Contents

Preface

<table>
<thead>
<tr>
<th>1 Getting Started</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Booleans</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Numbers</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Notational Conventions</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Structural Induction</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Quantified Inductive Hypotheses</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Specifying Equations</td>
<td>12</td>
</tr>
<tr>
<td>1.7 Pairs and Polymorphic Functions</td>
<td>14</td>
</tr>
<tr>
<td>1.8 Implicit Arguments</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Iteration</td>
<td>17</td>
</tr>
<tr>
<td>1.10 Ackermann Function</td>
<td>19</td>
</tr>
<tr>
<td>1.11 Unfolding Functions</td>
<td>20</td>
</tr>
<tr>
<td>1.12 Concluding Remarks</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Basic Computational Type Theory</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Inductive Type Definitions</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Inductive Function Definitions</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Reduction</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Plain Definitions</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Lambda Abstractions</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Typing Rules</td>
<td>29</td>
</tr>
<tr>
<td>2.7 Let Expressions</td>
<td>29</td>
</tr>
<tr>
<td>2.8 Matches</td>
<td>30</td>
</tr>
<tr>
<td>2.9 Recursive Abstractions</td>
<td>31</td>
</tr>
<tr>
<td>2.10 Computational Equality</td>
<td>32</td>
</tr>
<tr>
<td>2.11 Values and Canonical Terms</td>
<td>33</td>
</tr>
<tr>
<td>2.12 Choices Made by Coq</td>
<td>34</td>
</tr>
<tr>
<td>2.13 Discussion</td>
<td>35</td>
</tr>
</tbody>
</table>
Contents

9 Executive Summary 87

II More Type Theory 91

10 Informative Types and Certifying Functions 93
 10.1 Lead Examples ... 93
 10.2 Sum Types and Sigma Types 95
 10.3 Projections and Skolem Equivalence 98
 10.4 Lead Examples Revisited 100
 10.5 Inhabitation .. 102
 10.6 Bijection Types .. 104
 10.7 Notes ... 105

11 Decision Types, Discrete Types, and Option Types 107
 11.1 Decision Types and Certifying Deciders 107
 11.2 Discrete Types .. 109
 11.3 Option Types .. 109
 11.4 Finite Types and Cardinality 111
 11.5 Notes ... 114

12 Extensionality 117
 12.1 Extensionality Assumptions 117
 12.2 Set Extensionality .. 118
 12.3 Proof Irrelevance .. 119
 12.4 Notes ... 120

13 Excluded Middle and Double Negation 121
 13.1 Characterizations of Excluded Middle 121
 13.2 Double Negation ... 124
 13.3 Stable Propositions ... 125
 13.4 Definite Propositions 127
 13.5 Variants of Excluded Middle 128
 13.6 Notes ... 129

14 Provability 131
 14.1 Provability Predicates 131
 14.2 Consistency .. 133
Contents

III Numbers and Lists

15 Numbers
15.1 Inductive Definition
15.2 Addition
15.3 Multiplication
15.4 Subtraction
15.5 Order
15.6 More Order
15.7 Complete Induction
15.8 Notes

16 Euclidean Division
16.1 Certifying Version
16.2 Simply Typed Version
16.3 Uniqueness

17 Least Witnesses
17.1 Least Witness Predicate
17.2 Step-Indexed Linear Search
17.3 Direct Search
17.4 Least Witnesses and Excluded Middle
17.5 Conclusion

18 Size Recursion and Procedural Specifications
18.1 Basic Size Recursion Operator
18.2 Euclidean Division
18.3 Greatest Common Divisors
18.4 Step-Indexed Function Construction
18.5 Summary

19 Lists
19.1 Inductive Definition
19.2 Basic Operations
19.3 Membership
19.4 List Inclusion and List Equivalence
19.5 Setoid Rewriting
19.6 Nonrepeating Lists
19.7 Constructive Discrimination Lemma
19.8 Element Removal
19.9 Cardinality
19.10 Position-Element Mappings

Contents

Case Study: Expression Compiler
- 20.1 Expressions and Evaluation 183
- 20.2 Code and Execution 184
- 20.3 Compilation ... 185
- 20.4 Decompilation .. 186
- 20.5 Discussion .. 187

Indexed Inductive Types
- IV 189

Numeral Types as Indexed Inductive Types
- 21 191
- 21.1 Numeral Types ... 191
- 21.2 Index Condition and Predecessors 192
- 21.3 Inversion Operator 194
- 21.4 Embedding Numerals into Numbers 195
- 21.5 Recursive Numeral Types 197

Inductive Derivation Systems
- 22 199
- 22.1 Binary Derivation System for Comparisons 199
- 22.2 Linear Derivation System for Comparisons 202
- 22.3 Derivation Systems for GCDs 205
- 22.4 Regular Expressions 208
- 22.5 Decidability of Regular Expression Matching 211
- 22.6 Post Correspondence Problem 213

Inductive Equality
- 23 215
- 23.1 Basic Definitions 215
- 23.2 Uniqueness of Identity Proofs 217
- 23.3 Hedberg's Theorem 219
- 23.4 Inversion with Casts 220
- 23.5 Constructor Injectivity with DPI 221
- 23.6 Inductive Equality at Type 223
- 23.7 Notes .. 224

Vectors
- 24 225
- 24.1 Basic Definitions 225
- 24.2 Operations .. 226
- 24.3 Converting between Vectors and Lists 228
Contents

V Higher Order Recursion

25 Existential Witness Operators 233

- 25.1 Linear Search Types 233
- 25.2 Definition of Existential Witness Operator 234
- 25.3 More Existential Witness Operators 235
- 25.4 Eliminator and Existential Characterization 237
- 25.5 Notes 237

26 Well-Founded Recursion 239

- 26.1 Recursion Types 239
- 26.2 Well-founded Relations 241
- 26.3 Unfolding Equation 243
- 26.4 Example: GCDs 244
- 26.5 Unfolding Equation without FE 246
- 26.6 Witness Operator 247
- 26.7 Equations Package and Extraction 248
- 26.8 Padding and Simplification 249
- 26.9 Classical Well-foundedness 250
- 26.10 Transitive Closure 252
- 26.11 Notes 252

27 Aczel Trees and Hierarchy Theorems 253

- 27.1 Inductive Types for Aczel Trees 253
- 27.2 Propositional Aczel Trees 255
- 27.3 Subtree Predicate and Wellfoundedness 256
- 27.4 Propositional Hierarchy Theorem 257
- 27.5 Excluded Middle Implies Proof Irrelevance 258
- 27.6 Hierarchy Theorem for Computational Universes 258

VI Case Studies 261

28 Propositional Deduction Systems 263

- 28.1 ND Systems 263
- 28.2 Intuitionistic ND System 264
- 28.3 Formalisation with Indexed Inductive Type Definition 266
- 28.4 The Eliminator 269
- 28.5 Induction on Derivations 269
- 28.6 Classical ND System 271
- 28.7 Glivenko's Theorem 273
- 28.8 Intuitionistic Hilbert System 274
Contents

33 Finite Types

33.1 Coverings and Listings .. 331
33.2 Finite Types ... 332
33.3 Finite Ordinals ... 333
33.4 Bijections and Finite Types 334
33.5 Injections and Finite Types 335

VIII Appendices

Appendix: Typing Rules ... 339
Appendix: Inductive Definitions 341
Appendix: Basic Definitions 345
Appendix: Glossary ... 347
Appendix: Favorite Problems 349
Appendix: Historical Remarks 351
Appendix: Ideas for Improvements 353
Bibliography .. 354
Preface

This text teaches topics in computational logic every computer scientist should know when discussing correctness of software and hardware. We acquaint the reader with a foundational theory and a programming language for interactively constructing computational theories with machine-checked proofs. As common with programming languages, we teach foundations, canonical case studies, and practical programming in an interleaved fashion.

The foundational theory we are using is a computational type theory extending Martin-Löf type theory with inductive definitions and impredicative propositions. All functions definable in the theory are computable. The proof rules of the theory are intuitionistic, and assuming the law of excluded middle is possible. As it will become apparent through our case studies, computational type theory is a congenial foundation for computational models and correctness arguments, improving much on the set-theoretic language coming with mainstream mathematics.

We will use the Coq proof assistant implementing the computational type theory we are using. The interactive proof assistant assists the user with the construction of theories and checks all definitions and proofs for correctness. Learning computational logic with an interactive proof assistant makes a dramatic difference to learning computational logic offline. The immediate feedback from the proof assistant provides for rapid experimentation and effectively teaches the rules of the underlying type theory. While the proof assistant enforces the rules of type theory, it provides much automation as it comes to routine verifications.

We will use mathematical notation throughout this text and confine all Coq code to Coq files accompanying the chapters. We assume a reader unfamiliar with type theory and the case studies we consider. So there is a lot of material to be explained and understood at mathematical levels above the Coq programming language. In any case, theories and proofs need informal explanations to be appreciated by humans, and informal explanations are needed to understand formalisations in Coq.

The abstraction level coming with mathematical notation gives us freedom in explaining the type theory and helps with separating principal ideas from engineering aspects coming with the Coq language. For instance, we will have equational inductive function definitions at the mathematical level and see Coq’s primitives for expressing them only at the coding level. This way we get mathematically satisfying function definitions and a fine explanation of Coq’s pattern matching construct.
Preface

Acknowledgements
This text has been written for the course Introduction to Computational Logic I teach every summer semester at Saarland University (since 2003). In 2010, we switched to computational type theory and the proof assistant Coq. From 2010–2014 I taught the course together with Chad E. Brown and we produced lecture notes discussing Coq developments (in the style of Benjamin Pierce’s Software Foundations at the time). It was great fun to explore with Chad intuitionistic reasoning and the propositions as types paradigm. It was then I learned about impredicative characterizations, Leibniz equality, and natural deduction. Expert advice on Coq often came from Christian Doczkal.

By Summer 2017 I was dissatisfied with the programming-centered approach we had followed so far and started writing lectures notes using mathematical language. There were also plenty of exciting things about type theory I still had to learn. My chief teaching assistants during this time were Yannick Forster (2017), Dominik Kirst (2018-2020), and Andrej Dudenhefner (2021), all of them contributing exercises and ideas to the text.

My thanks goes to the undergraduate and graduate students who took the course and who worked on related topics with me, and to the persons who helped me teach the course. You provided the challenge and motivation needed for the project. And the human touch making it fun and worthwhile.
Part I

Getting Started
1 Getting Started

We start with basic ideas from computational type theory and Coq. The main issues we discuss are inductive types, structural recursion, and equational reasoning with structural induction. We will see inductive types for booleans, natural numbers, and pairs. On inductive types we will define inductive functions using equations and structural case analysis. This will involve functions that are cascaded, recursive, higher-order (i.e., take functions as arguments), and polymorphic (i.e., take types as leading arguments). Recursion will be limited to structural recursion so that functional computation always terminates.

Our main interest is in proving equations involving recursive functions (e.g., commutativity of addition, \(x + y = y + x\)). This will involve proof steps known as simplification, rewriting, structural case analysis, and structural induction. Equality will appear in a general form called propositional equality, and in a specialized form called computational equality. Computational equality is a prominent design aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations, thus avoiding lambda abstractions and matches. We will mostly define cascaded functions and use the accompanying notation known from functional programming.

Type theory is a foundational theory starting from computational intuitions. Its approach to mathematical foundations is very different from set theory. We may say that type theory explains things computationally while set theory explains things at a level of abstraction where computation is not an issue. When working with computational type theory, set-theoretic explanations (e.g., of functions) are often not helpful, so free your mind for a foundational restart.

1.1 Booleans

In Coq, even basic types like the type of booleans are defined as inductive types. The type definition for the booleans

\[
\mathbb{B} ::= \mathbf{T} | \mathbf{F}
\]
introduces three typed constants called constructors:

\[
\begin{align*}
B &:
\mathbb{T} \\
T &: B \\
F &: B
\end{align*}
\]

The constructors represent the type \(B \) and its two values \(T \) and \(F \). Note that the constructor \(B \) also has a type, which is the universe \(\mathbb{T} \) (a special type whose elements are types).

Inductive types provide for the definition of inductive functions, where a defining equation is given for each value constructor. Our first example for an inductive function is a boolean negation function:

\[
! : B \to B \\
!T := F \\
!F := T
\]

There is a defining equation for each of the two value constructors of \(B \). We say that an inductive function is defined by discrimination on an inductive argument (an argument that has an inductive type). There must be exactly one defining equation for every value constructor of the type of the inductive argument the function discriminates on. In the literature, discrimination is known as structural case analysis.

The defining equations of an inductive function serve as computation rules. For computation, the equations are applied as left-to-right rewrite rules. For instance, we have

\[
!!!T = !!F = !T = F
\]

by rewriting with the first, the second, and again with the first defining equation of \(!\). Note that \(!!!T \) is to be read as \(!(!(!T))\), and that the first rewrite step replaces the subterm \(!T \) with \(F \). Computation in Coq is logical and is used in proofs. For instance, the equation

\[
!!!T = !T
\]

follows by computation:

\[
\begin{align*}
!!!T &= !!F &= F \\
&= !T \\
&= F
\end{align*}
\]
We speak of a **proof by computational equality**.

Proving the equation

\[x = x \]

involving a boolean variable \(x \) takes more than computation since none of the defining equations applies. What is needed is **discrimination** (i.e., case analysis) on the boolean variable \(x \), which reduces the claim \(x = x \) to the equations \(T = T \) and \(F = F \), which both hold by computational equality.

Next we define inductive functions for boolean conjunction and boolean disjunction:

\[
\begin{align*}
&: B \to B \\
T &: B \\
F &: B
\end{align*}
\]

Both functions discriminate on their first argument. Alternatively, one could define the functions by discrimination on the second argument, resulting in different computation rules. There is the general principle that computation rules must be **disjoint** (at most one computation rule applies to a given term).

The left hand sides of defining equations are called **patterns**. Often, patterns **bind variables** that can be used in the right hand side of the equation. The patterns of the defining equations for \& and | each bind the variable \(y \).

Given the definitions of the basic boolean connectives, we can prove the usual boolean indenties with discrimination and computational equality. For instance, the distributivity law

\[x \& (y | z) = (x \& y) | (x \& z) \]

follows by discrimination on \(x \) and computation, reducing the law to the trivial equations \(y | z = y | z \) and \(F = F \). Note that the commutativity law

\[x \& y = y \& x \]

needs case analysis on both \(x \) and \(y \) to reduce to computationally valid equations.

1.2 Numbers

The inductive type for the numbers 0, 1, 2, ...

\[
N ::= 0 | S(N)
\]
1 Getting Started

introduces three constructors

\[
\begin{align*}
N & : \mathbb{T} \\
0 & : N \\
S & : N \to N
\end{align*}
\]

The value constructors provide 0 and the successor function S. A number \(n \) can be represented by the term that applies the constructor \(S \) \(n \)-times to the constructor 0. For instance, the term \(S(S(0)) \) represents the number 3. The constructor representation of numbers dates back to the Dedekind-Peano axioms.

We will use the familiar notations 0, 1, 2, … for the terms 0, S0, S(S0), … . Moreover, we will take the freedom to write terms like \(S(S(Sx)) \) without parentheses as \(SSSx \).

We define an inductive **addition** function discriminating on the first argument:

\[
\begin{align*}
+ : N \to N \to N \\
0 + y & := y \\
Sx + y & := S(x + y)
\end{align*}
\]

The second equation is recursive since it uses the function ‘+’ being defined at the right hand side.

Computational type theory does not admit partial functions. To fulfill this design principle, recursion must always terminate. To ensure termination, recursion is restricted to inductive functions and must act on a single discriminating argument. One speaks of **structural recursion**. Recursive applications must be on variables introduced by the constructor of the pattern of the discriminating argument. In the above definitions of ‘+’, only the variable \(x \) in the second defining equation qualifies for recursion. Intuitively, structural recursion terminates since every recursion step skips a constructor of the recursive argument. The condition for structural recursion can be checked automatically by a proof assistant.

We define **truncating subtraction** for numbers:

\[
\begin{align*}
- : N \to N \to N \\
0 - y & := 0 \\
Sx - 0 & := Sx \\
Sx - Sy & := x - y
\end{align*}
\]

This time we have two discriminating arguments (we speak of a **cascaded discrimination**). The primary discrimination is on the first argument, followed by a secondary discrimination on the second argument in the successor case. The recursion is on the first argument. We require that a structural recursion is always on the first discriminating argument.
1.3 Notational Conventions

Following the scheme we have seen for addition, functions for multiplication and exponentiation can be defined as follows:

\[
\cdot : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\
0 \cdot y := 0 \\
Sx \cdot y := y + x \cdot y
\]

\[
\wedge : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\
x^0 := 1 \\
x^{S\cdot} := x \cdot x^n
\]

Exercise 1.2.1 Define functions as follows:

a) A function \(\mathbb{N} \to \mathbb{N} \to \mathbb{N} \) yielding the minimum of two numbers.

b) A function \(\mathbb{N} \to \mathbb{N} \to \mathbb{B} \) testing whether two numbers are equal.

c) A function \(\mathbb{N} \to \mathbb{N} \to \mathbb{B} \) testing whether a number is smaller than another number.

Exercise 1.2.2 (Symmetric boolean conjunction and disjunction) Using cascaded discrimination, we can define an inductive functions for boolean conjunction with symmetric defining equations:

\[
\& : \mathbb{B} \to \mathbb{B} \to \mathbb{B} \\
T \& T := T \\
T \& F := F \\
F \& T := F \\
F \& F := F
\]

a) Prove that the symmetric function satisfies the defining equations for the standard boolean conjunction function (\(T \& y = y \) and \(F \& y = F \)).

b) Prove that the symmetric function agrees with the standard boolean conjunction function.

c) Define a symmetric boolean disjunction function and show that it agrees with the standard boolean disjunction function.

1.3 Notational Conventions

We are using notational conventions common in type theory and functional programming. In particular, we omit parentheses in types and applications relying on the following rules:

\[
s \rightarrow t \rightarrow u \quad \iff \quad s \rightarrow (t \rightarrow u) \\
stu \quad \iff \quad (st)u
\]

For the arithmetic operations we assume the usual precedences, so multiplication \(\cdot \) binds before addition \(+ \) and subtraction \(- \), and all three of them are left associative. For instance:

\[
x + 2 \cdot y - 5 \cdot x + z \quad \iff \quad ((x + (2 \cdot y)) - (5 \cdot x)) + z
\]
1 Getting Started

\[x + 0 = x \quad \text{induction} \]

\[0 + 0 = 0 \quad \text{computational equality} \]

\[\text{IH} : x + 0 = x \]

\[Sx + 0 = Sx \quad \text{simplification} \]

\[S(x + 0) = Sx \quad \text{rewrite IH} \]

\[Sx = Sx \quad \text{computational equality} \]

Figure 1.1: Proof diagram for Equation 1.1

1.4 Structural Induction

We will now discuss proofs of the equations

\[x + 0 = x \quad (1.1) \]

\[x + Sy = S(x + y) \quad (1.2) \]

\[x + y = y + x \quad (1.3) \]

\[(x + y) - y = x \quad (1.4) \]

None of the equations can be shown with structural case analysis and computation alone. In each case structural induction on numbers is needed. Structural induction strengthens structural case analysis by providing an inductive hypothesis in the successor case. Figure 1.1 shows a proof diagram for Equation 1.1. The induction rule reduces the initial proof goal to two subgoals appearing in the lines numbered 1 and 2. The two subgoals are obtained by discrimination on \(x \) and by adding the inductive hypothesis (IH) in the successor case. The inductive hypothesis makes it possible to close the proof of the successor case by simplification and by rewriting with the inductive hypothesis. A simplification step simplifies a claim by applying defining equations from left to right. A rewriting step rewrites with an equation that is either assumed or has been established as a lemma. In the example above, rewriting takes place with the inductive hypothesis, an assumption introduced by the induction rule.

We will explain later why structural induction is a valid proof principle. For now we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis is applied from right to left as first step in the second proof goal.

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations of the addition function '+'. Once these equations have been shown, they can be used for rewriting in proofs.

Figure 1.2 shows a proof diagram giving an inductive proof of Equation 1.4. Note that the proof rewrites with Equation 1.1 and Equation 1.2, assuming that the equations have been proved before. The successor case closes with an application of the
inductive hypothesis (i.e., the remaining claim agrees with the inductive hypothesis).

The proof of Equation 1.3 is similar to the proof of Equation 1.4 (induction on x and rewriting with 1.1 and 1.2). We leave the proof as exercise.

One reason for showing inductive proofs as proof diagrams is that proof diagrams explain how one construct proofs in interaction with Coq. With Coq one states the initial proof goal and then enters commands called tactics performing the proof actions given in the rightmost column of the proof diagrams. The induction tactic displays the subgoals and automatically provides the inductive hypothesis. Except for the initial claim, all the equations appearing in the proof diagrams are displayed automatically by Coq, saving a lot of tedious writing. Replay all proof diagrams shown in this chapter with Coq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The proof rules for structural case analysis and structural induction reduce a proof goal to several subgoals. A proof is complete once all subgoals have been closed.

A proof diagram comes with three columns listing assumptions, claims, and proof actions.1 Subgoals are marked by hierarchical numbers and horizontal lines. Our proof diagrams may be called have-want digrams since they come with separate columns for assumptions we have, claims we want to prove, and actions we perform to advance the proof.

Exercise 1.4.1 Give a proof diagram for Equation 1.2. Follow the layout of Figure 1.2.

Exercise 1.4.2 Prove that addition is commutative (1.3). Use equations (1.1) and (1.2) as lemmas.

Exercise 1.4.3 Shorten the given proofs for Equations 1.1 and 1.4 by applying the inductive hypothesis from right to left thus avoiding the simplification step.

1In this section, only inductive hypotheses appear as assumption. We will see more assumptions once we prove claims with implication in Chapter 3.
1 Getting Started

Exercise 1.4.4 Prove that addition is associative:
\((x + y) + z = x + (y + z)\). Give a proof diagram.

Exercise 1.4.5 Prove the distributivity law
\((x + y) \cdot z = x \cdot z + y \cdot z\). You will need associativity of addition.

Exercise 1.4.6 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.4.7 (Truncating subtraction) Truncating subtraction is different from the familiar subtraction in that it yields 0 where standard subtraction yields a negative number. Truncating subtraction has the nice property that
\(x \leq y\) if and only if \(x - y = 0\). Prove the following equations:

a) \(x - 0 = x\)
b) \((x + y) - x = y\)
c) \(x - x = 0\)
d) \(x - (x + y) = 0\)

Exercise 1.4.8 (Symmetric addition) Using cascaded discrimination, we can define an inductive addition function with symmetric defining equations:

\[
+ : \mathbb{N} \rightarrow \mathbb{N} \\
0 + 0 := 0 \\
0 + S y := S y \\
S x + 0 := S x \\
S x + S y := S(S(x + y))
\]

a) Prove that the symmetric addition function satisfies the defining equations for the standard addition function (\(0 + y = y\) and \(S x + y = S(x + y)\)).
b) Prove that the symmetric addition function agrees with the standard addition function.

1.5 Quantified Inductive Hypotheses

Sometimes it is necessary to do an inductive proof using a quantified inductive hypothesis. As an example we consider a variant of the subtraction function returning the distance between two numbers:

\[
D : \mathbb{N} \rightarrow \mathbb{N} \\
D 0 y := y \\
D (Sx) 0 := Sx \\
D (Sx)(S y) := Dxy
\]
1.5 Quantified Inductive Hypotheses

∀y. Dxy = (x − y) + (y − x) induction x

1 ∀y. D0y = (0 − y) + (y − 0) disc. y
1.1 D00 = (0 − 0) + (0 − 0) comp. eq.
1.2 D(Sy) = (S0y) + (Sy − 0) comp. eq.

2 IH : ∀y. · · · ∀y. D(Sx)y = (Sx − y) + (y − Sx) disc. y
2.1 D(Sx)0 = (Sx − 0) + (0 − Sx) simpl.
 Sx = Sx + 0 apply (1.1)
2.2 D(Sx)(Sy) = (Sx − Sy) + (Sy − Sx) simpl.
 Dxy = (x − y) + (y − x) apply IH

Figure 1.3: Proof diagram for a proof with a quantified inductive hypothesis

The defining equations discriminate on the first argument and in the successor case also on the second argument. The recursion occurs in the third equation and is structural in the first argument.

We now want to prove

Dxy = (x − y) + (y − x)

We do the proof by induction on x followed by discrimination on y. The base cases with either x = 0 or y = 0 are easy. The interesting case is

D(Sx)(Sy) = (Sx − Sy) + (Sy − Sx)

After simplification (i.e., application of defining equations) we have

Dxy = (x − y) + (y − x)

If this was the inductive hypothesis, closing the proof is trivial. However, the actual inductive hypothesis is

Dx(Sy) = (x − Sy) + (Sy − x)

since it was instantiated by the discrimination on y. The problem can be solved by starting with a quantified claim

∀y. Dxy = (x − y) + (y − x)

where induction on x gives us a quantified inductive hypothesis that is not affected by a discrimination on y. Figure 1.3 shows a complete proof diagram for the quantified claim.

You may have questions about the precise rules for quantification and induction. Given that this is a teaser chapter, you will have to wait a little bit. It will take until Chapter 6 that quantification and induction are explained in depth.
1 Getting Started

Exercise 1.5.1 (Maximum)
Define an inductive maximum function \(M : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \) and prove the following:

a) \(M(x, y) = M(y, x) \) (commutativity)

b) \(M(x + y, x) = x + y \) (dominance)

Hint: Commutativity needs a quantified inductive hypothesis.
Extra: Do the exercise for a minimum function. Find a suitable reformulation for (b).

1.6 Specifying Equations

The rules we have given for defining inductive functions are restrictive. There are many cases where we can specify a function with a set of equations that taken as computation rules are exhaustive, disjoint, and terminating. We consider two examples where we can define inductive functions in our restrictive format such that the defined functions satisfy the specifying equations.

Our first example specifies a function \(E : \mathbb{N} \rightarrow \mathbb{B} \) with the equations

\[
E(0) = \mathsf{T} \\
E(S0) = \mathsf{F} \\
E(S(Sn)) = E(n)
\]

The equations are exhaustive, disjoint, and terminating (two constructors are skipped). However, the equations cannot serve as defining equations since the second and third pattern nest a further constructor into the pattern for \(S \). Note that the equations specify a boolean test for even numbers.

We can define an inductive function satisfying the specifying equations using the defining equations

\[
E(0) := \mathsf{T} \\
E(Sn) := !E(n)
\]

(recall that ‘!’ is boolean negation). The first and the second equation specifying \(E \) hold by computational equality. The third specifying equation holds by simplification and by rewriting with the lemma \(!! b = b\).

Our second example specifies the Fibonacci function \(F : \mathbb{N} \rightarrow \mathbb{N} \) with the equations

\[
F0 = 0 \\
F1 = 1 \\
F(S(Sn)) = Fn + F(Sn)
\]
The equations do not qualify as defining equations for the same reasons we explained for E. It is however possible to define a Fibonacci function in our format. One possibility is to obtain F with an auxiliary function F' taking an extra boolean argument such that, informally, $F'nb$ yields $F(n + b)$:

$$F' : \mathbb{N} \rightarrow \mathbb{B} \rightarrow \mathbb{N}$$

$$F'0\ f := 0$$

$$F'0\ t := 1$$

$$F'(Sn)\ f := F'nf\ t$$

$$F'(Sn)\ t := F'nf\ f + F'nf\ t$$

Note that F' is defined by full cascaded discrimination on both arguments. We now define

$$F : \mathbb{N} \rightarrow \mathbb{N}$$

$$Fn := F'nf\ f$$

That F satisfies the specifying equations for the Fibonacci function follows by computational equality.

Note that F is defined with a single defining equation without discrimination. We speak of a plain function and a plain function definition. Since there is no discrimination, the defining equation of a plain function can be applied as soon as the function is applied to enough arguments. The defining equation of a plain function must not be recursive.

There are other possibilities for defining a Fibonacci function. Exercise 1.9.8 will obtain a Fibonacci function by iteration on pairs, and Exercise 1.11.5 will obtain a Fibonacci function with a tail recursive auxiliary function taking two extra arguments. Both alternatives employ linear recursion, while the definition shown above uses binary recursion, following the pattern of the third specifying equation.

We remark that Coq supports a more permissive scheme for inductive functions, providing for a straightforward definition of a Fibonacci function essentially following the specifying equations. In this text we will stick to the restrictive format explained so far. It will turn out that every function specified with a terminating system of equations can be defined in the restrictive format we are using here (see Chapter 26).

Exercise 1.6.1 Prove $E(n \cdot 2) = \top$.

Exercise 1.6.2 Verify that $Fn := F'nf\ f$ satisfies the specifying equations for the Fibonacci function.
Exercise 1.6.3 Define a function $H : \mathbb{N} \rightarrow \mathbb{N}$ satisfying the equations

\[
H 0 = 0 \\
H 1 = 0 \\
H(S(Sn)) = S(Hn)
\]

using strict structural recursion. Hint: Use an auxiliary function with an extra boolean argument.

1.7 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated as inductive types. We will now see that (ordered) pairs (x, y) can also be accommodated with an inductive type definition.

A pair (x, y) combines two values x and y into a single value such that the components x and y can be recovered from the pair. Moreover, two pairs are equal if and only if they have the same components. For instance, we have $(3, 2 + 3) = (1 + 2, 5)$ and $(1, 2) \neq (2, 1)$.

Pairs whose components are numbers can be accommodated with the inductive definition

\[
\text{Pair ::= pair(N,N)}
\]

which introduces two constructors

\[
\text{Pair : \bar{T}} \\
\text{pair : N \rightarrow N \rightarrow Pair}
\]

A function swapping the components of a pair can be defined with a single equation:

\[
\text{swap : Pair \rightarrow Pair} \\
\text{swap (pair x y) ::= pair y x}
\]

Using discrimination for pairs, we can prove the equation

\[
\text{swap (swap } p \text{) = } p
\]

for all pairs p (that is, for a variable p of type Pair). Note that discrimination for pairs involves only a single case for the single value constructor for pairs.

Above we have defined pairs where both components are numbers. Given two types X and Y, we can repeat the definition to obtain pairs whose first component
1.8 Implicit Arguments

has type \(X \) and whose second component has type \(Y \). We can do much better, however, by defining pair types for all component types in one go:

\[
\text{Pair}(X : T, Y : T) ::= \text{pair}(X, Y)
\]

This inductive type definition gives us two constructors:

\[
\begin{align*}
\text{Pair} & : T \to T \to T \\
\text{pair} & : \forall X Y. X \to Y \to \text{Pair} X Y
\end{align*}
\]

The **polymorphic value constructor** \(\text{pair} \) comes with a **polymorphic function type** saying that \(\text{pair} \) takes four arguments, where the first argument \(X \) and the second argument \(Y \) fix the types of the third and the fourth argument. Put differently, the types \(X \) and \(Y \) taken as first and second argument are the types for the components of the pair constructed.

We shall use the familiar notation \(X \times Y \) for **product types** \(\text{Pair} X Y \).

We can write **partial applications** of the value constructor \(\text{pair} \):

\[
\begin{align*}
\text{pair} N & : \forall Y. N \to Y \to N \times Y \\
\text{pair} N B & : N \to B \to N \times B \\
\text{pair} N B 0 & : B \to N \times B \\
\text{pair} N B 0 t & : B \times N \\
\end{align*}
\]

We can also define a **polymorphic swap function** working for all pair types:

\[
\begin{align*}
\text{swap} & : \forall X Y. X \times Y \to Y \times X \\
\text{swap} X Y (\text{pair} _ _ x y) & ::= \text{pair} Y X y x
\end{align*}
\]

Note that the first two arguments of \(\text{pair} \) in the **pattern** of the defining equation (i.e., the left hand side of the defining equation) are given with the **wildcard symbol** \(_ _ \). The reason for writing wildcards is that the first two arguments of \(\text{pair} \) are **parameter arguments** that don’t contribute relevant information in the pattern of a defining equation.

1.8 Implicit Arguments

If we look at the type of the polymorphic pair constructor

\[
\text{pair} : \forall X Y. X \to Y \to X \times Y
\]

we see that the first and second argument of \(\text{pair} \) provide the types of the third and fourth argument. This means that the first and second argument can be derived
from the third and fourth argument. This fact can be exploited in Coq by declaring
the first and second argument of pair as implicit arguments. Implicit arguments
are not written explicitly but are derived and inserted automatically. This way we
can write `pair 0 T` for `pair N B 0 T`. If in addition we declare the type arguments of

\[
\text{swap : } \forall X Y. X \times Y \to Y \times X
\]
as implicit arguments, we can write

\[
\text{swap (swap (pair x y)) = pair x y}
\]
for the otherwise bloated equation

\[
\text{swap Y X (swap XY (pair XY x y)) = pair XY x y}
\]
We will routinely use implicit arguments for polymorphic constructors and func-
tions.

With implicit arguments, we go one step further and use the standard notations
for pairs:

\[(x, y) := \text{pair x y}\]

With this final step we can write the definition of swap as follows:

\[
\text{swap : } \forall X Y. X \times Y \to Y \times X
\]
\[
\text{swap (x, y) := (y, x)}
\]

Note that it takes considerable effort to recover the usual mathematical nota-
tion for pairs in the typed setting of computational type theory. There were three
successive steps:
1. Polymorphic function types and functions taking types as arguments. We remark
 that types are first-class objects in computational type theory.
2. Implicit arguments so that type arguments can be derived automatically from
 other arguments.
3. The usual notation for pairs.

Finally, we define two functions providing the first and the second projection
for pairs:

\[
\pi_1 : \forall X Y. X \times Y \to X \quad \pi_2 : \forall X Y. X \times Y \to Y
\]
\[
\pi_1 (x, y) := x \quad \pi_2 (x, y) := y
\]

We can now prove the \(\eta\)-law for pairs

\[(\pi_1 a, \pi_2 a) = a\]

by discrimination on \(a\) (i.e., replacing \(a\) with \((x, y))\) and computational equality.
1.9 Iteration

Exercise 1.8.1 Write the η-law and the definitions of the projections without using the notation (x, y) and without implicit arguments.

Exercise 1.8.2 Let a be a variable of type $X \times Y$. Write proof diagrams for the equations $\text{swap}(\text{swap } a) = a$ and $(\pi_1 a, \pi_2 a) = a$.

1.9 Iteration

If we look at the equations (all following by computational equality)
\[
\begin{align*}
3 + x &= S(S(Sx)) \\
3 \cdot x &= x + (x + (x + 0)) \\
x^3 &= x \cdot (x \cdot (x \cdot 1))
\end{align*}
\]

we see a common scheme we call iteration. In general, iteration takes the form $f^n x$ where a step function f is applied n-times to an initial value x. With the notation $f^n x$ the equations from above generalize as follows:
\[
\begin{align*}
n + x &= S^n x \\
n \cdot x &= (+x)^n 0 \\
x^n &= (\cdot x)^n 1
\end{align*}
\]

The partial applications $(+x)$ and $(\cdot x)$ supply only the first argument to the functions for addition and multiplication. They yield functions $\mathbb{N} \rightarrow \mathbb{N}$, as suggested by the cascaded function type $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ of addition and multiplication.

We formalize the notation $f^n x$ with a polymorphic function:
\[
\begin{align*}
\text{iter} : \forall X. (X \rightarrow X) \rightarrow \mathbb{N} \rightarrow X \rightarrow X \\
\text{iter } X f 0 x &= x \\
\text{iter } X f (Sn) x &= f(\text{iter } X f n x)
\end{align*}
\]

We will treat X as implicit argument of iter. The equations
\[
\begin{align*}
3 + x &= \text{iter } S 3 x \\
3 \cdot x &= \text{iter } (+x) 3 0 \\
x^3 &= \text{iter } (\cdot x) 3 1
\end{align*}
\]

now hold by computational equality. More generally, we can prove the following equations by induction on n:
\[
\begin{align*}
n + x &= \text{iter } S n x \\
n \cdot x &= \text{iter } (+x) n 0 \\
x^n &= \text{iter } (\cdot x) n 1
\end{align*}
\]

Figure 1.4 gives a proof diagram for the equation for multiplication.
1 Getting Started

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
<th>Induction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$n \cdot x = \text{iter } (+x) , n , 0$</td>
<td>induction n</td>
</tr>
<tr>
<td></td>
<td>$0 \cdot x = \text{iter } (+x) , 0 , 0$</td>
<td>comp. eq.</td>
</tr>
<tr>
<td>2</td>
<td>$\text{IH}: n \cdot x = \text{iter } (+x) , n , 0$</td>
<td>simpl.</td>
</tr>
<tr>
<td></td>
<td>$S \cdot n \cdot x = \text{iter } (+x) , (S \cdot n) , 0$</td>
<td>rewrite IH</td>
</tr>
<tr>
<td></td>
<td>$x + n \cdot x = x + \text{iter } (+x) , n , 0$</td>
<td>rewrite IH</td>
</tr>
<tr>
<td></td>
<td>$x + \text{iter } (+x) , n , 0 = x + \text{iter } (+x) , n , 0$</td>
<td>comp. eq.</td>
</tr>
</tbody>
</table>

Figure 1.4: Correctness of multiplication with iter

Exercise 1.9.1 Check that $\text{iter } S \, 2 = \lambda x. S(Sx)$ holds by computational equality.

Exercise 1.9.2 Prove $n + x = \text{iter } S \, n \, x$ and $x^n = \text{iter } (+x) \, n \, 1$ by induction.

Exercise 1.9.3 Check that the plain function

$$\text{add} : N \rightarrow N \rightarrow N$$

$$\text{add } x \, y := \text{iter } S \, x \, y$$

satisfies the defining equations for inductive addition

$$\text{add } 0 \, y = y$$

$$\text{add } (S \, x) \, y = S(\text{add } x \, y)$$

by computational equality.

Exercise 1.9.4 (Shift) Prove $\text{iter } f \, (S \, n) \, x = \text{iter } f \, n \, (f \, x)$.

Exercise 1.9.5 (Tail recursive iteration) Define a tail recursive version of iter and verify that it agrees with iter.

Exercise 1.9.6 (Even) The term $\text{!}^n \, x$ tests whether a number n is even (‘!’ is boolean negation). Prove $\text{iter } ! (n \cdot 2) \, b = b$ and $\text{iter } ! (S(n \cdot 2)) \, b = !b$.

Exercise 1.9.7 (Factorials with iteration) Factorials $n!$ can be computed by iteration on pairs $(k, k!$). Find a function f such that $(n, n!) = f^n(0, 1)$. Define a factorial function with the equations $0! = 1$ and $(S \cdot n)! = S \cdot n \cdot n!$ and prove $(n, n!) = f^n(0, 1)$ by induction on n.

Exercise 1.9.8 (Fibonacci with iteration) Fibonacci numbers (§1.6) can be computed by iteration on pairs. Find a function f such that $F \cdot n := \pi_1(f^n(0, 1))$ satisfies the specifying equations for the Fibonacci function:

$$F_0 = 0$$

$$F_1 = 1$$

$$F(S \cdot (S \cdot n)) = F \cdot n + F(S \cdot n)$$
1.10 Ackermann Function

Hint: If you formulate the step function with \(\pi_1 \) and \(\pi_2 \), the third specifying equation should follow by computational equality, otherwise discrimination on a sub-term obtained with \(\text{iter} \) may be needed.

1.10 Ackermann Function

The following equations specify a function \(A : \mathbb{N} \to \mathbb{N} \) known as Ackermann function:

\[
\begin{align*}
A^0 y &= S y \\
A(Sx)0 &= Ax1 \\
A(Sx)(Sy) &= Ax(A(Sx)y)
\end{align*}
\]

The equations cannot serve as a defining equations since the recursion is not structural. The problem is with the nested recursive application \(A(Sx)y \) in the third equation.

However, we can define a structurally recursive function satisfying the given equations. The trick is to use a higher-order auxiliary function:\footnote{A higher-order function is a function taking a function as argument.}

\[
\begin{align*}
A : \mathbb{N} \to \mathbb{N} \to \mathbb{N} & \quad A' : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \to \mathbb{N} \\
A0 & : = S & A'0 & : = h1 \\
A(Sx) & : = A'(Ax) & A'h(Sy) & : = h(A'h(y)
\end{align*}
\]

Verifying that \(A \) satisfies the three specifying equations is straightforward. Here is a verification of the third equation:

\[
\begin{align*}
A(Sx)(Sy) &= A'(Ax)(Sy) \\
= Ax(A(Sx)y) &= Ax(A'(Ax)y) \\
= Ax(A'(Ax)y)
\end{align*}
\]

Note that the three specifying equations all hold by computational equality (i.e., both sides of the equations reduce to the same term). Thus verifying the equations with a proof assistant is trivial.

We remark that the three equations specifying \(A \) are exhaustive and disjoint. They are also terminating, which can be seen with a lexical argument: Either the first argument is decreased, or the first argument stays unchanged and the second argument is decreased.

Exercise 1.10.1 (Truncating subtraction without cascaded discrimination)

Define a truncating subtraction function that discriminates on the first argument.
1 Getting Started

\[
\text{Fib} : (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
\text{Ack} : (\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\]

\[
\text{Fib} f 0 := 0 \\
\text{Fib} f 1 := 1 \\
\text{Fib} f (\mathsf{S} \mathsf{S} n) := f n + f (\mathsf{S} n)
\]

\[
\text{Ack} f 0 y := \mathsf{S} y \\
\text{Ack} (\mathsf{S} x) f 0 := f x 1 \\
\text{Ack} (\mathsf{S} x) (\mathsf{S} y) f := f x (f (\mathsf{S} x) y)
\]

Figure 1.5: Unfolding functions for the Fibonacci and Ackermann functions

and delegates discrimination on the second argument to an auxiliary function. Prove that your function agrees with the standard subtraction function \text{sub} from §1.2. Arrange your definitions such that your function satisfies the defining equations of \text{sub} by computational equality.

Exercise 1.10.2 (Ackermann with iteration)

Iteration suffices to define an Ackermann function without further recursion. One follows the design discussed above and defines

\[
\text{A} n := \text{B} n \mathsf{S}
\]

using a higher-order auxiliary function \text{B}. Define \text{B} with iteration and verify that \text{A} satisfies the specifying equations for the Ackermann function by computational equality.

1.11 Unfolding Functions

We have specified the Fibonacci and Ackermann functions using equation systems, which can be rewritten into function definitions in procedural (functional) programming languages. For the type theoretic language we are considering here this is not possible since the termination condition imposed (strict structural recursion) is not satisfied. However, the termination condition can be bypassed by abstracting out the recursion by means of a **continuation function** given as first argument. This yields the **unfolding functions** for the Fibonacci and Ackermann functions shown in Figure 1.5.

Intuitively, it is clear that a function \(f \) satisfies the specifying equations for the Fibonacci function if and only if it satisfies the **unfolding equation**

\[
f n = \text{Fib} f n
\]

for the unfolding function \text{Fib}. Formally, this follows from the fact that the specifying equations for the Fibonacci function are computationally equal to the respective
instances of the unfolding equation:

\[
\begin{align*}
 f_0 &= \text{Fib} \ f_0 \\
 f_1 &= \text{Fib} \ f_1 \\
 f(\text{SS}n) &= \text{Fib} \ f(\text{SS}n)
\end{align*}
\]

The same is true for the Ackermann function.

We may say that an unfolding function is a higher-order function specifying a possibly recursive function without recursion. We speak of procedural specifications when we specify a functions with unfolding functions.

Exercise 1.11.1 Verify with the proof assistant that the realizations of the Fibonacci function defined in §1.6 and Exercise 1.9.8 satisfy the unfolding equation for the specifying unfolding function.

Exercise 1.11.2 Verify with the proof assistant that the realizations of the Ackermann function defined in §1.10 satisfies the unfolding equation for the specifying unfolding function.

Exercise 1.11.3 Give unfolding functions for addition and truncating subtraction and show that the unfolding equations are satisfied by the inductive functions we defined for addition and subtraction.

Exercise 1.11.4 The unfolding function Fib is defined with a nested pattern SS\(n\) in the third defining equation. Show how the nested pattern can be removed by formulating the third equation with an auxiliary function.

Exercise 1.11.5 (Iterative definition of a Fibonacci function) There is a different definition of a Fibonacci function using the auxiliary function

\[
g : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\
gab0 := a \\
gab(\text{S}n) := gb(a + b)n
\]

The underlying idea is to start with the first two Fibonacci numbers and then iterate \(n\)-times to obtain the \(n\)-th Fibonacci number. For instance,

\[
g015 = g114 = g123 = g232 = g351 = g580 = 5
\]

a) Prove \(gab(\text{SS}n) = gabn + gab(\text{S}n)\) by induction on \(n\).

b) Prove that \(g01\) satisfies the unfolding equation for Fib.
1 Getting Started

1.12 Concluding Remarks

The equational language we have seen in this chapter is a sweet spot in the type-theoretic landscape. With a minimum of luggage we can define interesting functions, explore equational computation, and prove equational properties using structural induction. Higher-order functions and polymorphic functions are natural features of this equational language. The power of the language comes from the fact functions and types can serve as arguments and results of functions.

We have seen how booleans, numbers, and pairs can be accommodated as inductive types using constructors, and how inductive functions discriminating on inductives types can be defined using equations. Recursion of inductive functions is restricted to structural recursion so that termination of functional computation is ensured.

As usual, we use the word function with two meanings. Usually, when we talk about a function, we refer to its concrete definition in type theory. This way, we can distinguish between inductive and plain functions, or recursive and non-recursive functions. Sometimes, however, we refer to a function as an abstract object that relates inputs to outputs but hides how it is defined. This abstract view makes it possible to speak of a uniquely determined Fibonacci function or of a uniquely determined Ackermann function.

Here is a list of important technical terms introduced in this chapter:
- Booleans, numbers, and pairs obtained with inductive types
- (Parameterised) inductive type definitions, type and value constructors
- Inductive functions, plain functions
- Defining equations, patterns, computation rules
- Cascaded function types, partial applications
- Polymorphic function types, implicit arguments
- Structural recursion, structural case analysis, discrimination
- Structural induction, (quantified) inductive hypotheses
- Proof digrams, proof goals, subgoals, proof actions (tactics)
- Simplification steps, rewriting steps, computational equality
- Truncated subtraction, Fibonacci function, Ackermann function
- Unfolding function, unfolding equation, continuation function
- Iteration
2 Basic Computational Type Theory

This chapter introduces key ideas of computational type theory in a nutshell. We start with inductive type definitions and inductive function definitions and continue with reduction rules and computational equality. We discuss termination, type preservation, and canonicity, three key properties of computational type theory. We then continue with lambda abstractions, beta reduction, and eta equivalence. Finally, we introduce matches and recursive abstractions, the Coq-specific constructs for expressing inductive function definitions.

In this chapter computational type theory appears as a purely computational system. That computational type theory can express logical propositions and proofs will be shown in the next chapter. In Chapter 4 we will boost the expressivity of computational type theory by enhancing type checking so that it operates modulo computational equality of types. The resulting type theory covers equational and inductive proofs.

2.1 Inductive Type Definitions

Our explanation of computational type theory starts with inductive type definitions. Here are the already discussed definitions for a type of numbers and for a type constructor for pairs:

\[N ::= 0 \mid S(N) \]
\[\text{Pair}(X : T, Y : T) ::= \text{pair}(X, Y) \]

Each of the definitions introduces a system of typed constants called constructors consisting of a single type constructor and a list of value constructors:

\[N : T \]
\[0 : N \]
\[S : N \rightarrow N \]
\[\text{Pair} : T \rightarrow T \rightarrow T \]
\[\text{pair} : \forall X^T. \forall Y^T. X \rightarrow Y \rightarrow \text{Pair} X Y \]

Note that the constructors \(S \), \(\text{Pair} \), and \(\text{pair} \) have types that classify them as functions. From the types of \(0 \) and \(S \) and the information that there are no other value
constructors for \(N \) it is clear that the values of \(N \) are obtained as the terms 0, \(S(0) \), \(S(S(0)) \) and so forth. Analogously, given two types \(s \) and \(t \), the values of the type \(Pair \ s \ t \) are described by the terms \(pair \ s \ t \ u \ v \) where \(u \) is a value of \(s \) and \(v \) is a value of \(t \).

A distinguishing feature of computational type theory are dependent function types

\[
\forall x : s. t
\]

which we often write as \(\forall x : s. t \). An example for a dependent function type is the type of the value constructor pair

\[
\forall X : T. \forall Y : T. X \rightarrow Y \rightarrow Pair \ X \ Y
\]

which use the primitive for dependent function types twice. This way \(Pair \) can take two types \(s \) and \(t \) as arguments and then behave as a simply typed function \(s \rightarrow t \rightarrow Pair \ s \ t \).

Computational type theory sees a simple function type \(s \rightarrow t \) as a dependent function type \(\forall x : s.t \) where the return type \(t \) does not depend on the argument \(x \). In other words, \(s \rightarrow t \) is notation for \(\forall x : s.t \), provided the variable \(x \) does not occur in \(t \). For instance, \(N \rightarrow N \) is notation for \(\forall x : N.N \).

As usual, the names for bound variables do not matter. For instance, the terms \(\forall X : X \rightarrow X \) and \(\forall Y : Y \rightarrow Y \) are identified.

There is also the primitive type \(T \), which may be understood as the type of all types. For now, it is fine to assume \(T : T \) (i.e., the type of \(T \) is \(T \)). Later, we will remove the cycle and work with an infinite hierarchy of type universes \(T_n : T_{n+1} \).

A key feature of computational type theory is the fact that types and functions are values like all other values. We say that types and functions are first-class objects. Note that \(Pair \) and \(pair \) are functions taking types as arguments.

Type theory only admits well-typed terms. Examples for ill-typed terms are \(S \ T \) and \(pair \ 0 \ N \). In the basic type theory we are considering here, every well-typed term has a unique type.

Exercise 2.1.1 Convince yourself that the following terms are all well-typed. In each case give the type of the term.

\(S, \ Pair \ N, \ Pair \ (Pair \ N \ (N \rightarrow N)), \ Pair \ N \ T, \ pair \ (N \rightarrow N) \ T \ S \ N \)

2.2 Inductive Function Definitions

Inductive function definitions define functions by case analysis on one or more inductive arguments called discriminating arguments. We shall look at the examples appearing in Figure 2.2. Each of the three definitions first declares the name
2.2 Inductive Function Definitions

add : \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \)
\[
\begin{align*}
\text{add} \ 0 \ y & := y \\
\text{add} \ (Sx) \ y & := S(\text{add} \ xy)
\end{align*}
\]

sub : \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \)
\[
\begin{align*}
\text{sub} \ 0 \ y & := 0 \\
\text{sub} \ (Sx) \ 0 & := Sx \\
\text{sub} \ (Sx) \ (Sy) & := \text{sub} \ xy
\end{align*}
\]

swap : \(\forall X^\mathbb{T}. \forall Y^\mathbb{T}. \text{Pair} XY \rightarrow \text{Pair} YX \)
\[
\text{swap} \ XY (\text{pair} \ _ \ _ \ xy) := \text{pair} \ YX \ xy \ x
\]

Figure 2.1: Inductive function definitions

(a constant) and the type of the defined function. Then defining equations are given realizing a disjoint and exhaustive case analysis. Note that add and swap have exactly one discriminating argument, while sub has two discriminating arguments. Since there is only one value constructor for pairs, there is only one defining equation for swap.

The left hand sides of defining equations are called patterns. The variables occurring in a pattern are local to the equation and can be used in the right hand side of the equation. We say that a pattern binds the variables occurring in it. An important requirement for patterns is linearity, that is, none of the variables bound by a pattern can occur more that once in the pattern. For this reason the first two arguments of the constructor pair in the pattern for swap are written as underlines. The defining equations for a function must be exhaustive. That is, there must be a defining equation for every value constructor of the type of the first discriminating argument. If there are further discriminating arguments, as in the case of sub, the conditions apply recursively.

