
Formal Verification of Spilling Algorithms
Bachelor Talk

Julian Rosemann
Advisors: Prof. Gert Smolka, Sigurd Schneider

Saarland University
Department of Computer Science

Friday 24th February, 2017

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Outline

1 Approaches in Register Allocation

2 Verification of Spilling Algorithms

3 Future Work

Julian Rosemann Verification of Spilling Algorithms 2 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Subproblems of Register Allocation

r1 r2

w x

let W := w

1

in w ...

let y

1

:= 1 in

y x

let z

2

:= x

2

in

... z

let Y := y

1

in y ...

let w

1

:= W in w ...

if z

2

>= w

1 ...
...

then

z

2 ... z

else

let y

2

:= Y in ... y

w

1

+ y

2 w y

Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA

Julian Rosemann Verification of Spilling Algorithms 3 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Subproblems of Register Allocation

r1 r2

w x

let W := w

1

in

w ...

let y

1

:= 1 in

y x

let z

2

:= x

2

in

... z

let Y := y

1

in

y ...

let w

1

:= W in

w ...

if z

2

>= w

1 ...
...

then

z

2 ... z

else

let y

2

:= Y in

... y

w

1

+ y

2 w y

Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA

Julian Rosemann Verification of Spilling Algorithms 3 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Subproblems of Register Allocation

r1 r2

w x

let W := w1 in w ...

let y1 := 1 in y x

let z2 := x2 in ... z

let Y := y1 in y ...

let w1 := W in w ...

if z2 >= w1 ...
...

then

z2 ... z

else

let y2 := Y in ... y

w1 + y2 w y

Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA

Julian Rosemann Verification of Spilling Algorithms 3 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Subproblems of Register Allocation

r1 r2

w x

let W := w1 in w ...

let y1 := 1 in y ...

let z2 := x2 in ... z

let Y := y1 in y ...

let w1 := W in w ...

if x2 >= w1 ...
...

then

x2 ... x

else

let y2 := Y in ... y

w1 + y2 w y

Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA

Julian Rosemann Verification of Spilling Algorithms 3 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Subproblems of Register Allocation

r1 r2

w x

let W := w1 in w ...

let y1 := 1 in y ...

let z2 := x2 in ... z

let Y := y1 in y ...

let w1 := W in w ...

if x2 >= w1 ...
...

then

x2 ... x

else

let y2 := Y in ... y

w1 + y2 w y

Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA

Julian Rosemann Verification of Spilling Algorithms 3 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x

y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x

y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if x >= w

then

x

else

let w:= in

w + y

x y

w z

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)

let y := 1 in

let z := x in

let w := W in

if z >= w

then

z

else

let w:= in

w + y

x

y

w x

Julian Rosemann Verification of Spilling Algorithms 4 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Problems with Global Register Allocation

A

B
def & use: x1, ..., xk

C

D
def & use: y1, ..., yk

m spills

n loads

n spills

m loads

m + n ≥ k

k
2

spills/loads

k
2

spills/loads

Julian Rosemann Verification of Spilling Algorithms 5 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Problems with Global Register Allocation

A

B
def & use: x1, ..., xk

C

D
def & use: y1, ..., yk

m spills

n loads

n spills

m loads

m + n ≥ k

k
2

spills/loads

k
2

spills/loads

Julian Rosemann Verification of Spilling Algorithms 5 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Problems with Global Register Allocation

A

B
def & use: x1, ..., xk

C

D
def & use: y1, ..., yk

m spills

n loads

n spills

m loads

m + n ≥ k

k
2

spills/loads

k
2

spills/loads

Julian Rosemann Verification of Spilling Algorithms 5 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Linear Scan by Poletto & Sarkar (1999)

A
def: x1, ..., xk

B
def: y1, ..., yk

C
use: y1, ..., yk

D
use: x1, ..., xk

{x1, ..., xk}

{x1, ..., xk}
{x1, ..., xk ,

y1, ..., yk}

k spills k loads

Julian Rosemann Verification of Spilling Algorithms 6 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Linear Scan by Poletto & Sarkar (1999)

