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Modal Logic with Transitive Closure: K∗

t ::= p | ¬̇t | t ∧̇ t | t ∨̇ t | ♦ρt | �ρt
ρ ::= r | r∗

Extends basic modal logic K with reflexive transitive closure
operator

Fragment of Propositional Dynamic Logic
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K∗ as Fragment of PDL

Model computation as state transition

Programs are transitions, programs are represented in the logic

Provide operators to compose new programs

; : (ιιo)(ιιo)ιιo Sequentialization

∩ : (ιιo)(ιιo)ιιo Choice
∗ : (ιιo)ιιo Iteration

? : (ιo)ιιo Test
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Small Model Property

Decidable

Not Compact: {♦r∗p, ¬̇p,�r¬̇p,�r(�r¬̇p), . . . }
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An Infinite Derivation
Problems

Split the propositional variables into two disjoint sets

Path variables denoted by V
Proper propositional variables

Definition (Extended Grammar)

s ::= ux | ♦rαx | α = ♦r∗t | rxx formula

u ::= α | t extended modal expression

t ::= p | ¬̇t | t ∧̇ t | t ∨̇ t | ♦ρt | �ρt proper modal expression

ρ ::= r | r∗
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A tableau system

T¬̇
(¬̇p)x, px

T∧̇
(t1 ∧̇ t2)x
t1x , t2x

T∨̇
(t1 ∨̇ t2)x
t1x | t2x

T�

�rtx, rxy

ty
T R�∗

�r∗tx

tx
T T�∗

�r∗tx, rxy

�r∗ty

T♦

♦rux

rxy , uy
y /∈ NιA

T α♦∗

♦r∗tx

αx, α = ♦r∗t
α 6∈ VA T♦∗

αx, α = ♦r∗t

tx | ♦rαx
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A infinite derivation for an unsatisfiable formula

♦r∗px,�r∗(¬̇p)x
α = ♦r∗p, αx
¬̇px

px ♦rαx
rxy, αy
�r∗(¬̇p)y
¬̇py
py ♦rαy

. . .

T♦

♦rux

rxy , uy
y /∈ NιA

T α♦∗

♦r∗tx

αx, α = ♦r∗t
α 6∈ VA

T♦∗
αx, α = ♦r∗t

tx | ♦rαx

T¬̇
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Problems

The System does not terminate.

The System is not complete.

We need a soundness argument to discard the rightmost branch.
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Overview

The soundness argument for discarded branches is straightness:
Preservation of straight branches.

Proof Sketch

For every satisfiable set of K∗-expressions the initial branch is a
straight branch.

If the premise of a rule is a straight branch, at least one of the
rules’ alternatives is a straight branch.

Model existence theorem for straight, maximal branches (w.r.t.
applied blocking technique).

This essentially amounts to deciding existence of a straight, maximal
branch instead of satisfiability.
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Witness Distance

x

y

z : p

v

w : p

u : p

r

r

r

♦r∗p
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Witness Distance

x

y

z : p

v

w : p

u : p

r

r

r

♦r∗p

δrI,ta := min{n ∈ N | ∃b ∈ Iι : a r−→
n

I b ∧ Îtb = 1}

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider) 28/55



Introduction
Tableau System

Straightness
Completeness

Witness Distance
Requests
Straight Branches
Straightness Theorem

Witness Distance

x

y

z : p

v

w : p

u : p

r

r

r

♦r∗p

δrI,ta := min{n ∈ N | ∃b ∈ Iι : a r−→
n

I b ∧ Îtb = 1}
∆r
I,tL := min{δrI,ta | I, a |= L}
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Requests

x

y

r

�r(¬̇p),�r∗q

Definition

Let A be a branch and x be a nominal.

RrAx := {t | �rtx ∈ A} ∪ {t,�r∗t | �r∗tx ∈ A}
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Requests

x

y

r

�r(¬̇p),�r∗q

¬̇p, q,�r∗q

Definition

Let A be a branch and x be a nominal.

RrAx := {t | �rtx ∈ A} ∪ {t,�r∗t | �r∗tx ∈ A}
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Requests

x

y

r

�r(¬̇p),�r∗q

¬̇p, q,�r∗q

Rrx = {¬̇p, q,�r∗q}

Definition

Let A be a branch and x be a nominal.

