
Master’s Thesis

Semantics of an Intermediate Language
for Program Transformation

Author: Supervisors:

Sigurd Schneider Prof. Dr. Sebastian Hack
Prof. Dr. Gert Smolka

Reviewers:

Prof. Dr. Gert Smolka
Prof. Dr. Sebastian Hack

submitted on

Tuesday 28th May, 2013

Saarland University
Faculty of Natural Sciences and Technology I

Graduate School of Computer Science

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this
thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
Date Signature

Abstract

We present an idealized intermediate language designed to investigate
the translation between a functional intermediate representation and an
imperative register transfer language as it occurs in the back-end of a com-
piler. A key feature of our language is its dual semantics: there is a func-
tional and an imperative interpretation. The functional interpretation is
equipped with a fully compositional notion of program equivalence that is
useful for the integration of advanced optimizations. The imperative in-
terpretation is close to assembly and can serve as a faithful model of a
low-level (virtual) machine.

Programs on which both interpretations coincide are identified via a
novel condition we call coherence. Translating between the two interpre-
tations reduces to establishing coherence. Establishing coherence under
preservation of the imperative semantics can be seen as a form of SSA con-
struction. To establish coherence under preservation of the functional se-
mantics it suffices to α-rename. An α-renaming that establishes coherence
can be understood as a register assignment. From coherence, decidable cor-
rectness conditions for the translations between the two interpretations are
derived.

The language together with its theory is implemented using the Coq
proof assistant without axioms. Translations between the two interpreta-
tions are implemented as extractable, translation-validated transformations
realizing SSA construction and register assignment.

Acknowledgements

I am deeply grateful to my advisors Sebastian Hack and Gert Smolka for let-
ting me explore the ideas of this thesis. Their instruction and rigor shaped
the way I approach research problems. Their encouragement and feedback
made this thesis possible and kept me focused.

I am grateful to my colleagues who explained their views and insights to
me in many discussions and helped me understand the motivations behind
common and arcane matters of compiler construction.

I thank my family and friends who have been there to support me for
their understanding, their reliability, and for giving me confidence.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 3

2 Approach 5
2.1 Control Flow and Recursive Definitions 5
2.2 Registers and Variables . 6
2.3 Static Single Assignment Form . 7
2.4 Functional Semantics . 8
2.5 Intermediate Language . 9
2.6 SSA Construction . 10
2.7 Register Allocation . 11
2.8 Referential Transparency . 12

3 IL 15
3.1 Syntax of IL . 15
3.2 Functional Interpretation of IL: IL/F 16

3.2.1 Binding . 17
3.2.2 α Equivalence . 17

3.3 Imperative Interpretation of IL: IL/I 19
3.3.1 Intuition . 19
3.3.2 Memory . 21
3.3.3 Reaching Definitions . 21

4 Program Equivalence 23
4.1 Deterministic Reduction Systems 23

4.1.1 Observational Equivalence 24
4.1.2 Bisimilarity . 25

4.2 Contextual Equivalence . 26
4.2.1 Observational Program Equivalence 27
4.2.2 Program Bisimilarity . 28
4.2.3 Program Bisimilarity with Different DRS 28

4.3 Error . 29

5 Coincidence and Liveness 31
5.1 Coincidence . 31
5.2 Liveness . 32

5.2.1 Rules . 32
5.2.2 Decidability . 33
5.2.3 Liveness Over-Approximates Relevance 34

5.3 True Liveness . 35
5.3.1 Rules and Relation to Liveness 36

ii

Contents

5.3.2 Decidability . 37
5.3.3 True Liveness Over-Approximates Relevance 37

6 Coherence 39
6.1 Intuition . 39
6.2 Coherence Conditions . 41

6.2.1 Rules . 41
6.2.2 Decidability . 43

6.3 Preservation . 43
6.3.1 Agreement Invariant . 43
6.3.2 Context Coherence . 43
6.3.3 Preservation Theorem . 44

6.4 Coherence Implies Invariance . 45

7 Transformations 47
7.1 Imperative Coherence Translation 47

7.1.1 Rules . 49
7.1.2 Decidability . 50
7.1.3 Properties of the Translation 50

7.2 Implementing the Translation Predicate 51
7.2.1 Annotations . 52
7.2.2 Compilation Function . 53
7.2.3 Correctness Predicate . 54
7.2.4 Translation Validation: SSA Construction 54

7.3 Functional Coherence Translation 55
7.3.1 Renaming . 56
7.3.2 Local Injectivity . 56
7.3.3 Rules . 57
7.3.4 Decidability . 59
7.3.5 Properties of Locally Injective Renamings 59
7.3.6 Translation Validation: Register Assignment 60

8 Formal Development 63
8.1 Infrastructure . 63

8.1.1 Decidable Propositions . 63
8.2 Formalizing IL . 64
8.3 Coherence . 65

9 Related Work 67
9.1 Static Single Assignment Form . 67
9.2 SSA and Functional Programming 67
9.3 Control Flow and Recursive Functions 68
9.4 Verified Compilers for C-like languages 68
9.5 Related Work for Bisimulations . 69
9.6 Research Compilers with Functional Intermediate Languages . 69

iii

Contents

9.7 Languages with Dual Interpretation 70
9.8 Translation Validation . 71
9.9 Register Transfer Languages . 71
9.10 Register Allocation . 71

10 Conclusion 73
10.1 Limitations and Future Work . 74

10.1.1 Observable Events . 74
10.1.2 Higher-Order Coherence . 74
10.1.3 Function Calls . 75
10.1.4 Dynamic Memory Allocation 75
10.1.5 Register Allocation . 75
10.1.6 Irreducible Control Flow via Mutual Recursion 75
10.1.7 Liveness . 76
10.1.8 Optimizations . 76

Bibliography 77

iv

1 Introduction

An open problem in compiler verification for C-like languages is the inte-
gration of advanced optimizations. For the purpose of verification, opti-
mizations must be considered together with the structural properties they
require of the intermediate language to work. A structural property of par-
ticular importance for advanced optimizations, such as global value num-
bering [55] and sparse conditional constant propagation [63], is static sin-
gle assignment (SSA) form [5, 55]. SSA form simplifies reasoning for value
optimizations by providing referential transparency [59] for a large subset
of the expressions of the intermediate language. A referentially transparent
expression can be replaced by its value in every context, allowing equational
reasoning on the intermediate language and simplifying optimizations.

Recently, two projects succeeded in verifying SSA construction algo-
rithms [10, 65] for imperative intermediate languages. To enable SSA form,
both projects add a special construct to their languages: the φ-function.
The φ-function originated in data-flow analysis research [64] and allows
some definitions to become referentially transparent, while the fundamen-
tal semantics of the language remains imperative. Both intermediate lan-
guages allow compilation of (realistic subsets of) the C language by provid-
ing support for dynamic memory allocation and system calls.

SSA form programs can be translated to functional programs [36, 7]
and after translation, φ-functions are no longer necessary. In aggressively
optimizing research compilers for imperative languages, functional inter-
mediate languages have been in use for at least a decade [34, 61, 2]. As
Chakravarty, Keller, and Zadarnowski [15] note, a functional foundation
makes it easier to prove useful program equivalences, in particular those
SSA form provides for referentially transparent expressions.

This thesis presents the idealized intermediate language IL in a mech-
anized framework for verifying the translation between a first-order, func-
tional intermediate language and an imperative register transfer language
without φ-functions. The two languages are realized with one shared syn-
tax and a dual semantic interpretation [37, 12]: a functional one we call IL/F,
and an imperative one we call IL/I. The functional language is equipped with
a program equivalence that is fully compositional, i.e. a congruence, hence
all expressions of the language are referential transparent. Our intermedi-

1

Introduction

ate language is idealized and features only tail calls, no dynamic memory
allocation, and no system calls. These restrictions make the language close
to assembly and allow its imperative interpretation to serve as a faithful
model of an imperative target machine.

The translation between IL/I and IL/F does not require constructing SSA
form first, but is based on a more general condition we call coherence.
Coherence identifies programs that mean the same in both interpretations
and provides a formal insight into the relationship between functional vari-
ables and imperative registers. Coherence is a generalization of the SSA
invariant that relaxes the syntactic single assignment requirement to a more
semantic notion based on the definition-use relationships in the program.

To investigate the translation between the functional and the imperative
interpretation it suffices to investigate the transformations that establish
coherence under preservation of either the functional or the imperative
semantics. Establishing coherence for an IL/I program can be understood
as a more semantic version of SSA construction. We implement a transla-
tion validation framework for coherence construction algorithms under the
constraint that the block structure of the imperative program must remain
unchanged. Establishing coherence for an IL/F program can be seen as reg-
ister assignment. In our framework, a register assignment is an α-renaming
that produces a coherent program. We implement a translation validator
for SSA-based register assignment [27].

Figure 1.1: Overview of the Approach

IL/I IL/F

• functional

• first-order

• tail-call

• imperative

• low-level

• CFGs

coherent

Parameter introduction
≈ SSA construction

α-renaming
≈ register assignment

2

Introduction

1.1 Contributions

This thesis introduces the intermediate language IL with its dual semantics
to make the following contributions:

• A mechanized account of the well-known correspondence between
SSA form and functional programming

• The novel notion of coherence, which can be understood as a gen-
eralization of the SSA condition derived from first principles. Co-
herence simplifies the translation between functional and imperative
languages.

• A translation validation framework with extractable transformations
implementing

– SSA construction

– register assignment via α-renaming

The formal Coq development is available for download at the following URL:

http://www.ps.uni-saarland.de/~sdschn/master

1.2 Outline

Our approach is explained with examples in Chapter 2. The relationship be-
tween functional and imperative languages is discussed and the SSA condi-
tion is explained. The design of our intermediate language IL is introduced
and advantages of a dual semantic interpretation are outlined. Examples
illustrate how properties of SSA form and functional languages simplify
correctness proofs of program optimizations.

The formal definition of our intermediate language is presented in Chap-
ter 3. IL is given an imperative and a functional semantic interpretation.

Program equivalence is defined in Chapter 4. We introduce deterministic
reduction systems (DRS) to study equivalence of programs from different
languages. DRS provide effective proof methods for program equivalence
based on bisimulation. Our DRS-based notion of program equivalence for
IL/F is fully compositional: Program equivalence is transitive and coincides
with contextual equivalence.

In Chapter 5 we discuss over-approximations for the set of variables that
can influence the behavior of a program. Soundness of the characterizations
is shown with the help of DRS.

In Chapter 6, the double interpretation is used to derive a correctness
criterion for the translation between the imperative and the functional in-
terpretation. We formally define coherence and show its decidability. We

3

http://www.ps.uni-saarland.de/~sdschn/master

Introduction

then prove that functional and the imperative interpretation of coherent
programs coincide.

In Chapter 7, two transformations are derived from coherence: The first
transformation takes an IL/I program and yields an equivalent IL/F pro-
gram. The second transformation takes an IL/F program and yields an IL/I
program. These two transformations are intimately related to SSA construc-
tion and register assignment. Correctness conditions derived from coher-
ence are used to build a framework to translation validate SSA construction
and register assignment.

Chapter 8 gives an overview of the formal development and mentions
some implementation details.

Chapter 9 discusses related work and Chapter 10 concludes with direc-
tions for future work.

4

2 Approach

In this chapter we discuss the translation between imperative programs
and functional programs using results from the literature. Our explanation
differentiates the translation between imperative control flow [4] and re-
cursive functions from the translation between imperative registers and
functional variables.

Our intermediate language is informally introduced as a tool to inves-
tigate the reinterpretation of imperative registers as functional variables
using a dual semantic interpretation. We explain the relationship to SSA
construction and register assignment. To motivate an advantage of func-
tional intermediate languages, we give examples of optimizations and how
their correctness is justified by the β-rule, which naturally holds for func-
tional languages.

2.1 Control Flow and Recursive Definitions

Allen [4] defines the control-flow graph (CFG) as a means to analyze the
control structure of imperative programs. For example, Figure 2.1 shows
a pseudo-assembly program computing the factorial function together with
its control flow graph. Figure 2.2 shows the same pseudo-assembly program
together with a program using a recursive definition. The assembly version

Figure 2.1: Imperative Program Computing Factorial

(a) Assembly

1 i := 1;
2 f:
3 c := n > 0;
4 branchz c r
5 i := n * i;
6 n := n - 1;
7 branch f;
8 r:
9 ret i;

(b) Control-flow Graph

i := 1

c := n > 0

i := n * i
n := n - 1

ret i

¬c
c

5

Approach

Figure 2.2: Imperative Program Computing Factorial (2)

(a) Assembly

1 i := 1;
2 f:
3 c := n > 0;
4 branchz c r
5 i := n * i;
6 n := n - 1;
7 branch f;
8 r:
9 ret i;

(b) Recursive Definitions

1 i := 1;
2 letrec f () =
3 c := n > 0;
4 if c then
5 i := n * i;
6 n := n - 1;
7 f ()
8 else
9 i

10 in
11 f ()

of the factorial function in Figure 2.2a uses unstructured control flow via
the (conditional) branch instructions branch and branchz. The program in
Figure 2.2b relies on a recursive function f and a conditional. The CFG of
the program in Figure 2.2b differs from the CFG in Figure 2.1b only in the
label of the bottom-left node.

In this thesis, we use programs with recursive definitions, condition-
als, and imperative registers to represent assembly code. In particular,
we regard program Figure 2.2b as close to assembly and do not bother to
translate conditionals to conditional jumps. We conjecture that reducible
control flow [30], can be directly represented without mutually recursive
definitions. A detailed discussion of this issue can be found in Section 9.3.

2.2 Registers and Variables

Our focus is on the translation between imperative registers and functional
variables. An imperative register is a name for a location in a memory
where a value is stored, while a functional variable is a name for a value.
Whenever a register or a variable occurs in a program, we can ask which
definition may have provided the value. For functional variables, lexical
scoping always provides a static answer. For imperative registers, the an-
swer depends on the dynamic semantics of the language. Consider, for
example, the CFG in Figure 2.3a: The value of x implicitly depends on how
control reaches the bottom node, because the value of x in the memory will
differ. The name in an imperative assignment hence serves two purposes:
the name determines where the value is stored. Occurrences of the name
then implicitly encode a dependency on control flow. Obviously, an imper-
ative register cannot be adequately described by a mathematical equation.

6

Approach

Figure 2.3: Control flow graphs

(a) Standard

x := 1x := 7

y := x

no yes

(b) SSA Form

x′ := 1x := 7

y := φ(x, x′)

no yes

2.3 Static Single Assignment Form

In the late 80s a line of research in data-flow analysis [55, 5, 64] culmi-
nated in the introduction of a program construct which relieves the names
from encoding control-flow dependencies: the φ-function. A φ-function
selects one of its arguments depending on control flow. Given arguments
x1, . . . , xn, the φ-function selects xi if control reaches the φ-node from the
i-th predecessor block in the CFG. For example, in the CFG in Figure 2.3b,
a φ-function is introduced to make explicit that y receives its value from x
if the bottom-most block was reached from the left, and from x′ if it was
reached from the right.
φ-functions make it possible to transform every imperative program

such that every register is assigned at most once. This transformation is
called static single assignment (SSA) construction [21, 13]. Static single
assignment form is a syntactic criterion requiring that every register is as-
signed at most once, and that every register is assigned before it is used.

Once a program is in SSA form, every register (that does not receive its
value from a φ-function) becomes referentially transparent. These regis-
ters are essentially names for values, and can be adequately described by a
mathematical equation. In a way, the introduction ofφ-functions factorizes
the program’s assignments into two groups: Those that depend on memory
and those that do not. Consider, for example, that a different name for x is
used in the rightmost block of Figure 2.3b without changing the program’s
meaning. Furthermore, x′ is referentially transparent and adequately de-
scribed by the mathematical equation x′ = 1.

Semantically, however, there is a complication: Obviously, the result of
a φ-function application depends on the memory. The φ-function hence
requires an imperative interpretation of registers for its semantics to be
defined, as it reads the value from one of its argument registers. This means
that although a large subset of the registers can be treated like functional
variables, the semantic foundation must remain imperative. Additionally,
the SSA invariant that ensures every register is assigned before it is used
cannot be required for arguments of φ-assignments x1, . . . , xn: xi is only

7

Approach

required to be defined at the end of the i-th predecessor in the CFG. This
makes the well-formedness condition for SSA programs more complicated
than, for example, lexical scoping in functional languages.

2.4 Functional Semantics

Appel [7] and Kelsey [36] discovered a semantic explanation why SSA form
programs admit referential transparency for a subset of the variables: SSA-
form programs can be seen as functional programs where variables in as-
signments containing φ-functions become function arguments. We explain
their result in detail with the help of an example.

Figure 2.4: Functional Program Computing Factorial

(a) Functional Program

1 let i = 1 in
2 letrec f (j,m) =
3 c = m > 0
4 if c then
5 let k = m * j in
6 let p = m - 1 in
7 f (k,p)
8 else
9 j

10 in
11 f (i,n)

(b) Control-flow Graph

i = 1

(j,m)

c = m > 0

k = m * j
p = m - 1

j

(i,n)

(k,p)
¬c

c

Figure 2.4a shows a functional program computing the factorial func-
tion. Its CFG is given in Figure 2.4b, where the center node corresponds
to f . We added an annotation to the center node of the CFG to indicate
that f has two parameters, j and m. The two applications of f in line 7
and line 11 are represented by two arrows in Figure 2.4b, and we labeled
these arrows with the arguments of the application. On an intuitive level,
it should be clear that Figure 2.4b directly corresponds to the functional
program in Figure 2.4a.

