
A reasonable time measure for the weak
call-by-value lambda calculus

Marc Roth

October 30, 2015

We provide a formalization of a generalized version of the time measure for

the weak call-by-value lambda calculus as introduced by Dal Lago and Martini

in 2008. We will use the language L as formalization of the weak call-by-value

lamda calculus. The key insight is the fact that every normalizing reduction

of a term is unique up to the order of the beta redexes. In this context, we

show that there is only one closed beta redex that reduces to itself in one

step. Furthermore, we prove that the weak call-by-value lambda calculus

fulfills the weak invariance thesis if we use the number of beta steps during

a reduction sequence as time measure. This means that reasonable machines

such as Turing Machines and L can simulate each other with only a polynomial

overhead in time. We therefore proceed in three steps: First, we represent L

terms as closures, an idea introduced by Dal Lago and Accattoli in 2014 and

prove that a computation in L can be simulated in the closure calculus with

only a polynomial overhead in the number of reduction steps. Second, we

present an algorithm for simulating a computation in the closure calculus to

argue that a computation in L can by simulated by every reasonable machine

with only a polynomial overhead in time. And third, we apply a technique

for simulating Turing Machines in the weak call-by-value lambda calculus as

shown by Dal Lago in 2008 to prove that L can simulate a Turing Machine

with only a polynomial overhead in time. Finally, we use this result to provide

a basic notation of classical complexity w.r.t. L and argue that all total

computable functions can be implemented in L such that the size of every

intermediate term during a reduction sequence does not exceed a polynomial

in the number of steps that were done before. The formalization — except

for the very last sections dealing with Turing Machines — is done in the proof

assistant Coq and continues the work of Fabian Kunze and Yannik Forster.

1

1 Introduction

We continue the investigation of the weak call-by-value lamda calculus as a reason-

able machine, started by Dal Lago and Martini in 2008 [3]. In their paper they

proved that it is possible to construct a cost function for reduction steps, such that

the weak version of the invariance thesis as introduced in [2] is fulfilled:

Reasonable machines can simulate each other within a polynomially-bounded

overhead in time and a constant-factor overhead in space

The weak version drops the requirement about space. In this work, we use the

language L as a formal implementation of the weak call-by-value lamda calculus. In

particlular, the formalization in the proof assistant COQ uses L.

At first, we will take up the result of Dal Lago and Martini in [3], but in a more

general fashion: In Section 3 we will show that the weak call-by-value lamda calculus

is uniform confluent with respect to the multiset of the beta redexes in a reduction

sequence. This means that every computation in L starting with s and converging at

the normal form t consists of the same beta redexes. More precisely: Two different

reduction sequences to t can be obtained from each other only by permuting the

beta redexes. This implies both, Proposition 2 and 4 of [3]. At the end of Section

3, we will provide an abstract time measure w.r.t. to a cost function for the beta

redexes

While working on this, we had to handle one-step self divergence. Consider the

following terms:

ω := λx.xx

Ω := ωω

It holds that Ω � Ω and in Section 4 we will prove that Ω is in fact the only closed

beta redex that reduces to itself in one step. Note that this property does not hold

in the full lambda calculus. The proof uses size induction and requires two rather

strange lemmas.

After this we continue to focus on a concrete time measure for L in Section 5. Our

main result will be the proof that setting the abstract cost function to be constant 1

is a valid cost model. More precisely, the weak invariance thesis is fulfilled if we use

the number of reduction steps as time measure. The reader should be sceptical at

this point: There are terms that reduce in n steps to a term of size ≥ 2n (see e.g.[3],

Section 1). We solve this problem by avoiding an explicit representation of a term.

This idea origins from Accattoli and Dal Lago (see [1]). In this paper the authors

used a calculus of explicit substitutions, the linear substitution calculus (LSC), to

show that the number of beta steps of a reduction sequence in the general lamda

calculus is a valid cost model if left-most outer-most (LO) derivations are prefered.

The key insight was that it suffices to compute over terms of the LSC rather than

2

the lamda calculus itself. This causes the outcome of a computation to be small in

the implicit representation w.r.t. the LSC. However the corresponding term of the

lamda calculus - the declosure - might be large. Note that we cannot apply this

result to show that the weak call-by-value lamda calculus has the same property,

since a reduction sequence of L does not correspond to a LO derivation of the full

lambda calculus. However, the idea can be adapted. We therefore use a simple and

elegant substition calculus provided by Fabian Kunze in his Bachelor Thesis (see

[5]). This calculus is denoted by LC and works very well when used to prove the

invariance thesis for L to be fulfilled. It should be mentioned that Kunze used this

closure calculus to speed up the self interpreter for L, an indicator for the utility we

need. Our prove proceeds in three steps:

• First we show that a reduction sequence of L can be simulated by LC with only

a polynomial overhead. (Section 5.1)

• Second we show how to simulate a reduction sequence in LC with only a polyno-

mial overhead. (Section 5.2)

• And third we use Dal Lagos and Martinis method for simulating Turing Machines

in the weak call-by-value lambda calculus (see [3], Theorem 1) to show that a

Turing Machine can be simulated by L with only a polynomial overhead.

