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Abstract

In this thesis we study control flow transformations for abstract imperative pro-
grams with actions (e.g. system calls). We take the view that the execution of a
program generates a trace of actions.

We employ an equivalence based on total and partial traces. This notion
of equivalence leads to a meaningful description of terminating as well as non-
terminating programs.

We base our studies on context-free programs - a generalization of regular pro-
grams with recursion. Our studies focus on context-free programs with tail re-
cursion. We show and verify equivalence preserving transformations from tail-
recursive programs to regular programs and from regular programs to linear tail-
recursive programs. In addition, we prove the correctness of a direct transforma-
tion from tail-recursive programs to linear tail-recursive programs. Finally, we
showhowabstract imperative programswith conditionals and loops (abstract IMP)
can be encoded using context-free programs. We prove that the equivalence of ab-
stract IMP programs with respect to the big-step semantics is implied by the equiv-
alence of their context-free encodings.

The entire development is carried out in the proof assistant Coq.
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Chapter 1

Introduction

Full sequential composition is a control flow statement used in most high-level im-
perative programming languages. Compilers translate programs of high-level pro-
gramming languages to sequences of instructions of register transfer languages.
Consequently, compilation needs to dissolve full sequential composition. We call
the translation step that dissolves full sequential composition linearization.

We motivate linearization of imperative programs with the following program
calculating the absolute value of its input. Both programs displayed here show the
same input-output behaviour.

IN x ;
if x < 0

then x := −x
else skip

end ;
OUT x

IN x ;
if x < 0

then x := −x ; OUT x
else OUT x

end

In the left program, both branches of the the conditional have to execute the
same continuation (OUT x) after executing the conditional. The program needs
to remember this continuation during execution. In the second program all com-
mands are executed consecutively. As both branches of the conditional already
contain the continuation, choosing a branch of the conditional directly yields the
complete program that remains to be executed. We call such programs that directly
reduce to their follow-up program linear.

In this thesis, we want to study the correctness of linearization. We aim at real-
izing this study in a formal mathematical way. To do so, we use an abstraction of
imperative programs and formalize linearization in this abstract setting. We carry
out the formalization and the correctness proofs with the proof assistant Coq [12].
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Context-free programs

The abstract programs we chose to represent imperative programs are context-free
programs. We obtain context-free programs with the following grammar:

s, t ::= 1 | a | st | s+ t | µx.s | x

where a ranges over actions and x ranges over variables. The abstract execution of
context-free programs is given as follows:
• The execution of 1 (skip) has no effect.
• The execution of an action a invokes this action on the current memory state.
• The execution of a sequential composition st consists of the execution of s followed

by the execution of t.
• The execution of a non-deterministic choice s + t consists of either the execution

of s or the execution of t.
• The execution of a recursion µx.s consists of the execution of the program ob-

tained from s by replacing all free occurrences of the variable x by µx.s.
We assume that only closed programs are executed. Thus, we do not consider the
execution of variables.

Trace semantics

We define a semantics for context-free programs that abstracts from the memory
state. Instead of tracking the changes in the memory state, we record the sequences
of actions invoked on each possible execution path. We refer to these action se-
quences as traces.

Formally, we characterize a program by the set of its partial and total traces. A
partial trace records a partial abstract execution of the program and a total trace
records a complete abstract execution of the program. We have partial traces so
that we can reason about non-terminating (e.g., reactive) programs.

We call the set of traces described by a program also the trace language of the
program. Two programs are called equivalent if their trace languages coincide.

Tail-recursive programs

We will study tail-recursive context-free programs. A program is called tail-
recursive if all variables are in tail-position. Examples for tail-recursive programs
are:

1 a µx.x (µx.x)a µx.a(bx+ c)

Tail-recursive programs can be transformed into two kinds of normal forms,
namely regular programs and linear programs. We will give equivalence transforma-
tions to these normal forms and show them correct.
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Regular programs

Regular programs are used in literature as an abstraction for imperative programs
with loops [5]. Regular programs do not contain a general recursion operator but
restrict recursions to one of the following forms:

∅ := µx.x

s∗ := µx.1 + sx x not free in s

We call s∗ iteration and∅ the null program. The syntax of regular programs is given
as follows:

s, t ::= 1 | a | st | s+ t | s∗ | ∅

Syntactically, regular programs coincide with regular expressions. Semantically,
however, regular expressions and regular programs differ. Using the notion of
traces, regular expressions describe a set of total traces while our trace semantics
works with partial and total traces.

Nevertheless, the correspondence of regular programs and regular expressions
allows us to argue that not every context-free program is regularizable. The total
traces of the program

µx.1 + axb

describe the language anbn which is known to be context-free and non-regular. As
the total traces of regular programs describe regular languages, there is no equiva-
lent regular program for µx.1 + axb.

By definition, all regular programs are tail-recursive. Variables can only occur
in iterations and the null program where they are located in tail position.

By giving an equivalence transformation from tail-recursive programs to reg-
ular programs we conclude that tail-recursive and regular programs describe the
same class of trace languages.

Linear programs

We characterize linear programs as a subset of context-free programs by restricting
sequential compositions to the following form:

a; t

By definition, every linear program is tail-recursive.
We will verify two kinds of equivalence transformations to establish linearity:

• A transformation from regular programs to linear programs.
• A direct transformation from tail-recursive programs to linear programs.
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Figure 1.1: Relationship between tail-recursive, linear, and regular programs

Together with the correspondence of regular programs and tail-recursive pro-
grams, we conclude that tail-recursive programs, regular-programs, and linear pro-
grams describe the same trace languages.

Context-free programs and abstract IMP

To motivate the relationship between context-free programs and imperative pro-
gramming languages we consider the abstract idealized language IMP [13].

c, d ::= skip | a | c;d | if b c d | while b c

In contrast to Winskel’s [13] formalization of IMP, we assume abstract actions a in-
stead of variable assignments. In order to give a big-step semantics for IMP [13],
we interpret actions as functions changing the memory state. Accordingly, we con-
sider tests b as a subset of actions closedunder negation. We interpret tests as partial
identities on the memory state which are only defined for conditions evaluating to
true in the current memory state.

The following encodings allow us to express IMP programs as context-free pro-
grams:

if b c d bc+ bd

while b c µx.b+ bcx

We call the encoding of an IMP program c as a context-free program the context-free
abstraction of c.

We show the following correspondence of IMP programs and context-free pro-
grams:

If the context-free abstractions of two IMPprograms c and d are trace equivalent,
then c and d are equivalent with respect to the big-step semantics.

Due to this correspondence, we assume that linearization and the proof tech-
niques used for for verification in this thesis carry over to abstract IMP.

As context-free programs can model non-determinism, we conjecture that we
can obtain similar results for reactive IMP where divergence matters.
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Contribution
We obtained the following results:
• Program equivalence based on traces is a substitutive congruence.
• A verified compiler from tail-recursive programs to regular programs.
• A verified compiler from regular programs to linear tail-recursive programs.
• A verified compiler from tail-recursive programs to linear tail-recursive pro-

grams.

Related Work
This thesis ismotivated by the translation of the idealized imperative language IMP
[13] to the linear intermediate language IL [11]. IL is an intermediate language de-
signed for compiler verification and can be interpreted in an imperative as well as
in a functional way. In this thesis, we are only interested in the imperative inter-
pretation of IL.

Fischer and Ladner [5] use regular programs in the context of Propositional
Dynamic Logic (PDL). In contrast to the regular programs we consider, Fisher and
Ladner additionally assume tests that conditionally block during execution. To-
gether with non-deterministic choices, the regular programs described by Fischer
and Ladner give an explanation for Dijkstra’s guarded commands [4].

A further generalization of PDL are Kleene algebraswith tests (KAT). KAT com-
bines Kleene Algebra with a boolean algebra for tests and gives us a system for
equational reasoning on regular programs.

In contrast to the considerations in this thesis, PDL and KAT take a state-based
semantics of regular programs as a basis. The trace-based semantics we consider
in this thesis dispenses us from requiring tests that follow the laws of boolean al-
gebra, and allows us to use uninterpreted actions instead. Additionally, the trace
semantics gives us an informative characterization of diverging programs.

As we use a formalization of programs that replaces the Kleene star with a re-
cursion operator, the results for Kleene algebras (as described by Kozen [6]) are not
directly applicable. Nevertheless, the trace semantics fulfils most of the axioms of
Kleene algebras not involving Kleene star.

Winter et al. [14] consider context-free expressionswith anunderlying language
semantics and show them to describe context-free languages.
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Overview
• Chapter 2. We introduce context-free programs and the trace semantics for

context-free programs.
• Chapter 3. We study program equivalence based on traces and prove that pro-

gram equivalence is a substitutive congruence.
• Chapter 4. We give a verified translation of tail-recursive programs to regular

programs and show that tail-recursive programs and regular programsdescribe
the same class of trace languages.

• Chapter 5. We give a compiler from regular programs to linear tail-recursive
programs and a compiler from tail-recursive programs to linear tail-recursive
programs and prove them correct.

• Chapter 6. We show that equivalence of the context-free abstractions of two ab-
stract IMP programs is a sufficient condition for their equivalence with respect
to big-step semantics.

The complete development is carried out with the proof assistant Coq [12].



Chapter 2

Context-Free Programs

We call the programs we will use as a model for imperative programs context-free
programs. Context-free programs have the same syntax as the context-free expres-
sions described byWinter et al. [14], but will be given a trace semantics instead of a
language semantics. The trace semantics allows us to obtain a meaningful descrip-
tion of non-terminating programs as we do not only observe traces of terminating
program executions, but also traces resulting from partial executions.

2.1 Syntax
The abstract syntax of context-free programs is defined as follows:

s, t, u ::= 1 | x | st | s+ t | µx.s (x ∈ N)

Programs of the form x where x ∈ N are called variables. Variables can occur as
bound variables if they are introduced by the binder µ or as free variables. WewriteVs
for the set of free variables of a program s.

For technical convenience we accommodate actions as free variables.
We refer to programs of the form st as sequential compositions and to those

of the form s+ t as choices. Programs of the form µx.s are called recursions.
We give an intuitive characterization of program execution.