Now consider the SSA-form, imperative program computing the factorial
function in Figure 2.5. Two φ-functions have been introduced. The φ-
function in line 3, for example, expresses that j receives its value from i
if it was reached from line 1, and from k if it was reached from line 9.
We represent this information graphically in the CFG: We add the list of
φ-assigned variables as annotation to the center node, which corresponds
to the label f . We augment the arrows that represent branch instructions
to f with the variables the φ-functions will select. For example, the top-
most arrow is annotated with (i, n), corresponding to the first column of

8

Approach

the arguments of the two φ-assignments in line 3 and 4, which will provide
the values for j and m if the center block is entered from the top-most
node.

From comparing the CFGs in Figure 2.4b and Figure 2.5b it should be
clear on an intuitive level that the programs in Figure 2.4a and Figure 2.5b
correspond to each other. φ-functions represent the parameters of func-
tion definitions and arguments of function applications, but organize them
in a different way. Appel [7] was among the first to realize this correspon-
dence, and Kelsey [36] showed that the correspondence is exact by giving
a translation from a SSA form language to a functional, CPS-style calculus.
Our language is not a CPS-style language [53], but a subset of the ANF-style
language [56, 24] introduced by Chakravarty, Keller, and Zadarnowski [15].

Figure 2.5: SSA-form Program Computing Factorial

(a) SSA-form Program

1 i := 1;
2 f:
3 j := φ(i,k)
4 m := φ(n,p)
5 c := n > 0;
6 branchz c r
7 k := m * j;
8 p := m - 1;
9 branch f;

10 r:
11 ret j;

(b) Control-flow Graph

i := 1

(j,m)

c := m > 0

k := m * j
p := m - 1

ret j

(i,n)

(k,p)
¬c

c

2.5 Intermediate Language

In Section 2.1 we have seen that the language of the program in Figure 2.1b
can be regarded as close to assembly. In Section 2.4 we have seen that the
language of the program in Figure 2.4a can serve as a semantic foundation
for SSA form. Our intermediate language IL is designed to express both
programs. Figure 2.6a shows an imperative register transfer program, and
Figure 2.6b shows the corresponding functional program. The difference
between the two programs is that one uses imperative assignment and the
other uses functional binding. The language accommodates both features
by having a dual semantic interpretation. This setup allows to investigate
the conditions under which imperative registers behave exactly like func-
tional variables. We call programs that have the same meaning in both the
imperative and the functional interpretation invariant. In this thesis we de-
velop coherence conditions which are sufficient conditions for invariance.

9

Approach

From coherence we derive transformations and correctness criteria for the
translation between the two languages given in Figure 2.6.

The idea to use a dual interpretation was used first by Kelsey and Hudak
[37]. The conditions for invariance we will develop are a generalization
of the conditions presented by Beringer, MacKenzie, and Stark [12] in the
context of proof carrying code.

Figure 2.6: IL Programs Computing Factorial

(a) Close to Assembly

1 i := 1;
2 letrec f () =
3 c := n > 0;
4 if c then
5 i := n * i;
6 n := n - 1;
7 f ()
8 else
9 i

10 in
11 f ()

(b) Close to SSA

1 let i = 1 in
2 letrec f (j,m) =
3 c = m > 0
4 if c then
5 let k = m * j in
6 let p = m - 1 in
7 f (k,p)
8 else
9 j

10 in
11 f (i,n)

2.6 SSA Construction

The translation by Kelsey [36] is between an SSA-form program with φ-
functions, like the one in Figure 2.5a, to a functional program, like the one
in Figure 2.6b. In contrast, we consider the translation from an imperative
program without φ-functions, like the one in Figure 2.6a to a functional
program, like the one in Figure 2.6b. This means that our conditions incor-
porate correctness conditions for SSA construction. Our correctness condi-
tions are derived from first principles, in particular from the requirement
that the resulting program must have the same meaning in both the im-
perative and functional interpretation. We call programs that satisfy these
conditions coherent, and our coherence conditions can be understood as
a generalization of the SSA conditions, abstracting from the syntactic re-
quirements central to the definition of SSA form.

As Figure 2.6 suggests, SSA construction amounts to the introduction
of a sufficient number of parameters to the recursive definitions to ensure
the two semantic interpretations coincide. Based on the intuition given in
Section 2.4, parameter introduction corresponds to placing φ-functions. In
Section 7.1, we give a construction algorithm in the setting of our IL that
relies on an external, unverified algorithm to compute the necessary addi-
tional parameters. This external construction algorithm is essentially SSA

10

Approach

construction, with the restriction that the block nesting structure must re-
main unchanged. A simple approach would be to make every occurring
variable a parameter, but as, for example, Cytron et al. [20] argues, this will
introduce overhead and may even compromise program analysis quality.

2.7 Register Allocation

Register assignment is the process of assigning a potentially large num-
ber of imperative variables to a smaller number of (machine) registers. We
discuss register assignment in comparison to register allocation in Sec-
tion 9.10. Register assignment is traditionally viewed as an imperative
transformation. Appel [6] noted the similarity between register assignment
and α-renaming, and in our setting the correspondence is exact. Coherence
guarantees that switching the semantic interpretation does not change the
meaning of the program. This allows us to view register assignment as a
transformation on the functional side. Consider, for example, the programs
in Figure 2.7. Figure 2.7b is the register assigned version of Figure 2.7a, and
their semantic equivalence follows from the fact that the programs are α-
equivalent. Figure 2.7b is also coherent, i.e. it has the same meaning in both
the functional and the imperative interpretation. This means we can take
Figure 2.7b as an assembly program. The function parameters are removed
in a second step by implementing parameter passing as parallel assignment.
Parallel assignment can be implemented by a standard transformation that
was verified in the course of the CompCert project [54].

Figure 2.7: IL/F Programs Computing Factorial

(a) Original

1 let i = 1 in
2 letrec f (j,m) =
3 c = m > 0
4 if c then
5 let k = m * j in
6 let p = m - 1 in
7 f (k,p)
8 else
9 j

10 in
11 f (i,n)

(b) Register Assigned

1 let i = 1 in
2 letrec f (i,n) =
3 let c = n > 0 in
4 if c then
5 let i = n * i in
6 let n = n - 1 in
7 f (i,n)
8 else
9 i

10 in
11 f (i,n)

11

Approach

2.8 Referential Transparency

In a functional language everything is referentially transparent by default.
Every assignment is an equation and control flow is encoded by recursive
equations. Program equivalence is a congruence, equational reasoning is
possible on all program fragments.

A key assumption of this thesis is that for the purpose of compiler veri-
fication, a functional intermediate language is beneficial because it provides
more equivalences. At optimization stages, advanced optimizations already
exploit referential transparency, and functional languages make the equiva-
lences available to correctness proofs by providing the right notion of pro-
gram equivalence. Naturally, a compiler needs to deal with the imperative
world, too, because hardware systems are imperative, state-based systems
that rely on memory. Our language bridges the gap between the imperative
and the functional side by reducing the correctness of the transformations
to establishing coherence. This, of course, is only useful if program opti-
mizations are indeed easier to formulate and proof correct on the functional
side. Chakravarty, Keller, and Zadarnowski [15] pioneered the reformula-
tion of classical SSA optimizations in the context of functional languages.
In the following, we enumerate properties of referential transparency typi-
cally exploited in formulation and justification of value optimizations, and
relate them to program equivalences that hold in functional languages in
general. In the following, we write sxe for the program obtained from s by
capturing-free substitution of every occurrence of x with e. Most of the opti-
mizations are justified by the soundness of the β-rule which is the defining
principle in substitution-based functional semantics [9]. We give the fol-
lowing instance of the β-rule which only deals with variable binding1 and
sketch how it can be used to justify correctness of optimizations.

let x = e in s ' sxe

The rule states that the definition of a variable x can be removed by substi-
tuting x with its definition e. Note that program equivalence ' is a congru-
ence, thus enabling equational reasoning. Two programs that can be shown
to be equivalent using only the β-rule are said to be β-convertible. Convert-
ibility with respect to, for instance, the β-rule is a standard notion in type
theory [43].

Constant folding [1] replaces a constant expression by its value c, which
is directly justified by the β-rule:

let x = c in s ' sxc

Dead variable elimination [1] is the removal of variables that are never
used. The transformation is justified by a special case of the β-rule where

1In λ-calculus let x = e in s can be encoded as (λx.s)e

12

Approach

s = sxe because x does not occur in s.

let x = e in s ' s

Common subexpression elimination [1] factors a subexpression com-
mon between different variable definitions into its own definition, eliminat-
ing one of the computations. Again, the transformation is justified by the
β-rule, this time requiring application of the β-rule in the backwards direc-
tion.

let x = 1+ e in let y = 2+ e in s

' (let x = 1+ z in let y = 2+ z in s)ze Substitution, z fresh

' let z = e in let x = 1+ z in let y = 2+ z in s β-expansion

Partial dead variable elimination is a transformation that moves vari-
able definitions from before a conditional to, for example, the consequence,
eliminating the computation if the alternative is taken. Suppose in the fol-
lowing program x is only required in s, but not in t and e′.

let x = e in if e′ then s else t

' (if e′ then s else t)xe β-reduction

' if e′xe then sxe else txe Substitution

' if e′ then sxe else t x 6∈ V (e), x 6∈ V (t)
' if e′ then (let x = e in s) else t β-expansion

The discussion shows that the β-rule justifies many optimizations. This
is not surprising, as many optimizations amount to partial evaluation, and
the β-rule is the evaluation principle in functional languages. Our inter-
mediate language only allows variables in conditions and function appli-
cations. This restriction ensures the structural similarity to assembly, but
does not admit the full β-rule. To validate the β-rule (and verify program
optimizations) we could simply take an extension of our language which at
least allows expressions in the aforementioned positions. Functional lan-
guages are used in recent research compilers, a discussion can be found in
Section 9.6.

13

3 IL

In this section, we present the syntax of a first-order language IL that re-
stricts function application to tail position, and does not allow mutually
recursive definitions.

We give two semantic interpretations to the language: The functional
interpretation IL/F given in Section 3.2 yields a standard, first-order func-
tional language with a tail call restriction. The imperative interpretation
IL/I given in Section 3.3 reveals a low-level imperative register transfer lan-
guage.

3.1 Syntax of IL

We emphasize the first-order nature of the language by using different al-
phabets for the names of variables and functions. x ranges over V , the
alphabet for variables, which denote values of base type. f ranges over L,
the alphabet for labels, which we use to denote first-order functions.

The language is parametrized over a structure of simple expressions
which we call operations and denote by Op. By convention, e ranges over
Op. We assume a partial function [[·]] : (V → V) ⇀ V which evaluates an op-
eration given the values of the variables. Evaluation of an operation cannot
change the value of a variable, hence operations cannot have side effects.
As [[·]] is a partial function, operation evaluation may err: [[e]] E = ⊥, but
evaluation is deterministic. We call a program s well-formed, if the number

Figure 3.1: Syntax of IL

Exp 3 s, t ::= let x = e in s first-order let

| if x then {s} else {t} conditional

| x value

| fun f x = s in t second-order recursive let

| f x application

15

IL

of arguments of every application matches the number of parameters of the
applied function. The syntax of IL is given in Figure 3.1.

3.2 Functional Interpretation of IL: IL/F

The semantics of IL/F is defined in small-step style on state tuples from a
set stateF of the form

L,V , s

s is an IL-term representing the program to be evaluated. The semantics
does not rely on substitution, and uses a variable environment V : V ⇀ V
to map first-order variables to values, following the presentation of Stan-
dard ML [44]. When we talk about a state, we may refer to V as primary
environment of the state.
L is a label context, i.e. an ordered list of named definitions. Contexts

are heavily used in presentations of dependent type theory, for example, in
Luo [43]. An element of the context may refer to previous elements (and
itself), i.e. in our notation to any definition not standing further right. We
use contexts like functions with the intention of making the mapping they
encode explicit. If there are multiple definitions of f in a context L, L f
denotes the right-most occurrence. Similarly, when we write a context

L, f := . . . , L′

we mean to denote the rightmost occurrence of f in the context, i.e. there
may be other definitions of f in L, but not in L′. When a context occurs in
a state, we might use | as separator in tuple notation, for example, we may
write

L, f := . . . , L′ | V | s

Since a function f in a context L, f := . . . , L′ can refer to function definitions
in L (and to itself), the first-order restriction allows the closures to be non-
recursive, i.e. function closures do not need to close under labels. A closure
in our setting is a tuple of the form

V, x, s

where V is a variable environment, x is the parameter list, and s is the
function body. When we talk about a variable environment in a closure, we
may call it closure environment in distinction to primary environment.

Example 1 (Non-Recursive Closure) Consider the following program P :

1 fun f x =
2 fun g y = f y
3 in g x
4 in f 0

16

IL

When execution starting from a state �,V , P reaches line 3, the label context
is

f := (V , x, fun g y = f y in g x), g := (V x0 , y, f y)

In standard presentations, the representation of g would contain a defini-
tion of f . In our setting, the representation does contain a definition of f ,
but refers to f which occurs in the context prior to g. Note that f is allowed
to refer to itself in its function body.

Using contexts instead of recursive environments for function defini-
tions makes it easier to specify invariants on contexts using inductive pred-
icates. The formal development contains a proof that our context-based
semantics coincides with the standard semantics on closed programs.

3.2.1 Binding

The variables in IL/F are subject to lexical binding as usual in functional
languages. The occurrence of a name in an IL/F programs is either a defin-
ing occurrence, or a using occurrence. A binding construct gives rise to
a defining occurrence. IL/F has two binding constructs for variables: let
binding and parameter binding. We say the let binding let a = 5 in s binds
a in s, and the occurrence of a in the let binding is a defining occurrence.
Similarly for the parameter binding. All other occurrences are using occur-
rences. A using occurrence is either free or bound, defined in the usual
way. We denote the set of free variables of a program s by V (s).

In functional languages, every using occurrence has exactly one defining
occurrence which binds the variable, and this defining occurrence can be
determined statically.

3.2.2 α Equivalence

The programs in our language allow the standard notion of α-equivalence.
To denote the fact that two programs s, s′ are α-equivalent, we write s ∼α s′.
α-equivalence allows us to rename such that every defining occurrence has
a unique name, and we call programs in this form renamed apart.

Example 2 (Renaming Apart) A program (left) and its renamed-apart ver-
sion (right).

1 let x = 3
2 in fun f x = x
3 in let x = 4
4 in f x

1 let x = 3
2 in fun f y = y
3 in let z = 4
4 in f z

A program is shadowing free, if no variable is ever rebound. In particu-
lar, every renamed-apart program is shadowing free.

17

IL

Figure 3.2: Semantics of IL/F

Types

closure ::= (V ⇀ V)× listV × Stmt
stateF ::= context closure× (V ⇀ V)× Exp

Judgment

L | V | s -→ L′ | V ′ | s′ where
L, L′ context of closures
V,V ′ variable environment
s, s′ statement

Rules

V ` e ⇓ v
F-Op

L | V | let x = e in s
-→ L | V xv | s

val2bool(Vx) = i
F-If

L | V | if x then s0 else s1
-→ L | V | si

F-Let
L | V | fun f x = s in t

-→ L, f := (V , x, s) | V | t

F-App
L, f := (V ′, x, s), L′ | V | f y

-→ L, f := (V ′, x, s) | V ′xVy | s

18

IL

Example 3 (Shadowing) A program (left) and its shadowing-free version
(right). Note that y is bound in line 2 and line 3, but not shadowed.

1 let x = 3
2 in fun f x = x
3 in let x = 4
4 in f x

1 let x = 3
2 in fun f y = y
3 in let y = 4
4 in f y

3.3 Imperative Interpretation of IL: IL/I

In this section, we give an imperative interpretation to IL which we call IL/I.
In contrast to the functional variables of IL/F, IL/I uses imperative regis-
ters and interprets definitions as assignments. IL/I does not store variable
environments in the closures, and hence function calls can see updates to
all variables. Argument-passing is implemented as parallel assignment. For
example, the following program returns 5 in IL/I:

1 x = 7;
2 fun f () = x
3 in x = 5; f ()

The imperative semantics is given in Figure 3.3.

3.3.1 Intuition

The removal of closures lets IL/I behave like a register transfer language.
In IL/I, function definitions degenerate to imperative program labels, with
parameter passing becoming parallel assignment. The following syntax is
an alternative presentation of the syntax of IL, which generates the same
abstract syntax trees, but is more suggestive of IL/I’s imperative interpreta-
tion:

Exp 3 s, t ::= x := e; s assignment

| if x then {s} else {t} conditional

| returnx value

| block f x {s}; {t} block definition

| goto f x jump + parallel assignment

To simplify our language we have different terminology for similar notions
in IL/F and IL/I. In this way, it is always clear whether we refer to the func-
tional or the imperative interpretation. Figure 3.4 provides an overview of
terms describing related notions in IL/F and IL/I.

19

IL

Figure 3.3: Semantics of IL/I

Types

block ::= listV × Stmt
stateI ::= context block × (V ⇀ V)× Exp

Judgment

L | V | s -→ L′ | V ′ | s′ where
L, L′ block list
V,V ′ variable environment
s, s′ statement

Rules

V ` e ⇓ v
I-Op

L | V | let x = e in s
-→I L | V xv | s

val2bool(Vx) = i
I-If

L | V | if x then s0 else s1
-→I L | V | si

I-Let
L | V | fun f x = s in t

-→I L, f := (x, s) | V | t

I-App
L, f := (x, s), L′ | V | f y

-→I L, f := (x, s) | V xVy | s

20

IL

Figure 3.4: Comparison of Terminology for IL/F and IL/I

Functional Imperative

variable binding assignment
function binding block definition
p evaluates to v p returns v
binding definition reaching definition
defining occurrence definition
using occurrence use

3.3.2 Memory

In the imperative semantics, V provides a memory to the program. A mem-
ory is an instance of an abstract data structure that maps addresses to val-
ues. The memory data structure itself is not available as a first-class value
inside the language, which ensures that during execution there is always
exactly one instance of the memory data structure. Access to the memory
is provided directly: assignment realizes the update operation, and every
use of a name corresponds to a look-up.

