⊆ B. If A is a set then we call
it a subset.

We define the power class of a class A as the collection of all subsets

P(A) := {x | x ⊆ A}.

20



3.1 Core axioms

3.1.11 Axiom of Power Set. The power class of any set is also a set. We call it the
power set of A.

So far, none of the axioms allow us to construct infinite sets. All available constructions
preserve finiteness. The next axiom is intended to change that. But having an infinite
set alone is not enough. We want more information about the elements of that set. We
will fix a specific injection from N to S and assume that the image of this injection is a
set. We can then use this injection as an encoding of N.

3.1.12 Definition. An encoding of a type A consists of a class Ā and a bijection
encodeA : A ∼→ Ā. We denote the inverse of this bijection by decodeA.
We say that a type A is set-like if it has an encoding and Ā is a set.

Of course, it suffices to provide an injection encodeA : A ↪→ S . Then we can define Ā
as the image of this injection and encodeA will trivially be a bijection into Ā. That us
usually the most convenient way to define an encoding.
Note that every class is class-like by this definition and every set is set-like. In both

cases, the identity function can be used as the encoding.
Encodings will become useful in combination with the axiom of replacement. This

axiom takes a set A and a function f : A → S as input and states that the image
{f(x) | x ∈ A} is also a set. But we can easily show that the same holds if A is any
set-like type.
In the first-order axiomatisation, encodings will be even more important. First-order

logic allows us to quantify over classes, as long as we can represent them in first-order
logic. Quantification over arbitrary types is not possible but we can make it work when
the types are class-like. Abstractly speaking, it is helpful to make encodings explicit
because this allows us connect all the definitions and lemmas that we already have (on N
for example) with the world of set. There is no need to redefine or reprove them.

3.1.13 Definition. We define an encoding of the natural numbers by

encodeN(0) := ∅
encodeN(n+ 1) := encodeN(n)+,

where x+ :=
⋃
{x, {x}} is the successor of x.

To see that this is an injection, we use the fact that for two different natural numbers
n and k, we have either n < k or n > k. Those inequalities imply by induction and
definition of the successor that encode(n) ∈ encode(k) or vice versa. We conclude that n
and k have different encodings because no set contains itself (Lemma 3.1.3).

The idea behind this definition is due to von Neumann [30] and can be generalised to
ordinals which we introduce in Section 3.5.

3.1.14 Axiom of Infinity. The encoding N̄ is a set.

This axiom implies that N is set-like and the set N̄ must be infinite.
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3 Second-order set theory

3.2 Exclusive ZF2 axioms
Now, we introduce two set-construction axioms that do not only take sets as input but
additionally predicates and functions respectively. Those axioms are not suitable for some
of the proofs in chapter 6. The reason is that they introduce to much of the metalogic
(the language of Coq) into the set theory. That makes it more difficult to understand
which kinds of sets exist and which don’t. We would need to answer this question about
predicates and functions in the metalogic. And to answer those is difficult. That is the
reason why we use ZF2 only for the next chapter and introduce the weaker set theory
ZF′ later.
We work with ZF2 at all because it is simpler and expresses the ideas in a purer

way. ZF′ is closer to the standard foundation of mathematics, but ZF2 seems faithful to
Zermelo’s informal view of set theory [34].

3.2.1 Axiom of Separation. Given a set A and a property P : A→ P, the subclass

{x ∈ A | P (x)}

is a set.

In other words, this states that every subclass of a set is also a set.

3.2.2 Axiom of Replacement. Given a set A and a function f : A→ S, the image

{f(x) | x : A}

is a set.

In cases where we already know that the image of f is bounded by a set B, this is
redundant to the instance of separation on the class {y ∈ B | ∃x : A. f(x) = y}. The
axiom of replacement is only necessary in more exotic cases.

There are versions of this axiom that use functional relations instead of functions (for
example those by Kirst [17] or Barras [3]). Those versions imply the axiom of definite
description on sets. But we already assume the general axiom of definite description. It
allows us to take a functional relation and produce the corresponding function. Hence,
both version of the axiom of replacement are equivalent in our setting.

To end this section, we combine all the axioms into the definition of ZF2.

3.2.3 Definition. The ZF-Structure S is a ZF2-Model if it satisfies all axioms in this
chapter.

For the remaining sections of this chapter, we will assume that S is such a ZF2-Model.

3.3 Basic constructions
The axioms already introduced some of the most widely used set constructors. In the
same spirit, we derive some further useful ways to construct sets. We start with a
generalisation of the axiom of replacement that allows us to range over arbitrary set-like
types, not just sets.
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3.3 Basic constructions

3.3.1 Lemma. Given a set-like type A and a function f : A→ S , the image {f(x) | x :
A} is a set.

Proof. By the axiom of extensionality, we have that {f(x) | x : A} = {f(decode(x)) | x :
Ā}. The claim follows since the right side is a set by the axiom of replacement.

We continue with binary and indexed versions of union and intersection

3.3.2 Definition. We define the binary union of two classes A and B as

A ∪B := {x | x ∈ A ∨ x ∈ B}.

3.3.3 Lemma. Binary union of two sets is a set.

Proof. The claim follows by the equality A ∪B =
⋃
{A,B}.

3.3.4 Definition. We define the binary intersection of two classes A and B as

A ∩B := {x | x ∈ A ∧ x ∈ B}.

3.3.5 Lemma. The binary intersection of two sets is a set.

Proof. By the equality A ∩B = {x ∈ A ∪B | x ∈ A ∧ x ∈ B} since the right side is a set
by Lemma 3.3.3 and the axiom of separation.

In the same style as the binary union and intersection, we describe indexed versions of
those operations.

3.3.6 Definition. Given a type I and a family of classes A : I → Class, we define⋃
i:I
A(i) := {x | ∃i : I. x ∈ A(i)}.

We call this operation the indexed union.

3.3.7 Lemma. Given a set-like type I and a family of sets A : I → S , the indexed
union

⋃
i:I A(i) is a set.

Proof. This follows from the equality
⋃
i:I A(i) =

⋃
{A(i) | i : I}.

3.3.8 Definition. Given a class I and a family of classes A : I → Class, we define⋂
i:I
A(i) := {x | ∀i : I. x ∈ A(i)}.

We call this operation the indexed intersection.

3.3.9 Lemma. Given a non-empty set I and a family of sets A : I → S , the indexed
intersection

⋂
i:I A(i) is a set.

Proof. The claim follows by the equality
⋂
i:I A(i) = {x :

⋃
i:I A(i) | ∀i : I. x ∈ A(i)} .
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3 Second-order set theory

Note that we needed the additional condition of non-emptiness. Otherwise, the
intersection becomes the class of all sets which cannot be a set (Lemma 3.1.3). The proof
would not work because the right side of the equality would be the empty class.

3.3.10 Definition. We define the difference of two classes A and B as

A \B := {x ∈ A | x /∈ B}.

3.3.11 Lemma. The difference A \B of a set A and a class B is a set.

Proof. This follows immediately by the axiom of separation.

Finally, we use the indexed union to treat the general version of replacement with an
arbitrary number of arguments.

3.3.12 Lemma. Fix a function f :
∏
x1:A1 . . .

∏
xn:An S , where every Ai+1 stands for a

set-like type and may contain x1, . . . , xi as free variables. The image

{f(x1, . . . , xn) | x1 : A1, . . . , xn : An}

is a set.

Proof. The claim follows by the equality

{f(x1, . . . , xn) | x1 : A1, . . . , xn : An} =
⋃
x1:A1

. . .
⋃

xn:An
{f(x1, . . . , xn)}.

3.4 Important encodings
In this section, we take a look at essential type constructors of type theory like the
sum and product on types and provide conditions under which the resulting types are
class-like or even set-like. We start with the product. The first step is an encoding of
ordered pairs of sets.

3.4.1 Definition. We define the pairing function as

〈_,_〉 : S → S → S

〈x, y〉 := {{x}, {x, y}}.

This way to represent pairs was introduced by Kuratowski [20]. Hence, the sets 〈x, y〉
are known as Kuratowski pairs. The fundamental property of the pairing function is its
injectivity.

3.4.2 Lemma. The pairing function is injective.

Proof. Fix sets x, y, x′ and y′ and assume that 〈x, y〉 = 〈x′, y′〉 which is the same as{
{x}, {x, y}

}
=
{
{x′}, {x′, y′}

}
. Generally, an equality between unordered pairs falls into

one of two possible cases:
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• Assume that {x} = {x′} and {x, y} = {x′, y′}. Then we get x = x′ from the first
equation which turns the second one into {x, y} = {x, y′}. This also implies y = y′.

• Assume that {x} = {x′, y′} and {x, y} = {x′}. The first equation implies x′ = x = y′

which turns the second one into {x, y} = {y′} which implies y = y′.

From the pairing function, we can define encodings of arbitrary pairs, as long as we
can encode both components:

3.4.3 Lemma. A sigma type
∑
x:AB(x) is class-like if A and all B(x) are class-like.

Proof. We define an encoding by encode((x, y)) :=
〈
encodeA(x), encodeB(x)(y)

〉
. Injectiv-

ity follows from injectivity of encodeA, encodeB(x) and the pairing function.

3.4.4 Lemma. A sigma type
∑
x:AB(x) is set-like if A and all B(x) are set-like.

Proof. The corresponding class is {〈x, y〉 | x : A, y : B(x)}. This class is a set by
Lemma 3.3.12.

Of course, the same results apply to simple product types of the form A× B, since
those are just a special case of sigma types.

The specific encoding of pairs makes it easy to prove the next lemma. The lemma may
not seem meaningful here, but it will be important in the next chapter, specifically for
Fact 4.1.2.

3.4.5 Lemma. Given a class A, we have the inequality A×A ≤ P2(A).

Proof. The inequality is given by the encoding which maps (x, y) : A×A to {{x}, {x, y}} ∈
P2(A).

We continue with the sum of types, also known as disjoint union.

3.4.6 Lemma. The sum A+B of any two class-like types A and B is also class-like.

Proof. We define an encoding by

encodeA+B(inj1(x)) := encodeN×A((0, x))
encodeA+B(inj2(y)) := encodeN×B((1, y)).

To prove injectivity, fix two members u, v : A+B and assume that encode(u) = encode(v).
There are four cases to distinguish. We only consider two of them, the other two are
analogous.

• Assume that u = inj1(x) and v = inj1(x′) for some x, x′ : A. Then encode((0, x)) =
encode((0, x′)) and, hence, x = x′.

• Assume that u = inj1(x) and v = inj2(y) for some x : A and y : B. Then
encode((0, x)) = encode((1, y)) and, hence, 0 = 1, a contradiction.
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3 Second-order set theory

3.4.7 Lemma. The direct sum of any two set-like types is also set-like.

Proof. The encoding class is a subclass of the set N×A ∪ N×B. This is a set by
Lemma 3.4.4. Hence, the encoding class is a set by the axiom of separation.

Next, we consider function types.

3.4.8 Lemma. A dependent function type
∏
x:AB(x) is class-like if A is set-like and all

B(x) are class-like.

Proof. We define an encoding that maps every function to its so-called graph, the set of
all input-output pairs: encode(f) := {encode∑

x:AB(x)((x, f(x)) | x : A}. This encoding
function produces sets by the axiom of replacement. That holds only because we required
that A is set-like. The encoding function is also injective because the assumption that
{encode((x, f(x)) | x : A} = {encode((x, g(x)) | x : A} for any two functions f and g
implies that f and g are pointwise equal, hence, by function extensionality, f = g.

3.4.9 Lemma. A dependent function type
∏
x:AB(x) is set-like if A and all B(x) are

set-like.

Proof. The encoding class is a subclass of the set P(
∑
x:AB(x)) and, hence, set-like by

the axiom of separation.

Finally, we come to a class of types with a very simple encoding, namely propositions. In
our very classical setting, their members (which are proofs) do not carry any information.
Nonetheless, it will be convenient to know that propositions are class like since it allows
us to use them for replacement, as in {. . . | n : N, n is even}.

3.4.10 Lemma. All propositions are set-like.

Proof. Fix a proposition P . We use the trivial encoding that maps everything to ∅.
Depending on whether P is true, we get P̄ = ∅ or P̄ = {∅}. Both are sets.

3.5 Ordinals
Now, we introduce ordinals. Ordinals are sets that serve two purposes. First, ordinals
are well-ordered by the element-relation and represent equivalence classes of well-ordered
sets: For every well-ordered set, there is exactly one isomorphic ordinal. Second, we can
regard ordinals as a generalisation of natural numbers that allows us to count beyond
infinities: There is a zero and a successor function and, additionally, every set of ordinals
has a least upper bound.
There are many possible definitions of ordinals but it seems difficult to find one that

expresses those properties precisely. We consider a definition that can only be formulated
in a higher-order logic but appears most convenient for our purposes. For the formulation,
we use the notion of transitive sets.

3.5.1 Definition. We call a set A transitive if for all sets x and y, whenever x ∈ A
and y ∈ x then y ∈ A. In other words, a set is transitive if every element is also a subset.
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3.5 Ordinals

This is a specialised version of the general notion transitivity of relations where we fix
the set A.

3.5.2 Definition. We define the class Ord of ordinals inductively: An ordinal is a
transitive set of ordinals.
The transitivity condition is exactly what makes the element-relation on the class of

ordinals transitive. As a side remark, even if we didn’t have the axiom of foundation,
this would imply that the element relation on ordinals is well-founded.

3.5.1 Ordinals for counting
In this subsection, we consider ordinals in one of their roles. Like on the natural numbers,
we provide constructors, an induction principle and a recursor. Finally, we will see that
the class of ordinals is well-ordered by the element relation.
We start by establishing the constructors.

3.5.3 Lemma.

1. The empty set is an ordinal.

2. The successor α+ of an ordinal α is an ordinal.

3. If A is a set of ordinals then
⋃
A is an ordinal.

Proof.

1. Both conditions are trivial since there are no elements.

2. Assume that α is an ordinal. We need to show that every element of α+ is a subset
of α+ and an ordinal. Fix such an element x. By definition of the successor, x = α
or x ∈ α. The first case is trivial. In the second case, x ⊆ α ⊆ α+ by transitivity
of α and definition of the successor. Moreover, as an element of an ordinal, x is
also an ordinal.

3. Fix a set of ordinals A. We need to show that every element of
⋃
A is a subset

of
⋃
A and an ordinal. Fix such an element x. By definition of the union, there

is an ordinal α ∈ A, such that x ∈ α. Then x ⊆ α ⊆
⋃
A by transitivity of α

and definition of the union. Moreover, as an element of an ordinal, x is also an
ordinal.

Since the class of ordinals contains the empty set and is closed under the successor
function, we can see by induction that it contains the encodings of all natural numbers.
The constructors that we provided, are not disjoint. To formulate a useful induction

principle and obtain a useful recursor, we distinguish the ordinals that can only be
constructed by the third constructor.

3.5.4 Definition. A limit ordinal is an ordinal that is neither the empty set nor the
successor of another ordinal. We use λ as an identifier that implicitly ranges over limit
ordinals.
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3 Second-order set theory

There are versions of this definition that include the empty set as a limit ordinal. But
it is sometimes more natural to treat the empty set separately.

When we work with limit ordinals then it is often helpful to know that they all have a
certain form:

3.5.5 Lemma. Every limit ordinal λ satisfies λ =
⋃
α∈λ α.

Proof.
⋃
α∈λ α ⊆ λ follows immediately from transitivity of ordinals. For the other

direction, we fix a β ∈ λ. It suffices to show that β+ ∈ λ since this implies β ∈ β+ ∈⋃
α∈λ α. We assume that β+ /∈ λ and derive a contradiction. By trichotomy, we have

β+ = λ or λ ∈ β+. The first case contradicts the fact that λ is a limit. But in the
second case, we have λ ∈ β+ = β ∪ {β}. Either λ ∈ β or λ = β which both contradicts
β ∈ λ.

3.5.6 Lemma (Transfinite induction). Fix a predicate P : Ord→ P with the following
properties.

• The empty set satisfies P .

• If any ordinal α satisfies P then the successor α+ satisfies P .

• If all elements of a limit ordinal λ satisfy P then λ satisfies P .

Then every ordinal satisfies P .

Proof. By well-founded induction on the element relation and the fact that every ordinal
is either empty, a successor or a limit.

Following the same structure as the induction principle, we introduce a recursor.

3.5.7 Lemma (Transfinite recursion). Fix a family of types A : Ord→ Type and

• an element x : A(∅),

• a function f : ΠαA(α)→ A(α+) and

• a function g : Πλ(Πα:λA(α))→ A(λ) where λ ranges over limit ordinals.