Every defining equation must be well-typed. Using the type declared for the function, every variable bound by the pattern of a defining equation receives a unique type. Give the types for the bound variables, type checking of the right-hand side of a defining equation is as usual.

As long as there is exactly one discriminating argument, the patterns of the defining equations are uniquely determined by the value constructors of the type of the discriminating argument.

If an inductive function recurses, the recursion is always on the first discriminating argument. Moreover, recursion is restricted to the variables introduced by the
pattern for the first discriminating argument. In the examples in Figure 2.2, only the variable \(x \) in the defining equations for \(\text{add} \) and \(\text{sub} \) qualify for recursion. We refer to this severely restricted form of recursion as **structural recursion**.

2.3 Reduction

The defining equations of an inductive function serve as **reduction rules** that rewrite applications of the defined function. For instance, the application \(\text{sub} \left(Ss \right) \left(St \right) \) can be **reduced** to \(\text{sub} s t \) using the third defining equation of \(\text{sub} \).

Things are arranged such that at most one defining equation applies to an application (disjointness), and such that every application where all discriminating arguments start with a constructor can be reduced (exhaustiveness). Thus a **closed term** (no free variables) can be reduced as long as it contains an application of a defined function. We refer to the process of applying reductions rules as **reduction**, and we see reduction as computation. Following this interpretation, we refer to reduction rules also as **computation rules**.

Things are arranged such that reduction **always terminates**. Without a restriction on recursion, non-terminating inductive functions are possible. The structural recursion requirement is a sufficient condition for termination that can be checked easily.

Since reduction always terminates, we can compute a **normal form** for every term. There is no restriction on the application of reduction rules: Reduction rules can be applied to any subterm of a term and in any order. Since the reduction rules obtained from the defining equations do not overlap, terms nevertheless have unique normal forms. We say that a term **evaluates** to its normal form and refer to irreducible terms as **normal terms**. Terms that are closed and normal are also called **canonical terms**.

We can now formulate **four key properties of computational type theory**:

- **Termination** Reduction always terminates.
- **Unique normal forms** Terms reduce to at most one normal form.
- **Type preservation** Reduction preserves types: If a term of type \(t \) is reduced, the obtained term is again of type \(t \).
- **Canonicity** Closed normal terms of an inductive type start with a value constructor of the type.

Canonicity gives an important integrity guarantee for inductive types saying that the elements of an inductive type do not change when inductive functions returning values of the type are added. Canonicity ensures that the canonical terms of an inductive type are exactly the terms that one can build with the value constructors of the type.
2.4 Plain Definitions

The definition format for inductive functions is carefully designed such that the key properties are preserved when a definition is added. Exhaustiveness of the defining equations is needed for canonicity, disjointness of the defining equations is needed for uniqueness, and the structural recursion requirement is needed for termination. Moreover, the type checking conditions for equations are needed for type preservation.

Exercise 2.3.1 Give all reduction chains that reduce the term

\[\text{sub } (S0) (\text{add } (S(S0))) 0 \]

to its normal form. Note that there are chains of different length. Here is an example for a unique reduction chain to normal form: \(\text{sub } (S0) (S y) \succ \delta \text{ sub } 0 y \succ \delta 0 \). We use the notation \(s \succ \delta t \) for a single reduction step rewriting with a defining equation.

2.4 Plain Definitions

Besides inductive function definitions, there are also **plain function definitions** with a single defining equation

\[f x_1 \ldots x_n := t \]

where the pattern does not contain a constructor. Thus there is no discriminating argument. Similar to inductive function definitions, a plain function definition must declare the type of the defined function \(f \).

There are also **plain constant definitions** of the form

\[c : t := s \]

which introduce a constant \(c \) of type \(t \).

The reduction rule for both forms of plain definitions is known as **delta reduction** (\(\delta \)-reduction). It takes the form

\[cs_1 \ldots s_n \succ s \]

where \(s \) is the term appearing as the right hand side of the definition of \(c \). All variables appearing in \(s \) must be bound by the pattern of the defining equation for the constant \(c \).

Plain definitions must not be recursive. This ensures that the key properties of computational type theory are preserved when plain additions are added.

Exercise 2.4.1 Recall the definition of \(\text{iter} \) (§1.9). Explain the difference between the plain definitions

\[A := \text{iter } S \]
\[B x y := \text{iter } S x y \]
2 Basic Computational Type Theory

Note that the terms Axy and Bxy both reduce to the normal term $\text{iter } S\times y$. Moreover, note that the terms A and Ax are reducible, while the terms B and Bx are not reducible.

2.5 Lambda Abstractions

A key ingredient of computational type theory are lambda abstractions $\lambda x^t.s$ describing functions with a single argument. Lambda abstractions come with an argument variable x and an argument type t. The argument variable x may be used in the body s. A lambda abstraction does not give a name to the function it describes. A nice example is the nested lambda abstraction $\lambda X^T.\lambda x^X.x$ having the type $\forall X^T. X \rightarrow X$, which describes a polymorphic identity function. The reduction rule for lambda abstractions

$$(\lambda x^t.s)u \rightarrow^\beta s^x_u$$

is called β-reduction and replaces an application $(\lambda x^t.s)u$ with the term s^x_u obtained from the term s by replacing every free occurrence of the argument variable x with the term u. Applications of the form $(\lambda x^t.s)u$ are called β-redexes. Here is an example for two β-reductions:

$$(\lambda X^T.\lambda x^X.x)N \rightarrow^\beta (\lambda x^N.x)7 \rightarrow^\beta 7$$

As with dependent function types, the particular name of an argument variable does not matter. For instance, $\lambda X^T.\lambda x^X.x$ and $\lambda Y^T.\lambda y^Y.y$ are understood as equal terms.

For notational convenience, we usually omit the type of the argument variable of a lambda abstraction (assuming that it is determined by the context). We also omit parentheses and lambdas relying on two basic notational rules:

$$\lambda x.st \leadsto \lambda x.(st)$$
$$\lambda xy.s \leadsto \lambda x.\lambda y.s$$

To specify the type of an argument variable, we use either the notation x^t or the notation $x : t$, depending on what we think is more readable.

Adding lambda abstractions and β-reduction to a computational type theory preserves its key properties: termination, type preservation, and canonicity.

Exercise 2.5.1 Type checking is crucial for termination of β-reduction. Convince yourself that β-reduction of an ill-typed term $(\lambda x.xx)(\lambda x.xx)$ does not terminate, and that no typing of the argument variables makes the term well-typed.
2.6 Typing Rules

Type checking is an algorithm that determines whether a term or a defining equation or an entire definition is well-typed. In case a term is well-typed, the type of the term is determined. In case a defining equation is well-typed, the types of the variables bound by the pattern are determined. We will not say much about type checking but rather rely on the reader’s intuition and the implementation of type checking in the proof assistant. In case of doubt you can always ask the proof assistant.

Type checking is based on typing rules. The typing rules for applications and lambda abstractions may be written as

\[
\begin{align*}
\vdash s : \forall x^u. v & \quad \vdash t : u \\
\vdash s t : v^x_t \\
\vdash u : T & \quad x : u \vdash s : v \\
\vdash \lambda x^u.s : \forall x^u. v
\end{align*}
\]

and may be read as follows:

- An application \(st\) has type \(v^x_t\) if \(s\) has type \(\forall x^u. v\) and \(t\) has type \(u\).
- An abstraction \(\lambda x^u.s\) has type \(\forall x^u. v\) if \(u\) has type \(T\) and \(s\) has type \(v\) under the assumption that the argument variable has type \(u\).

The rule for applications makes precise how dependent function types are instantiated with the argument terms of applications.

Note that the rules admit any type \(u : T\) as argument type of a dependent function type \(\forall x : u. v\). So far we have only seen examples of dependent function types where \(u\) is \(T\). Dependent function types \(\forall x : u. v\) where \(u\) is not the universe \(T\) will turn out to be important.

Recall that simple function types \(u \to v\) are dependent function types \(\forall x : u. v\) where the argument variable \(x\) does not occur in the result type \(v\). If we specialize the typing rules to simple function types, we obtain rules that will look familiar to functional programmers:

\[
\begin{align*}
\vdash s : u \to v & \quad \vdash t : u \\
\vdash s t : v \\
\vdash u : T & \quad x : u \vdash s : v \\
\vdash \lambda x^u.s : u \to v
\end{align*}
\]

2.7 Let Expressions

We will also use let expressions

\[
\text{LET } x^t = s \text{ IN } u
\]

providing for local definitions. The reduction rule for let expressions

\[
\text{LET } x^t = s \text{ IN } u > u^x_t
\]
is called \textbf{zeta rule} (ζ-rule).

Let expressions can usually be expressed as β-redexes. There will be a feature of computational type theory (the conversion rule §4.1) that distinguishes let expressions from β-redexes in that let expressions introduce local reduction rules.

\textbf{Exercise 2.7.1} Express \texttt{let} $x^t = s$ \texttt{in} u with a β-redex. Reduction of the β-redex should give the same term as reduction of the let expression.

\section*{2.8 Matches}

Matches are expressions realizing the structural case analysis coming with inductive types. Matches for numbers take the form

\begin{equation}
\text{MATCH } s \ [\ 0 \Rightarrow u \ | \ Sx \Rightarrow v \]
\end{equation}

and come with two reduction rules:

\begin{align*}
\text{MATCH } 0 \ [\ 0 \Rightarrow u \ | \ Sx \Rightarrow v \] & \succ u \\
\text{MATCH } Ss \ [\ 0 \Rightarrow u \ | \ Sx \Rightarrow v \] & \succ (\lambda x. v)s
\end{align*}

In general, a match for an inductive type has one \textbf{clause} for every constructor of the type.

Matches can be expressed as applications of certain inductive functions, and this translation will be our preferred view on matches. In other words, we will see matches as derived constants. For matches on numbers, we may define the function

\begin{align*}
M : \forall Z^T. N \rightarrow Z \rightarrow (N \rightarrow Z) \rightarrow Z \\
MZ0af & := a \\
MZ(Sx)af & := fx
\end{align*}

and replace matches with applications of this function:

\begin{equation}
\text{MATCH } s \ [\ 0 \Rightarrow u \ | \ Sx \Rightarrow v \] \sim M_s u (\lambda x. v)
\end{equation}

We say that M is the simply typed \textbf{match function} for N.

Since matches are notation for applications of match functions, they are type checked according to the typing rule for applications and the type of the match function used. In practice, it is convenient to compile this information into a derived typing rule for matches:

A term MATCH $s \ [\ \cdot \ \cdot \]$ has type u if s is has an inductive type v, the match has a clause for every construct of v, and every clause of the match yields a result of type u.

30
2.9 Recursive Abstractions

We may write boolean matches with the familiar **if-then-else notation**:

\[
\text{IF } s \text{ THEN } t_1 \text{ ELSE } t_2 \quad \leadsto \quad \text{MATCH } s \ [T \Rightarrow t_1 \ | \ F \Rightarrow t_2 \]
\]

More generally, we may use the if-then-else notation for all inductive types with exactly two value constructors, exploiting the order of the constructors.

Another notational device we take from Coq writes matches with exactly one clause as pseudo-let expressions. For instance:

\[
\text{LET } (x, y) = s \text{ IN } t \quad \leadsto \quad \text{MATCH } s \ [\text{pair } x \ y \Rightarrow t \]
\]

Exercise 2.8.1 (Boolean negation) Consider the inductive type definition

\[
\mathbb{B} : \mathbb{T} ::= T | F
\]

for booleans and the plain definition

\[
! :\lambda x.\mathbb{B}. \text{MATCH } x \ [T \Rightarrow F \ | \ F \Rightarrow T \]
\]

of a boolean negation function.

a) Define a boolean match function \(M \).

b) Give a complete reduction chain for \(!(!T) \). Distinguish between \(\delta \)- and \(\beta \)-steps.

Exercise 2.8.2 (Swap function for pairs)

a) Define a function \(\text{swap} \) swapping pairs using a plain definition, lambda abstractions, and a match.

b) Define a matching function for the type constructor \(\text{Pair} \).

c) Give a complete reduction chain for \(\text{swap} \ N \mathbb{B} (S0) T \).

2.9 Recursive Abstractions

Recursive abstractions are like lambda abstractions but provide a local variable for the function described so that recursion can be expressed:

\[
\text{FIX } f^{s\rightharpoonup t} x^t. \ t
\]

Using a recursive abstraction and a match, we can define a constant \(D \) reducing to a recursive function doubling the number given as argument:

\[
D^{N\rightharpoonup N} ::= \text{FIX } f^{N\rightharpoonup N} x^N. \text{MATCH } x' \ [0 \Rightarrow 0 \ | \ Sx' \Rightarrow S(S(fx'))]
\]

The reduction rule for recursive abstractions looks as follows:

\[
(FIX f x. \ s) \ t \rightharpoonup (\lambda f. \lambda x. \ s) (\text{FIX } f x. \ s) \ t
\]

Without limitations on recursive abstractions, one can easily write recursive abstractions whose reduction does not terminate. Coq imposes two limitations:
2 Basic Computational Type Theory

- An application of a recursive abstraction can only be reduced if the argument term \(t \) starts with a constructor.
- A recursive abstraction is only admissible if its recursion goes through a match and is structural.

In this text we will not use recursive abstractions at all since we prefer inductive function definitions as means for describing recursive functions. Using an inductive function definition, a function \(D \) doubling its argument can be defined as follows:

\[
D : \mathbb{N} \to \mathbb{N} \\
D \ 0 \ := \ 0 \\
D \ (S \ x) \ := \ S \ (S \ (D \ x))
\]

Exercise 2.9.1 Figure 2.2 gives a complete reduction chain for \(D \ (S \ 0) \) where \(D \) is defined with a recursive abstraction as shown above. Verify every single reduction step and convince yourself that there is no other reduction chain.

2.10 Computational Equality

Computational equality is an algorithmically decidable equivalence relation on well-typed terms. Two terms are computationally equal if and only if their normal forms are identical up to \(\alpha \)-equivalence and \(\eta \)-equivalence. The notions of \(\alpha \)-equivalence and \(\eta \)-equivalence will be defined in the following.

Two terms are \(\alpha \)-equivalent if they are equal up to renaming of bound variables. We have introduced several constructs involving bound variables, including dependent function types \(\forall x^X.s \), patterns of defining equations, patterns of clauses in matches, lambda abstractions \(\lambda x^X.s \), let expressions, and recursive abstractions. Alpha equivalence abstracts away from the particular names of bound variables but preserves the reference structure described by bound variables. For instance, \(\lambda X^X. \lambda x^X.x \) and \(\lambda Y^Y. \lambda y^Y.y \) are \(\alpha \)-equivalent abstractions having the \(\alpha \)-equivalent types \(\forall X^X. X \to X \) and \(\forall Y^Y. Y \to Y \). For all technical purposes \(\alpha \)-equivalent terms are considered equal, so we can write the type of \(\lambda X^X. \lambda x^X.x \) as either \(\forall X^X. X \to X \) or \(\forall Y^Y. Y \to Y \). We mention that alpha equivalence is ubiquitous in mathematical language. For instance, the terms \(\{ x \in \mathbb{N} \mid x^2 > 100 \cdot x \} \) and \(\{ n \in \mathbb{N} \mid n^2 > 100 \cdot n \} \) are \(\alpha \)-equivalent and thus describe the same set.

The notion of \(\eta \)-equivalence is obtained with the \(\eta \)-equivalence law

\[
(\lambda x.ss) \ \approx_{\eta} \ s \quad \text{if} \ x \ \text{does not occur free in} \ s
\]

which equates a well-typed lambda abstraction \(\lambda x.ss \) with the term \(s \) provided \(x \) does not occur free in \(t \). Eta equivalence realizes the commitment to not distinguish
between the function described by a term s and the lambda abstraction $\lambda x.sx$. A concrete example is the η-equivalence between the construct S for numbers and the lambda abstraction $\lambda n^N.Sn$.

Computational equality is **compatible with the term structure**. That is, if we replace a subterm of a term s with a term that has the same type and is computationally equal, we obtain a term that is computationally equal to s.

Computational equality is also known as **definitional equality**. Moreover, we say that two terms are **convertible** if they are computationally equal, and call **conversion** the process of replacing a term with a convertible term. A **simplification** is a conversion where the final term is obtained from the initial term by reduction. Examples for conversions that are not simplifications are applications of the η-equivalence law, or **expansions**, which are reductions in reverse order (e.g., proceeding from x to $0 + x$). Figure 5.2 in Chapter 5 contains several proof diagrams with expansion steps.

A complex operation the reduction rules build on is **substitution** s^T. Substitution must be performed such that local binders do not capture free variables. To make this possible, substitution must be allowed to rename local variables. For instance, $(\lambda x.\lambda y.fx\gamma)y$ must not reduce to $\lambda y.fyy$ but to a term $\lambda z.fyz$ where the new bound variable z avoids capture of the variable y. We speak of **capture-free substitution**.

Exercise 2.10.1 (Currying) Assume types X, Y, Z and define functions

$$C : (X \times Y \to Z) \to (X \to Y \to Z)$$
$$U : (X \to Y \to Z) \to (X \times Y \to Z)$$

such that the equations $C(Uf) = f$ and $U(Cg)(x, y) = g(x, y)$ hold by computational equality. Find out where η-equivalence is used.

2.11 Values and Canonical Terms

We see terms as **syntactic descriptions** of informal semantic objects called **values**. Example for values are numbers, functions, and types. Reduction of a term preserves the value of the term, and also the type of the term. We often talk about values ignoring their syntactic representation as terms. In a proof assistant, however, values will always be represented through syntactic descriptions. The same is true for formalizations on paper, where we formalize syntactic descriptions, not values. We may see values as objects of our mathematical imagination.

The **values of a type** are also referred to as **elements**, **members**, or **inhabitants** of the type. We call a type **inhabited** if it has at least one inhabitant, and **uninhabited** or **empty** or **void** if it has no inhabitant. Values of functional types are referred to as **functions**.
As syntactic objects, terms may not be well-typed. Ill-typed terms are semantically meaningless and must not be used for computation and reasoning. Ill-typed terms are always rejected by a proof assistant. Working with a proof assistant is the best way to develop a reliable intuition for what goes through as well-typed. When we say term in this text, we always mean a well-typed term.

Recall that a term is **closed** if it has no free variables (bound variables are fine), and **canonical** if it is closed and irreducible. Computational type theory is designed such that every canonical term is either a constant, or a constant applied to canonical terms, or an abstraction (obtained with λ or fix), or a function type (obtained with ∀), or a universe (so far we have ⊤). A **constant** is either a constructor or a defined constant.

Moreover, computational type theory is designed such that every closed term reduces to a canonical term of the same type. More generally, every term reduces to an irreducible term of the same type.

Different canonical terms may describe the same value, in particular when it comes to functions. Canonical terms that are equal up to α- and η-equivalence always describe the same value.

For simple inductive types such as N, the canonical terms of the type are in one-to-one correspondence with the values of the type. In this case we may see the values of the type as the canonical terms of the type. For function types the situation is more complicated since semantically we may want to consider two functions as equal if they agree on all arguments.

2.12 Choices Made by Coq

Coq provides neither inductive function definitions nor plain function definitions. Thus recursive functions must always be described with recursive abstractions. There is syntactic sugar facilitating the translation of function definitions (inductive or plain) into Coq’s kernel language. There are plain constant definitions without arguments making it possible to preserve the constants coming with function definitions. We have already seen an example of the translation with the function D in §2.9.

Not having function definitions makes reduction more fine-grained and introduces additional normal forms, which can be annoying in practice. For that reasons Coq refines the basic reduction rules with *simplification rules* simulating the reductions one would have with function definitions. Sometimes the simulation is not perfect and the user is confronted with unpleasant intermediate terms.

Figure 2.2 shows a complete reduction chain for an application $D(S0)$ where D is defined in Coq style with recursive abstractions. The example shows the tediousness coming with Coq’s fine-grained reduction style.
2.13 Discussion

\[D(S0) \triangleright (\text{fix } \lambda x. \text{match } x [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(f x'))]) (S0) \delta \]
\[= \hat{D} (S0) \]
\[\triangleright (\lambda x. \text{match } x [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(f x'))]) \hat{D} (S0) \text{ fix} \]
\[\triangleright (\lambda x. \text{match } x [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(\hat{D}x'))]) (S0) \beta \]
\[\triangleright \text{match } (S0) [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(\hat{D}x'))] \beta \]
\[\triangleright (\lambda x'. S(S(\hat{D}x'))) 0 \text{ match} \]
\[\triangleright S(S(\hat{D}0)) \beta \]
\[\triangleright S(S((\lambda x. \text{match } x [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(\hat{D}x'))])) 0)) \text{ fix, } \beta \]
\[\triangleright S(S(\text{match } 0 [0 \Rightarrow 0 \mid Sx' \Rightarrow S(S(\hat{D}x'))])) \beta \]
\[\triangleright S(S0) \text{ match} \]

\(\hat{D} \) is the term the constant \(D \) reduces to.

Figure 2.2: Reduction chain for \(D(S0) \) defined with a recursive abstraction

In this text we will work with function definitions and not use recursive abstractions at all. The accompanying demo files show how our high-level style can be simulated with Coq’s primitives.

Having recursive abstractions and native matches is a design decision from Coq’s early days (around 1990). Agda is a modern implementation of computational type theory that comes with inductive function definitions and does not offer matches and recursive abstractions.

2.13 Discussion

We have outlined a typed and terminating functional language where functions and types are first-class objects that may appear as arguments and results of functions. Termination is ensured by restricting recursion to structural recursion on inductive types. Termination buys two important properties: decidability of computational equality and integrity of inductive types (i.e., canonicity).

The generalisation of simple function types to dependent function types we have seen is a key feature of modern type theories. One speaks of dependent type theories to acknowledge the presence of dependent function types.

Our presentation of computational type theory is informal. We took some motivation from the previous chapter but it may take time until you fully understand what is said in the current chapter. Previous familiarity with functional programming will be helpful. The next few chapters will explore the expressivity of the
Formalizing the system presented in this chapter and proving the claimed properties is a major project we will not attack in this text. Instead we will explore the expressivity of the system and study numerous formalizations based on the system.

In the system presented so far type checking and reduction are separated: For type checking terms and definitions we don’t need reduction, and for reducing terms we don’t need type checking. Soon we will boost the expressivity of the system by extending it such that type checking operates modulo computational equality of types.

Last but not least we mention that every function definable with a closed term in computational type theory is algorithmically computable. This claim rests on the fact that there is an algorithm that evaluates every closed term to a canonical term. The evaluation algorithm performs reduction steps as long as reduction steps are possible. The order in which reduction steps are chosen matters neither for termination nor for the canonical term finally obtained.

A comprehensive discussion of the historical development of computational type theories can be found in Constable’s survey paper [7]. We recommend the book on homotopy type theory [24] for a complementary presentation of computational type theory. The reader may also be interested in learning more about lambda calculus, a minimal computational system arranged around lambda abstractions and beta reduction.
3 Propositions as Types

A great idea coming with computational type theory is the propositions as types principle. The principle says that propositions (i.e., logical statements) can be represented as types, and that the elements of those types can serve as proofs of the propositions. This simple approach to logic works incredibly well in practice and theory: It reduces proof checking to type checking, accommodates proofs as first-call values, and provides a basic form of logical reasoning known as intuitionistic reasoning.

The propositions as types principle is just perfect for implications $s \rightarrow t$ and universal quantifications $\forall x^s.t$. Both kind of propositions are accommodated as function types\(^1\) and hence receive proofs as follows:

- A proof of an implication $s \rightarrow t$ is a function mapping every proof of the premise s to a proof of the conclusion t.
- A proof of an universal quantification $\forall x^s.t$ is a function mapping every element of the type of s to a proof of the proposition t.

The types for conjunctions $s \& t$ and disjunctions $s \lor t$ will be obtained with inductive type constructors such that a proof of $s \& t$ consists of a proof of s and a proof of t, and a proof of $s \lor t$ is either a proof of s or a proof of t. The proposition falsity having no proof will be expressed as an empty inductive type \bot. With falsity we can express negations $\neg s$ as implications $s \rightarrow \bot$. The types for equations $s = t$ and existential quantifications $\exists x^s.t$ will be discussed in later chapters once we have introduced the conversion rule.

In this chapter you will see many terms describing proofs with lambda abstractions and matches. The construction of such proof terms is an incremental process that can be carried out efficiently in interaction with a proof assistant. On paper we will demonstrate the construction of proof terms with proof diagrams.

\(^1\)Note the notational coincidence.
3 Propositions as Types

3.1 Implication and Universal Quantification

We extend our type theory with a second universe \(\mathbb{P} : \mathbb{T} \) of propositional types. The universe \(\mathbb{P} \) contains all function types \(\forall x. u \rightarrow v \) where \(v \) is a propositional type:

\[
\vdash u : \mathbb{T} \quad x : u \vdash v : \mathbb{P}
\]

\[
\vdash \forall x. u : \mathbb{P}
\]

We also accommodate \(\mathbb{P} \) as a subuniverse of \(\mathbb{T} \):

\[
\vdash u : \mathbb{P} \quad \vdash u : \mathbb{T}
\]

The subuniverse rule ensures that a function type \(s \rightarrow t \) expressing an implication is in fact a proposition. We use the suggestive notation \(\mathbb{P} \subseteq \mathbb{T} \) to say that \(\mathbb{P} \) is a subuniverse of \(\mathbb{T} \).

We can now write propositions using implications and universal quantifications (i.e., function types) and proofs using lambda abstractions and applications. For instance,

\[
\forall X. X \rightarrow X
\]

is a proposition that has the proof \(\lambda X. x \). Moreover,

\[
\forall X. X
\]

is a proposition that has no proof (we will give an argument for this claim later). Here is yet another proposition

\[
\forall XYZ. (X \rightarrow Y) \rightarrow (Y \rightarrow Z) \rightarrow X \rightarrow Z
\]

with a proof:

\[
\lambda X. \lambda Y. \lambda Z. fX \rightarrow YxY \rightarrow ZxY, g(fX)
\]

Below are more examples of propositions and their proofs assuming that \(X, Y, \) and \(Z \) are propositional variables (i.e., variables of type \(\mathbb{P} \)):

\[
\begin{align*}
X \rightarrow X & : \lambda \ x. x \\
X \rightarrow Y \rightarrow X & : \lambda \ x y. x \\
X \rightarrow Y \rightarrow Y & : \lambda \ x y. y \\
(X \rightarrow Y \rightarrow Z) \rightarrow Y \rightarrow X \rightarrow Z & : \lambda \ x y z. f(\ x y z)
\end{align*}
\]

We have omitted the types of the argument variables appearing in the lambda abstractions on the right since they can be derived from the propositions appearing on the left.
Our final examples express mobility laws for universal quantifiers:

\[
\forall X^T \forall p^X. \ (\forall x. P \rightarrow px) \rightarrow (P \forall x. px) \quad \lambda X P f x a. f x a
\]

\[
\forall X^T \forall p^X. \ (P \rightarrow \forall x. px) \rightarrow (\forall x. P \rightarrow px) \quad \lambda X P p f x a. f x a
\]

Functions that yield propositions once all arguments are supplied are called \textbf{predicates}. In the above examples \(p \) is a unary predicate on the type \(X \). In general, a predicate has a type ending with \(P \).

\textbf{Exercise 3.1.1 (Exchange law)}

Give a proof for the proposition \(\forall X Y^T \forall p^{X \rightarrow Y \rightarrow P}. \ (\forall x y. px y) \rightarrow (\forall y x. p x y) \).

\section*{3.2 Falsity and Negation}

A propositional constant \(\bot \) having no proof will be helpful since together with implication it can express negations. The official name for \(\bot \) is \textbf{falsity}. The natural idea for obtaining falsity is using an inductive type definition not declaring a value constructor:

\[
\bot : P ::= []
\]

Since \(\bot \) has no value constructor, the design of computational type theory ensures that \(\bot \) has no element. We define an inductive function

\[
E_\bot : \forall Z^T. \bot \rightarrow Z
\]

discriminating on its second argument of type \(\bot \). Since \(\bot \) has no value constructor, we need no defining equation for \(E_\bot \). The function \(E_\bot \) realizes an important logical principle known as \textbf{explosion rule} or \textbf{ex falso quodlibet}: Given a hypothetical proof of falsity, we can get a proof of everything. Following language we explain later, we call \(E_\bot \) the \textbf{universal eliminator} for \(\bot \).

We now define \textbf{negation} \(\neg s \) as notation for an implication \(s \rightarrow \bot \):

\[
\neg s \quad \rightsquigarrow \quad s \rightarrow \bot
\]

With this definition we have a proof of \(\bot \) if we have a proof of \(s \) and \(\neg s \). Thus, given a proof of \(\neg s \), we can be sure that there is no proof of \(s \). We say that we can \textbf{disprove} a proposition \(s \) if we can give a proof of \(\neg s \). The situation that we have some proposition \(s \) and hypothetical proofs of both \(s \) and \(\neg s \) is called a contradiction in mathematical language. A \textbf{hypothetical proof} is a proof based on unproven assumptions (called hypotheses in this situation).

Figure 3.1 shows proofs of propositions involving negations. To understand the proofs, it is essential to see a negation \(\neg s \) as an implication \(s \rightarrow \bot \). Only the proof
3 Propositions as Types

\[
\begin{align*}
X \rightarrow \neg X & \rightarrow \bot & \lambda x. f. f x \\
X \rightarrow \neg X & \rightarrow Y & \lambda x. f. \perp(Y(fx)) \\
(X \rightarrow Y) \rightarrow \neg Y & \rightarrow \neg X & \lambda f g x. g(fx) \\
X \rightarrow \neg \neg X & & \lambda x f. f x \\
\neg X \rightarrow \neg \neg X & & \lambda g f g f \\
\neg \neg X & \rightarrow \neg X & \lambda f x. f(\lambda g. g x) \\
\neg \neg X & \rightarrow (X \rightarrow \neg X) & \rightarrow \bot & \lambda f g. f(\lambda x. g x x) \\
(X \rightarrow \neg X) & \rightarrow (\neg X \rightarrow X) & \rightarrow \bot & \lambda f g. \text{let } x = g(\lambda x. f x x) \text{ in } f x x
\end{align*}
\]

Variable \(X \) ranges over propositions.

Figure 3.1: Proofs for propositions involving negations

Involving the eliminator \(\perp \) makes use of the special properties of falsity. Note the use of the let expression in the proof in the last line. It introduces a local name \(x \) for the term \(g(\lambda x. f x x) \) so that we don’t have to write it twice. Except for the proof with let all proofs in Figure 3.1 are normal terms.

Coming from boolean logic, you may ask for a proof of \(\neg \neg X \rightarrow X \). Such a proof does not exist in general in an intuitionistic proof system like the type-theoretic system we are exploring. However, such a proof exists if we assume the law of excluded middle familiar from ordinary mathematical reasoning. We will discuss this issue later.

Occasionally, it will be useful to have a propositional constant \(\top \) having exactly one proof. The official name for \(\top \) is \text{truth}. The natural idea for obtaining truth is using an inductive type definition declaring a single primitive value constructor:

\[\top : \mathcal{P} ::= \bot \]

Exercise 3.2.1 Show that \(\forall X. X \) has no proof. That is, disprove \(\forall X. X \). That is, prove \(\neg \forall X. X \).

3.3 Conjunction and Disjunction

Most people are familiar with the boolean interpretation of conjunctions \(s \land t \) and disjunctions \(s \lor t \). In the type-theoretic interpretation, a conjunction \(s \land t \) is a proposition whose proofs consist of a proof of \(s \) and a proof of \(t \), and a disjunction \(s \lor t \) is a proposition whose proofs consist of either a proof of \(s \) or a proof of \(t \). We
3.3 Conjunction and Disjunction

make this design explicit with two inductive type definitions:

\[\land (X : \mathcal{P}, Y : \mathcal{P}) : \mathcal{P} ::= C(X, Y) \quad \lor (X : \mathcal{P}, Y : \mathcal{P}) : \mathcal{P} ::= L(X) \mid R(Y) \]

The definitions introduce the following constructors:

\[\land : \mathcal{P} \to \mathcal{P} \to \mathcal{P} \quad \lor : \mathcal{P} \to \mathcal{P} \to \mathcal{P} \]

\[C : \forall X \mathcal{P} Y \mathcal{P}. \ X \to Y \to X \land Y \quad L : \forall X \mathcal{P} Y \mathcal{P}. \ X \to X \lor Y \]

\[R : \forall X \mathcal{P} Y \mathcal{P}. \ Y \to X \lor Y \]

With the type constructors ‘\(\land \)’ and ‘\(\lor \)’ we can form conjunctions \(s \land t \) and disjunctions \(s \lor t \) from given propositions \(s \) and \(t \). With the value constructors \(C \), \(L \), and \(R \) we can construct proofs of conjunctions and disjunctions:

- If \(u \) is a proof of \(s \) and \(v \) is a proof of \(t \), then the term \(Cu \cdot v \) is a proof of the conjunction \(s \land t \).
- If \(u \) is a proof of \(s \), then the term \(Lu \cdot u \) is a proof of the disjunction \(s \lor t \).
- If \(v \) is a proof of \(t \), then the term \(Rv \cdot v \) is a proof of the disjunction \(s \lor t \).

Note that we treat the propositional arguments of the value constructors as implicit arguments, something we have seen before with the value constructor for pairs. Since the explicit arguments of the proof constructors for disjunctions determine only one of the two implicit arguments, the other implicit argument must be derived from the surrounding context. This works well in practice.

The type constructors ‘\(\land \)’ and ‘\(\lor \)’ have the type \(\mathcal{P} \to \mathcal{P} \to \mathcal{P} \), which qualifies them as predicates. We will call type constructors inductive predicates if their type qualifies them as predicates. Moreover, we will call value constructors obtaining values of propositions proof constructors. Using this language, we may say that disjunctions are accommodated with an inductive predicate coming with two proof constructors.

Proofs involving conjunctions and disjunctions will often make use of matches. Recall that matches are notation for applications of match functions obtained with inductive function definitions. For conjunctions and disjunctions, we will use the definitions appearing in Figure 3.2.

Figure 3.3 shows proofs of propositions involving conjunctions and disjunctions. The propositions formulate familiar logical laws. Note that we supply as subscripts the implicit arguments of the proof constructors \(C \), \(L \), and \(R \) when we think it is helpful.

Figure 3.4 shows proofs involving matches with nested patterns. Matches with nested patterns are a notational convenience for nested plain matches. For instance, the match

\[
\text{MATCH } a \ [C(Cx'y')z \Rightarrow Cx(Cy'z)]
\]
3 Propositions as Types

\[M_\land : \forall XYZ\,.\, X \land Y \to (X \to Y \to Z) \to Z \]
\[M_\land XYZ (Cxy)e := exy \]

\[M_\lor : \forall XYZ\,.\, X \lor Y \to (X \to Z) \to (Y \to Z) \to Z \]
\[M_\lor XYZ (Lxe_1) e_2 := e_1x \]
\[M_\lor XYZ (Rye_2) e_1 := e_2y \]

\[
\text{match } s \, [\text{Cxy } \Rightarrow t] \quad \leadsto \quad M_\land s (\lambda xy.t) \\
\text{match } s \, [\text{Lx } \Rightarrow t_1 | \text{Ry } \Rightarrow t_2] \quad \leadsto \quad M_\lor s (\lambda x.t_1) (\lambda y.t_2)
\]

Figure 3.2: Matches for conjunctions and disjunctions

\[X \to Y \to X \land Y \quad C_{XY} \]
\[X \to X \lor Y \quad L_{XY} \]
\[Y \to X \lor Y \quad R_{XY} \]
\[X \land Y \to X \quad \lambda a. \text{ match } a \, [\text{Cxy } \Rightarrow x] \]
\[X \land Y \to Y \quad \lambda a. \text{ match } a \, [\text{Cxy } \Rightarrow y] \]
\[X \land Y \to Y \land X \quad \lambda a. \text{ match } a \, [\text{Cxy } \Rightarrow Cyx] \]
\[X \lor Y \to Y \lor X \quad \lambda a. \text{ match } a \, [\text{Lx } \Rightarrow R_{YX} \, x | \text{Ry } \Rightarrow L_{YX} \, y] \]

The variables \(X, Y, Z \) range over propositions.

Figure 3.3: Proofs for propositions involving conjunctions and disjunctions

with the nested pattern \(C(Cxy)z \) translates into the plain match

\[
\text{match } a \, [\text{Cbz } \Rightarrow \text{match } b \, [\text{Cxy } \Rightarrow Cx(Cyz)]]
\]

nesting a second plain match.

Exercise 3.3.1 Elaborate the proofs in Figure 3.4 such that they use nested plain matches. Moreover, annotate the implicit arguments of the constructors \(C, L, \) and \(R \) in all non-pattern occurrences.
3.4 Propositional Equivalence

We define propositional equivalence \(s \leftrightarrow t \) as notation for the conjunction of two implications:

\[
(s \rightarrow t) \land (t \rightarrow s)
\]

Thus a propositional equivalence is a conjunction of two implications, and a proof of an equivalence is a pair of two proof-transforming functions. Given a proof of an equivalence \(s \leftrightarrow t \), we can translate every proof of \(s \) into a proof of \(t \), and every proof of \(t \) into a proof of \(s \). Thus we know that \(s \) is provable if and only if \(t \) is provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.5. The equivalences formulate well-known properties of conjunction and disjunction.
Exercise 3.4.2 Give proofs for the following propositions:

a) \(\neg \neg \bot \iff \bot \)

b) \(\neg \neg \top \iff \top \)

c) \(\neg \neg \neg X \iff \neg X \)

d) \(\neg (X \lor Y) \iff \neg X \land \neg Y \)

e) \(X \to \neg \neg Y \iff (\neg Y \to \neg X) \)

f) \(\neg (X \iff \neg X) \)

Equivalence (d) is known as the de Morgan law for disjunctions. We don’t ask for a proof of the de Morgan law for conjunctions since it requires the law of excluded middle. We call proposition (f) Russell’s law. Russell’s law will be used in a couple of prominent proofs.

Exercise 3.4.3 Propositional equivalences yield an equivalence relation on propositions that is compatible with conjunction, disjunction, and implication. This high-level speak can be validated by giving proofs for the following propositions:

\[
\begin{align*}
X & \iff X \quad \text{reflexivity} \\
(X \iff Y) \to (Y \iff X) & \iff \text{symmetry} \\
(X \iff Y) \to (Y \iff Z) & \to (X \iff Z) \quad \text{transitivity} \\
(X \iff X') \to (Y \iff Y') & \to (X \land Y \iff X' \land Y') \quad \text{compatibility with } \land \\
(X \iff X') \to (Y \iff Y') & \to ((X \to Y) \iff (X' \to Y')) \quad \text{compatibility with } \to
\end{align*}
\]

3.5 Notational Issues

Following Coq, we use the precedence order

\[
\neg \quad \land \quad \lor \quad \to
\]

for the logical connectives. Thus we may omit parentheses as in the following example:

\[
\neg \neg X \land Y \lor Z \iff Z \to Y \iff ((\neg (\neg X) \land Y) \lor Z) \iff Z \to Y
\]

The notations \(\neg , \land , \) and \(\lor \) are right associative. That is, parentheses may be omitted as follows:

\[
\begin{align*}
\neg \neg X & \iff \neg (\neg X) \\
X \land Y \land Z & \iff X \land (Y \land Z) \\
X \lor Y \lor Z & \iff X \lor (Y \lor Z)
\end{align*}
\]
3.6 Impredicative Characterizations

Quantification over propositions has amazing expressivity. Given two propositional variables X and Y, we can prove the equivalences

- $\bot \leftrightarrow \forall Z^{p}. Z$
- $X \land Y \leftrightarrow \forall Z^{p}. (X \rightarrow Y \rightarrow Z) \rightarrow Z$
- $X \lor Y \leftrightarrow \forall Z^{p}. (X \rightarrow Z) \rightarrow (Y \rightarrow Z) \rightarrow Z$

which say that \bot, $X \land Y$, and $X \lor Y$ can be characterized with just function types. The equivalences are known as impredicative characterizations of falsity, conjunction, and disjunction. Figure 3.6 gives proof terms for the equivalences. One speaks of an impredicative proposition if the proposition contains a quantification over all propositions.

Exercise 3.6.1 Find an impredicative characterization for \top.

Exercise 3.6.2 (Exclusive disjunction)
Consider exclusive disjunction $X \oplus Y \leftrightarrow (X \land \neg Y) \lor (\neg X \land Y)$.

a) Define exclusive disjunction with an inductive type definition. Use two proof constructors and prove the specifying equivalence.

b) Find and verify an impredicative characterization of exclusive disjunction.

3.7 Proof Term Construction using Proof Diagrams

The natural direction for proof term construction is top down, in particular as it comes to lambda abstractions and matches. When we construct a proof term top
3 Propositions as Types

down, we need an information structure keeping track of the types we still have to construct proof terms for and recording the typed variables introduced by surrounding lambda abstractions and patterns of matches. It turns out that the proof diagrams we have introduced in Chapter 1 provide a convenient information structure for constructing proof terms.

Here is a proof diagram showing the construction of a proof term for a proposition we call **Russell’s law**:

\[-(X \iff \neg X)\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f : X \rightarrow \neg X</td>
<td>intro</td>
<td></td>
</tr>
<tr>
<td>g : \neg X \rightarrow X</td>
<td>assert X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>apply g</td>
</tr>
<tr>
<td>\neg X</td>
<td>intro</td>
<td></td>
</tr>
<tr>
<td>x : X</td>
<td>\bot</td>
<td>exact fxx</td>
</tr>
<tr>
<td>2</td>
<td>x : X</td>
<td>\bot</td>
</tr>
</tbody>
</table>

The diagram is written top-down beginning with the initial claim. It records the construction of the proof term

\[\lambda a^{X \rightarrow \neg X}. \text{match } a \text{ [Cfg } \Rightarrow \text{ let } x = g(\lambda x. fxx) \text{ in } fxx \]

for the proposition \(- (X \iff \neg X)\).

Recall that proof diagrams are have-want diagrams that record on the left what we have and on the right what we want. When we start, the proof diagram is partial and just consists of the first line. As the proof term construction proceeds, we add further lines and further proof goals until we arrive at a complete proof diagram.

The rightmost column of a proof diagram records the actions developing the diagram and the corresponding proof term.

- The action **intro** introduces \(\lambda\)-abstractions and matches.
- The action **assert** creates subgoals for an intermediate claim and the current claim with the intermediate claim assumed. An assert action is realised with a let expression in the proof term.
- The action **apply** applies a function and creates subgoals for the arguments.
- The action **exact** proves the claim with a complete proof term. We will not write the word “exact” in future proof diagrams since that an exact action is performed will be clear from the context.

With Coq we can construct proof terms interactively following the structure of proof diagrams. We start with the initial claim and have Coq perform the proof actions with commands called **tactics**. Coq then maintains the proof goals and displays the assumptions and claims. Once all proof goals are closed, a proof term for the initial claim has been constructed.
3.7 Proof Term Construction using Proof Diagrams

\[\forall X, p : X \rightarrow \neg p. \neg(\forall x. px) \rightarrow \forall x. \neg \neg px \]

intro

\[X : \mathbb{T}, \quad p : X \rightarrow \neg p \]

\[f : \neg(\forall x. px) \]

\[x : X, \quad g : \neg px \]

\[\bot \quad \text{apply } f \]

\[\neg(\forall x. px) \quad \text{intro} \]

\[\bot \quad g(f'x) \]

Proof term constructed: \(\lambda X p x g. f(\lambda f'x. g(f'x)) \)

Figure 3.7: Proof diagram for a double negation law for universal quantification

Technically, a proof goal consists of a list of assumptions called context and a claim. The claim is a type, and the assumptions are typed variables. There may be more than one proof goal open at a point in time and one may navigate freely between open goals.

Interactive proof term construction with Coq is fun since writing, bookkeeping, and verification are done by Coq. Here is a further example of a proof diagram:

\[\neg \neg X \rightarrow (X \rightarrow \neg X) \rightarrow \bot \]

intro

\[f : \neg \neg x \]

\[g : X \rightarrow \neg x \]

\[\bot \quad \text{apply } f \]

\[\neg x \quad \text{intro} \]

\[x : X \]

\[\bot \quad gxx \]

The proof term constructed is \(\lambda f g. f(\lambda x. gxx) \). As announced before, we write the proof action “exact \(gxx \)” without the word “exact”.

Figure 3.7 shows a proof diagram for a double negation law for universal quantification. Since universal quantifications are function types like implications, there are no new proof actions.

Figure 3.8 shows a proof diagram using a **destructuring action** contributing a match in the proof term. The reason we did not see a destructuring action before is that so far the necessary matches could be inserted by the intro action.

Figure 3.9 gives a proof diagram for a distributivity law involving 6 subgoals. Note the symmetry in the proof term constructed.

Figure 3.10 gives a proof diagram for a double negation law for implication. Note the use of the **exfalso action** applying the explosion rule as realized by \(E_\bot \).
3 Propositions as Types

\[\forall X \forall pX \vdash pX \land qX \rightarrow pX \rightarrow qX \rightarrow pX \rightarrow qX \rightarrow pX \]

\[X : T, p : X \rightarrow P, q : X \rightarrow P \]

\[f : \forall x px \quad g : \forall x qx \]

\[x : \forall \quad px \quad \text{destruct } fx \]

\[h : qx \rightarrow px \]

Proof term constructed: \(\lambda Xpqfgx. \text{match } fx [C_\Rightarrow h (gx)] \)

Figure 3.8: Proof diagram using a destructuring action

\[X \land (Y \lor Z) \rightarrow (X \land Y) \lor (X \land Z) \]

\[\begin{array}{c}
1 \quad X \land (Y \lor Z) \rightarrow (X \land Y) \lor (X \land Z) \quad \text{intro} \\
2 \quad \end{array} \]

\[x : X \]

\[\begin{array}{c}
1.1 \quad y : Y \\
1.2 \quad z : Z \\
2 \quad (X \land Y) \lor (X \land Z) \rightarrow X \land (Y \lor Z) \quad \text{intro} \\
2.1 \quad x : X, y : Y \\
2.2 \quad x : X, z : Z \\
\end{array} \]

\[X \land (Y \lor Z) \quad \text{C}(Lxy) \]

\[\text{C}(Ly) \]

\[\text{C}(Rz) \]

Proof term constructed:

\[\text{C} (\lambda a. \text{MATCH } a [\text{C}(Ly) \Rightarrow \text{L}(Cx y) | \text{C}(Rz) \Rightarrow \text{R}(Cx z)]) \]

\[(\lambda a. \text{MATCH } a [\text{L}(Cx y) \Rightarrow \text{C}(Ly) | \text{R}(Cx z) \Rightarrow \text{C}(Rz)]) \]

Figure 3.9: Proof diagram for a distributivity law

Exercise 3.7.1 Give proof diagrams and proof terms for the following propositions:

a) \(\neg \neg (X \lor \neg X) \)
b) \(\neg \neg (\neg \neg X \rightarrow X) \)
c) \(\neg \neg (\neg (X \rightarrow Y) \rightarrow X) \rightarrow X) \)
d) \(\neg \neg (\neg Y \rightarrow \neg X) \rightarrow X \rightarrow Y) \)
e) \(\neg \neg (X \land \neg X) \)
f) \(\neg (X \lor Y) \rightarrow \neg X \land \neg Y \)
g) \(\neg \neg \neg X \rightarrow \neg X \)
h) \(\neg \neg (X \land Y) \rightarrow \neg \neg X \land \neg \neg Y \)
i) \(\neg \neg (X \rightarrow Y) \rightarrow (\neg \neg X \rightarrow \neg \neg Y) \)
j) \(\neg \neg (X \rightarrow Y) \rightarrow \neg (X \land \neg Y) \)
3.8 Law of Excluded Middle

The propositions as types approach presented here yields a rich form of logical reasoning known as \textit{intuitionistic reasoning}. Intuitionistic reasoning refines reasoning in mathematics in that it does not build in the law of excluded middle. This way intuitionistic reasoning makes finer differences than the so-called classical reasoning used in mathematics. Since type-theoretic logic can quantify over propositions, the \textbf{law of excluded middle} can be expressed as the proposition $\forall P. P \lor \neg P$. Once we assume excluded middle, we can prove all the propositions we can prove in boolean logic.

\begin{align*}
-\neg (X \to Y) & \iff (\neg \neg X \land \neg \neg Y) & \text{apply C, intro} \\
1 & \quad f : \neg \neg (X \to Y) \\
& \quad g : \neg \neg X \\
& \quad h : \neg Y & \text{intro} \\
\quad & \quad f' : X \to Y & \text{intro} \\
\quad & \quad x : X & \text{intro} \\
\quad & \quad h(f'x) & \text{intro}
\end{align*}

\begin{align*}
2 & \quad f : \neg \neg X \to \neg \neg Y \\
& \quad g : \neg (X \to Y) & \text{intro} \\
& \quad x : X & \text{intro} \\
\quad & \quad Y & \text{exfalso} \\
\quad & \quad \bot & \text{intro} \\
\end{align*}

\begin{align*}
2.1 & \quad \neg \neg X & \text{intro} \\
\quad & \quad \bot & \text{intro} \\
\quad h : \neg X & \text{intro} \\
2.2 & \quad \neg Y & \text{intro} \\
\quad & \quad \bot & \text{intro} \\
\quad y : Y & \text{intro} \\
\quad & \quad g(\lambda x.y) & \text{intro}
\end{align*}

Proof term constructed:

\[C (\lambda f g h. f (\lambda f'. g(\lambda x. h(f'x))))) \]

\[(\lambda f g. g(\lambda x. E_z Y (f (\lambda h. h x) (\lambda y. g(\lambda x y)))))) \]

\textbf{Figure 3.10}: Proof diagram for a double negation law for implication

\textbf{Exercise 3.7.2} Give a proof diagram and a proof term for the distribution law $\forall X \forall p \forall q \forall z. (\forall x. px \land qx) \iff (\forall x. px) \land (\forall x. qx)$.

\textbf{Exercise 3.7.3} Find out why one direction of the equivalence $\forall X \forall z. (\forall x. z) \iff z$ cannot be proved.

\textbf{Exercise 3.7.4} Prove $\forall X \forall p \forall z. (\forall x. px) \iff \forall x. px \land z$.

3.8 Law of Excluded Middle
Exercise 3.8.1 Let XM be the proposition $\forall P. P \lor \neg P$ formalizing the law of excluded middle. Construct proof terms for the following propositions:

a) $\text{XM} \rightarrow \forall P. \neg\neg P \rightarrow P$ \hspace{1cm} \text{double negation law}

b) $\text{XM} \rightarrow \forall PQ. \neg(P \land Q) \rightarrow \neg P \lor \neg Q$ \hspace{1cm} \text{de Morgan law}

c) $\text{XM} \rightarrow \forall PQ. (\neg Q \rightarrow \neg P) \rightarrow P \rightarrow Q$ \hspace{1cm} \text{contraposition law}

d) $\text{XM} \rightarrow \forall PQ. ((P \rightarrow Q) \rightarrow P) \rightarrow P$ \hspace{1cm} \text{Peirce’s law}

It turns out that the reverse directions of the above implications can also be shown intuitionistically, except in one case. Exercise 13.5.5 will tell you more.

3.9 Discussion

In this chapter we have seen that a computational type theory with dependent function types can express propositions as types and proofs as elements of propositional types. Function types provide for implications and universal quantifications. Falsity, conjunctions and disjunctions can be added using inductive type definitions. Universal quantification as obtained with the propositions as types approach is general in that it can quantify over all values including functions and types. Since proofs are accommodated as first-class objects, one can even quantify over proofs. In the following chapters we will see that the type-theoretic approach to logic elegantly scales to equations and existential quantifications as well as to inductive proofs over inductive types.