There is an important restriction in our setting: The set of addresses is
identified with the set of names. This means in particular that it is not pos-
sible to generate addresses programmatically; all addresses are statically
present in the program text. For example, if we write let a = 5 in s then the
syntactic name a is the address under which the memory stores the value
5. An immediate consequence of the identification of names with addresses
is that the name a refers to the same address in all contexts, and different
names always refer to different addresses.

The memory conception of our language, where (a) there are global
names for each address (b) addresses cannot be generated programmati-
cally (c) addresses hold a scalar value (not a compound value) make our
language a register transfer language (RTL), in the sense it is used in com-
piler construction. A discussion about the origin and meaning of RTL can
be found in Section 9.9.

3.3.3 Reaching Definitions

In functional programs, the principle of lexical binding precisely determines
to which definition a using occurrence of a variable refers to. Similarly,
given a use of a register, we can ask which assignment might have written
the value. This is the motivation for the notion of reaching definitions [1,
28]. First, two different kinds of occurrences of a name must be distin-
guished: definitions and uses. Definitions are occurrences on the left-hand

21

IL

side of assignments, and occurrences as block parameters. All other occur-
rences are uses.

We say a definition of a variable x reaches a use of x if there is a program
run such that between the execution of the update operation evoked by the
assignment and the look-up operation evoked by the use, no other update
operation was performed on x. Given a use of a variable x, we call the set of
definitions that reach that use the set of reaching definitions and denote it
by R(x). A use can be identified uniquely via its position in the AST, but
for the sake of simplicity we will not do so in our discussion, but make sure
that it is always clear from context which use we are referring to.

A use can be reached by a definition that is not in scope. In Listing 6.1,
for example, the use of x is reached by the definition of x2 in line 4. A use
can also have more than one reaching definition, as shown in Example 4. In
general, it is only semi-decidable whether a definition reaches a use.

Example 4 The set of reaching definitions can contain more than one ele-
ment. The set of reaching definitions for the use of x as condition in line 1
is the two-element set R(x) = {x1, x2}.

1 let x1 = 0 in
2 fun f () =
3 if x1 then x1

4 else let x2 = 1 in f () in
5 let x3 = 0 in
6 f()

The facts that a use can be reached by a definition that is not in scope, and
that a use can have more than one reaching definition, show that the notion
is fundamentally different from lexical scoping.

22

4 Program Equivalence

In this section, we define program equivalence for IL/I and IL/F programs.
We show that our notion of program equivalence for IL/F is fully composi-
tional: The relation is transitive and coincides with contextual equivalence.

To deal with program equivalence between different languages, we in-
troduce deterministic reduction systems (DRS) as abstraction. Equivalence
on DRS with respect to a set of observations can be defined as a bisim-
ulation property, providing an efficient strategy for program equivalence
proofs. The first-order nature of our two IL languages is exploited to obtain
simple definitions. We finally show that our notion of bisimilarity on IL/F
programs coincides with contextual equivalence.

A preliminary version of the bisimulation characterization of program
equivalence provided by DRS was developed in a recent research immer-
sion lab [58]. The characterization there does not include observations and
hence only distinguishes terminating from non-terminating programs.

4.1 Deterministic Reduction Systems

We introduce deterministic reduction systems as an abstraction of the se-
mantic structure of a language. A DRS is a forest of (possibly infinite) linear
trees, each with an observation about the terminal node (if it exists). Two
states in a DRS are equivalent if they are either both part of an infinite tree,
or if they are part of finite trees with the same observation.

Definition 1 (Deterministic Reduction System) A deterministic reduction
system is a four-tuple

(S, ,O,obs) where

S set of states
 ⊆ S2 reduction relation
O set of observations
obs : S → O observation function

such that
 is decidable
 is functional

23

Program Equivalence

The following two examples show that the semantics for IL/F and IL/I form
deterministic reduction systems.

Example 5 The semantics of IL/F gives rise to a DRS. We define the obser-
vation function obsF as

obsF(L, V , s) =
{
Vx if s ≡ x
> otherwise

Verifying that -→ is functional and decidable is routine, hence

(stateF , -→, V ∪ {>},obsF)

is a deterministic reduction system.

Example 6 The semantics of IL/I gives rise to a DRS. We define the obser-
vation function obsI as

obsI(L, V , s) =
{
Vx if s ≡ x
> otherwise

Verifying that -→I is functional and decidable is routine, hence

(stateI , -→I , V ∪ {>},obsI)

is a deterministic reduction system.

4.1.1 Observational Equivalence

We want to distinguish two behaviors of a state σ ∈ S in a deterministic
reduction system: Divergence: σ ⇑ and termination with an observation
o ∈ O: σ ⇓ o. We are not interested in observations about non-terminal
states.

We can now define observational equivalence of two states from differ-
ent deterministic reduction systems that share the same set of observations
in the following way.

Definition 2 (Observational Equivalence of States) Two states σ ∈ S and
σ ′ ∈ T of two (different) deterministic reduction systems (S, S ,O,obsS)
and (T , T ,O,obsT) are observationally equivalent if one diverges if and
only if the other diverges, and one terminates (with an observation) if and
only if the other terminates (with the same observation):

σ m σ ′ :⇐⇒ σ ⇑ ⇐⇒ σ ′⇑ ∧ ∀o ∈ O, σ ⇓ o ⇐⇒ σ ′ ⇓ o

σ and σ ′ may be states from different DRS. We may write, for example, I m F

to make explicit that the left hand side is a state from the DRS of IL/I and

24

Program Equivalence

the right hand side is a state from the DRS of IL/F. It is easily shown that m
is an equivalence relation.

Even though is decidable, it is folklore that it is not decidable whether
a state diverges or terminates with an observation. Our definition of obser-
vational equivalence allows two states to be proved observationally equiv-
alent without deciding the halting problem: For both sides of the conjunc-
tion, divergence (termination) of one state can be assumed. In this way, the
definition is more constructive than the classically equivalent

σ ⇑ ∧ σ ′⇑ ∨ ∃o ∈ O, σ ⇓ o∧ σ ′ ⇓ o

On the other hand our definition does not disclose whether the two obser-
vationally equivalent programs terminate or diverge.

4.1.2 Bisimilarity

We now turn to a second, coinductive characterization of observational
equivalence. A proof of observational equivalence requires proving two
separate statements: one for divergence and one for termination, both of
which essentially repeat the same arguments. By showing that observa-
tional equivalence is the greatest relation closed under the rules given in
Definition 3, we obtain a more efficient proof principle: Suppose we want
to show that a relation ≈ relates only observationally equivalent states, i.e.,
that ≈ ⊆ m. By coinduction it suffices to show that ≈ is closed under the
rules in Definition 3.

Definition 3 (Bisimilarity) Let (S, S ,O,obsS) and (T , T ,O,obsT) be de-
terministic reduction systems. Bisimilarity ∼ ⊆ S × T is coinductively de-
fined as the greatest relation closed under the following rules:

σ1 -→+ σ ′1 σ2 -→+ σ ′2 σ ′1 ∼ σ ′2
Bisim-Step σ1 ∼ σ2

v ∈ O σ1 ⇓ v σ2 ⇓ v
Bisim-Conv σ1 ∼ σ2

Our definition of bisimilarity is similar to a stuttering bisimulation [8] in
that one step in the left DRS can be matched by finitely many steps of
the right DRS. We, however, allow matching of finitely many steps on both
sides. This makes sense in our deterministic setting, but would not yield a
meaningful definition in a non-deterministic setting.

We now establishes that ∼ and m are, in fact, the same relation by The-
orem 1. The proof is straight forward, and immediate yields that ∼ is an
equivalence relation.

25

Program Equivalence

Theorem 1 (Bisimilarity Characterizes Observational Equivalence)

m = ∼

The proof does not require excluded middle. This is possible, because ex-
actly as for observational equivalence, if two programs are bisimilar it is not
clear whether the programs terminate or diverge. The following simulation
diagram depicts the proof principle for ∼.

σ1 ∼ σ2
+

+
σ ′1 ∼ σ ′2

4.2 Contextual Equivalence

The standard notion of program equivalence is contextual equivalence in-
troduced by Morris [45]. Two programs are contextually equivalent if they
behave in the same way in every context. In this section, we show that
the proof method presented in the previous chapter can be used to show
contextual equivalence with respect to IL/F.

Definition 4 (Contextual Equivalence) Two IL/F programs s, s′ are contex-
tually equivalent if

s ' s′ :⇐⇒ ∀C, �,0,C[s] F m F �,0,C[s′]

Contextual equivalence is the coarsest program equivalence that is still a
congruence, hence it is the most desirable program equivalence relation.

A difference to the standard definition of contextual equivalence in func-
tional languages is that we have to rely on an external definition of observa-
tional equivalence. Contextual equivalence in the simply-typed λ-calculus,
for example, would only require that the two terms coterminate in any con-
text. In general, two terms coterminate if whenever one terminates, the
other terminates, too. In λ-calculus, observational equivalence of two terms
then means that no context can distinguish the terms. In our setting this
approach would yield a too coarse equivalence, because the tail-call restric-
tion weakens our contexts in the sense that a context cannot make use of
the result of another program fragment. For example, the following two
IL/F programs coterminate in every context, but may evaluate to different
values:

x 6' y

26

Program Equivalence

4.2.1 Observational Program Equivalence

In this subsection, we define observational program equivalence based
on observational equivalence and show that it coincides with contextual
equivalence.

Definition 5 (Observational Program Equivalence) Two programs s, s′ are
observationally program equivalent if

s ≈obs s′ :⇐⇒ ∀LV, L, V , s F m F L,V , s
′

Contextual equivalence implies observational equivalence (Lemma 1). It
could still be the case, however, that ≈obs equates programs that are not
contextually equivalent.

Lemma 1 ' ⊆ ≈obs

The proof of Lemma 1 follows directly from the fact that every state can be
constructed by reduction of a suitable context, which we formally state in
Lemma 2. The formulation exploits a coincidence property we prove later.

Lemma 2 (Context Construction) For every state L,V , s such that V has fi-
nite domain there is a context C such that

�,0,C[s] -→∗ L,V , s

The backwards direction of Lemma 1 states that ≈obs is a congruence,
and we will use the bisimulation characterization for the proof. The proof
requires a substitution lemma, which we motivate now. Assume we want to
show from s ≈obs s′ that C[s] ≈obs C[s′] for a context C. The naive strategy
would be to reduce C until we can use s ≈obs s′. This is not straight-forward
for a context that puts s, s′ in function definition positions:

fun f x = [] in t

Under the above context, one-step evaluation changes the label context:

L | E | fun f x = s in t -→ L, f := (E, x, s) | E | t

We now have to show that given s ≈obs s′,

L, f := (E, x, s) | E | t ≈obs L, f := (E, x, s′) | E | t

This motivates Lemma 3, which is directly provable by induction in the case
of termination, and coinduction in the case of divergence.

Lemma 3 For all s ≈obs s′,

L, f := (E, x, s), L′ | E | t ≈obs L, f := (E, x, s′), L′ | E | t

The proof that ≈obs = ' is now within reach. However, the proof that
≈obs is a congruence would require two lemmas: one for divergence and one
for termination. Hence we resort to bisimilarity for the proof.

27

Program Equivalence

4.2.2 Program Bisimilarity

We define program bisimilarity as

s ◦∼ s′ :⇐⇒ ∀LV, L, V , s F ∼ F L,V , s
′

and immediately get that ≈obs = ◦∼ from Theorem 1. We now show that
program bisimilarity is a congruence, and then arrive at the final theorem
of this section.

Lemma 4 (Program Bisimilarity is a Congruence) Let s and s′ be programs
and C be a context.

s ◦∼ s′ =⇒ C[s] ◦∼ C[s′]

Proof By induction on C. All cases are straight-forward, except the function
definition case, which follows from Lemma 3 and Theorem 1. �

Theorem 2 (Bisimilarity Characterizes Contextual Equivalence)

' = ◦∼

Proof ' ⊆ ≈obs = ◦∼ by Lemma 1 and Theorem 1.
◦∼ ⊆ ' by Lemma 4. �

Contextual equivalence does not lend itself to proof, because the context
is not convenient to deal with, and there is a large body of work detailing
alternative characterizations and proof methods for a variety of languages
in the literature. More detail can be found in Chapter 9.

4.2.3 Program Bisimilarity with Different DRS

We later need I
◦∼ F which relates programs with regard to their IL/I and IL/F

semantics. We need this extra definition, because the context has closure
environments in IL/F, but not in IL/I. We define a function

strip(V , x, s) = (x, s)

that maps IL/F states to corresponding IL/I states by discarding the closure
environment, and lift strip point-wise to contexts in the obvious way. We
then define I

◦∼ F ⊆ Exp × Exp as follows:

s I
◦∼ F s

′ :⇐⇒ ∀LV, strip L,V , s I ∼ F L,V , s
′

28

Program Equivalence

4.3 Error

The semantics models error by getting stuck. As argued by Leroy and Grall
[41], introducing explicit error states would significantly increase the size of
the semantics, and we refrain from doing so. Bisimilarity ∼ is defined such
that it preserves errors, hence a transformation that respects ∼ is error
preserving. In general, this will not be the case for optimizations. Opti-
mizations often remove computations that could error, and this is intended
behavior: Any other policy would require optimizations to prove absence of
error in the source program, an undecidable endeavor. Leroy [39] explains
in detail how CompCert handles error preservation and gives the example
of a redundant computation that may get stuck due to a division by zero:
If error preservation would be required, an optimization could not remove
the computation. For the transformations in this thesis, however, we are
able to prove error preservation. This emphasizes that our transformations
are structural rather than semantic in nature.

29

5 Coincidence and Liveness

The semantics of an IL program depends only on a finite set of variables.
Semantically, we define whether a variable is relevant for an IL/I program in
the following way:

Definition 6 (Relevant Variable for an IL/I Program) A variable x is rele-
vant for an IL/I program s and a context L if there is an environment V
and a value v such that (L, V , s) 6∼ (L, V[x , v], s). x is irrelevant other-
wise.

Relevance is not computationally decidable, and hence to show that a vari-
able is always either relevant or irrelevant would require classical reasoning.

5.1 Coincidence

For functional languages, a standard result is coincidence. Coincidence
states that the behavior of a functional program can only depend on its
free variables. We show coincidence for IL/F by proving that the following
relation is a simulation:

(L, V , s) ≈coin (L, V ′, s) :⇐⇒ V =V (s) V ′

Theorem 3 ≈coin ⊆ ∼

Example 7 (No Coincidence for IL/I) A variable can be relevant for an IL/I
program even if the variable is not in the set of the free variables of the
program. To see this, consider the following program, which calls a function
f with no arguments:

1 f ()

Suppose we consider the above program in a context where x is a variable
relevant for f . Then clearly x is relevant for the above program: Changing x
may change the behavior of f (). The example shows that the relevance of
a variable depends on the program and the context. It also shows that a
variable may be relevant even if it does not occur in the program, but in the
context.

31

Coincidence and Liveness

5.2 Liveness

In this section, we define a predicate to derive the set of live variables of an
IL program. The key property is that if a variable is relevant for a program,
then it is in the set of live variables. Additionally, the set of live variables
will include the set of free variables. Liveness is a standard notion from
compiler construction [1, 28].

The set of live variables is defined via an inductive predicate, which is a
variation of a predicate used in a recent research immersion lab [58]. The
liveness predicate is of the following form:

Λ ` live s : Γ
Λ : context (setV) live variables of functions
Γ : setV live variables
s : Exp expression

The predicate Λ ` live s : Γ should be understood as

Under the assumptions Λ about the relevant variables of functions,
the set Γ contains all variables relevant for s.

Λ is a context, i.e. essentially a finite, partial function L ⇀ setV with
a little bit more structure as explained in Section 3.2. Λ records for every
function a set which contains at least the variables relevant for the body.
This set, however, must not contain a parameter of the function, because
parameters are always considered to be relevant in our definition. Claim-
ing that every parameter is relevant is clearly an over-approximation, but a
similar definition of liveness formulated on imperative CFGs can be found
in [57]. For any program s, we call Γ the set of live variables. If a variable
is in Γ , we say the variable is live. We show below that Γ indeed over-
approximates the set of relevant variables.

5.2.1 Rules

The rules for liveness in Figure 5.1 ensure that the set of live variables Γ
contains at least the variables relevant for the program s and the context Λ.
Live-Op, which deals with assignment, ensures that all variables free in e
are live. Every live variable of the continuation s except xmust be alive vari-
able of the assignment. The continuation, however, may or may not use x.
The rule Live-Cond ensures that the live variables of a conditional at least
contain the condition variable, and the variables live in the consequence
and alternative. Live-Var ensures if the program consists of a single vari-
able x, then x must be live. Live-App deals with a call to a function f . It
ensures that all arguments are live, and that the live variables Γf of f are
live at the call site. We could not require Γf ⊆ Γ if Γf would need to contain
parameters of the function. The notation Λ, f : Γf ,Λ′ denotes a unique de-
composition of the context, as we explained in Section 3.2. Live-Fun deals

32

Coincidence and Liveness

Figure 5.1: Liveness: An Over-Approximation of Relevance

V (e) ⊆ Γ Γ ′ \ {x} ⊆ Γ Λ ` live s : Γ ′
Live-Op

Λ ` live let x = e in s : Γ

{x} ∪ Γs ∪ Γt ⊆ Γ Λ ` live s : Γs Λ ` live t : Γt
Live-Cond

Λ ` live if x then s else t : Γ

x ∈ Γ
Live-Var Λ ` live x : Γ

Γf ⊆ Γ y ⊆ Γ
Live-App

Λ, f : Γf ,Λ′ ` live f y : Γ

Λ, f : Γf ` live t : Γ ′

Λ, f : Γf ` live s : Γf ∪ x Γ ′ ⊆ Γ Γf ⊆ Γ \ x
Live-Fun

Λ ` live fun f x = s in t : Γ

with function definitions. It non-deterministically chooses the set of live
variables Γf for f . Γf is recorded in the context Λ. We required Γf ⊆ Γ \ x,
i.e. that Γf does not contain a parameter. A system only requiring Γf ⊆ Γ
would allow at least as much derivations. We include the requirement to
make our intention clear that Γf is not supposed to contain parameters. In
the definition of coherence, which we give in the next chapter, this require-
ment will become critical. The body of the function may additionally use
its parameters, because our definition makes all parameters live. The live
variables of the continuation t must be a subset of the live variables at the
definition.

