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Abstract

We present a terminating tableau system for the modal logic K∗. K∗ extends the basic
modal logic K with a reflexive transitive closure operator for relations and is a proper
fragment of propositional dynamic logic.

We investigate two different approaches to achieve termination, namely chain-based
blocking and pattern-based blocking. Pattern based-blocking has not been applied to a
modal logic with a reflexive transitive closure operator.

We have a modular completeness proof that adapts to both termination approaches.
Extending completeness arguments for a related description logic, we establish a strength-
ened soundness property of our calculus that we call straightness. Using this property
we are able to prove both verification and refutation soundness.
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1 Introduction

In this thesis we present two terminating tableau systems for a modal logic we call K∗.
K∗ enriches the modal logic K with a reflexive transitive closure operator for relations.
The expressiveness of K∗ lies between that of the basic modal logic K and propositional
dynamic logic, of which K∗ is a proper fragment.

Modal logic was treated deductively since 1918 [25], and received its relational seman-
tics around 1960. The most significant contributions are from Kripke [22, 23, 24], and
we refer to [10] for a detailed overview. Since then, relational semantics matured from
an analytical tool to the standard way of thinking about modal logic.

Relational semantics make the concept of locality of truth explicit: The notion of truth
depends on the state of evaluation. This allows the natural modeling of computation as
state transition. On the basis of this concept, dynamic logic provides means to specify
programs and reason about their properties.

Dynamic logic is due to Fisher and Ladner [8]. Their work extends Pratt’s [26], who
was in search of a semantics for Hoare logic [14]. Hoare logic abstracts computation
as transition between program states, thus committing to programs that are binary
relations. Dynamic Logic subsumes Hoare logic and additionally allows programs to be
represented within the language. Having both programs and properties represented in
the language is referred to as the exogenous approach [13].

In dynamic logic, programs are relations, and the language provides several operators
to compose new programs out of old ones. For two reasons, the reflexive transitive closure
operator is the most challenging of the program composition operators. First, defining
the reflexive transitive closure over relations requires higher order quantification. And
second, adding the reflexive transitive closure operator to obtain K∗ results in the loss
of compactness of the logic. Nevertheless, K∗ is decidable and possesses the small model
property. Both properties are inherited from PDL, for which they are shown by Pratt
in 1976 [26] and Fischer and Ladner [8] in 1977, respectively.

Proving completeness for a terminating tableau system for K∗ inherits a difficulty
from PDL: There are derivations for unsatisfiable formulas such that no finite prefix
of the derivation contains an immediate contradiction. This infinitary behavior results
from the way the transitive closure operator is treated and the lack of compactness. For
terminating tableau systems, this is a concern of soundness, since a derivation without
a contradiction cannot be discarded without justification.

In the literature, there exist different tableau systems for PDL. An early approach by
Pratt [26] resorts to a weaker semantics and annotates the tableau to keep track of ful-
filled eventualities. De Giacomo and Massacci [9] pick up this idea and show completeness
by carrying an interpretation along the derivation that satisfies the generated formulas.
Their decision procedure features path variables, which ease the tracking of unfulfilled
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1.1. Contributions Chapter 1. Introduction

eventualities greatly. Baader [3] treats completeness for the description logic ALCtrans,
which subsumes K∗. In his approach, an interpretation is used to guide a derivation,
featuring an elaborate technique to ensure invariants on the derivation. These invari-
ants are then used to prove verification completeness. Abate, Goré and Widmann [1]
are extending Pratt’s approach to an on-the-fly procedure. They incrementally build an
and-or-graph and propagate information about unfulfilled eventualities upwards, such
that properties of the root of the tree indicate satisfiability. Goré and Widmann [11]
recently published an optimal tableau decision procedure.

Our approach incorporates ideas of Baader, De Giacomo, and Massacci. We show
a property similar to soundness for our calculus. This property is called straightness
and guarantees preservation of certain invariants during the derivation process. These
invariants enable us to prove a model existence theorem for maximal derivations that
satisfy them, in particular we show that such derivations satisfy all eventualities. We
justify discarding derivations by establishing that the straightness properties are violated
and give conditions to identify such derivations.

To obtain a terminating tableau system, rule applicability must be restricted. We call
a technique that provides conditions to control rule applicability a blocking technique.
We equip our system with two different blocking techniques and show completeness as
described above for both of them.

First, we equip the tableau with chain-based blocking. Chain-based blocking is the
traditional blocking technique for modal logics invented by Kripke [23]. It is standard
and has been applied to a variety of modal and description logics [5, 15, 16, 18]. The
basic idea is that expansion can be blocked if a state that has the same properties as
one of its predecessors is encountered. Instead of creating a new state, the edges can be
redirected to the corresponding predecessor.

Second, we equip the tableau system with pattern-based blocking. Pattern-based
blocking is a recent idea due to Kaminski and Smolka [19, 20], which has been applied
successfully to various logics [21, 17]. Spartacus [12], a maturing implementation incor-
porating the technique, shows promising performance results. Patterns are subsets of
the formulas present at a certain nominal. The main idea is that similar patterns require
similar sub-models. Thus similar patterns are identified, and expansion is blocked for
all instances, except for one, for which a sub-model is generated. Model existence is
achieved by sharing this sub-model among all states that correspond to a nominal with
a similar pattern. The precise notion of similarity depends on what the logic admits,
but usually inclusion or equality applies.

We conclude the thesis with a conjecture about canonical models, and give an outlook
on possible improvements and future work.

1.1 Contributions

The main contribution of this thesis is the adaptation of pattern-based blocking to a
logic with the reflexive transitive closure operator. Our completeness proof is more
modular than existing proofs for PDL [3, 9] in that it adapts to two both chain-based

8



1.2. Outline Chapter 1. Introduction

and pattern-based blocking.

1.2 Outline

In Chapter 2, we define syntax and semantics for K∗. In Chapter 3, we prove decidability
and the small model property for K∗ using a canonical model construction. In Chapter
4, we give a tableau calculus, prove a model existence theorem, show that the system is
sound, and establish our extended soundness property called straightness. In Chapter
5, we equip the tableaux system with chain-based blocking, prove termination, devise
conditions to identify discardable derivations, and prove completeness of the system. In
Chapter 6, we do the same for pattern-based blocking.

9



2 Fundamentals

In this chapter, we define the syntax and semantics of K∗ as a fragment of simple type
theory (STT) [6, 2]. In Section 2.1, we define the syntax of K∗. In Section 2.2, we define
the semantics using STT and give a definition of satisfiability.

2.1 Syntax

In Fig. 2.1 the syntactic categories of modal expressions and relations are given. For the
sake of simplicity we only consider negation normal terms. The names ¬̇, ∧̇, ∨̇, ♦, �,
and ∗ are called modal constants. Note that we use infix notation for the operators ∧̇
and ∨̇, as well as postfix notation for the operator ∗.

Figure 2.1: Syntactic Categories of K∗

t ::= p | ¬̇t | t ∧̇ t | t ∨̇ t | ♦ρt | �ρt modal expressions

ρ ::= r | r∗ relations

Often it is useful to have the subterm closure at hand. Note that we here have a
extended subterm closure, particularly K∗’s version of the Fischer-Ladner closure [8].

Definition 1 Let t be a modal expression. Then Mt is inductively defined according
to the following equations.

Mp = {p}

M(¬̇t) = {¬̇t} ∪Mt

M(t1 ∧̇ t2) = {t1 ∧̇ t2} ∪Mt1 ∪Mt2

M(t1 ∨̇ t2) = {t1 ∨̇ t2} ∪Mt1 ∪Mt2

M(♦rt) = {♦rt} ∪Mt

M(♦r∗t) = {♦r(♦r∗t)} ∪Mt

M(�ρt) = {�ρt} ∪Mt

Let L be a set of modal expressions. Then we define ML :=
⋃
{Mt | t ∈ L}.

Proposition 1 Let t be a modal expression. Then Mt is a finite set.

10



2.2. Semantics Chapter 2. Fundamentals

2.1.1 Substitution

Given a term t, we use the notation txy to indicate the term obtained from t by subsituting
y for x. Given a set A, the notation Ax

y indicates the set obtained by substituting y for
x in every element of A. A detailed treatment of substitution can be found in [27].

2.1.2 Names

We distinguish between variables and constants. The set of constants consists of the
logical constants ¬,∧,∨,→, the quantifiers ∀,∃ and the modal constants ¬̇, ∧̇, ∨̇,♦,�,∗.
We use N to denote the set of all names that are not constants, and refer to it as
variables. To denote the set of all variables of a certain type σ, we write Nσ. Note
that Nι denotes the set of all nominals. We divide Nιo in two disjoint subsets, namely
atomic properties and path variables. We denote the set of all path variables by V.
We reserve the following letters for variables of the given type:

x, y, z : ι

p, q : ιo p, q 6∈ V

α, β : ιo α, β ∈ V

r : ιιo

2.2 Semantics

We now approach semantics by embedding modal logic into Simple Type Theory (STT)
to have its rich syntactic and semantic framework at hand. For an introduction to STT
refer to [2]. To know more, read [7].

We start from two base types o and ι and fix the interpretation of o to be the set
{0, 1}. The interpretation of ι is a non-empty set of states. Given two types σ and τ ,
the interpretation of the type στ is the set of all total functions from the interpretation
of σ to the interpretation of τ . Types are right-associative.

We use names of type ι as states and call them nominals, names of type ιo as labels
and call them atomic properties, and names of type ιιo as atomic relations.

2.2.1 Locality

Modal expressions are always of type ιo, whereas modal formulas are of type o. Note
that traditional modal formulas [4] correspond to the modal expressions in our setup.
Intuitively, going from a modal expression t to a modal formula tx augments the property
denoted by t with the state of evaluation.

2.2.2 Defining Equations

The embedding into STT is straightforward and has been successfully done before. See
for example [20, 21]. A listing of the defining equations for the modal constants is given
in Fig. 2.2.

11



2.2. Semantics Chapter 2. Fundamentals

Figure 2.2: Defining Equations for the Traditional Modal Constants

¬̇ = λpx.¬px ¬̇ : (ιo)ιo

∧̇ = λpqx. px ∧ qx ∧̇ : (ιo)(ιo)ιo

∨̇ = λpqx. px ∨ qx ∨̇ : (ιo)(ιo)ιo

♦ = λrpx. ∃y. rxy ∧ py ♦ : (ιιo)(ιo)ιo

� = λrpx. ∀y. rxy → py � : (ιιo)(ιo)ιo

2.2.3 Transitive Closure Operator

We now define the reflexive transitive closure operator in STT. We define the reflexive
transitive closure of a relation r as the intersection of all reflexive transitive relations
that contain r.

Definition 2 Let r be a relation. The reflexive, transitive closure r∗ of r is defined as
follows.

r∗ :=
⋂

{r′ | r′ reflexive ∧ r′ transitive ∧ r ⊆ r′}

This equation is easy to express in STT. Note that we obtain the infinite intersection
by using an universal quantifier over relations of type ιιo.

Figure 2.3: Defining Equations for the Transitive Closure Operator

T = λr. ∀xyz.rxy ∧ ryz → rxz T : (ιιo)o

R = λr. ∀x.rxx R : (ιιo)o

⊆ = λrr′. ∀xy.rxy → r′xy ⊆ : (ιιo)(ιιo)o
∗ = λrxy. ∀r′.Rr′ ∧ Tr′ ∧ r ⊆ r′ → r′xy ∗ : (ιιo)ιιo

2.2.4 Satisfiability

A modal interpretation is an interpretation of simple type theory that interprets o
as the set {0, 1}, the logical constants and quantifiers as usual, and the modal constants
according to their definition.

Definition 3 A modal interpretation I satisfies a set of modal formulas A, if
I |= A, i.e. Is = 1 for all s ∈ A. A modal interpretation I satisfies a set of modal
expressions L, if there is a state a ∈ Iι such that I, a |= L, i.e. Ita = 1 for all t ∈ L.

12



2.2. Semantics Chapter 2. Fundamentals

We often write I |= s, where s is a modal formula. In this case we mean the singleton
set containing s. The same applies to modal expressions.

We import a proposition from [20].

Proposition 2 Let I be an interpretation and X be a set of nominals such that Iι =
{Ix | x ∈ X}. Then the following holds for every term t of type ιo:

I |= ∃t ⇐⇒ ∃x ∈ X : I |= tx

I |= ∀t ⇐⇒ ∀x ∈ X : I |= tx

Since the above proposition is not applicable to all interpretations, we have another
proposition to lift quantifiers to the meta level.