The propositions as types approach uses the typing rules of the underlying type theory as proofs rules. This reuse reduces proof checking to type checking and much simplifies the implementation of proof assistants.

In the propositions as types approach, proofs are obtained as terms built with lambda abstractions, applications, and matches. The resulting proof language is amazingly elegant and compact. The primitives of the language generalize familiar proof patterns: making assumptions, applying implicational assumptions, and destructuring of assumptions.

This chapter is the place where the reader will get fluent with lambda abstractions, matches, and dependent function types. We offer dozens of examples for exploration on paper and in interaction with the proof assistant. For proving on paper, we use proof diagrams recording the incremental construction of proof terms. When we construct proof terms in interaction with a proof assistant, we issue proof actions that incrementally build the proof term and display the information recorded in the proof diagram.

In the system presented so far, proofs are verified with the typing rules and no use is made of the reduction rules. This will change in the next chapter when we extend the typing discipline with a conversion rule identifying computationally
We remark that all constructions shown in this chapter carry through if the universe \mathbb{P} is replaced with \top. In fact, the basic intuitions for the propositions as types approach don’t require the presence of a universe of propositions. The reasons for having \mathbb{P} will become clearer in the next chapter.

The details of the typing rules matter. What prevents a proof of falsity are the typing rules and the rules restricting the form of inductive definitions. In this text, we explain the details of the typing rules mostly informally, exploiting that compliance with the typing rules is verified automatically by the proof assistant. To be sure that something is well-typed or has a certain type, it is always a good idea to have it checked by the proof assistant. We expect that you train your understanding of the typing rules using the proof assistant.
4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

We now introduce an additional typing rule called conversion rule liberating the typing discipline such that typing operates modulo computational equality of types. The conversion rule is needed so that equations and existential quantifications can be accommodated with propositional types. It also provides for abstraction techniques facilitating inductive proofs.

It is also time to spell out two essential restrictions of the typing discipline. First, we withdraw the self-membership $T : T$ and replace it with a cumulative universe hierarchy $T_1 : T_2 : T_3 : \cdots$ and $T_1 \subset T_2 \subset T_3 \subset \cdots$. Second, we introduce the so-called elimination restriction, restricting inductive function definitions such that the result type must be propositional if the type of a discriminating argument is propositional but not computational.

4.1 Conversion Rule

Recall the typing rules for applications and lambda abstractions from §2.6.

\[
\begin{align*}
\vdash s : \forall x^u . v & \quad \vdash t : u \\
\vdash s \cdot t : v^x & \quad \vdash u : \top \\
\vdash x : u \vdash s : v & \quad \vdash \lambda x^u . s : \forall x^u . v
\end{align*}
\]

The conversion rule is an additional typing rule relaxing typing by making it operate modulo computational equality of types:

\[
\begin{align*}
\vdash s : u, \quad u \approx u' & \quad \vdash u : \top \\
\vdash s : u
\end{align*}
\]

The rule says that a term s has type u if s has type u' and u and u' are computationally equal (§2.10). We use the notation $u \approx u'$ to say that two terms u and u' are computationally equal. Note that the conversion rule has a premise $\vdash u : \top$, which ensures that the term u describes a type.

Adding the conversion rule preserves the key properties of computational type theory (§2.3). As before, there is an algorithm that given a term decides whether the term is well-typed and if so derives a type of the term. The derived type is
4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

\[X : \top, x : X, y : X \]
\[f : \forall p X \rightarrow \bot. \; px \rightarrow py \]
\[p : X \rightarrow \bot \]
\[\forall p X \rightarrow \bot. \; py \rightarrow px \quad \text{intro} \]
\[py \rightarrow px \quad \text{conversion} \]
\[(\lambda z. \; pz \rightarrow px) \; y \quad \text{apply } f \]
\[(\lambda z. \; pz \rightarrow px) \; x \quad \text{conversion} \]
\[px \rightarrow px \quad \lambda a. px \; a \]

Proof term constructed: \(\lambda p. \; f(\lambda z. \; pz \rightarrow px)(\lambda a. \; a) \)

Figure 4.1: Proof diagram for Leibniz symmetry

unique up to computational equality of types and minimal with respect to universe subtyping (e.g., \(\bot \subset \top \)).

We explain the conversion rule with two applications.

Negation and propositional equivalence as defined functions

Exploiting the presence of the conversion rule, we can accommodate negation and propositional equivalence as defined functions:

\[\neg : \bot \rightarrow \bot \]
\[\neg X := X \rightarrow \bot \]
\[\neg \rightarrow : \bot \rightarrow \bot \rightarrow \bot \]
\[\neg \rightarrow X \rightarrow Y := (X \rightarrow Y) \land (Y \rightarrow X) \]

The plain definitions provide us with the constants \(\neg \) and \(\rightarrow \) for functions constructing negations and propositional equivalences. Delta reduction replaces applications \(\neg s \) with propositions \(s \rightarrow \bot \), and applications \(s \rightarrow t \) with propositions \((s \rightarrow t) \land (t \rightarrow s) \). The conversion rules ensure that proofs of \(s \rightarrow \bot \) are proofs of \(\neg s \) (and vice versa), and that proofs of \((s \rightarrow t) \land (t \rightarrow s) \) are proofs of \(s \rightarrow t \) (and vice versa).

Leibniz symmetry

The conversion rule yields proofs for propositions that are not provable without the conversion rule. As example we choose a proposition we call Leibniz symmetry:

\[\forall X \top. \; \forall X Y \top. \; (\forall p X \rightarrow \bot. \; px \rightarrow py) \rightarrow (\forall p X \rightarrow \bot. \; py \rightarrow px) \]

Leibniz symmetry says that if a value \(y \) satisfies every property a value \(x \) satisfies, then conversely \(x \) satisfies every property \(y \) satisfies. Figure 4.1 shows a proof diagram for Leibniz symmetry. The diagram involves two conversion steps

\[py \rightarrow px \approx (\lambda z. \; pz \rightarrow px) \; y \]
\[(\lambda z. \; pz \rightarrow px) \; x \approx px \rightarrow px \]

both of which are justified by \(\beta \)-reduction. The proof term constructed is

\[\lambda p. \; f(\lambda z. \; pz \rightarrow px)(\lambda a. \; a) \]
The two conversions are not visible in the proof term, but they appear with an application of the conversion rule needed for type checking the term. To better explain the use of the conversion rule, we start with the typing for the first application of the variable f:

$$
\vdash f(\lambda z. pz \to px) : (\lambda z. pz \to px)x \to (\lambda z. pz \to px)y
$$

Using the conversion rule we can switch to the typing

$$
\vdash f(\lambda z. pz \to px) : (px \to px) \to (py \to px)
$$

from which we obtain the typing

$$
\vdash \lambda p. f(\lambda z. pz \to px)(\lambda a px.a) : \forall p x. p y \to px
$$

using the typing rules for applications and lambda abstractions.

4.2 Cumulative Universe Hierarchy

We have seen the universes P and T so far. Universes are types whose elements are types. The universe P of propositions is accommodated as a subuniverse of the universe of types T, a design realized with the typing rules:

$$
\vdash P \subset T
$$

$$
\vdash s : u \vdash u \subset u'
$$

$$
\vdash u : T \vdash v \subset v'
$$

$$
\vdash v \subset v'
$$

$$
\vdash \forall u. v \subset \forall u. v'
$$

Note that third rule establishes subtyping of function types so that, for instance, we obtain the inclusion $(u \to P) \subset (u \to T)$ for all types u.

Types are first class objects in computational type theory and first class objects always have a type. So what are the types of P and T? Giving T the type T does not work since the self-membership $T : T$ yields a proof of falsity (see §27.3). What works, however, is an infinite cumulative hierarchy of universes

$$
T_1 : T_2 : T_3 : \cdots
$$

$$
P \subset T_1 \subset T_2 \subset T_3 \subset \cdots
$$

$$
P : T_2
$$

realized with the following typing rules:

$$
\vdash P : T_2
$$

$$
\vdash T_i : T_{i+1}
$$

$$
\vdash P \subset T_i
$$

$$
\vdash i < j
$$

$$
\vdash T_i \subset T_j
$$
4 Conversion Rule, Universe Hierarchy, and Elimination Restriction

For dependent function types we have two closure rules

\[
\frac{\vdash u : T_i \quad x : u \vdash v : P}{\vdash \forall x^u . v : P} \quad \frac{\vdash u : T_i \quad x : u \vdash v : T_i}{\vdash \forall x^u . v : T_i}
\]

The rule for \(P \) says that the universe of propositions is closed under all quantifications including big quantifications quantifying over the types of universes. In contrast, a dependent function type \(\forall x^T . v \) where \(v \) is not a proposition will not be an inhabitant of the universe \(T_i \) it quantifies over.

The universe \(P \) is called impredicative since it is closed under big quantifications. The impredicative characterizations we have seen for falsity, conjunctions, and disjunctions exploit this fact.

It is common practice to not annotate the universe level and just write \(T \) for all universes \(T_i \). This is justified by the observation that the exact universe levels don’t matter as long as they can be assigned consistently. Coq’s type checking ensures that universe levels can be assigned consistently.

Ordinary types like \(B \), \(N \), \(N \times N \), and \(N \to N \) are all placed in the lowest type universe \(T_1 \), which is called Set in Coq (a historical name, not related to mathematical sets).

Following Coq, we have placed \(P \) in \(T_2 \). This again is one of Coq’s historical design decisions, placing \(P \) in \(T_1 \) is also possible and would be simpler. In this case \(P \) could be understood as \(T_0 \), the lowest universe level.

4.3 Elimination Restriction

Coq’s type theory imposes the restriction that inductive functions discriminating on the values of an inductive proposition must have propositional result types, except if the inductive proposition is computational. We refer to this restriction as elimination restriction. We first give the necessary definitions and then explain why the elimination restriction is imposed.

An inductive type \(cs_1 \ldots s_n \) with \(n \geq 0 \) is computational if its type constructor \(c \) is computational. A type constructor \(c \) is computational if in case it targets \(P \) it has at most one proof constructor \(d \) and all nonparametric arguments of \(d \) have propositional types. Examples for computational propositions we have already seen are \(\bot, \top \), and conjunctions \(s \land t \). Examples for noncomputational propositions we have already seen are disjunctions \(s \lor t \). Note that by our definition every nonpropositional inductive type is computational.

The elimination restriction applies to inductive function definitions and requires that the result type of the defined function must be propositional if there is a discriminating argument whose type is a noncomputational proposition.
If we look at the inductively defined match functions for conjunctions and disjunctions in Figure 3.2, we notice that we could type \(Z \) more generally with \(T \) for conjunctions, and that the elimination restriction prevents us from doing so for disjunctions. Moreover, we notice that the elimination function for \(\bot \)

\[
E_{\bot} : \forall Z^{T}. \bot \rightarrow Z
\]

defined in §3.2 types \(Z \) with \(T \) rather than \(P \), which is in accordance with the elimination restriction since \(\bot \) is a computational proposition. We speak of a \textit{computational falsity elimination} when we use \(E_{\bot} \) with a nonpropositional type. It turns out that computational falsity elimination is essential for defining certain functions (examples are in §11.3 and §18.1).

We now explain one reason why the elimination restriction is imposed. An important requirement for Coq’s type discipline is that assuming the law of excluded middle (§3.8)

\[
\text{XM} := \forall P^{p}. P \lor \neg P
\]

must not lead to a proof of falsity. Formally, this means that the proposition

\[
\text{XM} \rightarrow \bot
\]

must not be provable in Coq’s type theory. It now turns out that \(\text{XM} \) implies that all proofs of a proposition are equal semantically, a property known as \textit{proof irrelevance}. In fact, we may express proof irrelevance as a proposition

\[
\text{PI} := \forall P^{p} \forall P^{\neg \neg p} \forall a^{p}. p a \rightarrow p b
\]

and prove

\[
\text{XM} \rightarrow \text{PI}
\]

in Coq’s type theory (see §27.5).

Recall that the disjunction \(\top \lor \top \) has two different canonical proof terms, \((\text{L1})\) and \((\text{R1})\). Proof irrelevance now says that \((\text{L1})\) and \((\text{R1})\) are indistinguishable semantically. Without the elimination restriction we could write the term

\[
\text{MATCH} \ (\text{L1}) \ [L_{\bot} \Rightarrow \bot \mid R_{\top} \Rightarrow \top]
\]

which is computationally equal to \(\bot \). Using \(\text{PI} \), this term is inhabited if the term

\[
\text{MATCH} \ (\text{R1}) \ [L_{\bot} \Rightarrow \bot \mid R_{\top} \Rightarrow \top]
\]

is inhabited. The term with \((\text{R1})\) is computationally equal to \(\top \) and thus inhabited by the conversion rule. Thus we would have a proof of \(\text{PI} \rightarrow \bot \) if the two matches for \((\text{L1})\) and \((\text{R1})\) would be well-typed, which, however, is prevented by the elimination restriction. Note that the type of the matches is \(P \), which is not a propositional type.
We remark that the impredicativity of the universe \mathbb{P} of propositions (§4.2) would also yield a proof of falsity if no elimination restriction was imposed (see Chapter 27).

You have now seen a rather delicate aspect of Coq's type theory. It arises from the fact that Coq's type theory reconciles the propositions as types approach with the assumption of proof irrelevance or, even stronger, with the law of excluded middle. It turns out that there are many good reasons for assuming proof irrelevance, even if the law of excluded middle is not needed.

If you work with Coq's type theory, it is not necessary that you understand the above arguments concerning proof irrelevance and excluded middle in detail. It suffices that you know about the elimination restriction. In any case, the proof assistant will ensure that the elimination restriction is observed.

It will turn out that the presence of certain computational propositions is crucial for the definition of many important functions. One such computational proposition is \bot. The other essential computational propositions are recursion types involving higher-order recursion (Chapters 25 and 26), and inductive equality types providing for casts (Chapter 23).

Exercise 4.3.1 One can define a computational falsity proposition with a recursive proof constructor:

$$ F : \mathbb{P} ::= C(F) $$

We can define a computational eliminator for F similar to the falsity eliminator:

$$ E : \forall Z \bot. F \rightarrow Z $$

$$ EZ(Ca) ::= EZa $$

Thus we don’t need inductive types with zero constructors to express falsity with computational elimination.
5 Leibniz Equality

We will now define propositional equality $s = t$ following a scheme known as Leibniz equality. It turns out that three typed constants suffice: One constant accommodating equations $s = t$ as propositions, one constant providing canonical proofs for trivial equations $s = s$, and one constant providing for rewriting. It suffices to provide the constants as declared constants hiding their definitions.

The conversion rule is the working horse for propositional equality. It ensures that propositional equality subsumes computational equality. Moreover, the conversion rule makes it possible that general equational rewriting can be captured with a single constant.

There is much elegance and surprise in this chapter. Much of the technical essence of computational type theory is exercised with propositional equality. Take your time to understand this beautiful construction in depth.

5.1 Abstract Propositional Equality

With dependent function types and the conversion rule at our disposal, we can now show how the propositions as types approach can accommodate propositional equality. It turns out that all we need are three typed constants:

$$
eq : \forall X^T. X \to X \to \mathbb{P}$$

$$Q : \forall X^T \forall x^X. \text{eq} X x x$$

$$R : \forall X^T \forall y^X \forall p^{X \to X}. \text{eq} X y y \to px \to py$$

For now we keep the constants abstract. It turns out that we can do equational reasoning without knowing the definitions of the constants. All we need are the constants and their types.

The constant eq allows us to write equations as propositional types. We treat X as implicit argument and use the notations

$$s = t \leadsto \text{eq} st$$

$$s \neq t \leadsto \neg \text{eq} st$$

The constants Q and R provide two basic proof rules for equations. With Q we can prove every trivial equation $s = s$. Given the conversion rule, we can also prove
5 Leibniz Equality

with Q every equation \(s = t \) where \(s \) and \(t \) are computationally equal. In other words, Q provides for proofs by computational equality. This is a remarkable fact.

The constant R provides for equational rewriting: Given a proof of an equation \(s = t \), we can place a claim \(pt \) with the claim \(ps \) using \(R \). Moreover, we can get from an assumption \(ps \) an additional assumption \(pt \) by asserting \(pt \) and proving \(pt \) with \(R \) and \(ps \).

We refer to \(R \) as \textit{rewriting law}, and to the argument \(p \) of \(R \) as \textit{rewriting predicate}. Moreover, we refer to the predicate \(eq \) as \textit{propositional equality} or just \textit{equality}. We will treat \(X \), \(x \) and \(y \) as implicit arguments of \(R \), and \(X \) as implicit argument of \(eq \) and Q.

Exercise 5.1.1 Give a canonical proof term for \(!t = f \). Make all implicit arguments explicit and explain which type checking rules are needed to establish that your proof term has type \(!t = f \). Explain why the same proof term also proves \(f = !!f \).

Exercise 5.1.2 Prove the converse rewriting law
\[
\forall X \forall xy \forall p^{X \to P}, \text{eq} \ X\ xy \to p\ y \to px.
\]

Exercise 5.1.3 Suppose we want to rewrite a subterm \(u \) in a proposition \(t \) using the rewriting law \(R \). Then we need a rewrite predicate \(\lambda x.s \) such that \(t \) and \((\lambda x.s)u \) are convertible and \(s \) is obtained from \(t \) by replacing the occurrence of \(u \) with the variable \(x \). Let \(t \) be the proposition \(x \cdot y \cdot x = y \).

a) Give a predicate for rewriting the first occurrence of \(x \) in \(t \).

b) Give a predicate for rewriting the second occurrence of \(y \) in \(t \).

c) Give a predicate for rewriting all occurrences of \(y \) in \(t \).

d) Give a predicate for rewriting the term \(x \cdot y \) in \(t \).

e) Explain why the term \(y \cdot x \) cannot be rewritten in \(t \).

Exercise 5.1.4 Give a term where \(R \) is applied to 7 arguments. In fact, for every number \(n \) there is a term that applies \(R \) to exactly \(n \) arguments.

5.2 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts. To say it once more, Q together with the conversion rule provides proofs by computational equality, and R together with the conversion rule provides equational rewriting as a proof rule. Figure 5.1 shows a collection of basic equational facts, and Figure 5.2 gives proof diagrams and the resulting proof terms for most of them. The remaining proofs are left as exercise. It is important that you understand each of the proofs in detail.
5.2 Basic Equational Facts

\[\top \neq \bot \]
propositional disjointness

\[\forall x^N. \ 0 \neq Sx \]
constructor disjointness for B

\[\forall x^N, y^N. \ Sx = Sy \rightarrow x = y \]
injectivity of successor

\[\forall X^T, Y^T. \ f^{X \rightarrow Y} \ x \ y. \ x = y \rightarrow fx = fy \]
applicative closure (feq)

\[\forall X^T, x^X, y^X. \ x = y \rightarrow y = x \]
symmetry

\[\forall X^T, x^X, y^X, z^X. \ x = y \rightarrow z \rightarrow x = z \]
transitivity

Figure 5.1: Basic equational facts

Note that the proof diagrams in Figure 5.2 all follow the same scheme: First comes a step introducing assumptions, then a conversion step making the rewriting predicate explicit, then the rewriting step as application of \(R \), then a conversion step simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps “rewriting” and “proof by computational equality” used in the diagrams in Chapter 1 are realized in the propositions as types approach.

If we look at the facts in Figure 5.2, we see that three of them concern inductive types while the others are not specifically concerned with inductive types. We speak of constructor laws for inductive types. Note that the proofs of the constructor laws all involve a match on the underlying inductive type, and recall that matches are obtained as inductive functions. So to prove a constructor law, one needs to discriminate on the underlying inductive type at some point.

Exercise 5.2.1 Give proof diagrams and proof terms for the following propositions:
a) \[\forall x^N. \ 0 \neq Sx \]
b) \[\forall X^T, Y^T. \ f^{X \rightarrow Y} \ x \ y. \ x = y \rightarrow fx = fy \]
c) \[\forall X^T, x^X, y^X. \ x = y \rightarrow y = x \]
d) \[\forall X^T, Y^T. \ g^{X \rightarrow Y} \ x. \ f = g \rightarrow fx = gx \]

Exercise 5.2.2 (Constructor law for pairs)
Prove that the pair constructor is injective: \(\text{pair } x \ y = \text{pair } x' \ y' \rightarrow x = x' \land y = y' \).
5 Leibniz Equality

\[\top \neq \bot \quad \text{intro} \]

\[H : \top = \bot \quad \bot \quad \text{conversion} \]

\[(\lambda x^\eta . X) \bot \quad \text{apply } R _ H \]

\[(\lambda x^\eta . X) \top \quad \text{conversion} \]

\[\top \quad \bot \quad \text{I} \]

Proof term: \(\lambda H . R (\lambda x^\eta . X) H _ H \)

\[\top \neq \bot \quad \text{intro} \]

\[H : \top = \bot \quad \bot \quad \text{conversion} \]

\[(\lambda x^\theta . \text{MATCH } X [T \Rightarrow \top | F \Rightarrow \bot]) \bot \quad \text{apply } R _ H \]

\[(\lambda x^\theta . \text{MATCH } X [T \Rightarrow \top | F \Rightarrow \bot]) \top \quad \text{conversion} \]

\[\top \quad \bot \quad \text{I} \]

Proof term: \(\lambda H . R (\lambda x^\theta . \text{MATCH } X [T \Rightarrow \top | F \Rightarrow \bot]) H _ H \)

\[x : \mathbb{N}, y : \mathbb{N} \]

\[S x = S y \rightarrow x = y \quad \text{intro} \]

\[H : S x = S y \]

\[x = y \quad \text{conversion} \]

\[(\lambda z . x = \text{MATCH } z [0 \Rightarrow 0 | S z \Rightarrow z']) (S y) \quad \text{apply } R _ H \]

\[(\lambda z . x = \text{MATCH } z [0 \Rightarrow 0 | S z \Rightarrow z']) (S x) \quad \text{conversion} \]

\[x = x \quad \text{Q} x \]

Proof term: \(\lambda xy H . R (\lambda z . x = \text{MATCH } z [0 \Rightarrow 0 | S z \Rightarrow z']) H _ (Q x) \)

\[X : \top, x : X, y : X \]

\[x = y \rightarrow y = z \rightarrow x = z \quad \text{intro} \]

\[H : x = y \]

\[y = z \rightarrow x = z \quad \text{conversion} \]

\[(\lambda a . a = z \rightarrow x = z) y \quad \text{apply } R _ H \]

\[(\lambda a . a = z \rightarrow x = z) x \quad \text{conversion} \]

\[x = z \rightarrow x = z \quad \lambda h . h \]

Proof term: \(\lambda xy H . R (\lambda a . a = z \rightarrow x = z) H _ (\lambda h . h) \)

Figure 5.2: Proofs of basic equational facts
5.3 Definition of Leibniz Equality

Exercise 5.2.3 (Leibniz characterization of equality)
Verify the following characterization of equality:

\[x = y \iff \forall p:X \to P. \, p\, x \to p\, y \]

The equivalence is known as Leibniz characterization or as impredicative characterization of equality. Also verify the symmetric Leibniz characterization

\[x = y \iff \forall p:X \to P. \, p\, x \leftrightarrow p\, y \]

which may be phrased as saying that two objects are equal if and only if they satisfy the same properties.

5.3 Definition of Leibniz Equality

Here are plain function definitions defining the constants for abstract propositional equality:

\[
\begin{align*}
\text{eq} & : \forall X. \, X \to X \to \mathbb{P} \\
\text{eq} X x y & := \forall p:X \to P. \, p\, x \to p\, y \\
Q & : \forall X. \forall x. \, \text{eq} X x x \\
Q x & := \lambda p a. a \\
R & : \forall X. \forall x y. \forall p:X \to P. \, \text{eq} X x y \to p\, x \to p\, y \\
R x y p f & := f p
\end{align*}
\]

The definitions are amazingly simple. Note that the conversion rule is needed to make use of the defining equation of eq. The definition of eq follows the Leibniz characterization of equality established in Exercise 5.2.3.

The above definition of propositional equality is known as Leibniz equality and appears already in Whitehead and Russell’s Principia Mathematica (1910-1913). Computational type theory also provides for the definition of a richer form of propositional equality using an indexed inductive type family. We will study the definition of inductive equality in Chapter 23. Until then the concrete definition of propositional equality does not matter since all we will be using are the three abstract constants provided by both definitions.

5.4 Abstract Presentation of Propositional Connectives

Like propositional equality, falsity, conjunction, and disjunction can be accommodated with systems of abstract constants, as shown in Figure 5.3. This demon-
5 Leibniz Equality

\[\bot : \mathcal{P} \]
\[\text{E}_{\bot} : \forall Z^\mathcal{P}. \bot \rightarrow Z \]
\[\land : \mathcal{P} \rightarrow \mathcal{P} \rightarrow \mathcal{P} \]
\[\text{C} : \forall X^\mathcal{P} Y^\mathcal{P}. X \rightarrow Y \rightarrow X \land Y \]
\[\text{E}_{\land} : \forall X^\mathcal{P} Y^\mathcal{P} Z^\mathcal{P}. X \land Y \rightarrow (X \rightarrow Y \rightarrow Z) \rightarrow Z \]
\[\lor : \mathcal{P} \rightarrow \mathcal{P} \rightarrow \mathcal{P} \]
\[\text{L} : \forall X^\mathcal{P} Y^\mathcal{P}. X \rightarrow X \lor Y \]
\[\text{R} : \forall X^\mathcal{P} Y^\mathcal{P}. Y \rightarrow X \lor Y \]
\[\text{E}_{\lor} : \forall X^\mathcal{P} Y^\mathcal{P} Z^\mathcal{P}. X \lor Y \rightarrow (X \rightarrow Z) \rightarrow (Y \rightarrow Z) \rightarrow Z \]

Figure 5.3: Abstract constants for falsity, conjunctions, and disjunctions

strates a general abstractness property of logical reasoning. Among the constants in Figure 5.3, we distinguish between constructors and eliminators. The inductive definitions of falsity, conjunction, and disjunction in Chapter 3 provide the constructors directly as constructors. The eliminators may then obtained as inductive functions. We have seen the eliminators before in Chapter 3 as explosion rule and match functions (Figure 3.2). If we look at the abstract constants for equality, we can identify eq and Q as constructors and R as eliminator.

Exercise 5.4.1 Define the constructors and eliminators for falsity, conjunction, and disjunction using their impredicative characterizations. Do not use the inductive definitions. Note that we have typed Z in the eliminator for falsity in Figure 5.3 with \(\mathcal{P} \) rather than T to enable an impredicative definition.

Exercise 5.4.2 Prove commutativity of conjunction and disjunction just using the abstract constructors and eliminators.

Exercise 5.4.3 Assume two sets \(\land, \text{C}, \text{E}_{\land} \) and \(\land', \text{C}', \text{E}_{\land'} \) of constants for conjunctions. Prove \(X \land Y \rightarrow X \land' Y \). Do the same for disjunction and propositional equality. We may say that the constructors and eliminators for a propositional construct characterize the propositional construct up to propositional equivalence.

5.5 Declared Constants and Lemmas

Assuming constants without justification is something one does not do in type theory. For instance, if we assume a constant of type \(\bot \), we can prove everything using
5.5 Declared Constants and Lemmas

the explosion rule, which completely ruins the carefully constructed logical system. A safe way for introducing a constant we would like to have consists in obtaining it with one of the definitional facilities of computational type theory: inductive type definitions, inductive function definitions, and plain definitions. The definitional facilities are controlled by carefully designed restrictions ensuring that nothing bad can happen (e.g., a proof of falsity).

It will often be useful to hide the definition of a constant and just keep its type. We will speak of **declared constants**. The idea is that we declare a system of typed constants for which we then provide definitions that will be kept confidential. The definitions may be seen as justifications of the constants. Declared constants provide us with a notion of abstraction that is well known from mathematics (e.g., abstract groups) and programming (interfaces and implementations). We remark that the (hidden) definitions of declared constants do not contribute reduction rules to computational equality.

We will accommodate lemmas and theorems as declared constants. This makes explicit that when we use a lemma we don’t need its proof but just its representation as a typed constant.

A surprisingly useful lemma for propositional equality is

\[\forall XZ. \forall f : X \rightarrow Z. \forall xy. x = y \rightarrow f x = f y \]

Using the predecessor function

\[
P : \mathbb{N} \rightarrow \mathbb{N} \\
P 0 := 0 \\
P (S n) := n
\]

the lemma can be used to give an elegant proof for the injectivity of \(S \):

\[f_{eq} N N P (S x) (S y) : S x = S y \rightarrow x = y \]

What makes the proof so concise is the conversion rule, which converts the equation \(P(S x) = P(S y) \) into the target equation \(x = y \).

Exercise 5.5.1 Give a plain definition for \(f_{eq} \).

Exercise 5.5.2 Prove \(0 = S x \rightarrow t = f \) using \(f_{eq} \) and an inductive function \(Z : \mathbb{N} \rightarrow \mathbb{B} \) testing for zero.

1Whether we say theorem, lemma, corollary, or fact is a matter of style and doesn't make a formal difference. We shall use theorem as generic name (as in interactive theorem proving). As it comes to style, a lemma is a technical theorem needed for proving other theorems, a corollary is a consequence of a major theorem, and a fact is a straightforward theorem to be used tacitly in further proofs.
6 Inductive Eliminators

For inductive types we can define functions called eliminators that through their types provide general proof rules for case analysis and induction, and that through their defining equations provide schemes for defining functions discriminating on the underlying inductive type. Eliminators are the final step in the fascinating logical bootstrap accommodating the proofs in Chapter 1 inside computational type theory.

It turns out that one eliminator per inductive type suffices. This generality becomes possible through the use of return type functions and the flexibility provided by the conversion rule. Return type functions are similar to the return type predicates used with the rewriting rule for propositional equality.

We will see proofs for three prominent problems: Kaminski’s equation, decidability of equality of numbers, and disequality of the types \mathbb{N} and \mathbb{B}.

6.1 Boolean Eliminator

Recall the inductive type of booleans from §1.1:

$$\mathbb{B} ::= \mathsf{T} \mid \mathsf{F}$$

We can define a single function that can express all boolean case analysis we need for definitions and proofs. We call this function boolean eliminator and define it as follows:

$$E_B : \forall p : B \to T. \quad p \mathsf{T} \to p \mathsf{F} \to \forall x.p x$$

$$E_B \ p \ e_1 \ e_2 \ T := e_1 : p \mathsf{T}$$

$$E_B \ p \ e_1 \ e_2 \ F := e_2 : p \mathsf{F}$$

First look at the type of E_B. It says that we can prove $\forall x.p x$ by proving $p \mathsf{T}$ and $p \mathsf{F}$. This amounts to a general boolean case analysis since we can choose the return type function p freely. We have seen the use of a return type function before with the replacement constant for propositional equality.

Note that the type of the return type function p is $\mathbb{B} \to \mathbb{T}$. Since $\mathbb{P} \subseteq \mathbb{T}$, we have $\mathbb{B} \to \mathbb{P} \subseteq \mathbb{B} \to \mathbb{T}$. Thus we can use the boolean eliminator for proofs where p is a predicate $\mathbb{B} \to \mathbb{P}$.
6 Inductive Eliminators

\[\forall x. \ x = T \lor x = F \]
conversion

\[\forall x. \ (\lambda x. \ x = T \lor x = F) \ x \]
apply \(E_B \)

1
\((\lambda x. \ x = T \lor x = F) \ T \)
conversion

\(T = T \lor T = F \)
trivial

2
\((\lambda x. \ x = T \lor x = F) \ F \)
conversion

\(F = T \lor F = F \)
trivial

Proof term constructed: \(E_B \ (\lambda x. \ x = T \lor x = F) \ (L(QT)) \ (R(QF)) \)

Figure 6.1: Proof diagram for a boolean elimination

Now look at the defining equations of \(E_B \). They are well-typed since the patterns \(E_B p a b T \) and \(E_B p a b F \) on the left instantiate the return type to \(p T \) and \(p F \), which are the types of the variables \(a \) and \(b \), respectively.

First Example: Partial Proof Terms

Suppose we want to prove

\[\forall x. \ x = T \lor x = F \]

Then we can use the boolean eliminator and obtain the partial proof term

\[E_B \ (\lambda x. \ x = T \lor x = F) \ \ 'T = T \lor T = F' \ 'F = T \lor F = F' \]

which poses the subgoals \('T = T \lor T = F' \) and \('F = T \lor F = F' \). Note that the subgoals are obtained with the conversion rule. We now use the proof terms \(L(QT) \) and \(R(QF) \) for the subgoals and obtain the complete proof term

\[E_B \ (\lambda x. \ x = T \lor x = F) \ (L(QT)) \ (R(QF)) \]

Figure 6.1 shows a proof diagram constructing this proof term. The diagram makes explicit the conversions handling the applications of the return type functions. That we can model all boolean case analysis with a single eliminator crucially depends on the fact that type checking builds in (through the conversion rule) the conversions handling return type functions.

Second Example: Kaminski’s Equation

Here is a more challenging fact known as Kaminski’s equation\(^1\) that can be shown with boolean elimination:

\[\forall f: B \rightarrow B \
\forall x. \ f(f(fx)) = fx \]

\(^1\)The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his Bachelor’s thesis on a calculus for classical higher-order logic.
6.1 Boolean Eliminator

Obviously, a boolean case analysis on just \(x \) does not suffice for a proof. What we need in addition is boolean case analysis on the terms \(f \top \) and \(f \bot \). To make this possible, we prove the equivalent claim

\[
\forall x y z. \; f \top = y \rightarrow f \bot = z \rightarrow f(f(fx)) = fx
\]

by boolean case analysis on \(x \), \(y \), and \(z \). This gives us 8 subgoals, all of which have straightforward equational proofs. Here is the subgoal for \(x = f \), \(y = f \), and \(z = \top \):

\[
f \top = f \rightarrow f \bot = \top = \rightarrow f(f(f \bot)) = f \bot
\]

This was the first time we saw a proof discriminating on a term rather than a variable. Speaking informally, the proof Kaminski’s equation proceeds by cascaded discrimination on \(x \), \(f \top \), and \(f \bot \), where the equations recording the discriminations on the terms \(f \top \) and \(f \bot \) are made available as assumptions. While this proof pattern is not primitive in type theory, it can be expressed as shown above. A proof assistant may support this and other proof patterns with specialized tactics.\(^2\)

Exercise 6.1.1 Define boolean negation and boolean conjunction with the boolean eliminator.

Exercise 6.1.2 For each of the following propositions give a proof term applying the boolean eliminator.

a) \(\forall P \rightarrow P. \forall x. (x = \top \rightarrow (x = f \rightarrow pF) \rightarrow pF) \rightarrow \top \rightarrow pF. \)

b) \(\forall P \rightarrow P. \forall x y. (y = x \rightarrow pF) \rightarrow pF \rightarrow \top \rightarrow pF. \)

c) \(\top \rightarrow \top \rightarrow x = \top \rightarrow pF \rightarrow \top \rightarrow pF. \)

d) \(\top \rightarrow \top \rightarrow x = \top \rightarrow pF \rightarrow \top \rightarrow pF. \)

Exercise 6.1.3 (Alternative proof of Kaminski’s equation)

a) Prove the boolean pigeonhole principle: \(\forall x y z. \; x = y \lor x = z \lor y = z. \)

b) Prove Kaminski’s equation based on the instance of the boolean pigeonhole principle for \(f(fx) \), \(fx \), and \(x \).

Exercise 6.1.4 (Eliminator for \(\top \))

Recall that \(\top \) is an inductive type with exactly one element.

a) Define an eliminator for \(\top \) following the design you have seen for \(B \).

b) Use the eliminator to show that all elements of \(\top \) are equal.

\(^2\)Coq supports the pattern with the destruct tactic and the eqn modifier.
6 Inductive Eliminators

6.2 Eliminator for Numbers

Recall the inductive type of numbers from §1.2:

\[\mathbb{N} ::= 0 \mid S(\mathbb{N}) \]

Match Eliminator for Numbers

Suppose we have a constant

\[M_N : \forall p : \mathbb{N} \to T. \, p0 \to (\forall n. p(Sn)) \to \forall n. pn \]

Then we can use \(M_N \) to do case analysis on numbers in proofs: To prove \(\forall n. pn \), we prove a base case \(p0 \) and a successor case \(\forall n. p(Sn) \). Defining \(M_N \) as an inductive function is straightforward:

\[M_N : \forall p : \mathbb{N} \to T. \, p0 \to (\forall n. p(Sn)) \to \forall n. pn \]

\[M_N p e_1 e_2 0 := e_1 : p0 \]

\[M_N p e_1 e_2 (Sn) := e_2 n : p(Sn) \]

The types of the defining equations as they are determined by their patterns are annotated on the right.

Recursive Eliminator for Numbers

The type of the match eliminator for numbers gives us the structure we need for structural induction on numbers except that the inductive hypothesis is missing. Our informal understanding of inductive proofs suggests that we add the inductive hypothesis as implicational premise to the successor clause:

\[E_N : \forall p : \mathbb{N} \to T. \, p0 \to (\forall n. pn \to p(Sn)) \to \forall n. pn \]

There are two questions now: Can we define a recursive eliminator \(E_N \) with the given type, and does the type of \(E_N \) really suffice to do proofs by structural induction? The answer to both questions is yes.

To define \(E_N \), we take the defining equations for \(M_N \) and obtain the additional argument for the inductive hypothesis of the continuation function \(f \) in the successor case with structural recursion:

\[E_N : \forall p : \mathbb{N} \to T. \, p0 \to (\forall n. pn \to p(Sn)) \to \forall n. pn \]

\[E_N p e_1 e_2 0 := e_1 : p0 \]

\[E_N p e_1 e_2 (Sn) := e_2 n (E_N p e_1 e_2 n) : p(Sn) \]
6.2 Eliminator for Numbers

\[x + 0 = x \] conversion
\[(\lambda x. x + 0 = x) \times \] apply \(E_N \)
\[x \]

\[\begin{array}{c}
1 \\
(\lambda x. x + 0 = x) 0 \\
0 = 0 \\
\text{conversion} \\
\text{comp. eq.}
\end{array} \]

\[2 \]
\[\forall x. (\lambda x. x + 0 = x) x \rightarrow (\lambda x. x + 0 = x)(Sx) \] conversion
\[\forall x. x + 0 = x \rightarrow Sx + 0 = Sx \] intro
\[\text{IH: } x + 0 = x \]
\[Sx + 0 = Sx \] conversion
\[S(x + 0) = Sx \] rewrite IH
\[Sx = Sx \] comp. eq.

Proof term constructed:
\[E_N (\lambda x. x + 0 = x) (Q 0) (\lambda x h. R' (\lambda z. Sz = Sx) h (Q(Sx))) x \]

Figure 6.2: Proof diagram for \(x + 0 = x \)

The type of \(E_N \) clarifies many aspects of informal inductive proofs. For instance, the type of \(E_N \) makes clear that the variable \(n \) in the final claim \(\forall n. pn \) is different from the variable \(n \) in the successor case \(\forall n. pn \rightarrow p(Sn) \). Nevertheless, it makes sense to use the same name for both variables since this makes the inductive hypothesis \(pn \) agree with the final claim.

We can now do inductive proofs completely formally. As first example we consider the fact
\[\forall x. x + 0 = x \]
We do the proof by induction on \(n \), which amounts to an application of the eliminator \(E_N \):
\[E_N (\lambda x. x + 0 = x) \ '0 + 0 = 0' \ '\forall x. x + 0 = x \rightarrow Sx + 0 = Sx' \]
The partial proof term leaves two subgoals known as base case and successor case. Both subgoals have straightforward proofs. Note how the inductive hypothesis appears as an implicational premise in the successor case. Figure 6.2 shows a proof diagram for a proof term completing the partial proof term obtained with \(E_N \).

Exercise 6.2.1 Define \(M_N \) with \(E_N \).

Exercise 6.2.2 Prove the following propositions in Coq using \(E_N \) and \(M_N \).

a) \(Sn \neq n \).
b) \(n + Sk \neq n \).
c) \(x + y = x + z \rightarrow y = z \) (addition is injective in its 2nd argument)

Also give high-level proof diagrams in the style of Chapter 1.
Exercise 6.2.3 Write a term expressing the addition function using an application of E_N. Prove that your addition function agrees with the standard addition function using E_N.

Exercise 6.2.4 Express the Ackermann function using two applications of E_N. Follow the scheme from §1.10. Verify that the specifying equations hold by computational equality.

6.3 Equality of Numbers is Logically Decidable

We now show that equality of numbers is logically decidable:

$$\forall x^N y^N. x = y \lor x \neq y$$

To prove this claim we need induction on x and case analysis on y. Moreover, it is essential that y is quantified in the inductive hypothesis. We start with the partial proof term

$$E_N (\lambda x. \forall y. x = y \lor x \neq y)$$

$$\forall y. 0 = y \lor 0 \neq y$$

$$\forall x. (\forall y. x = y \lor x \neq y) \rightarrow \forall y. Sx = y \lor Sx \neq y$$

The base case follows with case analysis on y:

$$M_N (\lambda y. 0 = y \lor 0 \neq y)$$

$$0 = 0 \lor 0 \neq 0$$

$$\forall y. 0 = S0 \lor 0 \neq S0$$

The first subgoal is trivial, and the second subgoal follows with constructor disjointness. The successor case also needs case analysis on y:

$$\lambda x h \forall y. x = y \lor x \neq y$$

$$M_N (\lambda y. Sx = y \lor Sx \neq y)$$

$$Sx = 0 \lor Sx \neq 0$$

$$\forall y. Sx = Sy \lor Sx \neq Sy$$

The first subgoal follows with constructor disjointness. The second subgoal follows with the instantiated inductive hypothesis $h y$ and injectivity of S.

Figure 6.3 shows a proof diagram for the partial proof term developed above.

We have described the above proof with much formal detail. This was done so that the reader understands that inductive proofs can be formalized with only a few basic type-theoretic principles. If we do the proof with a proof assistant, a fully formal proof is constructed but most of the details are taken care of by automation. If we want to document the proof informally for a human reader, we may just write something like the following:
6.4 Eliminator for Pairs

∀x:N, y:N. x = y ∨ x ≠ y

1 0 = y ∨ 0 ≠ y destruct y

1.1 0 = 0 ∨ 0 ≠ 0 trivial

1.2 IH: ∀y:N. x = y ∨ x ≠ y

2 Sx = y ∨ Sx = y destruct y

2.1 Sx = 0 ∨ Sx ≠ 0 trivial

2.2 Sx = Sx ∨ Sx ≠ Sy destruct IH y

2.2.1 H: x = y Sx = Sy rewrite H, trivial

2.2.2 H: x ≠ y Sx ≠ Sy intro, apply H

H1: Sx = Sy x = y injectivity

Figure 6.3: Proof diagram with a quantified inductive hypothesis

The claim follows by induction on x and case analysis on y, where y is quantified in the inductive hypothesis and disjointness and injectivity of the constructors 0 and S are used.

Exercise 6.3.1 Define a function M : N → N → N for truncating subtraction using ⌈N⌉ and ⌊N⌋. Prove Mxy = x − y using ⌈N⌉ and ⌊N⌋.

Exercise 6.3.2 (Boolean equality decider for numbers)
Write a function eq_N : N → N → B such that ∀xy. x = y ←→ eq_N xy = t. Prove the equivalence.

6.4 Eliminator for Pairs

Recall the inductive type definition for pairs from §1.7:

Pair(X : T, Y : T) ::= pair(X, Y)

As before we use the notations

s × t → Pair st

(s, t) → pair s t

Following the scheme we have seen for booleans and numbers, we can define an eliminator for pairs as follows:

E_× XY(e, y) := exy

: p(x, y)
6 Inductive Eliminators

Exercise 6.4.1 Prove the following facts for pairs $a : X \times Y$ using the eliminator E_x:

a) $(\pi_1 a, \pi_2 a) = a$ \hspace{1cm} \eta\text{-law}

b) swap(swap a) \hspace{1cm} \text{involution law}

Exercise 6.4.2 Use E_x to write functions that agree with π_1, π_2, and swap (see §1.7).

Exercise 6.4.3 By now you know enough to do all proofs of Chapter 1 with proof terms. Do some of the proofs in Coq without using the tactics for destructuring and induction. Use the eliminators you have seen in this chapter instead.

6.5 Disequality of Types

Informally, the types N and B of booleans and numbers are different since they have different cardinality: While there are infinitely many numbers, there are only two booleans. But can we show in the logical system we have arrived at that the types N and B are not equal?

Since B and N both have type \mathbb{T}_1, we can write the propositions $N = B$ and $N \neq B$. So the question is whether we can prove $N \neq B$. We can do this with a property distinguishing the two types. We choose the predicate

\[p(X) := \forall x, y, z. \; x = y \lor x = z \lor y = z \]

saying that a type has at most two elements. I now suffice to prove pB and $\neg pN$. With boolean case analysis on the variables x, y, z we can show that p holds for B. Moreover, we can disprove pN by choosing $x = 0$, $y = 1$, and $z = 2$ and proving

\[(0 = 1 \lor 0 = 2 \lor 1 = 2) \rightarrow \bot \]

by disjunctive case analysis and disjointness and injectivity of 0 and S.

Fact 6.5.1 \hspace{1cm} $N \neq B$.

On paper, it doesn't make sense to work out the proof in more detail since this involves a lot of writing and routine verification. With Coq, however, doing the complete proof is quite rewarding since the writing and the tedious details are taken care of by the proof assistant. When we do the proof with Coq, we can see that the techniques introduced so far smoothly scale to more involved proofs.

Exercise 6.5.2 Prove the following inequations between types.

a) $B \neq B \times B$

b) $\bot \neq \top$

c) $\bot \neq B$

74
6.6 Abstract Return Types

d) \(B \neq \top \)
e) \(P \neq \top \)
f) \(B \neq \perp \)

Hint: You will need the eliminator for \(\top \) (Exercise 6.1.4).

Exercise 6.5.3 Note that one cannot prove \(B \neq B \times \top \) since one cannot give a predicate that distinguishes the two types. Neither can one prove \(B = B \times \top \).

6.6 Abstract Return Types

Eliminators have abstract return types providing great flexibility. Two typical examples are

\[
E_\bot : \forall Z^\top \cdot \bot \rightarrow Z \\
E_B : \forall p^{B^\bot} \cdot p^\top \rightarrow p^\bot \rightarrow \forall x.p^x
\]

The point is that \(Z \) and \(px \) may be arbitrary types. This means in particular that eliminators are functions that are polymorphic in the number of their arguments. For instance:

\[
E_\bot N : \bot \rightarrow N \\
E_\bot (N \rightarrow N) : \bot \rightarrow N \rightarrow N \\
E_\bot (N \rightarrow N \rightarrow N) : \bot \rightarrow N \rightarrow N \rightarrow N
\]

6.7 Uniqueness of Unfolding Specifications

Recall from §1.11 that we can specify functions with non-recursive unfolding functions. For instance, we can specify the Fibonacci function and the Ackermann function with unfolding functions. Unfolding specifications are interesting whenever the recursion pattern of an equational specification does not meet the format required for inductive function definitions. Given an unfolding function, we can ask whether there is a function satisfying the unfolding function (existence), and whether two function satisfying the unfolding function always agree (uniqueness). In Chapter 1 we show that the unfolding specifications for the Fibonacci and the Ackermann function are satisfiable. We can now show that these specifications are also unique.

To get the feel for uniqueness proofs, we start with an unfolding function for the addition function:

\[
\text{Add} : (N \rightarrow N \rightarrow N) \rightarrow N \rightarrow N \rightarrow N \\
\text{Add} f 0 y := y \\
\text{Add} f (Sx) y := S(fxy)
\]
Clearly, the addition function $+$ from §1.2 satisfies the unfolding specification: $\forall x y. x + y = \text{Add}(+)xy$ follows by discrimination on x and computational equality. Moreover, we can show that all functions satisfying Add agree:

$$\forall f g. (\forall x y. fxy = \text{Add}fxy) \rightarrow (\forall x y. gxy = \text{Add}gyy) \rightarrow \forall x y. fxy = gxy$$

The proof is by induction on x and equational reasoning (i.e., rewriting and computational equality).

We remark that for every inductive function definition the corresponding unfolding specification is unique. In each case induction and discrimination following the recursion and discrimination of the inductive function definition suffice for a proof.

Showing the uniqueness of the unfolding specifications for the Ackermann and Fibonacci functions is more challenging. For Ackermann, one starts with induction on x keeping the quantification for y. The base case then follows after discrimination on y. For the successor case, one does a nested induction on y. The base case follows with the outer induction hypothesis. The successor case follows using both inductive hypotheses.

Proving uniqueness of the Fibonacci specification requires another idea. Here we prove

$$\forall n. fn = gn \land f(Sn) = g(Sn)$$

rather than just $\forall n. fn = gn$ to obtain a strong enough inductive hypothesis.

Exercise 6.7.1 Do the following proofs with the proof assistant:

a) Define the unfolding function for truncating subtraction and show that all functions satisfying it agree.

b) Show that all functions satisfying the unfolding function for the Fibonacci function agree.

c) Show that all functions satisfying the unfolding function for the Ackermann function agree.
7 Case Study: Cantor Pairing

Cantor discovered that numbers are in bijection with pairs of numbers. Cantor’s proof rests on a counting scheme where pairs appear as points in the plane. Based on Cantor’s scheme, we realize the bijection between numbers and pairs with two functions inverting each other. We obtain an elegant formal development using only a few basic facts about numbers.

7.1 Definitions

We will construct and verify two functions

\[E : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \text{encode} \]
\[D : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \quad \text{decode} \]

that invert each other: \(D(E(x, y)) = (x, y) \) and \(E(D(n)) = n \). The functions are based on the counting scheme for pairs shown in Figure 7.1. The pairs appear as points in the plane following the usual coordinate representation. Counting starts at the origin \((0, 0)\) and follows the diagonals from right to left:

- 1st diagonal \((0, 0)\)
- 2nd diagonal \((1, 0), (0, 1)\)
- 3rd diagonal \((2, 0), (1, 1), (0, 2)\)

Assuming a function

\[\eta : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N} \]

that for every pair yields its successor on the diagonal walk described by the counting scheme, we define the decoding function \(D \) as follows:

\[D(n) := \eta^n(0, 0) \]

The definition of the successor function \(\eta \) for pairs is straightforward:

\[\eta(0, y) := (S_y, 0) \]
\[\eta(Sx, y) := (x, S\gamma) \]
7 Case Study: Cantor Pairing

We now come to the definition of the encoding function E. We first observe that all pairs (x, y) on a diagonal have the same sum $x + y$, and that the length of the nth diagonal is n. We start with the equation

$$E(x, y) := \sigma(x + y) + y$$

where $\sigma(x + y)$ is the first number on the diagonal $x + y$. We now observe that

$$\sigma n = 0 + 1 + 2 + \cdots + n$$

Thus we define σ recursively as follows:

$$\sigma(0) := 0$$
$$\sigma(Sn) := Sn + \sigma n$$

We remark that σn is known as Gaussian sum.

7.2 Proofs

We start with a useful equation saying that under the encoding function successors of pairs agree with successors of numbers.

Fact 7.2.1 (Successor equation) $E(\eta c) = S(Ec)$ for all pairs c.

Proof Case analysis on $c = (0, y)$, (Sx, y) and straightforward arithmetic.

Fact 7.2.2 $E(Dn) = n$ for all numbers n.

Proof By induction on n using Fact 7.2.1 for the successor case.

Fact 7.2.3 $D(Ec) = c$ for all pairs c.

78
Proof Given the recursive definition of D and E, we need to do an inductive proof. The idea is to do induction on the number Ec. Formally, we prove the proposition

$$\forall c. Ec = n \rightarrow Dn = c$$

by induction on n.

For $n = 0$ the premise gives us $c = (0, 0)$ making the conclusion trivial.

