
Formal Verification of a Family of Spilling
Algorithms

Second Bachelor Seminar Talk

Julian Rosemann
Advisors: Prof. Gert Smolka, Sigurd Schneider

Saarland University
Department of Computer Science

2016-11-04

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Recap: Spilling

code r1 r2 r3

... x y

let X = x in x y

let z = x + y in x y z
if z ≥ y then x y z

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills

Julian Rosemann Verification of Spilling Algorithms 2 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Recap: Spilling

code r1 r2 r3

... x y
let X = x in x y
let z = x + y in x y z
if z ≥ y then x y z

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills

Julian Rosemann Verification of Spilling Algorithms 2 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Recap: Spilling

code r1 r2 r3

... x y
let X = x in x y
let z = x + y in z y

z

if z ≥ y then x y z

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills

Julian Rosemann Verification of Spilling Algorithms 2 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Recap: Spilling

code r1 r2 r3

... x y
let X = x in x y
let z = x + y in z y

z

if z ≥ y then z y

let x = X in

x + z
else

z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills

Julian Rosemann Verification of Spilling Algorithms 2 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Recap: Spilling

code r1 r2 r3

... x y
let X = x in x y
let z = x + y in z y

z

if z ≥ y then z y
let x = X in z x
x + z

else
z

x, y, z variables in register

X, Y, Z variables in memory

spill: let X=x in

load: let x=X in

memory variables only in
loads & spills

Julian Rosemann Verification of Spilling Algorithms 2 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

IL

s , t : := let x = e in s
| i f e then s else t
| e
| fun f x = s in t
| f x

Formally described in Schneider, Smolka, and Hack, “A First-Order
Functional Intermediate Language for Verified Compilers”, 2015

Julian Rosemann Verification of Spilling Algorithms 3 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Outline

1 Introduction
Spilling
IL

2 Formalization of Spilling
Representation of Spilling
From a spilling to a spilled program

3 Properties of Spilling
Correctness Conditions
Inductive Correctness Predicate
Intuition for Proofs

4 Reconstructing Liveness

5 Spilling Algorithms

6 Conclusion

Julian Rosemann Verification of Spilling Algorithms 4 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Representation of Spilling

code S L

...
let X = x in
let z = x + y in

{x} {}

if z ≥ y then

{} {}

let x = X in
x

{} {X}

else
z

{} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application

Julian Rosemann Verification of Spilling Algorithms 5 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Representation of Spilling

code S L

...
let X = x in
let z = x + y in {x} {}
if z ≥ y then {} {}

let x = X in
x {} {X}

else
z {} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application

Julian Rosemann Verification of Spilling Algorithms 5 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Representation of Spilling

code S L

...
let X = x in
let z = x + y in {x} {}
if z ≥ y then {} {}

let x = X in
x {} {X}

else
z {} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application

Julian Rosemann Verification of Spilling Algorithms 5 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Representation of Spilling

code S L

...
let X = x in
let z = x + y in {x} {}
if z ≥ y then {} {}

let x = X in
x {} {X}

else
z {} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application

Julian Rosemann Verification of Spilling Algorithms 5 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Representation of Spilling

code S L

...
let X = x in
let z = x + y in {x} {}
if z ≥ y then {} {}

let x = X in
x {} {X}

else
z {} {}

let z = x + y

if z ≥ y

x z

({x},{})

({},{})

({},{X}) ({},{})

+ additional information at function declaration and application

Julian Rosemann Verification of Spilling Algorithms 5 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

From a spilling to a spilled program

do spill : stmt → spilling → stmt

(s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . . let Xn = xn in
let y1 = Y1 in . . . let ym = Ym in

s

Julian Rosemann Verification of Spilling Algorithms 6 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

From a spilling to a spilled program

do spill : stmt → spilling → stmt

(s, ({x1, ..., xn}︸ ︷︷ ︸
spills

, {Y1, ...Ym}︸ ︷︷ ︸
loads

)) 7→
let X1 = x1 in . . . let Xn = xn in
let y1 = Y1 in . . . let ym = Ym in

s

Julian Rosemann Verification of Spilling Algorithms 6 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Valid spilling

A program s ′ is called a spilled program of s if

1 all variables are in a register when used in s ′

2 at most k registers are used in s ′

3 s ∼ s ′.

A spilling sl valid on s if do spill s sl is a spilled program of s.

spillk on s and sl ⇒ sl is valid on s.