There is a function recOrd(A, x, f, g) : ΠαA(α) that satisfies the equations

• recOrd(A, x, f, g)(∅) = x,

• recOrd(A, x, f, g)(α+) = fα(recOrd(A, x, f, g)(α)) for all ordinals α and

• recOrd(A, x, f, g)(λ) = gλ(λα. recOrd(A, x, f, g)(α)) for all limit ordinals λ.

Proof. The construction of the recursor can be done by well-founded recursion (Lemma 2.2.5)
and is analogous to the proof of the transfinite induction principle.

Usually, we will not give x, f and g explicitly when we apply transfinite recursion.
Instead, we will just specify the equations that we want.
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3.5 Ordinals

3.5.8 Lemma. The class of ordinals is well-ordered by the element relation.

Proof. Transitivity follows from transitivity of ordinals as sets.
To show trichotomy, we fix two ordinals α and β. First, note that a ∈ β, α = β and

β ∈ α are mutually exclusive by the axiom of foundation. Hence, suffices to show that
one of them actually holds. To this end, we apply well-founded induction on both, α and
β. If α = β, we are done. Otherwise, we know that α * β or β * α. Assume without
loss of generality that the first holds and there is a ξ ∈ α that is not in β. With the
inductive hypothesis on α, we know that β = ξ or β ∈ ξ. In the first case, β ∈ α holds
trivially. In the second case, it follows that β ∈ x ⊆ α with transitivity of α.

Well-foundedness of the element-relation on the class of ordinals follows from the axiom
of foundation.

An interesting property of ordinals is that the element-relation and strict inclusion
coincide:

3.5.9 Lemma. Fix ordinals α and β. We have α ∈ β ⇔ α ( β.

Proof. Assume that α ∈ β. Then α ⊆ β by transitivity of ordinals and α 6= β since
α = β would imply the contradiction α ∈ α.
For the other direction, assume that α ( β and that α /∈ β. By trichotomy of the

element relation on ordinals, we can have α = β (which contradicts α ( β) or β ∈ α
(which leads to the contradiction β ∈ α ⊆ β).

3.5.2 Ordinals as well-orders

As announced before, ordinals represent well-orders:

3.5.10 Lemma. Every ordinal is well-ordered by the element relation.

Proof. The class Ord of all ordinals is well-ordered by the element-relation (Lemma 3.5.8).
Every ordinal is a subclass of Ord and, hence, also well ordered by the element-relation.

3.5.11 Lemma. Isomorphic ordinals are equal.

Proof. Fix two ordinals α and β with an isomorphism f : α '→ β. We apply ∈-induction
on both. We need to show that α ⊆ β and β ⊆ α. Without loss of generality, we focus on
the first direction. Fix a ξ ∈ α. It suffices to show that ξ ' f(ξ) since, by the inductive
hypothesis on x, this implies ξ = f(ξ) ∈ β.
The isomorphism is given by the restriction f |ξ : ξ → β. This is actually a function

ξ → f(ξ): For all x ∈ ξ, we have f(x) ∈ f(ξ) by the morphism property of f . As the
inverse, we have f−1|f(ξ). The function f |ξ is still a morphism since it is the restriction
of a morphism.

One can also show that every well-ordered set has an isomorphic ordinal, its order
type. But we do not need that fact and will not prove it here.
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3.6 GCH, AC and the well-ordering theorem
We end the chapter with the formal statements of the generalised continuum hypothesis
(GCH), the axiom of choice (AC) and the well-ordering theorem.

3.6.1 Definition. The generalised continuum hypothesis states that, for all infinite
sets A and B such that A ≤ B ≤ P(A), we have either A ∼ B or B ∼ P(A).

In other words, there is no cardinality strictly between that of a set A an that of the
power set P(A). The (specialised) continuum hypothesis, in contrast, talks only about N
in place of arbitrary sets A.

3.6.2 Definition. The axiom of choice states that for every family F : I → S of
inhabited sets over an index set I, there is propositionally a choice function that maps
every i ∈ I to an element of F (i).

3.6.3 Definition. The well-ordering theorem states that every set has a well-order.

We consider the well-ordering theorem because of its equivalence to AC but we need
only one direction of this equivalence.

3.6.4 Theorem. The well-ordering theorem implies the axiom of choice.

Proof. Let F : I → S be a family over a set I. Fix a well-order on
⋃
i:I F (i). By the

Axiom of Definite Description, there is a function that maps every i : I to the unique
least element of F (i).
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4 Sierpiński’s theorem

In this chapter, we will see that the generalised continuum hypothesis implies the well-
ordering theorem and, with it, the axiom of choice. The result is called Sierpiński’s
theorem after Wacław Sierpiński who proved it in 1947 [25]. The other direction of the
implication does not hold; the axiom of choice does not generally imply the generalised
continuum hypothesis. But that is outside the scope of this thesis. Our presentation of
Sierpiński’s theorem takes inspiration from a version by Gillman [8].

4.1 The Hartogs numbers

Our goal for this section is to assign to every set a special ordinal, its so-called Hartogs
number, named after its inventor Friedrich Hartogs [14]. If we assumed stronger axioms,
such as the generalised continuum hypothesis or just the axiom of choice, then we could
show that the Hartogs number of a set is always greater than that set. In fact, that is
exactly how the proof of Sierpiński’s theorem in the next section works. But without
further assumption, the closest thing that we can achieve is to show that the Hartogs
number of a set is at least not smaller or equal in cardinality. As a by-product of the
construction, we will obtain an upper bound on the Hartogs number that will be crucial
to prove Sierpiński’s theorem.

4.1.1 Definition. We define the Hartogs number of a given set A as

ℵ(A) := {α ∈ Ord | α ≤ A}.

If it turns out that the Hartogs number is an ordinal then ℵ(A) � A will follow
immediately from this definition because otherwise, the Hartogs number would contain
itself. We proceed in three steps:

1. We show that ℵ(A) ≤ P6(A), which implies that the Hartogs number is a set
(Lemma 4.1.3).

2. We show that the Hartogs number is an ordinal.

3. We conclude that ℵ(A) � A.

4.1.2 Fact. The Hartogs number of every set A satisfies the upper bound

ℵ(A) ≤ P6(A).
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4 Sierpiński’s theorem

Proof. By the general upper bound on the Cartesian product (Lemma 3.4.5),

P (P(A)× P(A×A)) ≤ P
(
P(A)× P3(A)

)
≤ P

(
P3(A)× P3(A)

)
≤ P6(A).

By transitivity, it suffices to define the injection

f : ℵ(A) ↪→ P(P(A)× P(A×A))
f(α) := {x ∈ P(A)× P(A×A) | x ' α},

where we treat every x ∈ P(A)× P(A×A) as a subset of A with a relation on it that
can satisfy x ' α if the relation is an order. To see that f is injective, fix two ordinals
α, β ∈ ℵ(A) with f(α) = f(β). By definition of the Hartogs number, there is an injection
α ↪→ A. We embed the order on α along this injection to obtain an x ∈ P(A)×P(A×A).
Note that x ' α. Therefore x ∈ f(α) = f(β) and hence, x ' β by definition of f .
Together, we have α ' x ' β which implies α = β since isomorphic ordinals are equal
(Lemma 3.5.11).

As mentioned before, this upper bound is very generous. We could use a different
encoding of ordered subsets to get the bound down to P3(A). For our purpose, however,
this does not matter.
Now , we show that the Hartogs number is a set. We do this through the following

lemma.
4.1.3 Lemma. Every class that is smaller than a set is itself also a set.
Proof. Fix an arbitrary class A and a set B that is larger or equal to A. By definition,
we have an injection f : A ↪→ B. The class A is the image of f−1 and thus a set by the
axiom of replacement (3.2.2).

4.1.4 Corollary. The Hartogs number of a set is also a set.
Proof. This follows from the upper bound ℵ(A) ≤ P6(A) with the previous lemma.

4.1.5 Fact. The Hartogs number of a set is an ordinal.
Proof. Fix a set A. We know that the Hartogs number ℵ(A) contains only ordinals by
definition and that it is a set by the previous corollary. It suffices to show that the
Hartogs number is transitive. Fix two ordinals α and β with β ∈ α ∈ ℵ(A). Our goal is
to prove that β ∈ ℵ(A). By definition of the Hartogs number, α ∈ ℵ(A) is an ordinal
that satisfies α ≤ A and we have to show those properties for β.

1. As element of an ordinal, β is one too.

2. As element of an ordinal, β is also a subset. Hence, β ≤ α ≤ ℵ(A).
4.1.6 Hartogs’ Theorem. For all sets A, we have ℵ(A) � A.
Proof. Assume that ℵ(A) ≤ A. By definition, we get that ℵ(A) ∈ ℵ(A), which is a
contradiction (Lemma 3.1.3).
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4.2 Sierpiński’s theorem

4.2 Sierpiński’s theorem
This section focuses on proof of our main theorem and some fact about cardinality that
contribute immediately to that proof. Our approach is an adaption of that from Gillman
[8] which in turn is a modified form of Sierpiński’s original formulation [25].
We will provide a condition under which a set A satisfies the equation A ∼ A + A.

Under the axiom of choice, this equivalence holds for all infinite sets. But without the
axiom, we can only do the proof for power sets of infinite sets. Actually, the result holds
for types in general, not just for sets. However, the proof for sets is a little easier to write
down.

As an intermediate result, we want to show that every infinite set A satisfies A ∼ 1 +A.
First, we show this property for the type of natural numbers; then, we use the fact that
every infinite set is equipotent to a sum of the form N+ _ to generalise the result.

4.2.1 Lemma. N ∼ 1 + N.

Proof. We define functions in both directions by

f : N→ 1 + N g : 1 + N→ N
f(0) := inj1(0) g(inj1(_)) := 0

f(n+ 1) := inj2(n) g(inj2(n)) := n+ 1.

By case analysis, we can easily show that those are mutually inverse.

4.2.2 Lemma. If B ⊆ A then A ∼ B + (A \B).

Proof. The claim follows by A ∼ B ∪ (A \ B) ∼ B + (A \ B). The first step is trivial
with the definition of union and set difference. The second step works since B and A \B
are disjoint.

4.2.3 Lemma. If A is an infinite set then A ∼ 1 +A.

Proof. Let B ⊆ A be the image of the injection from N to A. Then B ∼ N which implies
B ∼ 1 +B (Lemma 4.2.1). We conclude

A ∼ B + (A \B)
∼ (1 +B) + (A \B)
∼ 1 + (B + (A \B))
∼ 1 +A

by the previous lemma and associativity of the disjoint union with respect to cardinality.

With this, we can prove the desired result now.

Lemma. If A is an infinite set then P(A) ∼ P(A) + P(A).
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4 Sierpiński’s theorem

Proof. We deduce

P(A) ∼ 2A

∼ 21+A

∼ 21 × 2A

∼ 2× 2A

∼ 2A + 2A

∼ P(A) + P(A)

with Lemma 4.2.3 and Fact 2.1.3.

We continue with a rather technical but powerful lemma.

4.2.4 Lemma. All sets A and B such that A ∼ A+ A and A+ B ∼ P(A) satisfy the
inequality P(A) ≤ B (and, hence, P(A) ∼ B).

Proof. Without loss of generality, we assume that A and B are disjoint. From the
assumptions and Fact 2.1.3, we deduce

A ∪B ∼ A+B ∼ P(A) ∼ 2A ∼ 2A+A ∼ 2A × 2A.

Hence, there is a bijection f : A ∪B ∼→ 2A × 2A. We compose f with the first projection
to obtain a function π1 ◦ f : A → 2A. By Cantor’s theorem (2.1.9), this cannot be a
surjection, that is, there is an A1 ∈ 2A that is not the first component of any f(x) for
x ∈ A. Conversely, for all A2 ∈ 2A, the preimage f−1(A1,A2) must come from B. This
leads us to the conclusion that the injection

2A ↪→ A ∪B
A2 7→ f−1(A1, A2)

is actually an injection of type 2A ↪→ B. Hence, P(A) ∼ 2A ≤ B.

Under the axiom of choice, we could replace the condition that A ∼ A + A by the
condition that A has to be infinite. Without the axiom of choice however, that does not
seem to be strong enough. The lemma could be proved more generally for types and
power types but, again, the special case of sets is a bit easier to write down.

Now, we have everything that we need to prove Sierpiński’s theorem.

4.2.5 Sierpiński’s Theorem. The generalised continuum hypothesis implies the axiom
of choice.

Proof. We assume the generalised continuum hypothesis and show the well-ordering
theorem which implies the axiom of choice (Theorem 3.6.4). Let us fix a set A that we
want to well-order. It suffices to find some ordinal greater than or equal to A.
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Since the Hartogs number of A is at least not smaller, it seems like a reasonable
candidate. However, it will be useful to consider instead the Hartogs number of some
possibly larger set B with the property that P i(B) is infinite and satisfies

P i(B) ∼ P i(B) + P i(B) (4.1)

for all natural numbers i. By the previous lemma and the definition of infinity (2.1.7),
B := P(A+ N) satisfies this property.
We know that P6(B) is an upper bound on the Hartogs number of B (Fact 4.1.2).

We show by induction that, in general, for all natural numbers i, the upper bound
ℵ(B) ≤ P i(B) implies the existence of a well-order on A. The base case is simple since
the assumption that ℵ(B) ≤ P0(B) = B, contradicts Hartogs’ theorem (4.1.6).
For the inductive step, we fix a natural number i and assume the upper bound
ℵ(B) ≤ P i+1(B). We need an occasion to apply the generalised continuum hypothesis,
so we deduce

P i(B) ≤ ℵ(B) + P i(B) ≤ P i+1(B),

where the first inequality is trivial and the second one follows with Equation 4.1 as

ℵ(B) + P i(B) ≤ P i+1(B) + P i(B)
≤ P i+1(B) + P i+1(B)
≤ P i+1(B).

By the generalised continuum hypothesis, this leads to two possible cases:

Case 1. If ℵ(B) + P i(B) ∼ P i(B) then we can immediately conclude that ℵ(B) ≤
P i(B). This is exactly the condition for the inductive hypothesis which proves
our goal.

Case 2. If ℵ(B) + P i(B) ∼ P i+1(B) then P i+1(B) ≤ ℵ(B) by Lemma 4.2.4 with
Equation 4.1. Hence, A ≤ B ≤ P i+1(B) ≤ ℵ(B) and since the Hartogs
number is an ordinal and therefore has a well-order, we conclude that A has a
well-order too.
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5 First-order set theory

In this chapter, we introduce our second set theory, ZF′. It is very close to the first-order
formulation of ZF that is widely accepted as the standard foundation for mathematics.
We compare the two theories in more detail in Section 5.1. We build on the notion of ZF
structures from Chapter 3. We also reuse the core axioms from Section 3.1. What distin-
guishes ZF′ from ZF2, are the precise formulation of the axioms of separation/replacement.
In the case of ZF2, those axioms take a set and a predicate/function and postulate the
existence of a new set based on those (Axiom 3.2.1 and Axiom 3.2.2). This formulation is
too strong for the next chapter where we will construct models of set theory. The problem
is that we do not really know how many predicates and functions there are. Hence, we
would not know how many sets we need to include in the model in order to satisfy the
axioms of separation an replacement. For ZF′, we state a weaker version of those axioms
that accept only predicates and functions represented by first-order formulas. This gives
us more freedom for the model construction.

We will formally introduce our syntax of first-order logic now. A notable detail is that
we use a syntax that allows us to use arbitrary sets as constant terms. Thus, we fix a ZF
structure S now and define the syntax depending on this structure.

5.0.1 Definition. We define the abstract syntax for first-order terms and first-order
formulas by the rules

t ::= x | a x : N, a : S

ϕ ::= ∃̇ϕ | ϕ1 ∧̇ ϕ2 | ¬̇ϕ | t1 =̇ t2 | t1 ∈̇ t2.

The natural number x represents a variable in de Bruijn notation [5], that means it
indicates the levels of ∃-quantifiers between the occurrence of x and the quantifier that
introduces the variable. If x is greater than the number of such levels then it stands for a
free variable. By Termn, we denote the type of first-order terms with n free variables and
by Formulan the type of first-order formulas with n free variables. We use the operator
precedences that are common in logical notation.

Now, we define the semantics of terms. Terms with free variables can only be evaluated
if we have an environment which tells us how the variables are assigned. We model such
environments as members of S n where n is the number of free variables. We define the
evaluation function for terms as

J_K_ : Termn → S n → S

JxKγ := γ[x]
JaKγ := a.
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5 First-order set theory

Here, γ[x] stands for the component of γ at position x and n can be seen as an implicit
argument of the function.
Now, we define the satisfaction relation that describes when a formula is satisfied by

an environment.