For the successor case we prove

$$Ec = Sn \rightarrow D(Sn) = c$$

We consider three cases: $c = (0, 0)$, $(Sx, 0)$, (x, Sy). The case $c = (0, 0)$ is trivial since the premise is contradictory. The second and third case are similar. We show the third case

$$E(x, Sy) = Sn \rightarrow D(Sn) = (x, Sy)$$

We have $\eta(Sx, y) = (x, Sy)$, hence using Fact 7.2.1 and the definition of D it suffices to show

$$S(E(Sx, y)) = Sn \rightarrow \eta(Dn) = \eta(Sx, y)$$

The premise yields $E(Sx, y) = n$, thus $Dn = (Sx, y)$ by the inductive hypothesis. ■

Exercise 7.2.4 A bijection between two types X and Y consists of two functions $f : X \rightarrow Y$ and $g : Y \rightarrow X$ such that $\forall x. g(fx) = x$ and $\forall y. f(gy) = y$.

a) Give and verify a bijection between \mathbb{N} and $(\mathbb{N} \times \mathbb{N}) \times \mathbb{N}$.
b) Prove that there is no bijection between \mathcal{B} and \top.

7.3 Discussion

Technically, the most intriguing point of the development is the implicational inductive lemma used in the proof of Fact 7.2.3 and the accompanying insertion of η-applications (idea due to Andrej Dudenhefner, March 2020). Realizing the development with Coq is pleasant, with the exception of the proof of the successor equation (Fact 7.2.1), where Coq’s otherwise powerful tactic for linear arithmetic fails since it cannot look into the recursive definition of σ.

What I like about the development of the pairing function is the interesting interplay between geometric speak (e.g., diagonals) and formal definitions and proofs. Their is great elegance at all levels. Cantor’s pairing function is a great example for an educated Programming 1 course addressing functional programming and program verification.

It is interesting to look up Cantor’s pairing function in the mathematical literature and in Wikipedia, where the computational aspects of the construction are
7 Case Study: Cantor Pairing

ignored as much as possible. There one typically starts with the encoding function and uses the Gaussian sum formula to avoid the recursion. Then injectivity and surjectivity of the encoding function are shown, which non-constructively yields the existence of the decoding function. The simple recursive definition of the decoding function does not appear.
8 Existential Quantification

An existential quantification \(\exists x^t.s \) says that there exists some \(x \) of type \(t \) such that the proposition \(s \) holds. More formally, we say that a proof of \(\exists x^t.s \) is a pair \((u,v)\) consisting of a witness \(u : t \) and a certificate \(v : (\lambda x^t.s)u \). It is straightforward to realize this design with an inductive type definition.

We will prove two prominent logical facts involving existential quantification: Russell’s Barber theorem (a non-existence theorem) and Lawvere’s fixed point theorem (an existence theorem). From Lawvere’s theorem we will obtain a type-theoretic variant of Cantor’s power set theorem (there is no surjection from a set to its power set).

8.1 Inductive Definition and Basic Facts

We follow the idea that a proof of an existential quantification \(\exists x^t.s \) is a pair \((u,v)\) consisting of a witness \(u : t \) and a certificate \(v : (\lambda x^t.s)u \) and accommodate existential quantifications with the inductive type definition

\[
ex : \forall X^T. (X \to \mathcal{P}) \to \mathcal{P}
\]

This provides us with the constructors

\[
ex : \forall X^T. (X \to \mathcal{P}) \to \mathcal{P} \quad \mathcal{E} : \forall X^T \forall p^{X \to \mathcal{P}} \forall x^X, p x \to \text{ex} X p
\]

We treat \(X \) as implicit argument of \(\text{ex} \) and \(X \) and \(p \) as implicit arguments of \(\mathcal{E} \), and define the notation

\[
\exists x^t.s \rightsquigarrow \text{ex} (\lambda x^t.s)
\]

The use of the abstraction \(\lambda x^t.s \) ensures that \(x \) is a local variable visible only in the term \(s \). Given a proof \(\mathcal{E} uv \) of \(\exists x^t.s \), we call \(u \) the witness and \(v \) the certificate of the proof.

Note that the elimination restriction applies to all inductive propositions \(\text{ex} X p \).

We define a simply typed match function for existential quantifications that suffices for all proofs in this chapter:

\[
M_\exists : \forall X^T \forall p^{X \to \mathcal{P}} \forall Z^P. \text{ex} p \to (\forall x^X, p x \to Z) \to Z
\]

\[
M_\exists X p Z (\mathcal{E} x a) e := e x a
\]
8 Existential Quantification

\[X : T, \; p : X \rightarrow \mathcal{P} \]

\[\neg(\exists x.px) \iff \forall x.\neg px \]

apply C

1

\[f : \neg(\exists x.px), \; x^X, \; a : px \]

\[\neg(\exists x.px) \rightarrow \forall x.\neg px \]

intro

\[\bot \]

apply \(f \)

\[\neg px \]

apply \(\exists \)

\[(\lambda x.px)x \]

conversion

\[px \]

a

2

\[f : \forall x.\neg px, \; x^X \]

\[(\forall x.\neg px) \rightarrow \neg(\exists x.px) \]

intro with \(\exists \)

\[f : \forall x.\neg px, \; x^X \]

\[a : (\lambda x.px)x \]

\[\bot \]

apply \(fx \)

\[px \]

conversion

\[(\lambda x.px)x \]

a

Proof term: \(C \left(\lambda fxa. f(\exists pxa) \right) \left(\lambda fb. \text{Match } b \ [\ E xa \Rightarrow fxa \] \right) \)

Figure 8.1: Proof of existential de Morgan law with explicit conversions

\[X : T, \; p : X \rightarrow \mathcal{P} \]

\[\neg(\exists x.px) \iff \forall x.\neg px \]

apply C

1

\[f : \neg(\exists x.px), \; x^X, \; a : px \]

\[\neg(\exists x.px) \rightarrow \forall x.\neg px \]

intro

\[\bot \]

apply \(f \)

\[\exists x.px \]

\[(\lambda x.px)x \]

\[\neg px \]

\[E xa \]

2

\[f : \forall x.\neg px, \; x^X, \; a : px \]

\[(\forall x.\neg px) \rightarrow \neg(\exists x.px) \]

intro with \(\exists \)

\[f : \forall x.\neg px, \; x^X \]

\[a : (\lambda x.px)x \]

\[\bot \]

fxa

Proof term: \(C \left(\lambda fxa. f(\exists pxa) \right) \left(\lambda fb. \text{Match } b \ [\ E xa \Rightarrow fxa \] \right) \)

Figure 8.2: Proof of existential de Morgan law with implicit conversions

We will use the match notation for applications of \(\exists \):

\[
\text{match } s \ [\ E xa \Rightarrow t \] \
\Rightarrow \ M_\exists_{\rightarrow} s \left(\lambda x.a.t \right)
\]

Figure 8.1 shows a proof diagram and the constructed proof term for a de Morgan law for existential quantification. The proof diagram makes all conversions explicit so that you can see where they are needed.

In practice, it is not a good idea to make explicit inessential conversions like the ones in Figure 8.1. It is much preferable to think modulo conversion. Figure 8.2 shows a proof diagram with implicit conversions constructing the same proof term. This is certainly a better presentation of the proof. The second diagram gives a fair representation of the interaction you will have with Coq. In fact, Coq will immediately reduce the first two \(\beta \)-redexes you see in Figure 8.1 as part of the proof actions introducing them. This way there will be no need for explicit conversion steps.
8.1 Inductive Definition and Basic Facts

Exercise 8.1.1 Prove the following propositions with proof diagrams and give the resulting proof terms. Mark the proof actions involving implicit conversions.

a) \((\exists x \exists y. pxy) \rightarrow \exists y \exists x. pxy\).

b) \((\exists x. px \lor qx) \leftrightarrow (\exists x.px) \lor (\exists x.qx)\).

c) \((\exists x.px) \rightarrow \neg \forall x. \neg px\).

d) \(((\exists x.px) \rightarrow Z) \rightarrow \forall x. px \rightarrow Z\).

e) \neg \neg (\exists x.px) \leftrightarrow \neg \forall x. \neg px\).

f) \((\exists x. \neg \neg px) \rightarrow \neg \neg \exists x.px\).

Exercise 8.1.2 Prove \(\forall X. x \rightarrow \exists x^X. \top\).

Exercise 8.1.3 Verify the following existential characterization of disequality:

\[x \neq y \rightarrow \exists p. px \land \neg py \]

Exercise 8.1.4 Verify the impredicative characterization of existential quantification:

\[(\exists x.px) \rightarrow \forall Z^p. (\forall x. px \rightarrow Z) \rightarrow Z \]

Exercise 8.1.5 Universal and existential quantification are compatible with propositional equivalence. Prove the following compatibility laws:

\[(\forall x. px \leftrightarrow qx) \rightarrow (\forall x.px) \leftrightarrow (\forall x.qx) \]
\[(\forall x. px \leftrightarrow qx) \rightarrow (\exists x.px) \leftrightarrow (\exists x.qx) \]

Exercise 8.1.6 Prove \(\forall X^T \forall p^X. (\exists x.px) \land Z \rightarrow \exists x. px \land Z\).

Exercise 8.1.7 (Abstract presentation) We have seen that conjunction, disjunction, and also propositional equality can be modeled with abstract constants (§5.4). For existential quantification we may use abstract constants as follows:

\[
\begin{align*}
\text{Ex} : & \forall X^T. (X \rightarrow P) \rightarrow P \\
\text{E} : & \forall X^T \forall p^X. \forall x^X. px \rightarrow \text{Ex} X p \\
\text{M} : & \forall X^T \forall p^X. \forall Z^p. \text{Ex} p \rightarrow (\forall x. px \rightarrow Z) \rightarrow Z
\end{align*}
\]

Prove that the impredicative characterization \(\text{Ex} X p \rightarrow \forall Z^p. (\forall x. px \rightarrow Z) \rightarrow Z\) holds.
8 Existential Quantification

8.2 Barber Theorem

Nonexistence results often get a lot of attention. Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain themselves: \(\neg \exists x \forall y. y \in x \iff y \notin y \).

2. Turing: There is no Turing machine that halts exactly on the codes of those Turing machines that don’t halt on their own code: \(\neg \exists x \forall y. Hx y \iff \neg Hyy \).

Here \(H \) is a predicate that applies to codes of Turing machines such that \(Hx y \) says that Turing machine \(x \) halts on Turing machine \(y \).

It turns out that both results are trivial consequences of a straightforward logical fact known as barber theorem.

Fact 8.2.1 (Barber Theorem)
\[\forall X \forall p. \forall x. pxx \iff \neg pyy. \]

Proof. Suppose there is an \(x \) such that \(\forall y. pxy \iff \neg pyy \). Then \(pxx \iff \neg pxx \). Contradiction by Russell’s law \(\neg (X \iff \neg X) \) as shown in §3.7.

The barber theorem is related to a logical puzzle known as barber paradox. Search the web to find out more.

Exercise 8.2.2 Give a proof diagram and a proof term for the barber theorem. Construct a detailed proof with Coq.

Exercise 8.2.3 Consider the following predicate on types:
\[p(X) := \exists f g X \rightarrow X. \quad fx = y \lor gy = x \]

Prove \(p(B) \) and \(\neg p(N) \).

8.3 Lawvere’s Fixed Point Theorem

Another famous non-existence theorem is Cantor’s theorem. Cantor’s theorem says that there is no surjection from a set into its power set. If we analyse the situation in type theory, we find a proof that for no type \(X \) there is a surjective function \(X \rightarrow (X \rightarrow B) \). If for \(X \) we take the type of numbers, the result says that the function type \(N \rightarrow B \) is uncountable. It turns out that in type theory facts like these are best obtained as consequences of a general logical fact known as Lawvere’s fixed point theorem.

A fixed point of a function \(f^X \rightarrow X \) is an \(x \) such that \(fx = x \).

Fact 8.3.1 Boolean negation has no fixed point.
8.3 Lawvere’s Fixed Point Theorem

Proof Consider \(x = x \) and derive a contradiction with boolean case analysis on \(x \).

Fact 8.3.2 Propositional negation \(\lambda P. \neg P \) has no fixed point.

Proof Suppose \(\neg P = P \). Then \(\neg P \iff P \). Contradiction with Russell’s law.

A function \(f^{X \rightarrow Y} \) is **surjective** if \(\forall y \exists x. \ f(x) = y \).

Theorem 8.3.3 (Lawvere) Suppose there exists a surjective function \(X \rightarrow (X \rightarrow Y) \). Then every function \(Y \rightarrow Y \) has a fixed point.

Proof Let \(f^{X \rightarrow (X \rightarrow Y)} \) be surjective and \(g^{Y \rightarrow Y} \). Then \(fa = \lambda x.g(fxx) \) for some \(a \). We have \(faa = g(faa) \) by rewriting and conversion.

Corollary 8.3.4 There is no surjective function \(X \rightarrow (X \rightarrow \bot) \).

Proof Boolean negation doesn’t have a fixed point.

Corollary 8.3.5 There is no surjective function \(X \rightarrow (X \rightarrow \mathcal{P}) \).

Proof Propositional negation doesn’t have a fixed point.

We remark that Corollaries 8.3.4 and 8.3.5 may be seen as variants of Cantor’s theorem.

Exercise 8.3.6 Construct with Coq detailed proofs of the results in this section.

Exercise 8.3.7 For each of the following types

\[Y = \bot, \ \mathcal{B}, \ \mathcal{B} \times \mathcal{B}, \ \mathbb{N}, \ \mathcal{P}, \ \top \]

give a function \(Y \rightarrow Y \) that has no fixed point.

Exercise 8.3.8 Show that every function \(\top \rightarrow \top \) has a fixed point.

Exercise 8.3.9 With Lawvere’s theorem we can give another proof of Fact 8.3.2 (propositional negation has no fixed point). In contrast to the proof given with Fact 8.3.2, the proof with Lawvere’s theorem uses mostly equational reasoning.

The argument goes as follows. Suppose \((\neg X) = X \). Since the identity is a surjection \(X \rightarrow X \), the assumption gives us a surjection \(X \rightarrow (X \rightarrow \bot) \). Lawvere’s theorem now gives us a fixed point of the identity on \(\bot \rightarrow \bot \). Contradiction since the type of the fixed point is falsity.

Do the proof with Coq.

85
9 Executive Summary

We have arrived at a computational type theory where typing is modulo computational equality. There are dependent function types $\forall x^{A}.v$, applications st, plain definitions, inductive type definitions, and inductive functions definitions. The definitions introduce typed constants, where the constants introduced by plain definitions and inductive function definitions come with equational reduction rules. The resulting reduction system has four essential properties: termination, unique normal forms, type preservation, and canonicity. Types are accommodated as first class values, necessitating a hierarchy of universe types

$$\mathcal{P} \subset T_1 \subset T_2 \subset T_3 \subset \cdots$$

taking types as values. The lowest universe \mathcal{P} is impredicative. There are also lambda expressions with β-reduction and η-equivalence.

In computational type theory, all definable functions are computational. This makes a key difference to set-theoretic mathematics, where functions are merely sets of input-output pairs. Inductive function definitions can be recursive. To ensure termination, recursion must follow the recursion pattern of an inductive type.

Theories are developed as sequences of type-theoretic definitions building on each other. At the lowest level we have definitions accommodating particular propositions. Lemmas and theorems for particular theories (e.g., numbers, lists) are accommodated with plain definitions. Theories will build on each other, but in the end all theories are derived from first type-theoretic principles.

Propositions as Types
Propositions are accommodated as types of the lowest universe. This yields propositions that can quantify over functions, types, propositions, and proofs (proofs appear as elements of propositional types). Propositional equality can be modeled elegantly as Leibniz equality making use of the conversion rule and the impredicativity of \mathcal{P}. Powerful lemmas, including induction principles, can be formulated as propositions and can be defined as functions.

Logical reasoning as obtained with the propositions as types approach is intuitionistic reasoning not building in the law of excluded middle. When desired, the law of excluded middle can be assumed.

The propositions as types approach is both natural and powerful. Modeling lemmas as functions and proofs as combination of functions is in perfect corre-
9 Executive Summary

Correspondence with mathematical practice. Describing functions and combination of functions with terms is an obvious elaboration coming with the benefit that proof checking is obtained as type checking. The propositions as types approach turns out to be a powerful explanation and formalization of what we do with propositions and proofs in mathematical practice. It opens new mathematical possibilities by turning propositions and types into first-class objects. The type-theoretic explanation of the proof rule for induction on numbers is of spectacular elegance. As generations of students will witness, informal mathematics just doesn’t succeed in giving a clear explanation of what is happening when we do an inductive proof.

Computational type theory gives us an expressive and uniform language for propositions and proofs serving all levels of mathematical reasoning. On the one hand, we can do proofs at a low level with first principles. On the other hand, we can do proofs at a high level using abstractions and powerful lemmas.

Proof Assistants

Computational type theories are designed to be implemented as programming languages. We can implement a verifier reading a sequence of definitions and checking that everything is well-formed according to the rules of the type theory, a process known as type checking. Computational type theories are designed such that type checking can be done algorithmically, and that proof checking is obtained as type checking.

We may assume that a verifier sees a sequence of definitions in fully elaborated form; that is, all implicit arguments have been derived and all notational conveniences (i.e., infix operators) have been removed. This way, the complexity of elaboration can be handled separately by an elaborator, and the verifier can be realized with a relatively small program.

At a higher level one has an interactive proof assistant, which is a tool supporting users in developing theories (i.e., sequences of definitions). The user sees the interactive proof assistant as a command interpreter. The proof assistant integrates an incremental elaborator and an incremental verifier building a type checked theory definition by definition. There is also a secondary tactic interpreter for type-driven incremental top-down construction of terms. The tactic interpreter executes commands called tactics contributing to a term construction initiated by the command interpreter. Besides simple tactics, there are automation tactics building complete proofs in one go. Powerful automation tactics exist for propositional and arithmetic reasoning.

The top level of an interactive proof assistant provides commands for constructing terms with the tactic interpreter, type checking, simplifying, and evaluating terms, defining and assuming constants, hiding definitions of constants, querying existing definitions, establishing notations and implicit arguments, setting the details of printing, and loading libraries.
For the engineering of a proof assistant, the separation of verification, elaboration, and incremental term construction with tactics is essential. Concerning the software effort needed, verification ranks lowest, elaboration ranks in the middle, and tactics rank highest. By design, everything produced by tactics and elaboration is checked by the kernel, the software component responsible for verification. This way the trusted base of an interactive proof assistant can be kept small.

Recursion in inductive function definitions is tuned down by a guard condition. A guard condition must be decidable and must ensure termination. We are assuming a simple and well-understood guard condition in this text. More permissive guard conditions are being used in proof assistants.

The computational type theory developed in this text is compatible with what is implemented by the proof assistant Coq. We take the freedom to assume features not directly available in Coq. Most notably, we use inductive and plain function definitions where Coq only provides plain constant definitions. We make no effort to cover all features of Coq. Every chapter of the text comes with a Coq file realizing the development of the chapter in Coq.

Further Remarks

1. It much simplifies the realization of a proof assistant (and a verifier in particular) that propositions and proofs are derived notions and that proof checking is obtained as type checking.

2. It is fascinating to see how the mathematical notions of propositions, proofs, and theorems are reduced to the computational primitives of a type theory.

3. An important aspect of mathematical proving is subgoal and assumption management. In the propositions as types approach subgoal management boils down to type-driven construction of terms, and assumption management is obtained as nesting of typed lambda abstractions and let expressions.

4. A collapsed universe hierarchy $\mathbb{P} \subset \mathbb{T}$ with $\mathbb{T} : \mathbb{T}$ would be nice but is not an option since the vicious cycle $\mathbb{T} : \mathbb{T}$ destroys canonicity and consistency of the system. Nevertheless, for most developments, we can ignore the universe levels and have the elaborator check that they can be consistently assigned.

5. We will eventually see methods providing for the construction of functions specified with general terminating recursion.
Part II

More Type Theory
10 Informative Types and Certifying Functions

Informative types combine computational and propositional information. They are obtained with computational variants of disjunctions \((s \lor t)\) and existential quantifications \((\exists x.s)\) called *sum types* \((s + t)\) and *sigma types* \((\Sigma x.s)\). Informative types are an important feature of computational type theory having no equivalent in set-theoretic mathematics. With informative types one can describe computational situations often lacking adequate descriptions in set-theoretic language.

Mathematics comes with a rich language for describing proofs at a high level of abstraction. Using this language, we can write mathematical proofs in such a way that they can be elaborated into formal proofs. The tactic level of the Coq proof assistant provides an abstraction layer for the elaboration of mathematical proofs making it possible to delegate to the proof assistant the details coming with proof terms.

It turns out that the idea of high-level proof extends to the construction of *certifying functions*, which are functions with an informative target type. The proof-style construction of certifying functions turns out to be advantageous in practice. Technically, it comes for free since the tactic level of a proof assistant addresses types in general, not just propositional types. Methodologically, the proof-style construction of a certifying function is guided by an informative specification and may use high-level building blocks like induction following ideas from proof construction. Typically, one first shows a for-all-exists lemma \(\forall x \Sigma y^N. \, px \land \exists z^N. \, x + z = y \lor y + z = x\) and then extracts a function \(f^N\) and a correctness lemma \(\forall x. \, px(fx)\).

10.1 Lead Examples

Consider the propositional lemmas

\[
L_1 : \forall x y^N. \, x = y \lor x \neq y \\
L_2 : \forall x y \exists z^N. \, x + z = y \lor y + z = x
\]

Type-theoretically, both lemmas are functions, which may be described as follows:

- Given two numbers, \(L_1\) decides whether the numbers are equal and returns a proof certifying the decision.
10 Informative Types and Certifying Functions

• Given two numbers, \(L_2 \) returns the distance between the numbers and a proof certifying the result.

Both lemmas have routine proofs proceeding by induction on \(x \) and case analysis on \(y \). We observe that the proofs of the lemmas act as high-level definitions of functions.

We now ask how we can obtain functions

\[
\begin{align*}
f_1 & : N \to N \to B \\
f_2 & : N \to N \to N
\end{align*}
\]

satisfying the correctness lemma

\[
\begin{align*}
C_1 & : \forall xy^N. \ f_1xy = t \iff x = y \\
C_2 & : \forall xy^N. \ (x + f_2xy = y) \lor (y + f_2xy = x)
\end{align*}
\]

Because of the elimination restriction for disjunctions and existential quantifications, we cannot get suitable functions \(f_1 \) and \(f_2 \) from the lemmas \(L_1 \) and \(L_2 \). This is unfortunate since the proofs of \(L_1 \) and \(L_2 \) do contain information on how the functions can be constructed.

The situation changes if we prove the \textit{computational lemmas}

\[
\begin{align*}
F_1 & : \forall xy^N. \ (x = y) + (x \neq y) \\
F_2 & : \forall xy^Nz. \ (x + z = y) + (y + z = x)
\end{align*}
\]

using \textit{sum types} (+) for the disjunctions (\(\lor \)) and a \textit{sigma type} (\(\Sigma \)) for the existential quantification (\(\exists \)). Because sum type and sigma types are defined at a computational universe \(T \), there is no elimination restriction and we can easily obtain the functions \(f_1 \) and \(f_2 \) with their correctness lemmas \(C_1 \) and \(C_2 \) from the computational lemmas \(F_1 \) and \(F_2 \). As it turns out, the proof scripts one would use for the propositional lemmas in the Coq proof assistant can be reused for the computational lemmas.

Let us fix our language. An \textbf{informative type} is either a sum type or a sigma type, or a functional type with an informative target type. A \textbf{certifying function} is a function whose target type is informative.

We use the words \textit{lemma} and \textit{proof} informally. Formally, lemmas are accommodated as constants. The idea is that mostly the type of a lemma matters for its use, not the details of its definition. We refer to the definition of a lemma as its \textit{proof}. We speak of a \textbf{propositional lemma} if the type of the lemma is a propositional type, and of a \textbf{computational lemma} if the type of the lemma is not a propositional type. Propositional lemmas are typically accommodated as declared constants hiding their proofs. For computational lemmas it may be convenient to not hide their proofs so that they can contribute to computational equality.
10.2 Sum Types and Sigma Types

From now on, when we say show \(t \) or prove \(t \) we want to say that a term \(s \) of type \(t \) is to be constructed. When using proof-oriented language, it does not matter whether \(t \) is a propositional or a nonpropositional type. The view that one can prove any type is fully realized by the tactics interpreter of the Coq proof assistant, which does not make a difference between propositional and nonpropositional types.

Exercise 10.1.1 Consider the proposition \(\forall x: \mathbb{N} . \exists n . (x = n \cdot 2) \lor (x = S(n \cdot 2)) \).

a) Formulate the proposition as an informative type.

b) Explain what a certifying function of this type computes.

c) Explain how from a certifying function of this type one can obtain a function \(\mathbb{N} \to \mathbb{B} \) deciding whether a number is even.

d) Explain how from a certifying function of this type one can obtain a function \(\mathbb{N} \to \mathbb{N} \) that for every number \(x \) yields the largest \(n \) such that \(2n \leq x \).

e) Prove the proposition.

Remark: We write \(n \cdot 2 \) rather than \(2n \) since \(n \cdot 2 \) doesn’t require commutativity lemmas.

10.2 Sum Types and Sigma Types

We start with a table listing propositional types together with their computational counterparts:

| \(\forall \) \(\rightarrow \ times \) \(\leftrightarrow \) \(+ \) \(\Sigma \) | \(\rightarrow \) \(\rightarrow \) \(\lor \) \(\lor \) \(\exists \) |
|---|---|---|
| computational types in \(\mathbb{T} \) | propositional types in \(\mathbb{P} \) |

For function types \((\forall, \rightarrow) \) there is no difference. For conjunctions we have product types as computational counterpart, and for propositional equivalence we define the computational variant (**propositional equivalence of types**) as follows:

\[\leftrightarrow : \mathbb{T} \to \mathbb{T} \to \mathbb{T} \]

\[X \leftrightarrow Y ::= (X \to Y) \times (Y \to X) \]

Thus an inhabitant of an equivalence \(X \leftrightarrow Y \) is a pair \((f, g)\) of two functions \(f : X \to Y \) and \(g : Y \to X \).

The computational counterparts for disjunctions and existential quantifications are called **sum types** \((s + t)\) and **sigma types** \((\Sigma x.s)\). Their inductive definitions mimic the inductive definitions of disjunctions and existential quantifications by replacing the universe \(\mathbb{P} \) with the universe \(\mathbb{T} \):

\[+ (X : \mathbb{T}, Y : \mathbb{T}) : \mathbb{T} ::= L(X) \mid R(Y) \]

\[\operatorname{sig} (X : \mathbb{T}, p : X \to \mathbb{T}) : \mathbb{T} ::= E(x : X, px) \]
10 Informative Types and Certifying Functions

\[M_+ : \forall XYZ. X + Y \rightarrow (X \rightarrow Z) \rightarrow (Y \rightarrow Z) \rightarrow Z \]
\[M_+ XYZ (Lx) e_1 e_2 := e_1 x \]
\[M_+ XYZ (Ry) e_1 e_2 := e_2 y \]

\[M_\Sigma : \forall X^\top \forall p^{X-Y^\top} \forall Z^\top. \; \sigma p \rightarrow (\forall x. px \rightarrow Z) \rightarrow Z \]
\[M_\Sigma XpZ (Exa) e := exa \]

\[
\text{MATCH } s \left[\begin{array}{c}
L \Rightarrow t_1 \\
R \Rightarrow t_2
\end{array} \right] \quad \rightsquigarrow \quad M_+ ___ s (\lambda x. t_1) \; (\lambda y. t_2)
\]
\[
\text{MATCH } s \left[E \Rightarrow t \right] \quad \rightsquigarrow \quad M_\Sigma ___ s (\lambda xa. t)
\]

Figure 10.1: Simply typed match functions for sum and sigma types

Similar to the notation \(\exists x. s \) for propositions \(\exists x. (\lambda x. s) \), we shall use the notation \(\Sigma x. s \) for sigma types \(\Sigma x. (\lambda x. s) \). The full types of the value constructors for sum and sigma types are as follows:

\[L : \forall X^\top Y^\top. X \rightarrow X + Y \]
\[R : \forall X^\top Y^\top. Y \rightarrow X + Y \]
\[E : \forall X^\top p^{X-Y} \forall x^X. px \rightarrow \sigma x p \]

We will treat \(X \) and \(Y \) as implicit arguments.

A value of a sum type \(X + Y \) carries a value of \(X \) or a value of \(Y \), where the information which alternative is present can be used computationally. The elements of sum types are called variants.

We see a value \(E p xc \) of a sigma type \(\Sigma x. px \) as a dependent pair \((x, c)_p \) and speak of the first and second component of the pair \((x \) and \(c) \). We may also refer to \(x \) as the witness and to \(c \) as the certificate of the pair. We may write \(E xc \) for \(E p xc \) if the type function is clear from the context.

While many uses of sum types \(X + Y \) and sigma types \(\Sigma x. px \) are such that \(X \), \(Y \), and \(px \) are propositions, the more general cases matter. They are for instance needed when we nest informative types as in \((P_1 + P_2) + P_3 \) or \(\Sigma x. \Sigma y. pxy \).

Figure 10.1 defines the simply typed match functions for sum types and sigma types following the definitions of the match functions for disjunctions (Figure 3.2) and existential quantifications (§8.1).

Often, the simply typed match functions for sum and sigma types do not suffice. We may then use the universal eliminators

\[E_+ : \forall XY^\top \forall q^{X+Y-T^\top}. \; (\forall x. q(Lx)) \rightarrow (\forall y. q(Ry)) \rightarrow \forall a. qa \]
\[E_\Sigma : \forall X^\top \forall p^{X-T} \forall q^{\sigma p-T}. \; (\forall xc. q(Exc)) \rightarrow \forall a. qa \]
providing dependently typed matches for sum and sigma types. We leave the straightforward definitions as exercise.

Exercise 10.2.1 Recall that there is no elimination restriction for \(P \leftrightarrow Q \).

a) Prove \(\forall PQ. (P \leftrightarrow Q) \iff (P \leftrightarrow Q) \).

b) Explain why \(\forall X. X \land X \) does not type check.

Exercise 10.2.2 Define the universal eliminators for sum and sigma types.

Hint: The defining equations are similar to the defining equations for the simply typed match functions. Note that the universal eliminators move the discriminating argument to the end for clarity. A careful consideration of the differences between the simply typed match functions and the universal eliminators will help your understanding.

Exercise 10.2.3 Define the simply typed match functions for sum and sigma types using the universal eliminators for sum and sigma types.

Exercise 10.2.4 Define the so-called *truncation functions* for sum and sigma types

\[
\forall PQ. P + Q \rightarrow P \lor Q
\]
\[
\forall pX. (\Sigma x.px) \rightarrow \exists x.px
\]

using the simply typed match functions. Note that converse functions cannot be defined because of the elimination restriction.

Exercise 10.2.5 Define functions as follows:

\(a) \quad \forall bB. (b = T) + (b = F) \).
\(b) \quad \forall nN. (n = 0) + (\Sigma k. n = Sk) \).
\(c) \quad \forall XYZ. (Y \rightarrow Z) \rightarrow X + Y \rightarrow X + Z \).
\(d) \quad \forall x yB. x \& y = F \iff (x = F) + (y = F) \).
\(e) \quad \forall x yB. x \mid y = T \iff (x = T) + (y = T) \).

Exercise 10.2.6 (Constructor laws for sum types)

Prove the constructor laws for sum types using the simply typed match function:

\(a) \quad L x \neq R y \).
\(b) \quad L x = L x' \rightarrow x = x' \).
\(c) \quad R y = R y' \rightarrow y = y' \).

Hint: The techniques used for numbers (Figure 5.2) also work for sums.

Exercise 10.2.7 (Equational match law for sum types)

Prove \(\forall a^{X+Y}. (\Sigma x. a = L x) + (\Sigma y. a = R y) \) using the universal eliminator \(E_+ \). Convince yourself that the simply typed match function \(M_+ \) does not suffice for the proof.
10 Informative Types and Certifying Functions

Exercise 10.2.8 (Functional characterizations)
Prove the following propositional equivalences for sum types and sigma types using the simply typed match functions:

a) \(X + Y \iff \forall Z \left((X \to Z) \to (Y \to Z) \to Z \right) \)

b) \((\Sigma x. px) \iff \forall Z \left((\forall x. px \to Z) \to Z \right) \)

Note that the equivalences are analogous to the impredicative characterizations of disjunctions and existential quantifications.

Exercise 10.2.9 (Product and sum types are in bijection with sigma types)
Sigma types can express pair types \(X \times Y \) and sum types \(X + Y \) up to bijection.

a) Show that \(X \times Y \) and \(\text{sig}(\lambda x. X \to Y) \) are in bijection.

b) Show that \(X + Y \) and \(\text{sig}(\lambda b. \text{if } b \text{ then } X \text{ else } Y) \) are in bijection.

The functions for the bijections can be defined using the simply typed match functions. The proofs of the roundtrip equations, however, require the universal eliminators but for one exception.

10.3 Projections and Skolem Equivalence

We assume a type function \(p : X \to \mathbb{T} \) and define two projections that yield the first and the second component of a dependent pair \(a : \text{sig } p \):

\[
\begin{align*}
\pi_1 & : \text{sig } p \to X \\
\pi_1 (E xc) & := x \\
\pi_2 & : \forall a \text{sig } p, p(\pi_1 a) \\
\pi_2 (E xc) & := c
\end{align*}
\]

Note that the type of \(\pi_2 \) is given using the projection \(\pi_1 \). This acknowledges the fact that the type of the second component depends on the first component. Type checking the defining equation of \(\pi_2 \) requires a conversion step unfolding the definition of \(\pi_1 \).

We will use the projections to define a translation function that, given a function \(f : X \to Y \) satisfying \(\forall x. px(fx) \), yields a certifying function \(\forall x \Sigma y. pxy \). We say that the translation merges the function \(f \) and the correctness proof \(\forall x. px(fx) \) into a single certifying function. We will also define a converse translation function that decomposes a certifying function \(\forall x \Sigma y. pxy \) into a simply typed function \(f : X \to Y \) and a correctness proof \(\forall x. px(fx) \). The definability of the two translations can be stated elegantly as a propositional equivalence between informative types.

Fact 10.3.1 (Skolem equivalence)
\(\forall XY \mathbb{T} \forall p : X \to Y \to \mathbb{T}, \ (\forall x \Sigma y. pxy) \iff (\Sigma f \forall x. px(fx)) \).

Proof The translation \(\to \) can be defined as \(\lambda F. E(\Lambda x. \pi_1(Fx))(\Lambda x. \pi_2(Fx)) \). The converse translation \(\to \) can be defined as \(\lambda ax. E(\pi_1 ax)(\pi_2 ax) \).
Note that type checking the above proof requires several conversion steps unfolding the definitions of the projections π_1 and π_2.

The Skolem equivalence (Fact 10.3.1) is of practical importance. Often we will prove a computational lemma $\forall x \Sigma y. \ pxy$ to then obtain a function $f^{X \rightarrow Y}$ satisfying the specification $\forall x. \ px(fx)$.

We use the term Skolem equivalence since there is a resemblance with the equivalence for Skolem functions in first-order logic.

Exercise 10.3.2 Define a simply typed match function

$$\forall X \forall p^{X \rightarrow T} \forall Z^{\forall Y}. \ \text{sig} \ p \rightarrow (\forall x. \ px \rightarrow Z) \rightarrow Z$$

using the projections π_1 and π_2.

Exercise 10.3.3 Express π_1 with the simply typed match function M_Σ. Convince yourself that π_2 cannot be expressed with M_Σ.

Exercise 10.3.4 Express the projections π_1 and π_2 for sigma types with terms t_1 and t_2 using the universal eliminator E_Σ such that $\pi_1 \approx t_1$ and $\pi_2 \approx t_2$.

Exercise 10.3.5 (Eta law) Prove the eta law $E(\pi_1 a)(\pi_2 a) = a$ for dependent pairs $a : \text{sig} \ p$. Convince yourself that the proof requires the universal eliminator E_Σ and cannot be done with the match function M_Σ.

Exercise 10.3.6 (Propositional Skolem) Due to the elimination restriction for existential quantification, the direction \rightarrow of the Skolem equivalence cannot be shown for all types X and Y if Σ-quantification is replaced with existential quantification. (The unprovability persists if excluded middle is assumed.) There are two noteworthy exceptions. Prove the following:

a) $\forall Y^{\Pi} \forall p^{X \rightarrow Y \rightarrow P}. \ (\forall x \exists y. \ pxy) \rightarrow \exists f \forall x. \ px(fx)$.

b) $\forall X^{\Pi} \forall Y^{\Pi} \forall p^{X \rightarrow Y \rightarrow P}. \ (\forall x \exists y. \ pxy) \rightarrow \exists f \forall x. \ px(fx)$.

Remarks: (1) The boolean version (a) generalizes to all finite types X presented with a covering list. (2) The unprovability of the propositional Skolem equivalence persists if the law of excluded is assumed. The difficulty is in proving the existence of the function f since functions must be constructed with computational principles. (3) In the literature, f is often called a choice function and the direction \rightarrow of the Skolem equivalence is called a choice principle.

Exercise 10.3.7 (Existential quantification) Existential quantifications $\exists X p$ are subject to the elimination restriction if and only if X is not a proposition. Thus a function extracting the witness can only be defined if X is a proposition.

a) Define projections π_1 and π_2 for quantifications $\exists X p$ where X is a proposition.

b) Prove $a = E(\pi_1 a)(\pi_2 a)$ for all $a : \exists X p$ where X is a proposition.
10 Informative Types and Certifying Functions

Exercise 10.3.8 (Injectivity laws)
One would think that the injectivity laws for dependent pairs

\[\begin{align*}
\text{Ex}c &= \text{Ex}'c' \rightarrow x = x' \\
\text{Ex}c &= \text{Ex}'c' \rightarrow c = c'
\end{align*} \]

are both provable. While the first law is easy to prove, the second law cannot be shown in general in computational type theory. This certainly conflicts with intuitions that worked well so far. The problem is with subtleties of dependent type checking. In Chapter 23, we will show that the second injectivity law does hold if the type of the first component has an equality decider.

a) Prove the first injectivity law.

b) Try to prove the second injectivity law. If you think you have found a proof on paper, check it with Coq to find out where it breaks. The obvious proof idea that rewrites \(\pi_2(\text{Ex}c) \) to \(\pi_2(\text{Ex}'c') \) does not work since there is no well-typed rewrite predicate validating the rewrite.

10.4 Lead Examples Revisited

We are now ready to prove the computational lemmas discussed in §10.1 and explore applications. We shall be using proof-oriented language.

Fact 10.4.1 (Certifying equality decider)
\[\forall xy\mathbb{N}. \ (x = y) + (x \neq y). \]

Proof By induction on \(x \) with \(y \) quantified, followed by case analysis on \(y \). The interesting case is \((Sx = Sy) + (Sx \neq Sy) \). We do case analysis on the instantiated inductive hypothesis \((x = y) + (x \neq y) \). The second case follows by contraposition and injectivity of the constructor \(S \).

Note that the proof text agrees with the proof text we have given in §6.2 for the proposition \(\forall xy\mathbb{N}. \ (x = y) \lor (x \neq y) \). When we check the proof for the informative type, we have to make sure that the induction on \(x \), the case analysis on \(y \), and the case analysis on the instantiated inductive hypothesis are all admissible in a computational context. As it comes to induction and case analysis on numbers, this is certainly the case. As it comes to the case analysis on the instantiated inductive hypothesis, there is no problem either since the inductive hypothesis is now formulated with a sum type rather than a disjunction.

We remark that the informal textual description of the function asserted by Fact 10.4.1 is efficient and adequate for humans. Writing down the exact term would be tedious, as well as reading and understanding it. Using the tactic interpreter of a proof assistant, the term can be easily synthesized following the informal...
description. Of course, the exact term is needed for a rigorous verification of the construction.

Once we have a certifying function \(F : \forall xy^N. (x = y) + (x \neq y) \), we can define further functions using it. Since the type of \(F \) is informative, the definition of \(F \) is not needed to prove properties of functions defined using \(F \). We may summarize this situation with the slogan the type says it all. To explain this point, we define a boolean decider for equality of numbers based on \(F \):

\[
f_{xy} := \text{if } F_{xy} \text{ then } \mathbf{T} \text{ else } \mathbf{F}
\]

We can prove the correctness of the boolean decider

\[
\forall xy^N. x = y \rightarrow f_{xy} = \mathbf{T}
\]

by discrimination on \(F_{xy} \): Either \(F_{xy} = \mathbf{L}a \) and \(x = y \) (since \(a : x = y \)), or \(F_{xy} = \mathbf{R}a \) and \(x \neq y \) (since \(a : x \neq y \)). This results in two proof obligations

\[
\begin{align*}
x = y & \rightarrow (\mathbf{T} = \mathbf{T} \rightarrow x = y) \\
x \neq y & \rightarrow (\mathbf{F} = \mathbf{T} \rightarrow x = y)
\end{align*}
\]

which are easily discharged. Formally, the discrimination on \(F_{xy} \) can be performed with the universal eliminator for sum types. We delegate the formal details of the correctness proof to Exercise 10.4.3.

Fact 10.4.2 (Certifying distance function)

\[
\forall xy^N \Sigma z^N. (x + z = y) + (y + z = x).
\]

Proof By induction on \(x \) with \(y \) quantified, followed by case analysis on \(y \) in the successor case. The cases where \(x = 0 \) or \(y = 0 \) are trivial. The interesting case \(\Sigma z. (Sx + z = Sy) + (Sy + z = Sz) \) follows by case analysis on the instantiated inductive hypothesis \(\Sigma z. (x + z = y) + (y + z = x) \).

Exercise 10.4.3 Recall the boolean decider \(f \) based on the certifying function \(F \) asserted by Fact 10.4.1.

a) Prove \(\forall xy^N. x = y \rightarrow f_{xy} = \mathbf{T} \) using a proof diagram. After a conversion step, an application of the universal eliminator for sums yields two proof obligations \(x = y \rightarrow (\mathbf{T} = \mathbf{T} \rightarrow x = y) \) and \(x \neq y \rightarrow (\mathbf{F} = \mathbf{T} \rightarrow x = y) \) with obvious proofs.

b) Do the proof with Coq using the universal eliminator for sums.

c) Do the proof with Coq using the tactic destruct (which much reduces the intellectual effort).
10 Informative Types and Certifying Functions

Exercise 10.4.4 (Distance)
Assume a function \(D : \forall x y^\mathbb{N}\Sigma z. (x + z = y) + (y + z = x) \) and prove the following:

a) \(\pi_1(Dxy) = (x - y) + (y - x) \).
b) \(\pi_1(D37) = 4 \).
c) \(x - y = \text{if} \ \pi_2(Dxy) \ \text{then} \ 0 \ \text{else} \ \pi_1(Dxy) \).

Note that a definition of \(D \) is not needed for the proofs since all information needed about \(D \) is in its type. Hint: For (a) and (c) discriminate on \(Dxy \) and simplify. What remains are equations involving truncating subtraction only.

Exercise 10.4.5 Prove \(x + z = y \rightarrow y + z = x \rightarrow z = 0 \).

Exercise 10.4.6 (Certifying division by 2)
Define a certifying function \(F : \forall x^\mathbb{N}\Sigma n. (x = n \cdot 2) + (x = S(n \cdot 2)) \).

Exercise 10.4.7 (Certifying division by 2)
Assume a function \(F : \forall x^\mathbb{N}\Sigma n. (x = n \cdot 2) + (x = S(n \cdot 2)) \).

a) Use \(F \) to define a function that for a number \(x \) yields a pair \((n,k) \) such that \(x = k + n \cdot 2 \) and \(k \) is 0 or 1. Prove the correctness of your function.
b) Use \(F \) to define a function that tests whether a number is even. Prove the correctness of your function.

Exercise 10.4.8 Using the Coq proof assistant, write a script synthesizing a term describing the Ackermann function. Use nested induction and follow the design in §1.10. Prove that the synthesized function satisfies the specifying equations for the Ackermann function by computational equality.

10.5 Inhabitation

We now define a type constructor \(I : \mathbb{T} \rightarrow \mathbb{P} \) mapping every type \(X \) to a proposition \(I(X) \) that is provable if and only if \(X \) is inhabited:

\[
I(X : \mathbb{T}) : \mathbb{P} ::= \top(X)
\]

We call \(I \) inhabitation operator and \(I(X) \) the truncation of \(X \). Moreover, we read a proposition \(I(X) \) as \(X \) is inhabited. Truncation deletes computational information but keeps propositional information. The elimination restriction applies to inhabitation types \(I(X) \) except if \(X \) is a proposition. It turns out that conjunction, disjunction, and existential quantification can be characterized by the truncations of their computational counterparts (pair types, sum types, and sigma types).
10.5 Inhabitation

Fact 10.5.1 (Logical truncations)
1. \((P \land Q) \leftrightarrow I(P \times Q)\).
2. \((P \lor Q) \leftrightarrow I(P + Q)\).
3. \((\exists x.px) \leftrightarrow I(\Sigma x.px)\).

Fact 10.5.2 (Characterizations of inhabitation)
1. \(\forall X. I(X) \leftrightarrow \forall Z. (X \rightarrow Z) \rightarrow Z\).
2. \(\forall X. I(X) \leftrightarrow \exists x^X. \top\).
3. \(\forall P. I(P) \leftrightarrow P\).

Exercise 10.5.3 Define a simply typed match function for inhabitation types and prove the facts stated above.

Fact 10.5.4 Prove \((X \rightarrow Y) \rightarrow I(X) \rightarrow I(Y)\).

Exercise 10.5.5 Prove that double negated existential quantification agrees with double negated sigma quantification: \(\neg\neg ex^P \leftrightarrow \neg\neg(\Sigma x^P \rightarrow \bot)\).

Exercise 10.5.6 Prove that double negated disjunction agrees with double negated sum: \(\neg\neg(P \lor Q) \leftrightarrow \neg\neg(P + Q \rightarrow \bot)\).

Exercise 10.5.7 Think of \(I(\Sigma x^P)\) as existential quantification and prove the following:
 a) \(\forall x^X. px \rightarrow I(\Sigma x^P)\).
 b) \(\forall Z^P. I(\Sigma x^P) \rightarrow (\forall x.px \rightarrow Z) \rightarrow Z\).

Exercise 10.5.8 (Advanced material) We define the type functions
\[
\text{choice } XY := \forall p^X \rightarrow P. (\forall y.yxy) \rightarrow \exists f. \forall x.p(x(fx))
\]
\[
\text{witness } X := \forall p^X \rightarrow P. \exists f. p \rightarrow \Sigma x.p
\]
You will show that there are translations between \(\forall XY^T. \text{choice } XY\) and \(I(\forall X^T. \text{witness } X)\). The translation from choice to witness needs to navigate cleverly around the elimination restriction. The presence of the inhabitation operator is essential for this direction.
 a) Prove \(I(\forall X^T. \text{witness } X) \rightarrow (\forall XY^T. \text{choice } XY)\).
 b) Prove \((\forall XY^T. \text{choice } XY) \rightarrow I(\forall X^T. \text{witness } X)\).
 c) Convince yourself that the equivalence
\[(\forall XY^T. \text{choice } XY) \leftrightarrow I(\forall X^T. \text{witness } X)\]
is not provable since the two directions require different universe levels for \(X\) and \(Y\).
10 Informative Types and Certifying Functions

Hints. For (a) use $f := \lambda x. \pi_1 (WY (px) (Fx))$ where W is the witness operator and F is the assumption from the choice operator. For (b) use the choice operator with the predicate $\lambda a \Sigma (X, p). \text{ex} \ p. \lambda b \Sigma (X, p). \text{sig} \ p. \pi_1 a = \pi_1 b$ where $p \ X \rightarrow \ Y$. Keeping the arguments of the predicate abstract makes it possible to obtain the choice function f before the inhabitation operator is removed. The proof idea is taken from the Coq library ChoiceFacts.

10.6 Bijection Types

A (computational) bijection between two types X and Y consists of two functions

$$ f : X \rightarrow Y $$
$$ g : Y \rightarrow X $$

inverting each other

$$ \forall x. g(fx) = x $$
$$ \forall y. f(gy) = y $$

We may say that a bijection establishes a bidirectional one-to-one correspondence between the elements of the two types. We have already established several interesting bijections:

- A bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} (Chapter 7).
- A bijection between $X \times Y$ and $\text{sig}(\lambda x : X. Y)$ (Exercise 10.2.9).
- A bijection between $X + Y$ and $\text{sig}(\lambda b : B. \text{if} \ b \ \text{then} \ X \ \text{else} \ Y)$ (Exercise 10.2.9).

Our interest is now in the formal representation of bijections in computational type theory. Given two types X and Y, we would like to have a bijection type B such that the elements of B represent the bijections between X and Y. Informally, the elements of B should be tuples (f, g, I_1, I_2) such that

- f is a function $X \rightarrow Y$ and g is a function $Y \rightarrow X$.
- I_1 is a proof that g inverts f and I_2 is a proof that f inverts g.

Following this design, we first define an inversion predicate

$$ \text{inv} : \forall XY. (X \rightarrow Y) \rightarrow (Y \rightarrow X) \rightarrow \mathbb{P} $$
$$ \text{inv} \ XY \ f \ g := \forall x. g(fx) = x $$

saying that a function g inverts a function f. The arguments X and Y of the inversion predicate will be kept implicit. One possible representation of bijection types are nested sigma types

$$ \Sigma f^{X \rightarrow Y} \Sigma g^{Y \rightarrow X}. \text{inv} \ f \land \text{inv} \ g $$
A more direct representation of bijection types can be obtained with an inductive type definition

\[\mathcal{B}(X : T, Y : T) : T ::= \mathcal{B}(f : X \rightarrow Y, g : Y \rightarrow X, \text{inv }gf, \text{inv }fg) \]

introducing a type constructor \(\mathcal{B} \) that yields bijection types \(\mathcal{B}_{XY} \) whose elements are bijections between \(X \) and \(Y \).

Exercise 10.6.1 Prove the following facts about inversion.

a) \(\text{inv }gf \rightarrow (fx = fx' \iff x = x') \).

b) \(\text{inv }gf \rightarrow \text{injective }f \land \text{surjective }g \).

Exercise 10.6.2 Show that bijectivity is a computational equivalence relation on types:

a) \(\mathcal{B}_{XX} \).

b) \(\mathcal{B}_{XY} \rightarrow \mathcal{B}_{YX} \).

c) \(\mathcal{B}_{XY} \rightarrow \mathcal{B}_{YZ} \rightarrow \mathcal{B}_{XZ} \).

Exercise 10.6.3 Show that the following types are in bijection using bijection types.

a) \(\mathcal{B} \) and \(T + T \).

b) \(X \times Y \) and \(Y \times X \).

c) \(X + Y \) and \(Y + X \).

d) \(X \) and \(X \times T \).

Exercise 10.6.4 Show that \(\mathcal{B}_{XY} \) and \(\Sigma f^{X \leftarrow Y} \Sigma g^{Y \leftarrow X} \). \(\text{inv }gf \land \text{inv }fg \) are in bijection:

a) \(\mathcal{B}_{XY} \leftrightarrow \Sigma f^{X \leftarrow Y} \Sigma g^{Y \leftarrow X} \). \(\text{inv }gf \land \text{inv }fg \).

b) \(\mathcal{B} \rightarrow (\mathcal{B}_{XY}) \land (\Sigma g^{Y \leftarrow X} \). \(\text{inv }gf \land \text{inv }fg \). \)

Exercise 10.6.5 Prove \(\mathcal{B} \rightarrow \bot \).

10.7 Notes

Most propositions have functional readings. Once we describe propositions as informative types, their proofs become certifying functions that may be used in computational contexts. Informative types are obtained with sum types and sigma types, the computational versions of disjunctions and existential quantifications. Certifying functions carry their specifications in their types and may be seen as computational lemmas. Like propositional lemmas, certifying functions are best described with high-level proof outlines, which may be translated into actual terms using the tactic interpreter of a proof assistant. There is a truncation operation obtaining
conjunctions, disjunctions, and existential quantifications from their computational counterparts.