• The execution of 1 has no effect.
• The execution of x invokes action x.
• The execution of st consists of the execution of s followed by the execution of t.
• The execution of s+ t consists of the execution of either s or t.
• The execution of µx.s consists of the execution of sxµx.s, where sxµx.s is the pro-

gram obtained from s by replacing all occurrences of x with µx.s. We call sxµx.s
the unfolding of µx.s.

2.2 Semantics
Formally, the execution of a program s yields the sequence of actions invoked dur-
ing the execution of s. From now on, we call such sequences traces. Traces resulting
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from a total program execution are called total traces, whereas traces obtained from
a partial program execution are called partial traces.

Traces are formally defined as strings of variables enriched with an ending that
indicates whether the trace is partial or total.

ξ, η, ζ := ε |# | xξ (x ∈ N)

Traces ending with # are called total whereas traces ending with ε are called par-
tial. We call # and ε the end markers of a trace and actions occurring in the trace
the elements of a trace. We denote the variables of a trace ξ as Vξ.

We define a concatenation operator for traces.

ε η := ε

# η := η

(xξ) η := x(ξ η)

Partial traces are absorbing in the sense that concatenation for partial traces yields
the identity.

Fact 2.1 (Properties of trace concatenation)
1. If ξ is partial, then ξη = ξ.
2. ξ# = ξ

3. (ξη)ζ = ξ(ηζ)

4. ξε is partial.

Fact 2.2 (Free variables of concatenated traces)
1. If ξ1 is partial, then V(ξ1ξ2) = Vξ1.
2. If ξ1 is total, then V(ξ1ξ2) = Vξ1 ∪ Vξ2.

We give a formal semantics of program execution in terms of an inductive trace
predicate.

ε/s #/1

ξ = ε ∨ ξ = #

xξ/x

ξ1/s ξ2/t

ξ1 ξ2/st

ξ/s

ξ/s+ t

ξ/t

ξ/s+ t

ξ/sxµx.s

ξ/µx.s

The rule for sequential composition exploits the properties of the concatenation
operator. An incomplete execution of the program s is also an incomplete execution
of the the sequential composition st. If s produces a partial trace ξ, this trace can
be seen as the composition of ξ with any other trace.

Fact 2.3 If ξη/s and ξ is partial then ξ/s.
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Fact 2.4 If ξ/s and ξ is partial, then ξ/st.

The set of all traces of a program s is described by the trace predi-
cate T s := λξ. ξ/s. We call the set of total traces the language of s and write Ls.
We use the notation ξ///s to say that ξ is a total trace of s and ξ//s to denote that ξ
is a partial trace of s. We say that a program s diverges if it has no total traces
(Ls = ∅). A program silently diverges if ε is its only trace (T s = {ε}). The most
simple silently diverging program is µx.x. We call µx.x null program.

Definition 2.5

∅ := µx.x (null program)

Fact 2.6 T ∅ = {ε}

Note that every program has at least one trace.

Fact 2.7 ε ∈ T s

A trace contains only free variables of a program.

Fact 2.8 If ξ/s, then Vξ ⊆ Vs

The traces of a program are closed under partial prefixes.

Fact 2.9 If ξ/s, then ξε/s.

Fact 2.10 (Prefix Closedness) If x1 . . . xnξ/s, then x1 . . . xnε/s.





Chapter 3

Program Equivalence

We consider two programs equivalent if they describe the same trace language.
This notion of equivalence is very strong as it requires equivalent programs to be
able to invoke the same action sequences. Regardless of a possible interpretation
of actions, equivalent programs behave the same. Consequently showing program
transformations to be equivalence preserving ensures that the transformation pre-
serves the observable behaviour.

To be able to use program equivalence for verification, we need to prove it a
congruence relation with respect to the syntactic structure of programs.

Two programs s and t are called equivalent if they have the same traces. We
write s ≈ t if T s = T t and s 4 t if T s ⊆ T t.

Fact 3.1 s ≈ t is an equivalence relation such that s ≈ t iff s 4 t and t 4 s.

Fact 3.2 (Important equivalences)

(s+ t) + u ≈ s+ (t+ u) (Associativity)
s+ t ≈ t+ s (Commutativity)
∅ + s ≈ s (Left Identity)
s+ s ≈ s (Idempotence)
s(tu) ≈ (st)u (Associativity)

1s ≈ s (Left Identity)
s1 ≈ s (Right Identity)

s(t+ u) ≈ st+ su (Left Distributivity)
(s+ t)u ≈ su+ tu (Right Distributivity)

∅s ≈ ∅ (Left Annulation)

The equivalences of Fact 3.2 are well known from Kleene algebras [6]. The first
four equations say that (cfp,+,∅) is an idempotent commutativemonoid. The next
three equations say that (cfp, ; , 1)1 is a monoid. In summary, (cfp,+, ; ) is an idem-

1We use ; here to denote the operator for sequential composition.
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potent semi-ring without right annulating 0.
The only missing property for an idempotent semi-ring that is the right annu-

lation of ∅.

Lemma 3.3 x∅ 6≈ ∅

Proof By definition, xε is a trace of x∅, but by Fact 2.6 xε is no trace of ∅. �

From a computational point of view, the right composition of ∅ to a program s

means that the program diverges silently after the execution of s. As s may have
invoked actions before diverging silently, this actions are still recorded in partial
traces.

3.1 Substitutivity
We assume a parallel substitution operator s[σ] for programs. Given a substitu-
tion σ : N→ cfp (where cfp denotes the set of all context-free programs), s[σ] yields
the program obtained from s by synchronously replacing all occurrences of free
variables x in s by σx. We call the set of all variables x with σx 6= x the domain of
a substitution σ and writeDσ. We write sxt for s[σ] with Dσ = {x} and σx = t.

As usual we assume capture-avoiding substitution.
We call two substitutions σ and τ equivalent (σ ≈ τ ) if they agree on all

variables up to equivalence (∀x. σx ≈ τx). Analogously, we write σ 4 τ if
T (σx) ⊆ T (τx) for all variables x.

We will show that ≈ is substitutive:

s ≈ t σ ≈ τ
s[σ] ≈ t[τ ]

Lemma 3.4 If σ 4 τ , then s[σ] 4 s[τ ]

Proof Assume σ 4 τ and ξ/s[σ]. The proof follows by induction on ξ/s[σ].
Remark. Technically, the induction on ξ/s[σ] does not go through as smoothly

as expected. As the induction is on the structure of s[σ] rather than on the structure
of s, we get inductive hypotheses for programs t of the form t = s[σ]. To reconstruct
the structure of s, we need inversion lemmas for each language construct. We have
to distinguish the case where s has the same structure as t with the substitution
applied to its components and the case where s was a variable x such that t = σx.
As the case that s is a variable, has to be considered in each case of the induction,
proofswith inversion lemmasmight growunnecessarily large. An alternative is the
introduction of a new trace predicate for programs under substitution that respects
the structure of s. We used such an additional predicate tomake our proofs shorter.
�
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Lemma 3.5 If σ ≈ τ , then s[σ] ≈ s[τ ].

Proof Follows with Lemma 3.4. �

We now show that substitution preserves equivalence. This requires a careful
study of the traces of s[σ]. We introduce a predicate η/ξ, σ that provides the fol-
lowing characterization of the traces of s[σ].

η/s[σ]↔ ∃ξ ∈ T s. η/ξ, σ

The substitution predicate η/ξ, σ defines the traces η that can be obtained from a
trace ξ by substituting traces of σx for variables x ∈ Vξ.

ε/ε, σ #/#, σ

ζ/(σ x) η/ξ, σ

ζ η/xξ, σ

Fact 3.6 ∃η.η/ξ, σ

We refer to η/ξ, σ as trace substitution. Trace substitution is consistent with
trace concatenation.

Fact 3.7
1. If η1/ξ1, σ and η2/ξ2, σ, then (η1 η2)/(ξ1 ξ2), σ.
2. If η/(ξ1 ξ2), σ, then there are traces η1 and η2 such that η = η1 η2 and η1/ξ1, σ

and η2/ξ2, σ.

Every trace of a program s under a substitution σ can be seen as a trace resulting
from a trace substitution of a trace ξ of swith σ.

Lemma 3.8 If ξ/s and η/ξ, σ, then η/s[σ]

Proof Induction on ξ/s. The case for sequential composition uses Fact 3.7. �

Lemma 3.9 (Trace Decomposition) If η/s[σ], then there is a trace ξ such that ξ/s
and η/ξ, σ.

Proof Induction on ξ/s[σ]. The case for sequential composition uses Fact 3.7. �

Substitution preserves program subsumption.

Lemma 3.10 If s 4 t, then s[σ] 4 t[σ].

Proof Assume s 4 t. Let η be a trace of s[σ]. By Lemma 3.9, η can be decomposed
into a trace ξ of s such that η/ξ, σ. By the assumption, we get that ξ is a trace of t.
We obtain η/t[σ] using Lemma 3.8 and η/ξ, σ. �
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As a consequence, substitution preserves program equivalence.

Lemma 3.11 If s ≈ t, then s[σ] ≈ t[σ].

Proof By Lemma 3.10. �

Theorem 3.12 (Substitutivity) If s ≈ t and σ1 ≈ σ2, then s[σ1] ≈ t[σ2].

Proof Follows with Lemmas 3.5 and 3.11. �

3.2 Congruence
We now prove that s ≈ t is a congruence relation. The proof of the congruence law
for recursion

s ≈ t
µx.s ≈ µx.t

relies on a detailed analysis of unfolding.
We define a unfolding operator [s]nx limiting the number of substitutions made

in the recursion case by a bound n.
The unfolding operator allows us to characterize the traces of µx.s as follows:

T (µx.s) =
⋃
n∈N
T [s]nx

Definition 3.13

[·]nx : cfp→ N→ var→ cfp

[s]0x = ∅
[s]nx = sx

[s]n−1
x

n > 0

Fact 3.14 (Monotonicity) If n ≤ m then [s]nx 4 [s]mx .

Unfolding and substitution commute.

Fact 3.15 If x 6∈ Dσ, then ([s]nx)[σ] = [s[σ]]nx .

The semantics of recursion can be characterized using the unfolding operator.

Lemma 3.16 If ξ/sxµx.t, then ξ/sx[t]nx for some n.