A
def: x1, ..., xk

B
def: y1, ..., yk

C
use: y1, ..., yk

D
use: x1, ..., xk

{x1, ..., xk}

{x1, ..., xk}
{x1, ..., xk ,

y1, ..., yk}

k spills k loads

Julian Rosemann Verification of Spilling Algorithms 6 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Linear Scan by Poletto & Sarkar (1999)

A
def: x1, ..., xk

B
def: y1, ..., yk

C
use: y1, ..., yk

D
use: x1, ..., xk

{x1, ..., xk}

{x1, ..., xk}
{x1, ..., xk ,

y1, ..., yk}

k spills k loads

Julian Rosemann Verification of Spilling Algorithms 6 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Linear Scan by Poletto & Sarkar (1999)

A
def: x1, ..., xk

B
def: y1, ..., yk

C
use: y1, ..., yk

D
use: x1, ..., xk

{x1, ..., xk}

{x1, ..., xk}
{x1, ..., xk ,

y1, ..., yk}

k spills k loads

Julian Rosemann Verification of Spilling Algorithms 6 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Register Allocation in SSA by Hack et al. (2006)

Spilling

Register Assignment

Coalescing

inference graphs of
SSA-programs are chordal

efficient algorithm for
register assignment

coalescing using a heuristic

Julian Rosemann Verification of Spilling Algorithms 7 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Register Allocation in SSA by Hack et al. (2006)

Spilling

Register Assignment

Coalescing

inference graphs of
SSA-programs are chordal

efficient algorithm for
register assignment

coalescing using a heuristic

Julian Rosemann Verification of Spilling Algorithms 7 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Register Allocation in SSA by Hack et al. (2006)

Spilling

Register Assignment

Coalescing

inference graphs of
SSA-programs are chordal

efficient algorithm for
register assignment

coalescing using a heuristic

Julian Rosemann Verification of Spilling Algorithms 7 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Register Allocation in SSA by Hack et al. (2006)

Spilling

Register Assignment

Coalescing

inference graphs of
SSA-programs are chordal

efficient algorithm for
register assignment

coalescing using a heuristic

Julian Rosemann Verification of Spilling Algorithms 7 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

input
& liveness

spilling
info

spilled
program

liveness of
spilled program

correctness

valid spilling

(a) variables in registers

(b) register bound

(c) program equivalence

(1)

(2)

(3)

(4)

(1) spilling algorithm

(2) doSpill

(3) spilledLive

(4) correctness predicate

Julian Rosemann Verification of Spilling Algorithms 8 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything

spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible

spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.

Julian Rosemann Verification of Spilling Algorithms 9 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Compute the Spilled Program

doSpill(s : ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

)) =

let X1 = x1 in ...

let y1 = Y1 in ...

s

doSpill is called recursively on every substatement

the parameters are adjusted to the spilling information

Julian Rosemann Verification of Spilling Algorithms 10 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Compute the Spilled Program

doSpill(s : ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

)) =
let X1 = x1 in ...

let y1 = Y1 in ...

s

doSpill is called recursively on every substatement

the parameters are adjusted to the spilling information

Julian Rosemann Verification of Spilling Algorithms 10 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Compute the Spilled Program

doSpill(s : ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

)) =
let X1 = x1 in ...

let y1 = Y1 in ...

s

doSpill is called recursively on every substatement

the parameters are adjusted to the spilling information

Julian Rosemann Verification of Spilling Algorithms 10 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Compute the Spilled Program

doSpill(s : ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

)) =
let X1 = x1 in ...

let y1 = Y1 in ...

s

doSpill is called recursively on every substatement

the parameters are adjusted to the spilling information

Julian Rosemann Verification of Spilling Algorithms 10 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Liveness of the spilled program

spilling
info

spilled
program

liveness of
spilled program

spilling information includes liveness at function definitions

construct liveness in one pass over the program

proof of correctness was involving

Julian Rosemann Verification of Spilling Algorithms 11 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Liveness of the spilled program

spilling
info

spilled
program

liveness of
spilled program

spilling information includes liveness at function definitions

construct liveness in one pass over the program

proof of correctness was involving

Julian Rosemann Verification of Spilling Algorithms 11 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Liveness of the spilled program

spilling
info

spilled
program

liveness of
spilled program

spilling information includes liveness at function definitions

construct liveness in one pass over the program

proof of correctness was involving

Julian Rosemann Verification of Spilling Algorithms 11 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Liveness of the spilled program

spilling
info

spilled
program

liveness of
spilled program

spilling information includes liveness at function definitions

construct liveness in one pass over the program

proof of correctness was involving

Julian Rosemann Verification of Spilling Algorithms 11 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L,)

