Constructing Inductive Families in UniMath

Felix Rech
Advisor: Steven Schafer

June 15, 2018

UniMath

» Dependent functions ([],. 4 B(a))

» Dependent pairs (3,4 B(a))

» Sum types (A + B)

» Equality (a =)

» Universes (Up, Ui, . ..)

> Empty type, unit, bool and natural numbers

» Univalence

» Propositional resizing [Voevodsky 2011]
Not included

» No records
» No general inductive types

» No match construct

Mere Proposition

Definition
A type is a mere proposition if all inhabitants are equal.

Axiom (Propositional resizing)

Every mere proposition inhabits the smallest universe.

Propositional truncation

I|A|| is a mere proposition and expresses that A is inhabited.

The Goal

General inductive types for UniMath

Side product:
Generic reasoning about inductive types

W-Types
Inductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, Ba->WAB) ->WAB.
Example
N ~ W(A, B) where
A:=2
B := \z,if x then 0 else 1

W-Types

Inductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, Ba->WAB) ->WAB.

Example
N ~ W(A, B) where
A:=2
B := \z,if x then 0 else 1
M-Types

CoInductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, Ba->WAB) ->WAB.

Construction of M-Types
Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.

“Non-wellfounded trees in homotopy type theory".
In: arXiv preprint arXiv:1504.02949 (2015)

Representation as sequence of approximations:

NN A

Judgmental Computation Rule for M-Types

Given a coinductive type M with destructor dest and corecursor
corec, we have a computation rule of the form

dest(corec(C, f,z)) = ¢(C, f,)

for a certain ¢.
We want this to hold by definition.

Judgmental Computation Rule for M-Types

Given a coinductive type M with destructor dest and corecursor
corec, we have a computation rule of the form

dest(corec(C, f,z)) = ¢(C, f,)

for a certain ¢.
We want this to hold by definition.

The Solution: Remember ', f and x

Z Z (corec(C, f,z) = m)

(m:M) (C,f,x)

corec' (C, f,x) := (corec C, f,x),C, f,x, refl)
dest’'((m, C, f,z)) := ¢(C, f, z)

Judgmental Computation Rule for M-Types

Given a coinductive type M with destructor dest and corecursor
corec, we have a computation rule of the form

dest(corec(C, f,z)) = ¢(C, f,)

for a certain ¢.
We want this to hold by definition.

The Solution: Remember ', f and x

M = Z Z (corec(C, f,z) = m)

(m:M)] (C,f)

AAAAA ' £) o— (mmvnnl(0 £ N £ o vnfl)
We need to eliminate the truncation.
CJ\—JL \k’ll','k".}'," }/ [y— \AI\L/.'JV.:,(//

We need propositional resizing to use arbitrary C'.

Construction of W-Types

W = Z ||m satisfies the induction principle for W/|
m:M

Strictly Positive Types

Nested inductive and coinductive types with variables

AB:=K|z|AxB|A+B|K—=A|px.Alvz. A

where K is a constant type and x a variable.

Containers
[Abbott, Altenkirch, and Ghani 2005]

A polynomial-like normal form for functions from U to U

Example (Lists)
ZFin(n) — A
n:N

In General

D P(s)— A
s:S

W-Types are the inductive fixed points of containers:

ZB) — W(A, B)

Construction of Strictly Positive Types

We generalize containers to describe functions from (I — U) to U
for any 1.

Theorem
Container functors are closed under all strictly positive type formers.

10

Inductive Families

Inductive Vec (A : Type) : nat -> Type :=
| vnil : Vec A O
| vcons : foralln, A ->Vec An ->Vec A (Sn).

Vec(A) is the inductive fixed point of a function from (N — U/) to
(N —U):

Vec(A)y =~1
Vec(A)p41 ~ A x Vec(A4),

We need to generalize containers again for functions from (I — U)
to (J = U) for any I and J.

11

Conclusion

What We Did

1
2
3
4

. Construct indexed M-types from natural numbers
. Construct indexed W-types from coinductive types
. Obtain some computation rules by definition

. Construct nested (co-)inductive families

12

Conclusion

What We Did

1. Construct indexed M-types from natural numbers
2. Construct indexed W-types from coinductive types
3. Obtain some computation rules by definition

4. Construct nested (co-)inductive families

Thank youl

12

References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3-27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

Vladimir Voevodsky. “Resizing rules, slides from a talk at
TYPES2011". In: At author's webpage (2011).

13

	References

