Terminating Tableaux for Modal Logic with Transitive Closure

Sigurd Schneider

Bachelor's Thesis Final Talk Advisors: Mark Kaminski, Gert Smolka Responsible Professor: Gert Smolka

August 28, 2009

イロト イポト イヨト イヨト

K* Semantics Properties

Modal Logic with Transitive Closure: K*

$$\begin{split} t & ::= p \mid \dot{\neg}t \mid t \,\dot{\wedge}\,t \mid t \,\dot{\lor}\,t \mid \Diamond \rho t \mid \Box \rho t \\ \rho & ::= r \mid r^* \end{split}$$

- Extends basic modal logic K with reflexive transitive closure operator
- Fragment of Propositional Dynamic Logic

イロト イポト イヨト イヨト

K* Semantics Properties

K* as Fragment of PDL

- Model computation as state transition
- Programs are transitions, programs are represented in the logic
- Provide operators to compose new programs

$;:(\iota\iota o)(\iota\iota o)\iota\iota o$	Sequentialization
\cap : (110)(110)110	Choice
* : (110)110	Iteration
? : (ю)шо	Test

イロン イ理 とく ヨン イヨン

K* Semantics Properties

Semantics

 $\Diamond rpx$

<ロト < 四ト < 三ト < 三ト

K* Semantics Properties

Semantics

 $\Diamond rpx$

<ロト < 四ト < 三ト < 三ト

K* Semantics Properties

Semantics

 $\Diamond rpx$

<ロト < 四ト < 三ト < 三ト

K* Semantics Properties

Semantics

 $\Diamond r^* px$

<ロト < 四ト < 三ト < 三ト

K* Semantics Properties

Semantics

 $\Diamond r^* px$

<ロト < 四ト < 三ト < 三ト

K* Semantics Properties

Semantics

 $\Diamond r^* px$

<ロト < 四ト < 三ト < 三ト

K^{*} Semantics Properties

- Small Model Property
- Decidable
- Not Compact: $\{\Diamond r^*p, \neg p, \Box r \neg p, \Box r(\Box r \neg p), \dots\}$

3

<ロト < 四ト < 三ト < 三ト

Tableau Rules An Infinite Derivation Problems

Split the propositional variables into two disjoint sets

- $\bullet~$ Path variables denoted by ${\cal V}$
- Proper propositional variables

Definition (Extended Grammar)

$$\begin{array}{lll} s & ::= & ux \mid \Diamond r \alpha x \mid \alpha = \Diamond r^*t \mid rxx & \mbox{formula} \\ u & ::= & \alpha \mid t & \mbox{extended modal expression} \\ t & ::= & p \mid \dot{\neg}t \mid t \dot{\land}t \mid t \dot{\lor}t \mid \Diamond \rho t \mid \Box \rho t & \mbox{proper modal expression} \\ \rho & ::= & r \mid r^* \end{array}$$

イロト イポト イヨト イヨト

Tableau Rules An Infinite Derivation Problems

A tableau system

イロト イ理ト イヨト イヨト

Tableau Rules An Infinite Derivation Problems

A tableau system

イロト イ理ト イヨト イヨト

Tableau Rules An Infinite Derivation Problems

A tableau system

$$T_{\rightarrow} \quad \frac{(\neg p)x, px}{t_{\wedge}} \qquad T_{\wedge} \quad \frac{(t_{1} \wedge t_{2})x}{t_{1}x, t_{2}x} \qquad T_{\vee} \quad \frac{(t_{1} \vee t_{2})x}{t_{1}x \mid t_{2}x}$$
$$T_{\Box} \quad \frac{\Box rtx, rxy}{ty} \qquad T_{\Box^{*}}^{R} \quad \frac{\Box r^{*}tx}{tx} \qquad T_{\Box^{*}}^{T} \quad \frac{\Box r^{*}tx, rxy}{\Box r^{*}ty}$$
$$T_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$T_{\Diamond^{*}} \quad \frac{\Diamond r^{*}tx}{\alpha x, \alpha = \Diamond r^{*}t} \quad \alpha \notin \mathcal{V}A \qquad T_{\Diamond^{*}} \quad \frac{\alpha x, \alpha = \Diamond r^{*}t}{tx \mid \Diamond r\alpha x}$$