_ � _ : S n → Formulan → P
γ � ∃ϕ := There is an a, such that γ, a � ϕ

γ � ϕ1 ∧ ϕ2 := γ � ϕ1 and γ � ϕ2

γ � ¬ϕ := γ 2 ϕ
γ � t1 = t2 := (Jt1Kγ = Jt2Kγ)
γ � t1 ∈ t2 := (Jt1Kγ ∈ Jt2Kγ).

We say that an environment γ satisfies a formula ϕ if γ � ϕ. We say that a formula
without free variables is true if it is satisfied by the empty environment ( ). This is all
that we need to formulate the first-order versions of separation and replacement.

5.0.2 Axiom of First-Order Separation. For every set A and formula ϕ with one
free variable, the class

{x ∈ A | (x) � ϕ}

is a set.

This axiom is not expressible in first-order logic as it quantifies over formulas. In
first-order logic, separation is typically handled as an axiom scheme, an infinite set with
one axiom for every formula ϕ. The same holds for the next axiom.

5.0.3 Axiom of First-Order Replacement. For every set A and formula ϕ with two
free variables, the class

{y | ∃y : A. (x, y) � ϕ}

is a set under the condition that the relation λx, y. (x, y) � ϕ is functional.

Both axioms are analogous to those in ZF2, except that separation expects a formula
instead of an arbitrary predicate and replacement expects a formula describing a functional
relation instead of a function.

5.1 Comparison to standard first-order formulation
In this section, we point out the differences between ZF′ and the standard first-order
axiomatisation of ZF. The obvious first difference is that our axioms are not formulated
in first-order logic. But this is just a cosmetic difference because it does no rule out
semantic equivalence to first-order formulations. This is the case for all axioms except
the axiom of foundation and the axiom of infinity.
In most cases, this equivalence is trivial to check but in the case of separation and

replacement, the difference is a bit greater since standard first-order logic does not have
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constants in our sense. We will look at separation as an example. For readability, we take
some freedom with the notation here and do not use the first-order syntax that we defined
before. As mentioned earlier, we need an infinite axiom scheme to describe separation
in first-order logic. For every natural number n and every constant-free formula ϕ with
n+ 1 free variables, one would typically have an axiom similar to

∀c1, . . . , cn.∀A.∃B. (∀x. x ∈ B ⇔ x ∈ A ∧ ϕ(c1, . . . , cn, x)).

The ci are used to simulate constants in ϕ. In order to prove this axiom scheme
from our axiom of replacement, one would introduce the ci and A and use the set
B := {x ∈ A | (x) � ϕ(c1, . . . , cn)} where ϕ(c1, . . . , cn) stands for ϕ with the ci inserted
as constants in place of the first n free variables.

In the other direction, we assume this axiom scheme and derive our axiom of separation:
Given a formula ψ with constants, we can extract the constants c1, . . . , cn and replace
them by free variables in ψ to obtain a constant-free formula ϕ. Then we can apply the
instance of the axiom scheme for ψ to the constants ci and obtain a set that satisfies
the condition of separation. The first-order formulation of replacement is more complex
because it contains a functionality condition. But it simulates constants in the same way
and the equivalence with our axiom can be established in the same way.
The axiom of foundation is typically formulated as

∀x. x 6= ∅ ⇒ ∃y ∈ x. x ∩ y = ∅.

In other words, every set has a least element with respect to the element relation. This
is a kind of well-foundedness but one that is internal to the set theory. It does not imply
well-foundedness in the external sense that we assume in the axiom of foundation. The
restriction that we only have least elements for sets and not for arbitrary classes makes
the statement weaker. If we try to derive an induction principle from this statement then
we get it only for representable predicates.

To prove that a pure first-order axiomatisation cannot imply our strong axiom of
foundation, we can add infinitely many constant symbols a0, a1, a2, . . . to the theory
and infinitely many axiom a0 ∈ a1, a1 ∈ a2, . . .. If the original axiomatisation is
consistent then it is consistent with every finite subset of those additional axioms and by
the compactness theorem, there is a model that satisfies them all simultaneously. But
together, they imply the existence of an externally non-well-founded set in that model.

The reason why we assume the stronger foundation axiom is convenience. We do not
need to prove representability before we apply well-founded induction and, it allows us
to derive a stronger well-ordering theorem in the next chapter and, abstractly speaking,
it brings the set theory and the theory of Coq closer together.

Assuming that we do not have the strong axiom of foundation, the case of the axiom of
infinity is similar. We define the class N̄ and assume that this class is a set. In first-order
logic, one cannot express this. Instead, one would typically assume that there is a set that
contains the empty set and is closed under the successor function. One can then define
the set of numerals as the smallest set with that property. This set will certainly include
N̄ but it might be strictly greater. Similar to above, one can prove by the compactness
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theorem that there is a model with a numeral that contains infinitely many smaller
numerals. That one would not be in N̄. One can even prove the existence of a model
with uncountably many numerals. In that case, we do not even get a bijection between
the set of numerals and N.

The lack of such a bijection would make our notion of encodings much less useful since
we could not define representable encodings for many interesting infinite types like N or
the type of formulas. That is the strongest argument why we do not work with the pure
first-order axiomatisation. One could likely relax the notion of encodings in a reasonable
way which provides the same benefits but works in the first-order axiomatisation. However,
that would certainly add complexity to the foundation.

As a final remark, under the strong axiom of foundation, our formulation of the infinity
axiom is equivalent to the one in first order logic. One could use well-founded induction
on the element relation to prove from the first-order version of the infinity axiom that
every numeral is an element of N̄. This means that the only distinction between our
axiomatisation and one in first-order logic is the additional assumption that the model is
well-founded in an external sense. But that is not such a big difference. Given a model
of the first-order axiomatisation, one can cut out the well-founded part and check that it
still satisfies all the axioms and additionally the strong axiom of foundation. In the other
direction, every model of ZF′ is trivially a model of the first-order axiomatisation.

5.2 Evolution of first-order representations
To use first-order replacement and separation, we need to create representations of
predicates and functions in first-order logic. This is not always a trivial task. For
example, we may want to prove by separation that a class of the form

{x ∈ A | B ∩ x ∈ C}

is a set. We cannot literally translate the defining condition of this set into a first-order
formula since it contains the composed term x∩B that is neither a variable nor a constant
and, hence, cannot be expressed in a first-order term. The simplest possible first-order
representation of this condition seems to be

∃y. (∀z. z ∈ y ⇔ z ∈ B ∧ z ∈ x) ∧ z ∈ C.

Of course, we would still need to express this condition in our formal first-order syntax
with de Bruijn notation before we can apply the axiom of separation. If we want to
produce such first-order representations for more complex predicates or functions then
we should do that in a systematic way. to handle the inherent complexity.

To this end, we introduce a powerful reification framework for first-order logic. It
allows us to translate Coq predicates to first-order formulas in a compositional way,
following the term-structure. On the example from above, this compositionality means
that we can build a first-order representation of the predicate λx.B ∩ x ∈ C from
representations of B, C, ∩ and ∈. This way, we can easily structure the construction
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of representations. Moreover, representations can be constructed automatically if we
already have representations of all atomic subterms.
We want to make the framework powerful enough such that one does not have to

make any compromises in the formulation of predicates that one wants to reify. It
should be possible to formulate predicates in the most natural form and the reification
framework should be flexible enough to handle them. To achieve this goal, we will have
to handle subterms of almost arbitrary types, not just predicates or functions over sets.
Among others, our framework will allow us to represent higher-order functions, dependent
functions and quantification over types other than S . Moreover, one can dynamically
extend the framework to new types if necessary. This fits well with the philosophy of the
calculus of inductive constructions where inductive definitions, for example, introduce
new types to the language.
The core of our reification framework contains multiple different ideas. To introduce

them one-by-one, we need to build the framework in multiple iteration steps. Each of the
following subsection presents a new version that extends the capabilities of the previous
one. The complete final framework is presented in the next section.

5.2.1 Basic idea (Version 1)
Let us consider the example from above again. If we want to construct a representation
of the function λx.B ∩ x ∈ C in a compositional way, that means we have to build it
from a representation of B ∩ x ∈ C. But this term has a free variable x. In order to
work under binders, we need to talk about representations of terms with free variables
and we need a way to model such terms. We will model terms with n free S -typed
variables as families of a type S n → . . . where first argument stands for an environment
that provides the values for the variables. For example, we model the term x ∩B ∈ C
as the family (B ∩ γ[1] ∈ C)γ:S 1 and the term λx.B ∩ x ∈ C as the constant family
(λx.B ∩ x ∈ C)γ:S 0 .

5.2.1 Definition (Provisional). A representation of a family of relations (Pγ : S k →
P)γ:S n is a first-order formula ϕ, such that, for all sets x1, . . . , xk and environments
γ : S n, we have ((γ, x1, . . . , xk) � ϕ)⇔ Pγ(x1, . . . , xk).
A representation of a family of functions (fγ : S k → S )γ:S n is a representation of

(λx1, . . . , xk, z. fγ(x1, . . . , xk) = z)γ:S n .

A family of sets is representable if it is representable as a family of functions with
zero arguments.

We say that a relation of type S k → P or a function of type S k → S is representable
if it is representable as a constant family over the environment type S 0.

By this definition, every representable predicate of type S → P comes with a formula
that we can use for separation and every representable function of type S → S
comes with a formula that we can use for replacement. Moreover, we can construct
representations in a compositional way. The following lemma allows composition for
application of relations:
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5.2.2 Lemma. Fix a representable family of relations (Pγ : S k+1 → P)γ:S n and a
representable family of sets (aγ : S )γ:S n. Then the family of results (Pγ(aγ) : S k →
P)γ:S n is also representable.

Proof. The representation of P is a formula ϕP , such that ((γ, x1, . . . , xk+1) � ϕP ) ⇔
Pγ(x1, . . . , xk+1) for all γ and x1, . . . , xk+1. The representation of a is a formula ϕa, such
that ((γ, y) � ϕa) ⇔ y = aγ for all γ and y. We can substitute the free variables in
ϕa to obtain a formula ϕ′a, such that ((γ, x1, . . . , xk, y) � ϕ′a) ⇔ y = aγ . The formula
ϕP (a) := ∃̇ϕ′a ∧̇ ϕP is the representation that we are looking for since it satisfies

((γ, x1, . . . , xk) � ϕP (a))
⇔ (∃y. ((γ, x1, . . . , xk, y) � ϕ′a) ∧ ((γ, x1, . . . , xk, γ) � ϕP ))
⇔ (∃y. y = a ∧ Pγ(x1, . . . , xk, y))
⇔ Pγ(x1, . . . , xk, a).

For compositional proofs on lambdas, we need the next lemma.

5.2.3 Lemma. A family of relations (Pγ : S k+1 → P)γ:S n is representable if the family
of partial applications (Pγ(x) : S k → S )(γ,x):S n+1 is representable.

Proof. This holds trivially by definition.

Analogous lemmas hold for functions. Together, those four lemmas suffice to decompose
the example from above. But they do not tell us what to do with logical operators. We
need additional lemmas for that.

5.2.4 Lemma. Fix two representable families of predicates (Pγ : S → P)γ:S n and
(Qγ : S → P)γ:S n. The following families are representable:

(¬Pγ)γ:S n (Pγ ∧Qγ)γ:S n (Pγ ∨Qγ)γ:S n (Pγ ⇒ Qγ)γ:S n (Pγ ⇔ Qγ)γ:S n

The proof is easy. We will not present it here.

5.2.5 Lemma. Fix a representable family of predicated (Pγ : S → P)γ:S n. The family
of existential statements (∃x : S . Pγ(x))γ:S n and the family of universal statements
(∀x : S . Pγ(x))γ:S n are representable.

Proof. Let ϕP be the formula representing P . Then ∃̇ϕP represents (∃x. Pγ(x))γ:S n and
¬̇∀̇¬̇ϕP represents (∀x. Pγ(x))γ:S n .

Now we have various lemmas that allow us to compose representations from represent-
ations of subterms. But we still don’t know how to handle atomic subterms. The next
two lemmas will change that. We will not provide proofs.

5.2.6 Lemma. Fix two natural numbers n and k with k < n. The family (γ[k] : S )γ:S n

is representable.

Proof. The representation is given by the formula 0 =̇ k + 1.
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5.2.7 Lemma. Fix a natural number n and a set c. The constant family (c : S )γ:S n is
representable.

Proof. The representation is given by the formula 0 =̇ c.

5.2.8 Lemma. Fix a natural number n. The constant families (⊥ : P)γ:S n and (> :
P)γ:S n are representable.

Proof. The first representation is given by ∃̇¬̇(0 =̇ 0). The second one is given by
∀̇0 =̇ 0.

5.2.9 Lemma. Fix a natural number n. The constant families (_ ∈ _ : S → S →
P)γ:S n and (_ = _ : S → S → P)γ:S n are representable.

Proof. The first representation is given by 1 ∈̇ 0 and the second one by 1 =̇ 0.

With the definitions and lemmas from this chapter, we have everything that we need
for the compositional construction of first-order representation for predicates or functions
on sets, as long as every subterm is also such a predicate or function.

To return to the example, we can build a representation of (λx.B ∩ x ∈ C)γ:S 0 from a
representation of (B∩γ[0] ∈ C)γ:S 1 (Lemma 5.2.5. We can build that representation from
a representation of (B ∩ γ[0] ∈ _)γ:S 1 and a representation of (C)γ:S 1 (Lemma 5.2.3).
We get the second one immediately by Lemma 5.2.7. In multiple steps, the first one
can be composed of representations of (B)γ:S 1 , (_ ∩_)γ:S 1 , (γ[0])γS 1 and (_ ∈ _)γ:S 1 .
We do not have a representation for (_ ∩ _)γ:S 1 yet but the other ones are given by
Lemma 5.2.7, Lemma 5.2.6 and Lemma 5.2.9.
This works well in such toy examples, but the restrictions of this approach are too

strong to build more serious set-theoretic constructions conveniently. Hence, the next
subsection will introduce a more flexible approach.

5.2.2 Functions (Version 2)

This subsection introduces the most important ideas of our reification framework. The
main motivation behind those ideas is the goal to represent higher-order functions. To do
this, we redefine representability on function types in in a general way. Roughly speaking,
we will call a function representable if it maps representable inputs to representable
outputs. The general nature of this new notion of representability on function types
allows us to extend representability to even more types in a meaningful way. For example,
we will be able to formulate representability on pairs such that the pair constructor and
the projections π1 and π2 are representable.
To take full advantage of this generality, we will make the notion of representations

extensible. Every type can have its own so-called representation scheme that tells us which
families in that type are representable. Before we define what exactly a representation
scheme is, we need to introduce an operation that takes a family over S n for some n
and lifts it to a family over S k for some k ≥ n.
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5.2.10 Definition (Provisional). Fix a family x : S n → A and a natural number k ≥ n.
We define a family ⇑kn x : S k → A by ⇑kn x := x ◦ reducekn where reducekn is the function
that takes a member of S k and discards the first k − n components to obtain a member
of S n. We usually write just ⇑x and leave n and k implicit.

5.2.11 Definition (Provisional). A representation scheme on a type A consists of
a function LocalRep :

∏
n:N(S n → A) → Type. This function takes a number n and a

family (xγ : A)γ:S n and returns the type of local representations of x.
Given a representation scheme on A and a family (xγ : A)γ:S n , a (full) representation

of x is a family of type
∏
k>n LocalRepk(⇑x).

Given a type type A with a representation scheme and a member x : A, a representation
of x is a representation of the constant family (x)γ:S 0 .

Often, we will handle representations schemes implicitly to keep formulations simple.
The reason why a representation has to consist of a family of local representations is that
it provides us with the following lemma.

5.2.12 Lemma. Fix a type A with a representation scheme and a family (xγ : A)γ:S n.
If x is representable then, for every n′ ≥ n, the lifted family ⇑n′

x is also representable.

Proof. Fix an n′ ≥ n. The representation of x is a function of type
∏
k>n LocalRepk(⇑x).

Since k > n′ implies k > n, we can restrict this function to one of type
∏
k>n′ LocalRepk(⇑x).

This lemma will be important when we use values under a binder that were introduced
outside of the binder. Intuitively speaking, something that is fully representable in a
certain context will still be fully representable if we add more free variables to that
context.
Now, we define representation schemes on P and S . Those should not be surprising

since they are similar to the ones for predicates and functions from the previous subsection.