5.2.2 Decidability

The rules in Figure 5.1 are syntax-directed except for the non-determinism
in the rule Live-Fun. There are only finitely many choices for Γf ⊆ Γ \ x,
hence liveness is decidable.

Theorem 4 (Liveness is Decidable) For Λ, Γ and s, it is decidable whether
Λ ` live s : Γ .

The proof of Theorem 4 is constructive and yields an extractable decision
procedure.

33

Coincidence and Liveness

5.2.3 Liveness Over-Approximates Relevance

We now show that every relevant variable is indeed live by proving an ap-
propriate simulation result. We show that whenever Λ ` live s : Γ , then
Γ contains at least the variables relevant for s in every context L compati-
ble with Λ. We call this notion of compatibility between L and Λ context
liveness and define it using the following predicate:

Λ ` live L
Λ : context (setV) live variables mapping
L : context block label context

We give the rules for context liveness in Figure 5.2. The rule Live-Ctx-Con
ensures that the live variables Γ of a function f do not contain its parame-
ters, and that all variables relevant to the function body sare either param-
eters or in Γ .

Figure 5.2: Context Liveness

Live-Ctx-Emp
� ` live �

Λ ` live L Γ ∩ x = � Λ, f : Γ ` live s : Γ ∪ x
Live-Ctx-Con

Λ, f : Γ ` live L, f := (x, s)

We can now define a relation ≈live on states of IL/I as follows:

(L, V , s) ≈live (L, V ′, s) :⇐⇒ ∃ΛΓ , Λ ` live s : Γ ∧ Λ ` live L ∧ V =Γ V ′

The relation relates states of IL/I which have the same function defini-
tions L, and the same programs s. The primary environments are required
to agree on the live variables of s underΛ, and L is required to be compatible
with Λ. The following theorem states that such states are observationally
equivalent:

Theorem 5 ≈live ⊆ ∼

A similar result can be obtained for IL/F. The following lemma characterize
the relationship between live variables and free variables. The first obser-
vation is that the live variables always contain the free variables. We have
seen in example Example 7 that the live variables may be a proper super-set
of the free variables.

Lemma 5 If Λ ` live s : Γ , then V (s) ⊆ Γ .

Another property we conjecture to hold, but do not prove, is that for closed
programs, the free variables are a sufficiently large set of live variables:

� ` live s : V (s)

34

Coincidence and Liveness

We are now ready to prove that liveness is also meaningful for IL/F pro-
grams. First we define a relation on states of IL/F that is essentially the
lifting of ≈live to states with closure environments:

(L, V , s) ≈′live (L, V
′, s) :⇐⇒ (strip L,V , s) ≈live (strip L,V ′, s)

Theorem 6 ≈′live ⊆ ∼

Proof The proof follows from Lemma 5. This observation can be turned
into a proof stating that ≈′live ⊆ ≈coin, i.e. for IL/F, liveness yields a weaker
form of coincidence. The claim then follows from Theorem 3. �

5.3 True Liveness

A stronger notion of liveness that does not require every parameter to be
live is given in Figure 5.3 This second definition seems to coincide with the
definition of true liveness in [57] which was originally devised in [25]. True
liveness is an analysis usually used for dead variable elimination [57]. True
liveness does not satisfy a property similar to Lemma 5:

Example 8 Not every free variable is in the set of true-live variables. Con-
sider, for example, the following program:

1 fun f x =
2 if y then y else f x in
3 f x

Obviously, x is free in the above program. However, x is not in the true live
set of the program, and this is justified, because x is not relevant for the
above program.

We define true liveness similarly to liveness using a predicate of the
following form:

Λ ` tlive s : Γ
Λ : context (setV × listV) live set and parameters
Γ : setV true live variables
s : Exp expression

The context Λ is used in a different way than in the definition of liveness.
In liveness, Λ recorded for every function the set of live variables, which
was forbidden to contained a parameter of that function. In the true live-
ness predicate, Λ records for every function a pair Γf , x, where x are the
parameters of the function. The set Γf is now the set of live variables of
the function, possibly including parameters. If a parameter is not in Γf this
means that the parameter is not relevant for the function.

35

Coincidence and Liveness

Figure 5.3: True Liveness: A Stronger Version of Liveness

V (e) ⊆ Γ Γ ′ \ {x} ⊆ Γ Λ ` tlive s : Γ ′
TLive-Op

Λ ` tlive let x = e in s : Γ

{x} ∪ Γs ∪ Γt ⊆ Γ Λ ` tlive s : Γs Λ ` tlive t : Γt
TLive-Cond

Λ ` tlive if x then s else t : Γ

x ∈ Γ
TLive-Var Λ ` tlive x : Γ

Γf \ {x1, . . . , xn} ⊆ Γ ∀i, xi ∈ Γf ⇒ yi ∈ Γ
TLive-App

Λ, f = (Γf , (x1, . . . , xn)),Λ′ ` tlive f y1, . . . , yn : Γ

Λ, f : (Γf , x) ` tlive t : Γ ′

Λ, f : (Γf , x) ` tlive s : Γf Γ ′ ⊆ Γ Γf ⊆ Γ ∪ x
TLive-Fun

Λ ` tlive fun f x = s in t : Γ

5.3.1 Rules and Relation to Liveness

The rules for true liveness are similar to the rules for liveness. The rule
TLive-App now requires that every variable in Γf which is not a parameter
is live at the call-site. Arguments are only required to be live if the corre-
sponding parameter is live. The rule TLive-Fun now allows Γf be a subset
of Γ ∪ x, i.e. to include parameters and otherwise corresponds to Live-Fun.

True liveness is related to liveness in the following way:

Lemma 6 For all i, let xi match the parameters of fi . Then the following
holds:

f1 : Γ1, . . . , fn : Γn ` live s : Γ

=⇒ f1 : (Γ1 ∪ x1, x1), . . . , fn : (Γn ∪ xn, xn) ` tlive s : Γ

The lemma shows how a liveness derivation can be turned into a true live-
ness derivation with the same live variables Γ . The contexts have to be
transformed. In liveness, Γf does not contain the parameters, but the pa-
rameters are implicitly assumed to be live. In true liveness, Γf must contain
the parameters that are live. For this reason, the context is modified such
that the live variables of each function contain its parameters.

36

Coincidence and Liveness

5.3.2 Decidability

The rules in Figure 5.3 are syntax-directed except for the non-determinism
in the rule TLive-Fun. There are only finitely many choices for Γf ⊆ Γ ∪ x,
hence true liveness is decidable.

Theorem 7 (True Liveness is Decidable) For all Λ, Γ and s, it is decidable
whether Λ ` tlive s : Γ .

The proof of Theorem 7 is constructive and yields an extractable decision
procedure.

5.3.3 True Liveness Over-Approximates Relevance

We now show that every relevant variable is true live. We again need a
compatibility notion between L and Λ which we call context true liveness
and define using the following predicate:

Λ ` tlive L
Λ : context (setV × listV) live set and parameters
L : context label context

The rules for context true liveness are in Figure 5.4. TLive-Ctx-Con en-
sures and that Γ contains all variables relevant to the function body s (as-
suming Λ, f : (Γ , x) about the live variables of the functions in the context).
The rule also ensures that the parameters in Λ are the parameters of the
function in L.

Figure 5.4: Context True Liveness

Live-Ctx-Emp
� ` tlive �

Λ ` tlive L Λ, f : (Γ , x) ` tlive s : Γ
Live-Ctx-Con

Λ, f : (Γ , x) ` tlive L, f := (x, s)

We can now define a relation ≈tlive analogously to ≈live as follows:

(L, V , s) ≈tlive (L, V ′, s) :⇐⇒ ∃ΛΓ , Λ ` tlive s : Γ ∧ Λ ` tlive L ∧ V =Γ V ′

The states related by ≈tlive are observationally equivalent:

Theorem 8 ≈tlive ⊆ ∼

Again, a similar result can be obtained for IL/F. The proof, however, does
not follow from Theorem 3, because the set of true live variables may con-
tain less than the free variables, as we have seen in Example 8. We define a
relation ≈′tlive on states of IL/F as follows:

37

Coincidence and Liveness

(L, V , s) ≈′live (L, V
′, s) :⇐⇒ (strip L,V , s) ≈live (strip L,V ′, s)

We obtain the analogous result to Theorem 6 for true liveness via a simula-
tion proof.

Theorem 9 ≈′tlive ⊆ ∼

38

6 Coherence

To realize a functional language, function closures, which contain the clo-
sure environment, must be represented. In this chapter, are interested in
identifying IL/F programs do not need closure environments. The key idea
is simple: Whenever a function is applied, the closure environment becomes
the primary environment with the parameters updated according to the ar-
guments of the application. If, however, the primary environment at an
application agrees with the closure environment on all relevant variables,
evaluation can continue in the appropriately updated primary environment
without changing the meaning of the program.

In the following, we develop sufficient conditions to ensure that at every
function application, the primary environment agrees with the closure envi-
ronment on all variables relevant for the function body. Under this premise,
evaluation can always continue with the primary environment, hence ren-
dering closure environments unnecessary. To determine the variables rel-
evant for a function, we incorporate an over-approximation into our rules
similar to the one used for liveness in Chapter 5.

To formally state our result, we use the imperative semantics of IL:
IL/I is essentially IL/F without closure environments. After function calls
IL/I evaluation continues in the updated primary environment. A program
which does not need any closure environment is hence a program that has
the same semantics in both IL/I and IL/F, and we call such a program an
invariant program:

Definition 7 (Invariance) A label-closed program s is invariant if

s I
◦∼ F s

Invariance is a semantic property of a program that cannot be decided. We
proceed by giving sufficient and decidable conditions for invariance, which
we call coherence.

6.1 Intuition

We start our discussion with examples of programs that are not invariant
to motivate our conditions. Consider Listing 6.1, which shows a program

39

Coherence

that is not invariant.

Listing 6.1: Program with different imperative and functional
interpretation

1 x = 7;
2 fun f () = x
3 in x = 5; f ()

The reason Listing 6.1 is not invariant is that the assignment to x in line 3
has an effect after a function call, whereas binding x again does not: At func-
tion application, the closure environment of the function f , which binds x
to 7, is restored. We call a variable that is read from the closure environ-
ment of f a global of f , e.g. x is a global of f . The globals of f are an
over-approximation of the set of variables relevant for f , very similar to the
set of live variables of f we discussed in the previous section. The program
in Listing 6.1 is not invariant, because the primary environment at the appli-
cation in line 3 disagrees with the closure environment of f on the global x.
Consider on the other hand the following program:

Listing 6.2: An invariant program

1 x = 7;
2 fun f () = return x
3 in y = 5; f ()

In Listing 6.2, no global of f is rebound before its application in line 3, and
hence we say the closure of f is available, or shorter that f is available.
As long as a closure of a function f is available, the primary environment
and the closure agree on the globals of f . This relationship is called the
agreement invariant. The key idea for coherence is to maintain that only
functions with an available closure can be applied. The agreement invariant
then justifies removing the closures. Whether a closure is available is a
static property of the program which depends only on the lexical binding
structure, and hence can be decided.

Figure 6.1: Venn Diagram showing the Relationship of Coherence and SSA

renamed apart (SSA)

shadowing free

coherent

40

Coherence

Note that every shadowing free program is coherent, because absence
of shadowing ensures that no variable is rebound. For the same reason re-
named apart programs are coherent. The renamed apart programs realize
the SSA-condition: every variable is bound exactly once. Lexical binding en-
sures that every variable is defined before it can be used. Using the analogy
from Section 2.4, coherence can be seen as a generalization of SSA from
that abstracts from the single assignment requirement.

6.2 Coherence Conditions

In this section, we present coherence conditions which are decidable and
sufficient for invariance. The inductive definition of coherence given in
Figure 6.2 identifies programs which only apply functions with available
closures. The coherence predicate is of the following form:

Λ | Γ ` coh s
Λ : context (setV) globals mapping
Γ : setV available variables
s : Exp expression

The predicate Λ | Γ ` coh s should be read as

Under the assumptions Λ about the globals of the available functions
and the available variables Γ , s is coherent.

The globals mapping Λ maps every label f to a set containing the globals
of f . Every variable relevant for s must be in the set Γ of available vari-
ables. The predicate maintains the invariant that Λ only contains available
functions, and the Coh-App-rule ensures only f ∈ domΛ can be applied.
Whenever a variable x is rebound, all functions that require the global x
become unavailable, and are removed from Λ.

6.2.1 Rules

The rules are similar to the rules of liveness in 5.2. As in the rules for live-
ness, the set Γ is an over-approximation of the relevant variables. However,
it is more useful to think of Γ as the set of available variables in the set-
ting of coherence. Γ contains those variables the program may use. Λ now
records the globals of each function. The globals are an over-approximation
of the relevant variables of the function, and are thus similar to the live vari-
ables of the function. However, Λ has a new, second purpose: It does not
contain all functions, but only those with available closures. To maintain
this invariant, a function is removed if its closure is no longer available. Re-
call that a closure of a function f is available, as long as no global of f has
been rebound.

41

Coherence

Figure 6.2: Coherence: A Sufficient Condition for Invariance

V (e) ⊆ Γ bΛcΓ\{x} | Γ ∪ {x} ` coh s
Coh-Op

Λ | Γ ` coh let x = e in s

x ∈ Γ Λ | Γ ` coh s Λ | Γ ` coh t
Coh-Cond

Λ | Γ ` coh if x then s else t

x ∈ Γ
Coh-Var Λ | Γ ` coh x

Γf ⊆ Γ y ⊆ Γ
Coh-App

Λ, f : Γf ,Λ′ | Γ ` coh f y

Λ, f : Γf | Γ ` coh t
bΛ, f : Γf cΓf | Γf ∪ x ` coh s Γf ⊆ Γ \ x

Coh-Fun
Λ | Γ ` coh fun f x = s in t

The rule Coh-Op deals with variable binding. This binding can poten-
tially cause a closure to become unavailable. The rule uses the operation

bΛcΓ := {f : Γf ∈ Λ | Γf ⊆ Γ}

which restricts Λ to functions requiring at most Γ as globals. This ensure
that s may only apply functions which require at most Γ \ {x} as globals.
Any function requiring the variable x as global is not contained in bΛcΓ\{x}
and hence unavailable in s. The rule further updates the set of available
variables Γ to contain x, because x has just been bound.

The rule Coh-Fun deals with function definitions. When the definition
of a function f is encountered, a set Γf containing at least the globals of f
is chosen and recorded in Λ. To the function body s, any variable will be
available that is either a global of f (i.e. in Γf), or a parameter of f . Since
parameter binding makes any function unavailable that uses a global with
the same name, Λ is restricted to Γf . For this restriction it is important
that Γf does not contain parameters of f .

The rules Coh-Cond, Coh-Val, Coh-App are similar to the rules for
liveness from Section 5.2: The rules maintain Γ as an over-approximation of
the relevant variables. In contrast to liveness, however, coherence does not
need Γ to be as small as possible.

42

Coherence

6.2.2 Decidability

The rules are syntax-directed except for the non-determinism in the rule
Coh-Fun. There are only finitely many choices for Γf ⊆ Γ\x, hence coherence
is decidable.

Theorem 10 (Coherence is Decidable) For all Λ, Γ and s, it is decidable
whether Λ | Γ ` coh s.

The proof of Theorem 10 is constructive and yields an extractable decision
procedure.

6.3 Preservation

In this section, we show a preservation result for coherence. We introduce
the notion of a coherent state and define the set of all coherent states Coh.
A coherent state has two key properties: First, the program it represents is
coherent, and second, all available functions satisfy the agreement invari-
ant. We then show that Coh is closed under evaluation, i.e. that coherence
and the agreement invariant are preserved under evaluation.