Proposition 3 Let I be an interpretation. Then the following holds for every term t
of type ιo:

I |= ∃t ⇐⇒ ∃a ∈ Iι : I, a |= t

I |= ∀t ⇐⇒ ∀a ∈ Iι : I, a |= t

We also have a proposition concerned with the semantics of � and ♦.

Proposition 4 Let I be a modal interpretation and a ∈ Iι. Then the following holds.

I, a |= ♦ρt ⇐⇒ ∃b ∈ Iι : Iρab = 1 ∧ I, b |= t

I, a |= �ρt ⇐⇒ ∀b ∈ Iι : Iρab = 1 =⇒ I, b |= t

I, a |= �r∗t =⇒ ∀b ∈ Iι : Irab = 1 =⇒ I, b |= t,�r∗t

2.2.5 Modally Valid Formulas

A formula is modally valid, if it is satisfied by all modal interpretations. We give
some important modally valid formulas. They can be verified by any tableaux system
for STT using the defining equations for the modal constants from Fig. 2.2. Suitable
tableau systems can be found in [27, 2], for example.

♦ρp = ¬̇�ρ(¬̇p)

�r∗px ≡ px ∧ �r(�r∗p)x

♦r∗px ≡ px ∨ ♦r(♦r∗p)x

13



3 Models

In this chapter, we establish the existence of a class of models for K∗, which we call
canonical models. In Section 3.1, we define notation to reason about the relational
structure encoded in modal interpretations. In Section 3.2, we define a notion of labels
of a state, which is a subset of the properties the state satisfies. In Section 3.3, we
compute from the labels of a state a set of formulas every successor of the state must
satisfy. In Section 3.4, we construct for every satisfiable K∗-expression a finite, satisfying
model. We get decidability and the small model property as corollaries.

3.1 Relational Structure

Since modal interpretations encode a relational structure, it is convenient to have an
explicit way to talk about related nominals.

Definition 4 Let I be a modal interpretation, a, b ∈ Iι and r be a relation.

a
r

−→I b :⇐⇒ Irab = 1

Proposition 5 Let I be a modal interpretation, and −→∈ Iι × Iι be a relation such
that −→= Ir. Then for all a, b ∈ Iι the following holds:

Ir∗ab = 1 ⇐⇒ a −→∗ b

3.2 Labels in Models

Every state in a model satisfies an infinite number of modal expressions. To work with
a reasonable set of modal expressions, we define the labels of a state with respect to
a set of modal expressions as follows.

Definition 5 Let I be a modal interpretation, a ∈ Iι, and L be a set of modal expres-
sions.

LL
Ia :={t ∈ L | I, a |= t}

3.3 Requests

Let L be a set of modal expressions. The r-request of L is the set of modal expressions
every r-successor of a state satisfying L must inevitably satisfy. An analogous concept
is used by Goré et al [1, 11].

14



3.4. Canonical Models Chapter 3. Models

Definition 6 We denote the request of a set of modal expressions with RrL.

RrL := {t | �rt ∈ L} ∪ {t,�r∗t | �r∗t ∈ L}

We call Rr(LL
Ia) the request of the state a in I with respect to L.

Proposition 6 Let I be a modal interpretation, L be a set of modal expressions, a, b ∈
Iι such that a

r
−→I b, and I, a |= L. Then I, b |= RrL.

Proof. We prove �rt ∈ L =⇒ I, b |= t and �r∗t ∈ L =⇒ I, b |= t,�r∗t.

Let �rt ∈ L.

I, a |= �rt

⇐⇒ ∀b ∈ Iι : Irab = 1 =⇒ I, b |= t Prop. 4

=⇒ I, b |= t Irab = 1

Let �r∗t ∈ L.

I, a |= �r∗t

⇐⇒ ∀b ∈ Iι : Irab = 1 =⇒ I, b |= t ∧ I, b |= �r∗t Prop. 4

=⇒ I, b |= t ∧ I, b |= �r∗t Irab = 1 �

Lemma 1 Let L be a satisfiable set of modal expressions. If ♦rt ∈ L then (RrL)∪ {t}
is satisfiable.

Proof. Since L is satisfiable, there is an interpretation I and a state a ∈ Iι such that
I, a |= A.

I, a |= L

⇐⇒ I, a |= ♦rt ♦rt ∈ L,Def. 3

⇐⇒ ∃b ∈ Iι : a
r

−→I b ∧ I, b |= t Prop. 4

=⇒ ∃b ∈ Iι : I, b |= RrL ∧ I, b |= t Prop. 6 with I, a |= L

⇐⇒ ∃b ∈ Iι : I, b |= RrL ∪ {t} Def. 3

=⇒ RrA ∪ {t} satisfiable �

3.4 Canonical Models

We now define canonical models following the construction for PDL as it appears in [4].
However, our argument does not use a notion of consistency, but is based on the semantic
notion of satisfiability. We thus need no proof system, which makes the argument in our
view more transparent.

15



3.4. Canonical Models Chapter 3. Models

Definition 7 (Maximal Satisfiable Subset) Let S be a set of modal formulas. A
set A is a maximal satisfiable subset of S if A ⊆ S, A is satisfiable, and all sets B
such that A ( B ⊆ S are not satisfiable.

Proposition 7 Let A ⊆ S such that A is satisfiable. Then there is a maximal satisfiable
subset B of S such that A ⊆ B.

Definition 8 (Saturation Closure) Let t be a modal expression. Then saturation
closure C for t is defined as follows.

Ct := Mt ∪ {¬̇t | t ∈ Mt}

Note that we assume Ct to contain only negation normal terms.

Definition 9 (Canonical Model) Let t be a modal expression, and I be a modal
interpretation. I is a canonical model of t if it satisfies the following equations.

Iι := {A | A maximal satisfiable subset of Ct}

IpA := p ∈ A

IrAB := (RrA) ⊆ B

We now prove that each state satisfies the formulas it contains.

Theorem 1 (Satisfiability) Let t be a modal expression and I be a canonical model
of t. Then A ∈ Iι =⇒ I, A |= A.

Proof. Let s ∈ Ct and N be a set of names such that Iι = {Ix | x ∈ N}. We proof by
induction on the structure of s for all A ∈ Iι that s ∈ A =⇒ I, A |= s. Let A ∈ Iι and
s ∈ A.

Let p ∈ A. p ∈ A ⇐⇒ IpA = 1 by Def. 9. Thus I, A |= p.

Let ¬̇p ∈ A. ¬̇p ∈ A ⇐⇒ p 6∈ A by Def. 7 and p 6∈ A ⇐⇒ IpA = 0 by Def. 9.

Let t1 ∧̇ t2 ∈ A. Let x ∈ Nι such that Ix = A.

t1 ∧̇ t2 ∈ A ⇐⇒ t1, t2 ∈ A Def. 7

=⇒ I, A |= t1 ∧ I, A |= t2 Ind. Hyp.

⇐⇒ I |= t1x ∧ I |= t2x Ix = A

⇐⇒ I |= t1x ∧ t2x

⇐⇒ I |= (t1 ∧̇ t2)x Fig. 2.2

⇐⇒ I, A |= t1 ∧̇ t2 Ix = A

16
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Let t1 ∨̇ t2 ∈ A. Let x ∈ Nι such that Ix = A.

t1 ∨̇ t2 ∈ A ⇐⇒ t1 ∈ A ∨ t2 ∈ A Def. 7

=⇒ I, A |= t1 ∨ I, A |= t2 Ind. Hyp.

⇐⇒ I |= t1x ∨ I |= t2x Ix = A

⇐⇒ I |= t1x ∨ t2x

⇐⇒ I |= (t1 ∨̇ t2)x Fig. 2.2

⇐⇒ I, A |= t1 ∨̇ t2 Ix = A

Let ♦rt ∈ A. Since A is satisfiable by Def. 9, we apply Lem. 1, and get that (RrA)∪{t}
is satisfiable. By Prop. 7, there is maximal satisfiable subset B of Ct containing
(RrA) ∪ {t}. B is a state in I by Def. 9. Again by Def. 9, we get IrAB = 1 and
the claim follows by induction for t ∈ B.

Let s = ♦r∗t. Since A is maximal satisfiable there is an interpretation I ′ with a ∈ I ′ι
such that I ′, a |= A. By Prop. 4 there is b ∈ I ′ι such that a

r
−→

∗

I′ b and I ′tb = 1.

There is n ∈ N such that a
r

−→
n

I′ b. We show by induction on n that a path of the
same length to a state satisfying t exists in I.

Let n = 0. Then I ′, a |= A ∪ {t}. Thus t ∈ A since A is a maximal satisfiable
subset of Ct and t ∈ Ct. The claim follows by outer induction for t ∈ A.

Let n > 0. We have a
r

−→I′ c, c
r

−→
n−1

I′ b for some c ∈ I ′ι. We construct a
maximal satisfiable subset of Ct, namely B := {t | t ∈ Ct∧Itc = 1}. Observe
that B ∈ Iι by Def. 9. We also have that I ′, c |= RrA by Prop. 6, thus
RrA ⊆ B, hence I |= rAB. By construction I ′, c |= B, thus we apply the
inner induction hypothesis, which yields the claim.

Let �rt ∈ A. Let x ∈ N such that Ix = A.

∀y ∈ N : I |= rxy ↔ (RrA) ⊆ Iy Def. 9

⇐⇒ ∀y ∈ N : I |= rxy → t ∈ Iy t ∈ RrA by Def. 6

=⇒ ∀y ∈ N : I |= rxy → I |= ty Ind. Hyp.

⇐⇒ ∀y ∈ N : I |= rxy → ty

⇐⇒ ∀y ∈ N : I |= (λy.rxy → ty)y β-law

⇐⇒ I |= (∀y.rxy → ty) Prop. 2

⇐⇒ I |= (λrpx.∀y.rxy → py)rtx β-law

⇐⇒ I |= �rtx Def. from Fig. 2.2

⇐⇒ I, A |= �rt Ix = A

Let �r∗t ∈ A. Let B ∈ Iι such that A
r

−→
∗

I B. There is n ∈ N such that A
r

−→
n

I B.
We show I, B |= t by induction on n.

17



3.4. Canonical Models Chapter 3. Models

Let n = 0. Since B is satisfiable by Def. 9 and �r∗t ≡ t ∧̇�r(�r∗t) is a tautology,
t ∈ B. The claim follows by outer induction.

Let n > 0. Then there is C ∈ Iι such that A
r

−→
1

I C and C
r

−→
n−1

I B. Thus
RrA ⊆ C by Def. 9, in particular t,�r∗t ∈ C. The claim follows by inner
induction for �r∗t ∈ C. �

Having established this lemma, we can construct a canonical model for every modal
expression t. If the expression is satisfiable, the canonical interpretation satisfies it.

Corollary 1 Let t be a modal expression and I be a canonical model of t. Then t is
satisfiable if and only if I satisfies t.

The number of states in canonical models is bounded in the size of the saturation
closure. Furthermore, the saturation closure is polynomially bounded in the size of the
modal expression considered.

Corollary 2 (Small Model Property) Let t be a satisfiable modal expression. Then
there is a modal interpretation I with Iι ≤ 2|Ct| that satisfies t.

Having a bound on the size of the model of a formula, we can decide satisfiability of
K∗-formulas by enumerating all the models with a size below the bound and checking if
any of them satisfies the formula.

Corollary 3 (Decidability) Satisfiability of modal expressions is decidable.

We have another interesting observation. This is essentially the backwards direction
of Theorem 1.

Proposition 8 Let t be a modal expression, I be a canonical model for t, a ∈ Iι,
s ∈ Ct, and I, a |= s. Then s ∈ a.

Proof. Observe that there is an s′ ∈ Ct such that s′ = ¬̇s by Def. 7. Assume s 6∈ a. Since
a is a maximal satisfiable subset of Ct by Def. 9, we have s′ ∈ a. But then I |= {¬̇s, s}
by Theorem 1, a contradiction. �
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4 Tableau System

In this chapter, we will develop a sound and straight tableau system for K∗. We precede
as follows. In Section 4.1, we define the notion of a tableau branch and some impor-
tant relations. In Section 4.2, we give a model existence theorem that establishes that
branches satisfying certain conditions have a model. In Section 4.3, we give the tableau
rules. In Section 4.4, we construct a basic (non-terminating) tableau system by applying
the usual progress conditions. In Section 4.5, we formalize invariants on branches as
admissibility conditions. In Section 4.6, we establish soundness of the system. In Sec-
tion 4.7, we prove straightness properties for the system. Straightness is a strengthened
soundness property, which asserts that the branch encodes a models of a certain class
and thus has certain beneficial properties. The notion of encoding is given by the model
existence theorem.