RrAx := {t | �rtx ∈ A} ∪ {t,�r∗t | �r∗tx ∈ A}
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Intuition

Use an interpretation to guide the tableau derivation: For each
nominal, find a corresponding state in the interpretation to guide
branching decisions.

Obey the following rules

O2 Only expand αx to ♦rαx, if I does not satisfy the witness at x.

O1 If ♦rαx is expanded, then model the successor after a state with
optimal witness distance for the witness in I.
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♦r∗p , ¬̇p

x

z

y

r

r

p
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♦r∗px, ¬̇px
α = ♦r∗p, αx
px ♦rαx

x
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Straight Branches

Definition

Let A be a branch and I be an interpretation. I is straight for A if it
satisfies the following conditions:

S1 s ∈ A =⇒ I |= s if s is no transition

S2 rxy ∈ A =⇒ I, Iy |= Rrx
O1 αx, rxy, αy, α = ♦r∗t ∈ A =⇒ δrI,t(Iy) = ∆r

I,t(Rrx)
O2 αx, α = ♦r∗t,♦rαx ∈ A =⇒ I 6|= tx

We say A is straight if there is an interpretation that is straight for A.

On straight branches, all decisions have been made as if the
derivation was guided by I.
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Invariant

Straightness

For every rule, if the premise is a straight branch,
at least one of the conclusions is a straight branch.

This is soundness with respect to straight branches.
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Straightness Theorem

x
♦r∗t−→A y ⇐⇒ ∃α ∈ VA : α = ♦r∗t, αx, αy ∈ A ∧ x r−→A y

Theorem 1

Let A be an admissible, straight branch, and I be straight for A.

If x
♦r∗t−→A y and I 6|= ty, then ∆r

I,t(RrAx) > ∆r
I,t(RrAy).

If we could not place the witness, then at least we made progress.
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Prove Sketch

Define a request relation w.r.t. blocking technique.

Prove: If a formula ♦r∗tx ∈ A is not evident, then there is a cycle
in a request relation.

Prove using Theorem 1: If A is straight, then no request relation
in A is cyclic.

Approach scales to both pattern- and chain-based blocking. For
pattern based blocking the request relation gets more complicated.
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Patterns

Definition (Pattern of a ♦-Formula)

Let A be a branch. The ♦-pattern of a formula ♦rux ∈ A denoted
by PrA(♦rux) is defined according to the following equations:

PrA(♦rtx) :=({♦rt},RrAx)
PrA(♦rαx) :=({♦r∗t | α = ♦r∗t ∈ A},RrAx)

Admissibility Conditions ensure that {♦r∗t | α = ♦r∗t ∈ A} is always
a singleton set.
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Realization

Definition (♦-Pattern Realization)

Let A be a branch and x ∈ NιA.

({♦rt},RrAx) is realized in A, if there is x′, y ∈ NιA such that
RrAx ⊆ RrAx′ and x′

r−→A y.

({♦r∗t},RrAx) is realized in A, if there is x′, y ∈ NιA such that

RrAx = RrAx′ and x′
♦r∗t−→A y.
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The Restricted System Tpat

R♦

♦rux

rxy , uy
y /∈ NιA

PrA(♦rux) not realized in A

x is propagated

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider) 52/55



Introduction
Tableau System

Straightness
Completeness

Prove Sketch

Request Paths

Definition (♦∗-Request Relation)

Let A be a branch and x, x′ ∈ NιA.

x
D,♦r∗t−→ A y ⇐⇒ ∃α ∈ VA : α = ♦r∗t,♦rαx ∈ A

∧ ∃x′ ∈ NιA : RrAx = RrAx′

∧ x′ ♦r
∗t−→A y
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Completeness

Supported by two Lemmas. Let A be a maximal branch.

If a formula ♦r∗tx ∈ A is not evident, then there is a cycle in
D,♦r∗t−→ A.

If A is straight, then no ♦∗-request relation in A is cyclic.
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Explicit Request Relations

T♦∗
α = ♦r∗t,♦rαx, β = ♦r∗t, βx′, rx′y, βy

tx | ♦rαx
RrAx = RrAx′
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