Product, sum, and sigma types are obtained as inductive types. In contrast to the propositional variants, where simply typed eliminators are sufficient, constructions involving product, sum, and sigma types often require dependently typed eliminators (called universal eliminators in this chapter). Moreover, existential quantifications and sigma types are distinguished from the other inductive types we have encountered so far in that their value constructors model a dependency between witness and certificate using a type function.

A simplified computational type theory would not have a special universe for propositions and thus avoid the complication of the elimination restriction. Such a theory would model propositions as computational types using product, sum, and sigma types. Adding an impredicative universe of propositions pays off in that excluded middle can be assumed without destroying the computational interpretation of sum and sigma types. Computational type theory without a special universe of propositions is known as Martin-Löf type theory [18]. Having an impredicative universe of propositions is a key feature of the computational type theory underlying the Coq proof assistant [8].
11 Decision Types, Discrete Types, and Option Types

Every function definable in computational type theory is algorithmically computable. Thus we can prove within computational type theory that predicates are algorithmically decidable by characterizing them with decision functions. Decidability proofs in computational type theory are formal computability proofs avoiding the tediousness coming with explicit models of computation (e.g., Turing machines).

We call a predicate *decidable* if it can be characterized with a decision function. Decidable predicates are algorithmically decidable. Moreover, decidable predicates are logically decidable in that the law of excluded middle holds for their accompanying propositions (i.e., $\forall x. px \lor \neg px$).

Technically, decision functions are best realized as certifying deciders using special sum types called *decision types*. It turns out that the propagation laws for deciders (i.e., decision functions) follow from the propagation laws for *decisions* (i.e., the elements of decision types).

A *discrete type* is a type that comes with a decider for its equality predicate. Concrete data types like the booleans or the numbers do have equality deciders.

We also introduce *option types*, which are inductive types extending a given base type with a new element. Option types preserve discreteness of their base type. Based on option types we define finite types and finite cardinality.

11.1 Decision Types and Certifying Deciders

We define *decision types* as follows:

$$D(X^\top) : \top := X + (X \to \bot)$$

We call values of decision types *decisions*. A decision of type $D(X)$ carries either an element of X or a proof that X is void.

A *certifying decider* for a predicate $p^{X\to P}$ is a function $\forall x. D(px)$. That we can define a certifying decider for a predicate in computational type theory means that we can show within computational type theory that the predicate is algorithmically decidable. We say that a predicate is *decidable* if we can define a certifying decider for it.
11 Decision Types, Discrete Types, and Option Types

We remark that the satisfiability predicate for tests on numbers
\[\text{tsat} (f^N \to \mathbb{B}) : \mathbb{P} := \exists n. fn = T \]
is not algorithmically decidable. Hence it cannot be shown in computational type theory that tsat is decidable. The predicate says that a boolean test for numbers is satisfiable, that is, yields the boolean T for at least one number.

A boolean decider for a predicate \(p^X \to \mathbb{P} \) is a function \(f^X \to \mathbb{B} \) such that
\[\forall x. px \iff fx = t \]

It turns out that we can define general translations between boolean deciders and certifying deciders.

Fact 11.1.1 (Decider equivalence)
\[\forall X^T \forall p^X \to \mathbb{P}. (\forall x. \mathcal{D}(px)) \iff (\Sigma.f. \forall x. px \iff fx = t) \].

Proof Let \(F : \forall x. \mathcal{D}(px) \). We define a boolean decider \(fx := \text{if } Fx \text{ then } T \text{ else } F \) and prove \(\forall x. px \iff fx = T \) by fixing \(x \) and doing case analysis on \(Fx \).

For the other direction, suppose \(\forall x. px \iff fx = T \). We fix \(x \) and show \(\mathcal{D}(px) \) by case analysis on \(fx \). If \(fx = T \), we show \(px \), otherwise we show \(\neg px \).

We state the basic propagation laws for decisions. All of them have straightforward proofs.

Fact 11.1.2 (Propagation laws for decisions)
1. \(\mathcal{D}(\top) \) and \(\mathcal{D}(\bot) \).
2. \(\forall XY^T. \mathcal{D}(X) \to \mathcal{D}(Y) \to \mathcal{D}(X \to Y) \).
3. \(\forall XY^P. \mathcal{D}(X) \to \mathcal{D}(Y) \to \mathcal{D}(X \land Y) \).
4. \(\forall XY^P. \mathcal{D}(X) \to \mathcal{D}(Y) \to \mathcal{D}(X \lor Y) \).
5. \(\forall X^P. \mathcal{D}(X) \to \mathcal{D}(\neg X) \).
6. \(\forall XY^T. (X \iff Y) \to (\mathcal{D}(X) \iff \mathcal{D}(Y)) \).

In words we may say, that decidable propositions are closed under the boolean connectives, and that decidability is invariant under propositional equivalence.

Exercise 11.1.3 Prove the claims of Fact 11.1.2.

Exercise 11.1.4 Define a function \(\forall X^T f^{X \to \mathbb{B}} X^X. \mathcal{D}(fx = T) \).

Exercise 11.1.5 Define functions as follows:
\[\begin{align*}
\text{a)} & \; \forall X^T. \mathcal{D}(X) \iff \Sigma b^B. \text{if } b \text{ then } X \text{ else } X \to \bot. \\
\text{b)} & \; \forall X^T. \mathcal{D}(X) \iff \Sigma b^B. X \iff b = T.
\end{align*} \]

Exercise 11.1.6 Prove \(\forall X^T. (\mathcal{D}(X) \to \bot) \to \bot \).
11.2 Discrete Types

We call a type X discrete if we can define a certifying equality decider for it:

$$\forall xy^X. D(x = y)$$

In other words, a type is discrete if its equality predicate is decidable. We define

$$E(X^T) : \top := (\forall xy^X. D(x = y))$$

Note that $E(X)$ is the type of certifying equality deciders for X.

Fact 11.2.1 (Propagation of equality deciders)

1. $E(\bot), E(\top), E(\emptyset), E(N)$.
2. $\forall XY^T. E(X) \rightarrow E(Y) \rightarrow E(X \times Y)$.
3. $\forall XY^T. E(X) \rightarrow E(Y) \rightarrow E(X + Y)$.

Proof $E(N)$ is immediate from Fact 10.4.1. The other claims all have straightforward proofs.

Fact 11.2.2 Discreteness propagates backwards through injective functions:

$$\forall XY^T. \forall f^X \rightarrow Y. \text{injective } f \rightarrow E(Y) \rightarrow E(X).$$

Exercise 11.2.3 Proof the claims of Facts 11.2.1 and 11.2.2.

Exercise 11.2.4 Prove $\exists XY \rightarrow (E(X) \Leftrightarrow E(Y))$.

Exercise 11.2.5 Prove that a type has a certifying equality decider if and only if it has a boolean equality decider: $\forall X. E(X) \Leftrightarrow \Sigma f^X \rightarrow \emptyset. \forall xy. x = y \leftrightarrow f(xy) = \top$.

Exercise 11.2.6 Prove $E(\top \rightarrow \bot)$.

11.3 Option Types

Given a type X, we may see the sum type $X + \top$ as a type that extends X with one additional element. Such one-element extensions are often useful and can be accommodated with dedicated inductive types called option types:

$$O(X : \top) : \top := X | \emptyset$$

The inductive type definition introduces the constructors

$$O : \top \rightarrow \top$$

$$\circ : \forall X^\top. X \rightarrow O(X)$$

$$\emptyset : \forall X^\top. O(X)$$
11 Decision Types, Discrete Types, and Option Types

We treat the argument X of the value constructors as implicit argument. Following language from functional programming, we pronounce the constructors `some` and `none`. We offer the intuition that \emptyset is the new element and that `some` injects the elements of X into $\mathcal{O}(X)$.

Fact 11.3.1 (Constructor laws)
The constructors `some` and `none` are disjoint, and that the constructor `some` is injective.

Proof Follows with the techniques used for the constructor laws for numbers (Figure 5.2). Exercise.

Fact 11.3.2 (Option types preserve discreteness)
$\forall X T. \mathcal{E}(X) \rightarrow \mathcal{E}(\mathcal{O}(X))$.

Proof Exercise.

Exercise 11.3.3 Prove $\forall a \mathcal{O}(X). a \neq \emptyset \iff \Sigma x. a = \text{some}x.$

Note that direction \rightarrow needs computational falsity elimination.

Exercise 11.3.4 Prove $\forall f:X \rightarrow \mathcal{O}(Y). (\forall x. fx \neq \emptyset) \rightarrow \forall x \Sigma y. fx = \text{some}y.$

Note the need for computational falsity elimination. Show that assuming the above claim yields computational falsity elimination in the form $\forall X T. \bot \rightarrow X$ (instantiate with $X := \bot, Y := X$, and $f = \lambda_.\emptyset$).

Exercise 11.3.5 (Truncating subtraction with flag)
Define a recursive function $f : N \rightarrow N \rightarrow \mathcal{O}(N)$ that yields `some`(x − y) if the subtraction $x − y$ doesn’t truncate, and \emptyset if the subtraction $x − y$ truncates. Prove the equation $fxy = \text{if } y − x \text{ THEN } \text{some}(x − y) \text{ ELSE } \emptyset$.

Exercise 11.3.6 (Bijectivity) Show that the following types are in bijection:
1. τ and $\mathcal{O}(\bot)$.
2. \mathbb{B} and $\mathcal{O}(\mathcal{O}(\bot))$.
3. $\mathcal{O}(X)$ and $X + \tau$.
4. N and $\mathcal{O}(N)$.

Bijection Theorem for Option Types
Given a bijection between $\mathcal{O}(X)$ and $\mathcal{O}(Y)$, we can construct a bijection between X and Y. Suppose f and g provide a bijection between $\mathcal{O}(X)$ and $\mathcal{O}(Y)$. To map x, we look at $f(\text{some}x)$. If $f(\text{some}x) = \text{some}y$, we map x to y. If $f(\text{some}x) = \emptyset$, we have $f\emptyset = \text{some}y$ for some y and map x to y. The other direction is symmetric.
11.4 Finite Types and Cardinality

Defining a function $X \rightarrow Y$ as described above involves a computational falsity elimination. For that reason it is crucial that the function is first obtained as a certifying function so that the definition of the function is not needed for proving its required properties.

Lemma 11.3.7 Let g invert $f^{O(X) \rightarrow O(Y)}$. Then

$$\forall x \Sigma y. \operatorname{match} f(\ast x) [\ast y \Rightarrow y = y' | \emptyset \Rightarrow f\emptyset = \ast y]$$

Proof Case analysis of $f(\ast x)$. If $f(\ast x) = \ast y$, we return y. If $f\emptyset = \ast y$, we return y. Otherwise, we have a contradiction since g inverts f. We finish with computational falsity elimination. ■

Theorem 11.3.8 (Bijection) $\forall X Y. B(O(X)) (O(Y)) \rightarrow BXY$.

Proof Let f and g provide a bijection $B(O(X)) (O(Y))$. By Lemma 11.3.7 we obtain functions $f' : X \rightarrow Y$ and $g' : Y \rightarrow X$ such that

$$\forall x. \operatorname{match} f'(\ast x) [\ast y \Rightarrow f'x = y | \emptyset \Rightarrow f\emptyset = \ast f'x]$$

$$\forall y. \operatorname{match} g'(\ast y) [\ast x \Rightarrow g'y = x | \emptyset \Rightarrow g\emptyset = \ast g'y]$$

We show $g'(f'x) = x$, the other inversion follows analogously. We discriminate on $f'x$. If $f'x = \ast y$, we have $g'y = \ast x$ and $g'(f'x) = x$ follows. If $f'x = \emptyset$, we have $f\emptyset = \ast y$ for some y and $g'(f'x) = x$ follows. ■

Exercise 11.3.9 Prove the bijection theorem for options with the proof assistant not looking at the code we provide. Formulate a lemma providing for the two symmetric cases in the proof of Theorem 11.3.8.

11.4 Finite Types and Cardinality

We use option types and bijectivity to formally define finite types and their cardinality. We refer to $O^n(\bot)$ as a **numeral type** and to the elements of $O^n(\bot)$ as **numerals**. Since every application of the option constructor adds one element, the types $O^n(\bot)$ are finite and have exactly n elements. Formally, we say that a type X is a **finite type of cardinality** n if X is in bijection with $O^n(\bot)$. To show that the cardinality of finite types is unique, it suffices to show that m equals n if $O^m(\bot)$ and $O^n(\bot)$ are in bijection.

Fact 11.4.1 (Cardinality) If $O^m(\bot)$ and $O^n(\bot)$ are in bijection, then $m = n$.

Proof By induction on m with n quantified followed by case analysis on n. If $m = 0$ or $n = 0$, the claim is easy to show. Otherwise, the claim follows with the bijection theorem for options (11.3.8) and the inductive hypothesis. ■
A basic mathematical insight concerning finiteness is that a function \(X \rightarrow X \) where \(X \) is finite is injective if and only if it is surjective. A proof of this fact requires induction, a clever construction, and considerable case analysis. We will prove the variant stated by Theorem 11.4.3. The key idea is that given two functions \(f : O^2(X) \rightarrow O^2(Y) \) and \(g : O^2(Y) \rightarrow O^2(X) \) we can lower \(f \) and \(g \) to functions \(f' : O(X) \rightarrow O(Y) \) and \(g' : O(Y) \rightarrow O(X) \) such that \(g' \) inverts \(f' \) if \(g \) inverts \(f \). We define a lowering operator as follows:

\[
\begin{align*}
L : \forall X Y. (O(X) \rightarrow O^2(Y)) & \rightarrow X \rightarrow O(Y) \\
LXYfa & := \text{match } f(\circ a) [\circ b \Rightarrow b | \emptyset \Rightarrow \text{match } f\emptyset [\circ b \Rightarrow b | \emptyset \Rightarrow \emptyset]]
\end{align*}
\]

The idea is simple: First \(Lf \) checks whether \(f \) maps \(\circ a \) to \(\circ b \). If so, \(Lf \) maps \(a \) to \(b \). Otherwise, \(Lf \) checks whether \(f \) maps \(\emptyset \) to \(\circ b \). If so, \(Lf \) maps \(a \) to \(b \). If not, \(Lf \) maps \(a \) to \(\emptyset \).

Lemma 11.4.2 (Lowering) Let \(f : O^2(X) \rightarrow O^2(Y) \) and \(g : O^2(Y) \rightarrow O^2(X) \).

Then \(\text{inv } gf \rightarrow \text{inv } (Lg)(Lf) \).

Proof Let \(\text{inv } gf \). We show \((Lg)(Lf)a = a \) by case analysis following the matches of \(Lf \) and \(Lg \) and linear equational reasoning. There are 8 cases.

Theorem 11.4.3 (Bijection) Let \(f \) and \(g \) be functions \(O^n(\bot) \rightarrow O^n(\bot) \). Then \(\text{inv } gf \rightarrow \text{inv } fg \).

Proof We prove the claim by induction on \(n \). For \(n = 0 \) and \(n = 1 \) the proofs are straightforward.

Let \(f, g : O^{5n}(\bot) \rightarrow O^{5n}(\bot) \) and \(\text{inv } gf \). By Lemma 11.4.2 and the inductive hypothesis we have \(\text{inv } (Lf)(Lg) \). We consider 2 cases:

1. \(f(g\emptyset) = \emptyset \). We show \(f(g\emptyset b) = \circ b \). We have \((Lf)(Lgb) = b \). The claim now follows by case analysis and linear equational reasoning following the definitions of \(Lf \) and \(Lg \) (7 cases are needed).
2. \(f(g\emptyset) = \circ b \). We derive a contradiction.
 a) \(f\emptyset = \circ b' \). We have \((Lf)(Lgb') = b' \). A contradiction follows by case analysis and linear equational reasoning following the definitions of \(Lf \) and \(Lg \) (4 cases are needed).
 b) \(f\emptyset = \emptyset \). Contradictory since \(\text{inv } gf \).

The above proof requires the verification of 12 cases by linear equational reasoning as realized by Coq’s congruence tactic. The cascaded case analysis of the proof is cleverly chosen as to minimize the cases that need to be considered. The need
for cascaded case analysis of function applications so that linear equational reasoning can finish the current branch of the proof appeared before with Kaminski’s equation (§6.1).

Using the lowering lemma, we can also prove a cardinality result for ordinals.¹

Theorem 11.4.4 (Cardinality) Let $f : O^m(⊥) → O^n(⊥)$ and $\text{inv } g f$. Then $m \leq n$.

Proof If $m = 0$ or $n = 0$ the claim is straightforward. Otherwise we have $f : O^{Sm}(⊥) → O^S n(⊥)$ and $\text{inv } g f$. We prove $m \leq n$ by induction on m with n, f, and g quantified. For $m = 0$ the claim is trivial. In the successor case, we need to show $Sm \leq n$. If $n = 0$, we have $f : O^{SSm}(⊥) → O(⊥)$ contradicting $\text{inv } g f$. If $n > 0$, the claim follows by Lemma 11.4.2 and the inductive hypothesis. ■

We now have a second proof of Fact 11.4.1.

Corollary 11.4.5 If $O^m(⊥)$ and $O^n(⊥)$ are in bijection, then $m = n$.

Exercise 11.4.6 Prove that finite types are discrete.

Exercise 11.4.7 Prove that the type \mathbb{N} of numbers is not finite.

Exercise 11.4.8 (Finite quantification preserves decidability) Let $p^X → \mathcal{P}$ be a decidable predicate on a finite type. Prove $D(∀x.p x)$ and $D(∃x.p x)$.

Exercise 11.4.9 (Formal definition of numeral types) We have not given a formal definition of numeral types. One possibility is to obtain numeral types with an iteration operator as in §1.9, as is suggested by our notation. A second possibility is to define numeral types directly:

$$
\mathcal{F} : \mathbb{N} → \mathbb{T}
$$

$$
\mathcal{F}(0) := ⊥
$$

$$
\mathcal{F}(S n) := O(\mathcal{F}(n))
$$

Which definition is used doesn’t make a difference for the constructions considered in this section.

a) Prove $∀n. O^n(⊥) = \mathcal{F}(n)$.

b) Verify that $O^7(⊥) = \mathcal{F}(7)$ holds by computational equality, but that this is not the case for $O^n(⊥) = \mathcal{F}(n)$ where n is a variable. The situation is similar to $x + 0 = 0 + x$.

¹We shall use the linear order $x ≤ y$ on numbers. A formal definition and proofs of the necessary properties will appear in §15.5.
11 Decision Types, Discrete Types, and Option Types

Exercise 11.4.10 (Embedding numeral types into the numbers)

Numerical types can be embedded into the numbers by interpreting the constructor 0 as 0 and the constructor + as successor.

a) Define an encoding function $E : \forall n. O^n(\bot) \rightarrow \mathbb{N}$.

b) Define a decoding function $D : \mathbb{N} \rightarrow \forall n. O^S_n(\bot)$.

c) Prove $E(na) = n$.

d) Prove $D(E(Sn)a)n = a$.

e) Prove $k \leq n \rightarrow E(Sn)(Dkn) = k$.

Hint: The definition of E needs computational falsity elimination.

Exercise 11.4.11 Try to do the proof of Theorem 11.4.3 without looking at the details of the given proof. This will make you appreciate the cleverness of the case analysis of the given proof. It took a few iterations to arrive at this proof. Acknowledgements go to Andrej Dudenhefner.

Exercise 11.4.12 (Finite Choice) We define the *choice property* for two types X and Y as follows:

$$\text{choice } XY := \forall p^{X \rightarrow Y}. (\forall x \exists y. pxy) \rightarrow \exists f \forall y. px(fx)$$

Prove choice XY for all finite types X:

a) choice $\bot Y$

b) choice $X Y \rightarrow$ choice $(O X) Y$

c) choice $(O^n(\bot)) Y$

d) $B X (O^n(\bot)) \rightarrow$ choice XY

The proposition choice $\mathbb{N} Y$ is known as *countable choice* and is not provable in computational type theory for all types Y.

Exercise 11.4.13 (Pigeonhole) Proving the following may be challenging:

$$\forall mn. m > n \rightarrow \forall f^{O^m(\bot) \rightarrow O^n(\bot)}. \exists ab. a \neq b \land fa = fb.$$

Intuition: If $m > n$ pigeons are in n holes, then there must be a hole with at least two pigeons in it.

11.5 Notes

One significant construction in this chapter is the bijection theorem for option types. This is the first time computational falsity elimination is needed to define a computational function. We learned that such functions should be defined as a certifying function so that proofs about the function do not require its definition.
11.5 Notes

The definitions of finite types and finite cardinality based on numeral types are also remarkable. The definitions are backed up by two classical bijection theorems (11.4.1 and 11.4.3). Theorem 11.4.3 stands out in that its proof requires the verification of more cases than one feels comfortable with on paper. Here a machine-checked verification with a proof assistant gives confidence beyond intuition and common belief. The proofs of the bijection theorems are also remarkable in that they are obtained with just the few principles computational type theory provides for basic inductive types.
12 Extensionality

Computational type theory does not fully determine equality of functions, propositions, and proofs. The missing commitment can be added through extensionality assumptions.

12.1 Extensionality Assumptions

Computational type theory fails to fully determine equality between functions, propositions, and proofs:

- Given two functions of the same type that agree on all elements, computational type theory does not prove that the functions are equal.
- Given two equivalent propositions, computational type theory does not prove that the propositions are equal.
- Given two proofs of the same proposition, computational type theory does not prove that the proofs are equal.

From a modeling perspective, it would be desirable to add the missing proof power for functions, propositions, and proofs. This can be done with three assumptions expressible as propositions:

- **Function extensionality**

 \[\forall X \forall T \forall p X \rightarrow T. \forall f \forall g \forall x. (f x = g x) \rightarrow f = g \]

- **Propositional extensionality**

 \[\forall P Q. (P \iff Q) \rightarrow P = Q \]

- **Proof irrelevance**

 \[\forall Q. \forall a b. a = b \]

Function extensionality gives us the equality for functions we are used to from set-theoretic foundations. Together, function and propositional extensionality turn predicates \(X \rightarrow \mathcal{P} \) into sets: Two predicates (i.e., sets) are equal if and only if they have the same witnesses (i.e., elements). Proof irrelevance ensures that functions taking proofs as arguments don’t depend on the particular proofs given. This way propositional arguments can play the role of preconditions. Moreover, dependent pair types \(\text{sig} \ p \) taken over predicates \(p X \rightarrow \mathcal{P} \) can model subtypes of \(X \). Proof irrelevance also gives us dependent pair injectivity in the second component (§23.2).
12 Extensionality

We can represent boolean functions \(f^{B\rightarrow B} \) as boolean pairs \((f_T, f_F)\). Under FE, the boolean function can be fully recovered from the pair.

Fact 12.1.1 \(\text{FE} \rightarrow \forall f^{B\rightarrow B}. \quad f = (\lambda ab. \text{if } b \text{ THEN } \pi_1 a \text{ ELSE } \pi_2 a) \ (f_T, f_F) \).

Exercise 12.1.2 Prove the following:

a) \(\text{FE} \rightarrow \forall f^{B\rightarrow B}. \quad f_T = g_T \rightarrow f_F = g_F \rightarrow f = g \).

b) \(\text{FE} \rightarrow \forall f^{B\rightarrow B}. \quad (f = \lambda b. b) \lor (f = \lambda b. \neg b) \lor (f = \lambda b. \text{T}) \lor (f = \lambda b. \text{F}) \).

Exercise 12.1.3 Prove the following:

a) \(\text{FE} \rightarrow \forall f^{\top\rightarrow\top}. \quad f = \lambda a^{\top}. a \).

b) \(\text{FE} \rightarrow \forall \text{B}(\top \rightarrow \top) \top \).

c) \(\text{FE} \rightarrow \forall \text{B}(\top \rightarrow \top) \top \).

d) \(\text{FE} \rightarrow \forall \text{B}(\text{B} \rightarrow \text{B}) \ (\text{B} \times \text{B}) \).

e) \(\text{FE} \rightarrow \forall \text{E}(\text{B} \rightarrow \text{B}) \).

12.2 Set Extensionality

Given FE and PE, predicates over a type \(X \) correspond exactly to sets whose elements are taken from \(X \). We may define membership as \(x \in p := px \). In particular, we obtain that two sets (represented as predicates) are equal if they have the same elements (set extensionality). Moreover, we can define the usual set operations:

\[
\begin{align*}
\emptyset & := \lambda x^{X}. \bot & \text{empty set} \\
p \cap q & := \lambda x^{X}. px \land qx & \text{intersection} \\
p \cup q & := \lambda x^{X}. px \lor qx & \text{union} \\
p \setminus q & := \lambda x^{X}. px \land \neg qx & \text{difference}
\end{align*}
\]

Exercise 12.2.1 Prove \(x \in (p \setminus q) \leftrightarrow x \in p \wedge x \notin q \). Check that the equation \((x \in (p \setminus q)) = (x \in p \wedge x \notin q) \) holds by computational equality.

Exercise 12.2.2 We define **set extensionality** as

\[
\text{SE} := \forall X^\top \forall pq^{X\rightarrow Y}. \ (\forall x. px \rightarrow qx) \rightarrow p = q
\]

Prove the following:

a) \(\text{FE} \rightarrow \text{PE} \rightarrow \text{SE} \).

b) \(\text{SE} \rightarrow \text{PE} \).

c) \(\text{SE} \rightarrow (\forall x. x \in p \rightarrow x \in q) \rightarrow p = q \).

d) \(\text{SE} \rightarrow p \setminus (q \cup r) = (p \setminus q) \cap (p \setminus r) \).
12.3 Proof Irrelevance

We call a type unique if it has at most one element:

\[\text{unique}(X) := \forall x y : X. x = y \]

Note that \(\text{Pl} \) says that all propositions are unique.

Fact 12.3.1 \(\bot \) and \(\top \) are unique.

Proof Follows with the eliminators for \(\bot \) and \(\top \). \(\blacksquare \)

It turns out that \(\text{Pl} \) is a straightforward consequence of \(\text{Pe} \).

Fact 12.3.2 \(\text{Pe} \rightarrow \text{Pl} \).

Proof Assume \(\text{Pe} \) and let \(a \) and \(b \) be two proofs of a proposition \(X \). We show \(a = b \). Since \(X \rightarrow \top \), we have \(X = \top \) by \(\text{Pe} \). Hence \(X \) is unique since \(\top \) is unique. The claim follows. \(\blacksquare \)

Exercise 12.3.3 Prove \(\mathcal{D}(\text{unique}(\top + \bot)) \) and \(\mathcal{D}(\text{unique}(\top + \top)) \).

Exercise 12.3.4 Prove the following for all types \(X \):

a) \(\text{unique}(X) \rightarrow \mathcal{E}(X) \).

b) \(X \rightarrow \text{unique}(X) \rightarrow \mathcal{B}X\top \).

Exercise 12.3.5 Prove the following:

a) Uniqueness propagates forward through surjective functions:

\[\forall X Y \top \forall f : X \rightarrow Y. \text{surjective } f \rightarrow \text{unique}(X) \rightarrow \text{unique}(X) \]

b) Uniqueness propagates backwards through injective functions:

\[\forall X Y \top \forall f : X \rightarrow Y. \text{injective } f \rightarrow \text{unique}(Y) \rightarrow \text{unique}(X) \]

Exercise 12.3.6 Prove \(\mathcal{F}(\text{unique}(\top \rightarrow \top)) \).

Exercise 12.3.7 Assume \(\text{Pl} \) and \(p^{X \rightarrow \bot} \). Prove \(\forall x a. x = y \rightarrow (x, a)_p = (y, b)_p \).

Exercise 12.3.8 Suppose there is a function \(f : (\top \lor \top) \rightarrow \mathcal{B} \) such that \(f(\bot \lor \bot) = \top \) and \(f(\bot \lor \top) = \bot \). Prove \(\neg \text{Pl} \). Convince yourself that without the elimination restriction you could define a function \(f \) as assumed.

Exercise 12.3.9 Suppose there is a function \(f : (\exists x \mathcal{B}, \top) \rightarrow \mathcal{B} \) such that \(f(\exists x \mathcal{B}, \top) = x \) for all \(x \). Prove \(\neg \text{Pl} \). Convince yourself that without the elimination restriction you could define a function \(f \) as assumed.

Exercise 12.3.10 Assume functions \(E : \mathcal{P} \rightarrow A \) and \(D : A \rightarrow \mathcal{P} \) embedding \(\mathcal{P} \) into a proposition \(A \). That is, we assume \(\forall p^\mathcal{P}, D(E(p)) \rightarrow p \). Prove that \(A \) is not unique. Remark: Later we will show Coquand’s theorem (27.4.1), which says that \(\mathcal{P} \) embeds into no proposition.
12 Extensionality

12.4 Notes

There is general agreement that a computational type theory should be extensional, that is, prove FE, PE, and PI. In our case, we may assume FE, PE, and PI as constants. There are general results saying that adding the extensionality assumptions is consistent, that is, does not enable a proof of falsity. There is research underway aiming at a computational type theory integrating extensionality assumptions in such a way that canonicity of the type theory is preserved. This is not the case in our setting since reduction of a term build with assumed constants may get stuck on one of the constants before a canonical term is reached.

Coq offers a facility that determines the assumed constants a constant depends on. Terms not depending on assumed constants are guaranteed to reduce to canonical terms.

We will always make explicit when we use extensionality assumptions. It turns out that most of the theory in this text does not require extensionality assumptions.
One of the first laws of logic one learns in an introductory course on mathematics is excluded middle saying that a proposition is either true or false. On the other hand, computational type theory does not prove $P \lor \neg P$ for every proposition P. It turns out that most results in computational mathematics can be formulated such that they can be proved without assuming a law of excluded middle, and that such a constructive account gives more insight than a naive account using excluded middle. On the other hand, the law of excluded middle can be formulated with the proposition

$$\forall P^\mathbb{P}. P \lor \neg P$$

and assuming it in computational type theory is consistent and meaningful.

In this chapter, we study several characterizations of excluded middle and the special reasoning patterns provided by excluded middle. We show that these reasoning patterns are locally available for double negated claims without assuming excluded middle.

13.1 Characterizations of Excluded Middle

We formulate the law of excluded middle with the proposition

$$\text{XM} := \forall P^\mathbb{P}. P \lor \neg P$$

Computational type theory neither proves nor disproves XM. Thus it is interesting to assume XM and study its consequences. This study becomes most revealing if we assume XM only locally using implication.

There are several propositionally equivalent characterizations of excluded middle. Most amazing is may be Peirce’s law that formulates excluded middle with just implication.

Fact 13.1.1 The following propositions are equivalent. That is, if we can prove one of them, we can prove all of them.

1. $\forall P^\mathbb{P}. P \lor \neg P$
 \textit{excluded middle}
2. $\forall P^\mathbb{P}. \neg \neg P \rightarrow P$
 \textit{double negation}
3. $\forall P^\mathbb{P}Q^\mathbb{P}. (\neg P \rightarrow \neg Q) \rightarrow Q \rightarrow P$
 \textit{contraposition}
4. $\forall P^\mathbb{P}Q^\mathbb{P}. ((P \rightarrow Q) \rightarrow P) \rightarrow P$
 \textit{Peirce’s law}
13 Excluded Middle and Double Negation

Proof We prove the implications \(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1\).

1 \rightarrow 2. Assume \(\neg \neg P\) and show \(P\). By (1) we have either \(P\) or \(\neg P\). Both cases are easy.

2 \rightarrow 3. Assume \(\neg P \rightarrow \neg Q\) and \(Q\) and show \(P\). By (2) it suffices to show \(\neg \neg P\). We assume \(\neg P\) and show \(\bot\). Follows from the assumptions.

3 \rightarrow 4. By (3) it suffices to show \(\neg P \rightarrow \neg ((P \rightarrow Q) \rightarrow P))\). Straightforward.

4 \rightarrow 1. By (4) with \(P \rightarrow (P \vee \neg P)\) and \(Q \rightarrow \bot\) we can assume \(\neg (P \vee \neg P)\) and prove \(P \vee \neg P\). We assume \(P\) and prove \(\bot\). Straightforward since we have \(\neg (P \vee \neg P)\). \(\blacksquare\)

A common use of XM in mathematics is **proof by contradiction**: To prove \(s\), we assume \(\neg s\) and derive a contradiction. The lemma justifying proof by contradiction is double negation:

\[XM \rightarrow (\neg P \rightarrow \bot) \rightarrow P \]

There is another characterization of excluded middle asserting existence of counterexamples, often used as tacit assumption in mathematical arguments.

Fact 13.1.2 (Counterexample) \(XM \iff \forall X \top \forall p X \rightarrow P \iff \forall x. \neg p x \lor \exists x. \neg p x \).

Proof Assume \(XM\) and \(p X \rightarrow P\). By \(XM\) we assume \(\neg \exists x. \neg p x\) and prove \(\forall x. p x\). By the de Morgan law for existential quantification we have \(\forall x. \neg \neg p x\). The claim follows since \(XM\) implies the double negation law.

Now assume the right hand side and let \(P\) be a proposition. We prove \(P \vee \neg P\). We choose \(p := \lambda a \top. P\). By the right hand side and conversion we have either \(\forall a \top. P\) or \(\exists a \top. \neg P\). In each case the claim follows. Note that choosing an inhabited type for \(X\) is essential. \(\blacksquare\)

Figure 13.1 shows prominent equivalences whose left-to-right directions are only provable with XM. Note the de Morgan laws for conjunction and universal quantification. Recall that the de Morgan laws for disjunction and existential quantification

\[\neg(P \vee Q) \iff \neg P \wedge \neg Q \quad \text{de Morgan} \]

\[\neg(\exists x. px) \iff \forall x. \neg px \quad \text{de Morgan} \]

have constructive proofs.

Exercise 13.1.3

a) Prove the right-to-left directions of the equivalences in Figure 13.1.

b) Prove the left-to-right directions of the equivalences in Figure 13.1 using XM.
13.1 Characterizations of Excluded Middle

\[\neg(P \land Q) \iff \neg P \lor \neg Q \quad \text{de Morgan} \]
\[\neg(\forall x. px) \iff \exists x. \neg px \quad \text{de Morgan} \]
\[(\neg P \to \neg Q) \iff (Q \to P) \quad \text{contraposition} \]
\[(P \to Q) \iff \neg P \lor Q \quad \text{classical implication} \]

Figure 13.1: Prominent equivalences only provable with XM

Exercise 13.1.4 Prove the following equivalences possibly using XM. In each case find out which direction needs XM.

\[\neg(\exists x. \neg px) \iff \forall x. px \]
\[\neg(\exists x. \neg px) \iff \neg \forall x. px \]
\[\neg(\exists x. \neg px) \iff \neg \forall x. \neg px \]
\[\neg(\forall x. px) \iff \neg \exists x. \neg px \]

Exercise 13.1.5 Prove that the left-to-right direction of the de Morgan law for universal quantification implies XM:

\[(\forall P \forall P^{P \to P}. \neg(\forall x. px) \to (\exists x. \neg px)) \to XM \]

Hint: Instantiate the de Morgan law with \(P \lor \neg P \) and \(\lambda_\bot \).

Exercise 13.1.6 Make sure you can prove the de Morgan laws for disjunction and existential quantification (not using XM).

Exercise 13.1.7 Prove that \(\forall PQR^R. (P \to Q) \lor (Q \to R) \) is equivalent to XM.

Exercise 13.1.8 Explain why Peirce’s law and the double negation law are independent in Coq’s type theory.

Exercise 13.1.9 (Drinker Paradox) Consider a bar populated by at least one person. Using excluded middle, one can argue that one can pick some person in the bar such that everyone in the bar drinks Whiskey if this person drinks Whiskey.

We assume an inhabited type \(X \) representing the persons in the bar and a predicate \(p^X \to p \) identifying the persons who drink Whiskey. The job is now to prove the proposition \(\exists x. px \to \forall y. py \). Do the proof in detail and point out where XM and inhabitation of \(X \) are needed. A nice proof can be done with the counterexample law Fact 13.1.2.

An informal proof may proceed as follows. Either everyone in the bar is drinking Whisky. Then we can pick any person for \(x \). Otherwise, we pick a person for \(x \) not drinking Whisky, making the implication vacuously true.
13 Excluded Middle and Double Negation

There is a paper [25] on the drinker paradox suggesting that the drinker proposition does not imply excluded middle.

13.2 Double Negation

Given a proposition P, we call $\neg\neg P$ the **double negation** of P. It turns out that the double negation of a quantifier-free proposition is provable even if the proposition by itself is only provable with XM. For instance,

$$\forall P. \neg\neg(P \lor \neg P)$$

is provable. This metaproperty cannot be proved in Coq. However, for every instance a proof can be given in Coq. Moreover, for concrete propositional proof systems the translation of classical proofs into constructive proofs of the double negated claim can be formalized and verified (Glivenko’s theorem 28.7.2).

There is a useful proof technique for working with double negation: If we have a double negated assumption and need to derive a proof of falsity, we can **drop the double negation**. The lemma behind this is an instance of the polymorphic identity function:

$$\neg\neg P \rightarrow (P \rightarrow \bot) \rightarrow \bot$$

With excluded middle, double negation distributes over all connectives and quantifiers. Without excluded middle, we can still prove that double negation distributes over implication and conjunction.

Fact 13.2.1 The following **distribution laws** for double negation are provable:

\[
\begin{align*}
\neg\neg(P \rightarrow Q) & \iff (\neg\neg P \rightarrow \neg\neg Q) \\
\neg\neg(P \land Q) & \iff \neg\neg P \land \neg\neg Q \\
\neg\neg \top & \iff \top \\
\neg\neg \bot & \iff \bot
\end{align*}
\]

Exercise 13.2.2 Prove the equivalences of Fact 13.2.1.

Exercise 13.2.3 Prove the following propositions:

\[
\begin{align*}
\neg(P \land Q) & \iff \neg\neg(\neg P \lor \neg Q) \\
(\neg P \rightarrow \neg Q) & \iff \neg\neg(Q \rightarrow \neg P) \\
(\neg P \rightarrow \neg Q) & \iff (Q \rightarrow \neg\neg P) \\
(P \rightarrow Q) & \iff \neg\neg(\neg P \lor Q)
\end{align*}
\]
13.3 Stable Propositions

Exercise 13.2.4 Prove $\neg(\forall x. \neg px) \iff \neg\exists x. px$.

Exercise 13.2.5 Prove the following implications:

- $\neg\neg P \lor \neg\neg Q \rightarrow \neg\neg(P \lor Q)$
- $(\exists x. \neg px) \rightarrow \neg\neg\exists x. px$
- $\neg\neg(\forall x px) \rightarrow \forall x. \neg px$

Convince yourself that the converse directions are not provable without excluded middle.

Exercise 13.2.6 Make sure you can prove the double negations of the following propositions:

- $P \lor \neg P$
- $\neg\neg P \rightarrow P$
- $\neg(P \land Q) \rightarrow \neg P \lor \neg Q$
- $(\neg P \rightarrow \neg Q) \rightarrow Q \rightarrow P$
- $((P \rightarrow Q) \rightarrow P) \rightarrow P$
- $(P \rightarrow Q) \lor (Q \rightarrow P)$

13.3 Stable Propositions

We define **stable propositions** as follows:

$$\text{stable } P^\ominus := \neg\neg P \rightarrow P$$

We may see stable propositions as propositions where double negation elimination is possible. We will see that the XM-avoiding proof techniques for double negated propositions extend to stable propositions.

Fact 13.3.1 $\text{XM} \rightarrow \forall P^\ominus \cdot \text{stable } P$.

Fact 13.3.2 (Characterization) $\text{stable } P \rightarrow \exists Q^\ominus \cdot P \rightarrow \neg Q$.

Corollary 13.3.3 Negated propositions are stable: $\forall P^\ominus \cdot \text{stable}(\neg P)$.

Fact 13.3.4 Decidable propositions are stable: $\forall P^\ominus \cdot \mathcal{D}(P) \rightarrow \text{stable } P$.

Fact 13.3.5 \top and \bot are stable.
13 Excluded Middle and Double Negation

Fact 13.3.6 (Closure Rules)
Implication, conjunction, and universal quantification preserve stability:

1. stable $Q \rightarrow$ stable $(P \rightarrow Q)$.
2. stable $P \rightarrow$ stable $Q \rightarrow$ stable $(P \land Q)$.
3. $(\forall x. \text{stable}(px)) \rightarrow$ stable $(\forall x.p\!x)$.

Fact 13.3.7 (Extensionality) Stability is invariant under propositional equivalence: $(P \leftrightarrow Q) \rightarrow$ stable $P \rightarrow$ stable Q.

Stable propositions matter since there are proof rules providing classical reasoning for stable claims.

Fact 13.3.8 (Classical reasoning rules for stable claims)

1. stable $Q \rightarrow (P \lor \neg P \rightarrow Q) \rightarrow Q$.
2. stable $Q \rightarrow \neg\neg P \rightarrow (P \rightarrow Q) \rightarrow Q$.

The first rule says that when we prove a stable claim, we can assume $P \lor \neg P$ for every proposition P. The second rule says that when we prove a stable claim, we can obtain P from a double negated assumption $\neg\neg P$.

Exercise 13.3.9 Prove the above facts. All proofs are straightforward.

Exercise 13.3.10 Prove the following classical reasoning rules for stable claims:

a) stable $Q \rightarrow (P \land \neg P \rightarrow Q) \rightarrow Q$.
b) stable $Q \rightarrow \neg(P_1 \land P_2 \rightarrow (\neg P_1 \lor \neg P_2 \rightarrow Q) \rightarrow Q$.
c) stable $Q \rightarrow (\neg P_1 \rightarrow \neg P_2 \rightarrow ((P_2 \rightarrow P_1) \rightarrow Q) \rightarrow Q$.

Exercise 13.3.11 Prove $(\forall x. \text{stable}(px)) \rightarrow \neg(\forall x.p\!x) \leftrightarrow \neg\exists x. \neg p\!x$.

Exercise 13.3.12 Prove $\text{FE} \rightarrow \forall f g^{N^N}. \text{stable}(f = g)$.

Exercise 13.3.13 Prove $\text{XM} \leftrightarrow \forall P^P \exists Q^P. P \rightarrow \neg Q$.

Exercise 13.3.14 We define classical variants of conjunction, disjunction, and existential quantification:

$$
\begin{align*}
P \land_c Q & := (P \rightarrow Q \rightarrow \bot) \rightarrow \bot \quad \neg(P \rightarrow \neg Q) \\
P \lor_c Q & := (P \rightarrow \bot) \rightarrow (Q \rightarrow \bot) \rightarrow \bot \quad \neg P \rightarrow \neg\neg Q \\
\exists_c x.p\!x & := (\forall x.p\!x \rightarrow \bot) \rightarrow \bot \quad \neg(\forall x. \neg p\!x)
\end{align*}
$$

The definitions are obtained from the impredicative characterizations of \land, \lor, and \exists by replacing the quantified target proposition Z with \bot. At the right we give computationally equal variants using negation. The classical variants are implied by
the originals and are equivalent to the double negations of the originals. Under excluded middle, the classical variants thus agree with the originals. Prove the following propositions.

a) \(P \land Q \rightarrow P \land_c Q \quad \text{and} \quad P \land_c Q \leftrightarrow \neg \neg (P \land Q) \).
b) \(P \lor Q \rightarrow P \lor_c Q \quad \text{and} \quad P \lor_c Q \leftrightarrow \neg \neg (P \lor Q) \).
c) \((\exists x. px) \rightarrow \exists_c x. px \quad \text{and} \quad (\exists_c x. px) \leftrightarrow \neg \neg (\exists x. px) \).
d) \(P \lor_c \neg P \).
e) \(\neg (P \land_c Q) \leftrightarrow \neg P \lor_c \neg Q \).
f) \((\forall x. \text{stable}(px)) \rightarrow \neg (\forall x. px) \leftrightarrow \exists_c x. \neg px \).
g) \(P \land_c Q, \ P \lor_c Q, \) and \(\exists_c x. px \) are stable.

13.4 Definite Propositions

We define **definite propositions** as follows:

\[
\text{definite } P^P := P \lor \neg P
\]

We may see definite propositions as propositionally decided propositions. Computationally decided propositions are always propositionally decided, but not necessarily vice versa. The structural properties of definite propositions are familiar from decided propositions.

Fact 13.4.1 \(\text{YM} \leftrightarrow \forall P^P. \) definite \(P \).

Fact 13.4.2

1. Decidable propositions are definite: \(\forall P^P. \ D(P) \rightarrow \text{definite } P \).
2. Definite propositions are stable: \(\forall P^P. \) definite \(P \rightarrow \text{stable } P \).
3. \(\top \) and \(\bot \) are definite.
4. Definiteness is invariant under propositional equivalence.

Fact 13.4.3 (Closure Rules)

Implication, conjunction, disjunction, and negation preserve definiteness:

1. definite \(P \rightarrow \) definite \(Q \rightarrow \) definite \((P \rightarrow Q) \).
2. definite \(P \rightarrow \) definite \(Q \rightarrow \) definite \((P \land Q) \).
3. definite \(P \rightarrow \) definite \(Q \rightarrow \) definite \((P \lor Q) \).
4. definite \(P \rightarrow \) definite \((\neg P) \).

Fact 13.4.4 (Definite de Morgan) definite \(P \lor \) definite \(Q \rightarrow \neg (P \land Q) \leftrightarrow \neg P \lor \neg Q \).

Exercise 13.4.5 Prove the above facts.
13 Excluded Middle and Double Negation

13.5 Variants of Excluded Middle

A stronger formulation of excluded middle is truth value semantics:

\[\text{TVS} := \forall P^P. P = \top \lor P = \bot \]

TVS is equivalent to the conjunction of XM and PE.

Fact 13.5.1 \(\text{TVS} \iff \text{XM} \land \text{PE} \).

Proof We show \(\text{TVS} \implies \text{PE} \). Let \(P \implies Q \). We apply TVS to \(P \) and \(Q \). If they are both assigned \(\bot \) or \(\top \), we have \(P = Q \). Otherwise we have \(\top \implies \bot \), which is contradictory. The remaining implications TVS \(\implies \) XM and XM \(\land \) PE \(\implies \) TVS are also straightforward. \(\blacksquare \)

There are interesting weaker formulations of excluded middle. We consider two of them in exercises appearing below:

\[\text{WXM} := \forall P^P. \neg P \lor \neg \neg P \]

\[\text{IXM} := \forall P^P Q^P. (P \rightarrow Q) \lor (Q \rightarrow P) \]

weak excluded middle

implicational excluded middle

Altogether we have the following hierarchy: \(\text{TVS} \Rightarrow \text{XM} \Rightarrow \text{IXM} \Rightarrow \text{WXM} \).

Exercise 13.5.2 Prove \(\text{TVS} \iff \forall X Y Z : P. X = Y \lor X = Z \lor Y = Z \). Note that the equivalence characterizes TVS without using \(\top \) and \(\bot \).

Exercise 13.5.3 Prove \(\text{TVS} \iff \forall P^P \neg P \lor \neg \neg \neg P \lor \neg \neg P \). Note that the equivalence characterizes TVS without using \(\top \) and propositional equality.

Exercise 13.5.4 Prove \((\forall X^T. X = \top \lor X = \bot) \rightarrow \bot \).

Exercise 13.5.5 (Weak excluded middle)

a) Prove \(\text{XM} \rightarrow \text{WXM} \).

b) Prove \(\text{WXM} \implies \forall P^P. \neg \neg P \lor \neg \neg \neg P \).

c) Prove \(\text{WXM} \implies \forall P^P Q^P. \neg(P \land Q) \rightarrow \neg P \lor \neg Q \).

Note that (c) says that WXM is equivalent to the de Morgan law for conjunction. We remark that computational type theory proves neither WXM nor WXM \(\rightarrow \) XM.

Exercise 13.5.6 (Implicational excluded middle)

a) Prove \(\text{XM} \rightarrow \text{IXM} \).

b) Prove \(\text{IXM} \rightarrow \text{WXM} \).

c) Assuming that computational type theory does not prove WXM, argue that computational type theory proves neither IXM nor XM nor TVS.

We remark that computational type theory does not prove WXM. Neither does computational type theory prove any of the implications WXM \(\rightarrow \) IXM, IXM \(\rightarrow \) XM, and XM \(\rightarrow \) TVS.
13.6 Notes

Proof systems not building in excluded middle are called *intuitionistic proof systems*, and proof systems building in excluded middle are called *classical proof systems*. The proof system coming with computational type theory is clearly an intuitionistic system. What we have seen in this chapter is that an intuitionistic proof system provides for a fine grained analysis of excluded middle. This is in contrast to a classical proof system that by construction does not support the study of excluded middle. It should be very clear from this chapter that an intuitionistic system provides for classical reasoning (i.e., reasoning with excluded middle) while a classical system does not provide for intuitionistic reasoning (i.e., reasoning without excluded middle).

Classical and intuitionistic proof systems have been studied for more than a century. That intuitionistic reasoning is not made explicit in current introductory teaching of mathematics may have social reasons tracing back to early advocates of intuitionistic reasoning who argued against the use of excluded middle.
14 Provability

A central notion of computational type theory and related systems is provability. A type (or more specifically a proposition) is provable if there is a term that type checks as a member of this type. Importantly, type checking is a decidable relation between terms that can be machine checked. We say that provability is a verifiable relation. Given the explanations in this text and the realization provided by the proof assistant Coq, we are on solid ground when we construct proofs.

In contrast to provability, unprovability is not a verifiable relation. Thus the proof assistant will, in general, not be able to certify that types are unprovable.

As it comes to unprovability, this text makes some strong assumptions that cannot be verified with the methods the text develops. The most prominent such assumption says that falsity is unprovable.

Recall that we call a type X disprovable if the type $X \rightarrow \bot$ is provable. If we trust in the assumption that falsity is unprovable, every disprovable type is unprovable. Thus disprovable types give us a class of types for which unprovability is verifiable up to the assumption that falsity is unprovable.

Types that are neither provable nor disprovable are called independent types. There are many independent types. In fact, the extensionality assumptions from Chapter 12 and the different variants of excluded middle from Chapter 13 are all claimed independent. These claims are backed up by model-theoretic studies in the literature.

14.1 Provability Predicates

It will be helpful to assume an abstract provability predicate

$$\text{provable} : P \rightarrow P$$

With this trick provable (P) and \neg-provable (P) are both propositions in computational type theory we can reason about. We define three standard notions for propositions and the assumed provability predicate:

$$\text{disprovable} (P) := \text{provable} (\neg P)$$
$$\text{consistent} (P) := \neg \text{provable} (\neg P)$$
$$\text{independent} (P) := \neg \text{provable} (P) \land \neg \text{provable} (\neg P)$$
14 Provability

With these definitions we can easily prove the following implications:

\[
\begin{align*}
\text{independent}(P) & \rightarrow \text{consistent}(P) \\
\text{consistent}(P) & \rightarrow \neg \text{disprovable}(P) \\
\text{provable}(P) & \rightarrow \neg \text{independent}(P)
\end{align*}
\]

To show more, we make the following assumptions about the assumed provability predicate:

- **PMP**: \(\forall PQ. \text{provable}(P \rightarrow Q) \rightarrow \text{provable}(P) \rightarrow \text{provable}(Q) \)
- **PI**: \(\forall P. \text{provable}(P \rightarrow P) \)
- **PK**: \(\forall PQ. \text{provable}(Q) \rightarrow \text{provable}(P \rightarrow Q) \)
- **PC**: \(\forall PQZ. \text{provable}(P \rightarrow Q) \rightarrow \text{provable}((Q \rightarrow Z) \rightarrow P \rightarrow Z) \)

Since the provability predicate coming with computational type theory satisfies these properties, we can expect that properties we can show for the assumed provability predicate also hold for the provability predicate coming with computational type theory.