6.3.1 Agreement Invariant

The agreement invariant describes a correspondence between the values of
variables in function closures and the primary environment. Consider the
program state

L, f := (Vf , x, s) | V | t

If the closure of a function f is available, the closure environment Vf agrees
with the primary environment V on f ’s globals Γf : Vf =Γf V . Given an envi-
ronment V and contexts L and Λ, we say L,V satisfy Λ if the aforementioned
condition holds for all f ∈ domΛ. The agreement invariant is defined as
follows:

Definition 8 (Agreement Invariant)

L,V î Λ :⇐⇒ ∀f ∈ domL∩ domΛ, Vf =Γf V

6.3.2 Context Coherence

Function application continues evaluation with the function body from the
closure. Consider, for example, the evaluation

L, f := (V ′, x, s), L′ | V | f y
-→ L, f := (V ′, x, s) | V ′xVy | s

43

Coherence

Figure 6.3: Context Coherence: Coherence for Contexts

Coh-Ctx-Emp
� ` coh �

Λ ` coh L Γ ∩ x = � bΛ, f : ΓcΓ | Γ ∪ x ` coh s
Coh-Ctx-Con

Λ, f : Γ ` coh L, f := (V , x, s)

If coherence is to be preserved, s must be coherent under suitable assump-
tions, too. For this purpose, we define the context coherence predicate
given in Figure 6.3, which is of the following form:

Λ ` coh L
Λ : context (setV) globals mapping
L : context closure label context

Λ ` coh L states that all function bodies in L are coherent with respect to
Λ, and is defined by induction on the context according to the rules given in
Figure 6.3. The rule Coh-Ctx-Con encodes the two key requirements: First,
the globals of a function f must not contain a parameter of f . Second, the
body of f must be coherent under the context restricted to the globals of f .
Compare this to Coh-Fun in Figure 6.2, which establishes both properties.
Context coherence is stable under restriction to every set of variables Γ ,
because restriction will only remove functions from Λ:

Λ ` coh L =⇒ bΛcΓ ` coh L

Context coherence is also stable under rewinding to any function f :

Λ, f : Γf ,Λ′ ` coh L, f := (V , x, s), L′
=⇒ Λ, f : Γf ` coh L, f := (V , x, s)

6.3.3 Preservation Theorem

Using agreement and context coherence, we define the set of coherent
states Coh as follows:

Coh(Λ, Γ) = {(L, V , s) | Λ | Γ ` coh s ∧ Λ ` coh L ∧ L,V î Λ}
Coh =

⋃
Λ,Γ

Coh(Λ, Γ)

The preservation result states that Coh is closed under evaluation.

Theorem 11 Coh is -→-closed.

44

Coherence

6.4 Coherence Implies Invariance

In this section, we show that IL/F and IL/I give the same interpretation to
coherent programs. This is the main result about coherence. To make our
proof intention clear, we state a corollary of the main result. The following
corollary states that for every label-closed, coherent program s, any func-
tional state (including closure environments) is in bisimulation with the cor-
responding imperative state (without closure environments).

Corollary For every well-formed program s,

� | Γ ` coh s =⇒ s I
◦∼ F s

To obtain Corollary 1 we exhibit a state bisimulation ≈coh between coherent
program states of IL/F and corresponding states of IL/I.

(L, V , s) ≈coh (strip L,V ′, s) :⇐⇒ ∃ΛΓ , (L, V , s) ∈ Coh(Λ, Γ) ∧ V =Γ V ′

Theorem 12 ≈coh ⊆ I ∼ F

Corollary 1 now follows by setting L = Λ = � and observing that �,V î s
and � ` coh � are vacuously true. Technically, we also need to show that any
program s which satisfies � | Γ ` coh s is label closed, and that evaluation
of label-closed programs does not depend on the context.

Theorem 12 states that coherent programs can be interpreted either as
IL/F programs or as IL/I programs without changing their meaning. This is a
powerful property, because Theorem 12 reduces the problem of translating
between IL/I and IL/F to the problem of establishing coherence. Of course,
coherence is only a sufficient criteria for invariance, but it is a decidable
one. In the next chapter, coherence provides the basis for the correctness
conditions of the translation between IL/I and IL/F.

45

7 Transformations

In this chapter we present two important transformations which realize the
translation between IL/I and IL/F. In the previous chapter we have seen
that coherent programs have the same meaning in both interpretations. To
translate between the two interpretations, it hence suffices to establish co-
herence while preserving either the functional or the imperative semantics.

We discuss establishing imperative coherence in Section 7.1. The trans-
formation and its correctness conditions are derived from the coherence
predicate. We formulate a translation predicate that relates programs to
their equivalent and coherent translations. We implement the translation
predicate via a correctness predicate and a compilation function in Sec-
tion 7.2. The translation relies on external information, which we integrate
using translation validation. Establishing imperative coherence can be seen
as SSA construction with the restriction that the block structure must re-
main unchanged.

We discuss establishing functional coherence in Section 7.3. Functional
coherence can be established by α-renaming, in particular by renaming all
variables apart. We relax the correctness conditions to allow α-renamings
to drastically reduce the number of used variables. An α-renaming that
drastically reduces the number of used variables and establishes coherence
can be understood as a register assignment. The decidability result for the
correctness condition is the basis for a translation validation framework for
register assignment, which we explain in Section 7.3.6.

7.1 Imperative Coherence Translation

In this section, we discuss how an IL/I program can be transformed to an
equivalent, coherent program. We will also refer to this transformation as
establishing imperative coherence. Since a coherent program means the
same in IL/I and IL/F, a transformation that establishes imperative coher-
ence is also a transformation that translates an IL/I program to an IL/F
program.

We explain the translation with the help of an example. Recall that in a
coherent program only functions with an available closure may be applied.

47

Transformations

IL/I programs usually rely on register reassignment quite heavily, poten-
tially making closures unavailable. Consider the following program, which
is not invariant, for example:

Listing 7.1: An IL/I Program (not coherent)

1 let x = 7 in
2 fun f () = x in
3 if y then let x = 3 in f ()
4 else f ()

The closure of f becomes unavailable after the assignment to x in line 3,
because x is a global of x. To ensure the closure of f remains available
after the assignment, x is removed from the globals of f by making it a
parameter:

Listing 7.2: An IL/I Program (coherent)

1 let x = 7 in
2 fun f x = x in
3 if y then let x = 3 in f x
4 else f x

At all applications, the parameter itself is used as argument. The strategy
to convert globals to parameters works in general, and a simple strategy to
establish coherence is to make every variable in the program a parameter.
For example, the following program in which all free variables have been
added as parameters to every function is also coherent:

Listing 7.3: An IL/I Program (coherent)

1 let x = 7 in
2 fun f (x,y) = x in
3 if y then let x = 3 in f (x,y)
4 else f (x,y)

However, usually fewer parameters suffice. As we explained in Section 2.6,
adding parameters corresponds to placing φ-functions, and minimizing the
number of φ-functions is desirable for practical purposes. For this rea-
son, we give a translation predicate to formally describe which parameters
must be added to obtain a coherent program. The predicate only requires
a parameter to be introduced if it is necessary to establish coherence. The
translation predicate is of the following form:

Λ | Γ | Π ` s / s′

Λ : context (setV) globals mapping
Γ : setV live variables
Π : context (listV) additional parameters
s : Exp source expression
s′ : Exp target expression

The predicate Λ | Γ | Π ` s / s′ should be read as

48

Transformations

Under the assumptions Λ about the globals of functions occurring
free in s, the available variables Γ , and the additional parameters
Π for functions occurring free in s, the program s′ is a coherent
program equivalent to s.

Λ and Γ are used similarly to their usage in the definition of coherence.
Π encodes the parameters that must be added to the functions in Λ to make
the program coherent. If Λ | Γ | Π ` s / s′ is derivable, then s′ is obtained
from s by adding the parameters as described by Π to function definitions
and applications, and s′ is coherent.

7.1.1 Rules

The rules are essentially the rules for coherence, with the twist that coher-
ence for s′ is ensured. The rules are defined such that s′ is obtained from s
by adding additional parameters to function definitions and applications.

Figure 7.1: Translation Predicate

V (e) ⊆ Γ bΛcΓ\{x} | Γ ∪ {x} | Π ` s / s′
Trs-Op

Λ | Γ | Π ` let x = e in s / let x = e in s′

x ∈ Γ Λ | Γ | Π ` s / s′ Λ | Γ | Π ` t / t′
Trs-Cond

Λ | Γ | Π ` if x then s else t / if x then s′ else t′

x ∈ Γ
Trs-Var Λ | Γ | Π ` x / x

Γf ⊆ Γ yz ⊆ Γ
Trs-App

Λ, f : Γf ,Λ′ | Γ | Π, f : z,Π′ ` f y / f yz

Λ, f : Γf | Γ | Π, f : z ` t / t′

bΛ, f : Γf cΓf | Γf ∪ xz | Π, f : z ` s / s′ Γf ⊆ Γ \ xz
Coh-Fun

Λ | Γ | Π ` fun f x = s in t / fun f xz = s′ in t′

The rules Trs-Op, Trs-Cond, and Trs-Var are analogous to Coh-Op,
Coh-Cond, and Coh-Var, respectively. Each of the rules translates the pro-
gram directly. The rule Trs-App is similar to Coh-App when checking for
coherence of the translation f yz. The rule adds the additional parame-
ters as arguments to the application. Otherwise the rule ensures that the
globals Γf of f (which neither contain parameters nor additional parame-
ters) are available at the application. The rule Trs-Fun deals with function

49

Transformations

definitions. The rule chooses the set of globals and a list of additional pa-
rameters z for f . Both are recorded in Λ and Π, respectively. The additional
parameters z are added to the translation of the function definition. The
premises are similar to Coh-Fun with xz as parameters, because coherence
is ensured for the translation.

7.1.2 Decidability

We can decide whether a given set of parameters is sufficient to achieve
coherence in the following sense:

Theorem 13 (Correctness of Translation is Decidable) Given Λ, Γ , Π, s, s′,
it is decidable whether

Λ | Γ | Π ` s / s′

The proof of Theorem 13 is constructive and yields a decision procedure
which can be used for translation validation. We explain this in detail in
Section 7.2.

7.1.3 Properties of the Translation

The main property of the translation predicate is that it yields a coherent
program, which we prove with the following theorem:

Theorem 14 (Translation Establishes Coherence)

Λ | Γ | Π ` s / s′

=⇒ Λ | Γ ` coh s′

What remains to be shown is that the translated program is observation-
ally equivalent to the original program. To do so, we define a relation ≈trs

between source and target programs and show that the relation is a bisim-
ulation. The programs related by ≈trs may be open, hence we need the
label contexts on both sides to be correct translations of each other, too.
We define the following predicate that relates two contexts L, L′ if L′ is the
translation of L under the globals Λ and the additional parameters Π.

Λ | Π ` L / L′

Λ : L⇀ setV globals mapping
Π : L⇀ setV additional parameters
L : context label context
L′ : context translated label context

The rules for context translation are given in Figure 7.2. Trs-Ctx-Con en-
sures that the function bodies in L and L′ are pairwise translations of each
other.

We can now define the relation ≈trs and show that it is a bisimulation.
The relation relates states where programs and contexts are translations of

50

Transformations

Figure 7.2: Context Translation

Trs-Ctx-Emp
� | � ` � / �

Λ | Π ` L / L′ bΛ, f : ΓcΓ | Γ ∪ xz | Π, f : z ` s / s′
Trs-Ctx-Con

Λ, f : Γ | Π, f : z ` L, f := (x, s) / L′, f := (xz, s′)

each other. The variable environments are required to agree on the available
variables Γ .

Definition 9 (Translation Bisimulation) Translation bisimulation≈trs is de-
fined as

(L, V , s) ≈trs (L′, V , s′) :⇐⇒ ∃ΛΓ Π,
Λ | Γ | Π ` s / s′

∧ V =Γ V ′
∧ Λ | Π ` L / L′

The simulation result is obtained with respect to the semantics of IL/I. Note
that Theorem 14 ensures the translation is coherent, hence the IL/I inter-
pretation of the original program is equivalent to the IL/F interpretation of
the translation.

Theorem 15 (Translation Correctness) ≈trs ⊆ ∼

As mentioned earlier, in the formal development, the translation predicate
is separated into a correctness predicate and an extractable compilation
function. This is described in Section 7.2.

7.2 Implementing the Translation Predicate

In section Section 7.1, we gave a translation predicate to characterize cor-
rect translations that establish imperative coherence. The translation pred-
icate is not functional in the translation, i.e. even when fixing Λ, Γ , Π there
might be several derivable translations of a program s. For example, List-
ing 7.2 and Listing 7.3 are both derivable translations of Listing 7.1 under
Λ = Π = � and Γ = {y}. In the example, the non-determinism stems from
the fact that choosing both, x or x, y as additional arguments for f will yield
a coherent program.

In the Coq development, we realize the translation using a correctness
predicate and a compilation function. As explained above, the translation
predicate admits several translations, and we introduce an additional argu-
ment which replaces the translation in the correctness predicate, and fixes

51

Transformations

the additional arguments for the compilation function. The compilation
function must have access to the additional parameters for functions de-
fined inside the program. We explain how this information is encoded with
the help of the following example:

Listing 7.4: An IL/I program (not coherent)

1 fun g () =
2 let x = y in f () in
3 let y = 3 in
4 g ()

Suppose that x is relevant for f . The following is a derivable translation of
the above program:

Listing 7.5: Translation of Listing 7.4

1 fun g y =
2 let x = y in f x in
3 let y = 3 in
4 g y

The information that x is an additional argument for f is represented in Π,
and providing Π to the compilation function would suffice to make the in-
formation available that x must be added as parameter to f . However, the
information that g requires the additional parameter y , and only the addi-
tional parameter y is not recorded in Π. The information is encoded in the
derivation of the translation predicate, namely as the list of additional pa-
rameters z in Trs-Fun. It is exactly this information which must be shared
between the correctness predicate and the compilation function.

7.2.1 Annotations

Annotations provide a way to annotate the abstract syntax tree of the pro-
gram with additional information. We explain the mechanism using List-
ing 7.4. The compilation function needs to know for every function defini-
tion which additional parameters are to be inserted, and for every function
application which additional arguments must be inserted. In general, we
want to annotate every node in the programs AST with certain information.
For this purpose, we introduce a grammar that generates ASTs of the same
shape as the syntax of our language, and allows information to be placed
at each node. For example, Figure 7.3 shows the AST of Listing 7.4 together
with the AST of the annotation providing the additional parameters and ar-
guments required for the translation. The nodes structurally corresponding
to function definitions and function applications are annotated with the list
of additional parameters and arguments, in this case x and y .

The annotations can be defined as shown in Figure 7.4, for example.
Note that the syntax in Figure 7.4 is parametric in the type of the annota-
tion A, and that a ranges over A by convention. A predicate s : a can be

52

Transformations

Figure 7.3: Listing 7.4 with Annotation

(a) AST of Listing 7.4

fun g

let x = y

f ()

let y = 3

g()

(b) AST of Annotation of Listing 7.4

y

�

x

�

y

formulated that relates a program s and an annotation a if they are of the
same shape. It is routine to show that s : a is a decidable predicate. We
chose the notation for the predicate to resemble how type assignment is
usually written in presentations of type systems, and in fact, type assign-
ments can be seen as a form of annotation.

Figure 7.4: Syntax of Annotations: The definition is parametric in the set of
annotations A over which a ranges.

Ann 3 s, t ::= ann0 a nullary annotation

| ann1 a s unary annotation

| ann2 a s t binary annotation

7.2.2 Compilation Function

We can now formulate the compilation function c which takes a program
and an annotation as arguments. The definition of c is defined recursively
on Exp and Ann to satisfy the following equations. We use � to denote
the empty list. Note that the compilation function only yields a meaningful
result if s : a.

c(let x = e in s,ann1 � a) = let x = e in c(s, a)

c(if x then s else t,ann2 � a b) = if x then c(s, a) else c(t, b)

c(f y,ann0 z) = f yz

c(x,ann0 �) = x

c(fun f x = s in t,ann2 z a b) = fun f yz = c(s, a) in c(t, b)

53

Transformations

7.2.3 Correctness Predicate

The correctness predicate is of the form Λ | Γ | Π ` s : a where a is an an-
notation instead of the translation. We do not give rules for the correctness
predicate, as they are very similar to the rules for the translation predicate.

7.2.4 Translation Validation: SSA Construction

Annotations provide a simple way to integrate external, unverified proce-
dures. Suppose, for example, we want to obtain the imperative coherence
translation for the label-closed program s. The external program is pro-
vided with s and computes an annotation a. The verified validator then
performs the following steps: First, it ensures that s : a holds using the
corresponding decision procedure. If this is not the case, compilation is
aborted. Next, the validator decides if the correctness predicate

� | V (s) | � ` s : a

holds. If this is not the case, compilation is aborted. Otherwise, the compi-
lation function c is applied and yields the transformed program.

As we mentioned earlier, establishing imperative coherence is tightly
related to SSA construction. We explained in Section 2.6 that adding param-
eters corresponds to placing φ-functions. The translation validation tech-
nique explained above can be used to translation validate an SSA construc-
tion algorithm. The construction algorithm names the places and parame-
ters it wants to add (i.e. all positions where it wants to place a φ-function)
in the form of an annotation and passes the annotation to our framework.
As discussed above, the translation predicate allows a range of translations
for a given program, thus giving the external program a degree of freedom
which translation it wants to choose.

Our verified validator ensures the annotation is satisfies the correct-
ness predicate and translates the program accordingly. The standard SSA-
construction algorithm [20] minimizes the number of φ-functions. Our
translation predicate supports minimal construction by requiring only pa-
rameters that are necessary to ensure coherence of the translation. We
conjecture that as long as the block structure of the program remains un-
changed, even minimal translations are derivable with our predicate, but we
have no formal analysis.

Traditional SSA-construction algorithms [20] reorder the block structure
of the program to reduce the number of required φ-functions. We explain
the issue using IL/I programs, although SSA-construction algorithms work
on CFGs. Consider, for example, the program given in Figure 7.5a. Our
specification is forced to introduce x as an argument to both f and g to
establish coherence and yields the program shown in Figure 7.5b.