4.1 Branches

To talk about sets of formulas in the context of tableaux, we define a notion of tableau
branches, or branches for short, as follows. Tableaux branches contain formulas ob-
tained from the modal expressions t defined in Section 2.1, edges rxy, and formulas αx,
♦rαx, and α = ♦r∗t, the latter of which we call equations. In equations, the left hand
side is always a path variable and the right hand side is always a ♦∗-formula. We denote
the set of path variables occurring on a branch A by VA.

To capture the special structure of the formulas that occur on tableau branches, we
extend the grammar given in 2.1 by two new categories: the formulas s, and the extended
terms u. We repeat the categories t and ρ in Def. 10 for convenience.

Definition 10 (Extended Grammar)

s ::= ux | ♦rαx | α = ♦r∗t | rxx formula

u ::= α | t extended modal expression

t ::= p | ¬̇t | t ∧̇ t | t ∨̇ t | ♦ρt | �ρt proper modal expression

ρ ::= r | r∗

We use the letters s, u, t, ρ to range over the corresponding categories exclusively.
Adding new categories requires the extension of the function M to formulas.
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4.1. Branches Chapter 4. Tableau System

Definition 11 Let s be an extended modal formula. We define Ms inductively ac-
cording to the following equations:

M(α = ♦r∗t) = M(♦r∗t)

M(♦rαx) = {♦rαx, α, x}

M(rxy) = {r, x, y}

M(tx) = {x} ∪Mt

M(αx) = {α, x}

4.1.1 Labels

Definition 12 (Labels of a nominal) Let A be a branch and x ∈ NιA. We define
the set of all labels of a nominal x in A as LAx := {t | tx ∈ A} ∪ {♦r∗t | ∃α ∈
VA : αx,α = ♦r∗t ∈ A} ∪ {♦r(♦r∗t) | α = ♦r∗t,♦rαx ∈ A}. A modal expression t is a
label of x in A if t ∈ LAx.

Note that labels never contain path variables. Instead, they contain the corresponding
modal expressions.

Definition 13 (Modal Equivalence) Let A be a branch. Two nominals x, y ∈ NιA
are modally equivalent in A if LAx = LAy. We denote the modal equivalence relation
for A by ∼A.

4.1.2 Patterns

In the following, we need a notion of patterns. The idea of patterns is due to Kaminski
and Smolka [19].

Definition 14 (Pattern) A pattern is a set {�ρ1t1, . . . , �ρntn} with n ∈ N of sev-
eral �-expressions.

Definition 15 (Pattern of a Nominal) Let A be a branch. The pattern of a nominal
x ∈ NιA with respect to an atomic relation r is defined as follows.

Pr
Ax := {�ρt | �ρtx ∈ A, ρ ∈ {r, r∗}}

Note that the r-request of the labels of a nominal is exactly the r-request of the
r-pattern of the nominal.

Proposition 9 Let A be a branch, r be an atomic relation, and x ∈ NιA. Then
Rr(Pr

Ax) = Rr(LAx).

Proof. It suffices to show for all ρ ∈ {r, r∗} and for all t that �ρtx ∈ LAx ⇐⇒ �ρtx ∈
Pr

Ax. This is immediate from Def. 15, Def. 12 and Def. 6. �

Definition 16 (Pattern Equivalence) Let A be a branch and x, y ∈ NιA. Then
x ∼r

A y if Pr
Ax = Pr

Ay.

Definition 17 (Pattern Inclusion) Let A be a branch and x, y ∈ NιA. Then x ⊆r
A y

if Pr
Ax ⊆ Pr

Ay.
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4.1. Branches Chapter 4. Tableau System

4.1.3 Relations

Branches encode a relational structure, and we introduce some notation to make this
structure explicit, like we did it for interpretations in 3.1 before.

Definition 18 (r-Reachability, Reachability) Let A be a branch, and x, y ∈ NιA.

x
r

−→A y :⇐⇒ rxy ∈ A

x −→A y :⇐⇒ ∃r : x
r

−→A y

Definition 19 (r-Reachability Modulo Pattern Equivalence) Let A be a branch,
x, y ∈ NιA and r be a relation.

x
⊆,r
−→A y :⇐⇒ ∃x′ ∈ NιA : x ⊆r

A x′ ∧ x′ r
−→A y

The new categories from Def. 10 give rise to other kinds of relations. The α-relation
models transition between nominals that both contain the same path variable and are
linked by a relation r.

Definition 20 (α-Relation) Let A be a branch and x, y ∈ NιA and α ∈ VA.

x
α

−→A y ⇐⇒ αx, rxy, αy ∈ A

We later establish that the r-transition in Def. 20 corresponds to the relation occur-
ring the equation for α. Now we abstract from the path variables and relate nominals
depending on the ♦∗-expression of the path variable.

Definition 21 (♦∗-Relation) Let A be a branch and x, y ∈ NιA.

x
♦r∗t
−→A y ⇐⇒ ∃α ∈ VA : α = ♦r∗t ∈ A ∧ x

α
−→A y

Proposition 10 Let A be a branch and α = ♦r∗t ∈ A. Then
α

−→A⊆
♦r∗t
−→A.

4.1.4 Paths

Relational structures give rise to the notion of paths.

Definition 22 (Path) Let S be a set and −→∈ S × S. A −→-path is a tuple
(x0, . . . , xn) such that

• ∀i ∈ [0, n] : xi ∈ S

• ∀i ∈ [0, n − 1] : xi −→ xi+1

Definition 23 (Path Maximality) Let S be a set and −→∈ S×S. A path (x, . . . , y)
is maximal, if it cannot be extended: ¬∃z ∈ S : y −→ z.

Definition 24 (Cyclic Paths) Let S be a set and −→∈ S ×S. A path (x0, . . . , xn) is
cyclic, if there are i, j ∈ [0, n] such that i 6= j and xi = xj. A path is acyclic, if it is
not cyclic.
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Figure 4.1: Evidence Conditions

(¬̇p)x ∈ A =⇒ px 6∈ A E¬̇

(t1 ∧̇ t2)x ∈ A =⇒ t1x ∈ A ∧ t2x ∈ A E∧̇
(t1 ∨̇ t2)x ∈ A =⇒ t1x ∈ A ∨ t2x ∈ A E∨̇

♦rtx ∈ A =⇒ ∃y ∈ NιA : x
⊆,r
−→A y ∧ ty ∈ A E♦

♦r∗tx ∈ A =⇒ ∃y ∈ NιA : x
⊆,r
−→

∗

A y ∧ ty ∈ A E♦∗

�rtx ∈ A =⇒ ∀y ∈ NιA : x
r

−→A y =⇒ ty ∈ A E�

�r∗tx ∈ A =⇒ tx ∈ A ∧ ∀y ∈ NιA : x
r

−→A y =⇒ �r∗ty ∈ A E�∗

4.2 Model Existence

In this section, we establish a model existence theorem. We prove that every branch
that satisfies a set of conditions called evidence conditions has a model. The formulation
of the evidence conditions is based on the notion of patterns. Evidence conditions will
be such that they do not take path variables into account.

4.2.1 Evidence Conditions

The evidence conditions are given in Figure 4.1. A branch that satisfies them is called
evident. In fact, the conditions entail some stronger properties. This is captured in the
following proposition.

Proposition 11 (Explicit Evidence) Let A be an evident set of K∗-formulas. Then
A additionally satisfies the following conditions.

�rtx ∈ A =⇒ ∀y ∈ NιA : x
⊆,r
−→A y =⇒ ty ∈ A E ′

�

�r∗tx ∈ A =⇒ ∀y ∈ NιA : x
⊆,r
−→

∗

A y =⇒ ty ∈ A ∧ �r∗ty ∈ A E ′
�∗

Proof. Let A be an evident set of K∗-formulas. For the proof of E ′
�, let y ∈ NιA.

�rtx ∈ A ∧ x
⊆,r
−→A y

⇐⇒ �rtx ∈ A ∧ ∃x′ ∈ NιA : x ⊆r
A x′ ∧ x′ r

−→A y Def. 19

⇐⇒ �rtx ∈ A ∧ ∃x′ ∈ NιA : Pr
Ax ⊆ Pr

Ax′ ∧ x′ r
−→A y Def. 16

=⇒ �rtx′ ∈ A ∧ x′ r
−→A y �rt ∈ Pr

Ax

=⇒ ty ∈ A E�
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For the proof of E ′
�∗ , let �r∗tx ∈ A, y ∈ NιA, and x

⊆,r
−→

∗

A y. Then ∃n ∈ N : x
⊆,r
−→

n

A y.
We show �r∗ty, ty ∈ A by induction on n.

Let n = 0. Then x = y. The claim follows with E�∗ .

Let n > 0. Then ∃z ∈ NιA : x
⊆,r
−→

n−1

A z ∧ z
⊆,r
−→

1

A y. By Induction we get �r∗tz, tz ∈
A. Then ∃z′ ∈ NιA : z ∼r

A z′ ∧ z′
r

−→A y by Definition 19. �r∗tz′ ∈ A since
Pr

Az′ ⊆ Pr
Az. Thus �r∗ty, ty ∈ A by E�∗ . �

4.2.2 Model Existence Theorem

Let A be an evident branch. We now construct a satisfying modal interpretation I.

II := NιA

Ix := x

Irxy := x
⊆,r
−→A y r atomic

Ipx := px ∈ A p atomic

Theorem 2 Every (finite) evident set is (finitely) satisfiable.

Proof. We prove tx ∈ A =⇒ I |= tx by induction on the well-founded subterm relation
of t. Case analysis.

Let px ∈ A.

px ∈ A ⇐⇒ Ipx = 1

⇐⇒ Îpx = 1

⇐⇒ I |= px

Let ¬̇px ∈ A.

¬̇px ∈ A =⇒ px 6∈ A E¬̇

⇐⇒ I 6|= px Case px ∈ A

Let (t1 ∧̇ t2)x ∈ A.

(t1 ∧̇ t2)x ∈ A =⇒ t1x, t2x ∈ A E∧̇

=⇒ I |= t1x ∧ I |= t2x Induction

⇐⇒ I |= t1x ∧ t2x

⇐⇒ I |= (t1 ∧̇ t2)x Def. ∧̇
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Let (t1 ∨̇ t2)x ∈ A.

(t1 ∨̇ t2)x ∈ A =⇒ t1x ∈ A ∨ t2x ∈ A E∨̇

=⇒ I |= t1x ∨ I |= t2x Induction

⇐⇒ I |= t1x ∨ t2x

⇐⇒ I |= (t1 ∨̇ t2)x Def. ∨̇

Let ♦rtx ∈ A.

♦rtx ∈ A =⇒ ∃y ∈ NιA : x
⊆,r
−→A y ∧ ty ∈ A E♦, y 6∈ Nιt ∪ {x}

=⇒ ∃y ∈ NιA : x
⊆,r
−→A y ∧ I |= ty Induction

⇐⇒ ∃y ∈ NιA : Irxy = 1 ∧ I |= ty Def. I

⇐⇒ ∃y ∈ NιA : I |= rxy ∧ I |= ty Def. |=

⇐⇒ ∃y ∈ NιA : I |= rxy ∧ ty

⇐⇒ ∃y ∈ NιA : I |= (λy.rxy ∧ ty)y β-law

⇐⇒ I |= ∃y. rxy ∧ ty Proposition 2

⇐⇒ I |= ♦rtx Def. ♦

Let ♦r∗tx ∈ A.

♦r∗tx ∈ A =⇒ ∃y ∈ NιA : x
⊆,r
−→

∗

A y ∧ ty ∈ A E♦∗ , y 6∈ Nιt ∪ {x}

=⇒ ∃y ∈ NιA : x
⊆,r
−→

∗

A y ∧ I |= ty Induction

⇐⇒ ∃y ∈ NιA : Ir∗xy = 1 ∧ I |= ty Prop. 5

⇐⇒ ∃y ∈ NιA : I |= r∗xy ∧ I |= ty Def. |=

⇐⇒ ∃y ∈ NιA : I |= r∗xy ∧ ty

⇐⇒ ∃y ∈ NιA : I |= (λy.r∗xy ∧ ty)y β-law

⇐⇒ I |= ∃y. r∗xy ∧ ty Proposition 2

⇐⇒ I |= ♦r∗tx Def. ♦
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Let �rtx ∈ A.