Fact 14.1.1 (Transport)

1. \(\text{provable}(P \rightarrow Q) \rightarrow \neg \text{provable}Q \rightarrow \neg \text{provable}(P) \).
2. \(\text{provable}(P \rightarrow Q) \rightarrow \text{consistent}(P) \rightarrow \text{consistent}(Q) \).

Proof Claim 1 follows with PMP. Claim 2 follows with PC and (1). ■

From the transport properties it follows that a proposition is independent if it can be sandwiched between a consistent and an unprovable proposition.

Fact 14.1.2 (Sandwich) A proposition \(Z \) is independent if there exists a consistent proposition \(P \) and an unprovable proposition \(Q \) such that \(P \rightarrow Z \) and \(Z \rightarrow Q \) are provable: \(\text{consistent}(P) \rightarrow \neg \text{provable}Q \rightarrow (P \rightarrow Z) \rightarrow (Z \rightarrow Q) \rightarrow \text{independent}(Z) \).

Proof Follows with Fact 14.1.1. ■

Exercise 14.1.3 Show that the functions \(\lambda P^P.P \) and \(\lambda P^P.\top \) are provability predicates satisfying PMP, PI, PK, and PC.

Exercise 14.1.4 Let \(P \rightarrow Q \) be provable. Show that \(P \) and \(Q \) are both independent if \(P \) is consistent and \(Q \) is unprovable.

Exercise 14.1.5 Assume that the provability predicate satisfies

\[
\text{PE} : \forall P^P. \text{provable}(\bot) \rightarrow \text{provable}(P)
\]

in addition to PMP, PI, PK, and PC. Prove \(\neg \text{provable}(\bot) \rightarrow \neg \forall P^P. \text{provable}(P) \).
14.2 Consistency

Fact 14.2.1 (Consistency) The following propositions are equivalent:

1. \neg provable (\perp).
2. consistent ($\neg \perp$).
3. $\exists P$. consistent (P).
4. $\forall P$. provable (P) \rightarrow consistent (P).
5. $\forall P$. disprovable (P) \rightarrow \neg provable (P).

Proof 1 \rightarrow 2. We assume provable ($\neg \neg \perp$) and show provable (\perp). By PMP it suffices to show provable ($\neg \perp$), which holds by PI.
2 \rightarrow 3. Trivial.
3 \rightarrow 1. Suppose P is consistent. We assume provable \perp and show provable ($\neg P$). Follows by PK.
4 \rightarrow 1. We assume that \perp is unprovable, P is provable, and $\neg P$ is provable. By PMP we have provable \perp. Contradiction.
5 \rightarrow 1. Follows with PMP.

Exercise 14.2.2 We may consider more abstract provability predicates

$$\text{provable} : \text{prop} \rightarrow \mathbb{P}$$

where prop is an assumed type of propositions with an assumed constant

$$\text{impl} : \text{prop} \rightarrow \text{prop} \rightarrow \text{prop}$$

Show that all results of this chapter hold for such abstract proof systems.

Exercise 14.2.3 (Hilbert style assumptions) The assumptions PI, PK, and PC can be obtained from the simpler assumptions

$$\text{PK'} : \forall PQ. \text{provable} (P \rightarrow Q \rightarrow P)$$
$$\text{PS} : \forall PQZ. \text{provable} ((P \rightarrow Q \rightarrow Z) \rightarrow (P \rightarrow Q) \rightarrow P \rightarrow Z)$$

that will look familiar to people acquainted with propositional Hilbert systems. Prove PK, PI, and PC from the two assumptions above. PK and PI are easy. PC is difficult if you don’t know the technique. You may follow the proof tree $S(S(KS)(S(KK)I))(KH)$. Hint: PI follows with the proof tree $S(KK)$.

The exercise was prompted by ideas of Jianlin Li in July 2020.
Part III

Numbers and Lists
15 Numbers

Numbers 0, 1, 2, ... constitute the basic infinite data structure. Starting from the inductive definition of numbers, we develop a computational theory of numbers based on computational type theory. The main topic of this chapter is the ordering of numbers. In the next few chapters we will explore Euclidean division, least witnesses, size recursion, and greatest common divisors. There is much beauty in developing the theory of numbers from first principles. The art is building up the right definitions and the right theorems in the right order (variation of a statement by Kevin Buzzard).

15.1 Inductive Definition

Following the informal presentation in Chapter 1, we introduce the type of numbers 0, 1, 2 ... with an inductive definition

\[N ::= 0 \mid S(N) \]

introducing three constructors:

\[N : \mathbb{T}, \quad 0 : N, \quad S : N \to N \]

Based on the inductive type definition, we can define functions with equations using exhaustive case analysis and structural recursion. A basic inductive function definition obtains an eliminator \(E_N \) providing for inductive proofs on numbers:

\[E_N : \forall p : N \to T. \quad p 0 \to (\forall x. \quad p x \to p(Sx)) \to \forall x. \quad p x \]

\[E_N p a f 0 := a \]

\[E_N p a f (Sx) := f x(E_N p a f x) \]

A discussion of the eliminator appears in §6.2. Matches for numbers can be obtained as applications of the eliminator where no use of the inductive hypothesis is made. More directly, a specialized elimination function for matches omitting the inductive hypothesis can be defined.

Fact 15.1.1 (Constructors)

1. \(Sx \neq 0 \) (disjointness)
2. \(Sx = Sy \to x = y \) (injectivity)
3. \(Sx \neq x \) (progress)
15 Numbers

Proof The proofs of (1) and (2) are discussed in §5.2. Claim 3 follows by induction on x using (1) and (2).

Fact 15.1.2 (Discreteness) \mathbb{N} is a discrete type: $\forall x y. D(x = y)$.

Proof Fact 10.4.1.

Exercise 15.1.3 Show the constructor laws and discreteness using the eliminator and without using matches.

Exercise 15.1.4 (Double induction) Prove the following double induction principle for numbers (from Smullyan and Fitting [22]):

\[
\forall p^{\mathbb{N} \to \mathbb{N} \to \mathbb{T}}.
(\forall x. px0) \rightarrow
(\forall x y. px y \rightarrow p y x \rightarrow px(S y)) \rightarrow
\forall x y. px y
\]

There is a nice geometric intuition for the truth of the principle: See a pair (x, y) as a point in the discrete plane spanned by \mathbb{N} and convince yourself that the two rules are enough to reach every point of the plane.

An interesting application of double induction appears in Exercise 15.6.14.

Hint: First do induction on y with x quantified. In the successor case, first apply the second rule and then prove pxy by induction on x.

15.2 Addition

We accommodate addition of numbers with a recursively defined function:

\[
+ : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\]

$0 + y := y$

$Sx + y := S(x + y)$

The two most basic properties of addition are associativity and commutativity.

Fact 15.2.1 $(x + y) + z = x + (y + z)$ and $x + y = y + x$.

Proof Associativity follows by induction on x. Commutativity also follows by induction on x, where the lemmas $x + 0 = x$ and $x + S y = S x + y$ are needed. Both lemmas follow by induction on x.

138
We will use associativity and commutativity of addition tacitly in proofs. If we omit parentheses for convenience, they are inserted from the left: \(x + y + z \sim (x + y) + z \). Quite often the symmetric versions \(x + 0 = x \) and \(x + S y = S(x + y) \) of the defining equations will be used.

Another important fact about numbers is injectivity, which comes in two flavors.

Fact 15.2.2 (Injectivity) \(x + y = x + z \rightarrow y = z \) and \(x + y = x - y = 0 \).

Proof Both claims follow by induction on \(x \).

Exercise 15.2.3 Prove \(x \neq x + Sy \).

15.3 Multiplication

We accommodate addition of numbers with a recursively defined function:

\[
\cdot : \mathbb{N} \rightarrow \mathbb{N} \\
0 \cdot y := 0 \\
Sx \cdot y := y + x \cdot y
\]

The definition is such that the equations

\[
0 \cdot y = 0 \quad 1 \cdot y = y + 0 \quad 2 \cdot y = y + (y + 0)
\]

hold by computational equality.

Proving the familiar properties of multiplication like associativity, commutativity, and distributivity is routine. In contrast to addition, multiplication will play only a minor role in this text.

Exercise 15.3.1 Prove that multiplication is commutative and associative. Also prove that multiplication distributes over addition: \(x \cdot (y + z) = x \cdot y + x \cdot z \).

15.4 Subtraction

We define (truncating) subtraction of numbers as a total operation that yields 0 whenever the standard subtraction operation for integers yields a negative number:

\[
- : \mathbb{N} \rightarrow \mathbb{N} \\
0 - y := 0 \\
Sx - 0 := Sx \\
Sx - Sy := x - y
\]
15 Numbers

Note that the recursion is on the first argument and that in the successor case there is a case analysis on the second argument. Truncating subtraction plays a major role in our theory of numbers since we shall use it to define the canonical order on numbers.

Fact 15.4.1
1. \(x - 0 = x \)
2. \((x + y) - x = y \)
3. \(x - (x + y) = 0 \)
4. \(x - x = 0 \)

Proof Claim 1 follows by case analysis on \(x \). Claim 2 follows by induction on \(x \) using (1) for the base case. Claim 3 follows by induction on \(x \). Claim 4 follows with (2) with \(y = 0 \). \(\square \)

15.5 Order

We define the order relation on numbers using truncating subtraction:

\[x \leq y \rightleftharpoons (x - y = 0) \]

While this definition is nonstandard, it is quite convenient for deriving the basic properties of the order relation. We define the usual notational variants for the order relation:

\[x < y \rightleftharpoons Sx \leq y \]
\[x \geq y \rightleftharpoons y \leq x \]
\[x > y \rightleftharpoons y < x \]

Fact 15.5.1 The following equations hold by computational equality:
1. \((Sx \leq Sy) = (x \leq y)\) \hspace{1cm} (shift law)
2. \(0 \leq x\)
3. \(0 < Sx\)

We define several certifying operators that for two numbers decide how they are related by the order.

Fact 15.5.2 (Case analysis)
1. \(D(x \leq y)\)
2. \((x \leq y) + (y < x)\)
3. \((x < y) + (x = y) + (y < x)\) \hspace{1cm} (trichotomy)
4. \(x \leq y - (x < y) + (x = y)\)
Proof All four claims follow by induction on \(x \) with \(y \) quantified followed by discrimination on \(y \). Claim 1 may also be obtained as a consequence of Fact 15.1.2, and Claim 3 may also be obtained as consequence of Claims 2 and 4.

Fact 15.5.3 (Contraposition) \(\neg(y < x) \rightarrow x \leq y \).

Proof Follows with Fact 15.5.2 (2).

Lemma 15.5.4 \(x \leq y \rightarrow x + (y - x) = y \).

Proof By induction on \(x \) with \(y \) quantified. The base case is immediate with (1) of Fact 15.4.1. In the successor case we proceed with case analysis on \(y \). Case \(y = 0 \) is contradictory. For the successor case, we exploit the shift law. We assume \(x \leq y \) and show \(S(x + (y - x)) = S y \), which follows by the inductive hypothesis.

Fact 15.5.5 (Existential Characterization) \(x \leq y \iff \exists k. x + k = y \).

Proof Direction \(\rightarrow \) follows with Lemma 15.5.4, and direction \(\leftarrow \) follows with Fact 15.4.1 (3).

15.6 More Order

Fact 15.6.1
1. \(x \leq x + y \)
2. \(x \leq S x \)
3. \(x + y \leq x \rightarrow y = 0 \)
4. \(x \leq 0 \rightarrow x = 0 \)
5. \(x \leq x \) (reflexivity)
6. \(x \leq y \rightarrow y \leq z \rightarrow x \leq z \) (transitivity)
7. \(x \leq y \rightarrow y \leq x \rightarrow x = y \) (antisymmetry)

Proof Claim 1 follows with Fact 15.4.1 (3). Claim 2 follows from (1). Claim 3 follows with Fact 15.4.1 (2). Claim 4 follows by case analysis on \(x \) and constructor disjointness.

Reflexivity follows with Fact 15.4.1 (4).

For transitivity, we assume \(x + a = y \) and \(y + b = z \) using Fact 15.5.5. Then \(z = x + a + b \). Thus \(x \leq z \) by (1).

For antisymmetry, we assume \(x + a = y \) and \(x + a \leq x \) using Fact 15.5.5. By (3) we have \(a = 0 \), and thus \(x = y \).
15 Numbers

Fact 15.6.2 (Strict transitivity)
1. \(x < y \leq z \rightarrow x < z \)
2. \(x \leq y < z \rightarrow x < z \).

Proof We show (1), (2) is similar. Using Fact 15.5.5, the assumptions give us \(Sx + a = y \) and \(y + b = z \). Thus it suffices to prove \(Sx \leq Sx + a + b \), which follows by Fact 15.6.1 (1).

Fact 15.6.3
1. \(\neg(x < 0) \)
2. \(\neg(x + y < x) \) (strictness)
3. \(\neg(x < x) \) (strictness)
4. \(x \leq y - x \leq y + z \)
5. \(x \leq y - x \leq Sy \)
6. \(x < y - x \leq y \)

Proof Claim 1 converts to \(Sx \neq 0 \). For Claim 2 we assume \(Sx + y - x = 0 \) and obtain the contradiction \(Sy = 0 \) with Fact 15.4.1 (2). Claim 3 follows from (2). For Claim 4 we assume \(x + a = y \) using Fact 15.5.5 and show \(x \leq x + a + z \) using Fact 15.6.1 (1). Claim 5 follows from (4). Claim 6 follows with discrimination on \(y \) and (5).

Fact 15.6.4 (Equality by Contradiction) \(\neg(x < y) \rightarrow \neg(y < x) \rightarrow x = y \).

Proof Follows by contraposition (Fact 15.5.3) and antisymmetry.

Fact 15.6.5 \(x - y \leq x \)

Proof Induction on \(x \) with \(y \) quantified. The base case follows by conversion. The successor case is done with case analysis on \(y \). If \(y = 0 \), the claim follows with reflexivity. For the successor case \(y = Sy \), we have to show \(Sx - Sy \leq Sx \). We have \(Sx - Sy = x - y \leq x \leq Sx \) using shift, the inductive hypothesis, and Fact 15.6.1 (2). The claim follows by transitivity.

Fact 15.6.6 Bounded quantification preserves decidability:
1. \((\forall x. D(px)) \rightarrow D(\forall x. x < k \rightarrow px) \).
2. \((\forall x. D(px)) \rightarrow D(\exists x. x < k \land px) \).

Proof By induction on \(k \) and Fact 15.5.2 (4).

Exercise 15.6.7 (Tightness) Prove \(x \leq y \leq Sx \rightarrow x = y \lor y = Sx \).

Exercise 15.6.8 (Negation Facts) Formulate Facts 15.5.3 and 15.6.4 as equivalences and prove them.
15.7 Complete Induction

Exercise 15.6.9 Prove $x \leq y \iff x < y \lor x = y$.

Exercise 15.6.10 Prove $y > 0 \to y - 5x < y$.

Exercise 15.6.11 Prove $x + y \leq x + z \to y \leq z$.

Exercise 15.6.12 Define a function $\forall x, y. x \leq y \to \Sigma k. x + k = y$.

Exercise 15.6.13 Define a boolean decider for $x \leq y$ and prove its correctness.

Exercise 15.6.14 Use the double induction operator from Exercise 15.1.4 to prove $\forall x, y. (x \leq y) + (y < x)$. No further induction or lemma is necessary.

15.7 Complete Induction

Next we prove an induction principle known as complete induction, which improves on structural induction by providing an inductive hypothesis for every $y < x$, not just the predecessor of x.

Fact 15.7.1 (Complete Induction)
$\forall p^{\text{Nat}}. \left(\forall x. \left(\forall y. y < x \to p y \right) \to p x \right) \to \forall x. p x$.

Proof We assume p and the step function

$$F : \forall x. \left(\forall y. y < x \to p y \right) \to p x$$

and show $\forall x. p x$. The trick is now to prove the equivalent claim

$$\forall nx. x < n \to p x$$

by structural induction on n. For $n = 0$, the claim is trivial. In the successor case, we assume $x < Sn$ and prove $p x$. We apply the step function F, which gives us the assumption $y < x$ and the claim $p y$. By the inductive hypothesis it suffices to show $y < n$, which follows by strict transitivity (Fact 15.6.2).

Note that the definition of the function $\forall nx. x < n \to p x$ needed for complete induction operator employs computational falsity elimination for the base case.

We will not give examples for the use of complete induction here. Chapter 18 introduces a generalization of complete induction called size recursion that has several important applications in this text.
15 Numbers

15.8 Notes

Our definition of the order predicate deviates from Coq’s inductive definition. Coq comes with a very helpful automation tactic lia for linear arithmetic that proves almost all of the results in this chapter and that frees the user from knowing the exact definitions and lemmas. All our further Coq developments will rely on lia.

The reader may find it interesting to compare the computational development of the numbers given here and in the following chapters with Landau’s [17] classical development from 1929.
16 Euclidean Division

We study functions for Euclidean division.

16.1 Certifying Version

The *Euclidean division theorem* says that for two numbers \(x \) and \(y \) there always exist unique numbers \(a \) and \(b \) such that \(x = a \cdot S \cdot y + b \) and \(b \leq y \). We will construct functions that given \(x \) and \(y \) compute \(a \) and \(b \). We first define a *relational specification*:

\[
\delta_{xyab} := x = a \cdot S \cdot y + b \land b \leq y
\]

Given \(\delta_{xyab} \), we say that \(a \) is the *quotient* and \(b \) is the *remainder* of \(x \) and \(S \cdot y \).

To compute \(a \) and \(b \) from \(x \) and \(y \), we need an algorithm. Since so far we have only structural recursion on numbers, we choose an algorithm that recurses on \(x \).

We describe the algorithm with three derivation rules for \(\delta \). The rules are formulated as propositions formulating the correctness conditions for the algorithm.

Fact 16.1.1 (Derivation rules)

The following rules (i.e., propositions) hold for all numbers \(x, y, a, b \):

- \(\delta_1 : \delta_0 y \equiv 0 \)
- \(\delta_2 : \delta_{xyab} \rightarrow b \neq y \rightarrow \delta_S(x)y(a)S(b) \)
- \(\delta_3 : \delta_{xyab} \rightarrow b = y \rightarrow \delta_S(x)y(S(a))0 \)

Proof Straightforward. Rule \(\delta_3 \) follows with Fact 15.5.2 (4).

The derivation rules have operational readings. Given \(x \) and \(y \), one can determine numbers \(a \) and \(b \) such that \(\delta_{xyab} \) holds using the derivation rules and recursion on \(x \):

- If \(x = 0 \), then \(a = b = 0 \).
- If \(x = S \cdot x' \), \(\delta_{x'ya'b'} \), and \(b' \neq y \), then \(a = a' \) and \(b = S \cdot b' \).
- If \(x = S \cdot x' \), \(\delta_{x'ya'b'} \), and \(b' = y \), then \(a = S \cdot a' \) and \(b = 0 \).

If you have to reinvent the algorithm and its correctness proof, it seems best to start with the specification \(\delta \) and the derivation rules. From this base the rest easily follows.

We first construct a certifying division function.
16 Euclidean Division

Fact 16.1.2 (Σ-Totality) \(\forall xy. \Sigma ab. \delta xy ab \).

Proof By induction on \(x \) with \(y \) fixed. In the base case \((x = 0)\) we choose \(a = b = 0 \) following \(\delta_1 \). In the successor case, we have \(x = a \cdot S y + b \) and \(b \leq y \) by the inductive hypothesis (i.e., by recursion) and need to show \(S x = a' \cdot S y + b' \) and \(b' \leq y \). If \(b < y \), we choose \(a' = a \) and \(b' = S b \) following \(\delta_2 \). If \(b = y \), we choose \(a' = S a \) and \(b' = 0 \) following \(\delta_3 \).

Corollary 16.1.3 (D and M)
There are functions \(D : N^N \rightarrow N \) and \(M : N^N \rightarrow N \) such that \(\forall xy. \delta xy (Dxy)(Mxy) \).

Proof Let \(F : \forall xy. \Sigma ab. \delta xy ab \). We define \(D \) and \(M \) as \(Dxy := \pi_1(Fxy) \) and \(Mxy := \pi_1(\pi_2(Fxy)) \). Now \(\pi_2(\pi_2(Fxy)) \) is a proof of \(\delta x y(Dxy)(Mxy) \) (up to conversion).

We have, for instance, \(D 100 3 = 25 \) and \(M 100 3 = 0 \) by computational equality.

16.2 Simply Typed Version

The algorithm underlying the proof of Fact 16.1.2 can also be formulated explicitly with a non-certifying function

\[
\Delta : N \rightarrow N \rightarrow N \times N \\
\Delta 0 y := (0, 0) \\
\Delta(Sx)y := \text{let } (a, b) := \Delta xy \text{ in if } 'b = y' \text{ then } (Sa, 0) \text{ else } (a, Sb)
\]

Note the use of the **upper-corner notation** ‘\(b = y \)’, which acts as a placeholder for an application an equality decider (boolean or informative). The use of the upper-corner notation is convenient since it saves us from naming the equality decider.

Fact 16.2.1 (Correctness) \(\forall xy. \delta x y (\pi_1(\Delta xy))(\pi_2(\Delta xy)) \).

Proof By induction on \(x \) with \(y \) fixed. The base case follows with \(\delta_1 \). In the successor we assume \(\Delta xy = (a, b) \). This gives us the inductive hypothesis \(\delta xy ab \). We now consider the two cases \(b = y \) and \(b \neq y \) and prove the claim \(\delta(Sx)y (\pi_1(\Delta(Sx)y))(\pi_2(\Delta(Sx)y)) \) using \(\delta_2 \) and \(\delta_3 \).

The proofs of Facts 16.1.2 and 16.2.1 are very similar. If you verify the proofs by hand, you will find the proof of Fact 16.1.2 simpler since it doesn't have to verify that \(\Delta \) is doing the right thing.
16.3 Uniqueness

Next, we show the uniqueness of δ.

Fact 16.3.1 (Uniqueness)

\((b \leq y) \implies (b' \leq y) \implies (a \cdot S^y + b = a' \cdot S^y + b') \implies a = a' \land b = b').

Proof By induction on a with a' quantified, followed by discrimination on a'.

The case \(a = a' = 0\) is straightforward.

Assume \(a = 0\) and \(a' = S^a_2\). Then \(b = S^y + a_2 \cdot S^y + b'\) and \(b \leq y\). Contradiction by strictness (Fact 15.6.3 (2)).

The case \(a = S^a_1\) and \(a' = 0\) is symmetric.

Let both \(a\) and \(a'\) be successors. Then \(a_1 \cdot S^y + a = a_2 \cdot S^y + b'\) by injectivity of \(S\) and injectivity of + (Fact 15.2.2). Thus \(a_1 = a_2\) and \(b = b'\) by the inductive hypothesis.

Corollary 16.3.2 (Uniqueness)

\(\delta xyab \implies \delta xy a'b' \implies a = a' \land b = b'\).

The uniqueness of δ has important applications. To see one application, we give two additional derivation rules for δ describing an algorithm that determines \(a\) and \(b\) by subtracting \(S^y\) from \(x\) as long as \(x > y\).

Fact 16.3.3 (Derivation rules)

The following rules hold for all numbers \(x, y, a, b\):

- \(\delta 4\): \(x \leq y \implies \delta xy0x\)
- \(\delta 5\): \(x > y \implies \delta (x - S^y)y ab \implies \delta xy(Sa)b\)

Proof Rule \(\delta 4\) is obvious. For rule \(\delta 5\) we assume \(x > y, x - S^y = a \cdot S^y + b\), and \(b \leq y\), and show \(x = S^y + (a \cdot S^y + b)\). By the first assumption it suffices to show \(x = S^y + (x - S^y)\), which holds by Lemma 15.5.4.

Fact 16.3.4 For all numbers \(x\) and \(y\) the functions \(D\) and \(M\) from Corollary 16.1.3 satisfy the following equations:

\[
D_{xy} = \begin{cases}
0 & \text{if } x \leq y \\
S(D(x - S^y)y) & \text{if } x > y
\end{cases}
\quad
M_{xy} = \begin{cases}
x & \text{if } x \leq y \\
M(x - S^y)y & \text{if } x > y
\end{cases}
\]

Proof By Corollaries 16.1.3 and 16.3.2 it suffices to show

\[
\delta xy (\text{if } 'x \leq y' \text{ THEN } 0 \text{ ELSE } S(D(x - S^y)y)) (\text{if } 'x \leq y' \text{ THEN } x \text{ ELSE } M(x - S^y)y)
\]

We do case analysis on \((x \leq y) + (x > y)\). If \(x \leq y\), the claim reduces to \(\delta xy0x\), which follows with \(\delta 4\). If \(x > y\), the claim reduces to

\[
\delta xy(S(D(x - S^y)y)) (M(x - S^y)y)
\]

which with \(\delta 5\) reduces to an instance of Corollary 16.1.3.
Fact 16.3.4 is remarkable, both as it comes to the result and to the proof. It states the important result that the functions D and M we have constructed with structural recursion on numbers satisfy procedural specifications employing repeated subtraction. The proof shows a new pattern. It hinges on the uniqueness of the relational specifications δ, the rules δ_4 and δ_5 explaining the role of subtraction, and Corollary 16.1.3 specifying D and M in terms of δ (no further information about D and M is needed).

Exercise 16.3.5 Let $\text{even } n := \exists k. n = k \cdot 2$. Prove the following:

a) $D(\text{even } n)$.

b) $\text{even } n \rightarrow \neg \text{even } (S n)$.

c) $\neg \text{even } n \rightarrow \text{even } (S n)$.

Exercise 16.3.6 Prove $x \cdot SSz + 1 \neq y \cdot SSz + 0$ using uniqueness of Euclidean division (Fact 16.3.1).

Exercise 16.3.7 We define **divisibility** and **primality** as follows:

$$k \mid x := \exists n. x = n \cdot k$$

$$\text{prime } x := x \geq 2 \land \forall k. k \mid x \rightarrow k = 1 \lor k = x$$

Prove that both predicates are decidable. Hint: First prove

$$x > 0 \rightarrow x = n \cdot k \rightarrow n \leq x$$

$$x > 0 \rightarrow k \mid x \rightarrow k \leq x$$

and then exploit that bounded quantification preserves decidability (Fact 15.6.6).
17 Least Witnesses

We will consider functions that given a witness of a decidable predicate \(p: \mathbb{N} \to \mathbb{P} \) compute a least witness of \(p \). We will consider simply typed and certifying versions of the functions. Moreover, we will show that a satisfiable predicate on numbers has a least witness if and only if the law of excluded middle holds.

17.1 Least Witness Predicate

In this chapter, \(p \) will denote a predicate \(\mathbb{N} \to \mathbb{P} \) and \(n \) and \(k \) will denote numbers. We say that \(n \) is a witness of \(p \) if \(p n \), and that \(p \) is satisfiable if \(\exists x. p x \). We define a least witness predicate as follows:

\[
\begin{align*}
\text{safe } p n & := \forall k. p k \to k \geq n \\
\text{least } p n & := p n \land \text{safe } p n
\end{align*}
\]

Fact 17.1.1

1. \(\text{least } p n \to \text{least } p n' \to n = n' \) (uniqueness)
2. \(\text{safe } p 0 \)
3. \(\text{safe } p n \to \neg p n \to \text{safe } p(Sn) \)

Proof Claim 1 follows with antisymmetry. Claim 2 is trivial. For Claim 3 we assume \(p k \) and show \(k > n \). By contraposition (Fact 15.5.3) we assume \(k \leq n \) and derive a contradiction. The first assumption and \(p k \) give us \(k \geq n \). Thus \(n = k \) by antisymmetry, which makes \(p k \) contradict \(\neg p n \).

Exercise 17.1.2 (Euclidean Division) Prove the following equivalence:
\[
(x = a \cdot S y + b \land b \leq y) \iff (\text{least } (\lambda a. x < S a \cdot S y) a \land b = x - a \cdot S y).
\]

Exercise 17.1.3 (Subtraction) Prove that \(x - y \) is the least \(z \) such that \(x \leq y + z \):
\[
x - y = z \iff \text{least } (\lambda z. x \leq y + z) z.
\]

17.2 Step-Indexed Linear Search

The standard algorithm for computing least witnesses is **linear search**: One tests \(p k \) for \(k = 0, 1, 2, \ldots \) until the first \(k \) satisfying \(p \) is found. Linear search terminates if
17 Least Witnesses

and only if \(p \) has a witness. While linear search can be realized easily in a procedural
programming language, realizing linear search with a function in computational
type theory requires a modification. The standard trick is to realize linear search
with an extra argument called a *step index* bounding the number of search steps.

We assume a decidable predicate \(p^{\mathbb{N} \to \mathbb{P}} \) in the following and define a step-indexed
linear search function as follows:

\[
L : \mathbb{N} \to \mathbb{N} \\
L 0 k := k \\
L (S n) k := \text{if } \neg p k \text{ THEN } k \text{ ELSE } L n (S k)
\]

Note that \(L \) recurses on the step index. Intuition tells us that \(L n 0 \) is the least witness
of \(p \) if \(n \) is a witness of \(p \). To verify this guess, we prove a more general property
by induction on \(n \).

Fact 17.2.1 (Correctness)

1. \(\forall nk. p(n + k) \to \text{safe} p k \to \text{least} p (L n k) \).
2. \(\forall n. p n \to \text{least} p (L n 0) \).

Proof Claim 1 follows by induction on \(n \) with \(k \) quantified. In the successor case
a case analysis on \(\neg p k \) is done. In the negative case, the claim follows by the
inductive hypothesis instantiated with \(S k \).

Claim 2 follows from Claim 1.

Note that the premises of the implication (1) of Fact 17.2.1 express invariants for
the step-indexed linear search procedure.

Exercise 17.2.2 Write certifying functions for step-indexed linear search:

a) \(\forall nk. p(n + k) \to \text{safe} p k \to \text{sig(least} p) \).

b) \(\text{sig} p \to \text{sig(least} p) \).

Follow the design of \(L \) and the proof of Fact 17.2.1, but do not use the formal
development for \(L \).

17.3 Direct Search

It turns out that we can construct a least witness function taking only one argument.
This becomes possible by returning either the least witness or the information that
the argument is safe. The idea is best expressed with a certifying function.
Lemma 17.3.1 \(\forall n. \text{safe } p_n + \text{sig(least } p) \).

Proof By induction on \(n \). The base case is obvious by Fact 17.1.1 (2). In the successor case we do case analysis on the inductive hypothesis. In the nontrivial case we have \(\text{safe } p_n \) and do case analysis on \(p_n \). If we have \(p_n \), we have \(\text{least } p_n \). If we have \(\neg p_n \), we have \(\text{safe } p(Sn) \) by Fact 17.1.1 (3). In both cases the claim \(\text{safe } p(Sn) + \text{sig(least } p) \) follows. ■

Fact 17.3.2 *(Least witness operator)*

\(\forall p. (\forall n. D(pn)) \rightarrow \text{sig } p \rightarrow \text{sig(least } p) \).

Proof Assume \(p_n \). By Lemma 17.3.1 we have either the claim or obtain the claim with \(p_n \) and safe \(p_n \). ■

Corollary 17.3.3

\(\forall p. (\forall n. D(pn)) \rightarrow \text{ex } p \rightarrow \text{ex(least } p) \).

Proof Given that we have to construct a proof, we can assume \(p_n \). This gives us \(\text{sig } p \) and thus we can obtain a least witness with Fact 17.3.2. ■

Corollary 17.3.4 *(Decidability)*

\(\forall p. (\forall n. D(pn)) \rightarrow \forall n. D(\text{least } p_n) \).

Proof We show \(D(\text{least } p_n) \). If \(\neg p_n \), we have \(\neg \text{least } p_n \). Otherwise we assume \(p_n \). Thus least \(pk \) for some \(k \) by Fact 17.3.2. If \(n = k \), we are done. If \(n \neq k \), we assume least \(p_n \) and obtain a contradiction with the uniqueness of least \(p \) (Fact 17.1.1). ■

We can define a simply typed direct search function as follows:

\[
D : N \rightarrow O(N) \\
D 0 := \emptyset \\
D (Sn) := \text{MATCH } Dn [\ ^x \Rightarrow \ ^x | \emptyset \Rightarrow \text{IF 'p }n' \text{ THEN } ^n \emptyset \text{ ELSE } \emptyset]
\]

Fact 17.3.5 *(Correctness)*

1. \(\forall n. \text{MATCH } Dn [\ ^x \Rightarrow \text{least } p x | \emptyset \Rightarrow \text{safe } p n] \)
2. \(\forall n. p n \rightarrow \Sigma x. Dn = ^x \land \text{least } p x \)

Proof Claim (1) follows by induction on \(n \) following the proof of Lemma 17.3.1. Claim (2) follows with claim (1). ■

Exercise 17.3.6 Write a function \(W : N \rightarrow N \) such that \(\forall n. p n \rightarrow \text{least } p (Wn) \) using the function \(D \) and prove correctness of \(W \).
Exercise 17.3.7 (Derivation rules) It is interesting to analyze direct search using the relational specification
\[
\begin{align*}
\delta & : N \to \emptyset(N) \to \mathcal{P} \\
\delta n \cdot^x & := \text{least } p \cdot x \\
\delta n \emptyset & := \text{safe } p \cdot n
\end{align*}
\]
a) Convince yourself that \(\forall n. \delta n(Dn)\) is the correctness statement stated by Fact 17.3.5 (1).
b) Convince yourself that \(\forall n. \text{sig} (\delta n)\) is propositionally equivalent to the type of the certifying function asserted by Lemma 17.3.1.
c) Prove the following derivation rules for \(\delta\). Note that the derivations rules follow the defining equations of \(D\).
\[
\begin{align*}
\delta_1 & : \delta 0 \emptyset \\
\delta_2 & : \delta n \cdot^x \to \delta (Sn) \cdot^x \\
\delta_3 & : \delta n \emptyset \to pn \to \delta (Sn) \emptyset \\
\delta_4 & : \delta n \emptyset \to \neg pn \to \delta (Sn) \emptyset
\end{align*}
\]
d) Prove \(\forall n. \delta n(Dn)\) by induction on \(n\) using the derivation rules.
e) Prove \(\forall n. \text{sig}(\delta n)\) by induction on \(n\) using the derivation rules.

17.4 Least Witnesses and Excluded Middle

If we switch to a propositional least witness operator using \(\exists\) in place of \(\Sigma\), logical decidability of \(p\) suffices.

Lemma 17.4.1 \(\forall p N^\emptyset. (\forall k. pk \lor \neg pk) \to \forall n. pn \to \text{ex}(\text{least } p)\).

Proof By induction on \(n\). Similar to Lemma 17.3.1.

We can now show that the law of excluded middle holds if and only if every satisfiable predicate on the numbers has a least witness.

Fact 17.4.2 \((\forall p^\emptyset. P \lor \neg P) \iff (\forall p^{N\emptyset}. \text{ex } p \to \text{ex}(\text{least } p)).\)

Proof Direction \(\to\) follows with Lemma 17.4.1. For direction \(\to\) we pick a proposition \(P\) and prove \(P \lor \neg P\). We now obtain the least witness \(n\) of the satisfiable predicate \(pn := \text{match } n [0 \Rightarrow P \mid S_\to \tau]\). If \(n = 0\), we have \(p0\) and thus \(P\). If \(n = Sk\), we assume \(P\) and obtain a contradiction since \(\text{safe } p(Sk)\) but \(p0\).
17.5 Conclusion

In this chapter we have studied two procedures computing least witness using structural recursion on numbers. Each procedure was realized with a certifying and a simply typed version. For step-indexed linear search we started with a simply typed version, while for direct search we started with the certifying version, each time doing the intuitively more obvious version first. When one does a certifying version, one starts with a specification, while for a simply typed function one needs to come up with a sufficiently informative specification so that the function can be verified.
18 Size Recursion and Procedural Specifications

Size recursion generalizes structural recursion such that recursion is possible for all smaller arguments, where smaller augments are determined by a numeric size function. In contrast to structural recursion, where the arguments must come from an inductive type, size recursion accommodates arguments from any type. Nevertheless, defining a size recursion operator using structural recursion on numbers is straightforward.

Using size recursion and informative types, functions can be defined following recursion schemes expressible with size recursion. Often it is convenient to accommodate the underlying recursion scheme with a specialized recursion operator incorporating the desired case analysis, and encapsulating the necessary termination proof. As main examples we will consider Euclidean division and greatest common divisors.

Size recursion provides us with a flexible induction principle for proofs. Proofs by induction on the size of objects are frequently used in mathematical developments.

We will consider procedural specifications of functions and construct satisfying functions using step-indexing. Step-indexing applies whenever the recursion of the specification can be interpreted as size recursion.

18.1 Basic Size Recursion Operator

The basic intuition for defining a recursive procedure f says that fx can be computed using recursive applications fy for every y smaller than x. Similarly, when we prove px, we may assume a proof for py for every y smaller than x. Both ideas can be formalized with a size recursion operator of the type

$$\forall X^\top. \forall \sigma^{X \to N}. \forall p^{X \to \top}. (\forall y. \sigma y < \sigma x \to py \to px) \to \forall x. px$$

The requirement that y be smaller than x for recursive applications is formalized with a size function σ and the premise $\sigma y < \sigma x$. From the type of the size recur-
18 Size Recursion and Procedural Specifications

sion operator we see that the operator obtains a target function \(\forall x. p x \) from a step function

\[
\forall x. (\forall y. \sigma y < \sigma x \rightarrow p y) \rightarrow p x
\]

The step function says how for \(x \) a \(p x \) is computed, where for every \(y \) smaller than \(x \) a \(p y \) is provided by a continuation function

\[
\forall y. \sigma y < \sigma x \rightarrow p y
\]

Size recursion generalizes structural recursion on numbers:

\[
\forall p : N \rightarrow T. \ p 0 \rightarrow (\forall x. p x \rightarrow p (S x)) \rightarrow \forall x. p x
\]

While structural recursion is confined to numbers and provides recursion only for the predecessor of the argument, size recursion works on arbitrary types and provides recursion for every \(y \) smaller than \(x \), not just the predecessor.

The special case of size recursion where \(X \) is \(N \), \(p \) is a predicate, and \(\sigma \) is the identity function is known as complete induction in mathematical reasoning (Fact 15.7.1).

It turns out that a size recursion operator can be defined with structural recursion on numbers, following the idea we have already seen for complete induction. Given the step function, we can define an auxiliary function

\[
\forall nx. \sigma x < n \rightarrow p x
\]

by structural recursion on the upper bound \(n \). By using the auxiliary function with the upper bound \(S(\sigma x) \), we can then obtain the target function \(\forall x. p x \).

Lemma 18.1.1 Let \(X : \mathbb{T} \), \(\sigma : X \rightarrow N \), \(p : X \rightarrow \mathbb{T} \), and

\[
F : \forall x. (\forall y. \sigma y < \sigma x \rightarrow p y) \rightarrow p x
\]

Then there is a function \(\forall nx. \sigma x < n \rightarrow p x \).

Proof We define the function asserted by structural recursion on \(n \):

\[
R : \forall nx. \sigma x < n \rightarrow p x
\]

\[
R 0 x h := \text{match } \bot \text{ [] } h : \sigma x < 0
\]

\[
R (S n) x h := F x (\lambda y h'. R n y' \sigma y < n') h : \sigma x < Sn, \ h' : \sigma y < \sigma x
\]

Note that the definition of the function \(R \) in the proof involves computational falsity elimination in the base case.

We can phrase the above proof also as an informal inductive proof leaving implicit the operator \(R \). While more verbose than the formal proof, the informal proof seems easier to read for humans. Here we go:
We prove $\forall n x. \sigma x < n \to px$ by induction on n. If $n = 0$, we have $\sigma x < 0$, which is contradictory. For the inductive step, we have $\sigma x < Sn$ and need to construct a value of px. We also have $\forall x. \sigma x < n \to px$ by the inductive hypothesis. Using the step function F, it suffices to construct a continuation function $\forall y. \sigma y < \sigma x \to py$. So we assume $\sigma y < \sigma x$ and prove py. Since $\sigma y < n$ by the assumptions $\sigma y < \sigma x < Sn$, the inductive hypothesis yields py.

Theorem 18.1.2 (Size Recursion Operator)

$$\forall X \forall Y \forall \sigma X \to Y \to N \forall p X \to Y \to T.$$

$$(\forall x. (\forall y. \sigma y < \sigma x \to py) \to px) \to \forall x. px$$

Proof Straightforward with Lemma 18.1.1. ■

Often it is helpful to define specialized size recursion operators. We will often use a specialized size recursion operator for binary type functions.

Fact 18.1.3 (Binary size recursion operator)

$$\forall X Y \forall \sigma X \to Y \to N \forall p X \to Y \to T.$$

$$(\forall x. (\forall y. \sigma x' y' < \sigma xy \to px' y') \to pxy) \to \forall x. pxy$$

Proof Size recursion on $X \times Y$ using the type function $\lambda a. p(\pi_1 a)(\pi_2 a)$ and the size function $\lambda a. \sigma(\pi_1 a)(\pi_2 a)$. ■

The size recursion theorem does not expose the definition of the recursion operator and we will not use the defining equations of the operator. When we use the size recursion operator to construct a function $f : \forall x. px$, we will make sure that the type function p gives us all the information we need for proofs about fx.

The accompanying Coq development gives a transparent definition of the size recursion operator. This way we can actually compute with the functions defined with the recursion operator, making it possible to prove concrete equations by computational equality.

Exercise 18.1.4 Define operators for structural recursion on numbers

$$\forall p N \to T. p 0 \to (\forall x. px \to p(Sx)) \to \forall x. px$$

and for complete recursion on numbers

$$\forall p N \to T. (\forall x. (\forall y. y < x \to py) \to px) \to \forall x. px$$

using the size recursion operator.
Exercise 18.1.5 Let \(f \) be a function \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \) satisfying the following equation:

\[
 f_{xy} = \begin{cases}
 x & \text{if } x \leq y \\
 f(x - \text{S}y)y & \text{if } x > y
 \end{cases}
\]

Prove the following using size recursion:

a) \(\forall xy. f_{xy} \leq y \)

b) \(\forall xy \Sigma k. x = k \cdot \text{S}y + f_{xy} \)

18.2 Euclidean Division

Euclidean division counts how often \(\text{S}y \) can be subtracted from \(x \) without truncation. We specify this operation with the predicate

\[
 \delta_{xyz} := z \cdot \text{S}y \leq x < z \cdot \text{S}y
\]

and say that a function \(f^{\mathbb{N} \rightarrow \mathbb{N}} \) respects \(\delta \) if \(\forall xy. \delta_{xy}(f_{xy}) \). In addition, we fix a procedural specification of Euclidean division using the unfolding function

\[
 \Delta : (\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\]

\[
 \Delta f_{xy} = \begin{cases}
 0 & \text{if } x \leq y \\
 \text{S}(f(x - \text{S}y)y) & \text{if } x > y
 \end{cases}
\]

We say that a function \(f^{\mathbb{N} \rightarrow \mathbb{N}} \) satisfies \(\Delta \) if \(\forall xy. f_{xy} = \Delta f_{xy} \).

Given the formal definitions, we would like to prove:

1. \(f \) respects \(\delta \) if and only if \(f \) satisfies \(\Delta \).
2. There is a function respecting \(\delta \) and satisfying \(\Delta \).
3. All functions respecting \(\delta \) or satisfying \(\Delta \) agree.

Fact 18.2.1 All functions satisfying \(\Delta \) agree.

Proof Let \(\forall xy. f_{xy} = \Delta f_{xy} \) and \(\forall xy. g_{xy} = \Delta g_{xy} \). We prove \(f_{xy} = g_{xy} \) by size induction on \(x \). By the assumptions it suffices to show \(\Delta f_{xy} = \Delta g_{xy} \). Case analysis on \((x \leq y) + (x > y) \). If \(x \leq y \), we have to show \(0 = 0 \). If \(x > y \), we have to show \(\text{S}(f(x - \text{S}y)y) = \text{S}(g(x - \text{S}y)y) \), which follows by the inductive hypothesis.

Fact 18.2.2 (Derivation rules) \(\delta \) satisfies the following rules:

- \(\delta_1 : \ x \leq y \rightarrow \delta_{xy} \cdot 0 \)
- \(\delta_2 : \ x > y \rightarrow \delta(\text{S}(x - \text{S}y)y)z \rightarrow \delta_{xy}(\text{S}z) \)

Proof Straightforward.
Fact 18.2.3 (Functionality) \(\forall x y z z'. \, \delta x y z \rightarrow \delta x y z' \rightarrow z = z'.\)

Proof Straightforward.

Corollary 18.2.4 All functions respecting \(\delta\) agree.

For clarity we also identify a customized recursion operator.

Lemma 18.2.5 (Euclidean recursion operator)

\[
\forall y \in \mathbb{N} \forall p \in \mathbb{N}^\mathbb{N}.
(\forall x. \, x \leq y \rightarrow px) \rightarrow
(\forall x. \, x > y \rightarrow p(x - S y) \rightarrow px) \rightarrow
\forall x. \, px
\]

Proof By size recursion on \(x\) and case analysis on \((x \leq y) + (x > y)\).

It is now straightforward to construct a function respecting \(\delta\).

Fact 18.2.6 \(\forall x y z. \, \delta x y z\).

Proof We construct this function using the Euclidean recursion operator, which gives us two subgoals for \(x \leq y\) and \(x > y\). The first subgoal follows with \(\delta_1\). The second subgoal follows with \(\delta_2\) and the inductive hypothesis.

Using the Skolem equivalence, we now have a reducible function \(D\) respecting \(\delta\). We can now prove equations like \(D\ 15\ 3 = 3\) by computational equality. Given the function \(\text{Div}\) from Fact 18.2.6, we can define a Euclidean division function

\[
\text{div} : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\]

\[
\text{div} x 0 := 0
\]

\[
\text{div} x (S y) := \pi_1 (\text{Div} x y)
\]

such that equations like \(\text{div} \ 133\ 12 = 11\) hold by computational equality.

Fact 18.2.7 Every function satisfying \(\Delta\) respects \(\delta\).

Proof Let \(\forall x y. \, f x y = \Delta f x y\). We show \(\delta x y (f x y)\) by size recursion on \(x\). By the assumption it suffices to show \(\delta x y (\Delta f x y)\). Case analysis on \((x \leq y) + (x > y)\), which yields the subgoals \(\delta x y 0\) and \(\delta x y (S(f(x - S y)) y)\). The first subgoal follows with \(\delta_1\). The second subgoal follows with \(\delta_2\) and the inductive hypothesis.
18 Size Recursion and Procedural Specifications

Fact 18.2.8 Every function respecting δ satisfies Δ.

Proof Let f respect δ. We show $fxy = \Delta fxy$. By functionality of δ and the assumption it suffices to show $\delta xy(\Delta fxy)$. Case analysis on $(x \leq y) + (x > y)$, which yields the subgoals $\delta xy0$ and $\delta xy(S(f(x - S y))y)$, which follow by δ_1 and δ_2.

Exercise 18.2.9 We specify a remainder function with a predicate ρxyz:

a) Give a corresponding unfolding function R.
b) Establish the equivalence between ρ and R.
c) Construct a function respecting ρ using Euclidean recursion.
d) Show that all functions satisfying R agree.

Exercise 18.2.10 Prove $\forall xy. \Sigma_{ab} N. (x = a \cdot S y + b) \land (b \leq y)$ using Euclidean recursion.

18.3 Greatest Common Divisors

Next we construct and verify a function computing greatest common divisors (GCDs) following the scheme we have used for Euclidean division. This time we work with an abstract relational specification to emphasize that only certain properties of the concrete relational specification are needed.

Definition 18.3.1 A gcd relation is a predicate $\gamma^{N \rightarrow N \rightarrow N \rightarrow \mathbb{P}}$ satisfying the following conditions for all numbers x, y, z:

- γ_1: γ^0y^y (zero rule)
- γ_2: $\gamma^{yx}z \rightarrow \gamma^{xy}z$ (symmetry rule)
- γ_3: $x \leq y \rightarrow \gamma^{x(y - x)}z \rightarrow \gamma^{xy}z$ (subtraction rule)

A functional gcd relation satisfies the additional condition

- γ_{fun}: $\gamma^{xy}z \rightarrow \gamma^{xy}z' \rightarrow z = z'$

We say that a function $f^{N \rightarrow N \rightarrow N}$ respects a gcd relation γ if $\forall xy. \gamma xy(fxy)$.

A proposition $\gamma^{xy}z$ may be read as saying that z is the GCD of x and y. We refer to the conditions γ_1, γ_2, and γ_3 as rules to highlight their computational interpretation:

- The GCD of x and 0 is x.
- The GCD of x and y is the GCD of y and x.
- The GCD of x and y is the GCD of x and $y - x$ if $x \leq y$.
Fact 18.3.2 All functions respecting a functional gcd relation agree.

Proof Straightforward.

Definition 18.3.3
We fix a procedural specification of GCDs using the unfolding function

\[
\Gamma : (N \rightarrow N \rightarrow N) \rightarrow N \rightarrow N \rightarrow N
\]

\[
\Gamma f \ 0y := y \\
\Gamma f \ (Sx) \ 0 := Sx \\
\Gamma f \ (Sx) \ (Sy) := \begin{cases}
 f(Sx)(y - x) & \text{if } x \leq y \\
 f(x - y)(Sy) & \text{if } x > y
\end{cases}
\]

We say that a function \(f^{N \rightarrow N \rightarrow N} \) satisfies \(\Gamma \) if \(\forall xy. \ fxy = \Gamma fxy \).

Given a functional gcd relation \(\gamma \), we will prove:
1. \(f \) respects \(\gamma \) if and only if \(f \) satisfies \(\Gamma \).
2. There is a function respecting \(\gamma \) and satisfying \(\Gamma \).
3. All functions respecting \(\gamma \) or satisfying \(\Gamma \) agree.

Fact 18.3.4 All functions satisfying \(\Gamma \) agree.

Proof Let \(\forall xy. \ fxy = \Gamma fxy \) and \(\forall xy. \ gxy = \Gamma gxy \). We prove \(fxy = gxy \) by size induction on \(x + y \). By the assumptions it suffices to show \(\Gamma fxy = \Gamma gxy \). Since the base cases follow by computational equality, it suffices to show \(\Gamma f(Sx)(Sy) = \Gamma g(Sx)(Sy) \). Case analysis on \((x \leq y) + (x > y) \). If \(x \leq y \), we have to show \(f(Sx)(y - x) = g(Sx)(y - x) \), which follows by the inductive hypothesis. The other case is symmetric.

Note that the proof explicates that the procedural specification “terminates” since the sum \(x + y \) of the arguments \(x \) and \(y \) is decreased upon “recursion”.

For clarity we identify a customized recursion operator.

Lemma 18.3.5 (GCD recursion operator)

\[
\forall p^{N \rightarrow N \rightarrow \top}. \\
(\forall y. \ p0y) \rightarrow \\
(\forall xy. \ pxy \rightarrow pyy) \rightarrow \\
(\forall xy. \ x \leq y \rightarrow px(\ y - x \) \rightarrow pxy) \rightarrow \\
\forall xy. \ pxy
\]
18 Size Recursion and Procedural Specifications

Proof By binary size recursion on \(x + y \) considering four disjoint cases: \(x = 0, y = 0, x \leq y, \) and \(y < x. \)

Fact 18.3.6 Let \(y \) be a gcd relation. Then \(\forall x y \Sigma z. y x y z. \)

Proof We construct the function using the gcd recursion operator, which gives us three subgoals. The first subgoal follows with \(y_1. \) The second subgoal follows with \(y_2. \) The third subgoal follows with \(y_3 \) and the inductive hypothesis.

Using the Skolem equivalence, we now have a reducible function \(G \) respecting \(G. \) We can now prove equations like \(G 49 63 = 7 \) by computational equality.