2

<ロト < 四ト < 三ト < 三ト

Tableau Rules An Infinite Derivation Problems

A tableau system

$$\begin{aligned} \mathcal{T}_{\dot{\neg}} \quad \frac{(\dot{\neg}p)x, px}{t_{\dot{\gamma}}} & \mathcal{T}_{\dot{\lambda}} \quad \frac{(t_{1} \dot{\wedge} t_{2})x}{t_{1}x, t_{2}x} & \mathcal{T}_{\dot{\vee}} \quad \frac{(t_{1} \dot{\vee} t_{2})x}{t_{1}x \mid t_{2}x} \\ \mathcal{T}_{\Box} \quad \frac{\Box rtx, rxy}{ty} & \mathcal{T}_{\Box^{*}}^{R} \quad \frac{\Box r^{*}tx}{tx} & \mathcal{T}_{\Box^{*}}^{T} \quad \frac{\Box r^{*}tx, rxy}{\Box r^{*}ty} \\ & \mathcal{T}_{\dot{\diamond}} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A \\ \mathcal{T}_{\dot{\diamond}^{*}} \quad \frac{\Diamond r^{*}tx}{\alpha x, \alpha = \Diamond r^{*}t} \quad \alpha \notin \mathcal{V}A & \mathcal{T}_{\dot{\diamond}^{*}} \quad \frac{\alpha x, \alpha = \Diamond r^{*}t}{tx \mid \Diamond r\alpha x} \end{aligned}$$

2

<ロト < 四ト < 三ト < 三ト

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\mathcal{T}_{\Diamond} \quad \frac{\Diamond rux}{rxy, \, uy} \quad y \notin \mathcal{N}_{\iota}A$$

$$\mathcal{T}^{\alpha}_{\Diamond^*} \quad \frac{\Diamond r^* t x}{\alpha x, \alpha = \Diamond r^* t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^* t}{tx \mid \Diamond r \alpha x}$$

$$\mathcal{T}_{\dot{\neg}} \quad \frac{(\dot{\neg}p)x, px}{2}$$

<ロト < 四ト < 三ト < 三ト

э

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} & \Rightarrow r^*px, \Box r^*(\dot{\neg}p)x \\ \alpha = \Diamond r^*p, \alpha x \\ & \neg px \\ px \\ px \\ \phi r\alpha x \\ rxy, \alpha y \\ \Box r^*(\dot{\neg}p)y \\ & \neg py \\ py \\ py \\ y \\ & \ddots \end{array}$$

0

$$\mathcal{T}_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$\mathcal{T}_{\Diamond^*}^{\alpha} \quad \frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^* t}{t x \mid \Diamond r \alpha x}$$
$$\mathcal{T}_{\dot{\neg}} \quad \frac{(\dot{\neg} p) x, p x}{t}$$

<ロト < 四ト < 三ト < 三ト

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} \Diamond r^* px, \Box r^* (\neg p) x \\ \alpha = \Diamond r^* p, \alpha x \\ \neg px \\ px \\ px \\ px \\ | & \Diamond r \alpha x \\ rxy, \alpha y \\ \Box r^* (\neg p) y \\ \neg py \\ py \\ py \\ | & \end{pmatrix} y$$

$$T_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$T_{\Diamond^*}^{\alpha} \quad \frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \quad \alpha \notin \mathcal{V}A$$
$$T_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^*t}{tx \mid \Diamond r\alpha x}$$
$$T_{\dot{\ominus}} \quad \frac{(\dot{\neg}p)x, px}{t}$$

<ロト < 四ト < 三ト < 三ト

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} \Diamond r^* px, \Box r^* (\neg p) x \\ \alpha = \Diamond r^* p, \alpha x \\ \neg px \\ px \\ px \\ px \\ | & \Diamond r \alpha x \\ rxy, \alpha y \\ \Box r^* (\neg p) y \\ \neg py \\ py \\ py \\ | & \Diamond r \alpha y \\ \dots \end{array}$$

$$T_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$T_{\Diamond^*}^{\alpha} \quad \frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \quad \alpha \notin \mathcal{V}A$$
$$T_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^*t}{tx \mid \Diamond r\alpha x}$$
$$T_{\dot{\ominus}} \quad \frac{(\dot{\neg}p)x, px}{t}$$