5.2.13 Definition (Provisional). • A local representation of a family of proposi-
tions (Pγ : P)γ:S n is a formula ϕ with n free variables, such that (γ � ϕ)⇔ Pγ for
all environments γ : S n.

• A local representation of a family of sets (xγ : S )γ:S n is a local representation of
the family of propositions (xγ = y)(γ,y):S n+1 .

Next, we define a representation scheme for general function types.

5.2.14 Definition (Provisional). A local representation of a family of functions (fγ :
Aγ → Bγ)γ:S n is a function that takes a full representation of any family (xγ : Aγ)γ:S n

and returns a local representation of (fγ(xγ))γ:S n .

We can immediately work with this definition to build representations. Let us consider
the function λx : S . λf : S → S . f(x) as an example. A representation of this
function is a representation of the constant family (λx : S . λf : S → S . f(x))γ:S 0 .

44



5.2 Evolution of first-order representations

Following the definition of representability, we fix a natural number k ≥ 0 and provide
a local representation of the family (λx : S . λf : S → S . f(x))γ:S k . Following
the representation scheme on functions types twice, we fix fully representable families
(xγ : S )γ:S k and (fγ : S → S )γ:S k and provide a local representation of (fγ(xγ))γ:S k .
By the representation scheme on function types, it suffices to apply the local representation
of f to the representation of x to obtain the desired representation.

For our new notion of representations to be useful, it is important that we can still use
representable predicates for separation and representable functions for replacement. The
following formula provides the necessary property for predicates if we set n := 0.

5.2.15 Lemma. Let (Pγ : S → P)γ:S n be a representable family of predicates. Then
there is a formula ϕ such that ((γ, x) � ϕ)⇔ Pγ(x) for γ and x.

Proof. By the representation scheme on P, what we are looking for, is exactly a local
representation of (Pγ(x))(γ,x):S n+1 . We obtain such a local representation if we apply
the local representation of (Pγ)(γ,x):S n+1 to the local representation of (x)(γ,x):S n+1 that
we define as 0 =̇ 1.

An analogous statement holds for representable functions of type S → S and allows
us to use such functions for replacement.

With this version of representability, we can construct all the same basic representations
as with the previous one. But now, we can treat logical operators in an even cleaner way
since we know how to represent functions that take propositions as arguments.

5.2.16 Lemma. Conjunction, disjunction, negation, implication and equivalence are
representable.

This lemma alone provides everything that we need to handle logical operator during
reification. We will not go into the proof of the lemma which is not much different from
the analogous lemma in the previous subsection.
The ability to represent higher order-functions allows us to treat quantifiers in the

same simple way:

5.2.17 Lemma. The quantifiers (∃_ : S ._) : (S → P)→ P and (∀_ : S ._) : (S →
P)→ P are representable.

Proof. We just consider the existential quantifier. Fix a natural number k and a repres-
entable family of predicates (Pγ : S → P)γ:S k . We need to provide a local representation
of the family (∃x. Pγ(x))γ:S k , that is, a formula ϕ such that (γ � ϕ) ⇔ ∃x. Pγ(x). By
Lemma 5.2.15, we obtain a predicate ϕP such that ((γ, x) � ϕ)⇔ Pγ(x)) for all γ and x.
The formula ϕ := ∃̇ϕP satisfies the desired property.

Note that this proof only works because we can assume a full representation of P .
That is the reason why representations of function families must take full representations
as inputs and why local representations do not suffice.

The flexible notion of representability that we introduced in this subsection, allows us
to formulate meaningful representation schemes on other types than S , P or function
types built from those. The most obvious example are product types.
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5.2.18 Definition (Provisional). A local representation of a family of pairs (xγ , yγ)γ:S n

is a pair of local representations of (xγ)γ:S n and (yγ)γ:S n .
Under this scheme, all the basic operations are representable:

5.2.19 Lemma. Given representation schemes on types A and B, the pair constructor
(_,_) : A → B → A × B and the projection π1 : A × B → A and π2 : A × B → B are
representable.

Now we can mechanically construct, for example, a representation of the function

λx : S ×S . λf, g : S → S . (f(π1(x)), g(π2(x))).

We can even represent members of arbitrary class-like types, like natural numbers:

5.2.20 Definition (Provisional). Given a class-like type A, a family of members (xγ :
A)γ:S n is representable if the family of encodings (encode(xγ))γ:S n is representable.

5.2.21 Lemma. Given a class-like type, the functions encodeA : A → Ā and decode :
Ā→ A are representable.

This leads leads to a certain conflict. We can have multiple different representation
schemes on a single type. For example, we have a representation scheme on S ×S as a
class-like type but we also have the general representation scheme for product types. In
this example, one can check that both representation schemes are equivalent and that
will typically be true for similar conflicts.

5.2.3 Quantification over class-like types (Version 3)
So far, we can only represent quantification over S . It is desirable to include quantification
over other types. For arbitrary types, this does not seem possible but with a modification
of our framework, we can represent quantifications over class-like types. To this end, it is
necessary to modify our notion of environments. So far, we used tuples from a type S n

as environments that provide values for free variables. If we quantify over other types
than S then we need environments that may contain members of those types

5.2.22 Definition (Provisional). An environment type of size n : N is a product
A1×· · ·×An of class-like types. Members of environment types are called environments.

Now, it does not suffice to compare environment types by their size. We need to define
the notion of environment type extension.

5.2.23 Definition (Provisional). We define inductively what it means that an environ-
ment type ∆ extends an environment type Γ (abbreviated as ∆ � Γ):

• Γ � Γ for all environment types Γ.

• If ∆ � Γ then ∆×A � Γ for all environment types Γ and ∆ and class-like types A.

We need to redefine the lifting operation from the previous subsection.

46



5.2 Evolution of first-order representations

5.2.24 Definition (Provisional). Fix a family x : Γ → A over some environment
type Γ and an environment type ∆ � Γ. We define a family ⇑∆

Γ x : ∆ → A by
⇑∆

Γ x := x ◦ reduce∆
Γ where reduce is the function that takes an environment of type ∆

and obtains an environment of type Γ by discarding the last few elements. We will apply
reduce implicitly where it is clear from the context. We usually write just ⇑x and leave
n and k implicit.

We can now define the new notion of representation schemes.

5.2.25 Definition (Provisional). A representation scheme on a type A consists of a
function LocalRep :

∏
Γ(Γ→ A)→ Type. This function takes an environment type Γ and

a family (xγ : A)γ:Γ and returns the type of local representations of x.
Given a representation scheme on A and a family (xγ : A)γ:Γ over some environment

type Γ, a (full) representation of x is a family of type
∏

∆�Γ LocalRep∆(⇑x).
Given a type type A with a representation scheme and a member x : A, a representation

of x is a representation of the constant family (x)γ:Unit.

The representation schemes for functions and sets do not need to be changed significantly
but to define the representation scheme for propositions, we need an operation that
takes an environment and turns it into a tuple of sets that we can use as a first-order
environment.

5.2.26 Definition (Provisional). Given an environment type Γ = A1 × · · · × An, we
define the operation of environment encoding an Γ that maps every environment
(x1, . . . , xn) : Γ to (encode(x1), . . . , encode(xn)) : S n. This is possible since all Ai are
class-like. We will always apply this operation implicitly.

Now, we define the new representation scheme for propositions.

5.2.27 Definition (Provisional). Fix an environment type Γ. A local representation
of a family of propositions (Pγ : P)γ:Γ is a formula ϕ, such that (γ � ϕ)⇔ Pγ for all
environments γ : Γ.

The of this subsection was to represent quantification over arbitrary class-like types.
The next lemma prepares this.

5.2.28 Lemma. Fix an environment type Γ and a class-like type A. Let (Pγ : A→ P)γ:Γ
be a representable family of predicates. Then there is a formula ϕ such that ((γ, x) �
ϕ)⇔ Pγ(x) for γ and x.

Proof. The proof is completely analogous to the one from the previous subsection. By the
representation scheme on P, what we are looking for, is exactly a local representation of
(Pγ(x))(γ,x):Γ×A. We obtain such a local representation if we apply the local representation
of (Pγ)(γ,x):Γ×A to the local representation of (x)(γ,x):Γ×A that we define as 0 =̇ 1.

5.2.29 Lemma. Fix a class-like type A. The quantifiers (∃_ : A._) : (A→ P)→ P and
(∀_ : A._) : (A→ P)→ P are representable.

Proof. Again, the proof is analogous to the previous subsection.
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5.2.4 Dependent functions (Version 4)

Next, we want to be able to represent dependent functions. This has two important
consequences: The types of subterms may depend on variables from the environment.
Hence, we need representation schemes on families of types, not just constant types.
Moreover, we need to generalise the definition of environment types to allow type

dependencies. Informally, we can think of those environment types as nested sigma types
of the form

∑
x1:A1 . . .

∑
xn:An Unit where every Ai stands for a class-like type and may

contain x1, . . . , xi−1 as free variables. Formally, it will be more convenient to nest the
sigma types in the other direction, or rather stack them notationally. This leads to our
first final definition.

5.2.30 Definition. We define inductively what constitutes an environment type of
size n : N:

• Unit is the only environment type of size 0.

• If Γ is an environment type of size n and (Aγ)γ:Γ is a family of class-like types then∑
γ:ΓAγ is an environment type of size n+ 1.

Members of an environment type are called environments.

In analogy to the previous subsection, we can define what it means that one environment
type ∆ extends another environment type Γ and how we can lift families over Γ to families
over ∆ in this case.

5.2.31 Definition (Provisional). Fix an environment type Γ. A representation
scheme on a family of types (Aγ : Type)γ:Γ consists of a function LocalRep :

∏
∆�Γ(

∏
δ:∆Aδ)→

Type. This function takes an environment type ∆ � Γ and a family (xδ : Aδ)δ:∆ and
returns the type of local representations of x.
Given a representation scheme on (Aγ : Type)γ:Γ and a family (xδ : Aδ)δ:∆ over Γ, a

(full) representation of x is a family of type
∏

∆�Γ LocalRep∆(⇑x).

The representation scheme for function types can now be generalised to dependent
function types.

5.2.32 Definition (Provisional). A local representation of a family of dependent
functions (fγ :

∏
x:Aγ Bγ(x))γ:Γ is a function that takes a full representation of any

family (xγ : Aγ)γ:Γ and returns a local representation of (fγ(xγ) : Bγ(xγ))γ:Γ.
Other definitions and lemmas do not change significantly, except for additional type

annotations.

5.2.5 Polymorphic functions (Version 5)

By polymorphic functions we mean functions that take a type as argument and use that
type for further arguments or for the result. Some example are the identity function
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id :
∏
A:TypeA→ A, the general existential quantifier (∃_._) :

∏
A:Type(A→ P)→ P and

the recursor

recN :
∏

C:N→Type
C(0)→ (

∏
n

C(n)→ C(n+ 1))→
∏
n

C(n).

There are two reasons why we cannot represent such polymorphic functions yet. First,
we have not defined a representation scheme for types. Second, more importantly, we
need a more general representation scheme on function types. In the example of the
identity function, we do not get a representation scheme on A→ A unless we know more
about A. The representation scheme of the result type depends on the specific input and
our representation scheme on function types should permit that.
We will slightly reformulate the definition of representation schemes in order to

introduce the notion of local representation schemes which we will use as one form of
representation for type families.

5.2.33 Definition. Fix an environment type Γ.
A local representation scheme on a family of types (Aγ : Type)γ:Γ consists of a

function LocalRep : (
∏
γ:ΓAγ)→ Type. This function takes an environment type ∆ � Γ

and a family (xδ : Aδ)δ:∆ and returns the type of local representations of x.
A (full) representation scheme on a family of types (Aγ : Type)γ:Γ consists of local

representation schemes on all lifted families ⇑∆A for ∆ � Γ. Given a representation
scheme on A and a family (xγ : Aγ)γ:Γ, a (full) representation of x is a family of type∏

∆�Γ LocalRep(⇑x).

Now let us look at the representation scheme for function types.

5.2.34 Definition. A local representation of a family of dependent functions (fγ :∏
x:Aγ Bγ(x))γ:Γ is a function that takes a full representation of any family (xγ : Aγ)γ:Γ

and returns a local representation of (fγ(xγ) : Bγ(xγ))γ:Γ.

This definition is an exact copy of previous version but the important point are the
implicit assumptions. For this definition to work, it suffices to have a representation
scheme on (xγ : Aγ)γ:Γ and a local representation scheme on (Bγ(xγ))γ:Γ only when x is
representable. This means that we get a representation scheme on the type of the identity
function id :

∏
A:TypeA→ A if we formulate the representation scheme on types in a way

such that every representable family (Aγ : Type)γ:Γ has a representation scheme. The
next definition follows exactly that goal.

5.2.35 Definition. A local representation of a family of types (Aγ : Type)γ:Γ (on type
level) is just a local representation scheme on A.

With this scheme, local representability of a family of types is equivalent to existence
of a local representations scheme and full representability is equivalent to the existence
of a full representation scheme. We could now easily represent the identity function. But
for the recursor on N and the existential quantifier, this does not seem to suffice. Those
are only representable in a meaningful way when the type is also class-like. This inspires
the following definition.
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5.2.36 Definition. A local representation of a family (Aγ : Type)γ on class level is a
representable family of encodings of all Aγ .

Since every family of class-like types has a representation scheme, this formulation
is stronger than the one for type-level representations. Finally, we define a similar
representation scheme on set level.

5.2.37 Definition. A local representation of a family (Aγ : Type)γ on set level is a
representable family of set encodings of all Aγ .
Generally, we will say that something is representable on type level if we use a

representation scheme that relies only on the type-level representability of types. We will
do the same class-level and set-level representability.

The representation schemes for types are not only useful for polymorphic function,
they also make sense on type constructors. For example, we can prove that the type
product is representable on set-level. This knowledge gives us representation schemes on
families of products. representations schemes on families of the form (Aγ ×Bγ)γ . The
representation scheme on class level gives us representable families of encodings and the
representation scheme on set level additionally tells us that those encodings are sets. It
seems like sets, classes and just types with representation schemes are three different
type-like concepts in the world of set theory and we may need each of them depending
on the context.

5.3 First-order representations (Final version)
In this section, we combine the definitions that were developed in the previous section
into a self-contained formulation of representability that we will work with. In addition,
we will fill some formal gaps. We will not prove any of the lemmas here. The proofs are
analogous to those of the previous section.

5.3.1 Definition. We define inductively what constitutes an environment type of
size n : N:

• Unit is the only environment type of size 0.

• If Γ is an environment type of size n and (Aγ)γ:Γ is a family of class-like types then∑
γ:ΓAγ is an environment type of size n+ 1.

Members of an environment type are called environments.

5.3.2 Definition. Given an environment type Γ of size n, we define the operation
of environment encoding an Γ that maps every environment (x1, . . . , xn) : Γ to
(encode(x1), . . . , encode(xn)) : S n. We will always apply this operation implicitly.

5.3.3 Definition. We define inductively what it means that an environment type ∆
extends an environment type Γ (abbreviated as ∆ � Γ):
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• Γ � Γ for all environment types Γ.

• If ∆ � Γ then
∑
δ:∆Aδ � Γ for all environment types Γ and ∆ and families of

class-like types (Aδ : Type)δ:∆.

5.3.4 Definition. Fix environment types Γ and ∆ � Γ, a family of types (Aγ : Type)γ and
a family of members x :

∏
γ Aγ . We define a family ⇑∆

Γ x :
∏
δ:∆Aδ by ⇑∆

Γ x := x◦ reduce∆
Γ

where reduce is the function that takes an environment of type ∆ and obtains an
environment of type Γ by discarding the last few elements. We will apply reduce
implicitly where it is clear from the context. We usually write just ⇑x and leave n and k
implicit.

5.3.5 Definition. Fix an environment type Γ.
A local representation scheme on a family of types (Aγ : Type)γ:Γ consists of a

function LocalRep : (
∏
γ:ΓAγ)→ Type. This function takes an environment type ∆ � Γ

and a family (xδ : Aδ)δ:∆ and returns the type of local representations of x.
A (full) representation scheme on a family of types (Aγ : Type)γ:Γ consists of local

representation schemes on all lifted families ⇑∆A for ∆ � Γ. Given a representation
scheme on A and a family (xγ : Aγ)γ:Γ, a (full) representation of x is a family of type∏

∆�Γ LocalRep(⇑x).
We sometimes say that a value x is representable to mean that the constant family

(x)γ:Unit is representable.