Fact 18.3.7 Every function satisfying \(G \) respects every gcd relation.

Proof Let \(\forall x y. f x y = G f x y \) and let \(y \) be a gcd relation. We show \(y x y (f x y) \) using size recursion on \(x + y. \) By the assumption it suffices to show \(y x y (G f x y). \) We consider four disjoint cases: \(x = 0, y = 0, x \leq y, \) and \(y < x. \) The base cases follow by \(y_1 \) and \(y_2. \) The remaining cases follow by \(y_2 \) and \(y_3 \) and the inductive hypothesis.

Fact 18.3.8 Every function respecting a functional gcd relation satisfies \(G. \)

Proof Let \(y \) be a functional gcd relation and let \(f \) respect \(y. \) We show \(f x y = G f x y. \) By the functionality of \(y \) and the assumption it suffices to show \(y x y (G f x y). \) We consider four disjoint cases: \(x = 0, y = 0, x \leq y, \) and \(y < x. \) The base cases follow with \(y_1 \) and \(y_2. \) The remaining cases follow with \(y_2 \) and \(y_3. \)

Definition 18.3.9 (Concrete gcd relation) We define the **divisors** of a number and the concrete gcd relation as follows:

\[
\begin{align*}
 n \mid x & \defeq \exists k. \ x = k \cdot n & n \text{ divides } x \\
 y x y z & \defeq \forall n. \ n \mid z \implies n \mid x \land n \mid y
\end{align*}
\]

We will show that \(y \) is a functional gcd relation. We start with the relevant facts about divisibility.

Fact 18.3.10
1. \(n \mid 0 \) and \(x \mid x. \)
2. \(x \leq y \rightarrow n \mid x \rightarrow (n \mid y \rightarrow n \mid y - x). \)
3. \(x > 0 \rightarrow n \mid x - n \leq x. \)
4. \(n > x \rightarrow n \mid x - x = 0. \)
5. \((\forall n. \ n \mid x \rightarrow n \mid y) \rightarrow x \leq y. \)
Proof Claims 1–4 have straightforward proofs unfolding the definition of divisibility. For (5), we consider $y = 0$ and $y > 0$. For $y = 0$, we obtain $x = 0$ by (4) with $n := Sx$ and (1). For $y > 0$, we obtain $x \leq y$ by (3) and (1).

Fact 18.3.11 The concrete gcd relation is a functional gcd relation.

Proof Condition γ_1 follows with Fact 18.3.10(1). Condition γ_2 is obvious from the definition. Condition γ_3 follows with Fact 18.3.10(2). The functionality of γ follows with Fact 18.3.10(5) and antisymmetry.

Fact 18.3.12 $g^{\mathbb{N} \to \mathbb{N}}$ satisfies Γ if and only if $\forall x y n. \ n \mid gxy \iff n \mid x \land n \mid y$.

Proof Facts 18.3.7, 18.3.11, and 18.3.8.

Exercise 18.3.13 (GCDs with modulo operation)
Assume G and M are functions $\mathbb{N} \to \mathbb{N}$ satisfying the equations

\[
G 0 y = y \\
G (Sx) y = G (Myx) (Sx) \\
M xy = \begin{cases}
 x & \text{if } x \leq y \\
 M(x - S y) y & \text{if } x > y
\end{cases}
\]

You will show that G computes GCDs.

Let γ be a gcd relation. Prove the following claims.

a) $Mxy \leq y$.
b) $\gamma(Myx)(Sx)z \rightarrow \gamma(Sx)yz$.
c) G respects γ.
d) $\forall x y n. \ n \mid Gxy \iff n \mid x \land n \mid y$.
e) A function satisfies Γ if and only if it satisfies the equations for G.

Hints: Claim (a) follows by size induction on x with y fixed. Claim (b) follows by size induction on y with x fixed. Claim (c) follows by size induction on x with y quantified using (b) and (a). Claim (d) follows from (c) and Fact 18.3.11. Claim (e) follows with (d) and Facts 18.3.12 and 18.3.11.

Exercise 18.3.14 Prove the following facts about functional gcd relations.

a) All functional gcd relations agree.
b) If f satisfies Γ, then $\lambda xy. fx y = z$ is a functional gcd relation.
c) A functional gcd relation exists if and only if a function satisfying Γ exists.

Use Facts 18.3.6, 18.3.7, and 18.3.8. Do not use the concrete gcd relation (i.e., Fact 18.3.11). Note that the above facts give us two abstract characterizations of GCDs: Either as a functional gcd relation or as a function satisfying the procedural specification Γ.

163
18 Size Recursion and Procedural Specifications

18.4 Step-Indexed Function Construction

Using size recursion, we could show with routine proofs that the procedural specifications of Euclidean division and greatest common divisors have unique solutions. Using size-recursion, we also could construct functions satisfying the procedural specifications using complementary arithmetic specifications. In both cases the functionality of the arithmetic specification was essential. We will now introduce a technique called step indexing providing for the direct construction of functions satisfying procedural specifications. Step indexing doesn’t require an arithmetic specification and works whenever the termination of the procedural specification can be argued with an arithmetic size function. Moreover, step indexing doesn’t require size recursion.

Suppose we have a procedural specification whose termination can be argued with an arithmetic size function. Then we can define an auxiliary function taking the size (a number) as an additional argument called step index and arrange things such that the recursion is structural recursion on the step index. We obtain the specified function by using the auxiliary function with a sufficiently large step index.

We demonstrate the technique with the procedural specification of GCDs (Definition 18.3.3). Here the step-indexed auxiliary function comes out as follows:

\[
G \circ x y := 0 \\
G (S n) x y := \Gamma (G n) x y
\]

The essential result about \(G \) is index independence: \(G n x y = G n' x y \) whenever the step indices are large enough.

Lemma 18.4.1 (Index independence)

\[\forall n n' x y. (n > x + y) \rightarrow (n' > x + y) \rightarrow G n x y = G n' x y. \]

Proof By induction on \(n \) with \(n' \), \(x \), and \(y \) quantified. The base case has a contradictory assumption. In the successor case, we destructure \(n' \). The case \(n' = 0 \) has a contradictory assumption. If \(n = S n_1 \) and \(n' = S n'_1 \), we have \(\Gamma (G n_1) x y = \Gamma (G n'_1) x y \). We destructure \(x \). The base case holds by computational equality. Next we destructure \(y \), where the base case again holds by computational equality. The claim now follows by case analysis on \((x' \leq y') + (x' > y') \) using the inductive hypothesis.

Fact 18.4.2 \(\lambda x y. G (S (x + y)) x y \) satisfies \(\Gamma \).

Proof Let \(g := \lambda x y. G (S (x + y)) x y \). We show \(G (S (x + y)) x y = \Gamma g x y \). For \(x = 0 \) and \(x = S x' \land y = 0 \) the claim holds by computational equality. It remains to show \(G (S (S x' + S y')) (S x') (S y') = \Gamma g (S x') (S y') \). The claim now follows by case analysis on \((x' \leq y') + (x' > y') \) using index independence (Lemma 18.4.1).
18.5 Summary

Exercise 18.4.3 (Euclidean division) Construct a function satisfying the procedural specification of Euclidean division in §18.2 using step indexing.

Exercise 18.4.4 (Fibonacci)
Recall the procedural specification of the Fibonacci function in Figure 1.5.

a) Show that all functions satisfying the procedural specification agree. Hint: Use size induction.

b) Construct and verify a function satisfying the procedural specification using step indexing.

Exercise 18.4.5 (GCDs with modulo operation)
Consider procedural specifications for functions $M, G : \mathbb{N} \to \mathbb{N}$ as follows:

\[
M(x, y) = \begin{cases}
x & \text{if } x \leq y \\
M(x - S(y), y) & \text{if } x > y
\end{cases}
\]

\[
G(y) = \begin{cases}
y & \text{if } y = 0 \\
G(S(x)) & \text{if } y = G(M(x, y))
\end{cases}
\]

a) Define the unfolding functions for M and G.

b) Show that the procedural specifications are unique using size recursion.

c) Construct and verify functions M and G satisfying the procedural specifications using step indexing.

Exercise 18.4.6 Nonterminating procedural specifications may be unsatisfiable or may have disagreeing solutions.

a) Give a function $F : \mathbb{N} \to \mathbb{N}$ such that $\forall x. f x = F x$.

b) Give a function $f : \mathbb{N} \to \mathbb{N}$ and functions $g : \mathbb{N} \to \mathbb{N}$ satisfying F such that $f x = g x$ for all x.

c) Convince yourself that unsatisfiable procedural specifications are unique.

We conjecture that all terminating procedural specifications are satisfiable and unique. Note that the notion of termination is informal.

18.5 Summary

In this chapter we studied procedural specifications and their relationship with relational specifications. We considered procedural specifications whose termination can be argued with an arithmetic size function. For the examples we considered, we made the following observations:

- Functions satisfying procedural specifications can be constructed with step-indexing.
- Index independence of step-indexed functions follows with structural induction on the step index.
18 Size Recursion and Procedural Specifications

- Correctness of a step-indexed function is a straightforward consequence of index independence.
- Uniqueness of procedural specifications follows with size recursion.
- That a procedural specification respects a relational specification can be shown with size recursion and derivation rules valid for the relational specification.

Given a relational specification, we may construct a certifying function for the specification using size recursion. Analysis of such constructions identifies the following building blocks:

- A procedural specification underlying the construction.
- Derivation rules mediating between the relational specification and the procedural specification.
- A specialized recursion operator obtaining the certifying function from the derivation rules.

The relational specifications we considered were all functional. This has the consequence that a function respects the relational specification if and only if it satisfies the accompanying procedural specification. Moreover, the relational specification can be characterized as a functional relation satisfying the derivation rules (see Exercise 18.3.14).

We may describe the situation with the slogan “Algorithm equals logic plus control” where the derivation rules are the “logic” and the recursion operator is the “control”.

Comparing for our examples the procedural specification with the derivation rules and the accompanying recursion operator, we notice that the procedural specification specifies algorithmic details that are hidden in the construction of the recursion operator.

The DNF solver appearing in §29.4 is an interesting example for the use of a specialized size recursion operator (DNF recursion §29.5) where the arguments are lists rather than numbers.

It is common to say that a function \(f \) satisfying a procedural specification \(\Phi \) is a fixed point of \(\Phi \). In fact, if we assume function extensionality, \(f \) satisfies \(\Phi \) if and only if \(\Phi f = f \) (i.e., \(f \) is a fixed point of \(\Phi \)).
19 Lists

Finite sequences \([x_1, \ldots, x_n]\) are omnipresent in mathematics and computer science, appearing with different interpretations and notations, for instance, as vectors, strings, or states of stacks and queues. In this chapter, we study inductive list types providing a recursive representation for finite sequences whose elements are taken from a base type. Besides numbers, lists are the most important recursive data type in computational type theory. Lists have much in common with numbers, given that recursion and induction are linear for both data structures. Lists also have much in common with finite sets, given that both have a notion of membership. In fact, our focus will be on the membership relation for lists.

We will see recursive predicates for membership and disjointness of lists, and also for repeating and nonrepeating lists. We will study nonrepeating lists and relate non-repetition to cardinality of lists.

19.1 Inductive Definition

A list represents a finite sequence \([x_1, \ldots, x_n]\) of values. Formally, lists are obtained with two constructors \texttt{nil} and \texttt{cons}:

\[
\begin{align*}
\texttt{[]} & \rightarrow \texttt{nil} \\
\texttt{[}x\texttt{]} & \rightarrow \texttt{cons } x \texttt{ nil} \\
\texttt{[}x, y\texttt{]} & \rightarrow \texttt{cons } x \texttt{ (cons } y \texttt{ nil)} \\
\texttt{[}x, y, z\texttt{]} & \rightarrow \texttt{cons } x \texttt{ (cons } y \texttt{ (cons } z \texttt{ nil))}
\end{align*}
\]

The constructor \texttt{nil} provides the empty list. The constructor \texttt{cons} yields for a value \(x\) and a list \([x_1, \ldots, x_n]\) the list \([x, x_1, \ldots, x_n]\). Given a list \texttt{cons } x \texttt{ A}, we call \(x\) the head and \(A\) the tail of the list. Given a list \([x_1, \ldots, x_n]\), we call \(n\) the length of the list, \(x_1, \ldots, x_n\) the elements of the list, and the numbers \(0, \ldots, n - 1\) the positions of the list. An element may appear at more than one position in a list. For instance, \([2, 2, 3]\) is a list of length 3 that has 2 elements, where the element 2 appears at positions 0 and 1.
19 Lists

Formally, lists are accommodated with an inductive type definition

\[L(X : T) : T ::= \text{nil} \mid \text{cons} \ (X, L(X)) \]

introducing three constructors:

\[L : T \rightarrow T \]
\[\text{nil} : \forall X^T. L(X) \]
\[\text{cons} : \forall X^T. X \rightarrow L(X) \rightarrow L(X) \]

Lists of type \(L(X) \) are called **lists over** \(X \). The typing discipline enforces that all elements of a list have the same type. For \(\text{nil} \) and \(\text{cons} \), we don’t write the first argument \(X \) and use the following notations:

\[
\begin{align*}
 \text{[]} & := \text{nil} \\
 x :: A & := \text{cons} \ x \ A
\end{align*}
\]

For \(\text{cons} \), we omit parentheses as follows:

\[x :: y :: A \leadsto x :: (y :: A)\]

The inductive definition of lists provides for case analysis, recursion, and induction on lists, in a way that is similar to what we have seen for numbers. We define the **universal eliminator for lists** as follows:

\[
\begin{align*}
 \text{E}_L : & \forall X^T. p^{L(X) - T} \rightarrow (\forall x^A. pA \rightarrow p(x :: A)) \rightarrow \forall A. pA \\
 \text{E}_L Xpe_1e_2 [\text{[]} & := e_1 \\
 \text{E}_L Xpe_1e_2 (x :: A) & := e_2 xA(\text{E}_L Xpe_1e_2 A)
\end{align*}
\]

The eliminator provides for inductive proofs, recursive function definitions, and structural case analysis.

Fact 19.1.1 (Constructor laws)

1. \[[] \neq x :: A \] (disjointness)
2. \[x :: A = y :: B \leadsto x = y \] (injectivity)
3. \[x :: A = y :: B \rightarrow A = B \] (injectivity)
4. \[x :: A \neq A \] (progress)

Proof The proofs are similar to the corresponding proofs for numbers (Fact 15.1.1). Claim (4) corresponds to \(Sn \neq n \) and follows by induction on \(A \) with \(x \) quantified.

Fact 19.1.2 (Discreteness) If \(X \) is a discrete type, then \(L(X) \) is a discrete type: \(\tau(X) \rightarrow \tau(L(X)) \).
19.2 Basic Operations

Proof Let X be discrete and A, B be lists over X. We show $D(A = B)$ by induction over A with B quantified followed by destructuring of B using disjointness and injectivity from Fact 19.1.1. In case both lists are nonempty with heads x and y, an additional case analysis on $x = y$ is needed.

Exercise 19.1.3 Prove $\forall X^T. A^L(X) \vdash D(A = [])$.

Exercise 19.1.4 Prove $\forall X^T. A^L(X) \vdash (A = []) + \Sigma xB. A = x :: B$.

19.2 Basic Operations

We introduce three basic operations on lists, which yield the length of a list, concatenate two lists, and apply a function to every position of a list:

- **length**

 \[
 \text{len} [x_1, \ldots, x_n] = n
 \]

- **concatenation**

 \[
 [x_1, \ldots, x_m] + [y_1, \ldots, y_n] = [x_1, \ldots, x_m, y_1, \ldots, y_n]
 \]

- **map**

 \[
 f[\@] [x_1, \ldots, x_n] = [f[\@] x_1, \ldots, f[\@] x_n]
 \]

Formally, we define the operations as recursive functions:

- **len**

 \[
 \text{len} : \forall X^T. L(X) \to \mathbb{N}
 \]

 \[
 \begin{align*}
 \text{len} [] & := 0 \\
 \text{len} (x :: A) & := S (\text{len} A)
 \end{align*}
 \]

- **+**

 \[
 + : \forall X^T. L(X) \to L(X) \to L(X)
 \]

 \[
 [] + B := B \\
 (x :: A) + B := x :: (A + B)
 \]

- **@**

 \[
 @ : \forall XY^T. (X \to Y) \to L(X) \to L(Y)
 \]

 \[
 f[\@] [] := [] \\
 f[\@] (x :: A) := fx :: (f[\@] A)
 \]

Note that we accommodate X and Y as implicit arguments for readability.

Fact 19.2.1

1. $A + (B + C) = (A + B) + C$ (associativity)
2. $A + [] = A$
3. $\text{len}(A + B) = \text{len} A + \text{len} B$
4. $\text{len}(f[\@] A) = \text{len} A$
5. $\text{len} A = 0 \iff A = []$

Proof The equations follow by induction on A. The equivalence follows by case analysis on A.

\[169\]
19 Lists

19.3 Membership

Informally, we may characterize membership in lists with the equivalence

\[x \in [x_1, \ldots, x_n] \iff x = x_1 \lor \cdots \lor x = x_n \lor \bot \]

Formally, we define the membership predicate by structural recursion on lists:

(\in) : \forall X T. X \rightarrow L(X) \rightarrow \mathbb{P}

\[(x \in []) := \bot \]

\[(x \in y :: A) := (x = y \lor x \in A) \]

We treat the type argument X of the membership predicate as implicit argument. If \(x \in A \), we say that \(x \) is an element of \(A \).

Fact 19.3.1 (Existential Characterization) \(x \in A \iff \exists A_1A_2. A = A_1 + x :: A_2. \)

Proof Direction \(\rightarrow \) follows by induction on \(A \). The nil case is contradictory. In the cons case a case analysis on \(x \in a :: A' \) closes the proof with the inductive hypothesis.

Direction \(\leftarrow \) follows by induction on \(A_1 \). ■

Fact 19.3.2 \(\forall xaX \forall A L(X). \ \mathcal{E}(X) \rightarrow x \in a :: A \rightarrow (x = a) + (x \in A). \)

Proof Straightforward. ■

Fact 19.3.3 (Factorization) \(\forall xX A L(X). \ \mathcal{E}(X) \rightarrow x \in A \rightarrow \Sigma A_1A_2. A = A_1 + x :: A_2. \)

Proof By induction on \(A \). The nil case is contradictory. In the cons case a case analysis using Fact 19.3.2 closes the proof. ■

Fact 19.3.4 (Decidable Membership) \(\forall xX \forall A L(X). \ \mathcal{E}(X) \rightarrow D(x \in A). \)

Proof By induction on \(A \). ■

Recall that bounded quantification over numbers preserves decidability (Fact 15.6.6). Similarly, quantification over the elements of a list preserves decidability.

Fact 19.3.5 (Bounded Quantification) Let \(p : X \rightarrow \mathbb{P} \) and \(A : L(X) \). Then:

1. \((\forall x. D(p x)) \rightarrow D(\forall x. x \in A \rightarrow p x). \)
2. \((\forall x. D(p x)) \rightarrow D(\exists x. x \in A \land p x). \)
3. \((\forall x. D(p x)) \rightarrow (\Sigma x. x \in A \land p x) + (\forall x. x \in A \rightarrow \neg p x). \)
19.4 List Inclusion and List Equivalence

Proof By induction on A. ■

Fact 19.3.6 (Membership laws)
1. $x \in A + B \iff x \in A \lor x \in B$.
2. $x \in f@A \iff \exists a. a \in A \land x = fa$.

Proof By induction on A. ■

Exercise 19.3.7
Define a function $\delta : L(\emptyset(X)) \rightarrow L(X)$ such that $x \in \delta A \iff \Diamond x \in A$.

Exercise 19.3.8 (Pigeonhole) Prove that a list of numbers whose sum is greater than the length of the list must contain a number that is at least 2:

$$\text{sum } A > \text{len } A \rightarrow \exists x. x \in A \land x \geq 2$$

First define the function sum.

19.4 List Inclusion and List Equivalence

We may see a list as a representation of a finite set. List membership then corresponds to set membership. The list representation of sets is not unique since the same set may have different list representations. For instance, $[1, 2]$, $[2, 1]$, and $[1, 1, 2]$ are different lists all representing the set $\{1, 2\}$. In contrast to sets, lists are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may not have representations in type theory. This is in sharp contrast to set-based mathematics where sets are taken as basic formal objects. The reason sets don’t appear natively in computational type theory is that sets in general are noncomputational objects.

We will take lists over X as type-theoretic representations of finite sets over X. With this interpretation of lists in mind, we define list inclusion and list equivalence as follows:

$$A \subseteq B := \forall x. x \in A \rightarrow x \in B$$

$$A \equiv B := A \subseteq B \land B \subseteq A$$

Note that two lists are equivalent if and only if they represent the same set.

Fact 19.4.1 List inclusion $A \subseteq B$ is reflexive and transitive. List equivalence $A \equiv B$ is reflexive, symmetric, and transitive.
19 Lists

Fact 19.4.2 We have the following properties for membership, inclusion, and equivalence of lists.

\[
\begin{align*}
 x \not\in \emptyset & \quad x \in [y] \quad x = y \\
 \emptyset \subseteq A & \quad A \subseteq \emptyset \quad A = [] \\
 x \in y :: A \quad x \neq y \quad x \in A & \quad x \not\in y :: A \quad x \neq y \land x \not\in A \\
 A \subseteq B \quad x \in A \quad x \in B & \quad A \equiv B \quad x \in A \quad x \in B \\
 A \subseteq B \quad x :: A \subseteq x :: B & \quad A \equiv B \quad x :: A \equiv x :: B \\
 A \subseteq B \quad x :: A \subseteq x :: B & \quad x :: A \subseteq B \\
 x :: A \subseteq x :: B \quad x \notin A & \quad A \subseteq [y] \quad x = y \land x \subseteq [y] \\
 x :: A \equiv x :: x :: A & \quad x :: y :: A \equiv y :: x :: A \\
 x \in A \quad A \equiv x :: A & \quad x \in A \quad A \equiv x :: A \\
 x \in A + B \quad x \in A \lor x \in B & \quad A \not\subseteq A' \quad B \subseteq B' \quad A + B \subseteq A' + B' \\
 A + B \subseteq C & \quad A \subseteq C \land B \subseteq C
\end{align*}
\]

Proof Except for the membership fact for concatenation, which already appeared as Fact 19.3.6, all claims have straightforward proofs not using induction.

Fact 19.4.3 (Deletion) \(x \in A \rightarrow \exists A'. A \equiv x :: A' \land S(len A') = len A. \)

Proof Follows with Fact 19.3.1. There is also a direct proof by induction on \(A. \)

Fact 19.4.4 (Deletion) \(\forall x \forall A \in L(x). E(x) \rightarrow x \in A \rightarrow \Sigma A'. A \equiv x :: A' \land S(len A') = len A. \)

Proof Follows with Fact 19.3.3. There is also a direct proof by induction on \(A \) using Fact 19.3.2.

Fact 19.4.5 Let \(A \) and \(B \) be lists over a discrete type. Then \(D(A \subseteq B) \) and \(D(A \equiv B). \)

Proof Holds since membership is decidable (Fact 19.3.4) and bounded quantification preserves decidability (Fact 19.3.5).

19.5 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional equivalence \(P \quad P' \) or a list equivalence \(A \equiv A' \), provided the subterm \(P \) or \(A \) to be rewritten occurs in a compatible position. This form of rewriting is known as setoid rewriting. The following facts identify compatible positions by means of compatibility laws.
Fact 19.5.1 (Compatibility laws for propositional equivalence)
Let \(P \iff P' \) and \(Q \iff Q' \). Then:
\[
\begin{align*}
P \land Q & \iff P' \land Q' \\
\neg P & \iff \neg P' \\
P \lor Q & \iff P' \lor Q' \\
(P \rightarrow Q) & \iff (P' \rightarrow Q') \\
(P \iff Q) & \iff (P' \iff Q')
\end{align*}
\]

Fact 19.5.2 (Compatibility laws for list equivalence)
Let \(A \equiv A' \) and \(B \equiv B' \). Then:
\[
\begin{align*}
x \in A & \iff x \in A' \\
x :: A & \equiv x :: A' \\
A \subseteq B & \iff A' \subseteq B' \\
A + B & \equiv A' + B' \\
f@A & \equiv f@A'
\end{align*}
\]

Coq’s setoid rewriting facility makes it possible to use the rewriting tactic for
rewriting with equivalences, provided the necessary compatibility laws and equiv-
ance relations have been registered with the facility. The compatibility laws for
propositional equivalence are preregistered.

Exercise 19.5.3 Which of the compatibility laws are needed to justify rewriting the
claim \(\neg(x \in y :: (f@A) + B) \) with the equivalence \(A \equiv A' \)?

19.6 Nonrepeating Lists

A list is repeating if it contains some element more than once. For instance, \([1, 2, 1]\)
is repeating and \([1, 2, 3]\) is nonrepeating. Formally, we define repeating lists over a
base type \(X \) with a recursive predicate:
\[
\begin{align*}
\text{rep} : \mathcal{L}(X) \rightarrow \mathbb{P} \\
\text{rep}[] & := \bot \\
\text{rep} (x :: A) & := x \in A \lor \text{rep} A
\end{align*}
\]

Fact 19.6.1 (Characterization)
For every list \(A \) over a discrete type we have:
\[
\text{rep}A \iff \exists x. A_1 A_2. \ A = A_1 + x :: A_2 \land x \in A_2.
\]

Proof By induction on \(\text{rep}A \) using Fact 19.3.1.

We also define a recursive predicate for nonrepeating lists over a base type \(X \):
\[
\begin{align*}
\text{nrep} : \mathcal{L}(X) \rightarrow \mathbb{P} \\
\text{nrep}[] & := \top \\
\text{nrep} (x :: A) & := x \notin A \land \text{nrep} A
\end{align*}
\]
19 Lists

Theorem 19.6.2 (Partition) Let A be a list over a discrete type. Then:

1. $\text{rep } A \rightarrow \text{nrep } A \rightarrow \bot$ (disjointness)
2. $\text{rep } A + \text{nrep } A$ (exhaustiveness)

Proof Both claims follow by induction on A. Discreteness is only needed for the second claim, which needs decidability of membership (Fact 19.3.4) for the cons case.

Corollary 19.6.3 Let A be a list over a discrete type. Then:

1. $\mathcal{D}(\text{rep } A)$ and $\mathcal{D}(\text{nrep } A)$.
2. $\text{rep } A \leftrightarrow \neg \text{nrep } A$ and $\text{nrep } A \leftrightarrow \neg \text{rep } A$.

Fact 19.6.4 (Equivalent nonrepeating list)

For every list over a discrete type one can obtain an equivalent nonrepeating list:

$$\forall A \Sigma B. B \equiv A \wedge \text{nrep } B.$$

Proof By induction on A. For $x :: A$, let B be the list obtained for A with the inductive hypothesis. If $x \in A$, B has the required properties for $x :: A$. If $x \notin A$, $x :: B$ has the required properties for $x :: A$.

The next fact formulates a key property concerning the cardinality of lists (number of different elements). It is carefully chosen so that it provides a building block for further results (Corollary 19.6.6). Finding this fact took experimentation. To get the taste of it, try to prove that equivalent nonrepeating lists have equal length without looking at our development.

Fact 19.6.5 (Discriminating element)

Every nonrepeating list over a discrete type contains for every shorter list an element not in the shorter list:

$$\forall AB. \text{nrep } A \rightarrow \text{len } B < \text{len } A \rightarrow \Sigma x. x \in A \wedge x \notin B.$$

Proof By induction on A with B quantified. The base case follows by computational falsity elimination. For $A = a :: A'$ we do case analysis on $(a \in B) + (a \notin B)$. The case $a \notin B$ is trivial. For $a \in B$, Fact 19.4.4 yields some B' shorter than B such that $B \equiv a :: B'$. The inductive hypothesis now yields some $x \in A'$ such that $x \notin B'$. It now suffices to show $x \notin B$. We assume $x \in B \equiv a :: B'$ and derive a contradiction. Since $x \notin B'$, we have $x = a$, which is in contradiction with $\text{nrep } (a :: A')$.

Corollary 19.6.6 Let A and B be lists over a discrete type X. Then:

1. $\text{nrep } A \rightarrow A \subseteq B \rightarrow \text{len } A \leq \text{len } B$.
2. $\text{nrep } A \rightarrow \text{nrep } B \rightarrow A \equiv B \rightarrow \text{len } A = \text{len } B$.
3. $A \subseteq B \rightarrow \text{len } B < \text{len } A \rightarrow \text{rep } A$.
4. $\text{nrep } A \rightarrow A \subseteq B \rightarrow \text{len } B \leq \text{len } A \rightarrow \text{nrep } B$.
5. $\text{nrep } A \rightarrow A \subseteq B \rightarrow \text{len } B \leq \text{len } A \rightarrow B \equiv A$.

174
Proof Interestingly, all claims follow without induction from Facts 19.6.5, 19.6.1, and 19.6.3.

For (1), assume len $A > \text{len } B$ and derive a contradiction with Fact 19.6.5. Claims (2) and (3) follow from Claim (1), where for (3) we assume $\text{nrep } A$ and derive a contradiction (justified by Corollary 19.6.3).

For (4), we assume $\text{rep } B$ and derive a contradiction (justified by Corollary 19.6.3). By Fact 19.6.1, we obtain a list B' such that $A \subseteq B'$ and $\text{len } B' < \text{len } A$. Contradiction with (1).

For (5), it suffices to show $B \subseteq A$. We assume $x \in B$ and show $x \in A$. Exploiting the decidability of membership we assume $x \notin A$ and derive a contradiction. Using Fact 19.6.5 for $x :: A$ and B, we obtain $z \in x :: A$ and $z \notin B$, which is contradictory. ■

We remark that Corollary 19.6.6 (3) may be understood as a pigeonhole lemma.

Exercise 19.6.7 Prove the following facts about map and nonrepeating lists:

a) $\text{injective } f \rightarrow \text{nrep } A \rightarrow \text{nrep } (f@A)$.

b) $\text{nrep } (f@A) \rightarrow x \in A \rightarrow x' \in A \rightarrow f x = f x' \rightarrow x = x'$.

c) $\text{nrep } (f@A) \rightarrow \text{nrep } A$.

Exercise 19.6.8 (Injectivity-surjectivity agreement) Let X be a discrete type and A be a list containing all elements of X. Prove that a function $X \rightarrow X$ is injective if and only if it is surjective.

This is an interesting exercise. It can be stated as soon as membership in lists is defined. To solve it, however, one needs properties of length, map, element removal, and nonrepeating lists. If one doesn’t know these notions, the exercise makes an interesting project since one has to invent these notions. Our solution uses Corollary 19.6.6 and Exercise 19.6.7.

We can sharpen the problem of the exercise by asking for a proof that a function $\Omega^n(X) \rightarrow \Omega^n(X)$ is injective if and only if it is surjective. There should be a proof not using lists.

Exercise 19.6.9 (Factorization) Let A be a list over a discrete type. Prove $\text{rep } A \rightarrow \Sigma x A_1 A_2 A_3. A = A_1 + x :: A_2 + x :: A_3$.

Exercise 19.6.10 (Partition) The proof of Corollary 19.6.3 is straightforward and follows a general scheme. Let P and Q be propositions such that $P \rightarrow Q \rightarrow \bot$ and $P + Q$. Prove $\text{dec } P$ and $P \leftrightarrow \neg Q$. Note that $\text{dec } Q$ and $Q \leftrightarrow \neg P$ follow by symmetry.

Exercise 19.6.11 (Even and Odd) Define recursive predicates even and odd on numbers and show that they partition the numbers: even $n \rightarrow$ odd $n \rightarrow \bot$ and even $n +$ odd n.

175
Exercise 19.6.12 Define a function \(\text{seq} : \mathbb{N} \rightarrow \mathbb{N} \rightarrow L(\mathbb{N}) \) for which you can prove the following:

a) \(\text{seq} 2 5 = [2, 3, 4, 5, 6] \)

b) \(\text{seq} n (Sk) = n :: \text{seq} (Sk) k \)

c) \(\text{len} (\text{seq} nk) = k \)

d) \(x \in \text{seq} nk \iff n \leq x < n + k \)

e) \(\text{nrep} (\text{seq} nk) \)

Exercise 19.6.13 (List of numbers) Prove that every non-repeating list of numbers of length \(Sn \) contains a number \(k \geq n \). Hint: Use \(\text{seq} 0 n \) from Exercise 19.6.12 and Corollary 19.6.6 (1). First prove \(\forall n A. (\Sigma k \in A. k \geq n) + \forall k \in A. k < n \).

Exercise 19.6.14 (List reversal) Define a list reversal function \(\text{rev} : L(X) \rightarrow L(X) \) and prove the following:

a) \(\text{rev}(A + + B) = \text{rev} B + + \text{rev} A \)

b) \(\text{rev}(\text{rev} A) = A \)

c) \(x \in A \iff x \in \text{rev} A \)

d) \(\text{nrep} A \rightarrow x \notin A \rightarrow \text{nrep} (A + [x]) \)

e) \(\text{nrep} A \rightarrow \text{nrep}(\text{rev} A) \)

f) Reverse list induction: \(\forall p^{X \rightarrow T}. p[\] \rightarrow (\forall x A. p(A) \rightarrow p(A + [x])) \rightarrow \forall A. pA. \)

Hint: By (a) it suffices to prove \(\forall A. p(\text{rev} A) \), which follows by induction on \(A \).

Exercise 19.6.15 (Equivalent nonrepeating lists) Show that equivalent nonrepeating lists have equal length without assuming discreteness of the base type. Hint: Show \(\text{nrep} A \rightarrow A \subseteq B \rightarrow \text{len} A \leq \text{len} B \) by induction on \(A \) with \(B \) quantified using the deletion lemma 19.4.3.

19.7 Constructive Discrimination Lemma

Using XM, we can prove that every non-repeating list contains for every shorter list an element that is not in the shorter list:

\[
\text{XM} \rightarrow \forall X \forall AB^{L(X)}. \text{nrep} A \rightarrow \text{len} B < \text{len} A \rightarrow \exists x. x \in A \land x \notin B
\]

We speak of the classical discrimination lemma. We have already shown a computational version of the lemma (Fact 19.6.5)

\[
\forall X \forall AB^{L(X)}. E(X) \rightarrow \text{nrep} A \rightarrow \text{len} B < \text{len} A \rightarrow \exists x. x \in A \land x \notin B
\]
19.7 Constructive Discrimination Lemma

replacing XM with an equality decider for the base type X. In this section our main interest is in proving the constructive discrimination lemma

\[\forall X \forall AB^{L(X)}. \text{nrep} A \rightarrow \text{len} B < \text{len} A \rightarrow \neg \neg \exists x. x \in A \land x \notin B \]

which assumes neither XM nor an equality decider. Note that the classical discrimination lemma is a trivial consequence of the constructive discrimination lemma. We may say that the constructive discrimination lemma is obtained from the classical discrimination lemma by eliminating the use of XM by weakening the existential claim with a double negation. Elimination techniques for XM have useful applications.

We first prove the classical discrimination lemma following the proof of Fact 19.6.5.

Lemma 19.7.1 (Classical discrimination)

\[XM \rightarrow \forall AB^{L(X)}. \text{nrep} A \rightarrow \text{len} B < \text{len} A \rightarrow \exists x. x \in A \land x \notin B. \]

Proof By induction on A with B quantified. The base case follows by computational falsity elimination. For \(A = a :: A' \), we do case analysis on \((a \in B) \lor (a \notin B)\) exploiting XM. The case \(a \notin B \) is trivial. For \(a \in B \), Fact 19.4.3 yields some \(B' \) shorter than \(B \) such that \(B \equiv a :: B' \). The inductive hypothesis now yields some \(x \in A' \) such that \(x \notin B' \). It now suffices to show \(x \notin B \). We assume \(x \in B \equiv a :: B' \) and derive a contradiction. Since \(x \notin B' \), we have \(x = a \), which contradicts \(\text{nrep} (a :: A') \). ■

We observe that there is only a single use of XM. When we prove the constructive version with the double negated claim, we will exploit that XM is available for stable claims (Fact 13.3.8 (1)). Moreover, we will use the rule formulated by Fact 13.3.8 (2) to erase the double negation from the inductive hypothesis so that we can harvest the witness.

Lemma 19.7.2 (Constructive discrimination)

\[\forall AB^{L(X)}. \text{nrep} A \rightarrow \text{len} B < \text{len} A \rightarrow \neg \neg \exists x. x \in A \land x \notin B. \]

Proof By induction on A with B quantified. The base case follows by computational falsity elimination. Otherwise, we have \(A = a :: A' \). Since the claim is stable, we can do case analysis on \(a \in B \lor a \notin B \) (Fact 13.3.8 (1)). If \(a \notin B \), we have found a discriminating element and finish the proof with \(\forall P. P \rightarrow \neg \neg P \). Otherwise, we have \(a \in B \). Fact 19.4.3 yields some \(B' \) shorter than \(B \) such that \(B \equiv a :: B' \). Using Fact 13.3.8 (2), the inductive hypothesis now gives us \(x \in A' \) such that \(x \notin B' \). By \(\forall P. P \rightarrow \neg \neg P \) it now suffices to show \(x \notin B \), which follows as in the proof of Fact 19.7.1. ■

Exercise 19.7.3 Prove that the double negation of \(\exists \) agrees with the double negation of \(\Sigma \): \(\neg \neg \exists p \rightarrow ((\Sigma p \rightarrow \bot) \rightarrow \bot) \).
19 Lists

19.8 Element Removal

We assume a discrete type X and define a function $A \setminus x$ for element removal as follows:

\[
\setminus : \mathcal{L}(X) \to X \to \mathcal{L}(X)
\]

\[
\texttt{[]} \setminus := \texttt{[]}
\]

\[
(x :: A) \setminus y := \text{IF } \neg x = y \text{ THEN } A \setminus y \text{ ELSE } x :: (A \setminus y)
\]

Fact 19.8.1
1. $x \in A \setminus y \iff x \in A \land x \neq y
2. $\text{len} (A \setminus x) \leq \text{len} A
3. $x \in A \to \text{len} (A \setminus x) < \text{len} A.
4. $x \notin A \to A \setminus x = A

Proof By induction on A. ■

Exercise 19.8.2 Prove $x \in A \to A = x :: (A \setminus x)$.

Exercise 19.8.3 Prove the following equations, which are useful in proofs:
1. $(x :: A) \setminus x = A \setminus x$
2. $x \neq y \to (y :: A) \setminus x = y :: (A \setminus x)$

19.9 Cardinality

The cardinality of a list is the number of different elements in the list. For instance, $[1,1,1]$ has cardinality 1 and $[1,2,3,2]$ has cardinality 3. Formally, we may say that the cardinality of a list is the length of an equivalent nonrepeating list. This characterization is justified since equivalent nonrepeating lists have equal length (Corollary 19.6.6(3)), and every list is equivalent to a non-repeating list (Fact 19.6.4).

We assume that lists are taken over a discrete type X and define a cardinality function as follows:

\[
\text{card} : \mathcal{L}(X) \to \mathbb{N}
\]

\[
\text{card}([]) := 0
\]

\[
\text{card}(x :: A) := \text{IF } \neg x \in A \text{ THEN card } A \text{ ELSE } S(\text{card } A)
\]

Note that we write ‘$x \in A$’ for the application of the membership decider provided by Fact 19.3.4. We prove that the cardinality function agrees with the cardinalities provided by equivalent nonrepeating lists.
19.9 Cardinality

Fact 19.9.1 (Cardinality)
1. \(\forall A \Sigma B. B \equiv A \land \text{nrep } B \land \text{len } B = \text{card } A. \)
2. \(\text{card } A = n \iff \exists B. B \equiv A \land \text{nrep } B \land \text{len } B = n. \)

Proof Claim 1 follows by induction on \(A \). Claim 2 follows with Claim 1 and Corollary 19.6.6(2).

Corollary 19.9.2
1. \(\text{card } A \leq \text{len } A \)
2. \(A \subseteq B \rightarrow \text{card } A \leq \text{card } B \)
3. \(A = B \rightarrow \text{card } A = \text{card } B \).
4. \(\text{rep } A \rightarrow \text{card } A < \text{len } A \) (pigeonhole)
5. \(\text{nrep } A \rightarrow \text{card } A = \text{len } A \)
6. \(x \in A \rightarrow \text{card } A = S(\text{card } (A \setminus x)) \)

Proof All facts follow without induction from Fact 19.9.1, Corollary 19.6.6, and Corollary 19.6.3.

Exercise 19.9.3 Given direct proofs of (1), (4) and (5) of Corollary 19.9.2 by induction on \(A \). Use (1) for (4) and (5).

Exercise 19.9.4 (Cardinality predicate) We define a recursive cardinality predicate:

\[
\begin{align*}
\text{Card} : \mathcal{L}(X) & \rightarrow X \rightarrow \mathcal{P} \\
\text{Card } [\] 0 & := \top \\
\text{Card } [\] (Sn) & := \bot \\
\text{Card } (x :: A) 0 & := \bot \\
\text{Card } (x :: A) (Sn) & := \text{IF } 'x \in A' \text{ THEN Card } A (Sn) \text{ ELSE Card } A \ n \\
\end{align*}
\]

Prove that the cardinality predicate agrees with the cardinality function:
\(\forall An. \text{Card } An \rightarrow \text{card } A = n. \)

Exercise 19.9.5 (Disjointness predicate) We define disjointness of lists as follows:

\[
\text{disjoint } AB := \neg \exists x. x \in A \land x \in B
\]

Define a recursive predicate \(\text{Disjoint} : \mathcal{L}(X) \rightarrow \mathcal{L}(X) \rightarrow \mathcal{P} \) in the style of the cardinality predicate and verify that it agrees with the above predicate disjoint.
19 Lists

19.10 Position-Element Mappings

The positions of a list \([x_1, \ldots, x_n]\) are the numbers 0, \ldots, \(n - 1\). More formally, a number \(n\) is a position of a list \(A\) if \(n < \text{len}\ A\). If a list is nonrepeating, we have a bijective relation between the positions and the elements of the list. For instance, the list \([7, 8, 5]\) gives us the bijective relation

\[
0 \leadsto 7, \quad 1 \leadsto 8, \quad 2 \leadsto 5
\]

It turns out that for a discrete type \(X\) we can define two functions

\[
pos : \mathcal{L}(X) \to X \to \mathbb{N} \\
\text{sub} : X \to \mathcal{L}(X) \to \mathbb{N} \to X
\]

realizing the position-element bijection:

\[
x \in A \to \text{sub} \ y \ A \ (\text{pos} \ A x) = x \\
n \text{rep} A \to n < \text{len} A \to \text{pos} A (\text{sub} \ y \ A n) = n
\]

The function \(\text{pos}\) uses 0 as escape value for positions, and the function \(\text{sub}\) uses a given \(y^X\) as escape value for elements of \(X\). The name \(\text{sub}\) stands for subscript. The functions \(\text{pos}\) and \(\text{sub}\) will be used in Chapter 33 for constructing injections and bijections between finite types.

Here are the definitions of \(\text{pos}\) and \(\text{sub}\) we will use:

\[
\text{pos} : \mathcal{L}(X) \to X \to \mathbb{N} \\
\text{pos} [\square] x := 0 \\
\text{pos} (a :: A) x := \text{if } 'a = x' \text{ then } 0 \text{ else } S(\text{pos} A x)
\]

\[
\text{sub} : X \to \mathcal{L}(X) \to \mathbb{N} \to X \\
\text{sub} y [\square] n := y \\
\text{sub} y (a :: A) 0 := a \\
\text{sub} y (a :: A) (S n) := \text{sub} y A n
\]

Fact 19.10.1 Let \(A\) be a list over a discrete type. Then:

1. \(x \in A \to \text{sub} A (\text{pos} A x) = x\)
2. \(x \in A \to \text{pos} A x < \text{len} A\)
3. \(n < \text{len} A \to \text{sub} A n \in A\)
4. \(n \text{rep} A \to n < \text{len} A \to \text{pos} A (\text{sub} A n) = n\)

Proof All claims follow by induction on \(A\). For (3), the inductive hypothesis must quantify \(n\) and the cons case needs case analysis on \(n\).
19.10 Position-Element Mappings

Exercise 19.10.2 Prove $(\forall X. L(X) \rightarrow N \rightarrow X) \rightarrow \bot$.

Exercise 19.10.3 Let A and B be lists over a discrete type X. Prove the following:

a) $x \in A \rightarrow \text{pos } Ax = \text{pos } (A + B)x$

b) $x \in A \rightarrow y \in A \rightarrow \text{pos } Ax = \text{pos } Ay \rightarrow x = y$

Exercise 19.10.4 One can realize pos and sub with option types

\[
\begin{align*}
pos & : L(X) \rightarrow X \rightarrow O(N) \\
\text{sub} & : L(X) \rightarrow N \rightarrow O(X)
\end{align*}
\]

and this way avoid the use of escape values. Define pos and sub with option types for a discrete base type X and verify the following properties:

a) $x \in A \rightarrow \Sigma n.\ \text{pos } Ax = ^*n$

b) $n < \text{len } A \rightarrow \Sigma x.\ \text{sub } An = ^*x$

c) $\text{pos } Ax = ^*n \rightarrow \text{sub } An = ^*x$

d) $\text{nrep } A \rightarrow \text{sub } An = ^*x \rightarrow \text{pos } Ax = ^*n$

e) $\text{sub } An = ^*x \rightarrow x \in A$

f) $\text{pos } Ax = ^*n \rightarrow n < \text{len } A$
20 Case Study: Expression Compiler

We verify a compiler translating arithmetic expressions into code for a stack machine. We use a reversible compilation scheme and verify a decompiler reconstructing expressions from their codes. The example hits a sweet spot of computational type theory: Inductive types provide a perfect representation for abstract syntax, and structural recursion on the abstract syntax provides for the definitions of the necessary functions (evaluation, compiler, decompiler). The correctness conditions for the functions can be expressed with equations, and generalized versions of the equations can be verified with structural induction.

This is the first time in our text we see an inductive type with binary recursion and two inductive hypotheses. Moreover, we see a notational convenience for function definitions known as catch-all equations.

20.1 Expressions and Evaluation

We will consider arithmetic expressions obtained with constants, addition, and subtraction. Informally, we describe the abstract syntax of expressions with a scheme known as BNF:

\[e : \text{exp} ::= x \mid e_1 + e_2 \mid e_1 - e_2 \quad (x : \text{N}) \]

Following the BNF, we represent expressions with the inductive type

\[\text{exp} : \mathbb{T} ::= \text{con}(\text{N}) \mid \text{add} (\text{exp, exp}) \mid \text{sub} (\text{exp, exp}) \]

To ease our presentation, we will write the formal expressions provided by the inductive type \text{exp} using the notation suggested by the BNF. For instance:

\[e_1 + e_2 - e_3 \leadsto \text{sub} (\text{add} e_1 e_2) e_3 \]

We can now define an evaluation function computing the values of expressions:

\[
E : \text{exp} \to \text{N} \\
E x := x \\
E (e_1 + e_2) := E e_1 + E e_2 \\
E (e_1 - e_2) := E e_1 - E e_2
\]
20 Case Study: Expression Compiler

Note that \(E \) is defined with binary structural recursion. Moreover, \(E \) is executable. For instance, \(E(3 + 5 - 2) \) reduces to 6, and the equation \(E(3 + 5 - 2) = E(2 + 3 + 1) \) follows by computational equality.

Exercise 20.1.1 Do the reduction \(E(3 + 5 - 2) \rightarrow^* 6 \) step by step (at the equational level).

Exercise 20.1.2 Prove some of the constructor laws for expressions. For instance, show that \(\text{con} \) is injective and that \(\text{add} \) and \(\text{sub} \) are disjoint.

Exercise 20.1.3 Define an eliminator for expressions providing for structural induction on expressions. As usual the eliminator has a clause for each of the three constructors for expression. Since additions and subtractions have two subexpressions, the respective clauses of the eliminator have two inductive hypotheses.

20.2 Code and Execution

We will compile expressions into lists of numbers. We refer to the list obtained for an expression as the **code** of the expression. The compilation will be such that an expression can be reconstructed from its code, and that execution of the code yields the same value as evaluation of the expression.

Code is executed on a stack and yields a stack, where **stacks** are list of numbers. We define an **execution function** \(RCA \) executing a code \(C \) on a stack \(A \) as follows:

\[
R : L(N)
ightarrow L(N) = L(N)
\]

\[
R [] A := A
\]

\[
R (0 :: C) (x_1 :: x_2 :: A) := R C (x_1 + x_2 :: A)
\]

\[
R (1 :: C) (x_1 :: x_2 :: A) := R C (x_1 - x_2 :: A)
\]

\[
R (SSx :: C) A := R C (x :: A)
\]

\[
R _ _ := []
\]

Note that the function \(R \) is defined by recursion on the first argument (the code) and by case analysis on the second argument (the stack). From the equations defining \(R \) you can see that the first number of the code determines what is done:

- 0: take two numbers from the stack and put their sum on the stack.
- 1: take two numbers from the stack and put their difference on the stack.
- SSx: put \(x \) on the stack.

The first equation defining \(R \) returns the stack obtained so far if the code is exhausted. The last equation defining \(R \) is a so-called **catch-all equation**: It applies
whenever none of the preceding equations applies. Catch-all equations are a notational convenience that can be replaced by several equations providing the full case analysis.

Note that the execution function is defined with tail recursion, which can be realized with a loop at the machine level. This is in contrast to the evaluation function, which is defined with binary recursion. Binary recursion needs a procedure stack when implemented with loops at the machine level.

Exercise 20.2.1 Do the reduction $R[5, 7, 1][_] \succ^* [2]$ step by step (at the equational level).

20.3 Compilation

We will define a compilation function $\gamma : \exp \rightarrow \mathcal{L}(N)$ such that $\forall e. R(\gamma e)[_] = [Ee]$. That is, expressions are compiled to code that will yield the same value as evaluation when executed on the empty stack.

We define the **compilation function** by structural recursion on expressions:

\[
\begin{align*}
\gamma x &:= [SSx] \\
\gamma (e_1 + e_2) &:= \gamma e_2 + \gamma e_1 + [0] \\
\gamma (e_1 - e_2) &:= \gamma e_2 + \gamma e_1 + [1]
\end{align*}
\]

We now would like to show the correctness of the compiler:

\[
R (\gamma e) [_] = [Ee]
\]

The first idea is to show the equation by induction on e. This, however, will fail since the recursive calls of R leave us with nonempty stacks and partial codes not obtainable by compilation. So we have to generalize both the possible stacks and the possible codes. The generalization of codes can be expressed with concatenation. Altogether we obtain an elegant correctness theorem telling us much more about code execution than the correctness equation we started with. Formulated in words, the correctness theorem says that executing the code $\gamma e + C$ on a stack A gives the same result as executing the code C on the stack $Ee :: A$.

185
Theorem 20.3.1 (Correctness) $R \gamma(e + + C) A = R C (Ee :: A)$.

Proof By induction on e. The case for addition proceeds as follows:

$$
R(\gamma(e_1 + e_2) + + C) A
= R(\gamma e_2 + \gamma e_1 + [0] + C) A \quad \text{definition } \gamma
= R(\gamma e_1 + [0] + C) (Ee_2 :: A) \quad \text{inductive hypothesis}
= R ([0] + C) (Ee_1 :: Ee_2 :: A) \quad \text{inductive hypothesis}
= R C ((Ee_1 + Ee_2) :: A) \quad \text{definition } R
= R C (E(e_1 + e_2) :: A) \quad \text{definition } E
$$

The equational reasoning shown tacitly employs conversion and associativity for concatenation $+$. The details can be explored with the proof assistant.

Corollary 20.3.2 $R(\gamma e) [] = [Ee]$.

Proof Theorem 20.3.1 with $C = A = []$.