�rtx ∈ A =⇒ ∀y ∈ NιA : x
⊆,r
−→A y =⇒ ty ∈ A E ′

�, y 6∈ Nιt ∪ {x}

=⇒ ∀y ∈ NιA : x
⊆,r
−→A y =⇒ I |= ty Induction

⇐⇒ ∀y ∈ NιA : Irxy = 1 =⇒ I |= ty Def. I

⇐⇒ ∀y ∈ NιA : I |= rxy =⇒ I |= ty Def. |=

⇐⇒ ∀y ∈ NιA : I |= rxy → ty

⇐⇒ ∀y ∈ NιA : I |= (λy.rxy → ty)y β-law

⇐⇒ I |= ∀y. rxy → ty Proposition 2

⇐⇒ I |= �rtx Def. �

Let �r∗tx ∈ A.

�r∗tx ∈ A =⇒ ∀y ∈ NιA : x
⊆,r
−→

∗

A y =⇒ ty ∈ A E ′
�, y 6∈ Nιt ∪ {x}

=⇒ ∀y ∈ NιA : x
⊆,r
−→

∗

A y =⇒ I |= ty Induction

⇐⇒ ∀y ∈ NιA : Ir∗xy = 1 =⇒ I |= ty Prop. 5

⇐⇒ ∀y ∈ NιA : I |= r∗xy =⇒ I |= ty Def. |=

⇐⇒ ∀y ∈ NιA : I |= r∗xy → ty

⇐⇒ ∀y ∈ NιA : I |= (λy.r∗xy → ty)y β-law

⇐⇒ I |= ∀y. r∗xy → ty Proposition 2

⇐⇒ I |= �r∗tx Def. �

�

4.3 Rules

The schemata for the tableau rules are depicted in Figure 4.2. Note that we introduce a
path variable for every ♦∗-formula. This is necessary to prove straightness of the system.

4.4 The Basic System T

We impose progress conditions as usual on the basic system.

Definition 25 (Progress Conditions) Let 〈A,A1, . . . , An〉 ∈ T and i ∈ [1, n]. Then

P1 〈A〉 6∈ T

P2 A ( Ai
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Figure 4.2: Tableau Rules of T

T¬̇
(¬̇p)x, px

T∧̇
(t1 ∧̇ t2)x

t1x , t2x
T∨̇

(t1 ∨̇ t2)x

t1x | t2x

T�

�rtx, rxy

ty
T R

�∗

�r∗tx

tx
T T

�∗

�r∗tx, rxy

�r∗ty

T♦

♦rux

rxy , uy
y /∈ NιA T α

♦∗

♦r∗tx

αx, α = ♦r∗t
α 6∈ VA T♦∗

αx,α = ♦r∗t

tx | ♦rαx

P3 x ∈ NιAi −NιA =⇒ ∀y ∈ NιA : A ( Ai
x
y

For our proofs it will be important that the labels of a nominal never change after
a successor has been introduced. We thus prioritize the tableau rules to ensure this
property.

Definition 26 (Propagated Nominal) Let A be a branch. We say x ∈ NιA is prop-
agated if no rule in T¬̇,T∧̇,T∨̇,T�,T R

�∗ ,T T
�∗,T α

♦∗ ,T♦∗ applies to formulas at x.

We augment T♦ with a side condition as follows.

T♦

♦rux

rxy , uy
y /∈ NιA

• x is propagated

We define the tableau system T as the largest subset of the union of the rules generated
by the schemata T¬̇,T∧̇,T∨̇,T�,T R

�∗ ,T T
�∗ ,T♦,T α

♦∗ ,T♦∗ that obeys the progress conditions
and contains all closing rules.

Definition 27 (Propagated Branch) An admissible branch A is propagated if it
satisfies all evidence conditions, except E♦ and E♦∗ , and additionally meets the following
requirements.

♦r∗tx ∈ A =⇒ ∃α ∈ VA : αx,α = ♦r∗t ∈ A M♦∗

αx,α = ♦r∗t ∈ A =⇒ tx ∈ A ∨ ♦rαx ∈ A Mα

From Def. 26 one would expect a branch to be propagated if all of its nominals are
propagated. The next proposition states that this coincides with our definition of a
propagated branch in Def. 27.
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Proposition 12 Let A be an admissible branch. If no rule from T − T♦ applies to A,
then A is propagated.

Proof. By contradiction. Case analysis.

Let ¬̇px ∈ A for the proof of E¬̇. Assume px ∈ A. Then T¬̇ applies to A. Contradiction.

Let (t1 ∧̇ t2)x ∈ A for the proof of E∧̇. Assume t1x 6∈ A or t2x 6∈ A. Then T∧̇ applies.
Contradiction.

Let (t1 ∨̇ t2)x ∈ A for the proof of E∨̇. Assume t1x 6∈ A and t2x 6∈ A. Then T∨̇ applies.
Contradiction.

Let �rtx ∈ A for the proof of E�. Assume ∃y ∈ NιA : rxy ∈ A ∧ ty 6∈ A. Then T�

applies. Contradiction.

Let �r∗tx ∈ A for the proof of E�∗ . Assume tx 6∈ A. Then T R
�∗ applies. Contradiction.

Assume ∃y ∈ NιA : rxy ∧ �r∗ty 6∈ A. Then T T
�∗ applies. Contradiction.

Let ♦r∗tx ∈ A for the proof of M♦∗ . Assume ∀α ∈ VA : {αx,α = ♦r∗t} 6⊆ A. Then
Rα

♦∗ is applicable by Progress Condition P3. Contradiction.

Let αx,α = ♦r∗t ∈ A for the proof of Mα. Assume tx 6∈ A and ♦rαx 6∈ A. Then T♦∗

is applicable. Contradiction. �

4.5 Admissibility

We formalize important invariants on branches as admissibility criteria.

Definition 28 A branch A is admissible, if

1. (NιA,−→A) is a tree

2. ∀α ∈ VA : {x | αx ∈ A} is an
α

−→A-path

3. ∀α ∈ VA there is a unique formula α = ♦r∗t ∈ A.

4. αx, rxy, αy, α = ♦r∗t ∈ A =⇒ ♦rαx ∈ A

5. αx, rxy, αy ∈ A =⇒ α = ♦r∗t ∈ A

6. ♦rαx ∈ A =⇒ αx ∈ A

7. rxy ∈ A ∧ 〈A,A1, . . . , An〉 ∈ T =⇒ ∀i ∈ [1, n] : ∀u : ux ∈ A ⇐⇒ ux ∈ Ai

These conditions are invariants the tableau system guarantees to preserve.

Proposition 13 The rules of T preserve admissibility.
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Proof Sketch. 1. Holds, since T♦ uses fresh names.

2. Holds, since a formula αx can only be added to a branch if either for the predecessor
y we have αy ∈ A and for no other successor x′ of y we have αx′ ∈ A, or α 6∈ VA.

3. Holds, since T α
♦∗ uses fresh names.

4. Holds, since there is no other way to add αy to a branch A if α ∈ VA than the
expansion of a formula ♦rαx.

5. Holds, since there is no other way to add αy to a branch A if α ∈ VA than the
expansion of a formula ♦rαx, which contains the right relation r by T♦∗ and thus
ensures rxy ∈ A.

6. Holds, since T♦∗ can only add ♦rαx to a branch A if αx ∈ A.

7. Holds, since T♦ is only applicable to ♦rux if no other rule applies to formulas at
x. �

4.6 Soundness

Proposition 14 The tableau rules of T are sound.

Proof Sketch. We give modally valid formulas to justify the soundness of the tableau
rules.

(p1 ∧̇ p2)x ≡ p1x ∧ p2x T∧̇

(p1 ∨̇ p2)x ≡ p1x ∨ p2x T∨̇

�rpx ∧ rxy → py T�

�r∗px ≡ px ∧ �r(�r∗p)x T R
�∗,T T

�∗

♦rpx → ∃y.rxy ∧ py T♦

♦r∗px ≡ αx ∧ α = ♦r∗p T α
♦∗,T♦∗

♦r∗px ≡ px ∨ ♦r(♦r∗p)x T♦∗ �

4.7 Straightness

We now define a strengthened soundness property called straightness. Soundness of a
rule guarantees that if there is a model of the premise, there must be a model of at least
one alternative among the conclusions. Straightness is the same property with respect
to a certain set of branches. We formulate what it means for a branch to be straight
through straightness conditions.

Before we start, we need some intuition. If our only goal is to satisfy ♦r∗p, we need
an r-path to a state satisfying p. Such an r-path we call a witness path. Note that
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semantics of K∗ do not place any requirements on the length of the witness path. In
Fig. 4.3, three models with witness paths of different length are given. The leftmost
clearly features the shortest witness path. We have an interest in keeping witness paths
in branches short.

Figure 4.3: Three witness paths of different length

x

y

z : p

v

w : p

u : p

r

r

r

Straight branches enjoy one nice property of particular importance: All their witness
paths are short in some sense. At the end of this section, we will be able to prove that
along a witness path on straight branches, a request never repeats before the witness
occurs.

4.7.1 Witness Distances

We now devise a measure for the length of a witness path. Note that er assume min to
yield ∞ for the empty set.

Definition 29 Given a modal interpretation I, a state a ∈ Iι, a relation r and a modal
expression t, the function δr

I,t : Iι → N∪{∞} yields the witness distance, which is the
length of the shortest r-path in I starting at a and leading to a state satisfying t.

δr
I,ta := min{n ∈ N | ∃b ∈ Iι : a

r
−→

n

I b ∧ Îtb = 1}

Since a ♦∗-expression can be true in many states of a model, we are interested in the
shortest witness path the model provides.

Definition 30 Given a modal interpretation I, a set of modal expressions L, a relation
r and a modal expression t, we define ∆r

I,t : 2MA → N∪{∞}, which yields the length of
the shortest r-path in I from a state satisfying L to a state satisfying t.

∆r
I,tL := min{δr

I,ta | I, a |= L}

4.7.2 Selectors

We now parametrize the setup with a selector function. A selector function selects a
subset of the labels of a nominal. We require all selectors to select at least enough to
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preserve the request of the nominal. Selectors make it possible to apply the same proof
technique for two different blocking techniques.

Definition 31 Let A be a branch. A selector for A is a family of functions σA that
is parametric in the relations occurring in A such that it holds ∀x ∈ NιA : Rr(σr

Ax) =
Rr(LAx) for all relations r that occur in A.

4.7.3 Straight Branches

We now have all definitions needed to define the straightness conditions on branches.

Definition 32 Let A be a branch and I be an interpretation. I is straight for A if it
satisfies the following conditions for all selectors σA:

S1 s ∈ A =⇒ I |= s if s is no edge

S2 rxy ∈ A =⇒ I,Iy |= Rr(σr
Ax)

O1 αx, rxy, αy, α = ♦r∗t ∈ A =⇒ δr
I,t(Iy) = ∆r

I,t(R
r(σr

Ax))

O2 αx,α = ♦r∗t,♦rαx ∈ A =⇒ I 6|= tx

We say A is straight if there is an interpretation that is straight for A.

The crucial property of straight branches is that the witness distance always decreases
along the corresponding ♦∗-relation.

Proposition 15 Let A be an admissible, straight branch, and I be straight for A. If

x
♦r∗t
−→A y and I 6|= ty, then ∆r

I,t(R
r(σr

Ax)) > ∆r
I,t(R

r(σr
Ay)) for all selectors σr

A.

Proof.

x
♦r∗t
−→A y

⇐⇒ ∃α ∈ VA : α = ♦r∗t, αx, rxy, αy ∈ A Def. 21,Def. 20

=⇒ ∃α ∈ VA : I |= {α = ♦r∗t, αy} S1 for I

=⇒ ∃n ∈ N : ∃c ∈ Iι : (Iy)
r

−→
n

I c ∧ Îtc = 1 Prop. 4

=⇒ ∃n ∈ N : ∃b, c ∈ Iι : (Iy)
r

−→
1

I b ∧ b
r

−→
n−1

I c ∧ Îtc = 1 I 6|= ty

Now we fix the least n ∈ N that satisfies the equation above. We get δr
I,tb = δr

I,t(Iy)− 1
since n is chosen minimally. By Proposition 6 we have I, b |= Rr(LAy). Now consider
the following:

∆r
I,t(R

r(σr
Ay)) = min{δr

I,ta | I, a |= Rr(σr
Ay)} Def. ∆r

I,A

≤ δr
I,tb I, b |= Rr(σr

Ay),Def. 31

< δr
I,t(Iy) δr

I,tb = δr
I,t(Iy) − 1

= ∆r
I,t(R

r(σr
Ax)) O1 �

Given a repetition of a selection along a ♦∗-path, the above proposition immediately
yields a contradiction, since the witness distance only depends on the selection.
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4.7.4 Straightness of T

Now, we want to make sure that T indeed enjoys the straightness property.