5.3.6 Lemma. Fix two environment types Γ and Γ′ � Γ, a representation scheme on
a family (Aγ : Type)γ:Γ and a family of members (xγ : Aγ)γ:Γ. We can restrict the
representation of A to a representation of ⇑Γ′

A and we can restrict every representation
of x to a representation of the lifted family ⇑Γ′

A. We call this weakening.

5.3.7 Definition. Fix an environment type Γ of size n.

• A local representation of a family of dependent functions (fγ : Πx:AγBγ(x))γ:Γ
is a function that takes a full representation of any family (xγ : Aγ)γ:Γ and returns
a local representation of (fγ(xγ))γ:Γ.

• A local representation of a family of propositions (Pγ : P)γ:Γ is a formula ϕ with
n free variables, such that (γ � ϕ)⇔ Pγ for all environments γ : Γ.

• A local representation of a family of classes (Cγ : Class)γ:Γ is a local representation
of the family of propositions (x ∈ Cγ)γ,x.

• A local representation of a family of sets (xγ : S )γ:Γ is a local representation of
the family of propositions (xγ = y)γ,y.

• Fix a family of class-like types (Aγ : Type)γ:Γ. A local representation of a family
of members (xγ : Aγ)γ:Γ is a local representation of the family of encodings
(encode(xγ))γ:Γ.
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• Fix a family of propositions (Pγ : P)γ:Γ. Every family of proofs (pγ : Pγ)γ:Γ has
exactly one local representation which caries no further information.

• Fix a family of types (Aγ : Type)γ:Γ. A local representation of a family of encodings
of the Aγ is a representation of the family of encoding classes (Āγ : Class)γ:Γ.

• A local representation of a family of types (Aγ : Type)γ:Γ (on type level) is just
a local representation scheme on A.

• A local representation of a family (Aγ : Type)γ on class level is a representable
family of encodings of all Aγ .

• A local representation of a family (Aγ : Type)γ on set level is a representable
family of set encodings of all Aγ .

If we want to construct representations mechanically, then we just need to use the
representation scheme for functions: To construct a representation for an application,
we need representations for the arguments. To construct a representation for a lambda
expression, we need a representation for the body. Like this, we reduce the goal to
representability of subterms that can already represent or that we need to handle
manually. For an example, see the proof of Lemma 5.4.1.

5.3.8 Lemma. Fix an environment type Γ, a family of class-like types (Aγ : Type)γ:Γ
and a family of predicates (Pγ : Aγ → P)γ:Γ. Then P is representable iff there is a
formula ϕ such that ((γ, x) � ϕ)⇔ Pγ(x) for γ and x.

5.3.9 Lemma. Fix an environment type Γ, a family of class-like types (Aγ : Type)γ:Γ
and a family of functions (fγ : Aγ → S )γ:Γ. Then f is representable iff there is a formula
ϕ such that ((γ, x, y) � ϕ)⇔ fγ(x) = y for all γ, x and y.

5.4 Representations of logical operations
We will provide representations for the common logical operations and all the basic set
operations. In the end, we can automatically represent arbitrary predicates that are
constructed from those operators. The second paragraph of the following proof serves as
a demonstration for the automatic construction of representations.

5.4.1 Lemma. The operations of logical conjunction, negation, disjunction, implication
and equivalence are representable.

Proof. We start with conjunction and negation since those are immediately expressed in
our version of first-order formulas. To define a representation of the conjunction operation
_ ∧ _ : P → P → P, we fix an environment type Γ and two representable families of
propositions (Pγ : P)γ:Γ and (Qγ : P)γ:Γ. According to the representation scheme for
families of propositions, the representation schemes consist of formulas ϕP and ϕQ, such
that (γ � ϕP ) ⇔ Pγ and (γ � ϕQ) ⇔ Qγ for all γ : Γ. We need to provide a formula
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ϕP∧Q such that (γ � ϕP∧Q) ⇔ Pγ ∧ Qγ for all γ : Γ. By definition, ϕP∧Q := ϕP ∧̇ ϕQ
satisfies this property.
In the same way, we can define a representation of the negation operation. To

define a representation of disjunction, it suffices to express this operation in terms
of conjunction and negation which we can already represent. Consider the equality
(_ ∨ _) = (λP,Q.¬(¬P ∧ ¬Q)) that we get by function extensionality, proposition
extensionality and the law of excluded middle. The representation of the right side
can be built automatically from the representations of negation and conjunction. For
demonstration purposes, we will go through the mechanical process explicitly: First,
we fix an environment type Γ. Following the rule for lambda expressions (twice), we
introduce two representable families of propositions (Pγ : P)γ:Γ and (Qγ : P)γ:Γ and need
to represent (¬(¬Pγ ∧ ¬Qγ))γ:Γ locally. Following the rule for applications, we need
to represent (¬_)γ:Γ and (¬Pγ ∧ ¬Qγ)γ:Γ locally. We get the first representation from
the representation of negation. For the second representation, we follow the rule for
applications (twice) and need to represent (_ ∧ _)γ:Γ, (¬Pγ)γ:Γ and (¬Qγ)γ:Γ locally.
Again, we get the first representation from the representation of conjunction by weakening.
For each of the other two, we apply the application rule once more and need to represent
(¬_)γ:Γ, P and Q locally. We have already done the first and have representations of P
and Q by assumption.

In a similar way, we can obtain a representation of implication and equivalence with the
equalities (_⇒ _) = (λP,Q.¬P ∨Q) and (_⇔ _) = (λP,Q. (P ⇒ Q)∧ (Q⇒ P )).

5.4.2 Lemma. The element relation and equality on sets are representable.

Proof. We consider only the element relation. The construction for the equality relation
is analogous. Let A be a class-like type. We want to show that the function _ ∈ _ :
A→ A→ P is representable. Fix an environment type Γ and two representable families
(xγ : A)γ:Γ and (yγ : A)γ:Γ. By definition, their representations are representations of the
families (xγ = z)γ,z and (yγ = z)γ,z which are, by definition, two formulas ϕx and ϕy,
such that (γ, u � ϕx)⇔ (xγ = u) and (γ, v � ϕy)⇔ (yγ = v) for all u,v and γ. We can
represent (xγ = yγ)γ by the formula ∃̇ϕx ∧̇ ∃̇ϕy ∧̇ 1 ∈̇ 0, as one can see by the equivalence

(γ � ∃̇ϕx ∧̇ ∃̇ϕy ∧̇ 1 ∈̇ 0)
⇔ (∃u. (γ, u � ϕx) ∧ ∃v. (γ, v � ϕy) ∧ u ∈ v)
⇔ (∃u. xγ = u ∧ ∃v. yγ = v ∧ u ∈ v)
⇔ (xγ ∈ yγ).

5.4.3 Lemma. The existential quantifier ∃_._ :
∏
A:Type(A→ P)→ P and the universal

quantifier ∀_._ :
∏
A:Type(A→ P)→ P are representable on class-level.

Proof. First, we treat the existential quantifier, then we derive the representation of
the universal quantifier from that. Fix an environment type Γ, a family of types
(Aγ : Type)γ:Γ with a representable family of encodings and a representable family of
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predicates (Pγ : Aγ → P)γ:Γ. We will construct a local representation of the family of
existential statements (∃x : Aγ . Pγ(x))γ:Γ. From the representation of A, we obtain a
formula ϕA, such that (γ, x � ϕA) ⇔ x ∈ Āγ for all γ and x. From the representation
of P , we obtain by Lemma 5.3.8 a formula ϕP , such that (γ, x � ϕP )⇔ Pγ(decode(x))
for all γ and x : Āγ . The desired representation is ∃̇ϕA ∧̇ ϕP , as we can see from the
equivalence

(γ � ∃̇ϕA ∧̇ ϕP )
⇔ (∃x : S . x ∈ Āγ ∧ Pγ(decode(x)))
⇔ (∃x : Aγ . Pγ(x)).

The representability of universal quantification follows from the equality (∀_._) =
(λA,P.¬∃x : A.¬P (x)) since we can automatically construct a representation of the
right side.

5.4.4 Lemma. Constant elements of class-like types are representable.

Proof. Fix a class-like type A, a member x : A and an environment type Γ. We need
to provide a formula ϕx, such that (γ, y � ϕx) ⇔ (encode(x) = y). This is obviously
satisfied by ϕx := (encode(x) =̇ 0).

5.4.5 Lemma. The most basic class-operations, the empty class, unordered pairing, the
power class operation, finite set comprehensions, replacement, indexed union, binary
union, indexed intersection, binary intersection and difference all have representations.

Proof. Their defining predicates are composed of the simple logical operations that we
can represent by the results of this section. They can be derived mechanically.

5.5 Automation
There are two thing in this chapter that we would like to automate: inference of
representation schemes and construction of representations. Since representation schemes
are also just representations of types, automatic construction of representation suffices.
We will take a short look at the ideal properties of an automation approach and challenges.

The automation should recurse on the term structure. For applications and lambda
expressions, that can be done using the representation scheme for functions. The
automation should look for representations of subterms in a database where the user
can register representations that they already proved. If the automation gets stuck at a
subterm then it should present the corresponding goal to the user. Finally, it should be
convenient to debug the automation process if it can’t solve a goal or is too slow.
The first challenge is that not all Coq-expressions are applications or lambda expres-

sions. There are match-expressions, for example. The automation would need to treat
them separately which is difficult because of their complex structure. Other problem-
atic constructs are definition of recursive functions as fixed points and inductive type
definitions.
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A subtle problem appears when the automation tries to construct a local represent-
ation of a family of applications (fγ(xγ))γ:Γ. The usual rule says that we need a local
representation for f and one for x. But under which representation scheme? There can
be multiple options. Some of them might work and some might not. This can potentially
lead to wide branching.

A third problem has to do with the wish that the automation leaves unsolved subgoals
to the user. That is difficult because the branching that we mentioned will lead to
multiple alternatives and it is likely not useful to choose one of them at random.

One promising approach to solve the last two problems would be to make the inference
of representation schemes predictable. The first try would be to have one default
representation scheme on every family. If the user wants to use another scheme then they
can make that explicit as we do with representations on type level, class level and set
level.

A final problem consists in the fact that we have groups of representation schemes that
come from different definitions but are semantically equivalent, for example, we have
explicitly defined a representation scheme on (S )γ:Unit but we also get one because S is
class-like. The automation should support such equivalence classes and be able to build
representations under one scheme from representations under another. If done naively,
that would lead to cycles.

The current implementation in Coq is based on type class inference. But that does not
seem like a good solution. The automation is difficult to debug, cannot handle multiple
representation schemes on the same family and either solves a goal completely or fails
but does not produce simpler subgoals. A custom automation tactic would likely be the
right solution.

5.6 Representations of basic constructions
In this section, we will provide representations for many of the most fundamental
operations of type theory. In each subsection, we consider one particular type constructor
and the term constructor and eliminators associated to it. Since we talk about types,
we will always have three potential representation schemes to consider. We start with
ordered pairs, disjoint sums and function types then we continue with natural numbers
and ordinals and, finally, with formulas as and example for a more complex inductive
type.

5.6.1 Ordered pairs
Ordered pairs are one of the most important tools in type theory. We can characterise
ordered pairs by the following things.

• One type constructor _×_ : Type→ Type→ Type

• One pair constructor (_,_) :
∏
A,B A→ B → A×B

• Two projections π1 :
∏
A,B A×B → A and π2 :

∏
A,B A×B → B
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• The usual equalities describing the interaction between the pair constructor and
the projections

The equalities are proofs and, hence, trivially representable. The other objects can be
represented on type level, on class level and on set level. We start with type level.

5.6.1 Lemma. The product operation, the pair constructor and the projections are
representable on type level.

Proof. For the product, fix an environment type Γ and two families of types (Aγ : Type)γ:Γ
and (Bγ : Type)γ:Γ with representation schemes. We establish a local representation
scheme by defining that a local representation of a pair ((xγ , yγ) : Aγ ×Bγ)γ:Γ is a pair
of local representations of (xγ)γ:Γ and (yγ)γ:Γ.
With this definition, the representability of the pair constructor and the projections

holds trivially. But for illustration, let us spell out the representation of the pair
constructor. Fix an environment type Γ and two families of types (Aγ : Type)γ:Γ and
(Bγ : Type)γ:Γ with representations schemes. Moreover, fix two families of members
(xγ : Aγ)γ:Γ and (yγ : Bγ)γ:Γ with representations rx and ry. Then (rx, ry) is a local
representation of the resulting family ((xγ , yγ))γ:Γ by the local representation scheme
from the previous paragraph.

Now, we continue on class-level.

5.6.2 Lemma. The product _×_ : Type→ Type→ Type is representable on class-level.

Proof. Fix an environment type Γ and two families A,B : Γ→ Type with representable
families of encodings. We need to provide a representable family of encodings of (Aγ ×
Bγ)γ:Γ. We use the same encoding for pairs that we defined in ZF2 (Lemma 3.4.3). We
can use it in ZF′ since the definition only depends on the shared core axioms. The
encoding class {〈encode(x), encode(y)〉 | x : Aγ , y : Bγ} is trivially representable from
γ : Γ because it is composed of Aγ , Bγ , encodeAγ , encodeBγ and the pairing operation,
all of which are representable from Γ.

5.6.3 Lemma. The pairing function (_,_) :
∏
A,B. A → B → A × B is representable

on class level.

Proof. This follows from the definitional equality

(λAB. λ(x : A). λ(y : B). (x, y))
= (λA,B, x, y. {{encodeA(x)}, {encodeA(x), encodeB(y)}}).

The right side is representable since it is composed of finite set builders and encodings
which are all representable.

5.6.4 Lemma. The projections π1 :
∏
A,B A × B → A and π2 :

∏
A,B A × B → B are

representable on class level.
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Proof. We do the proof only for π1. The projection is representable since it maps A, B
and z to the unique x : A that satisfies ∃y : B. z = (x, y). This mapping is representable
since the pair constructor is representable.

5.6.5 Lemma. The product, the pair constructor and the projections are representable
on set-level.

Proof. We start with the product. Most of the work is already done by representation
on class level (Lemma 5.6.2). We only need to show, that the encodings are sets. But we
have done that in the chapter about ZF2 (Lemma 3.4.4).
Since we use the same encoding as for general class-like types, we can use the same

representation for the pair constructor and the projections as in the previous two
lemmas.

We can also prove all results from this subsection for the more general sigma types.

5.6.6 Lemma. The sigma operator, the pair constructor for sigma types and the projec-
tions for sigma types are representable on type-level, class-level and set-level.

Proof. The proofs are structurally the same as those for the simple product. They only
more complex type annotations.

All the three representation schemes that we introduced on products are compatible.
A family of pairs that is representable on class level is representable on type level and a
family of pairs that is representable on set level is representable on class-level.

5.6.2 Sum types
As in the previous section, we will provide representations of the type constructor,
the element constructors and the eliminator and we will start with the most general
representations scheme for types.

5.6.7 Lemma. The sum operation _ + _ : Type → Type → Type, the injections
inj1 :

∏
A,B A→ A+B and inj2 :

∏
A,B B → A+B and the sum eliminator

rec+ :
∏
A,B

∏
C:A+B→Type

(
∏
a

C(inj1(a)))→ (
∏
b

C(inj2(b)))→
∏

x:A+B
C(x)

are representable on type-level.

Proof. We start with the sum operation. Fix an environment type Γ and two families
A,B : Γ→ Type. We establish a representation scheme on (Aγ +Bγ)γ by defining that a
local representation of a family x :

∏
δ Aδ +Bδ for ∆ � Γ is a local representation of the

partial application of the eliminator

(λ
(
C : Aγ +Bγ → Type

)
. λ
(
f :

∏
a:Aγ

C(inj1(a))
)
. λ
(
g :

∏
b:Bγ

C(inj2(b))
)
. rec+(C, f, g, x).

The representation of the eliminator is then trivial to define. The representations of the
injections is also easy.

57



5 First-order set theory

5.6.8 Lemma. The sum operation is representable on class-level.

Proof. Fix an environment type Γ and two families A,B : Γ→ Type with representable
families of encodings. We need to provide a representable family of encodings of (Aγ +
Bγ)γ:Γ. We use the same encoding that we defined in ZF2 (Lemma 3.4.6). We can use it
in ZF′ since the definition only depends on the shared core axioms. The encoding classes
are

{encode((0, x)) | x : Aγ} ∪ {encode((1, y)) | y : Bγ}

for γ : Γ. Their family is trivially representable because they are composed of Aγ , Bγ ,
encodeAγ , encodeBγ and the pair constructor, all of which are representable from Γ.

