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Recap: Spilling

code r1 r2 r3

... x y

let X = x in x y

let z = x + y in x y z
if z ≥ y then x y z

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills
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IL

s , t : := let x = e in s
| i f e then s else t
| e
| fun f x = s in t
| f x

Formally described in Schneider, Smolka, and Hack, “A First-Order
Functional Intermediate Language for Verified Compilers”, 2015
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Representation of Spilling

code S L

...
let X = x in
let z = x + y in

{x} {}

if z ≥ y then

{} {}

let x = X in
x

{} {X}

else
z

{} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application
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From a spilling to a spilled program

do spill : stmt → spilling → stmt

(s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . . let Xn = xn in
let y1 = Y1 in . . . let ym = Ym in

s
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Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.
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Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL

list of parameters of defined functions

Λ

list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information
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Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sls
(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (if e then s else t)
: (Sp, L,None) · sls , slt
(ZL,Λ); (R,M) ` spillk LV e : (Sp, L,None)

(ZL,Λ); (R,M) ` spillk LV (f Y ) : (Sp, L,Some(inr Sl))

(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (fun f x := s in t)
: (Sp, L, Some(inl(Rf ,Mf ))) · sls , slt

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·
(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

In the first talk for let:

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl
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spillk

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl
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variables in register & register bound
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Overview

spillk

reconstr live sound

vars in R spill sim register bound

SimplSpill

doSpill reconstr live

StupSpill

spilled program

< 100 loc

< 500 loc
> 5000 loc
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