Note that we refer to time if we speak of a polynomial overhead. This proves the

conjecture in [3], Section 1.2 to be true.

After that we will introduce a notion of classical complexity with respect to L in the

obvious way (Section 5.4) and shortly investigate economic lamda terms. These

terms implement a function without exploding in size. More precisely, when applied

to the encoding of a string, an economic lambda term does not need much more

space than time. Note that this notion of space is not meant as a valid cost model.

It rather describes the maximum size a term can reach during a reduction sequence.

However, our last result in this work will be the proof, that every total function

can be implemented by an economic lamda term. The proof idea is to use the

simulation technique of Dal Lago and Martini again, but this time we explicitely

attach importance to their concrete time measure, which includes the size of a term.

Finally, Sections 3 - 5.1 are formalized in the proof assistant COQ and continue the

work of Kunze and Forster as mentioned above (see [5] and [4]). Sections 5.2 - 5.4

deal with Turingmachines and are not formalized in COQ.

2 Preliminaries - kept short

As mentioned above, this Research Immersion Lab continues the work of Fabian

Kunze and Yannick Forster (see [5] and [4]). Therefore we assume the reader to be

familiar with their results, especially regarding Syntax and Semantic of L as well

3

as LC. Furthermore we assume familarity with basic computability and complexity

theory and the proof assistant COQ.

3 Extending uniform confluence by beta redexes

We extend the notion of a reduction step by the beta redex that is reduced. In the

following, let s and t be terms and b be a beta redex.

λsλtBλsλt s
0
λt

sBb s
′

stBb s
′t

tBb t
′

stBb st
′

Fact 1 For all terms s and t, it holds that s � t⇔ ∃b sBb t

Next, we define an extended reduction sequence in the obvious way. Let s and t

be terms, b be a beta redex and B a list of beta redexes. Furthermore let ε denote

the empty list.

sB∗ε s

sBb t tB∗B u

sB∗b::B u

Fact 2 B∗ is transitive, i.e. sB∗A t and tB∗B u imply that sB∗A B u.

We are going to make use of multiset equality, which is defined as follows:

Definition 3 Let A and B lists of beta redexes. A and B are multiset equal,

denoted by A ≈ B, if the following holds for all beta redexes b:

#bA = #bB

where #bA denotes the number of occurences of b in the list A.

Fact 4 ≈ is an equivalence relation.

Fact 5 ≈ is a congruence relation w.r.t. cons and append.

Note that ≈ is decidable since equality on beta redexes is decidable.

We will now state and prove the uniform confluence theorem extended by the notion

of a time measure. We start with the extended diamond property.

Lemma 6 (Extended diamond property) Let s, t and u be terms and a and b

beta redexes, such that s Ba t and s Bb u. It follows that either t = u or there is a

term v, such that tBb v and uBa v (see Figure 1)

4

s

t u

v

a b

ab

Figure 1: Extended diamond property

Proof By structural induction over s. We only have to consider the case where

s = s1s2, since otherwise, s cannot reduce. We distinguish three cases:

• s1s2Ba t via beta reduction. As this was the only possible rule, we conclude that

t = u.

• s1s2 Ba s1s
′
2(= t) via s2 Ba s′2. We observe that s1s2 Bb u cannot be infered via

beta reduction, i.e. there are two cases:

– s1s2Bb s′1s2(= u) via s1Bb s′1. We set v := s′1s
′
2 and observe that s1s

′
2Bb s

′
1s
′
2

and s′1s2 Ba s′1s
′
2.

– s1s2 Bb s1s
′′
2(= u) via s2 Bb s′′2. We use the induction hypothesis on s2. If

s′2 = s′′2 then u = t. Otherwise we obtain v′, such that s′2 Bb v
′ and s′′2 Ba v

′.