Proof Induction on ξ/sxµx.t. All cases follow directly from the inductive hypothe-
ses, except those for sequential composition and recursion.
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• s = s1s2. By the inductive hypotheses we know that there are ξ1 and ξ2 such
that ξ = ξ1ξ2 and ξ1/s1

x
[t]

n1
x

and ξ2/s2
x
[t]

n2
x

for some n1, n2. We show that
ξ1ξ2/(s1s2)

x

[t]
n1+n2
x

. By definition, it is sufficient to show that ξ1/[s1]n1+n2
x and

ξ2/[s2]
n1+n2
x . This follows directly using Lemma 3.4, the monotonicity of the

unfolding operator (Fact 3.14), and the inductive hypotheses.
• s = µy.s. We distinguish two cases:

1. x = y. Then (µy.s)xµx.t = µy.s = (µy.s)x[t]nx . Consequently the statement
holds trivially.

2. x 6= y. By the inductive hypothesis we know that ξ/(syµy.s)x[t]nx for some n. As
x 6= y and [t]nx does not contain free occurrences of x, we can conclude that
ξ/(sx[t]nx

)y
µy.sx

[t]nx

. Hence ξ/µy.sx[t]nx and also ξ/(µy.s)x[t]nx . �

Lemma 3.17 (Correctness of unfolding) ξ/µx.s iff ξ/[s]nx for some n.

Proof We show the two directions of the proof separately:
• Assume ξ/µx.s. Then there are two possibilities for ξ:

1. ξ = ε. Then ξ is a trace of ∅ = [s]0x.
2. ξ/sxµx.s. By Lemma 3.16, we know that there is an n ∈ N such that ξ/sx[s]nx .

Consequently, ξ/[s]n+1
x by Definition 3.13.

• Assume ξ/[s]nx for some n ∈ N. Proof by induction on n ∈ N.
– n = 0. Then ξ/∅ and consequently ξ = ε (by Fact 2.6). Hence ξ/µx.s

(Fact 2.7).
– n > 0. Then [s]nx = sx

[s]n−1
x

. With the inductive hypothesis for n − 1 and
Lemma 3.4, we get that ξ/sxµx.s. By definition, we have ξ/µx.s. �

The following lemma gives us the compatibility of ≈ with recursion as a corol-
lary.

Lemma 3.18 If s 4 t then [s]nx 4 µx.t

Proof Assume s 4 t and ξ/[s]nx . Proof by induction on n ∈ N.
• n = 0. Then ξ/∅ and consequently (Fact 2.6) ξ = ε. Hence ξ/µx.t (Fact 2.7).
• n > 0. Then ξ/sx

[s]n−1
x

. With the inductive hypothesis and Lemma 3.4, we can
conclude that ξ/sxµx.t. Thenwe also have ξ/txµx.t (Lemma 3.10) and consequently
ξ/µx.t. �
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Theorem 3.19 (Congruence) Program equivalence is an equivalence relation com-
patible with the syntactic structure of programs:
1. s ≈ s′ → t ≈ t′ → st ≈ s′t′

2. s ≈ s′ → t ≈ t′ → s+ t ≈ s′ + t′

3. s ≈ s′ → µx.s ≈ µx.s′

Proof The first two rules follow directly from the definitions. The congruence
rule for recursion follows with Lemma 3.18 and the correctness of unfolding
(Lemma 3.17). �

Corollary 3.20 Program equivalence is a substitutive congruence.

Proof Follows with Theorem 3.12 and Theorem 3.19 �



Chapter 4

Tail-Recursion and Regularity

We will focus on programs using tail-recursion only. Tail-recursive programs can
easily be translated to jumps in register transfer languages [7].

We compare tail-recursive programswith regular programs. Regular programs
are programs where recursion is restricted to iteration and the null program. We
will show that tail-recursive programs and regular programs can describe the same
trace languages. To do so, we construct a translator from tail-recursive to regular
programs and show its correctness.

4.1 Tail-Recursion
A program is tail-recursive if all occurrences of bound variables are in tail position.
A variable is in tail position in a program, if it only occurs in the final component
of a sequential composition. Examples for tail-recursive programs are:

1 x µx.x (µx.x)y µx.1 + ax µx.x+ (µy.x+ y)

Tail-recursion is inductively defined with respect to a set V of bound variables.
We use the notation A ‖ B to say that two sets A and B are disjoint.

trecV 1 trecV x

V ‖ Vs trec∅ s trecV t

trecV (st)

trecV s trecV t

trecV (s+ t)

trec(V ∪{x}) s

trecV (µx.s)

We say that s isV -tail-recursive if trecV s. If s is V -tail-recursive all bound variables
as well as the variables in V are located in tail position.

Fact 4.1 (Weakening) If trecV s and U ⊆ V , then trecU s.

Fact 4.2 (Strengthening) If trecV s and U ‖ Vs, then trecV ∪U s.

Fact 4.3 (Substitution) Let trecV s, x ∈ V , and trecV t. Then trecV sxt .
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4.2 Regularity
Regular programs restrict recursion to iterations and the null program (Defini-
tion 2.5). Regular programs can therefore be seen as the generalization of programs
withwhile loops such as IMP [13]. In the followingwewill develop a formal notion
for the regularity of programs.

We define iteration (Kleene iteration) for programs.

s∗ := µx.1 + sx x not free in s

A program is called regular if all recursions are of the form ∅ or s∗.
Accordingly, we can define regularity inductively.

reg 1 regx

reg s reg t

reg (st)

reg s reg t

reg (s+ t)

x 6∈ Vs reg s

reg (µx.1 + sx) reg∅

We give another definition of regularity corresponding to the structure of the
predicate trecV s. We define regularity with respect to a set V of variables.

regV 1

x 6∈ V
regV x

regV s regV t

regV (st)

regV s regV t

regV (s+ t) regV ∅

reg(V ∪{x}) s

regV (µx.1 + sx)

We call a program s V-regular if regV s. If s is V-regular, s is regular and does
not contain any free occurrences of variables in V .

Fact 4.4 If regV s, then Vs ‖ V .

Fact 4.5 (Weakening) If regV s and U ⊆ V , then regU s.

Fact 4.6 (Strengthening) If regV s and U ‖ Vs, then reg(V ∪U) s.

The predicate regV s can characterized in terms of reg s.

Lemma 4.7 Let regV s. Then reg s.

Proof Induction on regV s. Only the case for iteration (s∗) requires to show that
x 6∈ Vs. This follows directly by regV ∪{x} s and Fact 4.4. �

Lemma 4.8 Let reg s then reg∅ s.

Proof Induction on reg s. Only the case for iteration (s∗) requires to show that
reg{x} s. This follows directly from x 6∈ Vs, Fact 4.6 and the inductive hypothesis.�
Lemma 4.9 regV s iff reg s and Vs ‖ V .

Proof The direction from left to right follow directly by Fact 4.4 and Lemma 4.7.
The direction from right to left follows directly from Lemma 4.8 and Fact 4.6. �
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4.3 Correspondence of Tail-Recursion and Regularity
Tail-recursive programs can describe the same class of trace languages as regular
programs. Regular programs only allow a restricted form of tail-recursion. Con-
sequently, every regular program is tail-recursive. Moreover, every tail-recursive
program can be translated into an equivalent regular program.

In contrast to tail-recursive programs, in regular programs all recursions are
short distance. Short distance recursions are recursions where a variable bound by µ
only occurs in the top-level program of the recursion. Examples for short distance
recursions are:

µx.x µx.1 µx.1 + ax µx.(x+ µy.y)

In contrast, the outer recursion of the following program is not short distance:

µx.(x+ µy.x+ y)

We call recursion that are not short distance long distance. The translation of tail-
recursive programs to regular programs can therefore be seen as the elimination of
long distance recursion.

Theorem 4.10 If regV s, then trecV s.

Proof Induction on regV s using Fact 4.4. �

To show that every tail-recursive program can be translated into a regular pro-
gram, we need to show how tail recursions can be translated into iterations. It is
well-known that this transformation is possible [9].

We show that recursions of the form µx.s + tx can easily be transformed into
iterations if x is not free in s and t. We call recursions of this form decomposed.

Decomposed recursions satisfy the following unfolding property:

Fact 4.11 Let x 6∈ Vs ∪ Vt. Then [s+ tx]n+1
x ≈ s+ t[s+ tx]nx .

Decomposed recursions satisfy a distributivity law.

Lemma 4.12 Let x 6∈ Vs ∪ Vt ∪ Vu. Then [s+ tx]nxu ≈ [su+ tx]nx

Proof Proof by induction on n ∈ N.
• n = 0. Then [s+ tx]0xu = ∅u ≈ ∅ = [su+ tx]0x. (Fact 3.2)
• n > 0. Then

[s+ tx]nxu ≈ (s+ t[s+ tx]n−1x )u Fact 4.11
≈ su+ [s+ tx]n−1x u Distributivity
≈ su+ [su+ tx]n−1x Inductive hypothesis
≈ [su+ tx]nx Fact 4.11 �
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Corollary 4.13 (Distributivity) Let x 6∈ Vs ∪ Vt ∪ Vu. Then

(µx.s+ tx)u ≈ µx.su+ tx

Proof Follows using Lemmas 3.17 and 4.12. �

Corollary 4.14 If x 6∈ Vs ∪ Vt then µx.s+ tx ≈ t∗s.

Proof Assume x 6∈ Vs∪Vt. Then t∗s = (µx.1+ tx)s ≈ µx.1s+ tx ≈ µx.s+ tx using
Corollary 4.13. �

4.3.1 Regularizer

The regularization of a program consists of two parts:
• Recursions with regular bodies are translated to decomposed recursions

µx.s+ tx with regular components s and t. We call such decomposed recur-
sions regular.

• Regular decomposed recursions are translated to regular programs.
The general idea of regularization is that recursions are resolved in a bottom-up
manner. The inner most recursions have regular bodies and can therefore be trans-
formed to regular decomposed recursions. Such regular decomposed recursions
can by Corollary 4.14 be translated to regular programs. By a step-wise eliminat-
ing recursions, the whole program can be regularized.