Z

list of parameters of defined functions

Σ

list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

s

source program

S

variables to be spilled

L

variables to be loaded
additional information for functions

Julian Rosemann Verification of Spilling Algorithms 12 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L,)

Z list of parameters of defined functions
Σ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k

register bound

s

source program

S

variables to be spilled

L

variables to be loaded
additional information for functions

Julian Rosemann Verification of Spilling Algorithms 12 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L,)

Z list of parameters of defined functions
Σ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
s

source program

S

variables to be spilled

L

variables to be loaded
additional information for functions

Julian Rosemann Verification of Spilling Algorithms 12 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L,)

Z list of parameters of defined functions
Σ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
s source program
S

variables to be spilled

L

variables to be loaded
additional information for functions

Julian Rosemann Verification of Spilling Algorithms 12 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L,)

Z list of parameters of defined functions
Σ list of expected live variables at function heads

x ∈ R :⇔ current value is in a register
x ∈ M :⇔ current value is in the memory

k register bound
s source program
S variables to be spilled
L variables to be loaded

additional information for functions

Julian Rosemann Verification of Spilling Algorithms 12 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Soundness of the Predicate

Let s be renamed apart, |R| ≤ k and applications only have
variables as arguments. If

Z |Σ |R |M ` spillk s : (S , L,)

then

any variable is in a register whenever it is used

at any program point the register contains at most k variables

the translation preserves program equivalence

Julian Rosemann Verification of Spilling Algorithms 13 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Soundness of the Predicate

Let s be renamed apart, |R| ≤ k and applications only have
variables as arguments. If

Z |Σ |R |M ` spillk s : (S , L,)

then

any variable is in a register whenever it is used

at any program point the register contains at most k variables

the translation preserves program equivalence

Julian Rosemann Verification of Spilling Algorithms 13 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Soundness of the Predicate

Let s be renamed apart, |R| ≤ k and applications only have
variables as arguments. If

Z |Σ |R |M ` spillk s : (S , L,)

then

any variable is in a register whenever it is used

at any program point the register contains at most k variables

the translation preserves program equivalence

Julian Rosemann Verification of Spilling Algorithms 13 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Soundness of the Predicate

Let s be renamed apart, |R| ≤ k and applications only have
variables as arguments. If

Z |Σ |R |M ` spillk s : (S , L,)

then

any variable is in a register whenever it is used

at any program point the register contains at most k variables

the translation preserves program equivalence

Julian Rosemann Verification of Spilling Algorithms 13 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar

Julian Rosemann Verification of Spilling Algorithms 14 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Translation Validation with Success Guarantee

untrusted spilling algorithm computes spilling

iterate over program flow, liveness and spilling information:

if free variables of the expression are not in the registers, load
them
if register set exceeds bound, spill variables

Properties:

yields always a valid spilling
if input is a valid spilling it is not modified

Julian Rosemann Verification of Spilling Algorithms 15 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Translation Validation with Success Guarantee

untrusted spilling algorithm computes spilling

iterate over program flow, liveness and spilling information:

if free variables of the expression are not in the registers, load
them
if register set exceeds bound, spill variables

Properties:

yields always a valid spilling
if input is a valid spilling it is not modified

Julian Rosemann Verification of Spilling Algorithms 15 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Translation Validation with Success Guarantee

untrusted spilling algorithm computes spilling

iterate over program flow, liveness and spilling information:

if free variables of the expression are not in the registers, load
them
if register set exceeds bound, spill variables

Properties:

yields always a valid spilling
if input is a valid spilling it is not modified

Julian Rosemann Verification of Spilling Algorithms 15 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Translation Validation with Success Guarantee

untrusted spilling algorithm computes spilling

iterate over program flow, liveness and spilling information:

if free variables of the expression are not in the registers, load
them
if register set exceeds bound, spill variables

Properties:

yields always a valid spilling
if input is a valid spilling it is not modified

Julian Rosemann Verification of Spilling Algorithms 15 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

References

Matthias Braun and Sebastian Hack. “Register spilling and
live-range splitting for SSA-form programs”. In: 2009.

