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Spilling: determine
whether a variable is in the
registers or in memory

Register Assignment:
determine in which register
a variable resides

Coalescing: reduce
copy-instructions

only possible in SSA
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Global Register Allocation

register assignment is independent of program point

graph coloring algorithm by Chaitin (1981)
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Problems with Global Register Allocation
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Linear Scan by Poletto & Sarkar (1999)
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Register Allocation in SSA by Hack et al. (2006)

Spilling

Register Assignment

Coalescing

inference graphs of
SSA-programs are chordal

efficient algorithm for
register assignment

coalescing using a heuristic
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(4) correctness predicate
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Spilling Algorithms

StupSpill:

at any statement:

load everything
spill everything

specification of algorithm 30 l.

verifying the predicate <80 l.

SimplSpill:

at any statement:

load as little as possible
spill as little as possible

specification of algorithm 70 l.

verifying the predicate < 500 l.
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Compute the Spilled Program

doSpill(s : ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

)) =

let X1 = x1 in ...

let y1 = Y1 in ...

s

doSpill is called recursively on every substatement

the parameters are adjusted to the spilling information
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Liveness of the spilled program

spilling
info

spilled
program

liveness of
spilled program

spilling information includes liveness at function definitions

construct liveness in one pass over the program

proof of correctness was involving
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Correctness Predicate

Z |Σ |R |M ` spillk s : (S , L, )

Z

list of parameters of defined functions

Σ

list of expected live variables at function heads

x ∈ R

:⇔ current value is in a register

x ∈ M

:⇔ current value is in the memory

k

register bound

s

source program

S

variables to be spilled

L

variables to be loaded
additional information for functions
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Soundness of the Predicate

Let s be renamed apart, |R| ≤ k and applications only have
variables as arguments. If

Z |Σ |R |M ` spillk s : (S , L, )

then

any variable is in a register whenever it is used

at any program point the register contains at most k variables

the translation preserves program equivalence
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Verification of other Spilling Algorithms

e.g.: spilling algorithm by Braun and Hack (2009):

Concepts of the algorithm:

spill “furthest-first”

pull spills and loads out of
loops

Verification:

verify the method computing
distance to next-use

keep track of register and
memory state

induction on the statement

more involving than
verification of SimplSpill,
but similar
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Translation Validation with Success Guarantee

untrusted spilling algorithm computes spilling

iterate over program flow, liveness and spilling information:

if free variables of the expression are not in the registers, load
them
if register set exceeds bound, spill variables

Properties:

yields always a valid spilling
if input is a valid spilling it is not modified
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Liveness

fv e ⊆ X Xs \ {x} ⊆ X x ∈ Xs Z |Λ ` live s : Xs

Z |Λ ` live (let x := e in s) : X
LiveLet

fv e ⊆ X

Z |Λ ` live e : X
LiveReturn

fv e ∪ Xs1 ∪ Xs2 ⊆ X Z |Λ ` live s1 : Xs1 Z |Λ ` live s2 : Xs2

Z |Λ ` live (if e then s1 else s2) : X
LiveIf

fv e ⊆ X Λf \ Zf ⊆ X

Z |Λ ` live f e : X
LiveApp

Xs2 ⊆ X x ⊆ Xs1 f : x ;Z |Xs1 :: Λ ` live s1 : Xs1 f : x ;Z |Xs2 :: Λ ` live s2 : Xs2

Z |Λ ` live (fun f x := s1 in s2) : X

LiveFun
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Correctness Predicate

L ⊆ M
|R \ K ∪ L| ≤ k

Z |Σ | R \ K ∪ L |M ` spillk s : (∅, ∅, )

Z |Σ | R |M ` spillk s : (∅, L, )
SpillLoad

S ⊆ R
Z |Σ | R |M ∪ S ` spillk s : (∅, L, )

Z |Σ | R |M ` spillk s : (S, L, )
SpillSpill

fv e ⊆ R
|R \ Kx ∪ {x}| ≤ k

Z |Σ | R \ Kx ∪ {x} |M ` spillk s

Z |Σ | R |M ` spillk (let x := e in s) : (∅, ∅)
SpillLet

fv e ⊆ R

Z |Σ | R |M ` spillk e : (∅, ∅)
SpillReturn

(Rf ,Mf ) := Σf
Rf \ Zf ⊆ R
Mf \ Zf ⊆ M
fv y ⊆ R ∪ M

Z |Σ | R |M ` spillk (f y) : (∅, ∅, (R,M))
SpillApp

|Rf | ≤ k
Z |merge Σ ` live s1 : Rf ∪ Mf

f : x ; Z | f : (Rf ,Mf ); Σ | Rf |Mf ` spillk s1
f : x ; Z | f : (Rf ,Mf ); Σ | R |M ` spillk s2

Z |Σ | R |M ` spillk (fun f x := s1 in s2) : (∅, ∅, (Rf ,Mf ))
SpillFun

merge nil := nil

merge (Rf ,Mf ); Σ := Rf ∪ Mf ; merge Σ
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vir-Predicate

x ∈ VR y ∈ VM vir s

vir let x := y in s
ViRLoad

fv e ⊆ VR vir s
vir let x := e in s

ViRLet

fv e ⊆ VR
vir e

ViRReturn

fv e ⊆ VR vir s vir t
vir if e then s else t

ViRIf

vir f y
ViRApp

vir s vir t
vir fun f x := s in t

ViRFun
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