54

Transformations

Figure 7.5: An IL/I Program and Its Imperative Coherence Translation

(a) Original

1 fun g () = x in
2 fun f () = g () in
3 let x = 3 in
4 f()

(b) Translation

1 fun g x = x in
2 fun f x = g x in
3 let x = 3 in
4 f x

The nesting structure of the original program in Figure 7.5a is flat, and
this is the reason why g needs an argument. When applied to Figure 7.5a,
state of the art SSA-construction algorithms will yield a CFG corresponding
to the following program:

1 fun f x =
2 fun g () = x in
3 g () in
4 let x = 3 in
5 f x

The above program does not require an argument for g, and hence the
corresponding CFG has less φ-functions than the CFG corresponding to our
translation. If, however, the input program has already the optimal block-
nesting structure, we conjecture that our translation predicate validates a
minimal translation produced by state of the art construction algorithms.
For example, if the following program is provided to our framework, the
translation predicate admits the result of the standard SSA-construction
algorithm.

1 fun f () =
2 fun g () = x in
3 g () in
4 let x = 3 in
5 f ()

We discuss an extension of our framework that would allow alterations to
the block structure in Section 10.1.6.

7.3 Functional Coherence Translation

In this section, we discuss how an IL/F program can be transformed to an
equivalent, coherent program. We will also refer to this translation as es-
tablishing functional coherence. As we have seen in Figure 6.1, a simple
method to establish coherence for a functional program is α-renaming the
program apart. The properties of α-conversion ensure semantic equiva-
lence. This method, however, introduces a different variable for each defi-
nition.

55

Transformations

In the following we present the notion of local injectivity, which charac-
terizes α-renamings that can drastically reduce the number of variables and
at the same time establish coherence. Local injectivity will justify renaming
the left program below to the right program below. As Appel [6] noted, List-

Listing (7.6): Program A

1 x = 7;
2 fun f () = z
3 in y = 5; f ()

Listing (7.7): Program B

1 x = 7;
2 fun f () = z
3 in x = 5; f ()

ing 7.7 can be seen as the register allocated version of Listing 7.6. We use
local injectivity to provide correctness conditions for register assignment.
The decidability result for local injectivity provides the basis for a transla-
tion validation framework for the register assignment phase of SSA-based
register allocation [27].

7.3.1 Renaming

A renaming is a function ρ : V → V that maps variables to variables. We
implicitly assume a renaming operator and write ρs for the program ob-
tained from s by renaming all (including bound) variables according to ρ.
If s is renamed apart, then for every α-equivalent program s′ there is a re-
naming ρ such that s′ can be obtained from s via renaming: ρ s = s′. For
example, Listing 7.7 can be obtained from Listing 7.6 via ρ = {y , x}. We
say ρ contracts x, y to x. Note that we define a renaming, we write the
mappings that are different from the identity.

If a renaming contracts too many variables (or renames free variables),
the renaming will not yield an α-equivalent program. For example, renam-
ing Listing 7.6 with {y , x, z , x} yields a semantically different program.
If a program is not renamed apart, not every α-equivalent program can be
obtained via a renaming, e.g. Listing 7.6 cannot be obtained from Listing 7.7
via a renaming as there is no way to assign different variables to the two
binding occurrences of x.

7.3.2 Local Injectivity

We are now interested in conditions that ensure a renaming respects α-
conversion and yields a coherent program. Such a renaming can be used to
establish functional coherence.

If a renaming ρ is injective, it cannot contract variables. Such a renam-
ing yields an α-equivalent program and preserves coherence. If the goal is
to minimize the number of names, however, the injectivity condition must
be relaxed. A renaming will respect α-conversion and produce a coherent

56

Transformations

program if it does not contract any two relevant variables at any point in the
program. Relevance is a semantic notion, and we resort to a construction
similar to liveness from Chapter 5 to over-approximate the set of relevant
variables. We build this over-approximation into our notion of local injec-
tivity, together with the appropriate injectivity conditions. Local injectivity
is defined as a predicate of the following form:

Λ | Γ ` injρ s

Λ : L⇀ setV globals mapping
Γ : setV live variables
ρ : V → V renaming
s : Exp expression

The predicate Λ | Γ ` injρ s should be read as follows:

The renaming ρ is locally injective for the program s given the live-
ness assumptions Λ and Γ .

7.3.3 Rules

The rules defining the predicate are given in Figure 7.6. We use the following
notation for injectivity:

f � Γ :⇐⇒ ∀xy ∈ Γ , f x = f y =⇒ x = y

The rules are extensions of the rules for liveness from Section 5.2 with
additional injectivity requirements. Every rule requires ρ� Γ , ensuring

Λ | Γ ` injρ s =⇒ ρ� Γ

This means that the renaming must be injective on every set of live vari-
ables occurring in the derivation. The rule Inj-Op deals with variable def-
initions. The renaming must be injective on the set containing x and the
live variables of the continuation s. Example 9 below shows why including
x is critical even if x is never used in s. The rules Inj-Cond, Inj-Val and
Inj-App correspond to the liveness rules from Section 5.2, each with the
additional injectivity requirement. Inj-Fun deals with function definitions.
The premises are, again, the same as for Live-Fun, with the addition of in-
jectivity requirements. The important requirement here is that ρ is injective
on the set containing both the variables live in the function body and the
parameters. We explain the reason in Example 10.

Example 9 The rule Inj-Op requires ρ� Γ ′∪{x}. To see why this is impor-
tant, consider the following program:

1 let x = z in y

Obviously x is not relevant for y . If we would not require ρ� Γ ′∪{x}, then
ρ = {x, y} would be locally injective for the above program, yielding

57

Transformations

1 let y = z in y

which clearly is a different program.

Example 10 The rule Inj-Fun requires ρ � Γf ∪ x. To see why this is im-
portant, consider the following program:

1 fun f x = y
2 in f z

Obviously, x is not relevant for f . If we would not require ρ� Γf ∪ x, then
ρ = {x, y} would be locally injective for the above program, yielding

1 fun f y = y
2 in f z

which is clearly a different program.

Figure 7.6: Local Injectivity

V (e) ⊆ Γ
Γ ′ \ {x} ⊆ Γ

ρ� Γ
ρ� Γ ′ ∪ {x} Λ | Γ ′ ` injρ s

Inj-Op
Λ | Γ ` injρ let x = e in s

{x} ∪ Γ ′ ∪ Γ ′′ ⊆ Γ ρ� Γ

Λ | Γ ′ ` injρ s

Λ | Γ ′′ ` injρ t
Inj-Cond

Λ | Γ ` injρ if x then s else t

x ∈ Γ ρ� Γ
Inj-Val

Λ | Γ ` injρ x

y ∪ Γf ⊆ Γ ρ� Γ
Inj-App

Λ, f : Γf ,Λ′ | Γ ` injρ f y

Γ ′ ⊆ Γ
Γf ⊆ Γ \ x

ρ� Γ
ρ� Γf ∪ x

Λ, f : Γf | Γf ∪ x ` injρ s

Λ, f : Γf | Γ ′ ` injρ t
Inj-Fun

Λ | Γ ` injρ fun f x = s in t

58

Transformations

7.3.4 Decidability

Local injectivity is decidable as there is only a finite number of choices for
Γf in Inj-Fun. The following lemma yields a decision procedure.

Theorem 16 (Local Injectivity is Decidable) For all Λ, Γ , ρ, and s, Λ | Γ `
injρ s is decidable.

7.3.5 Properties of Locally Injective Renamings

The two key properties of locally injective renamings are that they respect
α-conversion and establish coherence. We first prove that local injectivity
is sufficient to guarantee coherence of the renamed program. To state the
result some definitions are required. VB(s) denotes the set of variables that
occurs in a binding position in s. The following notation for a context Λ and
a set U expresses that every set in Λ is bounded by U :

Λ ⊆ U :⇐⇒ ∀f ∈ domΛ, Λ f ⊆ U

We are now ready to state the theorem:

Theorem 17 For all well-formed, renamed-apart programs s and sets of
variables U such that VB(s)∩U = �,

Λ ⊆ U =⇒ Λ | Γ ` injρ s =⇒ ρ bΛcΓ | ρ Γ ` coh ρ s

The theorem requires a renamed-apart program s, and that none of the
globals recorded in Λ occur in binding positions in s. This condition holds
without further ado when descending into a renamed apart program s. The
conclusion of the theorem states that the renamed program ρs is coherent
under the available variables ρ Γ , i.e. the point-wise renaming of Γ according
to ρ. The assumptions in the coherence predicate are ρbΛcΓ . bΛcΓ restricts
Λ to functions with available closures, see Section 6.1. This is necessary
because renaming may have caused some closures to become unavailable,
as we explain in Example 11. The restricted context is then translated by ρ
in the obvious, point-wise manner.

Example 11 Consider the following program, for which ρ = {y , x} is
locally injective.

1 let x = 7 in
2 fun f () = x in
3 let y = 5 in
4 y

Renaming with ρ yields the following program:

1 let x = 7 in
2 fun f () = x in
3 let x = 5 in
4 x

59

Transformations

The renaming made f unavailable in line 4 of the latter program, and this is
the reason why the restriction operator appears in the conclusion of Theo-
rem 17.

The proof of Theorem 17 requires a monotonicity property of coherence
which is interesting in its own right. To state monotonicity, we require the
notion of approximation on partial functions (and, by abuse of notation, on
contexts): A function f approximates g if f agrees with g on dom f :

f � g :⇐⇒ ∀x ∈ dom f , f x = g x

Coherence is monotonic in in the following way: The set of available vari-
ables may always be increased. Additional functions may always be added
to the set of available functions Λ. The globals of the functions in Λ, how-
ever, must not be changed. In fact, any set of globals in Λ can be replaced
by a smaller set, but we do not prove this property.

Lemma 7 (Monotonicity of Coherence) For all programs s, contexts Λ,Λ′

and sets of variables Γ , Γ ′

Λ | Γ ` coh s =⇒ Λ � Λ′ =⇒ Γ ⊆ Γ ′ =⇒ Λ′ | Γ ′ ` coh s

The second property of locally injective renamings is that they respect
α-conversion. This property is important, because it shows that locally
injective renamings preserve the semantics of the program.

Theorem 18 For all well-formed and renamed-apart programs s,

Λ | Γ ` injρ s =⇒ ρ s ∼α s

7.3.6 Translation Validation: Register Assignment

The results from this section can be combined to obtain a translation val-
idation framework for register assignment. The approach fits best with
SSA-based register allocation approaches such as [27]. Register assignment
can be seen as renaming with a locally injective renaming. A locally injec-
tive renaming is an α-renaming that establishes coherence. In this sense,
register assignment is a transformation that accomplishes the translation
from an IL/I program to an IL/F program: Since the renamed program is
coherent it already is an IL/I program.

Determining the register assignment is usually done heuristically in pro-
duction compilers. We think that heuristic parts of a compiler should be
exchangeable without redoing correctness proofs. This provides flexibility
to compiler implementers and researchers when integrating or developing
new algorithms. The result of the heuristic is hence translation validated.
Our framework renames the program apart and passes it to an external al-
gorithm that computes a register assignment. The external algorithm can

60

Transformations

pass all required information to our framework in the form of a renam-
ing ρ. Theorem 16 provides the procedure for deciding whether ρ is locally
injective. Correctness follows from two facts. First, the renamed program
is an α-equivalent program by Theorem 18, hence semantically equivalent.
Second, the renamed program is coherent by Theorem 17, an hence can also
be viewed as an IL/I program.

In the compiler construction setting, register assignment is tightly con-
nected to a live variables analysis. This connection becomes very explicit in
our correctness analysis. The rules in Figure 7.6 are essentially the rules for
liveness from Figure 5.1, extended with appropriate injectivity conditions.
Despite the fact that liveness is an inherently imperative notion, the register
assignment transformation is verified with respect to the functional seman-
tics. The connection to the imperative semantics is only through coherence.
This means that in our framework, register allocation is a functional trans-
formation, not an imperative one.

Section 5.3 explains that true liveness is a sharper notion of liveness.
Nevertheless, true liveness does not allow better register allocations than
liveness alone. The additional injectivity condition requiring ρ � Γ ∪ x
in the rule Inj-Fun annihilates the advantage. The condition requires the
renaming to be injective on all parameters, even if true liveness asserts that
certain parameters are not live. This is important to obtain an α-equivalent
program for a reason discussed in Example 9. However, true liveness can
be used to perform a dead variable elimination before register assignment.
In this way, a more efficient register assignment may be possible.

61

8 Formal Development

In this section, we give an overview of the development. We highlight as-
pects that worked well and report the size of the different modules. The
source code of the formal development is available at

http://www.ps.uni-saarland.de/~sdschn/master

Some of parts of the development infrastructure are taken from a recent
research immersion lab [58].

8.1 Infrastructure

We use the extractable set library by Lescuyer [42]. Building on it, we formal-
ize basic notions such as injectivity and agreement of functions, together
with some decidability results in the module Constr. To obtain the deci-
sion procedures described in the previous chapters, decidability results are
paired with extractable decision procedures. Many definitions in this part
of the development are parametrized by the equivalences on all involved
types. This requires setoid rewriting [60] and increases proof detail.

The module Infra in the development provides infrastructure such as
an option monad [3], basic facts about lists, and a type class for decidable
propositions. Both modules are rather extensive, and we feel most of the
theorems should be provided by a generic library.

Figure 8.1: Infrastructure: Lines of Code in Specification, Proof and Com-
ments. Number of Lemmas and Definitions.

File Spec Proof Comments Lemmas Definitions
Infra 980 580 111 160 38
Constr 1213 907 239 225 14∑

2193 1487 350 385 52

8.1.1 Decidable Propositions

We use a type class for decidable propositions. The type class initially de-
veloped in a recent research immersion lab [58] by Steven Schäfer. The type

63

http://www.ps.uni-saarland.de/~sdschn/master

Formal Development

class allows us to apply compute_prop to any proposition, and have Coq
infer the decision procedure if it is available as instance of Computable.

1 Class Decidable (P : Prop) := decide : { P } + { ∼P }.

As part of the infrastructure, we have to prove some simple statements
about decidability. Suppose we want to show that a predicate P : X → Prop
is decidable. If the decision procedure is simple, it can directly be given
as a function of type ∀(x : X), {Px} + {¬Px}. If the decision procedure is
more complex, in particular, if the usually inductive correctness argument
requires a stronger invariant than {Px}+{¬Px}, then the following strategy
worked well for us.

We first define a decision procedure dec′ : X → bool which decides the
proposition and is suitable for extraction. We then relate the decision pro-
cedure to P by proving

∀(x : X),dec′x = true ⇐⇒ Px

The proof of this theorem may involve a strengthened induction hypothesis.
Finally, we use dec′ to define dec : ∀(x : X), {Px} + {¬Px} by starting with
a case distinction on dec x. Using an inline hint, extraction of dec will then
reduce to dec′.

8.2 Formalizing IL

We formalize IL as a language with explicit names for variables, and a De-
Bruijn-style discipline for labels. The main part of the development factors
out the language of simple expressions. The idea is that the simple expres-
sions can be instantiated with different expression languages. An instruc-
tion set architecture (ISA) can then be integrated as a special expression
language. In our development, we fixed the expression language, but use
only basic properties of it. We expect our development to scale without
effort to any pure expression language.

Figure 8.2: Expression Language: Lines of Code in Specification, Proof and
Comments. Number of Lemmas and Definitions.

File Spec Proof Comments Lemmas Definitions
Val.v 24 0 6 3 5
Exp.v 74 78 9 19 9∑

98 78 15 22 14

Figure 8.3 gives an overview of the files used for the formalization of
the language IL and the dual semantics. The file ILN.v contains proofs that
our context-based semantics coincides with a standard semantics. The file
Sim.v contains the formalization of deterministic reduction systems and
the proof that the instantiation for IL/F yields a congruence.

64

Formal Development

Figure 8.3: IL: Lines of Code in Specification, Proof and Comments. Number
of Lemmas and Definitions.

File Spec Proof Comments Lemmas Definitions
IL.v 233 37 19 8 17
Var.v 70 17 14 13 12
Env.v 4 0 8 0 2
ILN.v 186 147 7 12 20
Sim.v 168 407 25 39 8∑

661 608 73 72 59

8.3 Coherence

The main theorems from Chapter 6 are developed in the files shown in Fig-
ure 8.4. The definition of coherence is in Coherence.v together with its
simulation result. The file ILIToILF.v contains the formalization of the
imperative coherence translation from Section 7.1. α-equivalence is devel-
oped in the file Alpha.v, and theorems about renaming are in Rename.v.
The theorems about functional coherence construction from Section 7.3 are
in RegAlloc.v. The translation validators described in Section 7.2 and Sec-
tion 7.3.6 are in Compiler.v.

ParallelMove.v contains a translation validation algorithm for parallel
move lowering and was developed by Tobias Tebbi in a previous research
immersion lab [58].

Figure 8.4: Coherence: Lines of Code in Specification, Proof and Comments.
Number of Lemmas and Definitions.

File Spec Proof Comments Lemmas Definitions
ILRaise.v 24 27 7 5 0
ILTypes.v 168 123 17 23 18
Compiler.v 44 35 3 2 2
ParamsMatch.v 109 38 22 12 8
Alpha.v 93 177 3 13 4
Liveness.v 201 276 15 20 16
ILIToILF.v 84 117 13 8 3
EnvTy.v 51 48 9 19 5
Coherence.v 287 373 21 35 14
ParallelMove.v 132 88 6 8 8
Fresh.v 35 70 3 8 3
RenameApart.v 65 225 22 10 1
RegAlloc.v 109 171 26 14 7∑

1402 1768 167 177 89

65

9 Related Work

9.1 Static Single Assignment Form

Static single assignment form is the culmination point of a line of research
in data-flow analysis. The key contributions seem to be by Rosen, Weg-
man, and Zadeck [55] and Alpern, Wegman, and Zadeck [5]. The standard
reference for SSA-form seems to be Cytron et al. [20], which contains an ef-
ficient SSA-construction algorithm. An alternative construction algorithm
is given by Braun et al. [13]. SSA form was originally invented to lower the
complexity of reaching definition analysis [1]: In an imperative program,
the reaching definition relation is potentially quadratic in the program size
(assuming only one register, every definition could reach every use). If ev-
ery variable has at most one definition, the relation is trivially linear in the
program size. Zadeck [64] gave a talk about the origin of SSA form.