5.6.9 Lemma. The injections inj1 :
∏
A,B A → A + B and inj2 :

∏
A,B B → A + B are

representable on class-level.

Proof. We will only consider inj1. The other one is analogous. Fix representable families
A,B : Γ → Type and x :

∏
γ:ΓA over an environment type Γ. A representation of

(inj1(xγ))γ is by definition nothing but a representation of (encode(inj1(xγ)))γ which is
itself nothing but a representation of (encode((0, xγ)))γ . But this family is composed of
representable objects and, hence, representable.

5.6.10 Lemma. The dependent eliminator

rec+ :
∏
A,B

. ∀C : A+B → Type.

(
∏
x

C(inj1(x)))→

(
∏
y

C(inj2(y)))→
∏

z:A+B
P (z)

is representable.

Proof. Fix representable families

A,B : Γ→ Type,
C :

∏
γ

Aγ +Bγ → Type,

f :
∏
γ

∏
x

Cγ(inj1(x)),

g :
∏
γ

∏
y

Cγ(inj2(y)) and

z :
∏
γ

Aγ +Bγ .
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The encoding of the result (rec+(Aγ , Bγ , Cγ , fγ , gγ , zγ))γ is representable by as the unique
solution to the representable predicate

λu : C.
(
∃x : Aγ . z = inj1(x) ∧ u = fγ(x)

)
∨(

∃y : Bγ . z = inj2(y) ∧ u = gγ(y)
)
.

5.6.11 Lemma. The sum operation, the injection and the sum eliminator are represent-
able on set-level.

Proof. As in the case of ordered pairs, we can build on the previous lemmas and it only
remains to show that the encoding type of a sum A+B of set-like types is a set. But we
also have already done that in the chapter about ZF2 (Lemma 3.4.7).

5.6.3 Functions

We already have a representation of function types by representation schemes and know
how applications and lambda expressions are representable in those representations
schemes. Now, we focus on representations of function types by encodings.

5.6.12 Lemma. The dependent product operator (
∏

_ _) :
∏
A:Type(A→ Type)→ Type

is representable on class-level.

Proof. Fix families A : Γ → Type and B :
∏
γ Aγ → Type that are representable if we

represent types by encodings. We need to provide a representable family of encodings
of (

∏
a:Aγ (Bγ(a)))γ . We will use the encodings that we have already defined in ZF2

(Lemma 3.4.8): encode(f :
∏
a:Aγ Bγ(a)) := {encode∑

x:Aγ
Bγ(x)((x, f(x)) | x : Aγ}. We

only need a representation for the family of images. We can write the images as

({R ⊆
∑
x:Aγ

Bγ(x) | ∀x : Aγ . ∃!y : Bγ(x). encode((x, y)) ∈ R})γ .

The range restricts R to relations that relate some x : Aγ to elements from Bγ(x) and
the condition requires that this relation has to be total and functional, which means
exactly that it encodes a function. The image is composed of representable components
and, hence, representable.

5.6.13 Lemma. The pi operator (
∏

_ _) :
∏
A:Type(A→ Type)→ Type is representable

on set-level.

Proof. The construction is analogous to the previous lemma. From Lemma 3.4.9, we
know that the encodings are sets.
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5.6.4 Natural numbers and ordinals
In this section, we consider the constant type N. We already know that this type is
set-like and will show that it is representable by a set encoding. This already subsumes
the other two forms of representability, which keeps this subsection simpler.

5.6.14 Lemma. The type N is representable on set-level.

Proof. We already have the encoding and only need to provide a representation of
the image N̄. It is easy to see that N̄ is the least solution (by set inclusion) of the
predicate λA : S . N̄ ⊆ A. By induction, we can prove that this predicate is equal to
λA : S . ∅ ∈ A ∧ ∀x ∈ A. x+ ∈ A. In this formulation, it is trivially representable as a
composition of representable parts. The property of being a least solution is also easily
representable. Hence, we get a representation of N̄.

5.6.15 Lemma. The constructors 0 : N and _ + 1 : N→ N are representable.

Proof. This follows immediately from the definitions encode(0) := ∅ and encode(n+ 1) :=
encode(n)+ which are composed of representable objects.

5.6.16 Lemma. The recursor recN :
∏
A:N→TypeA(0) → (

∏
nA(n) → A(n + 1)) →∏

nA(n) is representable on class-level.

Proof. Fix representable families A : Γ→ N→ Type, x :
∏
γ Aγ(0), f :

∏
γ

∏
nAγ(n)→

Aγ(n+ 1) and n : Γ→ N. We can represent the family of results (recN(Aγ , xγ , fγ , nγ) :
Aγ(nγ))γ as the unique solutions to the family of representable predicates

λγ. λy. ∃(r :
∏
k≤nγ

Aγ(k)).r(0) = xγ∧

∀k : N. k < nγ ⇒ r(k + 1) = fγ(r(k))∧
r(n) = y.

What those predicates say in natural language is that there is a function r that satisfies
the recursion rules on all k < nγ and that y is the result of r on nγ . The results of
the recursor satisfy the predicate trivially. It is easy to show by induction that they
are the only values satisfying the predicate. The representability follows mostly from
representations that we already have. The only new components are the relation <
and ≤. But, since the encoding of a natural number contains exactly the encodings of
all smaller numbers, we can formulate those in terms of other representable relations:
k < n⇔ k ∈ n and k ≤ n⇔ k ∈ n ∨ k = n.

Representations for operations on ordinals are completely analogous to natural numbers,
except that we have one constructor more.

5.6.17 Lemma. The zero ordinal, the successor function on ordinals, the union of sets
of ordinals and the recursor on ordinals are representable on class-level.
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Proof. The proofs are analogous to those for natural numbers.

We cannot represent the class of ordinals. The reason is that ordinals need to be
well-founded in the strong external sense and we cannot express that in first-order logic
(Section 5.1).

5.6.5 Formulas

In this subsection, we represent types of formulas and operations on formulas. This
can be seen as an example of how to handle inductive types in general. We repeat the
definition of first-order syntax over a class A.

t ::= x | a x : N, a : A
ϕ ::= ∃̇ϕ | ϕ1 ∧̇ ϕ2 | ¬̇ϕ | t1 =̇ t2 | t1 ∈̇ t2.

Here, t stands for terms over A (elements of TermA) and ϕ stands for formulas over A
(elements of FormulaA).

5.6.18 Lemma. The type TermA over a class A is class-like.

Proof. Terms are either natural numbers that stand for variables or elements of A that
stand for themselves. Hence, there is a bijection TermA ∼ N+A. Since the right side is
class-like, the left side is class-like too.

5.6.19 Lemma. The type FormulaA over a class A is class-like.

Proof. We use the following recursively defined encoding.

encode(∃̇ϕ) := 〈0, encode(ϕ)〉
encode(ϕ1 ∧̇ ϕ2) := 〈1, 〈encode(ϕ1), encode(ϕ2)〉〉

encode(¬̇ϕ) := 〈2, encode(ϕ)〉
encode(t1 =̇ t2) := 〈3, 〈encode(t1), encode(t2)〉〉
encode(t1 ∈̇ t2) := 〈4, 〈encode(t1), encode(t2)〉〉 .

Injectivity follows by induction from injectivity of the pairing function and the encoding
on terms.

5.6.20 Lemma. The function λA.TermA is representable on class-level.

Proof. This follows from TermA = N+A (Lemma 5.6.18) and the fact that λA.N+A is
representable.

5.6.21 Lemma. The function λA.FormulaA is representable on class-level.
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Proof. We already have encodings for FormulaA; it suffices to show that the function
λA.FormulaA is representable. To get a better understanding of those encoding classes,
we write them down in an explicit form. We define a function H : Class→ Class→ Class
by

H(A,B) := {〈0, x〉 | x ∈ B}
∪ {〈1, 〈x, y〉〉 | x, y ∈ B}
∪ {〈2, x〉 | x ∈ B}

∪ {〈3, 〈u, v〉〉 | u, v ∈ TermA}

∪ {〈4, 〈u, v〉〉 | u, v ∈ TermA}.

Then the encoding class is the fixed-point FormulaA =
⋃
n:NH(A)n(∅) of the partially

applied H(A). Since the indexed union, the iteration on natural numbers and the
empty set a representable, we can use this equation to reduce the representability of
λA.FormulaA to representability of H. But that one reduces further to representability
of λA.TermA which we have by the previous lemma.

5.6.22 Lemma. The function λA.TermA is representable on set-level.

Proof. We use use the same encodings as before from which we already know that they
are representable (Lemma 5.6.20). It suffices to show that TermA is a set for every set A.
This follows from the equality FormulaA = N+A since the right side is a set.

5.6.23 Lemma. The function λA.FormulaA is representable on set-level.

Proof. We use the same encodings as before and we already showed that they are
representable (Lemma 5.6.21). It suffices to show now that the FormulaA is a set for
every set A. Fix a set A. Then TermA is a set by the previous lemma. Hence, H(A,B)
is a set for every set B. By induction, it follows that Hn(A, ∅) is a set for every natural
number n and finally that FormulaA =

⋃
n:NH

n(A, ∅) is a set.

5.6.24 Lemma. The constructors for terms and formulas over a class are representable.

Proof. One just needs to unfold the encoding for formulas. Then it is routine to produce
the representation.

5.6.25 Lemma. The recursors for terms and formulas over a class are representable.

Proof. Since we represent terms over a class A as members of A+ N, we can represent
the recursor by the recursor on the sum.

We only sketch the representation of the recursor for formulas. Recursion on formulas
can be expressed as recursion on their depth. The depth of a formula ϕ representable
as the least n : N such that encode(ϕ) ∈ H(A)n(∅) with H defined as in the encoding
of formulas above. Since recursion on natural numbers is representable, recursion on
formulas is then also representable.
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As a consequence, we get the next lemma.

5.6.26 Lemma. The satisfaction relation

λ(A : Class), (n : N), (γ : An), (ϕ : FormulaA). γ �A ϕ

is representable.

Proof. With the representations of the recursor for formulas, the pair operations and the
basic logical operations, one can construct this representation mechanically.
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This chapter provides a proof of the relative semantic consistency of the axiom of choice.
That is, we assume that we already have a model of ZF′ and need to construct a new
model L that satisfies AC. The definitions for the axiom of choice that we provided
in ZF2 are not suitable for ZF′. We copy them but include additional representability
conditions:

6.0.1 Definition. The axiom of choice in ZF′ states that for every representable family
F : I → S of inhabited sets over an index set I, there is propositionally a representable
choice function that maps every i ∈ I to an element of F (i).

6.0.2 Definition. The well-ordering theorem in ZF′ states that every set has a
representable well-order.

As mentioned in Section 5.1, our notion of well-orders is stronger than anything that
one could define in first-order logic. Hence, this well-ordering theorem is stronger than
the typical formulation. It also implies a global version of the axiom of choice that works
on classes.
The axiom of choice and the well-ordering theorem are still equivalent in ZF′ but we

only need one direction of this equivalence again:

6.0.3 Lemma. The well-ordering theorem implies the axiom of choice.

Proof. We can derive this from the corresponding lemma in ZF2 (Theorem 3.6.4). We
only need to show that the choice functions obtained by that lemma are representable.
Constructing the representations is routine.

The relative consistency proof for the axiom of choice has four steps:

1. Define a class L.

2. Show that L as a ZF structure with the relation ∈|L is a model of ZF′

3. Show that LL = L, where LL stands for the definition of L inside of L as a model.

4. Show that L (and LL) has a well-ordering. This implies the axiom of choice.

Those steps form the outline of this chapter; every step has a section. For the whole
chapter, we fix a ZF model S that we call the outer model. Whenever we talk about
set-related definitions without explicit specification of the model then we implicitly mean
S .
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One may think that it would be easier to start with a model of ZF2 and define an inner
model of ZF′ from that. This way, the outer theory would be strong and the inner theory
would be weak, which makes the model construction as easy as possible. But our only
work in the outer model is the definition of L and we need to define that one in the inner
model anyway. Our treatment of set theory with Coq as a strong metatheory means that
S and the inner model can both be models of ZF′ in exactly the same formal sense. The
definition of L that can also be used inside of L. Hence, it is even easier to use the same
axiomatisation on both levels.

The formalisation of this whole chapter is work-in-progress.

6.1 The constructible hierarchy L
The rough idea behind the definition of L is that we start with the empty class and
repeatedly add sets that can be defined (or constructed) from those that are already
contained. We repeat this process transfinitely often, that is, once for every ordinal.
There are two motivations for this construction. First, every set that is constructible
from L in a certain sense, will be contained in L. This includes all sets that must exist by
the ZF′ axiom. Second, we obtain a description of L that is graspable enough to define a
well-order on L.

We start by the formal definition of L. For clarity, we use α+ 1 as another notation
for the successor α+.

6.1.1 Definition. We define a transfinite sequence of stages (Lα : S )α∈Ord by transfin-
ite recursion:

L0 := ∅
Lα+1 := {A ⊆ Lα | A : ClassLα is representable over Lα}
Lλ :=

⋃
α∈λ

Lα.

Remember that the superscript in ClassLα indicates that we talk about classes over Lα as
a ZF structure. We define the constructible universe L as the union of those stages:

L :=
⋃
α:Ord

Lα.

L is a proper class since the union ranges over all ordinals. As a result, L contains all
ordinals, as we will see later. We can see by transfinite induction that all stages are sets.
The only non-trivial induction case is the one for α+ 1. By Lemma 5.4.5, we only need
to show that representability of classes over Lα is representable over the outer model.
A class A over Lα is by definition representable over Lα iff there is a formula ϕ over
Lα, such that ((x) �Lα ϕ)⇔ x ∈ A for all x ∈ Lα. This condition is representable over
the outer model since the set of formulas over a set is representable and the satisfaction
relation on such formulas is representable (Lemma 5.6.26).
We finish the section with some simple lemmas that can help to understand the

structure of L.
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6.2 L is a model of ZF′

6.1.2 Lemma. An inclusion of ordinals α ⊆ β implies that Lα ⊆ Lβ.

We prove this lemma simultaneously with the next one.

6.1.3 Lemma. Every stage is transitive.

Proof of Lemma 6.1.2 and Lemma 6.1.3.
We do this proof by ordinal induction on β.

• If β = ∅ then α ⊆ β implies α = ∅. It follows that Lα = ∅ ⊆ Lβ.
The empty set is trivially transitive.

• If β = β′ + 1 = β′ ∪ {β′} then α ⊆ β implies α = β (if β′ ∈ α) or α ⊆ β′. In the
first case, Lα ⊆ Lβ holds trivially. In the second case, we have Lα ⊆ Lβ′ by the
induction hypothesis. It remains to show that Lβ′ ⊆ Lβ′+1. Fix x ∈ Lβ′ . Then
x ⊆ Lβ′ by transitivity of Lβ′ (from the induction hypothesis). As a subset, x ⊆ Lβ′

is representable over Lβ′ by the predicate λy. y ∈ x. Hence, x ∈ Lβ′+1. Together,
this implies Lα ⊆ Lβ.
For transitivity of Lβ , fix an x ∈ Lβ . Then x must be a representable subset of Lβ′

and, by Lβ′ ⊆ Lβ from the previous paragraph, a subset of of Lβ.

• Let β =
⋃
ξ∈β ξ be a limit ordinal. If α = β then the goal is trivial. Otherwise, we

have α ( β which implies α ∈ β (Lemma 3.5.9) and, hence, α ∈ ξ for some ξ ∈ β.
By the induction hypothesis, Lα ⊆ Lξ ⊆

⋃
ξ∈β Lξ = Lβ.

For transitivity, fix an x ∈ Lβ. Then x ∈ Lξ for some ξ ∈ β. By the induction
hypothesis, x ⊆ Lξ ⊆

⋃
ξ∈β Lξ = Lβ.

6.1.4 Lemma. L is transitive.

Proof. Fix an x ∈ L =
⋃
α Lα. Then x ∈ Lα for some ordinal α. By the previous lemma,

x ⊆ Lα ⊆ L.

6.2 L is a model of ZF′

We show now that the class L as a ZF structure satisfies all ZF axioms. We start with
the structural axiom of extensionality and foundation which are inherited from the outer
model.

6.2.1 Lemma. L satisfies the axiom of extensionality.

Proof. Fix A,B ∈ L and assume that x ∈L A⇔ x ∈L B for all x ∈ L. By definition, this
is the same as x ∈ A⇔ x ∈ B. We have to prove that, under this assumption, A = B.
By extensionality of the outer model, it suffices to show this property more generally for
all x ∈ S . We fix an x ∈ S and show the direction x ∈ A⇒ x ∈ B. The other one is
analogous. Assume that x ∈ A. By transitivity of L (Lemma 6.1.4), we know that x ∈ L
and, hence, that x ∈ B by our assumption.
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We proved this lemma just for L but the proof actually works for all transitive classes.