The claim follows by choosing v = s1v
′. (see Figure 2)

• s1s2 Ba s′1s2(= t) via s1 Ba s′1. This case is symmetrical to the second one. �

3.1 Handling self-divergence

At this point, the reader might notice a problem: If we want to show uniform

confluence of the extended reduction sequence, we have to deal with the case, that

a term s reduces to the same term t with two different beta redexes. It turns out,

that the only possibility for the beta redexes to be different is self divergence.

Lemma 7 (Single step property) Let s and t be terms, and a and b beta redexes,

such that sBa t and sBb t. It follows that a = b or t = s.

Proof By structural induction over s. We only have to consider the case where

s = s1s2, since otherwise, s cannot reduce. We distinguish three cases:

• s1s2Ba t via beta reduction. As this was the only possible rule, we conclude that

the beta redex is unique, i.e. a = b.

• s1s2 Ba s1s
′
2(= t) via s2 Ba s′2. We observe that s1s2 Bb t cannot be infered via

beta reduction, i.e. there are two cases:

5

– s1s2 Bb s1s
′
2(= t) via s2 Bb s′2. The claim follows by applying the induction

hypothesis to s2.

– s1s2 Bb s′1s2(= t) via s1 Bb s′1. It follows that s1s
′
2 = s′1s2, i.e. s = s1s2 =

s′1s
′
2 = t.

• s1s2 Ba s′1s2(= t) via s1 Ba s′1. This case is symmetrical to the second one. �

In Section 4 we will see that Ω is in fact the only closed beta redex that reduces

to itself in one step.

Next we have to show that internal self-divergence ”cannot be undone”.

Lemma 8 Let s and u be terms and a and b beta redexes, such that s Ba s and

sBb u. It follows that uBa u.

Proof By structural induction over s. We only have to consider the case where

s = s1s2, since otherwise, s cannot reduce. We distinguish three cases:

• s1s2Bbu via beta reduction. As this was the only possible rule, we conclude that

s1s2 = u and therefore uBa u.

• s1s2 Bb s1s
′
2(= u) via s2 Bb s′2. We observe that s1s2 Bb s1s2 cannot be infered

via beta reduction, i.e. there are two cases:

– s1s2Ba s1s2 via s2Ba s2. We apply the induction hypothesis to s2 and obtain

s′2 Ba s
′
2, i.e. uBa u.

– s1s2 Ba s1s2 via s1 Ba s1. It follows that uBa u.

• s1s2 Bb s′1s2(= u) via s1 Bb s′1. This case is symmetrical to the second one. �

Next we lift Lemma 9 to a reduction sequence.

Lemma 9 (Intern divergence) Let s and u be terms, b a beta redex and B a list

of beta redexes, such that sBb s and sB∗B u. It follows that uBb u.

Proof By a simple induction over B and Lemma 9. �

3.2 The uniform confluence theorem

To avoid nested induction, we first state and prove the one-sided version of the

uniform confluence theorem.

Lemma 10 Let s, t and u be terms, a a beta redex and B a list of beta redexes. If

sBa t and sB∗B u then there exists a term v and lists of beta redexes C and D, such

that tB∗C v, uB∗D v and a :: C ≈ B D (see Figure 2).

Proof By structural induction over B.

6

s

t u

v

a B

DC

Figure 2: One sided uniform confluence

s

t s

t

a ε

[a]ε

Figure 3: B = ε

• B = ε. We conclude that u = s. The claim follows by choosing v = t, C = ε and

D = [a] (See Figure 3).

• B = b :: B′. It follows that s Bb u′ and u′ B∗B′ u for a term u′. We apply the

extended diamond property to s, t and u′ and obtain two cases:

– t = u′. Using the single step property, we get yet another two cases:

∗ a = b. The claim follows by choosing v = u, C = B′ and D = ε (see

Figure 4).

∗ u′ = s. We use intern divergence to obtain that uBa u, i.e. uB∗[a] u. The

claim follows by choosing v = u, C = b :: B′ and D = [a] (see Figure 5).

– ∃ v′ : u′ Ba v′ and t Bb v′. Applying the induction hypothesis to u′ yields a

term v′′ and lists of beta redexes C ′ and D′, such that v′B∗C′ v
′′, uB∗D′ v

′′ and

a :: C ′ ≈ B′ D′. The claim follows by choosing v = v′′, C = b :: C ′ and

D = D′ since

a :: C ≈ a :: b :: C ′ ≈ b :: a :: C ′ ≈ b :: B′ D′ ≈ B D.

(See Figure 6)

�

Finally we can prove the uniform confluence theorem.