The decomposerD is a function that for a variable x decomposes a regular pro-
gram s into two regular programs s1 and s2 such that s ≈ s1 + s2x and s1 and s2
satisfying the constraints of Corollary 4.14. Regularity and V -tail-recursion are pre-
served by the decomposition. The decomposer allows us to transform recursions
with regular bodies to regular decomposed recursions.

D : var→ cfp→ cfp× cfp

Dx 1 := (1,∅)

Dx x := (∅, 1)

Dx y := (y,∅) x 6= y

Dx (st) := let (t1, t2) := Dx t in (st1, st2)

Dx (s+ t) := let (s1, s2) := Dx s; (t1, t2) := Dx t in (s1 + t1, s2 + t2)

Dx (µy.s) := (µy.s,∅)

Lemma 4.15 If trecV s and (s1, s2) = Dx s, then s ≈ s1 + s2x.

Proof By induction on trecV s. �
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Lemma 4.16 Let trec(V ∪{x}) s and reg s. Let (s1, s2) = Dx s. Then
1. reg{x} s1
2. trecV s1
3. reg(V ∪{x}) s2
4. Vs− {x} = Vs1 ∪ Vs2

Proof By induction on trec(V ∪{x}) s. �

Theorem 4.17 (Correctness) Let s be regular and (V ∪ {x})-tail-recursive. Let
(s1, s2) = Dx s. Then
1. µx.s ≈ s∗2s1.
2. s∗2s1 is V -tail-recursive and regular.
3. V(µx.s) = V(s∗2s1).

Proof
1. We have s ≈ s1 + s2x by Lemma 4.15. By Lemma 4.16, we know reg{x} s1 and

regV ∪{x} s2. With Fact 4.4 we conclude that x 6∈ Vs1 and x 6∈ Vs2. Using Corol-
lary 4.14, we get µx.s ≈ µx.s1 + s2x ≈ s∗2s1.

2. Lemma 4.16 gives us reg{x} s1 and regV ∪{x} s2. From regV ∪{x} s2 we conclude
regV s∗2. By Lemma 4.9, we get reg s1 and reg s∗2 and consequently reg s∗2s1. In
addition we conclude the following from regV s∗2:
(a) trecV s∗2 (Theorem 4.10) and using weakening (Fact 4.1) also trec∅ s∗2.
(b) V(s∗2) ‖ V (Fact 4.4).
As Lemma 4.16 gives us trecV s1, we conclude trecV s∗2s1.

3. From Lemma 4.16 we get reg{x} s1 and consequently know that x 6∈ Vs1
(Fact 4.4). In addition, Lemma 4.16 gives us Vs− {x} = Vs1 ∪ Vs2. Then:

V(s∗2s1) = Vs∗2 ∪ Vs1 Definition of V
= (Vs2 − {x}) ∪ Vs1 Definition of V
= (Vs2 ∪ Vs1)− {x} As x 6∈ Vs1
= Vs− {x} As Vs− {x} = Vs1 ∪ Vs2
= V(µx.s) Definition of V �
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We define a function R constructing an equivalent regular program from a tail-
recursive program using the decomposer. R is called regularizer.

R : cfp→ cfp

R 1 := 1

Rx := x

R (st) := (Rs)(R t)

R (s+ t) := Rs+R t

R (µx.s) := let (s1, s2) := Dx (Rs) in s∗2s1

The regularizer satisfies three properties:
1. preservation of tail-recursion
2. preservation of free variables
3. establishment of regularity

Lemma 4.18 Let trecV s. Then the following holds:
1. trecV (Rs)

2. Vs = V(Rs)

3. regRs

Proof Induction on trecV s. All cases are easy except the cases for sequential com-
position and recursion.
• s = s1s2. Then Vs1 ‖ V and also V(Rs1) ‖ V by the inductive hypothesis. By

the inductive hypotheses for for s1 and s2, we have trec∅ (Rs1) and trecV (Rs2).
We conclude trecV ((Rs1)(Rs2)). The regularity of (Rs1)(Rs2) and V(s1s2) =

V((Rs1)(Rs2)) follows directly from the inductive hypotheses.
• s = µx.s. As Rs is (V ∪ {x})-tail-recursive and regular (by inductive hypoth-

esis), we know for the decomposition (s1, s2) = Dx (Rs) that s∗2s1 is V-tail-
recursive and regular (Theorem 4.17). In addition:

V(µx.s) = Vs− {x} Definition of V
= V(Rs)− {x} Inductive hypothesis for s
= V(µx.R s) Definition of V
= V(s∗2s1) Theorem 4.17 �

Lemma 4.19 If trecV s, then Rs ≈ s.

Proof Induction on trecV s. All cases are easy butµx.s. By the inductive hypothesis
we know that s ≈ Rs and consequentlyµx.s ≈ µx.(Rs). By Lemma 4.18, we obtain
trecV ∪{x} (Rs) and reg (Rs). The correctness of the decomposer (Theorem 4.17)
yields µx.s ≈ µx.(Rs) ≈ s∗2s1 for the decomposition (s1, s2) = Dx (Rs). �
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Theorem 4.20 (Correctness) Let s be V -tail-recursive. Then Rs is regular, V -tail-
recursive, and equivalent to s.

Proof Using Lemmas 4.18 and 4.19. �





Chapter 5

Linear Tail-Recursive Programs

Tail-recursive programs as well as regular programs allow full sequential composi-
tions. Full sequential compositions can cause the situation that different execution
paths of a program need to continue with the same continuation. To remember the
continuation a stack is needed. The need for a stack can be avoided by restricting
sequential composition such that only actions occur as first component. Programs
satisfying this constraint are called linear.

We show that every tail-recursive program can be translated into an equivalent
linear tail-recursive program. Todo so, we give a translation from regular programs
to linear tail-recursive programs that can be verified locally using the equivalences
from Fact 3.2.

In addition we study a direct compiler from tail-recursive programs to linear
tail-recursive programs. A direct translation from tail-recursive programs to linear
programs, as it is needed in practice, cannot be verified locally. The correctness
proof requires a careful study of the traces of tail-recursive programs. We give
such a direct compiler and verify its correctness.

5.1 Linearity
A program is linear if all sequential compositions are of the form xs. We call pro-
grams which are linear and tail-recursive linear tail-recursive. We define linear tail-
recursion by an inductive predicate with respect to a set V of variables.

ltrecV 1 ltrecV x

x 6∈ V ltrecV s

ltrecV (xs)

ltrecV s ltrecV t

ltrecV (s+ t)

ltrec(V ∪{x}) s

ltrecV (µx.s)

We say that s is V -linear tail-recursive if ltrecV s.

Fact 5.1 (Weakening) If ltrecV s and U ⊆ V , then ltrecU s.

Fact 5.2 (Strengthening) If ltrecV s and U ‖ Vs then ltrecV ∪U s.

Fact 5.3 If ltrecV s, then trecV s.



28 Linear Tail-Recursive Programs

5.2 Linearizing regular programs
In the last chapter we defined and verified a compiler from tail-recursive programs
to regular programs. Consequently, a compiler from regular programs to linear
programs suffices to show the linearizability of tail-recursive programs.

Regular programs have the advantage that all recursions are short distance. For
this reason the compiler does not need to track the bound variables of the pro-
gram. This structure simplifies the translation from regular programs to linear
tail-recursive programs.

The main challenge of linearization is to dissolve sequential compositions. The
following equivalences describe how sequential compositions can be dissolved for
the different language constructs as left component.

1u ≈ u
(st)u ≈ s(tu)

(s+ t)u ≈ su+ tu

(∅)u ≈ ∅
(µx.1 + sx)u ≈ µx.u+ sx x 6∈ Vs ∪ Vu

All equivalences displayed here are known from Fact 3.2 and Corollary 4.13. The
compiler for regular expressions (that we call linearizer) applies these equivalences
recursively to generate a linearized program. Consequently, the linearizer can be
verified locally using these equivalences.

The linearizer for regular programs is defined with respect to a continuation u.

L : cfp→ cfp→ cfp

L 1u := u

Lxu := xu

L (st)u := Ls (L t u)

L (s+ t)u := Lsu+ L t u

L∅u := ∅
Ls∗ u := µx.u+ Lsx x 6∈ Vu

Lemma 5.4 Let regV s and linV u. Then linV (Lsu).

Proof By induction on regV s. �

Lemma 5.5 Let reg s. Then Lsu ≈ su.

Proof Induction on reg s. All cases follow directly with the inductive hypotheses
and the equivalences from Fact 3.2. The recursion case uses Corollary 4.14. �
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Corollary 5.6 (Correctness) Let s be V -regular and u be V -linear tail-recursive.
Then Lsu is V -linear tail-recursive and equivalent to su.

Proof Using Lemmas 5.4 and 5.5. �

5.3 Linearizing tail-recursive programs
It is well-known that tail-recursive programs can be translated directly to programs
of register transfer languages using jumps [7]. Translating tail-recursive programs
to regular programs first, consequently causes an unnecessary restructuring of the
program. The linearizer discussed in this section is more straightforward as it per-
forms a direct translation respecting the structure of the program.

We define a function L that translates a tail-recursive program to an equivalent
tail-recursive linear program. We call L linearizer. The linearizer L is formulated
with respect to a continuation u.

L : var set→ cfp→ cfp→ cfp

LV 1u := u

LV xu := if x ∈ V thenx elsexu
LV (st)u := LV s (LV t u)

LV (s+ t)u := LV s u+ LV t u

LV (µx.s)u := µx.LV ∪{x} s u x 6∈ Vu

Note that the linearizer shown here would produce an exponential overhead
in the choice case. This could be easily avoided in practice by introducing a let-
construct. As we want the language to remain as simple as possible we do not use
such constructs here.

The linearizer preserves tail-recursion.

Lemma 5.7 (Preservation of tail-recursion)
Let trecV s and trecV u. Then trecV (LV s u).

Proof By induction on trecV s. �

The linearizer establishes linear tail-recursion.

Lemma 5.8 (Establishment of linearity)
Let trecV s and ltrecV u. Then ltrecV (LV s u).