<ロト < 四ト < 三ト < 三ト

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c|c} \Diamond r^*px, \Box r^*(\dot{\neg}p)x\\ \alpha = \Diamond r^*p, \alpha x\\ \dot{\neg}px\\ px & & \\ px & & \\ px & & \\ rxy, \alpha y\\ \Box r^*(\dot{\neg}p)y\\ \dot{\neg}py\\ py & & \\ py & & \\ \dots \end{array}$$

$$T_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$T_{\Diamond^*}^{\alpha} \quad \frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \quad \alpha \notin \mathcal{V}A$$
$$T_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^*t}{tx \mid \Diamond r\alpha x}$$
$$T_{\dot{\ominus}} \quad \frac{(\dot{\neg}p)x, px}{t}$$

<ロト < 四ト < 三ト < 三ト

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

э

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} \Diamond r^*px, \Box r^*(\neg p)x\\ \alpha = \Diamond r^*p, \alpha x\\ \neg px\\ px \\ px \\ px \\ rxy, \alpha y\\ \Box r^*(\neg p)y\\ \neg py\\ py \\ py \\ y \\ \end{pmatrix} \begin{array}{c} \Diamond r\alpha y\\ \neg rxy \\ \neg py\\ \vdots\\ \end{pmatrix}$$

$$\mathcal{T}_{\Diamond} \quad \frac{\Diamond rux}{rxy, \, uy} \ y \notin \mathcal{N}_{\iota}A$$

$$\mathcal{T}^{\alpha}_{\Diamond^*} \quad \frac{\Diamond r^* t x}{\alpha x, \alpha = \Diamond r^* t} \quad \alpha \not\in \mathcal{V}A$$

$$\mathcal{I}_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^* t}{tx \mid \Diamond r \alpha x}$$

$$\mathcal{T}_{\dot{\neg}} \; \frac{(\dot{\neg} p)x, px}{1}$$

イロト イポト イヨト イヨト

э

Tableau System Straightness An Infinite Derivation

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c|c} \Diamond r^*px, \Box r^*(\dot{\neg}p)x\\ \alpha = \Diamond r^*p, \alpha x\\ \dot{\neg}px\\ px & & \\ \rho x \\ px & & \\ rxy, \alpha y\\ \Box r^*(\dot{\neg}p)y\\ \dot{\neg}py\\ py & & \\ py \\ py & & \\ \dots \end{array}$$

$$\mathcal{T}_{\Diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$

$$\overset{\diamond}{*} \quad \frac{\Diamond r^{*}tx}{\alpha x, \alpha = \Diamond r^{*}t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}^{\alpha}_{\Diamond^*} \quad \frac{\Diamond r \ \iota x}{\alpha x, \alpha = \Diamond r^* t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^* t}{tx \mid \Diamond r \alpha x}$$

$$\mathcal{T}_{\dot{\neg}} \quad \frac{(\dot{\neg}p)x, px}{2}$$

<ロト < 四ト < 三ト < 三ト

Tableau System Straightness An Infinite Derivation

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} \Diamond r^*px, \Box r^*(\neg p)x\\ \alpha = \Diamond r^*p, \alpha x\\ \neg px\\ px \\ px \\ px \\ rxy, \alpha y\\ \Box r^*(\neg p)y\\ \neg py\\ py \\ py \\ py \\ \end{pmatrix} \begin{array}{c} \Diamond r\alpha y\\ \neg rxy, \alpha y\\ \Box r^*(\neg p)y\\ \neg py\\ \rho y \\ \end{pmatrix}$$

$$\mathcal{T}_{\diamond} \quad \frac{\Diamond rux}{rxy, uy} \quad y \notin \mathcal{N}_{\iota}A$$
$$\frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}^{\alpha}_{\Diamond^*} \quad \frac{\Diamond r^* tx}{\alpha x, \alpha = \Diamond r^* t} \quad \alpha \notin \mathcal{V}A$$

$$\mathcal{T}_{\Diamond^*} \quad \frac{\alpha x, \alpha = \Diamond r^* t}{tx \mid \Diamond r \alpha x}$$

$$\mathbf{T}_{\dot{\neg}} \quad \frac{(\dot{\neg}p)x, px}{2}$$

<ロト < 四ト < 三ト < 三ト

э

Tableau Rules An Infinite Derivation Problems

A infinite derivation for an unsatisfiable formula

$$\begin{array}{c} \Diamond r^*px, \Box r^*(\neg p)x\\ \alpha = \Diamond r^*p, \alpha x\\ \neg px\\ px \\ px \\ px \\ rxy, \alpha y\\ \Box r^*(\neg p)y\\ \neg py\\ py \\ py \\ y \\ \cdots \end{array}$$