Proposition 16 Let A be an admissible, straight branch and 〈A,A1, . . . , An〉 ∈ T .
Then there is an i ∈ [1, n] such that Ai is straight.

Proof. Since A is straight, there is a modal interpretation I that is straight for A. Let
σr

A be a selector. Case analysis on the schema R of the applied rule.

Let 〈A〉 ∈ R¬̇ with px, ¬̇px ∈ A. We show by contradiction that this rule never be-
comes applicable. By S1 for A, I |= px ∧ I |= ¬̇px, a contradiction.

Let 〈A,A ∪ {t1x}, A ∪ {t2x}〉 ∈ R∨̇ with (t1 ∨̇ t2)x ∈ A. S1 for A yields I |= (t1 ∨̇ t2)x,
thus I |= t1x ∨ I |= t2x. We can choose the branch i ∈ {1, 2} such that Condition
S1 holds for A ∪ {ti}. Condition O1 and Condition O2 hold, since the disjunction
cannot contain a path variable by admissibility of A.

Let 〈A,A ∪ {t1x, t2x}〉 ∈ R∧̇ with (t1 ∧̇ t2)x ∈ A. By S1 for A we get I |= (t1 ∧̇ t2)x,
thus I |= t1x∧I |= t2x, which ensures Condition S1. Condition O1 and Condition
O2 hold, since the conjunction cannot contain a path variable by admissibility of
A.

Let 〈A,A ∪ {αx,α = ♦r∗t}〉 ∈ Rα
♦∗ with ♦r∗tx ∈ A. Since α 6∈ VA, we arrange things

such that I |= α = ♦r∗t. Then we get I |= αx since I |= ♦r∗tx by S1 for A. This
yields Condition S1. Condition O1 and Condition O2 hold, since α 6∈ VA.

Let 〈A,A ∪ {tx}, A ∪ {♦rαx}〉 ∈ R♦∗ with αx,α = ♦r∗t ∈ A. By S1 for A we get
I |= ♦r∗tx, thus I |= tx or I |= ♦rαx. Case analysis.

Let I |= tx. We choose A ∪ {tx}, so Condition S1 holds. Condition O1 and
Condition O2 hold, since t does not contain path variables by admissibility
of A.

Let I 6|= tx. We choose A ∪ {♦rαx}. This ensures Condition S1 and Condition
O2.

Let 〈A,A ∪ {rxy, uy}〉 ∈ R♦ with ♦rux ∈ A, y 6∈ NιA. Since I |= ♦rux by S1 for A,
there is b ∈ Iι such that (Ix)

r
−→I b and Îub = 1 by Proposition 4. By Proposition

6, I, b |= Rr(LAx). Case analysis on the form of u.

Let u ∈ VA. Then u = ♦r∗t ∈ A. We choose b′ ∈ Iι such that δr
I,tb

′ =
∆r

I,t(R
r(σr

Ax)) and I, b′ |= Rr(σr
Ax). Note that since Rr(LAx) = Rr(σr

Ax),
b itself is a possible candidate for such a b′, thus it is sure that δr

I,tb
′ ∈ N.

Setting Iy := b′ ensures Condition S1, since δr
I,tb

′ ∈ N entails I, b′ |= ♦r∗t.
We get Condition S2 and Condition O1 by the choice of b′. Condition O2
holds, since y 6∈ NιA, thus ♦ruy 6∈ A.
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Let u 6∈ VA. We set Iy := b and get Condition S1. Condition S2 holds since
Rr(LAx) = Rr(σr

Ax) by Definition 31. Condition O1 holds, since t contains
no path variable since A is a branch and y 6∈ NιA. Condition O2 holds, since
y 6∈ NιA, thus for all α ∈ VA, ♦rαy 6∈ A.

Let 〈A,A ∪ {ty}〉 ∈ R� with �rtx, rxy ∈ A. Since I,Iy |= Rr(σr
Ax) by S2 for A,

and t ∈ Rr(σr
Ax) by Def. 6, we get I |= ty by Prop. 6 and thus Condition S1.

Condition O2 holds, since t contains no path variable by admissibility of A. We
did not invalidate condition O1, since y has no successors by admissibility of A.

Let 〈A,A ∪ {tx}〉 ∈ RR
�∗ with �r∗tx ∈ A. Since I |= �r∗tx by S1 for A, we get I |= ty

from the tautologies in 2.2.5, thus we have Condition S1. Condition O2 holds, since
t contains no path variable by admissibility of A. We did not invalidate condition
O1, since x has no successors by admissibility of A.

Let 〈A,A ∪ {�r∗ty}〉 ∈ RT
�∗ with �r∗tx, rxy ∈ A. Since I,Iy |= Rr(σr

Ax) by S2 for A,
and �r∗t ∈ Rr(σr

Ax) by Def. 6, we get I |= �r∗ty by Prop. 6 and thus Condition
S1. Condition O2 holds, since t contains no path variable by admissibility of A.
We did not invalidate condition O1, since y has no successors by admissibility of
A. �

4.7.5 Path Variables and Straightness

In 4.3 we stated that path variables are necessary to prove straightness. We now demon-
strate the point. The general problem is that we cannot formalize O1 without having
path variables. Consider Example 1, which is a tableau derivation not using path vari-
ables.

Example 1 A hypothetical derivation without path variables.

♦r∗px,�r(♦r∗p)x,♦rqx
px ♦r(♦r∗p)x

rxy, qy
♦r∗py

It is not possible for the tableau to remember whether ♦r∗py was added during ex-
pansion of ♦r(♦r∗p)x or �r(♦r∗p)x. But this is important for the proof of straightness,
because if the �-expansion added the formula, then the interpretation of y was already
fixed and we cannot guarantee any condition like O1. Additionally, the expansion of
♦r(♦r∗p)x is not possible due to progress condition P2.

4.7.6 Straight Models

Up to now, we have not defined what exactly a straight model is. A model is straight,
if it provides a direct successor with optimal witness distance for t for every state that
satisfies ♦r(♦r∗t).
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Definition 33 (Straight Model) Let I be a modal interpretation and L be a set of
modal expressions. I is straight for L, if for all a ∈ Iι and ♦r(♦r∗t) ∈ L such that
I, a |= ♦r(♦r∗t) there is a b ∈ Iι such that a

r
−→I b and δII,tb = ∆I

I,t(R
r(LL

Ia)).

Note the correspondence between this definition and the condition O1 we required for
straight branches.

Proposition 17 Let t be a modal expression and I be a canonical model for t. Then
I is a straight model for Mt.

Proof. Let a ∈ Iι and ♦r(♦r∗t) ∈ Mt such that I, a |= ♦r(♦r∗t). Consider

∆I
I,ta = {δII,tb | I, b |= Rra}

=⇒ ∆I
I,ta = {δII,tb | Rra ⊆ b} Prop. 8,Rra ⊆ Ct

=⇒ ∆I
I,ta = {δII,tb | I |= rab} Def. 9

The considered set is non-empty, since I is a model. �
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5 Chain-based Control

In this chapter we equip the tableau system T with chain-based blocking and prove it
complete. In Section 5.1 we define the blocking condition, and restrict T♦ accordingly.
In Section 5.2 we prove termination for the new system. In Section 5.3 we characterize
maximal branches and develop conditions to identify evident ones. In Section 5.4 we
finally obtain the completeness theorem.

5.1 Blocking

We use the established idea of chain-based blocking to ensure termination through re-
striction of rules applicability. This idea is due to Kripke [23]. The central concept of
chain-based blocking is the notion of a repeating nominal.

Definition 34 Let A be a branch and x, y ∈ NιA. y is repeating x in A if x −→+
A y

and LAx = LAy. A nominal y ∈ NιA is repeating in A if it is repeating some x ∈ NιA.

The idea is, that for every repeating nominal, there already exists a nominal with
exactly the same properties on the branch. Thus, instead of duplicating it, we just insert
backward edges and obtain a model. Consider Example 2. ♦rpz cannot be expanded,
since it is repeating y. The encoded relational structure is not yet a model of the initial
branch, we have to add the edge rzz, for example.

Example 2 A tableau derivation blocked by chain-based blocking for the initial branch
{�r∗(♦rp)x}.

�r∗(♦rp)x
♦rpx

rxy, py
�r∗(♦rp)y

♦rpy
ryz, pz

�r∗(♦rp)z
♦rpz

5.1.1 The Restricted System Tchn

We are now ready to restrict T♦ and T♦∗ as follows.
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5.2. Termination Chapter 5. Chain-based Control

R♦

♦rtx

rxy , ty
y /∈ NιA

• x not repeating in A

• x is propagated

The system equipped with R♦ in place of T♦ is denoted by Tchn.

5.2 Termination

We prove that every derivation in Tchn is finite. The proof precedes as follows. The
crucial observation is that ExpStk(A) is finite and preserved under rule application. We
then use that in admissible branches, (NιA,−→A) is a tree. We bound breadth and
depth of this tree, and get by König’s lemma that the set of nominals ever introduced to
a branch is finite. The difficulty here is to bound the number of ♦-formulas at a nominal,
since we have to treat formulas ♦rαx as well. Finally we obtain a bound on the number
of formulas ever added to a branch, which is sufficient for termination since our calculus
is cumulative.

A key concept we use is the notion of a stock and a slack [20]. A stock is the set of all
formulas that could possibly be introduced to the branch by a certain set of rules. The
corresponding slack is the subset of the stock that has not been introduced so far. We
then show that the size of the slack is strictly decreasing under application of rules from
the set of considered rules.

5.2.1 Expressions

We define the expression stock ExpStk(A) of a branch A as the subset of proper modal
expressions that occur, possibly as subexpressions, on A.

Definition 35 Let A be a branch.

ExpStk(A) := {t | t ∈ MA}

Note that ExpStk(A) neither contains path variables, nor expressions that contain path
variables. However, ♦r∗t ∈ ExpStk({α = ♦r∗t}).

Proposition 18 Let A be a finite branch. Then ExpStk(A) is finite.

It is easily checked that all rules preserve the expression stock.

Proposition 19 Let 〈A,A1, . . . , An〉 ∈ T . Then ExpStk(A) = ExpStk(Ai) for all i ∈
[1, n].
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5.2.2 Variables

For T α
♦∗ , we need another measure. We first define the variable stock VarStk(A), which

is the set of all ♦∗-formulas possibly in A given NιA and ExpStk(A). We then define the
variable slack VarSlk(A), which contains all ♦∗-formulas from VarStk(A) for which no
path variable has been introduced.

Definition 36 (Variable Stock, Variable Slack) Let A be a branch.

VarStk(A) := {♦r∗tx | ♦r∗t ∈ ExpStk(A), x ∈ NιA}

VarSlk(A) := VarStk(A) − {♦r∗tx | αx,α = ♦r∗t ∈ A}

Proposition 20 Let A be a finite branch. Then VarStk(A) is finite.

Proposition 21 The rules of T preserve introduction of path variables.

Proposition 22 Let 〈A,A1, . . . , An〉 ∈ T − T α
♦∗. Then VarStk(A) = VarStk(Ai) for all

i ∈ [1, n].

Proposition 23 Let 〈A,A1〉 ∈ T ∩ T α
♦∗ . Then |VarSlk(A)| > |VarSlk(A1)|.

Proposition 24 The rules of Tpat are cumulative.

5.2.3 Termination Proof

Proposition 25 (Bound on Breadth) Let A be an admissible branch and x ∈ NιA.
Then the number of direct successors of x is linearly bounded in the size of ExpStk(A)
in Tchn.

Proof. We have LAx ⊆ ExpStk(A). Together with Prop. 23 and Prop. 20 we get that
the number of formulas αx in A is finite, thus the number of ♦-formulas at every nominal
is finite by admissibility of A. By Progress Condition P3, a ♦-formula can only be
expanded once, and by Prop. 24, expansion is preserved. Thus the number of direct
successors of every nominal is finite. �

Proposition 26 (Bound on Depth) Let A be an admissible branch and x ∈ NιA.
Then the number of predecessors of x is exponentially bounded in the size of ExpStk(A)
in Tchn.