The correspondence between SSA form and functional programming
is due to Appel [7] and Kelsey [36]. Later Chakravarty, Keller, and Zadar-
nowski [15] investigated SSA optimizations on functional programs.

Typical SSA optimizations include global value numbering (GVN) [55],
sparse conditional constant propagation [63], and partial redundancy elim-
ination [62].

9.2 SSA and Functional Programming

Continuation Passing Style (CPS) has played a fundamental role for both
practical compilation and programming languages research in general. We
refer the reader to Reynolds [53] who accounts for the numerous discover-
ies of continuations in literature. The first-order restriction of our language
does not allow CPS-style programs.

CPS has been used in the compilation of functional languages [6]. The
transformation to CPS produces a large number of λ-expressions. Danvy
and Filinski [22] single out administrative λ-expressions and devise a re-
stricted form of β-reduction to eliminate them. Sabry and Felleisen [56]
prove the resulting reduction system confluent and terminating, a result
which gives rise to administrative normal form (ANF). Flanagan et al. [24]

67

Related Work

show that ANF form can be constructed directly from a functional source
language without applying a CPS transformation first.

Our intermediate language is in administrative normal form, and in par-
ticular, IL/F is a sub-language of the ANF language presented in Chakravar-
ty, Keller, and Zadarnowski [15].

Kelsey [36] seems to be the first to translate SSA programs to CPS pro-
grams, although Kelsey states the correspondence had been noted by oth-
ers [6, 47]. Chakravarty, Keller, and Zadarnowski [15] translates SSA to ANF
and reformulate the SSA-based sparse conditional constant propagation op-
timization [63] on their functional ANF language.

9.3 Control Flow and Recursive Functions

The control-flow graph (CFG) as a means to analyze the structure of imper-
ative programs is due to Allen [4]. Prosser [52] used Boolean connectivity
matrices to represent control flow before Allan. Allen [4] also classified flow
graphs as either reducible or irreducible. Hecht and Ullman [30] found a
second characterization of reducibility and showed that structured control
flow always yields a reducible control-flow graph, while unstructured con-
trol flow may yield an irreducible control-flow graph. Hecht and Ullman
[29] compiled a list of alternative characterizations of reducibility.

From the translations given by Kelsey [36] and Chakravarty, Keller, and
Zadarnowski [15], it is clear that unstructured control flow can be expressed
via mutually recursive functions. It seems to be generally acknowledged
that reducible control flow can be directly represented without mutual re-
cursion. However, we have not found a reference that definitely asserts this
claim.

The origins of analyses on CFGs such as reaching definitions and live
variables seems to be difficult to attribute. Hecht [28] wrote in 1977 that
the definitions appear in a large number of papers. According to Seidl, Wil-
helm, and Hack [57], the notion of true liveness originates from Giegerich,
Möncke, and Wilhelm [25].

9.4 Verified Compilers for C-like languages

Two major verification projects for compilers of C-like languages exist.
CompCert [3] is a verified compiler for a realistic subset of the C language.
Even non-optimizing translation passes were difficult to verify [40]. For this
reason, CompCert follows a conservative design without SSA form, which
includes constant propagation, local common sub-expression elimination,
and register allocation as central optimizations. Leroy [38] notes that SSA
form was originally not integrated into CompCert because it is not obvi-
ous to formalize. Advanced, SSA-based optimizations for CompCert are

68

Related Work

available via the CompCertSSA project [10, 26], but they have not been rein-
tegrated into main-line CompCert. A formalization of the semantics of the
C language can be found in Norrish [46].

The VeLLVM Project [67] is an ongoing effort to verify the produc-
tion compiler LLVM [19] including its advanced, production-grade optimiza-
tions. The VeLLVM project has recently completed all steps [66, 68, 65] to
verify the standard SSA-construction algorithm [20]. The intermediate lan-
guage of LLVM is an imperative intermediate language with φ-functions to
enable SSA form [66].

9.5 Related Work for Bisimulations

Alternative characterizations of program equivalence for the purpose of
proof are standard in the literature: Logical relations [49] and bisimula-
tions are the most prominent examples. Pitts [50] gives an introduction
how to show that the bisimulation characterization coincides with contex-
tual equivalence based on Howe’s method [31, 32] for the simply-typed λ-
calculus. Howe’s method is a robust proof method developed for higher-
order functional languages. Recently, Hur et al. [33] have presented a hy-
brid approach of bisimulations and logical relations. Bisimulations are used
heavily for model checking [8].

Our first-order setting simplifies proving the congruence property of
our simulation and none of the advanced methods are required. In fact
our bisimulation does not even have to be applicative in Howe’s sense, as
equality only arises on base types.

Simulations have been used for proving semantic preservation in the
CompCert project [38]. There are two main differences: On one hand, we
prove that our bisimulation characterization is a congruence (in fact it co-
incides with contextual equivalence). On the other hand, CompCert has
richer observable behavior, as it includes the ordered list of externally vis-
ible events the program produces. Our Theorem 1 shows that our bisimu-
lation fully characterizes observational equivalence. CompCert only shows
the equivalent of the right-to-left direction of Theorem 1.

9.6 Research Compilers with Functional Intermediate
Languages

Many recent research compilers already employ essentially functional inter-
mediate languages. Compilers often strive to normalize the source program
as aggressively as possible. Functional languages aid this process because
syntactically equivalent fragments usually have the same meaning. John-
son and Mycroft [34] use this idea to do code minimization on a program

69

Related Work

representation they call value state dependence graph, which is essentially
a functional intermediate language. Tate et al. [61] introduce the program
expression graph (PEG), an aggressively normalizing, graph-based program
representation that can accommodate alternative representations for ev-
ery node. Optimization is then performed by selecting the most beneficial
representative for each node. The lazy functional semantics of PEGs is es-
pecially beneficial for the justification of aggressive loop optimizations that
would be hard to argue correct using an imperative semantics. libFirm [2]
is a research compiler that uses an essentially functional intermediate rep-
resentation and exploits properties for optimizations.

An important idea in compiler construction are sea-of-nodes interme-
diate representations put forward by Click and Cooper [16] and Click and
Paleczny [17]. The key idea of the sea-of-nodes approach is to represent
the program as a graph with a fully compositional notion of program equiv-
alence. Many optimizations are characterized by equivalence respecting
rewriting operations, hence to establish correctness for an optimizations,
it suffices to argue locally that the transformation is semantics preserving.
The research compilers mentioned before [34, 61, 2], and the production-
grade Java HotSpot VM [48] build to different degrees on the sea-of-nodes
idea.

9.7 Languages with Dual Interpretation

Kelsey and Hudak [37] constructed a compiler with a single intermediate
language that consists of both, functional and imperative features. To pro-
duce an assembly program, the intermediate language is transformed to a
subset of the language that corresponds to assembly, and this subset has a
dual semantics, in particular, variables can be seen as either functional vari-
ables or as registers. We take up this idea, and give a mechanized treatment
of the approach.

Beringer, MacKenzie, and Stark [12] used a language with a functional
and imperative interpretation for proof carrying code. They give a suffi-
cient condition for the two semantics to coincide which they call Grail nor-
mal form. Their notion requires functions to not use the closure at all, i.e. a
function must only depend on its parameters. This makes the notion signifi-
cantly weaker than ours. The requirement that a function must only depend
on its parameters corresponds to maximal insertion of φ-functions, which
is not suitable for SSA construction. The relation of register assignment to
α-equivalence is not explored.

70

Related Work

9.8 Translation Validation

An important concept in compiler verification is translation validation [51].
In translation validation, not the translation itself is verified, but a (usually
simpler) validator that decides after the fact whether the translation was
sound. An explanation of the significance of translation validation for com-
piler verification has been given by Leroy [40].

Our approach is based on translation validation: Our correctness criteria
rely on external information, which we validate using a verified validator to
ensure correctness. For example, in Section 7.3.6, we gave a translation
realizing register assignment. This translation depended on a renaming
which represented the register assignment. The renaming must be locally
injective for the register allocation to be correct, and we use translation
validation to ensure that the renaming is locally injective.

9.9 Register Transfer Languages

A definition of the term register transfer (RT) can be found in Bell and
Newell [11], which use register transfers as a means to describe hardware
components more abstractly. Davidson and Fraser [23] use register trans-
fers as unified way to ascribe semantics to assembly instructions from dif-
ferent instruction sets. More recently, the term register transfer language
(RTL) seems to be used for a language where (a) there are global names for
each address (b) addresses cannot be generated programmatically (c) ad-
dresses hold a scalar value (not a compound value) . The languages may
have other features, like function calls and allocatable memory, as well. Ex-
amples for the use of the term RTL in this way are Leroy [39] and the GCC
project [18].

9.10 Register Allocation

SSA-based register allocation [27] consists of three phases. The first phase
is called spilling and ensures that at no point more than a fixed number of
registers are required by inserting loads and stores to the memory. The sec-
ond phase is register assignment. Register assignment assigns each pseudo-
register a machine register. After the spilling phase this is always possible.
The third phase is called coalescing. In an SSA-based setting, φ-nodes, or
in our case, function arguments have to be implemented via parallel assign-
ments. Coalescing tries to reassign registers to minimize the number of
required assignments. Our framework supports register assignment. An
external program could pass the result of register allocation including coa-
lescing as renaming, hence the only missing phase is spilling.

71

10 Conclusion

An intermediate language for the back-end of a compiler was presented.
The dual interpretation of the intermediate language makes it fit for two
purposes: The imperative interpretation provides a low-level language use-
ful for the later stages of code generation towards a (virtual) machine. The
language has enough structure to represent all important back-end compi-
lation decisions, such as code scheduling [1] and register allocation. The
functional interpretation is a first-order language in administrative normal
form with a tail-call restriction. Program equivalence on IL/F is fully com-
positional. The language can serve as an entry point for the translation to a
more expressive functional intermediate language. Integration is simple if
the richer language contains IL/F as a fragment. The richer language could,
for example, include higher-order features or lift the tail-call restriction to
allow inter-procedural optimizations.

The central notion in our analysis of IL/I and IL/F is coherence. Co-
herence identifies programs that mean the same in both interpretations,
i.e. programs that can be interpreted as either low-level programs working
on an imperative machine, or as programs in a pure, first-order functional
language. Coherence formed the basis for the correctness criteria of the
translation between the two interpretations. Verified translation validators
were implemented for both translations. The approach with a dual inter-
pretation has proved effective for the translation between imperative and
functional languages. The approach also lead to the notion of coherence,
which provides a novel, more general characterization of the SSA-invariant.

From a practical perspective, the translations between the two interpre-
tations can be understood as well known transformations from compiler
construction. Making an IL/I program coherent can be seen as a form of SSA
construction where the block structure must remain unchanged. The trans-
formation that makes IL/F programs coherent realizes register assignment.
Our proofs show that the translation is minimally invasive in the sense that
even errors are preserved. In our setup, SSA construction and register as-
signment are the gateway transformations between the functional and the
imperative world. Their correctness criteria were derived from first prin-
ciples. At the moment SSA construction is not allowed to alter the block
structure of the source program. On the positive side, the graph-theoretic

73

Conclusion

concept of dominance usually used in SSA literature [20] was not required.
The formalization of the intermediate language together with the cor-

rectness proofs was done using the proof assistant Coq and is completely
constructive: No axioms were used. All transformations and translation
validators are extractable to executable code. The formal development is
available at http://www.ps.uni-saarland.de/~sdschn/master.

10.1 Limitations and Future Work

The language IL presented in this thesis is designed in such a way that its
two interpretations IL/I and IL/F exactly correspond to each other. This
idealization results in a loss of expressivity. IL is missing features that are
required for realistic compilation. This section discusses limitations and
directions for future work.

10.1.1 Observable Events

Deterministic reduction systems were used to obtain a proof technique for
program equivalence. Deterministic reduction systems relied on a notion of
observations, however, we only allowed observations to be made about nor-
mal programs, i.e. programs that do not reduce any more. This restricts the
equivalence to be sensitive to error and result values, but explicitly excludes
observations occurring during reduction, such as external events like sys-
tem calls, for example. In particular, all diverging programs are regarded as
equivalent.

Future work is to integrate observable events during reduction into IL,
for example, to accommodate system calls. If DRS would allow observations
about intermediate states, DRS could potentially account for events. The
effects of introducing events on contextual equivalence would have to be
investigated.

10.1.2 Higher-Order Coherence

A possible extension is to include higher-order functions and try to recover
a notion of coherence. Since in the presence of higher-order functions, so-
phisticated control flow structure can be encoded in CPS-style, it seems
likely that not all programs can be made coherent. This means that on the
imperative side, a mechanism that allows to implement the closures of se-
lected functions must be present. An alternative would be to forbid control
flow structures that cannot be realized without closures via appropriate
conditions. However, it is not clear what such conditions would be, and
whether the resulting fragment is practically useful. Introducing higher-
order functions would require changes in the setup of the language. The

74

http://www.ps.uni-saarland.de/~sdschn/master

Conclusion

distinction between variables and labels would have to be removed.

10.1.3 Function Calls

Another possible extension is a syntactic form let x = f (x) in s which lifts
the tail-call restriction. A stack discipline must then be added to both IL/F
and IL/I to account for function application. The immediate benefit is that
inter-procedural optimizations are enabled instantly. However, the notion
of coherence must be adapted to the new language feature. It is also unclear
whether IL/I with a stack discipline makes sense as a machine model.

10.1.4 Dynamic Memory Allocation

A key feature left out in our treatment is dynamically allocatable memory.
At the moment, IL cannot represent programs that use dynamic memory
allocation. Jung [35] explored an extension of IL/F to treat dynamic memory
allocation.

10.1.5 Register Allocation

To complete verification of a register allocator, the spilling phase needs
to be verified. The open question is how a translation validation based
implementation of spilling would have to be designed. The key ingredient
is a generic correctness criterion that allows the unverified spiller maximal
flexibility. This extension can only be effectively verified in the presence of
a robust and efficient framework for allocatable memory.

10.1.6 Irreducible Control Flow via Mutual Recursion

An interesting extension of the language are mutually recursive definitions.
For this purpose the syntax would have to allow function definitions of the
form

fun f x = s in t

where each fi can call any fj . This new language can directly represent
irreducible control flow, and does not have to encode it. This is important
from a compiler construction perspective because translating irreducible
control flow to reducible control flow may increase the size of the program
exponentially [14].

The extended language would allow the imperative coherence transfor-
mation to alter the block structure of the IL/I program, as discussed in
Section 7.2.4. This could lead to a formal investigation of more restricted
versions of SSA form that limit the number of φ-functions, such as minimal
SSA form [21, 13].

75

Conclusion

It could be interesting to give a formal account of reducible control flow
and show that it can be expressed without mutual recursion and without
exponential increase of the program size.

10.1.7 Liveness

Liveness conditions are a reoccurring theme in the transformations pre-
sented in this thesis. From the Coq engineering standpoint, it would be
interesting to find a efficient way to extract the liveness conditions from
the correctness conditions for the transformations. Such a division could
improve modularity of the development.

10.1.8 Optimizations

IL is a step towards the integration of advanced optimizations. To evalu-
ate our initial assumption that functional intermediate languages are well
suited for compiler optimizations, some exemplary optimizations would
have to be implemented. The next step would be to define a suitable exten-
sion of IL/F to at least validate the β-rule. However, it is not clear how to set
up correctness proofs for optimizations most flexibly. Ideally, the correct-
ness arguments should be as generic as possible to ensure they are tolerant
against minor modifications in the optimizations. In the best-case scenario,
a generic correctness argument can be used to justify several optimizations.

76

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006 (cit. on pp. 12, 13, 21, 32, 67,
73).

[2] Gerhard Goos et al. libFirm. 2012. url: http://pp.ipd.kit.edu/firm/
(cit. on pp. 1, 70).

[3] Xavier Leroy et al. CompCert. 2012. url: http://compcert.inria.fr/ (cit.
on pp. 63, 68).

[4] Frances E. Allen. “Control flow analysis”. In: SIGPLAN Notices 5.7 (July 1970),
pp. 1–19 (cit. on pp. 5, 68).

[5] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. “Detecting Equality
of Variables in Programs”. In: Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages. San Diego, CA, USA,
Jan. 10–13, 1988, pp. 1–11 (cit. on pp. 1, 7, 67).

[6] Andrew W. Appel. Compiling with Continuations. Cambridge, England: Cam-
bridge University Press, 1992 (cit. on pp. 11, 56, 67, 68).

[7] Andrew W. Appel. “SSA is Functional Programming”. In: SIGPLAN Notices
33.4 (Apr. 1998), pp. 17–20 (cit. on pp. 1, 8, 9, 67).

[8] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. Repre-
sentation and Mind Series. Cambridge, MA, USA: The MIT Press, 2008 (cit. on
pp. 25, 69).

[9] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics. Revised.
Vol. 103. Studies in Logic and the Foundations of Mathematics. Amsterdam,
The Netherlands: North Holland, 1984 (cit. on p. 12).

[10] Gilles Barthe, Delphine Demange, and David Pichardie. “A Formally Veri-
fied SSA-Based Middle-End - Static Single Assignment Meets CompCert”. In:
Programming Languages and Systems - 21st European Symposium on Pro-
gramming. Vol. 7211. Lecture Notes in Computer Science. Tallinn, Estonia,
Mar. 24–Apr. 1, 2012, pp. 47–66 (cit. on pp. 1, 69).