Proof By induction on trecV s. The recursion case uses Fact 4.3. �

We will show that the linearizer satisfies the following equation:

L∅ s u ≈ su
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5.3.1 Traces of tail-recursive programs under substitution

The correctness proof requires a careful study of the traces of V -tail-recursive pro-
grams. A V -tail-recursive programs s contains free variables x ∈ V in tail position,
this carries over to the traces of s. Consequently, variables x ∈ V can occur as last
elements of traces of s.

We say that a variable x is terminal in ξ, if x is the last element of ξ and ξ does
not contain x at another position. We also say that ξ ends with x if x is terminal
in ξ. A trace ξ is V -tail-recursive for a set V of variables, if either Vξ ‖ V or there
is an variable x ∈ V such that x is terminal in ξ and Vξ ∩ V = {x}.

Fact 5.9 Let ξ1 be total, x 6∈ Vξ1, and x be terminal in ξ2. Then x is terminal in ξ1ξ2.

Fact 5.10 Let x be terminal in ξ1ξ2, ξ1 be total, and x 6∈ Vξ1. Then x is terminal in ξ2.

Fact 5.11 Let x be terminal in ξ1ξ2. Then one of the following holds:
1. x is terminal in ξ2 and ξ1 is total.
2. x is terminal in ξ1 and either ξ1 is partial or ξ2 has no elements.

Fact 5.12 Let trecV s and ξ/s. Then ξ is V -tail-recursive.

With ξ− we denote the trace ξ without its last element. For example we have:

ε− = ε

#− = #

(xε)− = ε

(x#)− = #

(xyε)− = xε

Fact 5.13 (Properties of element removal)
1. ξ−ε = (ξε)−

2. Let ξ2 contain at least one element. Then ξ1ξ−2 = (ξ1ξ2)
−.

Fact 5.14 If x is terminal in ξ, then x 6∈ Vξ−.

Fact 5.15 If ξ//s, then ξ−//s.

Fact 5.16 If ξ is V -tail-recursive, then Vξ− ‖ V .

We study the traces of tail-recursive programs under substitution.
To obtain an intuitive understanding of the following lemmas, we will argue

about the execution paths of a program. Since the traces of a program are obtained
from its possible execution paths, the changes of execution paths are reflected in
the traces.

If none of the variables of the domain of a substitution σ appears on the execu-
tion path of a program s then the path stays unchanged under σ.
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Lemma 5.17 If ξ/s and Dσ ‖ Vξ, then ξ/s[σ].
Proof Induction on ξ/s. All cases except sequential composition follow directly
from the inductive hypotheses or by Dσ ‖ Vξ.

Let s = s1s2. Then there are traces ξ1 and ξ2 such that ξ = ξ1ξ2, ξ1/s1 and
ξ2/s2. From Dσ ‖ Vξ1ξ2 we can conclude that Dσ ‖ Vξ1 and therefore get from the
inductive hypothesis for s1 that ξ1/s1[σ]. As we only know that Dσ ‖ Vξ2, if ξ1 is
total (Fact 2.2), we distinguish whether ξ1 is partial:
• ξ1 partial : Then ξ = ξ1ξ2 = ξ1 (Fact 2.1). As ξ1 is partial, we also have

ξ1/s1[σ]s2[σ] (Fact 2.4) and consequently ξ/(s1s2)[σ].
• ξ1 total: Then we conclude thatDσ ‖ Vξ2 and consequently get by the inductive

hypotheses that ξ1/s1[σ] and ξ2/s2[σ] and hence also ξ1ξ2/(s1s2)[σ]. �

If an execution path of a program ends with a variable that will be substituted,
it continues with the execution of the substituted program.
Lemma 5.18 Let ξ/swithDσ∩Vξ = {x} and x terminal in ξ. If η/σx, then ξ−η/s[σ].
Proof Induction on ξ/s. All cases except the sequential composition followdirectly
from the inductive hypotheses. Let s = s1s2. Then there are traces ξ1, ξ2 with ξ1/s1
and ξ2/s2 such that ξ = ξ1ξ2. Additionally we have that x is terminal in ξ1ξ2. This
gives us two cases (Fact 5.11):
1. ξ1 is a total trace not containing x and x is terminal in ξ2. Then by inductive

hypothesis for s2 we get ξ−2 η/s[σ]. As ξ1 does not contain x we have Vξ1 ‖ Dσ.
We conclude by Lemma 5.17 that ξ1/s[σ]. Consequently ξ1ξ−2 η/(s1s2)[σ]. As ξ2
contains at least one element (x), we know ξ1ξ

−
2 η = (ξ1ξ2)

−η (Fact 5.13) and
consequently ξ−η/(s1s2)[σ].

2. x is terminal in ξ1 and ξ1 is partial or ξ2 contains no elements. We distinguish
the different cases for ξ1 and ξ2.
(a) ξ1 is partial. Then ξ = ξ1ξ2 = ξ1. As x is terminal in ξ1 we conclude with

the inductive hypothesis for s1 that ξ−1 η/s1[σ]. As ξ−1 is partial, ξ−1 η = ξ−1
(Fact 2.1) and ξ−1 /s1[σ]s2[σ] (Fact 2.4). With ξ = ξ1 and ξ−1 being partial we
finally get ξ−η/(s1s2)[σ].

(b) ξ2 = ε. As ε/σx we conclude with the inductive hypothesis for s1 that
ξ−1 ε/s1[σ]. As ξ−1 ε is partial (Fact 2.1), we get ξ−1 ε/s1[σ]s2[σ] (Fact 2.4). As
ξ−1 ε = (ξ1ε)

− (Fact 5.13) and ξ1ε is partial, we also know that (ξ1ε)
− is partial

and consequently (ξ1ε)
− = (ξ1ε)

−η (Fact 2.1). With ξ2 = ε and ξ = ξ1ξ2 we
have ξ−η/(s1s2)[σ].

(c) ξ2 = #. By the inductive hypothesis for s1 we know ξ−1 η/s1[σ]. In addi-
tion we can show that #/s2[σ] from #/s2 using Lemma 3.8. Consequently
ξ−1 η#/s1[σ]s2[σ]. We know that ξ−1 η# = ξ−1 η = (ξ1#)−η = (ξ1ξ2)

−η = ξ−η

by Fact 2.1 and our assumptions. Consequently ξ−η/(s1s2)[σ]. �
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There are two kinds of execution paths for a tail-recursive program s under a
substitution σ with Dσ ⊆ V :
1. execution paths of swhere no variable that will be substituted appears.
2. execution paths of s that would end with a substituted variable and continue

with the execution of the substituted program instead.

Lemma 5.19 Let trecV s and ξ/s[σ] and Dσ ⊆ V . Then one of the following holds:
1. ξ/s and Vξ ‖ Dσ.
2. ξ = ξ−1 ξ2 and ξ1/s and ξ1 ends with variable x ∈ Dσ and ξ2/σx for some ξ1, ξ2.

Proof Induction on ξ/s[σ]. All cases are easy except those for variables and se-
quential composition.
• s = x and ξ/σx. We make a case distinction on x ∈ Dσ.

1. x ∈ Dσ. Then x#/x and (x#)−ξ = #ξ = ξ (Fact 2.1). As x# ends with
x ∈ Dσ the second case is matched.

2. x 6∈ Dσ. Then ξ/x and by Fact 2.8 we can conclude that Vξ ‖ Dσ.
• s = s1s2 and ξ = ξ1ξ2 with ξ1/s1[σ] and ξ2/s2[σ]. By inductive hypothesis for s1

there are two cases for ξ1.
1. ξ1/s1 and Vξ1 ‖ Dσ. We distinguish the possible forms of ξ2 by the inductive

hypothesis for s2:
(a) ξ2/s2 and Vξ2 ‖ Dσ. Then also ξ1ξ2/s1s2 and V(ξ1ξ2) ‖ Dσ.
(b) ξ2 = ξ−AξB , ξA/s2, ξA ends with a variable x ∈ Dσ and ξB/σx for some

ξA, ξB . We distinguish whether ξ1 is partial.
i. ξ1 is partial. Then ξ = ξ1ξ2 = ξ1 (Fact 2.1) and ξ1/s1s2 by Fact 2.4.

Consequently the first case is matched.
ii. ξ2 is total. Then ξ1ξA/s1s2. As ξ1 is a trace of s1 and Vs ‖ V , we

know that Vξ1 ‖ V (Fact 2.8) and with Dσ ⊆ V we get that x 6∈ Vξ1.
We conclude with Fact 5.9 that x is terminal in ξ1ξA. As ξA contains
at least one element (namely x), we have ξ1ξ−A = (ξ1ξA)− (Fact 5.13).
Consequently we found a correct decomposition with ξ = ξ1ξ2 =

ξ1ξ
−
AξB = (ξ1ξA)−ξB and the second case is matched.

2. ξ1 = ξ−AξB , ξA/s1, ξA ends with a variable x ∈ Dσ and ξB/σx for some
ξA, ξB . As s1s2 is V -tail-recursive, we know Vs1 ‖ V . By Fact 2.8 we have
also VξA ‖ V . Together with Dσ ⊆ V this contradicts that ξA ends with a
variable in Dσ. �

5.3.2 Linearizer Correctness

We show the correctness of the linearizer by relating the traces of LV s u with the
traces of s and u.
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The general idea of the linearizer is that it only appends the continuation u to
execution paths of s not ending with a variable in V . As V collects the bound vari-
ables of s, program paths ending with variables in V are actually not completed,
but would loop back.

a

xb

(µx.a(b+ x))u

a

xb

u

µx.a(bu+ x)
linearize

Figure 5.1: Visualization of the change in control flow of the recursion during lin-
earization for the program (µx.a(b+ x))u

There are three possibilities to obtain the trace of LV s u from the traces of s
and u.
1. If an execution path of s ends with a variable in V , the linearizer has not ap-

pended the continuation u to it. Consequently this path is also an execution
path of LV s u.

2. If an execution path of s is partial, it has not already reached a point where
the continuation umight have been appended. Consequently it is also a partial
execution path of LV s u.

3. If an execution path of s is total and does not end with a variable in V , the
linearizer did append the continuation u to it. Consequently the execution path
continues with the execution of u.
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Lemma 5.20 Let trecV s. Then:
Claim 1 If ξ/s and ξ ends with x ∈ V , then ξ/LV s u.
Claim 2 If ξ//s and Vξ ‖ V , then ξ//LV s u.
Claim 3 If ξ1///s, Vξ1 ‖ V and ξ2/u, then ξ1ξ2/LV s u.