Proof. Since LAx ∈ 2ExpStk(A), there are only finitely many labels. By the Pigeon-hole
principle, below a depth of at most |2ExpStk(A)|, a label must be repeating, thus below
such a depth there is a repeating nominal by Def. 34. Since ♦-formulas cannot be
expanded at repeating nominals, we have established a bound on the depth of x. �

Proposition 27 Tchn terminates.
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Proof. For all admissible branches A, we have that (NιA,−→A) is a tree by admissibility
of A. From Prop. 25 and Prop. 26, it follows by König’s lemma that this tree cannot
grow infinitely, but its size is bounded, thus we have a bound on the number of nominals
ever introduced during the expansion of A. Together with Prop. 23, Prop. 20, Prop. 18,
and Prop. 19, the number of formulas ever added to the branch A is bounded. By
Prop. 24, this is sufficient for termination. �

5.3 Maximal Tableaux

Consider Example 3. We have a maximal tableau with three open branches. Clearly, the
rightmost branch is missing the witness for ♦r∗px, since none of the nominals satisfies
p. Also, the rightmost branch is not straight, since x and y share the same request.

Example 3 A maximal tableau in Tchn for the initial branch {♦r∗px}.

♦r∗px
α = ♦r∗p, αx

px ♦rαx
rxy, αy
py ♦rαy

The question we have to answer is whether there will always be an evident branch in
every maximal tableau for a satisfiable initial branch. The key is to prove evidence for
straight branches. But this argument requires some preparation, so we first analyze the
properties of the three kinds of maximal branches in Tchn.

• Closed branches

• Maximal, open branches

• Maximal, open, and evident branches

5.3.1 Closed Branches

A branch A is closed, if 〈A〉 ∈ Tchn. A branch is open, if it is not closed. Closed
branches contain a contradiction and are unsatisfiable.

5.3.2 Maximal, Open Branches

Maximal branches may fail to be evident because the tableau system cannot guarantee
that every formula ♦r∗tx is eventually expanded to ty at some nominal y. Consider the
leftmost branch in Example 3, for example.

We now refine the modal equivalence relation to obtain Dα
A, which only relates a

nominal x to other nominals, if x is labeled with the path variable α, and blocked by a
predecessor that is also labeled with α. This means, we only consider pairs of nominals
such that a path variable has been propagated from the second to the first. In Example 3,
we would have y Dα

A x.
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Definition 37 (α-Repetition Relation) Let A be an admissible branch and x, y ∈
NιA.

x Dα
A x′ ⇐⇒ α = ♦r∗t, αx, αx′ ∈ A ∧ x ∼A x′ ∧ x′ r

−→
∗

A x

Now we interpret the α-relation modulo the α-repetition relation. That means, we
introduce edges to successors of modally equivalent predecessors that have the same

path variable. In Example 3, we would have y
D,α
−→A y.

Definition 38 (α-Request Relation) Let A be an admissible branch and x, y ∈ NιA.

x
D,α
−→A y ⇐⇒ ∃x′ ∈ NιA : x Dα

A x′ ∧ x′ α
−→A y

Definition 39 (Maximality) An admissible set A is maximal if it is propagated,
satisfies E♦, and the following condition:

♦rαx, α = ♦r∗t ∈ A =⇒ ∃y ∈ NιA : x
D,α
−→A y M♦

Proposition 28 Let A be an admissible branch. If A is open and no rule from Tchn

applies, then A is maximal.

Proof Sketch. A is propagated by Proposition Prop. 12. We show the missing two prop-
erties.

Let ♦rtx ∈ A for the proof of E♦. Assume ∀y ∈ NιA : x
⊆,r
−→A y =⇒ ty 6∈ A. Then x

is not repeating in A, thus R♦ is applicable. Contradiction

Let ♦rαx, α = ♦r∗t ∈ A for the proof of M♦. Assume it is not the case that

∃y ∈ NιA : x
D,α
−→A y. But then x is not repeating and thus R♦ is applicable.

Contradiction. �

Proposition 29 Let A be an admissible branch and α = ♦r∗t ∈ A. Then
D,α
−→A⊆

⊆,r
−→A.

5.3.3 Maximal, Open and Evident Branches

Now we are interested in paths in the α-request relation.

Definition 40 (α-Request Path) Let A be an admissible branch and αx ∈ A. A

request path for α in A is a
D,α
−→A-path that starts at x and is

D,α
−→A-maximal.

The important property of acyclic α-request paths is that maximality implies the exis-
tence of the corresponding witness.

Lemma 2 Let A be a maximal, admissible branch, α = ♦r∗t ∈ A, and (x0, . . . , xn) be
a request path for αx ∈ A with n ∈ N. If (x0, . . . , xn) is acyclic, then txn ∈ A.
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Proof. We show that the assumption txn 6∈ A leads to a contradiction. We analyze two
cases.

Let n = 0.

αx ∈ A Def. 40

=⇒ ♦rαx ∈ A Mα, tx 6∈ A

=⇒ ∃y ∈ NιA : x
D,α
−→A y M♦

Let n > 0.

xn−1
D,α
−→A xn Def. 50

⇐⇒ ∃x′ ∈ NιA : xn−1 Dα
A x′ ∧ x′ α

−→A xn Def. 38

⇐⇒ ∃x′ ∈ NιA : xn−1 Dα
A x′

∧ αx′, rx′xn, αxn ∈ A Def. 20

=⇒ α = ♦r∗t, αxn ∈ A Admissibility of A

=⇒ α = ♦r∗t,♦rαxn ∈ A Mα, txn 6∈ A

=⇒ ∃y ∈ NιA : xn
D,α
−→A y M♦

In both cases we have a contradiction, since (x0, . . . , xn) is
D,α
−→A-maximal by Definition

40. �

Having established this lemma, it is easy to formalize a condition to identify evident
branches.

Definition 41 Let A be an admissible branch. A loop is a request path (x0, . . . , xn)
such that x0 = xn and n > 0.

Proposition 30 Let A be a maximal, admissible branch and x ∈ NιA. If A is loop-free,
then A is evident.

Proof. Since A is maximal, it satisfies all evidence conditions except (possibly) E♦∗ .
Let ♦r∗tx ∈ A. Since A is loop-free, no request path for in A is cyclic. By M♦∗ ,
α = ♦r∗t, αx ∈ A. By Lemma 2, the request path for αx leads to a state satisfying t.
With Proposition 29, ♦r∗tx is evident in A. �

5.4 Completeness of Tchn

In this section we prove completeness. The proof idea is as follows. By Prop. 16, we know
that every tableau for a satisfiable formula contains a straight branch. We lift Prop. 15
to the α-request relation and use this result to show that the α-request relation is loop-
free on straight branches. Finally we get that a straight, maximal branch is evident by
Prop. 30.
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Proposition 31 Let A be a branch. Then LAx is a selector.

Lemma 3 Let A be an admissible, straight branch, I be straight for A, and α = ♦r∗t ∈

A. If x
D,α
−→A y and I 6|= ty, then ∆r

I,t(LAx) > ∆r
I,t(LAy).

Proof.

x
D,α
−→A y

⇐⇒ ∃x′ ∈ NιA : x Dα
A x′ ∧ x′ α

−→A y Def. 48

=⇒ ∃x′ ∈ NιA : x ∼A x′ ∧ x′ α
−→A y Def. 47

=⇒ ∃x′ ∈ NιA : x ∼A x′ ∧ ∆r
I,t(LAx′) > ∆r

I,t(LAy) Prop. 15,Prop. 31

=⇒ ∃x′ ∈ NιA : LAx = LAx′ ∧ ∆r
I,t(LAx′) > ∆r

I,t(LAy) Def. 16

=⇒ ∆r
I,t(LAx) > ∆r

I,t(LAy) �

Lemma 4 Let A be an admissible, straight branch, I be a modal interpretation that is

straight for A, x, y ∈ NιA, and α = ♦r∗t ∈ A. If x
D,α
−→A y, then I 6|= tx.

Proof.

x
D,α
−→A y

⇐⇒ ∃x′ ∈ NιA : x Dα
A x′ ∧ x′ α

−→A y Def. 38

⇐⇒ ∃x′ ∈ NιA : α = ♦r∗t, αx, αx′ ∈ A ∧ x ∼A x′ ∧ x′ r
−→

∗

A x

∧ x′ α
−→A y Def. 38

=⇒ α = ♦r∗t, αx,♦rαx ∈ A A admissible

=⇒ I 6|= tx O2 for A �

Lemma 5 Let A be a maximal branch. If A is straight, then A is loop-free.

Proof. Since A is straight, there is an interpretation I that is straight for A. As-
sume (x0, . . . , xn) is a loop in A for contradiction. By Lemma 4, I 6|= txi for all
i ∈ [0, n − 1]. By Definition 41 it holds x0 = xn. Thus, I 6|= txn. Lemma 3 yields
∆r

I,t(LAx0) > ∆r
I,t(LAxn). But ∆r

I,t(LAx0) = ∆r
I,t(LAxn), since ∆r

I,t and LA are func-
tions. Contradiction. �

Theorem 3 (Completeness) Every maximal Tpat-tableau for an satisfiable set of K∗-
expressions contains an evident branch.

Proof. Every satisfiable set of K∗-expressions L there is a straight initial branch, namely
{tx0 | t ∈ L}. Since L by construction contains no edges and no path variables, any
modal interpretation satisfying L is straight for L. A maximal tableau for L contains
a maximal branch A which is straight by Prop. 16. By Lem. 5, A is loop-free. With
Prop. 30, A is evident. �
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6 Pattern-based Control

In this section, we apply pattern-based blocking to T and obtain a complete and termi-
nating system. In Section 6.1, we explain the blocking technique and apply it to T to
obtain the system Tpat. In Section 6.2, we prove termination by embedding a suitable
size measure into a lexical termination ordering. In Section 6.3, we characterize maximal
branches and give conditions to identify evident branches. Finally in Section 6.4, we are
able to prove completeness for Tpat.

6.1 Blocking

We use pattern-based blocking which has first appeared in [19, 20]. The idea is to forbid
diamond expansion if the diamond expression has already been expanded at another
nominal with a similar pattern. Let us make this precise.

6.1.1 ♦-Patterns

Definition 42 (♦-Pattern) A ♦-pattern is a set {♦ρt} ∪ {�ρ1t1, . . . , �ρntn} with
n ∈ N, i.e. a set consisting of one ♦-expression and arbitrarily many �-expressions. We
may call a ♦-pattern a ♦∗-pattern to indicate that ρ is not an atomic relation.

Definition 43 (Pattern of a ♦-Formula) Let A be a branch. The ♦-pattern of a
formula ♦rux ∈ A denoted by Pr

A(♦rux) is defined according to the following equations:

Pr
A(♦rtx) :={♦rt} ∪ Pr

Ax

Pr
A(♦rαx) :={♦r∗t | α = ♦r∗t ∈ A} ∪ Pr

Ax

Note that the definition of Pr
A could potentially allow more than one ♦-expression in

a ♦-pattern. This is not the case for the branches we consider.

Proposition 32 Let A be an admissible branch and ♦rαx ∈ A. Then Pr
A(♦rαx) is a

♦∗-pattern.

Proof. Follows from admissibility of A, which ensures that defining equations for path
variables are unique. �

6.1.2 Realization of ♦-Patterns

We now define what it means for a pattern to be realized. The condition depends on
the relation ρ of the diamond expression in the pattern. If ρ is an atomic relation, we
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use the notion of realization as it appears in [20]. If the relation is not basic, the pattern
belongs to a formula of the form ♦rαx where α = ♦r∗t. In this case we must be careful
to allow expansion long enough for a witness to be produced.

Definition 44 (♦-Pattern Realization) Let A be a branch and x ∈ NιA.

• {♦rt} ∪Pr
Ax is realized in A, if there is y ∈ NιA such that x

⊆,r
−→A y, and ty ∈ A.

• {♦r∗t} ∪ Pr
Ax is realized in A, if there is x′, y ∈ NιA such that Pr

Ax′ = Pr
Ax and

x′ ♦r∗t
−→A y.

Note that for admissible branches A we have ♦rαx ∈ A in case of ♦∗-patterns.