[11] C. Gordon Bell and Allen Newell. Computer Structures: Readings and Exam-
ples. McGraw-Hill Computer Science Series. New York, NY, USA: McGraw-Hill,
1971 (cit. on p. 71).

77

http://pp.ipd.kit.edu/firm/
http://compcert.inria.fr/

Bibliography

[12] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. “Grail: a Functional
Form for Imperative Mobile Code”. In: Electr. Notes Theor. Comput. Sci. 85.1
(2003), pp. 3–23 (cit. on pp. 1, 10, 70).

[13] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Chris-
toph Mallon, and Andreas Zwinkau. “Simple and Efficient Construction of
Static Single Assignment Form”. In: Compiler Construction - 22nd Interna-
tional Conference. Proceedings. Vol. 7791. Lecture Notes in Computer Sci-
ence. Rome, Italy, Mar. 16–24, 2013, pp. 102–122 (cit. on pp. 7, 67, 75).

[14] Larry Carter, Jeanne Ferrante, and Clark Thomborson. “Folklore confirmed:
reducible flow graphs are exponentially larger”. In: Conference Record of
POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. New Orleans, LA, USA, Jan. 15–17, 2003, pp. 106–114 (cit.
on p. 75).

[15] Manuel M. T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski. “A Func-
tional Perspective on SSA Optimisation Algorithms”. In: Electr. Notes Theor.
Comput. Sci. 82.2 (2003), pp. 347–361 (cit. on pp. 1, 9, 12, 67, 68).

[16] Cliff Click and Keith D. Cooper. “Combining Analyses, Combining Optimiza-
tions”. In: ACM Trans. Program. Lang. Syst. 17.2 (1995), pp. 181–196 (cit. on
p. 70).

[17] Cliff Click and Michael Paleczny. “A Simple Graph-Based Intermediate Repre-
sentation”. In: Papers from the 1995 ACM SIGPLAN Workshop on Intermedi-
ate Representations. San Francisco, CA, USA, Jan. 22, 1995, pp. 35–49 (cit. on
p. 70).

[18] GCC Contributors. GCC Documentation. 2013. url: http://gcc.gnu.org/
onlinedocs/ (cit. on p. 71).

[19] LLVM Contributors. LLVM. 2012. url: http://llvm.org/ (cit. on p. 69).

[20] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. “An Efficient Method of Computing Static Single Assignment
Form”. In: Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages. Austin, Texas, USA, Jan. 11–13, 1989,
pp. 25–35 (cit. on pp. 11, 54, 67, 69, 74).

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. “Efficiently computing static single assignment form and the
control dependence graph”. In: TOPLAS 13.4 (Oct. 1991), pp. 451–490 (cit.
on pp. 7, 75).

[22] Olivier Danvy and Andrzej Filinski. “Representing Control: A Study of the
CPS Transformation”. In: Mathematical Structures in Computer Science 2.4
(1992), pp. 361–391 (cit. on p. 67).

[23] Jack W. Davidson and Christopher W. Fraser. “The Design and Application of
a Retargetable Peephole Optimizer”. In: ACM Trans. Program. Lang. Syst. 2.2
(1980), pp. 191–202 (cit. on p. 71).

[24] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. “The
essence of compiling with continuations (with retrospective)”. In: 20 Years
of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation 1979-1999, A Selection. 2004, pp. 502–514 (cit. on pp. 9, 67).

78

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/
http://llvm.org/

Bibliography

[25] Robert Giegerich, Ulrich Möncke, and Reinhard Wilhelm. “Invariance of Ap-
proximate Semantics with Respect to Program Transformations”. In: GI -
11. Jahrestagung in Verbindung mit Third Conference of the European Co-
operation in Informatics (ECI). Proceedings. Vol. 50. Informatik-Fachberichte.
München, Germany, Oct. 20–23, 1981, pp. 1–10 (cit. on pp. 35, 68).

[26] Delphine Demange Gilles Barthe and David Pichardie. CompCertSSA. 2012.
url: http://compcertssa.gforge.inria.fr/ (cit. on p. 69).

[27] Sebastian Hack, Daniel Grund, and Gerhard Goos. “Register Allocation for
Programs in SSA-Form”. In: Compiler Construction, 15th International Con-
ference. Proceedings. Vol. 3923. Lecture Notes in Computer Science. Vienna,
Austria, Mar. 30–31, 2006, pp. 247–262 (cit. on pp. 2, 56, 60, 71).

[28] Matthew S. Hecht. Flow Analysis of Computer Programs. New York, NY, USA:
Elsevier North-Holland, Inc., 1977 (cit. on pp. 21, 32, 68).

[29] Matthew S. Hecht and Jeffrey D. Ullman. “Characterizations of Reducible
Flow Graphs”. In: J. ACM 21.3 (1974), pp. 367–375 (cit. on p. 68).

[30] Matthew S. Hecht and Jeffrey D. Ullman. “Flow Graph Reducibility”. In: Pro-
ceedings of the 4th Annual ACM Symposium on Theory of Computing. Denver,
CO, USA, May 1–3, 1972, pp. 238–250 (cit. on pp. 6, 68).

[31] Douglas J. Howe. “Equality In Lazy Computation Systems”. In: Proceedings of
the Fourth Annual Symposium on Logic in Computer Science. Pacific Grove,
CA, USA, June 5–8, 1989, pp. 198–203 (cit. on p. 69).

[32] Douglas J. Howe. “Proving Congruence of Bisimulation in Functional Pro-
gramming Languages”. In: Inf. Comput. 124.2 (1996), pp. 103–112 (cit. on
p. 69).

[33] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. “The Mar-
riage of Bisimulations and Kripke Logical Relations”. In: Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. Philadelphia, PA, USA, Jan. 22–28, 2012, pp. 59–72 (cit. on p. 69).

[34] Neil Johnson and Alan Mycroft. “Combined Code Motion and Register Allo-
cation Using the Value State Dependence Graph”. In: Compiler Construction,
12th International Conference. Proceedings. Vol. 2622. Lecture Notes in Com-
puter Science. Warsaw, Poland, Apr. 7–11, 2003, pp. 1–16 (cit. on pp. 1, 69,
70).

[35] Ralf Jung. “An Intermediate Language To Formally Justify Memory Access
Reordering”. Bachelor’s Thesis. Saarland University, 2013 (cit. on p. 75).

[36] Richard A. Kelsey. “A Correspondence Between Continuation Passing Style
and Static Single Assignment Form”. In: SIGPLAN Notices 30.3 (Mar. 1995),
pp. 13–22 (cit. on pp. 1, 8–10, 67, 68).

[37] Richard Kelsey and Paul Hudak. “Realistic Compilation by Program Transfor-
mation”. In: Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages. Austin, Texas, USA, Jan. 11–13, 1989,
pp. 281–292 (cit. on pp. 1, 10, 70).

[38] Xavier Leroy. “A formally verified compiler back-end”. In: Journal of Auto-
mated Reasoning 43.4 (2009), pp. 363–446 (cit. on pp. 68, 69).

79

http://compcertssa.gforge.inria.fr/

Bibliography

[39] Xavier Leroy. “Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant”. In: 33rd ACM symposium on Principles of
Programming Languages. 2006, pp. 42–54. url: http://gallium.inria.
fr/~xleroy/publi/compiler-certif.pdf (cit. on pp. 29, 71).

[40] Xavier Leroy. “Formal verification of a realistic compiler”. In: Communica-
tions of the ACM 52.7 (2009), pp. 107–115 (cit. on pp. 68, 71).

[41] Xavier Leroy and Hervé Grall. “Coinductive Big-Step Operational Semantics”.
In: Inf. Comput. 207.2 (2009), pp. 284–304 (cit. on p. 29).

[42] Stéphane Lescuyer. Containers: a typeclass-based library of finite sets/maps.
2012. url: http://coq.inria.fr/pylons/contribs/view/Containers/
v8.4 (cit. on p. 63).

[43] Zhaohui Luo. “An Extended Calculus of Constructions”. PhD Thesis. Univer-
sity of Edinburgh, 1990 (cit. on pp. 12, 16).

[44] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. Cambridge, MA, USA: MIT Press, 1997 (cit. on p. 16).

[45] J.H. Morris. “Lambda-calculus models of programming languages”. PhD The-
sis. MIT, 1968 (cit. on p. 26).

[46] Michael Norrish. C formalised in HOL. Tech. rep. UCAM-CL-TR-453. University
of Cambridge, Computer Laboratory, Dec. 1998. url: http://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-453.pdf (cit. on p. 69).

[47] Ciaran O’Donnell. “High Level Compiling for Low Level Machines”. In: Archi-
tectures and Compilation Techniques for Fine and Medium Grain Parallelism.
Vol. A-23. IFIP Transactions. Orlando, FL, USA, Jan. 20–22, 1993, pp. 309–320
(cit. on p. 68).

[48] Michael Paleczny, Christopher Vick, and Cliff Click. “The Java HotSpot™
server compiler”. In: Symposium on Java™ Virtual Machine Research and
Technology Symposium. JVM’01. Monterey, California, 2001, pp. 1–12 (cit. on
p. 70).

[49] Andrew Pitts. In: Benjamin C. Pierce. Advanced Topics in Types and Program-
ming Languages. Cambridge, MA, USA, 2004. Chap. Typed Operational Rea-
soning (cit. on p. 69).

[50] Andrew Pitts. In: Advanced Topics in Bisimulation and Coinduction. Cam-
bridge, England, 2012. Chap. Howe’s method for higher-order languages (cit.
on p. 69).

[51] Amir Pnueli, Ofer Strichman, and Michael Siegel. “Translation Validation:
From SIGNAL to C”. In: Correct System Design. Vol. 1710. Lecture Notes in
Computer Science. 1999, pp. 231–255 (cit. on p. 71).

[52] Reese T. Prosser. “Applications of Boolean matrices to the analysis of flow
diagrams”. In: Papers presented at the eastern joint IRE-AIEE-ACM computer
conference. IRE-AIEE-ACM ’59 (Eastern). Boston, MA, USA, Dec. 1–3, 1959,
pp. 133–138 (cit. on p. 68).

[53] John C. Reynolds. “The Discoveries of Continuations”. In: Lisp and Symbolic
Computation 6.3-4 (1993), pp. 233–248 (cit. on pp. 9, 67).

80

http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://coq.inria.fr/pylons/contribs/view/Containers/v8.4
http://coq.inria.fr/pylons/contribs/view/Containers/v8.4
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf

Bibliography

[54] Laurence Rideau, Bernard Paul Serpette, and Xavier Leroy. “Tilting at wind-
mills with Coq: Formal verification of a compilation algorithm for parallel
moves”. In: Journal of Automated Reasoning 40.4 (2008), pp. 307–326. url:
http://gallium.inria.fr/~xleroy/publi/parallel-move.pdf (cit. on
p. 11).

[55] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. “Global Value
Numbers and Redundant Computations”. In: Conference Record of the Fif-
teenth Annual ACM Symposium on Principles of Programming Languages.
San Diego, CA, USA, Jan. 10–13, 1988, pp. 12–27 (cit. on pp. 1, 7, 67).

[56] Amr Sabry and Matthias Felleisen. “Reasoning about Programs in Continua-
tion-Passing Style”. In: Lisp and Symbolic Computation 6.3-4 (1993), pp. 289–
360 (cit. on pp. 9, 67).

[57] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design - Anal-
ysis and Transformation. New York, NY, USA: Springer, 2012 (cit. on pp. 32,
35, 68).

[58] Gert Smolka, Sebastian Hack, Chad E. Brown, Sigurd Schneider, Andreas Teu-
cke, Bernhard Schommer, Carsten Hornung, Sebastian Hahn, Steven Schäfer,
and Tobias Tebbi. Research Immersion Lab: Compiler Verification. 2012. url:
https://public.cdl.uni-saarland.de/redmine/projects/ril-cv-12
(cit. on pp. 23, 32, 63, 65).

[59] Harald Søndergaard and Peter Sestoft. “Referential Transparency, Definite-
ness and Unfoldability”. In: Acta Inf. 27.6 (1989), pp. 505–517 (cit. on p. 1).

[60] Matthieu Sozeau. In: The Coq Development Team. The Coq Proof Assistant:
Reference Manual. 2013. Chap. User defined equalities and relations. url:
http://coq.inria.fr/distrib/current/refman/index.html (cit. on
p. 63).

[61] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. “Equality sat-
uration: a new approach to optimization”. In: Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Sa-
vannah, GA, USA, Jan. 21–23, 2009, pp. 264–276 (cit. on pp. 1, 70).

[62] Thomas VanDrunen and Antony L. Hosking. “Value-Based Partial Redun-
dancy Elimination”. In: Compiler Construction, 13th International Conference.
Proceedings. Vol. 2985. Lecture Notes in Computer Science. Barcelona, Spain,
Mar. 29–Apr. 2, 2004, pp. 167–184 (cit. on p. 67).

[63] Mark N. Wegman and F. Kenneth Zadeck. “Constant Propagation with Condi-
tional Branches”. In: ACM Trans. Program. Lang. Syst. 13.2 (1991), pp. 181–
210 (cit. on pp. 1, 67, 68).

[64] Kenneth Zadeck. The Development of Static Single Assignment Form. Talk.
2009. url: http://www.cdl.uni-saarland.de/ssasem/ (cit. on pp. 1, 7,
67).

[65] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
“Formal verification of SSA-based optimizations for LLVM”. In: PLDI. 2013, to
appear (cit. on pp. 1, 69).

81

http://gallium.inria.fr/~xleroy/publi/parallel-move.pdf
https://public.cdl.uni-saarland.de/redmine/projects/ril-cv-12
http://coq.inria.fr/distrib/current/refman/index.html
http://www.cdl.uni-saarland.de/ssasem/

Bibliography

[66] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdance-
wic. “Formalizing the LLVM intermediate representation for verified pro-
gram transformations”. In: Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Philadelphia, PA, USA,
Jan. 22–28, 2012, pp. 427–440 (cit. on p. 69).

[67] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.
VeLLVM. 2012. url: http://www.cis.upenn.edu/~jianzhou/Vellvm/ (cit.
on p. 69).

[68] Jianzhou Zhao and Steve Zdancewic. “Mechanized Verification of Computing
Dominators for Formalizing Compilers”. In: Certified Programs and Proofs
- Second International Conference. Proceedings. Vol. 7679. Lecture Notes in
Computer Science. Kyoto, Japan, Dec. 13–15, 2012, pp. 27–42 (cit. on p. 69).

82

http://www.cis.upenn.edu/~jianzhou/Vellvm/

	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Approach
	2.1 Control Flow and Recursive Definitions
	2.2 Registers and Variables
	2.3 Static Single Assignment Form
	2.4 Functional Semantics
	2.5 Intermediate Language
	2.6 SSA Construction
	2.7 Register Allocation
	2.8 Referential Transparency

	3 IL
	3.1 Syntax of IL
	3.2 Functional Interpretation of IL: IL/F
	3.2.1 Binding
	3.2.2 Equivalence

	3.3 Imperative Interpretation of IL: IL/I
	3.3.1 Intuition
	3.3.2 Memory
	3.3.3 Reaching Definitions

	4 Program Equivalence
	4.1 Deterministic Reduction Systems
	4.1.1 Observational Equivalence
	4.1.2 Bisimilarity

	4.2 Contextual Equivalence
	4.2.1 Observational Program Equivalence
	4.2.2 Program Bisimilarity
	4.2.3 Program Bisimilarity with Different DRS

	4.3 Error

	5 Coincidence and Liveness
	5.1 Coincidence
	5.2 Liveness
	5.2.1 Rules
	5.2.2 Decidability
	5.2.3 Liveness Over-Approximates Relevance

	5.3 True Liveness
	5.3.1 Rules and Relation to Liveness
	5.3.2 Decidability
	5.3.3 True Liveness Over-Approximates Relevance

	6 Coherence
	6.1 Intuition
	6.2 Coherence Conditions
	6.2.1 Rules
	6.2.2 Decidability

	6.3 Preservation
	6.3.1 Agreement Invariant
	6.3.2 Context Coherence
	6.3.3 Preservation Theorem

	6.4 Coherence Implies Invariance

	7 Transformations
	7.1 Imperative Coherence Translation
	7.1.1 Rules
	7.1.2 Decidability
	7.1.3 Properties of the Translation

	7.2 Implementing the Translation Predicate
	7.2.1 Annotations
	7.2.2 Compilation Function
	7.2.3 Correctness Predicate
	7.2.4 Translation Validation: SSA Construction

	7.3 Functional Coherence Translation
	7.3.1 Renaming
	7.3.2 Local Injectivity
	7.3.3 Rules
	7.3.4 Decidability
	7.3.5 Properties of Locally Injective Renamings
	7.3.6 Translation Validation: Register Assignment

	8 Formal Development
	8.1 Infrastructure
	8.1.1 Decidable Propositions

	8.2 Formalizing IL
	8.3 Coherence

	9 Related Work
	9.1 Static Single Assignment Form
	9.2 SSA and Functional Programming
	9.3 Control Flow and Recursive Functions
	9.4 Verified Compilers for C-like languages
	9.5 Related Work for Bisimulations
	9.6 Research Compilers with Functional Intermediate Languages
	9.7 Languages with Dual Interpretation
	9.8 Translation Validation
	9.9 Register Transfer Languages
	9.10 Register Allocation

	10 Conclusion
	10.1 Limitations and Future Work
	10.1.1 Observable Events
	10.1.2 Higher-Order Coherence
	10.1.3 Function Calls
	10.1.4 Dynamic Memory Allocation
	10.1.5 Register Allocation
	10.1.6 Irreducible Control Flow via Mutual Recursion
	10.1.7 Liveness
	10.1.8 Optimizations

	Bibliography