Proof Induction on trecV s. We show the proofs of Claims 1 to 3 separately.

Proof of Claim 1:
Assume ξ/s and ξ ends with x ∈ V . All cases except for the cases for variables,

sequential composition and recursion are easy.
• s = x. Case analysis on x ∈ V .

1. x ∈ V . Then LV xu = x. Consequently every trace of x is a trace of LV xu.
2. x 6∈ V . As T x = {ε, xε, x#}, ξ cannot end with a variable in V .

• s = s1s2. As ξ/s1s2, ξ is composed of a trace ξ1 of s1 and a trace ξ2 of s2. As s1
does not contain any variables in V (for s1s2 being V -tail-recursive), this carries
over to ξ1 (Fact 2.8). We can conclude that for ξ1ξ2 being a trace that ends with a
variable x ∈ V , ξ1 needs to be a total trace and ξ2 needs to endwith x (Fact 5.11).
With the inductive hypothesis for s2, we know that ξ2/LV s2 u. With Claim 3,
we get that ξ1ξ2/LV s1 (LV s2 u).

• s = µy.s. Then LV (µy.s)u = µy.LV ∪{y} s u. We use the characterization
of recursion with the unfolding operator (Lemma 3.17) and assume ξ/[s]ny for
some n. We prove by induction on n ∈ N.
– n = 0. Then ξ/∅ and consequently ξ = ε (Fact 2.6). We conclude that

ξ/(µy.LV ∪{y} s u) by Fact 2.7.
– n > 0. Then ξ/sy

[s]n−1
y

. We use Lemma 5.19 to distinguish the possible forms
of ξ.
1. ξ/s and y 6∈ Vξ. Then x needs to be different from y as otherwise ξ

could not end with x. By the inductive hypothesis for s, we conclude
ξ/LV ∪{y} s u. With Lemma 5.17we get that ξ/(LV ∪{y} s u)y

µy.LV ∪{y} s u
and

consequently also ξ/µy.LV ∪{y} s u.
2. ξ = ξ−1 ξ2 and ξ1/s, ξ1 ends with y and ξ2/[s]

n−1
y for some ξ1, ξ2.

Then ξ2 ends with x as ξ−1 cannot contain any variables in V ∪ {y}
(Fact 5.16). As y ∈ V ∪{y} by the inductive hypothesis for s, we can con-
clude that ξ1/LV ∪{y} s u. In addition the inductive hypothesis for n − 1

yields for ξ2/[s]n−1y that ξ2/µy.LV ∪{y} s u. With Lemma 5.18, we get that
ξ−1 ξ2/(LV ∪{y} s u)y

µy.LV ∪{y} s u
and consequently ξ/µy.LV ∪{y} s u.
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Proof of Claim 2:
Assume ξ//s and Vξ ‖ V . All cases except for those for variables, sequential

composition and recursion are easy.
• s = x. We make a case distinction on x ∈ V .

1. x ∈ V . Then LV xu = x. Consequently every partial trace of x is also a
partial trace of LV xu.

2. x 6∈ V . Then LV xu = xu. By Fact 2.4, we can conclude that every partial
trace of x is also a partial trace of LV xu.

• s = s1s2. As ξ/s1s2, ξ is composed of a trace ξ1 of s1 and a trace ξ2 of s2. We
distinguish whether ξ1 is partial.
1. ξ1 is partial. Then ξ = ξ1ξ2 = ξ1 (Fact 2.1). Additionally we know from
V(ξ1ξ2) ‖ V together with Fact 2.2 that Vξ1 ‖ V . With the inductive hypoth-
esis for s1, we get ξ1//LV s1 (LV s2 u).

2. ξ1 is total. Then ξ2 must be partial and by Fact 2.2 we know that Vξ1 ‖ V and
Vξ2 ‖ V . Therefore we conclude with the inductive hypothesis for s2 that
ξ2//LV s2 u. With Claim 3 we finally get ξ1ξ2//LV s1 (LV s2 u)

• s = µx.s. Then LV (µx.s)u = µx.LV ∪{x} s u. We use the unfolding-
characterization of recursion (Lemma 3.17) and assume [s]nx for some n ∈ N.
Induction on n ∈ N.
– n = 0. Then ξ/∅ and consequently ξ = ε (Fact 2.6). We conclude

ξ/µx.LV ∪{x} s u (Fact 2.7).
– n > 0. Then ξ/sx

[s]n−1
x

. We use Lemma 5.19 to distinguish the possible forms
of ξ.
1. ξ//s and x 6∈ Vξ. Then also Vξ ‖ V ∪ {x} (by Vξ ‖ V ). By the in-

ductive hypothesis for s we conclude that ξ/LV ∪{x} s u. As x 6∈ Vξ
we get ξ//(LV ∪{x} s u)x

µx.LV ∪{x} s u
by Lemma 5.17 and consequently also

ξ//µx.LV ∪{x} s u.
2. ξ = ξ−1 ξ2 and ξ1/s, ξ1 ends with x and ξ2/[s]

n−1
x for some ξ1, ξ2. We

distinguish whether ξ1 is partial.
(a) ξ1 is partial. Then ξ−1 is partial and consequently ξ = ξ−1 ξ2 = ξ−1 .

By Claim 1, we get from ξ1/s that ξ1//LV ∪x s u. From Fact 5.15,
we know ξ−1 //LV ∪x s u. Additionally we know by Fact 5.14
that x 6∈ Vξ−1 and consequently we conclude with Lemma 5.17
ξ−1 /(LV ∪{x} s u)x

µx.LV ∪{x} s u
and therefore also ξ//µx.LV ∪{x} s u.

(b) ξ1 is total. Then ξ2 needs to be partial and Vξ2 ‖ V (Fact 2.2). By
the inductive hypothesis for n− 1 we conclude ξ2//µx.LV ∪{x} s u. By
Claim 1 we get from ξ1/s that ξ1/LV ∪{x} s u. By Lemma 5.18 we have
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ξ−1 ξ2//(LV ∪{x} s u)x
µx.LV ∪{x} s u

and consequently ξ//µx.LV ∪{x} s u.

Proof of Claim 3:
Assume ξ1///s, Vξ1disjointV and ξ2/u. All cases are easy except for those for

variables and recursion.
• s = x. Then ξ1 = x#. By Vξ1 ‖ V , we conclude that x 6∈ V . Consequently

LV xu = xu. From ξ1///x and ξ2/u, we get that ξ1ξ2/LV xu.
• s = µx.s. ThenLV (µx.s)u = µx.LV ∪{x} s u. We use the unfolding characteriza-

tion of recursion (Lemma 3.17) and assume ξ1///[s]nx for some n ∈ N. Induction
on n ∈ N.
– n = 0. Then ξ1///∅. This is directly contradictory as∅ has only partial traces

(Fact 2.6).
– n > 0. Then ξ1///sx[s]n−1

x
. We deconstruct ξ1 by Lemma 5.19.

1. ξ1///s and x 6∈ Vξ1. Then Vξ1 ‖ V ∪ {x}. By the inductive hypothesis for
swe get ξ1ξ2/LV ∪{x} s u. As x 6∈ Vu and consequently x 6∈ Vξ2 (Fact 2.8),
we conclude that ξ1ξ2/(LV ∪{x} s u)x

µx.LV ∪{x} s u
by Lemma 5.17. By defi-

nition, we get ξ1ξ2/µx.LV ∪{x} s u.
2. ξ1 = ξ−AξB and ξA ends with x and ξA///s and ξB///[s]

n−1
x . With

the inductive hypothesis for n − 1 we get ξBξ2/µx.LV ∪{x} s u.
With Claim 1, ξA///s gives us ξA/LV ∪{x} s u. By Lemma 5.18
we have ξ−A(ξBξ2)/(LV ∪{x} s u)x

µx.LV ∪{x} s u
and consequently also

ξ1ξ2/µx.LV ∪{x} s u. �

After studying how the traces of LV s u can be composed from traces of s and u,
we will show that we can tie the traces of LV s u to the traces of s and u accordingly.

Execution paths of LV s u can be of three forms:
1. paths of swhich never reached the end of s
2. paths that ended with a variable in V
3. paths that passed through s completely without appearances of variables in V

and continued with the execution of u

Lemma 5.21 Let trecV s, trecV u and ξ/LV s u. Then one of the following:
1. ξ//s and Vξ ‖ V .
2. ξ/s and ξ ends with a variable x ∈ V .
3. ξ = ξ1ξ2 and ξ1///s and Vξ1 ‖ V and ξ2/u for some ξ1, ξ2.

Proof Induction on trecV s. Assume trecV s and trecV u. We consider the case ξ = ε

once. Traces of the form εmatch the first case as ε//s and Vε = ∅.
• s = 1. Then LV 1u = u. The third case matches as a trace ξ of u can be decom-

posed to #ξ and #/1 and V# = ∅.
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• s = x. Case distinction on x ∈ V .
1. x ∈ V . Then LV xu = x. Then the second case matches trivially.
2. x 6∈ V . Then LV xu = xu. Then a trace ξ of xu can be decomposed into a

trace ξ1 of x and a trace ξ2 of u. We distinguish whether ξ1 is partial.
(a) ξ1 is partial. Then ξ = ξ1ξ2 = ξ1 (Fact 2.1). Consequently ξ//x andVξ ‖ V

as x 6∈ V .
(b) ξ1 is total. Then the third case matches. Vξ1 ‖ V holds as x 6∈ V .

