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UniMath

I Dependent functions (
∏

a:AB(a))
I Dependent pairs (

∑
a:AB(a))

I Sum types (A+B)
I Equality (a = b)
I Universes (U0,U1, . . .)
I Empty type, unit, bool and natural numbers
I Univalence
I Propositional resizing [Voevodsky 2011]

Not included
I No records
I No general inductive types
I No match construct
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Mere Proposition

Definition
A type is a mere proposition if all inhabitants are equal.

Axiom (Propositional resizing)
Every mere proposition inhabits the smallest universe.

Propositional truncation
‖A‖ is a mere proposition and expresses that A is inhabited.
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The Goal

General inductive types for UniMath

Side product:
Generic reasoning about inductive types
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W-Types

Inductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, (B a -> W A B) -> W A B.

Example

N 'W(A,B) where
A :≡ 2

B :≡ λx, if x then 0 else 1

M-Types

CoInductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, (B a -> W A B) -> W A B.

4



W-Types

Inductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, (B a -> W A B) -> W A B.

Example

N 'W(A,B) where
A :≡ 2

B :≡ λx, if x then 0 else 1

M-Types

CoInductive W (A : Type) (B : A -> Type) :=
| sup : forall a : A, (B a -> W A B) -> W A B.

4



Construction of M-Types

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”.
In: arXiv preprint arXiv:1504.02949 (2015)

Representation as sequence of approximations:

. . .
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Judgmental Computation Rule for M-Types
Given a coinductive type M with destructor dest and corecursor
corec, we have a computation rule of the form

dest
(
corec(C, f, x)

)
= φ(C, f, x)

for a certain φ.
We want this to hold by definition.

The Solution: Remember C, f and x

M′ :≡
∑

(m:M)

∥∥∥∥∥∥

∑
(C,f,x)

(
corec(C, f, x) = m

)

∥∥∥∥∥∥

corec′(C, f, x) :≡
(
corec(C, f, x), C, f, x, refl

)
dest′

(
(m,C, f, x)

)
:≡ φ(C, f, x)

corec′(C, f, x) :≡
(
corec(C, f, x), C, f, x, refl

)
dest′

(
(m,C, f, x)

)
:≡ φ(C, f, x)We need to eliminate the truncation.

We need propositional resizing to use arbitrary C.
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Construction of W-Types

W :≡
∑
m:M

‖m satisfies the induction principle for W‖
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Strictly Positive Types

Nested inductive and coinductive types with variables

A,B ::= K | x | A×B | A+B | K → A | µx.A | ν x.A

where K is a constant type and x a variable.
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Containers
[Abbott, Altenkirch, and Ghani 2005]

A polynomial-like normal form for functions from U to U

Example (Lists) ∑
n:N

Fin(n)→ A

In General ∑
s:S

P (s)→ A

W-Types are the inductive fixed points of containers:

W (A,B) '
∑
a:A

B(a)→W (A,B)
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Construction of Strictly Positive Types

We generalize containers to describe functions from (I → U) to U
for any I.

Theorem
Container functors are closed under all strictly positive type formers.
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Inductive Families

Inductive Vec (A : Type) : nat -> Type :=
| vnil : Vec A 0
| vcons : forall n, A -> Vec A n -> Vec A (S n).

Vec(A) is the inductive fixed point of a function from (N→ U) to
(N→ U):

Vec(A)0 ' 1

Vec(A)n+1 ' A×Vec(A)n

We need to generalize containers again for functions from (I → U)
to (J → U) for any I and J .
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Conclusion

What We Did

1. Construct indexed M-types from natural numbers
2. Construct indexed W-types from coinductive types
3. Obtain some computation rules by definition
4. Construct nested (co-)inductive families

Thank you!

12



Conclusion

What We Did

1. Construct indexed M-types from natural numbers
2. Construct indexed W-types from coinductive types
3. Obtain some computation rules by definition
4. Construct nested (co-)inductive families

Thank you!

12



References

Michael Abbott, Thorsten Altenkirch, and Neil Ghani.
“Containers: constructing strictly positive types”. In:
Theoretical Computer Science 342.1 (2005), pp. 3–27.

Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti.
“Non-wellfounded trees in homotopy type theory”. In: arXiv
preprint arXiv:1504.02949 (2015).

Vladimir Voevodsky. “Resizing rules, slides from a talk at
TYPES2011”. In: At author’s webpage (2011).

13


	References