7

s

u′ u′

u

u

a a

B′

B′

ε

Figure 4: t = u′ and b = a

s

s s

u

u

a b

B′

b :: B′

[a]

Figure 5: t = u′ = s

s

t u′

u

v

v′

Lemma 7

I.H.

a b

B′

b

D′C ′

a

Figure 6: Use of the extended diamond property (Lemma 7) and the induction

hypothesis (I.H.)

8

Theorem 11 (Extended uniform confluence) Let s, t and u be terms and A

and B lists of beta redexes. If s B∗A t and s B∗B u then there exists a term v and

lists of beta redexes C and D, such that tB∗C v, uB∗D v and A C ≈ B D (see

Figure 7).

s

t u

v

A B

DC

Figure 7: Extended uniform confluence. It holds that A C ≈ B D

Proof By structural induction over A.

• A = ε. We conclude that s = t. The claim follows by choosing v = u, C = B

and D = ε.

• A = a :: A′. The claim follows by applying Lemma 11 and the induction hypoth-

esis. (See Figure 8) �

Corollary 12 Every normalizing computation is unique up to the order of the beta

reductions.

3.3 An abstract time measure

At this point we have proven that the running time of a term only depends on the

cost of the beta reductions. To stay abstract as long as possible, we introduce a cost

function c that maps every beta redex to a positive natural number. Having all the

work done, the definition of the running time (w.r.t. c) is almost straight forward.
1

Definition 13 Let s be a term, t be a normal form and B a list of beta redexes,

such that sB∗B t. We define the running time of s with respect to c as follows:

Tc(s) := |s|+
∑

b∈B c(b)

Note that Tc(s) is well-defined, since t and B are unique (the latter up to multiset

equality). We will make the time measure concrete after investigating one-step

divergence in the next section.

1In fact we have to add the size of the input term to obtain a concrete time measure that fulfills

the invariant thesis ([3], Section 1)

9

s

t′ u

t

v

v′

Lemma 11

I.H.

a B

A′

D′

D′′ C ′′

C ′

Figure 8: Use of Lemma 11 and the induction hypothesis (I.H.)

4 Uniqueness of self-divergence

In this section, we prove that Ω is the only closed beta redex that reduces to itself

in one step. More formally, we will show the following key lemma:

Lemma 14 (Uniqueness Lemma) Let b := λsλt be a beta redex such that λt is

closed. If bBb b then s = 0 0 and t = 0 0.

The proof requires some effort. We start with some simple facts and lemmas.

Fact 15 If λt is closed, then t does not contain a variable greater than 0.

Lemma 16 Let s and t be terms and n > 0. If 0 = snλt then s = 0.

Proof By a simple case analysis over s. �

Lemma 17 Let n be a natural number and v, s and t be terms, such that |t| > |s|.
If s = vnt then v = s.

Proof Assuming v 6= s, we conclude that n is a variable of v, i.e. n is substituted

by t. It follows that |t| > |s| ≥ |t| which is a contradiction. �

Note that this proof is constructive, since equality on terms is decidable.

Lemma 18 Let t and v be terms and n be a natural number. If λt = vnλt then

either v = n or v = λt.

Proof By case analysis over the structure of v:

• If v is a variable n′, then either n = n′ and therefore v = n or n 6= n′ and

therefore λt = vnλt = n′nλt = n′ = v.

10

• If v is an application, then the premise cannot be fulfilled.

• If v = λu for some term u. It follows that t = un+1
λt . Since |λt| > |t| we can apply

Lemma 18 and obtain that t = u and therefore λt = λu = v. �

In the following we need another tool for our proofs.

4.1 Obtaining structural insights via size induction

As the title suggests, structural induction as done all along does not suffice to prove

the next two lemmas. Instead we will use size induction w.r.t. the length of a term.

Lemma 19 Let n be a natural number and u and t be terms such that λt is closed.

If λ(u 0) = unλt then u = n and t = n 0.

Proof By size induction over the length of u. We distinguish three cases:

• If u is a variable, then u must be n. Furthermore λ(u 0) = unλt = nnλt = λt and

therefore t = (u 0).

• If u is an application, then the premise cannot be fulfilled.

• If u = λv for some term v, we have λ((λv) 0) = λ(u 0) = unλt = (λv)nλt = λvn+1
λt

and therefore (λv) 0 = vn+1
λt . It follows that v = a b for some terms a, b, i.e.