Julian Rosemann Verification of Spilling Algorithms 7 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL

list of parameters of defined functions

Λ

list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ

list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M

:⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k

register bound

lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
lv

liveness information

s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
lv liveness information
s

source program

sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
lv liveness information
s source program
sl

spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk lv s : sl

ZL list of parameters of defined functions
Λ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
lv liveness information
s source program
sl spill/load information

Julian Rosemann Verification of Spilling Algorithms 8 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sls
(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (if e then s else t)
: (Sp, L,None) · sls , slt
(ZL,Λ); (R,M) ` spillk LV e : (Sp, L,None)

(ZL,Λ); (R,M) ` spillk LV (f Y) : (Sp, L,Some(inr Sl))

(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (fun f x := s in t)
: (Sp, L, Some(inl(Rf ,Mf))) · sls , slt

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·
(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

In the first talk for let:

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 9 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sls
(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (if e then s else t)
: (Sp, L,None) · sls , slt
(ZL,Λ); (R,M) ` spillk LV e : (Sp, L,None)

(ZL,Λ); (R,M) ` spillk LV (f Y) : (Sp, L,Some(inr Sl))

(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (fun f x := s in t)
: (Sp, L, Some(inl(Rf ,Mf))) · sls , slt

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·
(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

In the first talk for let:

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 9 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls
(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (if e then s else t)
: (∅, ∅,None) · sls , slt
(ZL,Λ); (R,M) ` spillk LV e : (∅, ∅,None)

(ZL,Λ); (R,M) ` spillk LV (f Y) : (∅, ∅, Some(inr Sl))

(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (fun f x := s in t)
: (∅, ∅, Some(inl(Rf ,Mf))) · sls , slt
(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·
(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

In the first talk for let:

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 9 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Inductive Correctness Predicate

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls
(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (if e then s else t)
: (∅, ∅,None) · sls , slt
(ZL,Λ); (R,M) ` spillk LV e : (∅, ∅,None)

(ZL,Λ); (R,M) ` spillk LV (f Y) : (∅, ∅, Some(inr Sl))

(ZL,Λ); (R,M) ` spillk (LV · lvs , lvt) (fun f x := s in t)
: (∅, ∅, Some(inl(Rf ,Mf))) · sls , slt
(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·
(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

In the first talk for let:

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 9 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

spillk

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

spillk

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

spillk

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

Sp ⊆ R L ⊆ Sp ∪M
|(R \ K ∪ L) \ Kx ∪ {x}| ≤ k fv(e) ⊆ R \ K ∪ L

|R \ K ∪ L| ≤ k (ZL,Λ); ((R \ K ∪ L) \ Kx ∪ {x},Sp ∪M) ` spillk lvs s : sl

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (Sp, L,None) · sl

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

spillk

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

fv(e) ⊆ R variables available
|R \ Kx ∪ {x}| ≤ k register bound afterwards
(ZL,Λ); (R \ Kx ∪ {x},M) ` spillk lvs s : sls induction

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

variables in register & register bound

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

fv(e) ⊆ R variables available
|R \ Kx ∪ {x}| ≤ k register bound afterwards
(ZL,Λ); (R \ Kx ∪ {x},M) ` spillk lvs s : sls induction

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

variables in register & register bound

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

fv(e) ⊆ R variables available
|R \ Kx ∪ {x}| ≤ k register bound afterwards
(ZL,Λ); (R \ Kx ∪ {x},M) ` spillk lvs s : sls induction

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

variables in register & register bound

Sp ⊆ R spilled variables available
(ZL,Λ); (R,M ∪ Sp) ` spillk lv s : (∅, L, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (Sp, L, rm) ·

L ⊆ M loaded variables available
|R \ K ∪ L| ≤ k don’t load too much
(ZL,Λ); (R \ K ∪ L,M) ` spillk lv s : (∅, ∅, rm) · induction

(ZL,Λ); (R,M) ` spillk lv s : (∅, L, rm) ·

fv(e) ⊆ R variables available
|R \ Kx ∪ {x}| ≤ k register bound afterwards
(ZL,Λ); (R \ Kx ∪ {x},M) ` spillk lvs s : sls induction

(ZL,Λ); (R,M) ` spillk (LV · lvs) (let x := e in s) : (∅, ∅,None) · sls

Julian Rosemann Verification of Spilling Algorithms 10 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