6.2.2 Lemma. L satisfies the axiom of foundation.

Proof. We have to show that the relation ∈L is well-founded. This holds since ∈L is just
the restriction of ∈ and the restriction of a well-founded relation is well-founded.

Now, we continue with the set construction axioms. For many of those axioms, it is
rather easy to point out a stage by hand on which we find the desired sets. The empty
set, for example is contained in L1 = {∅}. The axioms of separation and replacement are
more difficult in this regard. We focus on the axiom of separation here. If we want to
prove the axiom, we assume a set A over L and a predicate P : A→ P that is presentable
over L. We need to show that {x ∈ A | P (x)} is a set over L. We can easily obtain
a stage that contains all elements of A (any stage that contains A, for example). If
we find a stage Lα that additionally has a representation of P then {x ∈ A | P (x)} is
representable over that stage and, hence, an element of Lα+1. To find such a stage, we
will introduce the reflection theorem that we prepare with the following definition.

6.2.3 Definition. A set A reflects a class K with respect to a formula ϕ if (γ �A ϕ)⇔
(γ �K ϕ) for all γ.

The reflection theorem will allow us to obtain arbitrarily large stages that reflect L
with respect to given formulas. Before we can prove it, we need the following auxiliary
lemma.

6.2.4 Lemma. Fix a class K and a countably infinite series of sets A1 ⊆ A2 ⊆ A3 ⊆
· · · ⊆ K that reflect K with respect to a formula ϕ. Then the limit

⋃
i:NAi also reflects

K with respect to ϕ.

Proof. As a shorthand, we define A :=
⋃
i:NAi. Let n be the number of free variables in

ϕ. We prove the claim by induction on ϕ. The only non-trivial case is when ϕ = ∃̇ψ.
For the direction from left to right, fix γ : An with γ �A ∃̇ψ. There is some x ∈ A with
(γ, x) �A ψ. By the inductive hypothesis, we know that (γ, x) �K ψ. We also know that
x ∈ K since A ⊆ K. Hence, γ �K ∃̇ψ.
For the other direction, assume that γ �K ∃̇ψ. Let i : N be minimal such that

γ : Ani . By assumption, Ai reflects K with respect to ∃̇ψ, that is, there is an x : Ai
with (γ, x) �Ai ϕ. This implies that (γ, x) �K ϕ and, by the inductive hypothesis, that
(γ, x) �A ϕ. Since x is also in A, we have γ � ∃̇ψ.

6.2.5 Reflection theorem. For every formula ϕ, and stage Lα, there is a stage Lβ ⊇ Lα
that reflects L with respect to ϕ.

Proof. We prove the statement by structural induction on ϕ.

• Assume ϕ = ¬̇ψ. By the induction hypothesis, there is a stage Lβ ⊇ Lα, such that
(γ �Lβ ψ)⇔ (γ �L ψ) and, by definition of the satisfaction relation,

(γ �Lβ ¬̇ψ)⇔ (γ 2Lβ ψ)⇔ (γ 2L ψ)⇔ (γ �L ¬̇ψ).
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6.2 L is a model of ZF′

• Assume ϕ = ϕ1 ∧̇ ϕ2. It suffices to define a sequence of stages Lα ⊆ A0 ⊆ B0 ⊆
A1 ⊆ B1 ⊆ · · · , such that every Ai reflects L with respect to ϕ1 and every ϕ2
reflects L with respect to ϕ2. Then, we can take Lβ := A0 ∪ B0 ∪ A1 ∪ B1 ∪ . . .
which is a stage. It reflects L with respect to ϕ1 by the previous lemma since it
is equal to A0 ∪A1 ∪ . . .. By the same argument, it reflects L with respect to ϕ2.
Hence, it reflects ϕ1 ∧̇ ϕ2.
To define such a sequence, we choose A0 := Lα and let Ai+1 be the least stage that
reflects L with respect to ϕ1 and Bi the least stage that reflects L with respect to
ϕ2.

• Assume ϕ = ∃̇ψ and ψ has n free variables. We will choose a stage Lβ that
reflects L with respect to ψ. Moreover, it should contain enough witnesses from
L to make even ∃̇ψ true whenever is is true over L. We define Lβ by an iterative
approach similar to the one from the previous case. We define a sequence of stages
Lα ⊆ A0 ⊆ B0 ⊆ A1 ⊆ B1 ⊆ · · · , by the following rules. A0 := Lα and Ai+1 is the
least stage greater than Bi that reflects L with respect to ψ. We choose Bi as the
least stage such that, whenever there is γ : (Ai)n and x ∈ L with (γ, x) �L ψ, there
is an x′ ∈ Bi that satisfies (γ, x′) �L ψ. We can then take Lβ := A0 ∪A1 ∪ . . .. By
the previous lemma, we know that this stage reflects L with respect to ψ. To check
that it also reflects L with respect to ∃̇ψ, fix a γ : S n.
– Assume γ �Lβ ∃̇ψ. Then there is an x ∈ Lβ , such that γ, x �Lβ ψ and, hence,
γ, x �L ψ. It follows that γ �L ∃̇ψ since x ∈ Lβ ⊆ L.

– Assume γ �L ∃̇ψ. Then there is an x ∈ L, such that γ, x �L ψ. Fix i : N, such
that all elements of γ are in Ai. Then there is, by definition, an x′ ∈ Bi ⊆ Lβ
that satisfies γ, x′ �L ψ. Hence, γ, x′ �Lβ ψ and γ �Lβ ∃̇ψ.

• Assume ϕ = (t1 =̇ t2). The claim follows trivially by unfolding definitions:

(γ �Lα t1 =̇ t2)⇔ Jt1KLαγ = Jt2KLαγ ⇔ Jt1KL = Jt2KLγ ⇔ (γ �L t1 =̇ t2).

In the second step, we use that JtKLαγ = JtKLγ for all t, which holds by a simple case
analysis.

• Assume ϕ = (t1 ∈̇ t2). The proof is analogous to the previous case.

We proved the reflection theorem for L and the stages of L but we used only few of
their properties. Typically, it is stated in a more general form that applies also to other
kinds of hierarchies.

From the reflection theorem, we derive a crucial lemma that can immediately be applied
to prove the set construction axioms where we have to show that a certain class is a set
over L.

6.2.6 Lemma. Fix a class A ⊆ L. If A is representable over L and a set in the outer
model, then it is a set in L.
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6 Consistency of the axiom of choice

Proof. Since A is representable over L, we obtain a formula ϕ over L, such that ((x) �L
ϕ)⇔ x ∈ A for all x ∈ L. Fix a stage Lα that contains all constants of ϕ and all elements
of A. Then apply the reflection theorem to obtain a greater stage Lβ that reflects L with
respect to ϕ. Now ϕ is a formula over Lβ and ((x) �Lβ ϕ)⇔ ((x) �L ϕ)⇔ x ∈ A for all
x ∈ Lβ . That means, A is representable over Lβ . Hence, A is an element of Lβ+1 and of
L.

We need this lemma primarily to prove the axioms of separation and replacement, but
it proves useful for the other axioms as well. We start with the simplest ones.

6.2.7 Lemma. L satisfies the axioms of the empty set, pairing, union, the power set
and infinity.

Proof. We just prove the axiom of pairing in detail. The other ones are similar. Fix sets
x, y ∈ L. To see that the class {x, y} is a set over L, we apply the previous lemma. The
class is representable over L by the predicate λz. z = x ∨ z = y. It is a set over the outer
model by the axiom of pairing.
The axiom of infinity is the only one where the representation is not trivial. But the

standard representation of N̄ that we defined in Lemma 5.6.14 is already applicable here
since it only uses the other axioms that we prove in the current lemma.

Note that the empty class, the ordered pair and the union over L are the same as over
the outer model. This will be important as it implies that the empty ordinal, the ordinal
successor and the limit of ordinals coincide between L and the outer model.

6.2.8 Lemma. L satisfies the axioms of separation and replacement.

Proof. We only consider separation. Replacement is analogous. Fix a set A in L and a
representable predicate P : A→ P. Then {x ∈ A | P (x)} is trivially representable over
L. By the previous lemma, it suffices to show that this class is a set in the outer model.
Moreover, by the axiom of replacement, it suffices to show that P is representable in the
outer model. If ϕ is the formula representing P over L then we get the representation over
the outer model by P = (λx. (x) � ϕ) and the representability of �L (Lemma 5.6.26).

6.2.9 Corollary. L is a model of ZF′.

Proof. L satisfies all the axioms by Lemma 6.2.1, Lemma 6.2.2, Lemma 6.2.7 and
Lemma 6.2.8.

6.3 L satisfies the axiom of constructibility
6.3.1 Definition. The axiom of constructibility states that the class of all sets is
equal to L.

We will show that this statement holds over L. This knowledge is helpful in the next
section where we establish a well-order on L. If L contains all sets then this implies the
well-ordering theorem and, with it, the axiom of choice.
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6.3 L satisfies the axiom of constructibility

Since L is defined by recursion on the class of ordinals, it will be useful to know
that the ordinals over L are exactly the ordinals over the outer model and that ordinal
recursion over both models behaves equally. Then we will be able to show that every
stage LLα is equal to the corresponding stage Lα over the outer model. We start with a
first description of the ordinals over L.

6.3.2 Lemma. OrdL = Ord ∩ L

Proof. We show the equivalent statement that x ∈ OrdL ⇔ x ∈ Ord for all x ∈ L. We
apply well-founded induction on x.
Assume that x ∈ OrdL. Then x is transitive over L and every element is an ordinal

over L. By the inductive hypothesis, every element is then also an ordinal over the outer
model. It suffices to show now that x is also transitive over the outer model. Fix arbitrary
sets y and z over the outer model with z ∈ y ∈ x. By transitivity of L (Lemma 6.1.4),
y, z ∈ L. By transitivity of x over L, we conclude that z ∈ x.
For the other direction, assume that x ∈ Ord. Then x is transitive and every element

is an ordinal. Transitivity over L follows trivially. Every element is an ordinal over L by
the induction hypothesis. Hence, x is also an ordinal over L.

We also need the same lemma for stages.

6.3.3 Lemma. OrdLα = Ord ∩ Lα

Proof. Analogous to the previous lemma.

Now it remains to show that every ordinal over the outer model is actually contained
in L. We will see that α ∈ Lα+1 for every ordinal α. As an intermediate step, it seems
necessary to examine exactly which ordinals are contained in every stage.

6.3.4 Lemma. Lα ∩ Ord = α

Proof. We prove the statement by induction on α.

• Assume α = ∅. L∅ ∩ Ord = ∅ ∩ Ord = ∅.

• Assume α = α′ + 1. Since every element of the ordinal α is an ordinal, it suffices to
show that an arbitrary but fixed ordinal β satisfies β ∈ Lα ⇔ β ∈ α.
Assume that β ∈ Lα′+1. Then β ⊆ Lα′ . With the inductive hypothesis, we get that
β ⊆ Lα′ ⊆ α. Hence, β ∈ α+ 1 (Lemma 3.5.9).
For the other direction, assume that β ∈ α + 1 = α ∪ {α}. If β ∈ α then
β ∈ Lα ⊆ Lα+1 by the inductive hypothesis and Lemma 6.1.2. If β ∈ {α} then
β = α = Lα ∩ Ord = OrdLα ∈ Lα+1 by the inductive hypothesis, the previous
lemma and representability of OrdLα over Lα.

• Assume that α =
⋃
ξ∈λ ξ is a limit ordinal. Then we have

L⋃
ξ∈α ξ

∩ Ord =
(⋃
ξ∈α

Lξ
)
∩ Ord =

⋃
ξ∈α

Lξ ∩ Ord IH=
⋃
ξ∈α

ξ = α.
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6 Consistency of the axiom of choice

We trivially get the next lemma.

6.3.5 Lemma. Every ordinal α is an element of Lα+1.

Proof. Fix an ordinal α. Then α ∈ α + 1 = Lα+1 ∩ Ord ⊆ Lα+1 by the previous
lemma.

Now, we can finally prove the lemma that we have been working for.

6.3.6 Lemma. Ord = OrdL

Proof. We already know that Ord ∩ L = OrdL (Lemma 6.3.2). Hence, it suffices to
show that every ordinal α is an element of L. This follows by the previous lemma:
α ∈ Lα+1 ⊆ L.

For clarity, we identify Ord and OrdL from now on, that is, we write Ord instead of
OrdL and we implicitly convert members of one to members of the other. Now, we show
that the recursion principles for both coincide.

6.3.7 Lemma. recOrd = recLOrd.

Proof. Fix

• a family A : Ord→ Type,

• a family x : A(∅),

• a function f : ΠαA(α)→ A(α+),

• a function g : Πλ(Πα:λA(α))→ A(λ) and

• an ordinal α.

We show that recOrd(A, x, f, g, α) = recLOrd(A, x, f, g, α) by ordinal induction on α.

• Assume α = ∅. Then recOrd(A, x, f, g, ∅) = x = recLOrd(A, x, f, g, ∅).

• Assume α = α′ + 1. Then

recOrd(A, x, f, g, α′ + 1)
= f(recOrd(A, x, f, g, α′))
= f(recLOrd(A, x, f, g, α′))
= recLOrd(A, x, f, g, α′ +L 1)
= recLOrd(A, x, f, g, α′ + 1).

• Assume that α is a limit ordinal. Then

recOrd(A, x, f, g, α)
= g(λξ ∈ α. recOrd(A, x, f, g, ξ))
= g(λξ ∈ α. recLOrd(A, x, f, g, ξ))
= recLOrd(A, x, f, g, α).
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6.4 L satisfies the axiom of choice

We used in this proof that the empty ordinal, the successor function and, hence, the
notion of limit ordinals over L and the outer model coincide.

6.3.8 Lemma. Lα = LLα for all ordinals α.

Proof. It is easy to check that the recursion instruction in the definition of the stages are
the in L and the outer model.The lemma follows with the previous lemma.

Now, we can prove the main result of this section.

6.3.9 Lemma. L satisfies the axiom of constructibility, that is L = LL.

Proof. Fix x ∈ L and an ordinal α, such that x ∈ Lα. We know that α is also an ordinal
over L (Lemma 6.3.6). With the previous lemma, we get that x ∈ Lα = LLα ⊆ LL. The
other direction is trivial.

Often, the axiom of constructibility is stated as V = L where V stands for the class of
all sets.

6.4 L satisfies the axiom of choice
We will provide a representable well-ordering on L. The main work is to show that
representable well-orderings are inherited from every stage to its successor. Then we
can compose those well-orderings to a representable well-ordering of L. We can derive
the well-ordering theorem and, with it, the axiom of choice. Since successor stages are
defined from formulas, we will need the following lemma.

6.4.1 Lemma. If a class-like type I has a representable well-order and every member of
a family F : I → Class has a representable well-order then

⋃
i:I F (i) has a representable

well-order.

Proof. For x, y ∈
⋃
i:I F (i), let ix, iy : I be minimal, such that x ∈ F (ix) and y ∈ F (iy).

We define that x < y if ix < iy or ix = iy and x < y by the well-order on F (ix). It is
routine to check that this is representable and a well-order.

6.4.2 Lemma. If a class A has a representable well-order then then FormulaA has a
representable well-order.

Proof. The easiest way to see this is from the representation FormulaA =
⋃
n:NH

n(∅)
where H is defined as in Lemma 5.6.21. By the previous lemma, it suffices to show
that the greater relation on N is a representable well-order and that every Hn(∅) has a
representable well-order, which can be done by induction on n. We will not go into the
details.

6.4.3 Lemma. Every stage of L has a representable well-order.

Proof. We prove this by ordinal induction on the rank of the stage.
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6 Consistency of the axiom of choice

• L∅ = ∅ has a trivial representable well-order.

• Lα+1 = {{x ∈ Lα | (x) � ϕ} | ϕ : FormulaLα} ≤ FormulaLα . This set has a
representable well-order by the induction hypothesis and the previous lemma.

• Fix a limit ordinal λ. By definition, Lλ =
⋃
α∈λ Lα. This has a representable

well-order by the induction hypothesis and Lemma 6.4.1.

6.4.4 Lemma. L has a representable well-order.

Proof. This follows by the previous lemma and Lemma 6.4.1.