6.1.3 The Restricted System Tpat

We are now ready to restrict the diamond rule T♦ as follows.

R♦

♦rux

rxy , uy
y /∈ NιA

• Pr
A
(♦rux) not realized in A

• x is propagated

The system equipped with R♦ in place of T♦ is denoted by Tpat.

6.1.4 Remark: Pattern Inclusion

For proper ♦-patterns we use pattern inclusion in the realization condition. A ♦-pattern
is realized if there is an expanded ♦-formula for a pattern it is contained in, i.e. the
pattern of the expanded formula contains more �-expressions. It turns out that pattern
inclusion does not work for ♦∗-patterns. We show a maximal tableau which is by no
means contains an evident branch as counterexample.

Example 4 A maximal derivation in a hypothetical system for a satisfiable initial
branch without an evident branch.

♦r∗px,�r(¬̇p)x, ¬̇px
α = ♦r∗p, αx

px ♦rαx
rxy, αy
¬̇py

py ♦rαy

The formula ♦rαy in the tableau from Example 4 cannot be be expanded since its
pattern {♦r∗p} is a subset of the pattern {♦r∗p,�r(¬̇p)} which is realized at x. Al-
though the initial branch is satisfiable, the tableaux contains no evident branch since
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the only open branch is missing the witness for the formula ♦r∗px. We have taken care
of this problem by formulating separate realization conditions for ♦∗-patterns, such that
expansion of formulas of the form ♦rαx is only blocked on the basis of pattern equality.

6.2 Termination

We now prove that every derivation in Tpat is finite. We use the result from Section 5.2
stating that no new modal expressions are introduced by Tpat, which allows us to bound
the number of patterns on a branch. The termination proof is an embedding of the size
measures into a lexical termination ordering.

Tpat contains two generative rules, R♦ and T♦∗ . To measure their progress, we will
use the notion of a stock and a slack [20] as described in 5.2.

6.2.1 Patterns

We will now take care of the generative rules R♦ and T α
♦∗ that introduce new names.

We first take care of R♦, and define the pattern stock PatStk(A).

Definition 45 (Pattern Stock, Pattern Slack) Let A be a branch.

PatStk(A) := 2ExpStk(A)

PatSlk(A) := PatStk(A) − {Pr
A(♦rux) | ♦rux ∈ A,Pr

A(♦rux) realized}

Proposition 33 Let A be a finite branch. Then PatStk(A) is finite.

Proposition 34 The rules of Tpat preserve realization of ♦-patterns.

6.2.2 Formulas

We are ready to define the formula stock ForStk(A) for a branch A to be the set of
all formulas possibly on the branch given NιA, VA and ExpStk(A). We then define the
formula slack ForSlk(A), which contains the formulas from ForStk(A) that have not
been introduced to the branch A.

Definition 46 (Formula Stock, Formula Slack) Let A be a branch.

ForStk(A) := {tx | t ∈ ExpStk(A), x ∈ NιA}

∪ {αx,♦rαx, α = ♦r∗t | ♦r∗t ∈ ExpStk(A), x ∈ NιA,α ∈ VA}

ForSlk(A) := ForStk(A) − A

Proposition 35 Let A be a finite branch. Then ForStk(A) is finite.

43



6.2. Termination Chapter 6. Pattern-based Control

6.2.3 Termination Proof

Proposition 36 Tpat terminates.

Proof. Let A be a branch. Consider

• the size of the pattern slack of A, |PatSlk(A)|

• the size of the variable slack of A, |VarSlk(A)|

• the size of the formula slack of A, |ForSlk(A)|

The corresponding lexical ordering is a termination order for Tpat, i.e. every application
of a rule from Tpat to a branch A decreases the lexical product of the three size measures
given above. Case analysis on the schema of the applied rule. If not stated otherwise,
the size of PatSlk is preserved by Prop. 19 and 34, and the size of VarSlk is preserved
by Prop. 21 and 22.

Let 〈A〉 ∈ T¬̇ with px, ¬̇px ∈ A. Nothing to show.

Let 〈A,A ∪ {t1x}, A ∪ {t2x}〉 ∈ T∨̇ with (t1 ∨̇ t2)x ∈ A. Let i ∈ {1, 2}. By Progress
Condition P2, tix 6∈ A. Since (t1 ∨̇ t2)x ∈ A, we have tix ∈ ForStk(A). Thus
|ForSlk(A ∪ {tix})| < |ForSlk(A)|.

Let 〈A,A ∪ {t1x, t2x}〉 ∈ T∧̇ with (t1 ∧̇ t2)x ∈ A. By Progress Condition P2, tix 6∈ A
for some i ∈ {1, 2}. Since (t1 ∧̇ t2)x ∈ A, we have t1x, t2x ∈ ForStk(A). Thus
|ForSlk(A ∪ {t1x, t2x})| < |ForSlk(A)|.

Let 〈A,A ∪ {αx,α = ♦r∗t}〉 ∈ T α
♦∗ with ♦r∗tx ∈ A. Note that ♦r∗tx ∈ VarStk(A).

With Progress Condition P3 it follows |VarSlk(A∪{αx,α = ♦r∗t})| < |VarSlk(A)|,
since for every path variable β ∈ VA it holds A ( (A ∪ {αx,α = ♦r∗t})αβ .

Let 〈A,A ∪ {tx}, A ∪ {♦rαx}〉 ∈ T♦∗ with αx,α = ♦r∗t ∈ A. Note that t,♦r∗t ∈
ExpStk(A), since t,♦r∗t ∈ SubExps({α = ♦r∗t}). Since tx 6∈ A by Progress
Condition P2, we have |ForSlk(A∪{tx})| < |ForSlk(A)|. Since further ♦rαx 6∈ VA,
by Progress Condition P2, we have |ForSlk(A ∪ {♦rαx})| < |ForSlk(A)|.

Let 〈A,A ∪ {rxy, uy}〉 ∈ R♦ with ♦rux ∈ A, y 6∈ NιA. |PatSlk(A ∪ {rxy, uy})| <
|PatSlk(A)| since Pr

A(♦rux) has not been realized by blocking conditions of R♦.

Let 〈A,A ∪ {ty}〉 ∈ T� with �rtx, rxy ∈ A. By Progress Condition P2, ty 6∈ A. Since
�rtx, rxy ∈ A, we have ty ∈ ForStk(A). Thus |ForSlk(A ∪ {ty})| < |ForSlk(A)|.

Let 〈A,A ∪ {tx}〉 ∈ T R
�∗ with �r∗tx ∈ A. By Progress Condition P2, tx 6∈ A. Since

�r∗tx ∈ A, we have tx ∈ ForStk(A). Thus |ForSlk(A ∪ {tx})| < |ForSlk(A)|.

Let 〈A,A ∪ {�r∗ty}〉 ∈ T T
�∗ with �r∗tx, rxy ∈ A. By Progress Condition P2, �r∗ty 6∈

A. Since �r∗tx, rxy ∈ A, we have �r∗ty ∈ ForStk(A). Thus we get that
|ForSlk(A ∪ {�r∗ty})| < |ForSlk(A)|. �

Next we will characterize maximal tableau branches.
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6.3 Maximal Tableaux

In this section we investigate the properties of maximal tableau branches. Unlike usual
systems, Tpat has three kinds of open branches:

• Closed branches

• Maximal, open branches

• Maximal, open, evident branches

6.3.1 Closed Branches

A branch A is closed, if 〈A〉 ∈ Tpat. A branch is open, if it is not closed. Note that open
does not mean satisfiable. It merely means that we do not have an explicit inconsistency
on the branch.

6.3.2 Maximal, Open Branches

Maximal branches may fail to be evident because the tableau system cannot guarantee
that every formula ♦r∗tx is eventually expanded to ty at some nominal y on every branch.
Thus, maximal, open branches can be unsatisfiable. Consider the following example.

Example 5 A derivation in Tpat for the initial branch {♦r∗px,�r∗(¬̇p)x}.

♦r∗px,�r∗(¬̇p)x
α = ♦r∗p, αx

¬̇px
px ♦rαx

rxy, αy
�r∗(¬̇p)y
¬̇py
py ♦rαy

Note that the rightmost branch is open. This example makes it clear that we need an
argument to discard certain branches that contain no immediate contradiction.

We are now interested in the process of expansion of ♦∗-formulas. Thus we investigate
how a formula αx is treated. Given αx, the tableau can either produce the witness, or
request a successor that satisfies α. We now define a relation that relates a nominal x
to a nominal y if either y has been produced to satisfy the request of x for a successor
satisfying α, or y bears another path variable β for the same ♦∗-expression and was
introduced to satisfy β. We call this relation ♦∗-request relation.

First, we restrict pattern equivalence such that a nominal x is only related to other
nominals if there is a request for a successor for some path variable at x.

Definition 47 (Pattern Relation with Diamond Presence) Let A be a branch,
and x, x′ ∈ NιA.

x D
♦r∗t
A x′ ⇐⇒ ∃α ∈ VA : α = ♦r∗t,♦rαx ∈ A ∧ x ∼r

A x′
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We now construct the ♦∗-request relation. This relation allows us to track the ♦∗-
requests in our branch.

Definition 48 (♦∗-Request Relation) Let A be a branch and x, x′ ∈ NιA.

x
D,♦r∗t
−→ A y ⇐⇒ ∃x′ ∈ NιA : x D

♦r∗t
A x′ ∧ x′ ♦r∗t

−→A y

The ♦∗-request relation is a refinement of the corresponding reachability relation
(Def. 19).

Proposition 37 Let A be an admissible branch and α ∈ VA such that α = ♦r∗t ∈ A.

Then
D,♦r∗t
−→ A ⊆

⊆,r
−→A.

We now give maximality conditions. Note that we use the ♦∗-request relation for M♦.

Definition 49 (Maximality) An admissible set A is maximal if it is propagated,
satisfies E♦ and the following condition:

♦rαx, α = ♦r∗t ∈ A =⇒ ∃y ∈ NιA : x
D,♦r∗t
−→ A y M♦

Proposition 38 Let A be an admissible branch. If A is open and no rule from Tpat

applies, then A is maximal.

Proof Sketch. By Prop. 12, A is propagated. We show the missing two properties:

Let ♦rtx ∈ A for the proof of E♦. Assume ∀y ∈ NιA : x
⊆,r
−→A y =⇒ ty 6∈ A. Then

Pr
A(♦rtx) is not realized in A, thus R♦ is applicable. Contradiction

Let ♦rαx, α = ♦r∗t ∈ A for the proof of M♦. Assume it is not the case that ∃y ∈

NιA : x
D,♦r∗t
−→ A y.

¬∃y ∈ NιA : x
D,♦r∗t
−→ A y

⇐⇒ ¬∃y ∈ NιA : ∃x′ ∈ NιA : x D
♦r∗t
A x′ ∧ x′ ♦r∗t

−→A y

⇐⇒ ¬∃y ∈ NιA : ∃x′ ∈ NιA : ∃α ∈ VA : α = ♦r∗t,♦rαx ∈ A ∧ x ∼r
A x′

∧ x′ ♦r∗t
−→A y

Since ♦rαx, α = ♦r∗t ∈ A by assumption, the ♦∗-pattern Pr
A(♦rαx) is not realized

and thus R♦ is applicable. Contradiction. �
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6.3.3 Maximal, Open, and Evident Branches

In this section we establish a condition on maximal branches that qualifies them as
evident. We first give some intuition for two of the maximality conditions. Let us
assume we have a branch A such that α = ♦r∗t, αx ∈ A.

Mα If tx was not added to A by T α
♦∗, then ♦rαx was added.

M♦ If ♦rαx is on the branch, then there is a successor that satisfies α.

Now assume tx has never been added in the course of the expansion of αx. By intuition
Mα, for each nominal y with αy in the branch, but not ty, it was ♦rαy added. And by
M♦, for every such ♦-formula, there is a successor satisfying α. From the termination
proof we know that the maximal branch contains only finitely many nominals. Thus we
must have some sort of loop on the branch. We will use the existence of loops to identify
non-evident branches.

The situation is complicated by the precise definition of the phrase a successor that

satisfies α. First, successor is interpreted with respect to the
⊆,r
−→A-relation. And second,

satisfying α may mean satisfying another path variable β such that β = ♦r∗t ∈ A. We
have already defined a suitable formulation of the phrase a successor that satisfies α,
namely the ♦∗-request relation.