Liveness after spilling needed by:

proof of register bound and

register allocator

Approach:

use original liveness algorithm or

develop own algorithm using

original liveness and
register and memory states at function heads

Julian Rosemann Verification of Spilling Algorithms 11 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

original algorithm:

runs in O(n3)

complicated fixpoint
algorithm is unpractical in
proof

new algorithm:

using

original liveness and
register and memory
states at function heads

it runs in O(n2)

challenge: kill sets are not
available computationally

Julian Rosemann Verification of Spilling Algorithms 12 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

original algorithm:

runs in O(n3)

complicated fixpoint
algorithm is unpractical in
proof

new algorithm:

using

original liveness and
register and memory
states at function heads

it runs in O(n2)

challenge: kill sets are not
available computationally

Julian Rosemann Verification of Spilling Algorithms 12 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

original algorithm:

runs in O(n3)

complicated fixpoint
algorithm is unpractical in
proof

new algorithm:

using

original liveness and
register and memory
states at function heads

it runs in O(n2)

challenge: kill sets are not
available computationally

Julian Rosemann Verification of Spilling Algorithms 12 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

original algorithm:

runs in O(n3)

complicated fixpoint
algorithm is unpractical in
proof

new algorithm:

using

original liveness and
register and memory
states at function heads

it runs in O(n2)

challenge: kill sets are not
available computationally

Julian Rosemann Verification of Spilling Algorithms 12 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Reconstructing Liveness

original algorithm:

runs in O(n3)

complicated fixpoint
algorithm is unpractical in
proof

new algorithm:

using

original liveness and
register and memory
states at function heads

it runs in O(n2)

challenge: kill sets are not
available computationally

Julian Rosemann Verification of Spilling Algorithms 12 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in

{x, z}

if x ≥ 0

{x, y, z}

then x

{x}

else z

{z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in

{x, z}

if x ≥ 0

{x, y, z}

then x

{x}

else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in

{x, z}

if x ≥ 0

{x, y, z}

then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in

{x, z}

if x ≥ 0 {x, y, z}
then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in

{x, z}

if x ≥ 0 {x, y, z}
then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in {x, z}
if x ≥ 0 {x, y, z}

then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in {x, z}
if x ≥ 0 {x, y, z}

then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Liveness

code live variables

let y = z in {x, z}
if x ≥ 0 {x, y, z}

then x {x}
else z {z}

let y = z

if x ≥ 0

x z

{x,z}

{x,y,z}

{x} {z}

Liveness intuition: variable x is
live in statement s if either

its value is used in s

or

x was defined in the
preceding statement

fv(e) ⊆ X
Λ ` live s : (X \ K ∪ {x})

Λ ` live (let x := e in s) : X

Julian Rosemann Verification of Spilling Algorithms 13 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything

spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible

spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

StupSpill:

at any statement:

load everything
spill everything

satisfies spillk

not efficient

originally used in Compcert,
by now it has been replaced

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

satisfies spillk

spills are selected arbitrarily

possible factorization:
(unproven) oracle specifies
priorities on selection of
spills

Julian Rosemann Verification of Spilling Algorithms 14 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Overview

spillk

reconstr live sound

vars in R spill sim register bound

SimplSpill

doSpill reconstr live

StupSpill

spilled program

< 100 loc

< 500 loc
> 5000 loc

Julian Rosemann Verification of Spilling Algorithms 15 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Conclusion

first fully-verified optimizing spilling algorithm supporting
arbitrary live-range-splitting

reconstr live will be used by register allocator

spillk can be used to proof spilling algorithms

SimplSpill can be factorized, such that efficient spilling is
possible

Julian Rosemann Verification of Spilling Algorithms 16 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Conclusion

first fully-verified optimizing spilling algorithm supporting
arbitrary live-range-splitting

reconstr live will be used by register allocator

spillk can be used to proof spilling algorithms

SimplSpill can be factorized, such that efficient spilling is
possible

Julian Rosemann Verification of Spilling Algorithms 16 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Conclusion

first fully-verified optimizing spilling algorithm supporting
arbitrary live-range-splitting

reconstr live will be used by register allocator

spillk can be used to proof spilling algorithms

SimplSpill can be factorized, such that efficient spilling is
possible

Julian Rosemann Verification of Spilling Algorithms 16 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Conclusion

first fully-verified optimizing spilling algorithm supporting
arbitrary live-range-splitting

reconstr live will be used by register allocator

spillk can be used to proof spilling algorithms

SimplSpill can be factorized, such that efficient spilling is
possible

Julian Rosemann Verification of Spilling Algorithms 16 / 16

Introduction Formalization of Spilling Properties of Spilling Reconstructing Liveness Spilling Algorithms Conclusion

Conclusion

first fully-verified optimizing spilling algorithm supporting
arbitrary live-range-splitting

reconstr live will be used by register allocator

spillk can be used to proof spilling algorithms

SimplSpill can be factorized, such that efficient spilling is
possible

Julian Rosemann Verification of Spilling Algorithms 16 / 16

	Introduction
	Spilling
	IL

	Formalization of Spilling
	Representation of Spilling
	From a spilling to a spilled program

	Properties of Spilling
	Correctness Conditions
	Inductive Correctness Predicate
	Intuition for Proofs

	Reconstructing Liveness
	Spilling Algorithms
	Conclusion