$$\begin{split} \mathcal{T}_{\Diamond} \quad & \frac{\Diamond rux}{rxy, \, uy} \ y \notin \mathcal{N}_{\iota}A \\ \mathcal{T}_{\Diamond^*}^{\alpha} \quad & \frac{\Diamond r^*tx}{\alpha x, \alpha = \Diamond r^*t} \ \alpha \notin \mathcal{V}A \\ & \mathcal{T}_{\Diamond^*} \ \frac{\alpha x, \alpha = \Diamond r^*t}{tx \mid \Diamond r\alpha x} \end{split}$$

 $\mathcal{T}_{\dot{\neg}} \quad \frac{(\dot{\neg}p)x, px}{2}$

<ロト < 四ト < 三ト < 三ト

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Tableau Rules An Infinite Derivation Problems

Problems

- The System does not terminate.
- The System is not complete.
- We need a **soundness** argument to discard the rightmost branch.

イロト イ理ト イヨト イヨト

Witness Distance Requests Straight Branches Straightness Theorem

Overview

The soundness argument for discarded branches is **straightness**: Preservation of straight branches.

Proof Sketch

- For every satisfiable set of K*-expressions the initial branch is a straight branch.
- If the premise of a rule is a straight branch, at least one of the rules' alternatives is a straight branch.
- Model existence theorem for straight, maximal branches (w.r.t. applied blocking technique).

This essentially amounts to deciding existence of a straight, maximal branch instead of satisfiability.

イロン イ理 とく ヨン イヨン

Witness Distance Requests Straight Branches Straightness Theorem

Witness Distance

 $\underbrace{u:p}$

<ロト < 四ト < 三ト < 三ト

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Witness Distance Requests Straight Branches Straightness Theorem

Witness Distance

э

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Witness Distance

э

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Requests

Definition

Let A be a branch and x be a nominal.

 $\mathcal{R}^{r}_{A}x := \{t \mid \Box rtx \in A\} \cup \{t, \Box r^{*}t \mid \Box r^{*}tx \in A\}$

э

イロト イロト イヨト イヨト

Witness Distance Requests Straight Branches Straightness Theorem

Requests

Definition

Let A be a branch and x be a nominal.

$$\mathcal{R}^{r}_{A}x := \{t \mid \Box rtx \in A\} \cup \{t, \Box r^{*}t \mid \Box r^{*}tx \in A\}$$

2

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Requests

Definition

Let A be a branch and x be a nominal.

$$\mathcal{R}^{r}_{A}x := \{t \mid \Box rtx \in A\} \cup \{t, \Box r^{*}t \mid \Box r^{*}tx \in A\}$$

2

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Intuition

Use an interpretation to guide the tableau derivation: For each nominal, find a corresponding state in the interpretation to guide branching decisions.

Obey the following rules

O2 Only expand αx to $\Diamond r \alpha x$, if \mathcal{I} does not satisfy the witness at x.

O1 If $\Diamond r \alpha x$ is expanded, then model the successor after a state with optimal witness distance for the witness in \mathcal{I} .

イロト イポト イヨト イヨト

Witness Distance Requests Straight Branches Straightness Theorem

Intuition

Use an interpretation to guide the tableau derivation: For each nominal, find a corresponding state in the interpretation to guide branching decisions.

Obey the following rules

O2 Only expand αx to $\Diamond r \alpha x$, if \mathcal{I} does not satisfy the witness at x.

O1 If $\Diamond r \alpha x$ is expanded, then model the successor after a state with optimal witness distance for the witness in \mathcal{I} .