Definition 50 (♦∗-Request Path) Let A be an admissible branch and ♦r∗tx ∈ A. A

♦∗-request path for ♦r∗tx in A is a
D,♦r∗t
−→ A-path that starts at x and is

D,♦r∗t
−→ A-maximal.

The important property of every ♦∗-request path is, that if it is maximal and not cyclic,
we can prove the existence of the witness. This exactly matches our intuition for Mα.

Lemma 6 Let A be a maximal, admissible branch, and (x0, . . . , xn) be a ♦∗-request
path for ♦r∗tx ∈ A with n ∈ N. If (x0, . . . , xn) is acyclic, then ♦r∗tx is evident in A.

Proof. If txn ∈ A, then ♦r∗tx is evident in A by Prop. 37. We show that the assumption
txn 6∈ A leads to a contradiction. We analyze two cases.

Let n = 0.

♦r∗txn ∈ A

=⇒ ∃α ∈ VA : α = ♦r∗t, αxn ∈ A M♦∗

=⇒ ∃α ∈ VA : ♦rαxn ∈ A Mα, tx 6∈ A

=⇒ ∃y ∈ NιA : xn
D,♦r∗t
−→ A y M♦
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Let n > 0.

xn−1
D,♦r∗t
−→ A xn Def. 50

⇐⇒ ∃x′ ∈ NιA : xn−1 D
♦r∗t
A x′ ∧ x′ ♦r∗t

−→A xn Def. 48

⇐⇒ ∃x′ ∈ NιA : xn−1 D
♦r∗t
A x′

∧ ∃α ∈ VA : α = ♦r∗t, αx′, rx′xn, αxn ∈ A Def. 21,Def. 20

=⇒ ∃α ∈ VA : α = ♦r∗t,♦rαxn ∈ A Mα, txn 6∈ A

=⇒ ∃y ∈ NιA : xn
D,♦r∗t
−→ A y M♦

In both cases we have a contradiction, since (x0, . . . , xn) is
D,♦r∗t
−→ A-maximal by Def. 50.�

Having established this lemma, it is easy to formalize a condition to identify branches
which may lack some witnesses. All we need is a cycle in the ♦∗-request relation.

Definition 51 (Loop) Let A be an admissible branch. A loop is a request path
(x0, . . . , xn) such that x0 = xn and n > 0.

Proposition 39 Let A be a maximal, admissible branch and x ∈ NιA. If A is loop-free,
then A is evident.

Proof. Since A is maximal, it satisfies all evidence conditions except (possibly) E♦∗ . Let
♦r∗tx ∈ A. Since A is loop-free, no request path for in A is cyclic. By Lem. 6, ♦r∗tx is
evident in A. �

The last proposition allows us to identify evident branches by checking that no loops
occur.

6.3.4 Detecting Loops

Checking for loops requires some computation. In the following we give a criterion which
is easier to check.

Proposition 40 Let A be a branch and α = ♦r∗t ∈ A. Then
α

−→A⊆
D,♦r∗t
−→ A.

The idea is to track which formulas ♦rαx were blocked by an expanded formula ♦rβy.
In this case we say α is blocked by β. If β then is blocked by α again, we have a cycle
in the corresponding ♦∗-request path.

First we refine the pattern equivalence relation to only relate
α

−→A-terminal nominals
x to other nominals if ♦rαx is on the branch, i.e. x demands a successor satisfying α.

Definition 52 (Blocking Nominal Relation)

x ⊲
α,r
A x′ ⇐⇒ x ∼r

A x′ ∧ ♦rαx ∈ A ∧ ¬∃y ∈ NιA : x
α

−→A y
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We are now ready to formulate the blocking relation among path variables. We relate a
path variable α to a path variable β, if α was blocked by β.

Definition 53 (Blocking Path Variable Relation)

α ⊲A β ⇐⇒ ∃r, t : α = ♦r∗t, β = ♦r∗t ∈ A

∧ ∃x, x′, y ∈ NιA : x ⊲
α,r
A x′ ∧ x′ β

−→A y

We now prove that a cycle in ⊲A corresponds to a cycle in the corresponding ♦∗-
request relation.

Lemma 7 Let A be an admissible branch, α = ♦r∗t ∈ A, β ∈ VA, and α ⊲A β. Then

∃y ∈ NιA : βy ∈ A ∧ ∀x ∈ NιA : αx ∈ A =⇒ x
D,♦r∗t
−→

∗

A y.

Proof.

α ⊲A β

⇐⇒ ∃r, t : α = ♦r∗t, β = ♦r∗t ∈ A

∧ ∃x, x′, y ∈ NιA : x ⊲
α,r
A x′ ∧ x′ β

−→A y

⇐⇒ ∃r, t : α = ♦r∗t, β = ♦r∗t ∈ A ∧ ∃x, x′, y ∈ NιA : x ∼r
A x′

∧ ♦rαx ∈ A ∧ ¬∃y′ ∈ NιA : x
α

−→A y′ ∧ x′ β
−→A y

We get αx ∈ A by admissibility of A from ♦rαx ∈ A. Since the set {x | αx ∈ A} is an α-
path by admissibility of A, and it holds ¬∃y ∈ NιA : x

α
−→A y, we have that x is the last

element of the path. Thus by Prop. 40, we have ∀x′ ∈ NιA : αx′ ∈ A =⇒ x′ D,♦r∗t
−→

∗

A x.
The claim follows. �

Proposition 41 Let A be an admissible branch. If ⊲A is cyclic, there is a
D,♦r∗t
−→ A-loop.

Proof Sketch. By Induction on the length of the cycle in ⊲A. �

6.4 Completeness of Tpat

We now prove completeness of Tpat. This means we have to show that for every satisfiable
initial branch we end up with a maximal tableau that contains at least one evident
branch. This situation is complicated by the fact that we have three kinds of maximal
branches, instead of the usual two. From straightness of T it follows that Tpat is also
straight. We will use this result to show that if the initial branch A is satisfiable, there
is one evident, straight branch in every maximal tableau for A.

We have already shown that the function that assigns each nominal to its pattern is

a selector in Prop. 9. We now seek to lift Prop. 15 to the relation
D,♦r∗t
−→ A. This will

enable us to prove that
D,♦r∗t
−→ A is also loop-free.
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Lemma 8 Let A be an admissible, straight branch, and I be straight for A. If x
D,♦r∗t
−→ A

y and I 6|= ty, then ∆r
I,t(P

r
Ax) > ∆r

I,t(P
r
Ay).

Proof.

x
D,♦r∗t
−→ A y

⇐⇒ ∃x′ ∈ NιA : x D
♦r∗t
A x′ ∧ x′ ♦r∗t

−→A y Def. 48

=⇒ ∃x′ ∈ NιA : x ∼r
A x′ ∧ x′ ♦r∗t

−→A y Def. 47

=⇒ ∃x′ ∈ NιA : x ∼r
A x′ ∧ ∆r

I,t(P
r
Ax′) > ∆r

I,t(P
r
Ay) Prop. 15,Prop. 9

=⇒ ∃x′ ∈ NιA : Pr
Ax = Pr

Ax′ ∧ ∆r
I,t(P

r
Ax′) > ∆r

I,t(P
r
Ay) Def. 16

=⇒ ∆r
I,t(P

r
Ax) > ∆r

I,t(P
r
Ay) �

We have now established that the witness distance decreases also along
D,♦r∗t
−→ A on

straight branches, provided that the witness was not possible at the origin. We now
prove that the witness is never possible at the origin. The key is that in Def. 47 we
demand a request to be present at all non-terminal nodes on the witness path.

Lemma 9 Let A be an admissible, straight branch, I be a modal interpretation that is

straight for A, and x, y ∈ NιA. If x
D,♦r∗t
−→ A y, then I 6|= tx.

Proof. By Def. 48 and Def. 47, there is α ∈ VA such that α = ♦r∗t,♦rαx ∈ A. By O2,
I 6|= tx. �

Now comes the crucial lemma of this section. We prove that no pattern can repeat
before the witness is created.

Lemma 10 Let A be a propagated branch. If A is straight, then A is loop-free.

Proof. Since A is straight, there is a modal interpretation I that is straight for A. As-
sume (x0, . . . , xn) is a loop in A for contradiction. By Lem. 9, I 6|= txi for all i ∈ [0, n−1].
By Def. 51 it holds x0 = xn. Thus, I 6|= txn. Lem. 8 yields ∆r

I,t(P
r
Ax0) > ∆r

I,t(P
r
Axn).

But ∆r
I,t(P

r
Ax0) = ∆r

I,t(P
r
Axn), since ∆r

I,t and Pr
A are functions. Contradiction. �

Theorem 4 (Completeness) Every maximal Tpat-tableau for a satisfiable set of K∗-
expressions contains an evident branch.

Proof. For every satisfiable set of K∗-expressions L there is a straight initial branch,
namely {tx0 | t ∈ L}. Since L by construction contains no edges and no path variables,
any modal interpretation satisfying L is straight for L. A maximal tableau for L contains
a maximal branch A which is straight by Prop. 16. By Lem. 10, A is loop-free. By
Prop. 39, A is evident. �
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7 Conclusion

The logic K∗ includes an operator for the reflexive transitive closure, and is not compact.
Maximal tableaux for K∗ may contain branches that are neither evident nor closed.

To solve the problem of discarding such branches, straightness is established for the
tableau system. Straightness is similar to soundness, in that it is sustained by the tableau
rules for at least one branch among the alternatives. We prove that on satisfiable, straight
branches witnesses occur before requests repeat.

We give two terminating tableau systems for K∗, and prove both complete. The key is
to discard branches with cyclic request relations. Verification soundness is established by
showing that branches with acyclic request relations are evident. Refutation soundness
is established by showing that on straight branches request relations are never cyclic.
This idea works for both blocking techniques under consideration.

Improvements

The proof of straightness in Chapter 4 used an interpretation that satisfies all formulas
except the edges on the branch. We could not require the interpretation to satisfy the
edges, since we cannot guarantee that we have a direct successor for every ♦-formula
that provides the minimal witness distance in the interpretation. We solve the problem
using a selection technique from Baader to find a suitable state among all states in the
interpretation, using additional conditions to ensure satisfaction of �-formulas.

To make the proof more transparent, it is desirable to have the interpretation satisfy
the edges as well. Using a canonical interpretation in the proof of straightness, our
conjecture is, that a canonical interpretation can also satisfy the edges. We must ensure
that there are sufficient direct successors to provide every eventuality with the optimal
witness distance. This requires the set of boxes present in the interpretation to be exactly
the set of boxes of the associated nominal present on the branch. Our conjecture is, that
this is possible using a canonical interpretation and a carefully selected initial state. The
straightness invariants can then be maintained under ♦-expansion by carefully selecting
the state among the successors in the interpretation. Our conjecture is that in canonical
interpretations it is sufficient to choose the state among the successors that have the
minimal witness distance such that the size of the request of the state is minimal.

The abstract concept behind our completeness proof is interesting. Terminating
tableau systems only produce a subset of the models of a logic. The key insight is
that we must identify a subset of the models produced by the tableau that is complete
for the logic in the sense that for every satisfiable formula of the logic there is a model in
the class. Completeness for the system can then be proven on the basis of properties of
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the complete class. We conjecture that this process works the other way round as well.
Given a complete class of models, it should be possible to devise a blocking technique
tailored for this class. If the conjecture is true, it should be the case to determine the
most restrictive blocking technique with respect to a class of models.

One step towards a minimal model class for K∗ are the canonical interpretations. At
the end of Chapter 4 we have been able to show that canonical models satisfy a condition
analogous to straightness: Given an expression ♦r(♦r∗t) in the saturation closure of the
expression a canonical interpretation is built for, every state in the canonical interpre-
tation that satisfies ♦r(♦r∗t) also has an immediate r-successor with minimal witness
distance for t.

Outlook

The next step is to extend this proof to full PDL. One would need to take the Fischer-
Ladner closure instead of the extended subterm closure, and adapt the termination
proof accordingly. The other proofs also have to be reworked, but it seems reasonable
to assume that the approach scales to full PDL.

The investigation of canonical interpretations for the proof of straightness, as de-
scribed before, is also a possible topic of interest. The main difficulty is to maintain the
straightness invariants under ♦-expansion, which requires a selection technique.

Finally, we consider it promising to investigate wether the pattern-based blocking
conditions can be reformulated on the basis of requests. This requires two main steps.
First, a model existence theorem based on a suitable reachability relation must be proven.
And second, a suitable realization condition based on requests must be formulated, and
the completeness proof must be adapted.
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