Gregory J Chaitin et al. “Register allocation via coloring”.
In: 1981.

Sebastian Hack, Daniel Grund, and Gerhard Goos. “Towards
Register Allocation for Programs in SSA-Form”. In: 2005.

Massimiliano Poletto and Vivek Sarkar. “Linear scan register
allocation”. In: 1999.

Sigurd Schneider, Gert Smolka, and Sebastian Hack. “A
Linear First-Order Functional Intermediate Language for
Verified Compilers”. In: 2015.

Julian Rosemann Verification of Spilling Algorithms 16 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Liveness

fv e ⊆ X Xs \ {x} ⊆ X x ∈ Xs Z |Λ ` live s : Xs

Z |Λ ` live (let x := e in s) : X
LiveLet

fv e ⊆ X

Z |Λ ` live e : X
LiveReturn

fv e ∪ Xs1 ∪ Xs2 ⊆ X Z |Λ ` live s1 : Xs1 Z |Λ ` live s2 : Xs2

Z |Λ ` live (if e then s1 else s2) : X
LiveIf

fv e ⊆ X Λf \ Zf ⊆ X

Z |Λ ` live f e : X
LiveApp

Xs2 ⊆ X x ⊆ Xs1 f : x ;Z |Xs1 :: Λ ` live s1 : Xs1 f : x ;Z |Xs2 :: Λ ` live s2 : Xs2

Z |Λ ` live (fun f x := s1 in s2) : X

LiveFun

Julian Rosemann Verification of Spilling Algorithms 17 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

Correctness Predicate

L ⊆ M
|R \ K ∪ L| ≤ k

Z |Σ | R \ K ∪ L |M ` spillk s : (∅, ∅,)

Z |Σ | R |M ` spillk s : (∅, L,)
SpillLoad

S ⊆ R
Z |Σ | R |M ∪ S ` spillk s : (∅, L,)

Z |Σ | R |M ` spillk s : (S, L,)
SpillSpill

fv e ⊆ R
|R \ Kx ∪ {x}| ≤ k

Z |Σ | R \ Kx ∪ {x} |M ` spillk s

Z |Σ | R |M ` spillk (let x := e in s) : (∅, ∅)
SpillLet

fv e ⊆ R

Z |Σ | R |M ` spillk e : (∅, ∅)
SpillReturn

(Rf ,Mf) := Σf
Rf \ Zf ⊆ R
Mf \ Zf ⊆ M
fv y ⊆ R ∪ M

Z |Σ | R |M ` spillk (f y) : (∅, ∅, (R,M))
SpillApp

|Rf | ≤ k
Z |merge Σ ` live s1 : Rf ∪ Mf

f : x ; Z | f : (Rf ,Mf); Σ | Rf |Mf ` spillk s1
f : x ; Z | f : (Rf ,Mf); Σ | R |M ` spillk s2

Z |Σ | R |M ` spillk (fun f x := s1 in s2) : (∅, ∅, (Rf ,Mf))
SpillFun

merge nil := nil

merge (Rf ,Mf); Σ := Rf ∪ Mf ; merge Σ

Julian Rosemann Verification of Spilling Algorithms 18 / 19

Approaches in Register Allocation Verification of Spilling Algorithms Future Work References

vir-Predicate

x ∈ VR y ∈ VM vir s

vir let x := y in s
ViRLoad

fv e ⊆ VR vir s
vir let x := e in s

ViRLet

fv e ⊆ VR
vir e

ViRReturn

fv e ⊆ VR vir s vir t
vir if e then s else t

ViRIf

vir f y
ViRApp

vir s vir t
vir fun f x := s in t

ViRFun

Julian Rosemann Verification of Spilling Algorithms 19 / 19