(λ(a b)) 0 = an+1
λt bn+1

λt . As a consequence 0 = bn+1
λt and by applying Lemma 17,

we obtain b = 0. After substituting b, we have (λ(a 0)) = an+1
λt and can apply

the induction hypothesis on a (Note that |a| < |u| by construction). It follows

that a = n + 1 and - even more important - that t = (n + 1) 0. The latter

contradicts the assumption that λt is closed (Fact 16). Therefore, u cannot be a

lambda term. �

Lemma 20 Let n, n′ be natural numbers and u, t terms, such that n′ > 0 and λt is

closed. It holds that λ(u (λt)) 6= unλt (I) and λ(u n′) 6= unλt (II).

Proof By size induction over the length of u. We distinguish three cases:

• u = m for a variable m.

(I) If m = n we have λ(u (λt)) = λ(n (λt)) 6= λt = unλt. Otherwise we have

λ(u (λt)) = λ(m (λt)) 6= m = mn
λt = unλt.

(II) If m = n we have λ(u n′) = λ(m n′) and unλt = λt. It holds, that λ(m n′) 6=
λt since λt is closed and n′ > 0 (Fact 16).

If m 6= n we have λ(u n′) = λ(m n′) 6= m = mn
λt = unλt.

• If u is an abstraction we are done.

• u = λv for some term v.

11

(I) Assume λ(u (λt)) = unλt ⇒ λ((λv) (λt)) = λ(vn+1
λt), i.e. (λv) (λt) = vn+1

λt .

It follows that v = ab for some terms a and b. We obtain (λ(a b)) (λt) =

an+1
λt bn+1

λt and therefore λ(a b) = an+1
λt and λt = bn+1

λt . Applying Lemma 19

yields two cases for b. The contradiction follows in both cases from substi-

tuting b and applying the induction hypothesis to a.

(II) Assume λ(u n′) = unλt ⇒ λ((λv) n′) = λ(vn+1
λt), i.e. (λv) n′ = vn+1

λt . It

follows that v = ab for some terms a and b. We obtain (λ(a b)) n′ = an+1
λt bn+1

λt

and therefore λ(a b) = an+1
λt and n′ = bn+1

λt . Applying Lemma 18 yields

b = n′ (Note that |λt| ≥ 2 > 1 = |n′|). It follows that λ(a n′) = an+1
λt which

contradticts the induction hypothesis for a. �

4.2 Proof of the Uniqueness Lemma

Finally we are able to prove the main result of this section.

Proof If λsλt reduces to itself in one step, it holds that λsλt = s0
λt. It follows that

s = u v for some terms u and v, i.e. λ(u v)λt = u0
λt v

0
λt and therefore λ(u v) = u0

λt

and λt = v0
λt. Since λt is closed, we can apply Lemma 19 to the latter and obtain

two cases:

• v = 0. This yields λ(u 0) = u0
λt. It follows that u = 0 and t = 0 0 using Lemma

20. We conclude that λsλt = λ(u v)λt = λ(0 0)λ(0 0) = Ω.

• v = λt. This yields λ(u λt) = u0
λt. Since λt is closed, we can apply Lemma 21 to

prove this to be impossible. �

The Uniqueness Lemma can be lifted to arbitrary closed terms which leads to

the following theorem:

Theorem 21 If a closed term s reduces to itself in one step, then the beta redex is

equal to Ω

Proof By a simple induction over s using the Uniqueness Lemma �

5 A concrete but reasonable time measure

In [3], Dal Lago and Martini provided a time measure for the weak call-by-value

lambda calculus such that the weak invariance thesis is fulfilled. Using our frame-

work, Dal Lagos time measure can be defined by setting

c(λsλt) := max{1, |s0
λt| − |λsλt|}.

Furthermore they conjectured that it would suffice to set c to be constant 1 if one

avoids explicit representation of lambda-terms. In 2014 Accatolli and Dal Lago

12

finally showed a similar statement for the full lambda calculus [1]. As conjectured,

they used a non-explicit representation of lamda-terms, namely the linear substition

calculus (LSC). Their main result was the proof that using a certain evaluation

strategy of a term in the full lambda calculus combined with term representation

in LSC, the number of beta steps is an invariant cost model. In this work, we will

show that these results can be combined, using the uniform confluence property of

L. More precisely, we will show that setting c := 1 fulfills the weak invariance thesis,

i.e. we prove the original conjecture to be true. Note that we cannot adapt the

proof of Dal Lago and Accatolli, since the evaluation strategy used in [1] does not

correspond to a reduction in L.