6.4.5 Lemma. The axiom of choice holds over L.

Proof. By Lemma 6.3.9, we know that L = LL. If we interpret the previous lemma over
L, it states that LL and, hence, L has a well-ordering that is representable over L. We
can restrict this well-ordering to a well-order on any given set over L. This restricted
well-ordering will also be representable. Thus, the well-ordering theorem holds over L
and with it the axiom of choice.

6.4.6 Corollary. Semantic consistency of ZF′ implies semantic consistency of ZF′ with
the axiom of choice.

Proof. We assumed a model of ZF′ and constructed L which satisfies all the axioms of
ZF′ and the axiom of choice.

As a closing remark, one could use this to derive relative consistency of the axiom
of choice over a pure first-order axiomatisation of ZF. The approach would be to cut
out the externally well-founded fragment of ZF to obtain a model of ZF′ as suggested in
Section 5.1. L in that model is then a model of ZF with the axiom of choice. But since
ZF′ is stronger than the first-order axiomatisation of ZF, L is then also a model of this
first-order axiomatisation.
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7 Formalisation details

We formalised the proof of Sierpiński’s theorem and the most interesting parts of the
consistency of the axiom of choice in the Coq proof assistant. Both formalisations can
be found at https://www.ps.uni-saarland.de/~rech/master.php. They were built
independently from each other, starting from the axiom of both set theories. They
share many basic ideas but differ in some details. They also differ significantly from the
presentation in this thesis due to the technical limitations of Coq and the fact that the
thesis was written afterwards and contains some improvements over the formalisation.

The formalisation of Sierpiński’s theorem is divided into five files that are listed with
their line counts in Table 7.1. Most names describe pretty well what they contain and
how they relate to the chapters and sections of this thesis. The file Basic_Set_Theory.v
contains the axiomatisation of ZF2 and the encodings that we need for the proof. Apart
from coercions, there is no mechanism in Coq to identify sets with classes or classes with
the type of their elements. For that reason, we formulate all the class-operations explicitly
on sets and formulate the set-construction axioms as explicit existence statements about
sets.

We have a coercion from classes to types which allows us to write for example A→ B
to stand for the type of functions from a class A to a class B. Formally, elements of
a class A are dependent pairs consisting of a set x and a proof that x ∈ A. By proof
irrelevance, equality between such pairs is equivalent to equality between the x. We
often need to turn elements of classes into sets and sets into elements. For the first
direction, we have a simple coercion. To make the other direction more convenient,
we treat the element-property with a type class and hide it as an implicit argument.
When the element-property cannot be inferred automatically then we often use the
command Program Definition. In proof scripts, we achieve a similar effect with tactics
like unshelve eexact, unshelve eapply and unshelve eexists. They introduce the
property as an existential variable and then unshelve that variable to turn it into a goal.
When the formalisation was created, it was not clear how useful encodings could be.

For that reason, the formalisation does not make encodings explicit but defines classes
or sets with similar operations as the corresponding type. For example, we have a set
of numerals with constructors and a recursor on that set. One reason to avoid explicit
encodings was the need for additional axioms. The formalisation assumes only the law of
excluded middle and functional extensionality. In particular, there is no general axiom of
definite description. We only have a description principle for sets which comes from the
specific formulation of replacement. But without definite description, we have no way
to map sets in a meaningful way to anything that is not a set. For example, we cannot
define a bijection between the set of numerals and the type of natural numbers. More
generally, the recursor on numerals can only be used to construct other sets.
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7 Formalisation details

spec proof
494 538 Basic_Set_Theory.v

256 348 Cardinality.v

170 327 Ordinals.v

21 86 Hartogs_Number.v

36 123 Sierpinskis_Theorem.v

1036 1422 total

Table 7.1: Sierpiński’s theorem

spec proof
110 13 ZF_Structures.v

576 41 Definability.v

45 0 Axioms.v

175 138 Basic_Constructions.v

239 410 L.v

1145 602 total

Table 7.2: Consistency of AC

The formulations of constructors and recursors on sets do not posses any useful
conversion properties. Computation has to be done by rewriting. For that purpose, we
generally register computation rules with autorewrite. This tactic is also useful to apply
the defining properties of sets or set operations like the union. The tactics apply and
auto could be used but are less useful for that purpose since we often do it on subterms.
The formalisation of the consistency of AC is work-in-progress. The files and their

current line-counts are listed in table 7.2. The formalisation uses the expression definability
instead of representability. The automatic inference of the equivalent of representations
schemes and representations relies on the mechanism for type class inference. Due to
technical limitations in this mechanism, the representability framework is not implemented
in the same form as we present it here. It was necessary to avoid different representations
schemes on the same family. This implies that we cannot work with the representation
schemes for types. The formalisation does not distinguish between local representations
and full representations but has only one such concept. We use the same coercions from
sets to classes, from classes to types and from elements to sets as in the formalisation of
Sierpiński’s theorem. A difference between both is that we assume the axiom of definite
description and use explicit encodings for the formalisation of the consistency proof.
The formalisation contains many admits. Many of the basic representations from

Section 5.3 and Section 5.6 are admitted. We have large parts of the proof of the
reflection theorem and the fact that L is a model. The facts that L satisfies the axiom of
constructibility and the axiom of choice are not formalised at all.
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8 Related work

History of AC. The first proof of the independence of a version of AC is due to Frankel [7].
In 1922, he established the independence of AC over a certain set theory with atoms
called urelements. However, his proof does not apply to ZF. The first proof that works
on ZF is the one by Gödel [10] that we have seen in chapter 6. After that one, Gödel
discovered another similar proof that he claims to be simpler [9]. Instead of L, it uses the
class of hereditarily ordinal definable sets as inner model. Gödel always believed in the
truth of CH and tried to deduce the hypothesis from more foundational assumptions, even
after the independence over ZF was established by Cohen. He hoped that the existence
of large cardinals would suffice. Indeed, the standard large cardinal axioms imply many
similar but weaker statements. However, it turned out that the standard axioms that
Gödel had in mind have no influence on the truth of CH [22]. This discovery seems to
have mostly settled the efforts to decide the continuum problem.

Mizar. When it comes to formalisations inside set theory, a large body of such work
can be found in the library of the proof assistant Mizar [12]. Mizar is based on Tarski-
Grothendieck set theory, a non-conservative extension of ZF. The system contains
first-order functions and predicates on sets as primitives. However, those are not treated
as elements of the object logic. It is not allowed to quantify over them, except on a
metalevel where the user can state generic definitions and theorems that serve as a kind
of template and take functions or predicates as parameters. The lack of higher-order
functions makes certain definitions difficult. For example, many definitions of recursive
functions in the library are difficult to read since it is not possible to define a generic
recursor. Instead, the instructions that would form the recursor, are inlined as boilerplate.
There is a formalisation of the reflection theorem in Mizar by Bancerek [2].

Isabelle. The proof assistant Isabelle [31] offers a basic higher-order logic as foundation
in which more powerful theories can be axiomatised. One of those theories which is
Isabelle/ZF which is part of the standard library. It consists of a shallow embedding
of first-order logic with the axioms of ZF inside. Higher-order functions are available
and there is a convenient syntax for the definition of inductive or coinductive types and
recursive functions. This syntax is not primitive, but defined from the axioms of ZF. The
library contains, among others, many results about ordinals and cardinals and proofs of
the equivalence between 20 formulations of AC and 7 formulations of the well-ordering
theorem [24].

Unfortunately, Isabelle/ZF builds on a shallow embedding of first-order logic and Mizar
does not have a metalogic at all. Hence, neither system allows any formal meta-reasoning.
Nonetheless, Paulson produced a partial formalisation of the Montague-Levy reflection
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theorem and the relative consistency of AC in Isabelle/ZF [23]. The formalisation covers
only the internal steps that can be done inside ZF. There is no way to formalise the
meta-reasoning without switching the foundation. The development contains, however,
a mechanical procedure that produces instances of the reflection theorem for specific
formulas.
Other related work in Isabelle includes a mechanical translation from higher-order

logic to ZF by Krauss and Schropp [19]. Gordon explored how higher-order logic becomes
more expressive if one assumes a model of ZF and outlined his idea to model higher-order
logic in ZF [11]

Lean. A recent contribution comes with the Flypitch project by Han and van Doorn [13].
The project consists of a full formalisation of the independence of CH over ZF with the
axiom of choice in the Lean theorem prover. The relative consistency of ¬CH is proved
by Cohen forcing and the relative consistency of CH follows by a σ-closed forcing instead
of the classical approaches through constructibility. This way, one can avoid extensive
reasoning inside the set theory.

Coq. There is also notable work in type theory: Werner constructed models of the
calculus of inductive constructions in ZF and vice versa [32]. Barras worked in the Coq
proof assistant to explore set-theoretic models of fragments of the calculus of inductive
constructions [3]. Recently, Kirst formalised a categoricity result for ZF2 and constructed
models for ZF2 in Coq [17, 18]. Forster, Kirst and Wehr presented a formalisation of the
completeness theorem for first-order logic in Coq [6].

78



9 Conclusion

We began this thesis by introducing an axiomatisation of the set theory ZF2 in Coq. The
axioms were inspired by the widely-used Zermelo-Fraenkel set theory but modified for
more convenience. Most importantly, we chose a second-order axiomatisation, such that
we could use arbitrary functions and predicates for replacement and separation. But we
also chose versions of the axioms of foundation and infinity that take full advantage of the
capabilities of Coq to make the statements and their application as natural as possible.
We introduced the concept of encodings to build a connection between set-theoretic
constructions like numerals or the Cartesian product on one hand and, on the other hand,
their counterparts in the existing infrastructure of Coq, like natural numbers and the
product of types. This allows us to mix set-theoretic definitions seamlessly with standard
formulations in Coq.
We continued with the proof of Sierpiński’s theorem. We developed some basic and

some more specialised results about cardinality. At this point, it already appeared
valuable that we have this link between set-theory and the metalogic. Technically, we
can work with the convenience of inductive types and recursive definitions in Coq and
the conversion mechanism and, in principle, we can reuse pre-existing results that are not
specific to sets. In contrast to many informal presentations, we did not make cardinal
numbers explicit. Those are unnecessary for our proofs and would only increase the
complexity.
The next step was the introduction of some ordinal theory and, most importantly,

the Hartogs number. In that chapter, we used ordinals solely in their function as
representatives of well-orderings up to isomorphism. In the same way, in which we
avoided to use cardinal numbers, it would likely be possible to avoid ordinals and just
talk about well-ordered sets instead. But there are two reasons why one should still make
the concept of ordinals explicit. First, it seems more understandable to talk about one
concrete ordinal than about some unknown well-ordered set that only satisfies certain
properties. This is most apparent when it comes to the Hartogs number. Second, we use
ordinals for the definition of L, so it doesn’t cause much overhead to apply them here, as
well. Note that ordinals are the only set-theoretic construction that we do not treat as
encodings of some other objects.
The proof of Sierpiński’s theorem relies on the law of excluded middle in two places:

We use it on a low level to prove that isomorphic ordinals are equal (Lemma 3.5.11) and
to prove Lemma 4.2.4 where we first apply Cantor’s theorem to prove that a specific
function is not surjective and then obtain non-constructively an element that is not in
the image. Moreover, we use classic reasoning in multiple places to establish properties of
basic constructions. It seems plausible that Sierpiński’s theorem can be translated to an
intuitionistic setting. We do not care about isomorphic ordinals if we do not introduce
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ordinals as unique representatives at all. Moreover, one can prove a stronger version of
Cantor’s theorem that does not only refute the existence of a surjection but gives us a
witness for the non-surjectivity of functions. Finally, we can do the basic constructions
without classical reasoning if we build on and intuitionistic foundation. This might be an
interesting topic for future work.

For the second part of our project, we needed to switch to the set theory ZF′ because
it makes weaker assumptions and gives us more flexibility for the construction of models.
Most axioms stayed the same as before. The only difference lies in the axioms of
replacement and separation. Instead of arbitrary functions and relations on sets, we
only accept those that are given by a first-order formula. The axiomatisation is still not
equivalent to pure first-order ZF because the axioms of foundation and infinity allow us
to use ∈-induction and natural induction for arbitrary predicates, not just first-order
formulas, as they should. We chose those strong formulations for foundation and infinity
because they are necessary to keep the notion of encodings as bijection that we used
before. The relative consistency of AC is still provable in this system. Alternatively,
one could choose to switch to the traditional first-order axioms and relax the notion of
encodings. The result seems equally useful for our purposes.

With the new axiomatisation, our work became significantly more difficult. Whenever
we want to apply replacement or separation (or forms of induction in a pure first-order
axiomatisation), we need to provide an appropriate formula. To make this step straight-
forward, we introduced the notion of first-order representations and refined it iteratively to
a point where we can use almost any function or predicate for separation and replacement
and construct their representation afterwards in a compositional and often automated
fashion. Talking about representations could be quite simple if we worked only with
objects that we can encode as sets. In that case, the representability of sets would be
the only necessary notion. But for the consistency proof of AC, we need to talk about
proper classes, functions on proper classes, higher-order functions on those, and other
objects that make the formulation of representability more difficult.
‘Representation’ is a simple word that seems to represent a natural concept, but

making formal what a first-order representation means in a general context, is surprisingly
difficult. In our treatment, we stated some conditions on representations and produced
some instances, but those are just an approximation of the general idea of representability.
It would be interesting to get a better understanding of the concept, which might lead to
a simpler definition. At the current state, it seems like there could be other definitions of
representability that work equally well.
Technical considerations that drove many decisions behind our concrete framework

were the ability to extend the notion of representability to new types and the intention
to automate the construction of representations using type class inference. However,
it turns out that this approach is limiting. The automation can fail when there are
two representation schemes on the same type family that are not equal by conversion.
Moreover, type class inference in Coq is unstructured and difficult to debug and it is
easy to run into performance problems Generally, the performance should be expected to
become worse, as the user adds more instances to the database. An ideal solution would
be to implement a custom tactic for the construction of representations that accesses a
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custom database of existing representations.
To make the treatment of representations clearer, it could help to switch to a metathe-

oretical level and talk about Coq values as terms that can have free variables and refer
to an environment. This could be done using MetaCoq [27]. That viewpoint seems to be
the original inspiration behind our definitions. One could say that our current framework
does two things at once: It reifies values, then it translates their representation into
first-order logic. One should try to uncouple those aspects.
To summarise, we need representability because we talk about the metatheory of ZF

which requires a deep embedding that builds on formulas, but we also need to reason
inside of ZF and want to do this in a convenient way without writing first-order formulas
by hand or redefining the things that we already have in Coq. It is this mix of internal
and external reasoning that distinguishes our project from many previous formalisations
and makes a structured approach like our representability framework desirable.

Future work. The obvious next step would be to finish the proof for the relative
consistency of the axiom of choice. Using the representation framework and following
the approach in chapter 6, that should be routine. One could continue to prove relative
consistency of the generalised continuum hypothesis, which can also be done from the
axiom of constructibility [26]. Moreover, one could apply the representability framework
to produce formalisations of more parts of set theory, first-order logic, Peano arithmetic,
or even other logical systems.

Another interesting next step would be to prove a type-theoretic version of Sierpiński’s
theorem. Homotopy type theory [29] seems like a good basis for such a proof due
to its extensionality principles on functions and types and its flexible notion of mere
propositions. In homotopy type theory, one can formulate an axiom of choice and a
generalised continuum hypothesis that talk about types instead of sets but express the
same ideas as their set-theoretic counterpart. It seems plausible that one of the proof
can be done in such a setting without non-standard axioms. In particular, we expect
that one can do the proof without the law of excluded middle. Most applications of this
law in our proof are only necessary to handle set-theoretic encodings of ordinals and
other objects. In an intuitionistic foundation, they might not be necessary. If one does
assume the law of excluded middle then it should be straight-forward to translate our
formalisation into homotopy type theory.

Our notion of representability seems powerful enough to admit representation schemes
on all families of types on which we might want to talk about representations. But it
would be interesting to understand the notion better, to find better explanations, to
understand the limits and maybe to extend them. It appears more natural to formulate
representability on a metatheoretic level where we can talk about Coq terms with free
variables and Coq terms have the same status as first-order formulas. The mechanisation
would likely also profit from such an approach. As explained in Section 5.5, there are
limitations to our current approach. Some of them can be overcome by switching from
standard type class inference to a specialised automation tactic. Others can be overcome
by such a switch to a meta-level. MetaCoq [27] could be useful for this. In general, the
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9 Conclusion

further development of representability seems like a rather open-ended question and it is
not clear what one can achieve.
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