イロト イポト イヨト イヨト

Witness Distance Requests Straight Branches Straightness Theorem

Example

イロト イロト イヨト イヨト

 $\Diamond r^*p \ , \dot\neg p$

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Witness Distance Requests Straight Branches Straightness Theorem

Example

<ロト < 四ト < 三ト < 三ト

 $\Diamond r^*px, \dot\neg px$

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Witness Distance Requests Straight Branches Straightness Theorem

Example

・ロト ・ 日本 ・ モト ・ モト・

 \bigcap

$$\begin{aligned} & \Diamond r^*px, \dot{\neg}px \\ & \alpha = \Diamond r^*p, \alpha x \end{aligned}$$

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Witness Distance Requests Straight Branches Straightness Theorem

Example

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

$$\begin{array}{l} \Diamond r^*px, \dot\neg px \\ \alpha = \Diamond r^*p, \alpha x \\ px \mid \Diamond r\alpha x \end{array}$$

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

Witness Distance Requests Straight Branches Straightness Theorem

Example

$$\begin{array}{l} \Diamond r^*px, \dot{\neg}px \\ \alpha = \Diamond r^*p, \alpha x \\ \Diamond r\alpha x \end{array}$$

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Example

$$\begin{array}{l} \Diamond r^*px, \dot{\neg}px \\ \alpha = \Diamond r^*p, \alpha x \\ \Diamond r\alpha x \\ rxy, \alpha y \end{array}$$

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Example

$$\begin{array}{l} \Diamond r^*px, \dot{\neg}px \\ \alpha = \Diamond r^*p, \alpha x \\ \Diamond r\alpha x \\ rxy, \alpha y \end{array}$$

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Example

$$\begin{array}{l} \Diamond r^* px, \neg px \\ \alpha = \Diamond r^* p, \alpha x \\ \Diamond r \alpha x \\ rxy, \alpha y \\ py \mid \Diamond r \alpha y \end{array}$$

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Example

$$\begin{array}{l} \Diamond r^*px, \dot{\neg}px \\ \alpha = \Diamond r^*p, \alpha x \\ \Diamond r\alpha x \\ rxy, \alpha y \\ py \end{array}$$

<ロト < 四ト < 三ト < 三ト

Witness Distance Requests Straight Branches Straightness Theorem

Straight Branches

Definition

Let *A* be a branch and \mathcal{I} be an interpretation. \mathcal{I} is **straight** for *A* if it satisfies the following conditions:

S1
$$s \in A \implies \mathcal{I} \models s$$
 if s is no transition

S2
$$rxy \in A \implies \mathcal{I}, \mathcal{I}y \models \mathcal{R}^r x$$

01
$$\alpha x, rxy, \alpha y, \alpha = \Diamond r^* t \in A \implies \delta^r_{\mathcal{I},t}(\mathcal{I}y) = \Delta^r_{\mathcal{I},t}(\mathcal{R}^r x)$$

O2
$$\alpha x, \alpha = \Diamond r^*t, \Diamond r\alpha x \in A \implies \mathcal{I} \not\models tx$$

We say A is **straight** if there is an interpretation that is straight for A.

On straight branches, all decisions have been made as if the derivation was guided by $\ensuremath{\mathcal{I}}$.

イロト イポト イヨト イヨト

Witness Distance Requests Straight Branches Straightness Theorem

Invariant

Straightness

For every rule, if the premise is a straight branch, at least one of the conclusions is a straight branch.

This is soundness with respect to straight branches.

イロト イ理ト イヨト イヨト

Introduction Will Tableau System Re Straightness Str. Completeness Str.

Witness Distance Requests Straight Branches Straightness Theorem

Straightness Theorem

$$x \xrightarrow{\Diamond r^* t}_A y \Longleftrightarrow \exists \alpha \in \mathcal{V}A \colon \alpha = \Diamond r^* t, \alpha x, \alpha y \in A \land x \xrightarrow{r}_A y$$

Theorem 1

Let A be an admissible, straight branch, and \mathcal{I} be straight for A. If $x \xrightarrow{\Diamond r^* t} y$ and $\mathcal{I} \not\models ty$, then $\Delta^r_{\mathcal{I},t}(\mathcal{R}^r_A x) > \Delta^r_{\mathcal{I},t}(\mathcal{R}^r_A y)$.

If we could not place the witness, then at least we made progress.

イロト イポト イヨト イヨト

Prove Sketch

Prove Sketch

- Define a request relation w.r.t. blocking technique.
- Prove: If a formula ◊r*tx ∈ A is not evident, then there is a cycle in a request relation.
- Prove using Theorem 1: If *A* is straight, then no request relation in *A* is cyclic.

Approach scales to both pattern- and chain-based blocking. For pattern based blocking the request relation gets more complicated.