5.1 Simulating L with LC

In this section, we will prove that L can be simulated by LC with only a polynomial

overhead of steps. At first, we extend the notion of a reduction step of LC by true

and false steps as follows:

• pB>LC q iff p �
LC
q via a beta step

• pB⊥LC q iff p �
LC
q via another step

Next, we lift this notation to a reduction sequence:

pB(0,0)
LC p

pB>LC q q B(m,n)
LC r

pB(m,n+1)
LC r

pB⊥LC q q B(m,n)
LC r

pB(m+1,n)
LC r

Lemma 22 True steps of LC correspond one-to-one with steps in L, i.e. for all

closed L-terms s and t

s �n t ⇔ ∃ m, tc : sεB(m,n)
LC tc ∧ btcc = t

This lemma seems obvious by definition. However, the formal proof consists of

many technicalities and is therefore omitted here. It can be found in the COQ

formalization.

We will use the following notations:

Definition 23 Let p be a valid LC-term, then

• |p|S denotes the size of p,

• |p|T denotes the size of the biggest L-term in p,

• and |p|P denotes the potential of p. The potential of a valid, LC-term is the

number of false steps that can be applied consecutively before applying another

rule.

Our goal is to prove that the number of false steps of a reduction sequence in LC is

polynomial bounded by the number of true steps. More precisely,

13

Theorem 24 Let p and q be valid LC-terms and m and n natural numbers, such

that pB(m,n)
LC q. Then there is a polynomial q, s.t.

m ≤ q(|p|P , |p|T , n)

Proof First, we make two observations:

• If |p|T is bounded by b then so are all LC-terms that are reached from p via a

reduction sequence.

• |p|P ≤ |p|S .

Unsurprisingly, | · |P is used as a potential function: The only steps that can add po-

tential are true steps. As all intermediate LC terms of the reduction sequence contain

only L-terms of size ≤ |p|T , the overall available potential is bounded by |p|P (the

potential at the beginning) +q′(|p|T ·n) where q′ is a polynomial. Finally we observe,

that every false step costs at least 1 potential. This very nice property holds only

because we are dealing with call-by-value. More precisely, the var-rule substitutes

variables only with LC-terms of the form s[σ] where s is a lamda, i.e. |s[σ]|P = 0.

This concludes the proof. Therefore m is indeed bounded by a polynomial in n, |p|P
and |p|T . �

In the formalization we achieved the following bound:

m ≤ |p|P · (n+ 1) + |p|T · (n+ 1)2

Theorem 25 Let s and t be closed L-terms such that s �n t and t is a normalform,

i.e. T1(s) = |s|+ n. Then there is a polynomial q and a valid LC-term tc such that

sε �
LC
q(T1(s)) tc ∧ btcc = t

Proof It holds that both |sε|P and |sε|T are smaller or equal than |s| by definition.

Therefore the claim follows by applying Lemma 22 and Theorem 24. �

5.2 Simulating LC with (something like) a Turing Machine

The purpose of LC was to show that the simulation of an L-term can be done by a

Turing Machine (or something equivalent w.r.t. to the invariance thesis) with only a

polynomial overhead in time. Therefore this Section will require less effort. In fact,

the main work was done in Section 5.1.

Recalling the inference rules of LC, we notice that only one rule can make some

trouble:

st[σ] �
LC
s[σ]t[σ]

14

The problem is, that the size might explode due to copying of lists. We will solve

this problem by working with pointers, i.e. it would be better to think of RAM

machines instead of Turing Machines. More precisely, we will introduce so called

substitution trees.

Theorem 26 A computation in LC, starting with sε for a closed L-term s, can be

simulated by a RAM Machine with only a polynomial overhead in time.

Proof First we observe that every explicitely represented term occuring in the re-

duction sequence is a subterm of s. The reason for this is the fact, that new terms

can only be produced via substitutions, but we only deal with explicit substitutions.

Therefore every LC-term of the form t[A] can be represented as a pointer to the sub-

term t of s and to the list A. Furthermore the lists are stored in a tree like structure,

which will be the substitution tree. Finally a valid LC-term p will be stored as a

tree for the structure of p and a substitution tree. Every node of the tree of p either

has a pointer to the substitution tree and therefore the form t[A] or no pointer and

therefore the form qr. In the following, we will show how to simulate each rule in

this representation. Note that, due to uniform confluence, the algorithm may use

the first applicable rule it finds. As the overall size will not exceed a polynomial in

the number of steps that were done before, searching for an applicable rule in each

step only leads to a polynomial overhead and corresponds to the usage of the rules

APPL and APPR. First we will illustrate how to extract a list from a substitution

tree. In the following solid arcs will correspond to pointers w.r.t. to the structure

of the trees and dashed arcs will represent pointers from terms to lists.

⊥

a b

c

d e

t

Figure 9: Example for a substitution tree: Let t be an L-term. This corresponds to

t[c; a], i.e. the list is obtained by going down from the pointer to the root. Note

that each LC-term a, · · · , e has the form λv[A] itself.