• s = s1s2. Then LV (s1s2)u = LV s1 (LV s2 u). By inductive hypothesis for s1 we
distinguish three cases for traces ξ of LV s1 (LV s2 u).
1. ξ//s1 and Vξ ‖ V . Then also ξ//s1s2 (Fact 2.4) and the first case matches.
2. ξ/s1 and ξ ends with x ∈ V . As Vs1 ‖ V (for s1s2 being V -tail-recursive), we

know that Vξ ‖ V (Fact 2.8). Consequently, this case is contradictory.
3. ξ = ξ1ξ2 and ξ1///s1 and Vξ1 ‖ V and ξ2/LV s2 u for some ξ1, ξ2. We make a

distinction on the form of ξ2 using the inductive hypothesis for s2.
(a) ξ2//s2 and Vξ2 ‖ V . Then ξ1ξ2 is a partial trace of s1s2 and V(ξ1ξ2) ‖ V

as Vξ1 ‖ V and Vξ2 ‖ V (Fact 2.2). Consequently the first case matches.
(b) ξ2/s2 and ξ2 ends with x ∈ V . Then ξ1ξ2 is a trace of s1s2 ending with x

as ξ1 is total and does not contain any variables in V . Consequently the
second case matches.

(c) ξ2 = ξAξB and ξA///s2 and VξA ‖ V and ξB/u for some ξA, ξB . Then
ξ = (ξ1ξA)ξB and ξ1ξA is a total trace of s1s2. Additionally V(ξ1ξA) ‖ V
holds as Vξ1 ‖ V and VξA ‖ V (Fact 2.2). Consequently the third case
matches.

• s = s1 + s2. Then LV (s1 + s2)u = LV s1 u + LV s2 u. Consequently either
ξ/LV s2 u or ξ/LV s1 u. We show the claim for ξ/LV s2 u, the other case works
analogously using the inductive hypothesis for s2. We distinguish the form of ξ
using the inductive hypothesis for s1:
1. ξ//s1 and Vξ ‖ V . Then by definition ξ//s1 + s2 and the first case matches.
2. ξ/s1 and ξ ends with x ∈ V . Then also ξ/s+ t and the second case matches.
3. ξ = ξ1ξ2, ξ1///s1, Vξ1 ‖ V and ξ2/u for some ξ1, ξ2. Then also ξ1///s+ t and

the third case matches.
• s = µx.s. Then LV (µx.s)u = µx.LV ∪{x} s u. We use the unfolding charac-

terization of recursion and assume ξ/[LV ∪{x} s u]nx for some n ∈ N. Induction
on n ∈ N.
– n = 0. Then ξ/∅ and consequently ξ = ε (Fact 2.6). Consequently, the first

case matches.
– n > 0. Then ξ/(LV ∪{x} s u)x

[LV ∪{x} s u]
n−1
x

. As u does not contain x, we can
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strengthen trecV u to trecV ∪{x} u (Fact 4.1). By Lemma 5.7 and trecV ∪{x} swe
know that trecV ∪{x} (LV ∪{x} s u). This allows us to distinguish the different
forms of s using Lemma 5.19.
1. ξ/LV ∪{x} s u and x 6∈ Vξ. By the inductive hypothesis for s, we can again

distinguish different forms of ξ.
(a) ξ//s and Vξ ‖ V ∪ {x}. Then also ξ//sxµx.s by Lemma 5.17 and conse-

quently ξ//µx.s and Vξ ‖ V .
(b) ξ/s and ξ endswith y ∈ V ∪{x}. As x 6∈ Vξ, we know that y ∈ V \{x}.

As x 6∈ Vξ, we conclude by Lemma 5.17 that ξ/sxµx.s and consequently
ξ/µx.s. As ξ endswith a variable y ∈ V \{x}, the second casematches.

(c) ξ = ξ1ξ2 and ξ1///s and Vξ1 ‖ V ∪ {x} and ξ2/u for some ξ1, ξ2. As
x 6∈ Vξ1, we get ξ1///sxµx.s by Lemma 5.17. Consequently, ξ1///µx.s and
the third case matches.

2. ξ = ξ−1 ξ2 and ξ1/LV ∪{x} s u and ξ1 ends with x and ξ2/[LV ∪{x} s u]n−1x for
some ξ1, ξ2. By the inductive hypothesis for s, we distinguish different
forms of ξ1.
(a) ξ1//s and Vξ1 ‖ V ∪ {x}. Consequently x 6∈ Vξ1 what directly contra-

dicts that ξ1 ends with x.
(b) ξ1/s and ξ1 ends with y ∈ V ∪ {x}. We distinguish whether ξ1 is

partial
i. ξ1 is partial. Then ξ−1 is also partial and ξ = ξ−1 ξ2 = ξ−1

(Fact 2.1). By the prefix-closedness (Fact 2.10), we conclude that
ξ−1 //s. As s is (V ∪{x})-tail-recursive, we know that ξ1 is (V ∪{x})-
tail-recursive as well (Fact 5.12). Consequently Vξ−1 ‖ V ∪ {x}
(Fact 5.16). As x 6∈ Vξ−1 , we conclude ξ−1 //sxµx.s by Lemma 5.17.
Consequently we have ξ//µx.s and Vξ ‖ V .

ii. ξ1 is total. Then ξ−1 is also total. As s is (V ∪ {x})-tail-recursive,
we know that ξ1 is (V ∪{x})-tail-recursive, too (Fact 5.12). Conse-
quentlyVξ−1 ‖ V ∪{x} (Fact 5.16). Weuse the inductive hypothesis
for n− 1 to argue about the form of ξ2.
A. ξ2//µx.s and Vξ2 ‖ V . With Lemma 5.18, we get ξ−1 ξ2//sxµx.s

and consequently ξ//µx.s. As Vξ−1 ‖ V ∪ {x} and Vξ2 ‖ V , we
also know that Vξ ‖ V (Fact 2.2) and the first case matches.

B. ξ2/µx.s and ξ2 ends with y ∈ V . With Lemma 5.18, we get
ξ−1 ξ2//s

x
µx.s and consequently ξ//µx.s. As x 6∈ Vξ−1 , ξ

−
1 is total,

and ξ2 ends with y ∈ V , we know that ξ also ends with y ∈ V
(Fact 5.9) and the second case matches.

C. ξ2 = ξAξB and ξA///µx.s and VξA ‖ V and ξB/u. Then
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by Lemma 5.18 we have ξ−1 ξA///s
x
µx.s and consequently

ξ−1 ξA///µx.s. As ξ = ξ−1 (ξAξB) = (ξ−1 ξA)ξB , the third case
matches.

(c) ξ1 = ξAξB and ξA///s and VξA ‖ V ∪ {x} and ξB/u. As ξ1 ends
with x and ξA is total and does not contain x, ξB needs to end with x
(Fact 5.10). As u does not contain x as free variable by definition of
the linearizer, ξB cannot contain x as well (Fact 2.8). This contradicts
that ξB ends with x. �

Theorem 5.22 Let trec∅ s and ltrec∅ u, then ltrecV (L∅ s u) and su ≈ L∅ s u.

Proof Assume trec∅ s and ltrec∅ u. Then ltrecV (L∅ s u) follows directly from
Lemma 5.8. To show that su ≈ L∅ s u, we consider both directions of the equiv-
alence separately.
• Assume ξ/su. Then ξ is composed of a trace ξ1 of s and a trace ξ2 of u. Trivially
Vξ1 ‖ ∅ holds. We distinguish whether ξ1 is partial.
1. ξ1 is partial. Then ξ = ξ1ξ2 = ξ1 and ξ1 is a trace of L∅ s u by Claim 2 of

Lemma 5.20.
2. ξ1 is total. Then ξ1ξ2 is a trace of L∅ s u by Claim 3 of Lemma 5.20.

• Assume ξ/L∅ s u. Then by Lemma 5.21 there are three possibilites for ξ:
1. ξ//s. Then also ξ/su by Fact 2.4.
2. ξ/s and x ends with x ∈ ∅. This is directly contradictory.
3. ξ = ξ1ξ2, ξ1///s and ξ2/u for some ξ1 ξ2. Then also ξ1ξ2/su by definition. �





Chapter 6

Context-Free Programs and abstract IMP

To study the correspondence between context-free programs and imperative pro-
gramming languages, we consider the abstract idealized programming language
abstract IMP with a big-step semantics. Abstract IMP abstracts from variable as-
signments and boolean conditions by considering them as relations on the mem-
ory state. This abstraction allows us to show a translation from abstract IMP pro-
grams to context-free programs with actions and tests as free variables. We call
the context-free program resulting from this translation the context-free abstraction
of the abstract IMP program. We show how the big-step semantics of an abstract
IMP program can be reconstructed from the trace semantics of its context-free ab-
straction.

The syntax of abstract IMP is obtained by the following grammar:

c, d ::= skip | a | c; d | if b c d | while b c (a ∈ A) (b ∈ B)

In contrast to Winskel’s IMP [13], we assume abstract actions a instead of variable
assignments. We denote the set of actions with A. In addition we assume a subset
of actions B that is closed under negation. We refer to the elements b ∈ B as tests.

In order to define a state based semantics for IMP programs, we assume a set Σ

of abstract states. To describe the effect of actions and tests, we assume a predicate
exec : Σ×A× Σ. The predicate exec relates a state σ and an action awith a state τ
if the execution of a in σ may result in τ .

Tests b ∈ B can be seen as partial identities on states. The predicate exec either
relates a state σ and a test b with the same state σ or with no state at all. If σ and b
are not related with another state, then σ and the negation b are related with σ.
Accordingly, if σ and b are related with σ, then σ and b are not.
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We obtain the following axiomatization of actions and tests:
1. A: set of of abstract actions
2. B ⊆ A: set of tests
3. b : B → B
4. b ∈ B ↔ b ∈ B
5. exec : Σ×A× Σ

6. exec σ b τ → σ = τ

7. exec σ b σ ↔ ¬exec σ b σ

We give a big-step semantics for abstract IMP.

(σ, skip)⇒ σ

exec σ a τ

(σ, a)⇒ τ

exec σ b σ (σ, c)⇒ τ

(σ, if b c d)⇒ τ

¬exec σ b σ (σ, d)⇒ τ

(σ, if b c d)⇒ τ

exec σ b σ (σ, c)⇒ σ′ (σ′,while b c)⇒ τ

(σ,while b c)⇒ τ

¬exec σ b σ

(σ,while b c)⇒ σ

Two abstract IMP program c and d are called equivalent if the big-step semantics
yields the same final states for all initial states for c and d.

c ≈IMP d := ∀στ. (σ, c)⇒ τ ↔ (σ, d)⇒ τ

The abstraction from variable assignments and conditionals in abstract IMP, al-
lows us to encode abstract IMP programs as context-free programs using the fol-
lowing encodings:

if b c d bs+ bt

while b c µx.b+ bsx

We call the context-free program resulting from the encoding of an IMP pro-
gram c the context-free abstraction of c.