< ロ > < 同 > < 回 > < 回 > < 回 >

Prove Sketch

References

Abate, P., Goré, R., and Widmann, F. (2009)

An On-the-fly Tableau-based Decision Procedure for PDL-satisfiability. Electron. Notes Theor. Comput. Sci. 231 (Mar. 2009), 191-209.

Baader, F. (1991)

Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles.

```
IJCAI 1991, Preceedings, volume 1, pages 446–451. Morgan Kaufmann, 1991.
```

de Giacomo, G. and Massacci, F. (2000)

Combining deduction and model checking into Tableaux and algorithms for converse-PDL.

Inf. Comput. 162, 1/2 (Oct. 2000), 117-137.

< ロ > < 同 > < 回 > < 回 > < 回 >

Prove Sketch

Request Relation: Example

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

2

<ロト < 四ト < 三ト < 三ト

Prove Sketch

Patterns

Definition (Pattern of a \Diamond -Formula)

Let *A* be a branch. The \Diamond -pattern of a formula $\Diamond rux \in A$ denoted by $\mathcal{P}_A^r(\Diamond rux)$ is defined according to the following equations:

$$\mathcal{P}_{A}^{r}(\Diamond rtx) := (\{\Diamond rt\}, \mathcal{R}_{A}^{r}x)$$
$$\mathcal{P}_{A}^{r}(\Diamond r\alpha x) := (\{\Diamond r^{*}t \mid \alpha = \Diamond r^{*}t \in A\}, \mathcal{R}_{A}^{r}x)$$

Admissibility Conditions ensure that $\{\Diamond r^*t \mid \alpha = \Diamond r^*t \in A\}$ is always a singleton set.

< □ > < 同 > < 回 > < 回 > < 回 >

Prove Sketch

Realization

Definition (◊-Pattern Realization)

Let A be a branch and $x \in \mathcal{N}_{\iota}A$.

- $(\{\Diamond rt\}, \mathcal{R}_A^r x)$ is **realized** in A, if there is $x', y \in \mathcal{N}_\iota A$ such that $\mathcal{R}_A^r x \subseteq \mathcal{R}_A^r x'$ and $x' \xrightarrow{r}_A y$.
- $(\{\Diamond r^*t\}, \mathcal{R}_A^r x)$ is **realized** in A, if there is $x', y \in \mathcal{N}_\iota A$ such that $\mathcal{R}_A^r x = \mathcal{R}_A^r x'$ and $x' \xrightarrow{\Diamond r^*t}_A y$.

э

イロト イポト イヨト イヨト

Prove Sketch

The Restricted System T_{pat}

$$\mathcal{R}_{\Diamond} \quad \frac{\Diamond rux}{rxy, \ uy} \quad y \notin \mathcal{N}_{\iota}A$$

- $\mathcal{P}^{r}_{A}(\Diamond rux)$ not realized in A
- x is propagated

イロト イ理ト イヨト イヨト

Prove Sketch

Request Paths

Definition (\$*-Request Relation)

Let A be a branch and $x, x' \in \mathcal{N}_{\iota}A$.

$$x \xrightarrow{\triangleright, \Diamond r^* t}_A y \iff \exists \alpha \in \mathcal{V}A \colon \alpha = \Diamond r^* t, \Diamond r \alpha x \in A$$
$$\land \exists x' \in \mathcal{N}_{\iota}A \colon \mathcal{R}^r_A x = \mathcal{R}^r_A x'$$
$$\land x' \xrightarrow{\Diamond r^* t}_A y$$

2

<ロト < 四ト < 三ト < 三ト

Prove Sketch

Completeness

Supported by two Lemmas. Let A be a maximal branch.

- If a formula $\Diamond r^*tx \in A$ is not evident, then there is a cycle in $\xrightarrow{\triangleright, \Diamond r^*t}_{A}$.
- If A is straight, then no \Diamond^* -request relation in A is cyclic.

イロト イポト イヨト イヨト

Prove Sketch

Explicit Request Relations

$$\mathcal{T}_{\Diamond^*} \; \frac{\alpha = \Diamond r^* t, \Diamond r \alpha x, \beta = \Diamond r^* t, \beta x', r x' y, \beta y}{t x \mid \Diamond r \alpha x} \; \mathcal{R}^r_A x = \mathcal{R}^r_A x'$$

Terminating Tableaux for Modal Logic with Transitive Closure (Sigurd Schneider)

2

<ロト < 四ト < 三ト < 三ト