Now we are able to show how to simulate the three remaining rules (see Figures

10,11 and 12). Note that every rule increases the overall size by at most a constant

15

number of pointers. Now consider a normalizing computation q �
LC
n r, starting with

a valid LC-term q. If we simulate this computation as described above, there is a

polynomial p, such that the overall size of every intermediate term of the derivation

is bounded by a p(|q|S + n). Therefore every step takes time at most O(p). We

conclude that the overall running time of the described algorithm is bounded by a

polynomial. �

⊥

· · · · · ·

ak = λv

· · · · · ·

a1

· · ·

·

· · ·· · ·

k

⊥

· · · · · ·

ak = λv

· · · · · ·

a1

· · ·

·

· · ·· · ·

λv

Figure 10: Application of the VAR-rule: k[a1, · · ·] �LC
ak

16

· · ·

·

s t

a

· · ·

⊥

· · · · · ·

· · ·

·

s t

a

· · ·

⊥

· · · · · ·

Figure 11: Application of the APP -rule: st[a, · · ·] �
LC
s[a, · · ·]t[a, · · ·]

· · ·

·

λs λt

a

· · ·

⊥

· · ·

b

· · ·

· · ·

·

s

a

· · ·

⊥

· · ·

b

· · ·λt

Figure 12: Application of the BETA-rule: λs[a, · · ·]λt[b, · · ·] �
LC
s[λt[b, · · ·], a, · · ·]

17

5.3 Main result

We are finally able to show that the number of beta steps is a reasonable time

measure for L:

Theorem 27 (Polynomial simulation) Setting c := 1, Turing Machines and L

can simulate each other with polynomial overhead. More precisely:

• A Turing Machine can compute the implicit representation of the normal form

of a term s w.r.t. b·c in time p(Tc(s)) for al polynomial p.

• A lamda term can simulate a Turing Machine M in polynomial time w.r.t. Tc.
Hereby we rely on the encoding used by Dal Lago and Martini in [3].

Proof The first direction was shown in Section 5.1 and 5.2. For the second direction

we can apply the proof of Dal Lago and Martini (See [3], Theorem 1), since their

time measure is more expensive than counting the beta steps. �

5.4 Classical Complexity Theory

We will now go one step further by investigating lamda terms that decide languages

in the complexity class P. These procedures will - after applied to the encoding of

a string - converge after polynomial many steps in either the encoding of > or ⊥.

Therefore a Turing Machine can even produce the explicit representation of the

normal forms. At first we introduce a notion of classical complexity w.r.t. L:

Definition 28 Let Σ be a fixed alphabet of size cΣ and let >,⊥ ∈ Σ. Furthermore,

let d·e be the encoding function of a string as used by Dal Lago and Martini in [3].

• Let f : Σ
∗ → Σ

∗
be a (possibly partial) function. A closed term λs computes

f , iff

∀t, u ∈ Σ
∗

: (λsdte) �∗ due ⇔ f(t) = u.

We say that λs is an implementation of f , denoted by λs ↓ f .

• The running time Tλs : N→ N of an implementation λs of a total function is

given by

Tλs(n) := max{T1(λsdte) | t ∈ Σn}

If Tλs is bounded by a polynomial, λs is called polynomial time bounded.

• A subset L ⊆ Σ
∗

is called a language w.r.t. Σ.

• Given a language L, the characteristic function χL : Σ
∗ → Σ

∗
is defined as

χL(t) :=

{
> t ∈ L
⊥ t /∈ L

• A closed term λs decides a language L iff it computes χL. We write λs ↓ L.

18

• The class PL is defined as the set of all languages that can be decided by a

polynomial time-bounded lamda term.

From the polynomial simulation theorem it follows that PL = P. In the next section,

we will show that lamda terms that are implementations of total functions have a

surprising property.

5.4.1 Term size optimization

As stated in the motivation the general problem of simulating a reduction in L is that

the size of a term might blow up exponentially in the number of the reduction steps.

We will now show that every λs, such that λs ↓ L for L ∈ P can be transformed into

a function that only produces polynomial size bounded terms. In the following, let

Σ be a fixed but finite alphabet.