We define a function cfa : imp → cfp that constructs the context-free abstrac-
tion for an abstract IMP program. Where imp denotes the set of all abstract IMP
programs.
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cfa : imp→ cfp

cfa skip := 1

cfa a := a

cfa (c; d) := (cfa c)(cfa d)

cfa (if b c d) := b(cfa c) + b(cfa d)

cfa (while b c) := µx.b(cfa c)x+ b1 b, b 6= x

Remark. Semantically equivalent formulations for the context-free abstraction for
while are µx.b(cfa c)x+ b or µx.b+ b(cfa c)x. For the proofs the chosen formulation
is useful as it fulfils the following unfolding law:

(b(cfa c)x+ b1)
x
µx.b(cfa c)x+b1 = cfa (if b (c; while b c) skip)

Fact 6.1 cfa c is tail-recursive.

We will show that the equivalence of the context-free abstractions of two ab-
stract IMP programs is a sufficient condition for their equivalence with respect to
the big-step semantics:

cfa c ≈ cfa d→ c ≈IMP d

To relate the trace semantics of context-free abstractions with the big-step se-
mantics of abstract IMP programs, we develop a notion for the execution of a trace
of actions on a state.

We define a predicate run σ ξ τ that satisfies the following equivalence:

run σ ξ τ ↔ ξ = a1, . . . an# ∧ ∃σ0, . . . σn.∀i < n. exec σi ai+1 σi+1 ∧ σ = σ1 ∧ τ = σn

The predicate run is inductively defined by the following inference rules:

run σ # σ

exec σ a σ′ run σ′ ξ τ

run σ (aξ) τ

Intuitively, run σ ξ τ means that the actions of ξ consecutively invoked on σ result
in τ .

Fact 6.2
1. Let run σ ξ σ′ and run σ′ η τ . Then run σ (ξη) τ

2. Let run σ (ξη) τ . Then there is a state σ′ such that run σ ξ σ′ and run σ′ η τ .



44 Context-Free Programs and abstract IMP

Lemma 6.3 Let (σ, c)⇒ τ . Then there is a trace ξ such that ξ/cfa c and run σ ξ τ .

Proof By induction on (σ, c) ⇒ τ . The case for sequential composition uses
Fact 6.2. �

Lemma 6.4 Let ξ/cfa c and run σ ξ τ . Then (σ, c)⇒ τ .

Proof By induction on ξ/cfa c. The case for sequential composition uses Fact 6.2.�

Theorem 6.5 Let cfa c ≈ cfa d. Then c ≈IMP d.

Proof Follows with Lemmas 6.3 and 6.4. �



Chapter 7

Conclusions

In this thesis, we studied tail-recursive context-free programs with a trace seman-
tics. Context-free programs are an abstract model for imperative programming
languages. They consist of uninterpreted actions as atomic programs and abstract
control structures known from regular expressions enrichedwith a recursion oper-
ator generalizing Kleene iteration. We focused on programs where recursions are
restricted to tail recursions. We showed and verified equivalence transformations
for tail-recursive programs to two kinds of normal forms: regular programs and
linear tail-recursive programs. The trace semantics used for the verification of our
results characterizes each program by the partial and total action sequences it can
invoke. Thus, trace semantics allows to obtain meaningful descriptions of termi-
nating as well as non-terminating programs.

7.1 Discussion
Context-free programs do not represent a realistic programming language. They
do not allow conditions or guards to influence the control flow, but assume
non-determinism whenever different execution paths are possible. The non-
determinism is expressed in the trace semantics by recording all possible traces.
The traces of a program describe how the program might behave. Nevertheless,
context-free programs can be used to describe more realistic imperative program-
ming languages if the abstract actions are interpreted as shown in Chapter 6. For
this reason, we state that the transformations and proof techniques used in this
thesis can be transferred to many other settings including reactive versions of IMP.

With the translation from tail-recursive programs to regular programs (Chap-
ter 4), we showed the correspondence of tail-recursion and iteration. The transla-
tion shows that long-distance recursion can be resolved to short-distance recursion.

With the translation from tail-recursive to linear-programs (Chapter 5) we stud-
ied the compilation step needed to translate high level programming languages to
linear register transfer languages and showed its correctness in a generalized set-
ting.
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Wehave seen that a compiler from regular programs to linear tail-recursive pro-
gram ismuch easier to verify than a direct compiler from tail-recursive programs to
tail-recursive linear programs. Since regular programs are already short distance,
we can apply equivalences locally to argue about the correctness of the transfor-
mation. We also gave a direct linearizer that respects the program structure. The
verification of the direct linearizer is much more difficult to verify since it needs to
keep track of bound variables. The correctness proof relies on a detailed study of
the traces of tail-recursive programs.

7.2 Future Work
An interesting problem not addressed in this thesis is the correspondence of the
total trace languages of context-free programs with context-free languages. Winter
et al. [14] show several related results for context-free languages using co-algebras.
We would like to use another approach that extends context-free programs with
mutual recursion. Context-free programs with mutual recursion should allow to
describe context-free grammars directly. Accordingly, resolving mutual recursion
should correspond to the translation of context-free grammars to context-free pro-
grams.

Another problem that is left open is the formal exploration of the relationship
between the trace semantics considered here and the small-step semantics for im-
perative programs. Itwould be interesting to prove that given a concrete initial state
and an interpretation of actions as assignments and tests, the small-step semantics
can be reconstructed from the trace semantics.

Another interesting topic is the investigation of Brzozowski derivatives [3] for
context-free and tail-recursive context-free programs. Brzozowski derivatives are
a means to construct deterministic automata from regular expressions [2]. Addi-
tionally, Brzozowski derivatives allow an efficient membership test for regular lan-
guages described by regular expressions [8]. Wewould like to obtain similar results
for tail-recursive programs. In addition, derivatives might be a means to show the
decidability of program equivalence. Almeida, Broda and Moreira [1] show the
decidability of the equivalence of two KAT expressions using partial derivatives.
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Coq Formalization

The results of this thesis are carried out using the proof assistant Coq. The for-
malization is available at www.ps.uni-saarland.de/~schneidewind/bachelor. The
Coq files of the formalization were compiled with Coq 8.4pl5.

The Coq formalization uses De Bruijn indices instead of variables. For this rea-
son the formulation of some statements in this thesis may differ from the corre-
sponding formulation in Coq. The main differences can be found in the formula-
tion of the predicates for tail recursion, regularity and linearity as well as in the
treatment of bound variables and the related lemmas.

For the realization of De Bruijn indices in Coq, we used the library AutoSubst
[10]. In addition we used some helpful tactics defined in the files Util.v and
AutoIndTac.v provided by Steven Schäfer and Sigurd Schneider.

Organization of the Files
Context-free Programs

The syntax of context-free programs is formalized in the file CFP.v. In addition,
this file contains several technical notions and helpful facts about substitutions into
context-free programs.

Traces

Traces are defined in the file Traces.v. In addition, this file contains trace concate-
nation and all properties of traces concerning free variables, partiality and totality,
last element removal, and the endings of traces.

Trace Semantics

The trace semantics for context-free programs is defined in the file
TraceSemantics.v. In addition, the properties of trace semantics stated in Chap-
ter 2 are proven in this file. Furthermore, program equivalence based on traces is
introduced and proven to be an equivalence relation.

https://www.ps.uni-saarland.de/~schneidewind/bachelor/
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Util.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/AutoIndTac.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/CFP.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Traces.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/TraceSemantics.html
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Free Variables

Facts about the free variables of context-free programs are proven in
FreeVariables.v. As we assume De Bruijn indices instead of variables in the Coq
Development, we introduced a predicate that specifies an interval of indices not
occurring freely in a program. Facts about this predicate are in FreeVariables.v.

Important Equivalences

The file Equivalences.v contains the equivalences stated in Fact 3.2.

Substitutivity

Substitutivity of program equivalence is proven in the file Substitutivity.v. This
file contains all definitions and proofs from Section 3.1.

Congruence

In the file Congruence.vprogram equivalence is proven to be a congruence relation.
The file contains the proofs of the congruence laws from Section 3.2. The definition
of the unfolding operator (Definition 3.13) and the statements showing that the
traces of recursions can be characterized using the unfolding operator are located
in the file Unfolding.v.

Tail recursion

Tail recursion of context-free programs is defined in the file TailRecursion.v. In
addition, this file contains the properties of the tail recursion predicate stated in
Section 4.1.

Regularity

Regularity of context-free programs is defined in the file Regularity.v. This file
also contains the properties of the two regularity predicates stated in Section 4.2.

Regularizer

The regularizer for tail-recursive programs is defined in the file Regularizer.v.
This file additionally contains the correctness proofs from Section 4.3.1. The dis-
tributivity law for decomposed recursions used for the verification (Section 4.3) is
proven in the file DistributeFix.v.

Linearity

Linearity of context-free programs is defined in the file Linearity.v. In addition,
this file contains the properties of the linearity predicate stated in Section 5.1.

Linearizer for regular programs

The linearizer for regular programs is defined in the file Regularizer.v. This file
contains all correctness proofs stated in Section 5.2.

https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/FreeVariables.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/FreeVariables.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Substitutivity.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Congruence.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Unfolding.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/TailRecursion.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Regularity.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Regularizer.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/DistributeFix.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Linearity.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/Regularizer.html
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Linearizer for tail-recursive programs

The linearizer for tail-recursive programs is defined in the file DirectLinearizer.v.
In addition, this file contains the correctness proofs stated in Section 5.3 as well
as the lemmas concerning the traces of tail-recursive programs under substitution
(Lemmas 5.17 to 5.19).

Context-free programs and abstract IMP

The encoding of abstract IMP programs using context-free programs is defined in
the file IMP.v. This file additionally contains all proofs from Chapter 6 concerning
the correspondence of the big-step semantics of abstract IMP programs and the
trace semantics of their context-free abstractions.

https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/DirectLinearizer.html
https://www.ps.uni-saarland.de/~schneidewind/bachelor/coq/IMP.html
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