Definition 29 We write λs 'Σ λs′ if λs and λs′ are implementations of the same

function f : Σ
∗ → Σ

∗

Definition 30 Let λs be an implementation of a function f : Σ
∗ → Σ

∗
. Further-

more let ` : N → N. λs is called ` term size-bounded, denoted by s . `, if the

following holds for every t ∈ Σ
∗
:

∀u : sdte �∗ u→ |u| ≤ `(|sdte|)

Note that this is not meant to be an approach for a valid space measure

on L. The definition simply catches how large a term can grow w.r.t. the input

size. As stated above, it could be possible, that there are polynomial time bounded

lamda terms which are not polynomial term-size bounded. This fact allone shows

that a term size bound is not a valid space measure, since one would expect that a

reasonable machine does not need (much) more space than time. For example, it is

a well-known fact, that a Turing Machine does not need more space than time for

every computation, since writing on tapes also costs time.

However, we can show that, among other classes, P can be expressed by economic

implementations:

Definition 31 Let λs be an implementation of a total function f : Σ
∗ → Σ

∗
. λs is

called economic if there is a polynomial p such that s . p ◦ Tλs.

Informally, an implementation is economic if the size of the terms during any

reduction secquence does not explode w.r.t. to the running time and the input size.

Theorem 32 (Constructive optimization) Let λs be an implementation of a total

function f : Σ
∗ → Σ

∗
. Then one can construct an implementation λs′ such that

λs ' λs′ and λs′ is economic. Furthermore the running time of λs′ is bounded by a

polynomial in the running time of λs.

19

Proof Given λs, there is a polynomial p such that one can construct a Turing

Machine M that computes f with running time p ◦ Tλs, using the results of the

previous sections. Next we construct λs′ as in Theorem 1 in [3]. Recall Dal Lagos

and Martinis cost-function for beta steps:

c(λsλt) := max{1, |s0
λt| − |λsλt|}

This means, that a super polynomial blow up of the term size during the reduction

would require super polynomial time w.r.t. to c. However, Dal Lago and Martini

proved that the required time is bounded by a polynomial. Therefore we can use

uniform confluence w.r.t. to c to conclude that no reduction requires super polyno-

mial space. Note that uniform confluence w.r.t. to c is proven in [3]. Furthermore

it follows by Corollary 12. Last but not least c is more expensive than the function

that is constant 1. Therefore the running time of λs′ is bounded by a polynomial in

the running time of λs. �

6 Conclusion and open questions

At this point, we have obtained strong evidence that the weak call-by-value lambda

calculus is a valid machine model, at least regarding the weak invariance thesis.

Furthermore the time measure we established, namely the number of the reduction

steps is somewhat more natural than the measure in [3]. Comparing this to the

result for the full lambda calculus (see [1]) one might wonder if it is necessary to

consider the weak call-by-value lamda calculus at all. However, there are at least

two advantages in doing so: First, the weak call-by-value lambda calculus is uniform

confluent, i.e. one does not have to consider a derivation strategy to argue about time

and second, it is more realistic, since it describes functional programming languages.

Although we provided evidence for using L as model to formalize complexity theory,

there is still much work to do:

• As we have seen, a normalizing reduction s �∗ t in L can efficiently be simu-

lated by LC, but only with a non-explicit representation of t. However, if we

consider decision procedures and reductions with polynomial sized output, the

corresponding normalforms can be explicitely represented. This means, that we

can forget about LC, if we deal with robust time complexity classes that contain

P. Therefore, the next task would be starting to try to formalize other robust

complexity classes like NP, PH and/or EXP as well as polynomial time reductions

and perhaps the first hardness results.

• Furthermore we conjecture that it should be possible to use the size of the substi-

tution trees (see Section 5.2) to obtain a uniform space measure and to eventually

prove that the weak call-by-value lambda calculus even fulfills the strong invari-

ance thesis.

20

References

[1] Beniamino Accattoli and Ugo Dal Lago. Beta reduction is invariant, indeed. In

Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference

on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), page 8. ACM, 2014.

[2] Peter Van Emde Boas. Machine models and simulations. Handbook of Theoretical

Computer Science, volume A, pages 1–66, 2014.

[3] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable

machine. Theoretical Computer Science, 398(1):32–50, 2008.

[4] Yannick Forster. A formal and constructive theory of computation. 2014.

[5] Fabian Kunze. To be renamed. 2015.

21

	Introduction
	Preliminaries - kept short
	Extending uniform confluence by beta redexes
	Handling self-divergence
	The uniform confluence theorem
	An abstract time measure

	Uniqueness of self-divergence
	Obtaining structural insights via size induction
	Proof of the Uniqueness Lemma

	A concrete but reasonable time measure
	Simulating L with LC
	Simulating LC with (something like) a Turing Machine
	Main result
	Classical Complexity Theory
	Term size optimization

	Conclusion and open questions