Exercise 20.3.3 Do the reduction $\gamma(5 - 2) \succ^* [4, 7, 1]$ step by step (at the equational level).

Exercise 20.3.4 Explore the proof of the correctness theorem starting with the proof script in the accompanying Coq development.

20.4 Decompilation

We now define a decompilation function that for all expressions recovers the expression from its code. This is possible since the compiler uses a reversible compilation scheme, or saying it abstractly, the compilation function is injective. The decompilation function closely follows the scheme used for code execution, where this time a stack of expressions is employed:

$$
\delta : \mathcal{L}(N) \rightarrow \mathcal{L}(exp) \rightarrow \mathcal{L}(exp)
\delta \; [] \; A := A
\delta \; (0 \; :: \; C) \; (e_1 \; :: \; e_2 \; :: \; A) := \delta \; C \; (e_1 + e_2 \; :: \; A)
\delta \; (1 \; :: \; C) \; (e_1 \; :: \; e_2 \; :: \; A) := \delta \; C \; (e_1 - e_2 \; :: \; A)
\delta \; (\mathcal{S}Sx \; :: \; C) \; A := \delta \; C \; (x \; :: \; A)
\delta \; _-_ := []
$$

The correctness theorem for decompilation closely follows the correctness theorem for compilation.
20.5 Discussion

Theorem 20.4.1 (Correctness) $\delta (\gamma e + C) B = \delta C (e :: B)$.

Proof By induction on e. The case for addition proceeds as follows:

$$
\begin{align*}
\delta (\gamma (e_1 + e_2) + C) B &= \delta (\gamma e_2 + \gamma e_1 + [0] + C) B & \text{definition } \gamma \\
&= \delta (\gamma e_1 + [0] + C) (e_2 :: B) & \text{inductive hypothesis} \\
&= \delta ([0] + C) (e_1 :: e_2 :: B) & \text{inductive hypothesis} \\
&= \delta C ((e_1 + e_2) :: B) & \text{definition } \delta
\end{align*}
$$

The equational reasoning tacitly employs conversion and associativity for concatenation \cdot.

Corollary 20.4.2 $\delta (\gamma e) [] = [e]$.

20.5 Discussion

The semantics of the expressions and programs considered here is particularly simple since evaluation of expressions and execution of programs can be accounted for by structural recursion.

We represented expressions as abstract syntactic objects using an inductive type. Inductive types are the canonical representation of abstract syntactic objects. A concrete syntax for expressions would represent expressions as strings. While concrete syntax is important for the practical realisation of programming systems, it has no semantic relevance.

Early papers (late 1960’s) on verifying compilation of expressions are McCarthy and Painter [20] and Burstall [5]. Burstall’s paper is also remarkable because it seems to be the first exposition of structural recursion and structural induction. Compilation of expressions appears as first example in Chlipala’s textbook [6], where it is used to get the reader acquainted with Coq.

The type of expressions is the first inductive type in this text featuring binary recursion. This has the consequence that the respective clauses in the induction principle have two inductive hypotheses. We find it remarkable that the generalization from linear recursion (induction) to binary recursion (induction) comes without intellectual cost.
Part IV

Indexed Inductive Types
21 Numeral Types
as Indexed Inductive Types

This chapter is our first encounter with indexed inductive types. The value constructors of an indexed inductive type constructor can freely instantiate the so-called index arguments of the type constructor, which provides for the definition of fine-grained type families. As lead example we consider an indexed family of numeral types \(\mathcal{N}(n) \). A numeral type \(\mathcal{N}(n) \) has \(n \) elements obtained with a zero constructor \(\forall n. \mathcal{N}(Sn) \) and a successor constructor \(\forall n. \mathcal{N}(n) \to \mathcal{N}(Sn) \). Indexed numerals \(\mathcal{N}(n) \) are in bijection with the recursive numerals \(O^n(\bot) \). The difference between the two families is that indexed numerals are obtained with a single inductive type definition while recursive numerals are obtained with recursion on numbers and the inductive type definitions for option types and falsity.

Indexed inductive types come with the technical challenge that the format for indexed discrimination is severely restricted. Thus, intuitively obvious discriminations must often be realized with elaborate encodings relying on nontrivial conversions.

Indexed inductive types have interesting applications and provide expressivity not available otherwise. This cannot be seen from the indexed numeral types we are considering here. Indexed numerals are still a good starting example for indexed inductive types since they provide a fine setting for explaining the new techniques.

21.1 Numeral Types

We define an indexed family of numeral types \(\mathcal{N}(n) \) such that \(\mathcal{N}(n) \) has exactly \(n \) elements called numerals:

\[
\begin{align*}
\mathcal{N} : \mathbb{N} &\to \mathbb{I} := \\
\mid Z : \forall n. \mathcal{N}(Sn) \\
\mid U : \forall n. \mathcal{N}(n) \to \mathcal{N}(Sn)
\end{align*}
\]

We may think of \(\mathcal{N}(Sn) \) as a type containing numerals for the numbers 0, \ldots, \(n \). For instance, the elements of \(\mathcal{N}(4) \) are the numerals

\[
\{ Z 3, U(Z 2), U(U(Z 1)), U(U(U(Z 0))) \}
\]
21 Numeral Types as Indexed Inductive Types

representing the numbers 0, 1, 2, 3. We don’t write the first argument of \(U\) since it is determined by the second argument. The constructor \(U\) takes the role of the successor constructor for numbers, with the difference that each application of \(U : \forall n. \mathcal{N}(n) \rightarrow \mathcal{N}(Sn)\) raises the level of the numeral type. The constructor \(Z : \forall n. \mathcal{N}(Sn)\) gives us for every \(n\) the numeral for zero at level \(Sn\). More generally, \(U^k(Zn)\) gives us the numeral for \(k\) at level \(k + Sn\).

Things become interesting once we define functions that discriminate on numerals. We start with the most general such function, the universal eliminator for numerals. The universal eliminator constructs a function

\[
\forall n \forall a^{\mathcal{N}(n)}. pna
\]

by discriminating on the numeral \(a\). This leads to two cases, one for each value constructor. For \(Z\), we need a value \(p(Sn)(Zn)\), and for \(U\) we need a value \(p(Sn)(Una)\). In the case for \(U\), we can use recursion on the component numeral \(a\) to obtain a value \(pna\). We formalize this reasoning with the type of the universal eliminator:

\[
\forall p^{\forall n. \mathcal{N}(n) \rightarrow \mathcal{T}}.\\
(\forall n. p(Sn)(Zn)) \rightarrow\\
(\forall na. pna \rightarrow p(Sn)(Una)) \rightarrow\\
\forall na. pna
\]

The defining equations for the universal eliminator can now be written as follows:

\[
Epe_{1e2__}(Zn) := e_{1n} \quad : p(Sn)(Zn)\\
Epe_{1e2__}(Una) := e_{2na}(Epe_{1e2 na}) \quad : p(Sn)(Una)
\]

Note that the index argument \(n\) of \(E\) is specified with an underline in the patterns. This meets a general requirement on patterns and accounts for the fact that index arguments are determined by the discriminating argument (the index argument is determined as \(Sn\) in both equations).

21.2 Index Condition and Predecessors

There is a substantial condition on the types of inductive functions discriminating on indexed inductive types we call index condition. It says that the index arguments of the discriminating type (the type of the discriminating argument) must be given as unconstrained variables. You may check that this is the case for the type of the universal eliminator for numerals given above (there the variable in index position is \(n\)). We refer to variables appearing in index positions of discriminating types as index variables.
21.2 Index Condition and Predecessors

The index condition is a severe restriction often disallowing intuitively natural definitions. However, there are routine techniques to work around the index condition. We will demonstrate the issue with the definition of a predecessor function

\[P : \forall n. N(Sn) \rightarrow O(N(n)) \]

satisfying the computational equalities

\[Pn(Una) \approx \circ a \]
\[Pn(Zn) \approx \emptyset \]

Clearly, the index condition disallows the intuitively appealing definition taking the specifying equations as defining equations since this would discriminate on the type \(N(Sn) \) where the index argument \(Sn \) is not a variable. To avoid the problem, we define a more general predecessor function discriminating on an unconstrained numeral type:

\[P' : \forall n. N(n) \rightarrow \text{match} \ n [0 \Rightarrow \bot |Sn' \Rightarrow O(N(n'))] \]
\[P'_-(Zn) := \emptyset : O(N(n)) \]
\[P'_(Una) := \circ a : O(N(n)) \]

We now obtain a predecessor function as specified as follows:

\[P : \forall n. N(Sn) \rightarrow O(N(n)) \]
\[Pna := P'(Sn)a \]

Using \(P' \), we can also define a predecessor function

\[\hat{P} : \forall n. N(SSn) \rightarrow N(Sn) \]

satisfying the computational equalities

\[\hat{P}n(U(Sn)a) \approx a \]
\[\hat{P}n(Z(Sn)) \approx Zn \]

Showing the constructor laws for numeral types is now routine using the predecessor function \(P \). Constructor disjointness

\[\forall n \forall a \in N(n). \ Zn \neq Una \]
follows with lemma feq (Figure 5.1) and \(P \), which reduce to claim to \(\emptyset \neq \circ a \), one of the constructor laws for options. Injectivity of the value constructor \(U \)

\[\forall n \forall ab \in N(n). \ Una = Unb \Rightarrow a = b \]
follows again with feq and \(P \), which reduce to claim to \(\circ a = \circ b \Rightarrow a = b \), the other constructor law for options.
21 Numeral Types as Indexed Inductive Types

Exercise 21.2.1 Do all of the above constructions with the proof assistant not using automation tactics. The most delicate construction is the proof of the injectivity of \(U \). Try to understand every detail.

Exercise 21.2.2 Prove \(\mathcal{N}(0) \rightarrow \bot \). Hint: Use \(P' \).

Exercise 21.2.3 (Listing) Define a function \(\forall n. \mathcal{L}(\mathcal{N}(n)) \) that yields for every \(n \) a nonrepeating list of length \(n \) containing all elements of \(\mathcal{N}(n) \). Hint: Define the listing function using the map function for lists. Use induction on \(n \) and the fact that nonrepeating lists are mapped to nonrepeating lists if the element function is injective (Exercise 19.6.7 (a)).

21.3 Inversion Operator

Intuition tells us that

\[
\forall n. \forall a. \mathcal{N}(S n). (a = Z n) + (\Sigma a'. a = U n a')
\]

(21.1)

holds for numerals. To prove this fact, we define a more general function we call inversion operator. The type of the inversion operator

\[
\text{inv} : \forall n. \forall a. \mathcal{N}(n). \text{MATCH } n \text{ RETURN } \mathcal{N}(n) \rightarrow \bot
\]

\[
[0 \Rightarrow \lambda a. \bot \\
| S n \Rightarrow \lambda a. (a = Z n) + (\Sigma a'. a = U n a')
\]

\[
] a
\]

is such that we can discriminate on the numeral argument. If we instantiate the type of the inversion operator with \(n = 0 \), we obtain \(\mathcal{N}(0) \rightarrow \bot \) up to conversion, and if we instantiate the type with \(n = S n \), we obtain the type (21.1) up to conversion. Since the numeral argument \(a \) of the inversion operator is unconstrained, we can define the inversion operator by discrimination on \(a \), which, after conversion, yields the straightforward subgoals

\[
(Z n = Z n) + (\Sigma a'. Z n = U n a')
\]

\[
(U n a = Z n) + (\Sigma a'. U n a = U n a')
\]

The type of the inversion operator is written with what we call a reloading match.\(^1\)

The reloading of the numeral argument is necessary so that the branches of the match do type check.

\(^1\)Chlipala [6] speaks of the convoy pattern.
21.4 Embedding Numerals into Numbers

The inversion operator described satisfies two computational equalities:

\[\text{inv} (S_n) (Z_n) \approx LQ \]
\[\text{inv} (S_n) (U a) \approx R (a, Q) \]

Using the inversion operator we can define an equality decider for numerals.

Fact 21.3.1 (Equality decider) \(\forall n \forall a b. N(n) \rightarrow D(a = b) \).

Proof By induction on \(a \) (using the eliminator) with \(b \) quantified, followed by inversion of \(b \) (using the inversion operator). The 4 cases follow with the constructor laws.

Exercise 21.3.2 Prove the following facts using the inversion operator:

a) \(\mathcal{N}(0) \rightarrow \bot \)

b) \(\forall n \forall a. N(Sn) \rightarrow (a = Zn) + \Sigma a'. a = Una' \)

c) \(\forall a. N(1) \rightarrow a = Z0 \)

d) \(\forall a. N(2) \rightarrow (a = Z1) + (a = U(Z0)) \)

Check your proof with the proof assistant. Keep in mind that the index condition disallows discriminations on constrained indexed types. Convince yourself that the universal eliminator applies to the claims, but doesn’t lead to proofs since the instantiations of the index argument are lost.

Exercise 21.3.3 Define the inversion operator in two ways: (1) with defining equations, and (2) using the universal eliminator. Convince yourself that the reloading match cannot be avoided. Write the inversion operator \(I \) such that it satisfies the following equations by computational equality (\(L \) and \(R \) are the constructors for sums; \(Q \) is the constructor for identity proofs (arguments are omitted):

\[I(Sn)(Zn) = LQ \]
\[I(Sn)(Ua) = R(a, Q) \]

Use the inversion operator to define a predecessor function \(P \) satisfying the equations specified in §21.2 by computational equality.

21.4 Embedding Numerals into Numbers

We define a function mapping numerals to the numbers they represent:

\[N : \forall n. \mathcal{N}(n) \rightarrow N \]
\[N__ (Z n) := 0 \]
\[N__ (U n a) := S(Nna) \]
21 Numeral Types as Indexed Inductive Types

We would like to show that Nn reaches exactly the numbers smaller than n. We first show

$$\forall n \forall a^{\mathcal{N}(n)}. Nna < n \quad (21.2)$$

which follows by induction on a (using the universal eliminator for numerals).

Next we show that N is injective:

$$\forall nab. Nna = Nnb \to a = b \quad (21.3)$$

This follows with a routine proof following the pattern used for the construction of the equality decider: Induction on a with b quantified followed by inversion of b using the inversion operator.

We now define a function inverting N:

$$B : \mathcal{N} \to \forall n. \mathcal{N}(S n)$$

\[
\begin{align*}
B 0 n & := Z n \\
B (S k) 0 & := Z 0 \\
B (S k) (S n) & := U (S n) (B k n)
\end{align*}
\]

The idea is that $B k n$ yields the numeral for k in $\mathcal{N}(n)$. If k is too large (i.e., $k > n$), $B k n$ yields the largest numeral in $\mathcal{N}(S n)$.

We can now show two roundtrip properties:

$$\forall n \forall a^{\mathcal{N}(S n)}. B(N(Sn)a)n = a \quad (21.4)$$

$$\forall kn. k \leq n \to N(Sn)(B kn) = k \quad (21.5)$$

Note that (21.4) yields the injectivity of N. Moreover, (21.5) together with (21.2) yields the surjectivity of $N(Sn)$ for $\{0, \ldots, n\}$.

The second roundtrip property (21.5) follows by a straightforward induction on k.

The first roundtrip property (21.4) needs more effort. It cannot be shown directly by induction on a since the index argument in the type of a is instantiated. However, it can be shown by induction on n and inversion of a using the inversion operator.

Exercise 21.4.1 (Lifting) Define a function $L : \forall n. \mathcal{N}(n) \to \mathcal{N}(S n)$ lifting numerals to the next level. For instance, L should satisfy $L 5 (U(U(Z2))) \approx U(U(Z3))$.

a) Prove $N(Sn)(L na) = Nna$.

b) Prove that L is injective using the injectivity of N. 196
21.5 Recursive Numeral Types

We define **recursive numeral types** as follows:

\[F : \text{N} \rightarrow \text{T} \]

\[F(0) := \bot \]

\[F(Sn) := O(F(n)) \]

We may think of recursive numerals \(F(n) \) as iterated option types \(O^n(\bot) \). In fact, we have \(F(n) \approx O^n(\bot) \) if \(O^n(\bot) \) is obtained with an iteration operator as in §1.9. Recursive numeral types have been discussed in §11.4.

Intuitively, it is clear that indexed numerals \(N(n) \) are in bijection with recursive numerals \(F(n) \). The constructors \(Z \) and \(U \) for indexed numerals correspond to the constructors \(\emptyset \) and \(° \) for options. In fact, we have \(\emptyset : F(n) \) and \(° : F(n) \rightarrow F(Sn) \) due to the conversion rule. As one would expect, the elimination operator and the inversion operator for indexed numerals carry over to recursive numerals, with obvious routine constructions on the recursive side. We don’t have a transport in the other direction since recursive numerals are a derived type family without a native elimination operation.

Exercise 21.5.1 Define and verify functions

\[f : \forall n. N(n) \rightarrow F(n) \]

\[g : \forall n. F(n) \rightarrow N(n) \]

inverting each other.

Exercise 21.5.2 Prove the following types:

a) \(F(0) \rightarrow \bot \)

b) \(\forall n \forall a. F(Sn). a \neq Z n \rightarrow \Sigma a'. a = Una' \)

Note that the proofs are straightforward discrimination proofs.

Exercise 21.5.3 Define an operator for recursive numerals simulating the eliminator for indexed numerals:

\[\forall p. \forall n. F(n) \rightarrow (\forall n. p(Sn)(\emptyset)) \rightarrow (\forall na. pna \rightarrow p(Sn)(°a)) \rightarrow \forall na. pna \]

Hint: Recurse on \(n \) and then discriminate on \(a \).
21 Numeral Types as Indexed Inductive Types

Exercise 21.5.4 Define an operator for recursive numerals simulating the inversion operator for indexed numerals:

\[\forall n \forall a^{F(n)} \cdot \text{MATCH } n \text{ RETURN } f(n) \rightarrow \text{\textit{T}} \]

\[
\begin{align*}
0 & \Rightarrow \lambda a. \bot \\
S n & \Rightarrow \lambda a. (a = \emptyset) + (\sum a', a = ^a a') \\
\end{align*}
\]

\]
22 Inductive Derivation Systems

Inductive relations are relations defined with derivation rules such that an instance of an inductive relation holds if it is derivable with the rules defining the relation. Inductive relations are an important mathematical device for setting up proof systems for logical systems and formal execution rules for programming languages. Inductive relations are also the basic tool for setting up type systems.

It turns out that inductive relations can be modeled elegantly with indexed inductive type definitions, where the type constructor represents the relation and the value constructors represent the derivation rules. We present inductive relations and their formalization as indexed inductive types by discussing examples.

22.1 Binary Derivation System for Comparisons

Consider the following derivation rules for comparisons of numbers:

\[
\begin{align*}
\frac{}{x < Sx} \quad x < y \quad y < z \\
\frac{x < z}{x < y}
\end{align*}
\]

We may verbalize the rules as saying:

1. Every number is smaller than its successor.
2. If \(x\) is smaller than \(y\) and \(y\) is smaller than \(z\), then \(x\) is smaller than \(z\).

We may now ask the following questions:

- **Soundness**: Is \(x < y\) provable if \(x < y\) is derivable?
- **Completeness**: Is \(x < y\) derivable if \(x < y\) is provable?

The answer to both questions is yes. Soundness for all derivable comparisons follows from the fact that for each of the two rules the conclusion (comparison below the line) is valid if the premises (comparisons above the line) are valid. To argue completeness, we need a recursive procedure that for \(x < y\) constructs a derivation of \(x < y\) (recursion on \(y\) does the job).

Derivations of comparisons are obtained by combining rules. Here are two dif-
ferent derivations of the comparison $3 \leq 6$:

\[
\begin{array}{ccc}
4 \leq 5 & 5 \leq 6 & \\
3 \leq 4 & 4 \leq 6 & 3 \leq 5 & 4 \leq 5 \\
3 \leq 6 & \\
\end{array}
\]

Every line in the derivations represents the application of one of the two derivation rules. Note that the leaves of the derivation tree are all justified by the first rule, and that the inner nodes of the derivation tree are all justified by the second rule.

It turns out that derivation systems can be represented formally as indexed inductive type families. For the derivation system for comparisons we employ a type constructor

\[L : N \rightarrow N \rightarrow T \]

to model the comparisons and two value constructors

\[L_1 : \forall x. L x(Sx) \]
\[L_2 : \forall xyz. L xy \rightarrow L yz \rightarrow L xz \]

to model the derivation rules. Modeling derivation systems as indexed inductive type families is a wonderful thing since it clarifies the many things left open by the informal presentation and also yields a powerful formal framework for derivation systems in general. Note that derivations now appear as terms describing values of derivation types $L xy$. Here are examples:

\[L_1 4 : L 4 5 \]
\[L_2 4 5 6 (L_1 4), (L_1 5)) : L 4 6 \]
\[L_2 3 4 6 (L_1 3) (L_2 4 5 6 (L_1 4), (L_1 5)) : L 3 6 \]

When we look at the types of the value constructors L_1 and L_2, we see that the second argument of L is an index that is instantiated in the target type of L_1. On the other hand, the first argument of L is a parameter since it not instantiated in the target types of L_1 and L_2. We express the fact that the first argument of L is a parameter as usual in the declaration of the inductive type constructor L:

\[L (x : N) : N \rightarrow T := \]
\[| L_1 : L x(Sx) \]
\[| L_2 : \forall yz. L xy \rightarrow L yz \rightarrow L xz \]

Recall that the parameter-index distinction matters since indices must not be instantiated in the types of discriminations.
22.1 Binary Derivation System for Comparisons

Note that the first argument of L is instantiated in the fourth argument type of L_2. We acknowledge this fact by saying that the first argument of L is a **nonuniform parameter**. So far we have only seen **uniform parameters**, which are instantiated neither in the argument types nor the target types of value constructors. The difference between the two kinds of parameters shows in the heads and clauses of eliminators, where nonuniform parameters are quantified locally like indices. In contrast, uniform parameters are quantified only once in the prefix of the eliminator.

We remark that the proof assistant Coq realizes the parameter-index distinction by declaration, making it possible to declare parameters as indices (but not vice versa).

We can now do formal proofs concerning the derivation system L. We first prove **completeness**:\[\forall xy. x < y \rightarrow Lxy \] (22.1)

The proof succeeds by induction on y with x fixed. The base case follows by computational falsity elimination. For the successor case, we assume $x < Sy$ and prove $Lx(Sy)$. If $x = y$, we obtain $Lx(Sy)$ with L_1. If $x \neq y$, we have $x < y$. Hence we have Lxy by the inductive hypothesis. By $L1$ we have $Ly(Sy)$. The claim $Lx(Sy)$ follows with L_2.

For the soundness proof we need **induction on derivations**. Formally, we provide this induction with the **universal eliminator** for L, which has the type\[
\forall p \forall xy. Lxy \rightarrow \top.
\]
\[
(\forall x. px(Sx)(L_1 x)) \rightarrow
\]
\[
(\forall xyzab. pxya \rightarrow pyzb \rightarrow pxz(L_2 xyzab)) \rightarrow
\]
\[
\forall xya. pxya
\]

The defining equations of the eliminator discriminate on a and are obvious. Note that the type function p takes the nonuniform parameter x as an argument. This is necessary so that the second inductive hypothesis of the second clause of the eliminator can be provided.

We now prove **soundness**\[\forall xy. Lxy \rightarrow x < y \] (22.2)

by induction on the derivation of Lxy. This give us the proof obligations

\[
x < Sx
\]
\[
x < y \rightarrow y < z \rightarrow x < z
\]
which are both obvious. Note that the obligations are obtained from the derivations
rules by replacing \(<\) with \(<\). Informally, we can do the soundness proof by just
showing that each of the two derivation rules is sound for \(<\). This applies in general.

We can define an inversion function for \(L\) as follows:

\[
\text{inv} : \forall xy. Lxy \rightarrow (y = Sx) + \sum z. Lxz \times Lzy
\]

\[
\text{inv} x(Sx)(L_1 x) = LQ
\]

\[
\text{inv} x z(L_2 x y z a b) = R(y, (a, b))
\]

With this inversion function it is easy to prove constructor disjointness:

\[L_1 x = L_2 x y(Sx) a b \rightarrow \perp \]

We can also prove injectivity of \(L_2\)

\[\forall xyz \forall aba'b'. L_2 x z y a b = L_2 x z y a'b' \rightarrow (a, b) = (a', b') \]

if we assume dependent pair injectivity for numbers:

\[\forall p^{\mathbb{N}^2} \forall x \forall ab p x. (x, a)_p = (x, b)_p \rightarrow a = b \]

Dependent pair injectivity for numbers will be shown in §23.3 once we have intro-
duced inductive equality.

Exercise 22.1.1 Prove that there are two different derivations of \(L \mathbb{N} 6\) (i.e., values
of the type \(L \mathbb{N} 6\)). Hint: Use a function \(\forall xy. Lxy \rightarrow \mathbb{N}\) returning the length of the
leftmost path of a derivation tree.

Exercise 22.1.2 Do the following with the proof assistant:

a) Define the inversion function specified above and check that it satisfies the com-
putational equalities specified.

b) Prove \(L_1 x = L_2 x y(Sx) a b \rightarrow \perp\).

c) Prove injectivity of \(L_2\) assuming dependent pair injectivity for numbers. You find
 a detailed discussion of this proof in §23.5.

22.2 Linear Derivation System for Comparisons

We have seen a sound and complete derivation system for comparisons. There is
much freedom in how we can choose the derivation rules for such a system. In prac-
tice, one only includes defining derivation rules that are needed for completeness,
since every defining rule adds a clause to the eliminator for the system (and hence
to each inductive proof on derivations).
In this section, we consider another derivation systems for comparisons, which is sound, complete, and derivation unique. Derivation uniqueness means there is at most one derivation per comparison.

This time we choose the following derivation rules:

\[
\begin{align*}
0 & < S y \\
S x & < S y
\end{align*}
\]

Our intuition is that the base rule fixes the distance between the two numbers placing the left number at 0. The step rule then shifts the pair to the right. Soundness, completeness, and derivation uniqueness are straightforward with this intuition. Note that the new system is linear (that is, has at most one premise per rule).

Formally, we define the derivation system described above as follows:

\[
L : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{T} := \begin{align*}
| L_1 & : \forall y. L(0S y) \\
| L_2 & : \forall x y. Lxy \rightarrow L(Sx)(Sy)
\end{align*}
\]

Clearly, both arguments of \(L \) must be accommodated as indices. The definition yields a universal eliminator of the type

\[
\forall p \forall xy. Lxy \rightarrow T.
\]

\[
\begin{align*}
(\forall y. p0(Sy)(L1y)) & \rightarrow \\
(\forall xy a. pxya \rightarrow p(Sx)(Sy)(L2xya)) & \rightarrow \\
\forall xy a. pxya
\end{align*}
\]

Soundness of the derivation system

\[
\forall xy. Lxy \rightarrow x < y
\]

follows as before by induction on the derivation of \(Lxy \), requiring soundness of each of the two rules. **Completeness** of the system

\[
\forall xy. x < y \rightarrow Lxy
\]

is more interesting. This time we do an induction on \(x \) with \(y \) quantified, which after discrimination on \(x \) yields the obligations

\[
L0(Sy) \\
Sx < Sy \rightarrow L(Sx)(Sy)
\]

The first obligation follows with \(L1 \), and the second obligation follows with \(L2 \) and the inductive hypothesis.
For derivation uniqueness, we use an inversion operator

\[
\text{inv} : \forall x y \forall a^{l \times y}. \text{MATCH } x, y \text{ RETURN } L x y \rightarrow \top \\
| 0, S y \Rightarrow \lambda a. a = L_1 y \\
| S x, S y \Rightarrow \lambda a. \Sigma a'. a = L_2 x y a' \\
| _, _ \Rightarrow \lambda a. \bot
\]

\[
\text{inv} 0 (S y)(L_1 y) \approx Q \\
\text{inv} (S x)(S y)(L_2 x y a) \approx (a, Q)
\]

which can be defined by discrimination on the derivation \(a \). Derivation uniqueness

\[
\forall x y \forall a^{l \times y}. a = b
\]

now follows by induction on \(a \) with \(b \) quantified followed by inversion of \(b \).

Exercise 22.2.1 Elaborate the above definitions and proofs using a proof assistant. Make sure you understand every detail, especially as it comes to the inductive proofs. Define the inversion operator without using a smart match for \(x, y \). Practice to come up with the types of the universal eliminator and the inversion operator without using notes.

Exercise 22.2.2 Change the above development such that the types \(L x y \) appear as propositions. Note the changes needed in the types of the universal eliminator and the inversion operator.

Exercise 22.2.3 Prove the following propositions using the inversion operator. Do not use soundness.

a) \(L x 0 \rightarrow \bot \)

b) \(L x x \rightarrow \bot \)

Hint: (b) follows by induction on \(x \).

Exercise 22.2.4 Prove that the constructor \(L_2 \) is injective in its third argument. Hint: Use derivation uniqueness.

Exercise 22.2.5 Given an equality decider for the derivation types \(L x y \). Hint: Use derivation uniqueness.

Exercise 22.2.6 Here is another derivation unique derivation system for comparisons:

\[
\frac{}{x < S x} \quad \frac{x < y}{x < S y}
\]

This time the base rule fixes the left number and the step rule increases the right number.
a) Formalize the system with an indexed inductive type family \(L \). Accommodate the first argument as a uniform parameter.
b) Show completeness of the system. Hint: Induction on \(y \) suffices.
c) Define the universal eliminator for \(L \) using the prefix \(\forall x \forall y. p \downarrow x y y' \). Note that there is no need that the type function \(p \) takes the uniform parameter \(x \) as argument.
d) Show soundness for the system using the universal eliminator.
e) Try to formulate an inversion operator for \(L \) and note that there is a typing conflict for the first rule. The conflict comes from the non-linearity \(L x (Sx) \) in the type of \(L_1 \). We will resolve the conflict with a type cast in §23.4 in Chapter 23 on inductive equality. Using an inversion operator with a type cast we will prove derivation uniqueness in §23.4.

Exercise 22.2.7 (Even numbers) Formalize the derivation system

\[
\begin{array}{c|c}
E(0) & \text{E}(n) \\
\hline
\text{E}(SSn) & \text{E}(n) \\
\end{array}
\]

with an indexed inductive type family \(E^{N
ightarrow T} \).

a) Prove \(E(2 \cdot k) \).
b) Define a universal eliminator for \(E \).
c) Prove \(E(n) \rightarrow \Sigma k. n = 2 \cdot k \).
d) Prove \(E(n) \leftrightarrow \exists k. n = 2 \cdot k \).
e) Define an inversion operator for \(E \) providing cases for 0, 1, and \(n \geq 2 \).
f) Prove \(E(1) \rightarrow \perp \).
g) Prove \(E(SSn) \rightarrow E(n) \).
h) Prove \(E(Sn) \rightarrow E(n) \rightarrow \perp \).
i) Prove derivation uniqueness for \(E \).
j) Give an equality decider for the derivation types \(E(n) \).

22.3 Derivation Systems for GCDs

Recall that a **gcd relation** (Definition 18.3.1) is a predicate \(p^{N
ightarrow N
ightarrow N
ightarrow P} \) satisfying the following conditions for all numbers \(x, y, z \):

1. \(p \downarrow 0 y y \) **zero rule**
2. \(p x y z \rightarrow p y x z \) **symmetry rule**
3. \(x \leq y \rightarrow p x (y - x) z \rightarrow p x y z \) **subtraction rule**
We will prove the following results for gcd relations not using the results previously shown for gcd relations:
1. There is an inductively defined gcd relation G.
2. G is contained in every gcd relation.
3. There is a function respecting G (and hence every gcd relation).
4. All functional gcd relations agree with G.
5. G is functional.

We define the indexed inductive predicate $G : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{P}$ with three derivation rules mimicking the conditions for gcd relations:

\[
\begin{align*}
G_1 & \quad G_{0(y \cdot y)} \\
G_2 & \quad G_{x \cdot y \cdot z} \\
G_3 & \quad x \leq y \rightarrow G_{x \cdot (y - x) \cdot z} \\
G_{x \cdot y \cdot z} & \quad G_{x \cdot y \cdot z}
\end{align*}
\]

The rules yield an indexed type family with three indices.\(^1\) We have defined G as a predicate rather than a type function so that G directly qualifies as a gcd relation. It is also be possible to define G as a type function and show that its truncation is a gcd predicate.

First we show that G is the least gcd relation (up to equivalence).

Fact 22.3.1 (Containment) G is a gcd relation contained in every gcd relation.

Proof The rules defining G agree with the conditions for gcd predicates. Hence G is a gcd predicate. To show that G is a least gcd predicate, we assume a gcd predicate p and prove $\forall xyz. G_{xyz} \rightarrow pxyz$ by induction on the derivation G_{xyz}. The proof obligations generated by the induction are the conditions for gcd relations instantiated for p.

Next we show that there is a function respecting G.

Fact 22.3.2 (Totality) $\forall xy \Sigma z. G_{xyz}$.

Proof By size recursion on $x + y$. For $x = 0$ or $y = 0$ the claim follows with G_1 and G_2. Otherwise, we have $x \leq y$ without loss of generality (because of G_2). The inductive hypothesis yields z such that $G_{x \cdot (y - x) \cdot z}$. The claim follows with G_3.

Corollary 22.3.3 (Agreement) G agrees with every functional gcd relation.

Proof Follows with Facts 22.3.1 and 22.3.2.

\(^1\)There is the possibility to declare the second or third argument of G as a nonuniform parameter, but we prefer the variant with three indices.
22.3 Derivation Systems for GCDs

It remains to show that G is functional. The functionality of G can be obtained straightforwardly from the existence of some functional gcd relation. We give two constructions of functional gcd relations in Chapter 18 (concrete gcd relation and step indexing). We will not use these results here and prove that G is functional just relying on methods for indexed inductive families. Our proof is based on a deterministic variant G' of G defined with the following rules:

\[
\begin{align*}
\text{G}_1' & \quad \text{G}'0yy \\
\text{G}_2' & \quad \text{G}'(Sx)0(Sx) \\
\text{G}_3' & \quad \begin{cases}
\text{G}'(Sx)(y-x)z & \text{if } x \leq y \\
\text{G}'(Sx)(Sx)z & \text{else}
\end{cases} \\
\text{G}_4' & \quad \begin{cases}
\text{G}'(x-y)(Sx)z & \text{if } y < x \\
\text{G}'(Sx)(Sx)z & \text{else}
\end{cases}
\end{align*}
\]

We will show that G' is a functional gcd relation. We may see G' as a relational reformulation of the procedural specification of GCDs (Definition 18.3.3).

Fact 22.3.4 (Symmetry) $\forall xyz. G'xyz \rightarrow G'yxz$.

Proof By induction on the derivation of $G'xyz$. The interesting case is G_3'. We distinguish between $x < y$ and $x = y$. Case $x < y$ follows with G_4' and the inductive hypothesis. For $x = y$ we have to show $G'(Sx)(x-x)z \rightarrow G'(Sx)(Sx)z$, which follows by G_3'.

Fact 22.3.5 G' is a gcd relation.

Proof The first condition is the first rule for G'. The second condition is Fact 22.3.4. The third condition follows by case analysis on x and y and the third rule for G'.

To show functionality of G', we shall use an inversion operator with the type:

\[
\forall xyz \forall aG'xyz. \text{MATCH } x, y \\
[0, y = z = y] \\
| Sx, 0 \Rightarrow z = Sx \\
| Sx, Sy \Rightarrow \text{IF } 'x \leq y' \text{ THEN } G'(Sx)(y-x)z \text{ ELSE } G'(x-y)(Sx)z
\]

Defining such an operator is routine.

Fact 22.3.6 G' is functional.

Proof We show $\forall xyz z'. G'xyz \rightarrow G'xyz' \rightarrow z = z'$ by induction on the derivation of $G'xyz$ and inversion of $G'xyz'$. All four obligations are straightforward.
Corollary 22.3.7 \(G \) and \(G' \) agree. Hence \(G' \) is functional.

Proof Follows with Corollary 22.3.3 and Facts 22.3.5 and 22.3.6.

Exercise 22.3.8 Prove \(G \cdot x \cdot x \cdot x \) and \(G \cdot 1 \cdot y \cdot 1 \).

Exercise 22.3.9 (Inductive method for procedural specifications)
The development of this section suggests a method for constructing functions satisfying procedural specifications using indexed inductive types:
1. Translate the procedural specification \(\Gamma \) into an indexed inductive predicate \(\gamma \).
2. Construct a function \(g \) respecting \(\gamma \) using size recursion.
3. Show that \(\gamma \) is functional by induction on and inversion of derivations.
4. Show \(g \) satisfies \(\Gamma \).

Execute the method for the procedural specification of a GCD function given by Definition 18.3.3. Hint: The proof for (4) is similar to the proof of Fact 18.3.8.

22.4 Regular Expressions

Regular expressions are patterns for strings used in text search. There is a relation \(A \vdash s \) saying that a string \(A \) satisfies a regular expression \(s \). One also speaks of a regular expression matching a string. We are considering regular expressions here since the satisfaction relation \(A \vdash s \) has an elegant definition with derivation rules.

We represent strings as lists of numbers, and regular expressions with an inductive type realizing the BNF
\[
s, t : \text{exp ::= } x | 0 | 1 | s + t | s \cdot t | s^* \quad (x : N)
\]

We model the satisfaction relation \(A \vdash s \) with an indexed inductive type family
\[
\vdash : \mathcal{L}(N) \to \text{exp} \to \mathbb{T}
\]
providing value constructors for the following rules:
\[
\begin{align*}
& [x] \vdash x & & A \vdash s & & A \vdash t \\
& [] \vdash 1 & & A + s + t & & A + s + t \\
& A \vdash s & & B \vdash t & & A + B \vdash s \cdot t \\
& A \vdash s & & B \vdash s^* & & A + B \vdash s^*
\end{align*}
\]

Note that both arguments of \(\vdash \) are indices. Concrete instances of the satisfaction relation, for instance,
\[
[1, 2, 2] \vdash 1 \cdot 2^*
\]
can be shown with just constructor applications. **Inclusion** and **equivalence** of regular expressions are defined as follows:

\[
\begin{align*}
\text{inclusion:} & \quad \forall A. \ A \vdash s \to A \vdash t \\
\text{equivalence:} & \quad \forall A. \ A \vdash s \iff A \vdash t
\end{align*}
\]

An easy to show inclusion is

\[
s \subseteq s^* \tag{22.3}
\]

(only constructor applications and rewriting with \(A + [] = A\) are needed). More challenging is the inclusion

\[
s^* \cdot s^* \subseteq s^* \tag{22.4}
\]

We need an inversion function

\[
A \vdash s \cdot t \to \Sigma A_1 A_2. \ (A = A_1 + A_2) \times (A_1 \vdash s) \times (A_2 \vdash t) \tag{22.5}
\]

and a lemma

\[
A \vdash s^* \to B \vdash s^* \to A + B \vdash s^* \tag{22.6}
\]

The inversion function can be obtained as an instance of a more general **inversion operator**

\[
\forall As. \ A \vdash s \to \text{MATCH } s
\]

\[
\begin{align*}
[x \Rightarrow A = [x]] \\
| 0 \Rightarrow \bot \\
| 1 \Rightarrow A = [] \\
| u + v \Rightarrow (A \vdash u) + (A \vdash v) \\
| u \cdot v \Rightarrow \Sigma A_1 A_2. \ (A = A_1 + A_2) \times (A_1 \vdash u) \times (A_2 \vdash v) \\
| u^* \Rightarrow (A = []) + \Sigma A_1 A_2. \ (A = A_1 + A_2) \times (A_1 \vdash u) \times (A_2 \vdash u^*) \\
\]
\]

which can be defined by discrimination on \(A \vdash s\). Note that the index \(s\) determines a single rule except for \(s^*\).

We now come to the proof of lemma (22.6). The proof is by induction on the derivation \(A \vdash s^*\) with \(B\) fixed. There are two cases. If \(A = []\), the claim is trivial. Otherwise \(A = A_1 + A_2, A_1 \vdash s, \) and \(A_2 \vdash s^*\). Since \(A_2 \vdash s^*\) is obtained by a subderivation, the inductive hypothesis gives us \(A_2 + B \vdash s^*\). Hence \(A_1 + A_2 + B \vdash s^*\) by the second rule for \(s^*\).

The above induction is informal. It can be made formal with an universal eliminator for \(A \vdash s\) and a reformulation of the claim as follows:

\[
\forall As. \ A \vdash s \to \text{MATCH } s \ [s^* \Rightarrow B \vdash s^* \to A + B \vdash s^* \mid _ \Rightarrow \top]
\]
The reformulation provides an unconstrained inductive premises $A \vdash s$ so that no information is lost by the application of the universal eliminator. Defining the universal eliminator with a type function $\forall A. s \to T$ is routine. We remark that a weaker eliminator with a type function $\mathcal{L}(N) \to \text{exp} \to T$ suffices.

We now have (22.4). A straightforward consequence is

$$s^* \cdot s^* \equiv s^*$$

A less obvious consequence is the equivalence

$$(s^*)^* \equiv s^*$$ (22.7)

saying that the star operation is idempotent. Given (22.3), it suffices to show

$$A \vdash (s^*)^* \to A \vdash s^*$$ (22.8)

The proof is by induction on $A \vdash (s^*)^*$. If $A = []$, the claim is obvious. Otherwise, we assume $A_1 \vdash s^*$ and $A_2 \vdash (s^*)^*$, and show $A_1 + A_2 \vdash s^*$. The inductive hypothesis gives us $A_2 \vdash s^*$, which gives us the claim using (22.6).

The above proof is informal since the inductive premise $A \vdash (s^*)^*$ is index constrained. A formal proof succeeds with the reformulation

$$\forall A. s \to \text{match } s [(s^*)^* \Rightarrow A \vdash s^* | _ \Rightarrow \top]$$

Exercise 22.4.1 (Certifying solver)

Define a certifying solver $\forall s. (\Sigma A. A \vdash s) + (\forall A. A \vdash s \to \bot)$.

Exercise 22.4.2 (Restrictive star rule)

The second derivation rule for star expressions can be replaced with the more restrictive rule

$$\frac{x : A \vdash s \quad B \vdash s^*}{x : A + B \vdash s^*}$$

Define an inductive family $A \vdash s$ adopting the more restrictive rule and show that it is intertranslatable with $A \vdash s$: $\forall A. s \Leftrightarrow A \vdash s$.

Exercise 22.4.3 After reading this section, do the following with a proof assistant.

a) Define a universal eliminator for $A \vdash s$.

b) Define an inversion operator for $A \vdash s$.

c) Prove $s^* \cdot s^* \equiv s^*$.

d) Prove $(s^*)^* \equiv s^*$.
Exercise 22.4.4 (Denotational semantics) The informal semantics for regular expressions described in textbooks can be formalized as a recursive function on regular expressions that assigns languages to regular expressions. We represent languages as type functions $\mathcal{L}(N) \rightarrow \mathbb{T}$ and capture the semantics with a function $R : \text{exp} \rightarrow \mathcal{L}(N) \rightarrow \mathbb{T}$ defined as follows:

\[
R x. A := (A = [x]) \\
R 0. A := \perp \\
R 1. A := (A = []) \\
R (s + t). A := R s. A + R t. A \\
R (s \cdot t). A := \Sigma A_1. A_2. (A = A_1 + A_2) \times R s. A_1 \times R t. A_2 \\
R (s^*). A := \Sigma n. P (R s)^n. A \\
P \varphi. 0. A := (A = []) \\
P \varphi. (S n). A := \Sigma A_1. A_2. (A = A_1 + A_2) \times \varphi. A_1 \times P \varphi. n. A
\]

a) Prove $R s. A \leftrightarrow A \vdash s$.

b) We have represented languages as type functions $\mathcal{L}(N) \rightarrow \mathbb{T}$. A representation as predicates $\mathcal{L}(N) \rightarrow \mathbb{P}$ would be more faithful to the literature. Rewrite the definitions of \vdash and R accordingly and show their equivalence.

22.5 Decidability of Regular Expression Matching

We will now construct a decider for $A \vdash s$. The decidability of $A \vdash s$ is not obvious. We will formalize a decision procedure based on Brzozowski derivatives [4].

A function $D : N \rightarrow \text{exp} \rightarrow \text{exp}$ is a derivation function if

\[
\forall x. A s. x :: A \vdash s \leftrightarrow A \vdash D x. s
\]

In words we may say that a string $x :: A$ satisfies a regular expression s if and only if A satisfies the derivative $D x. s$. If we have a decider $\forall s. D ([] \vdash s)$ and in addition a derivation function, we have a decider for $A \vdash s$.

Fact 22.5.1 $\forall s. D ([] \vdash s)$.

Proof By induction on s. For 1 and s^* we have a positive answer, and for x and 0 we have a negative answer using the inversion function. For $s + t$ and $s \cdot t$ we rely on the inductive hypotheses for the constituents.
22 Inductive Derivation Systems

Fact 22.5.2 $\forall A s. \mathcal{D}(A \vdash s)$ provided we have a derivation function.

Proof By recursion on A using Fact 22.5.1 in the base case and the derivation function in the cons case.

We define a derivation function D as follows:

$D : N \to \text{exp} \to \text{exp}$

$Dx(y) := \text{if } x = y \text{ then } 1 \text{ else } 0$

$Dx(0) := 0$

$Dx(1) := 0$

$Dx(s + t) := Dx(s) + Dx(t)$

$Dx(s \cdot t) := \text{if } [] \vdash s \text{ then } Dx(s) \cdot t + Dx(t) \text{ else } Dx(s) \cdot t$

$Dx(s^*) := Dx(s) \cdot s^*$

It remains to show that D is a derivation function. For this proof we need a strengthened inversion lemma for star expressions.

Lemma 22.5.3 (Eager star inversion)

$\forall x A s. x :: A \vdash s^* \rightarrow \Sigma A_1 A_2. A = A_1 + A_2 \times x :: A_1 \vdash s \times A_2 \vdash s^*$.

Proof By induction on the derivation of $x :: A \vdash s^*$. Only the second rule for star expressions applies. Hence we have $x :: A = A_1 + A_2 \times x :: A_1 \vdash s$ and $A_2 \vdash s^*$. If $A_1 = []$, we have $A_2 = x :: A$ and the claim follows by the inductive hypothesis. Otherwise, we have $A_1 := x :: A_1'$, which gives us the claim.

The formal proof follows this outline but works on a reformulation of the claim providing an unconstrained inductive premise.

Theorem 22.5.4 (Derivation) $\forall x A s. x :: A \vdash s \Leftrightarrow A \vdash Dx(s)$.

Proof By induction on s. All cases but the direction \Rightarrow for s^* follow with the inversion operator and case analysis. The direction \Rightarrow for s^* follows with the eager star inversion lemma 22.5.3.

Corollary 22.5.5 $\forall A s. \mathcal{D}(A \vdash s)$.

Proof Follows with Fact 22.5.2 and Theorem 22.5.4.
22.6 Post Correspondence Problem

Many problems in computer science have elegant specifications using inductive relations. As an example we consider the Post correspondence problem (PCP), a prominent undecidable problem providing a base for undecidability proofs. The problem involves cards with an upper and a lower string. Given a list C of cards, one has to decide whether there is a nonempty list $D \subseteq C$ such that the concatenation of all upper strings equals the concatenation of all lower strings. For instance, assuming the binary alphabet $\{a, b\}$, the list

$$C = [a/\epsilon, b/a, \epsilon/bb]$$

has the solution

$$D = [\epsilon/bb, b/a, b/a, a/\epsilon, a/\epsilon]$$

On the other hand,

$$C' = [a/\epsilon, b/a]$$

has no solution.

We formalize PCP over the binary alphabet B with an inductive predicate

$$\text{post} : \mathcal{L}(\mathcal{L}(B) \times \mathcal{L}(B)) \rightarrow \mathcal{L}(B) \rightarrow \mathcal{L}(B) \rightarrow \mathbb{P}$$

defined with the rules

$$\frac{(A, B) \in C}{\text{post } C \ AB} \quad \frac{(A, B) \in C}{\text{post } C \ A' \ B'}$$

Note that $\text{post } CAB$ is derivable if there is a nonempty list $D \subseteq C$ of cards such that the concatenation of the upper strings of D is A and the concatenation of the lower strings of D is B. Undecidability of PCP over a binary alphabet now means that there is no computable function

$$\forall C. \ D(\exists A. \ \text{post } CAA) \quad (22.9)$$

Since Coq’s type theory can only define computable functions, we can conclude that no function of type (22.9) is definable.
23 Inductive Equality

Inductive equality extends Leibniz equality with eliminators discriminating on identity proofs. The definitions are such that inductive identities appear as computational propositions enabling reducible casts between computational types.

There is an important equivalence between uniqueness of identity proofs (UIP) and injectivity of dependent pairs (DPI) (i.e., injectivity of the second projection). As it turns out, UIP holds for discrete types (Hedberg’s theorem) but is unprovable in computational type theory in general.

Hedberg’s theorem is of practical importance since it yields injectivity of dependent pairs and reducibility of identity casts for discrete types, two features that are essential for inversion lemmas for indexed inductive types.

The proofs in this chapter are of surprising beauty. They are obtained with dependently typed algebraic reasoning about identity proofs and often require tricky generalizations.

23.1 Basic Definitions

We define inductive equality as an inductive predicate with two parameters and one index:

\[\text{eq} \left(X : T, x : X \right) : X \rightarrow \mathbb{P} ::= \]

| Q : eq X x x |

We treat the argument \(X \) of the constructors \(\text{eq} \) and \(Q \) as implicit argument and write \(s = t \) for \(\text{eq} \, s \, t \). Moreover, we call propositions \(s = t \) identities, and refer to proofs of identities \(s = t \) as paths from \(s \) to \(t \).

Note that identities \(s = t \) are computational propositions. This provides for expressivity we cannot obtain with Leibniz equality. We define two eliminators for identities

\[C : \forall X^T \forall x^X \forall p^{X \rightarrow T} \forall y. \, x = y \rightarrow px \rightarrow py \]

\[C \, Xx\, p \, _{(Q \, _{_})} \, a := \, a \quad : \, px \]

\[J : \forall X^T \forall x^X \forall p^y. \, x = y \rightarrow T. \, px(Qx) \rightarrow \forall ye. \, pye \]

\[J \, Xx\, p \, a \, _{(Q \, _{_})} := \, a \quad : \, px(Qx) \]
called **cast operator** and **full eliminator**. For \(C \) we treat the first four arguments as implicit arguments, and for \(J \) the first two arguments.

We call applications of the cast operator **casts**. A cast \(C_p e a \) with \(e^{x=y} \) changes the type of \(a \) from \(px \) to \(py \) for every admissible type function \(p \). We have

\[
C(Qx)a \approx a
\]

and say that trivial casts \(C(Qx)a \) can be **discharged**. We also have

\[
\forall p^{X \to T} \forall e^{x=y} \forall a^{px}. C_p e a = J(\lambda y. py) a ye
\]

which says that the cast eliminator can be expressed with the full eliminator.

Inductive quality as defined here is stronger than the Leibniz equality considered in Chapter 5. The constructors of the inductive definition give us the constants \(eq \) and \(Q \), and with the cast operator we can easily define the constant for the rewriting law. Inductive equality comes with two essential generalizations over Leibniz equality: Rewriting can now take place at the universe \(T \) using the cast operator, and both the cast operator and the full eliminator come with computation rules. We will make essential use of both features in this chapter.

We remark that equality in Coq is defined as inductive equality and that the full eliminator \(J \) corresponds exactly to Coq’s matches for identities.

The laws for propositional equality can be seen as operators on paths. It turns out that that these operators have elegant algebraic definitions using casts:

\[
\sigma : x = y \to y = x
\]

\[
\sigma e := C(\lambda y. y = x) e (Qx)
\]

\[
\tau : x = y \to y = z \to x = z
\]

\[
\tau e := C(\lambda y. y = z \to x = z) e (\lambda e. e)
\]

\[
\varphi : x = y \to fx = fy
\]

\[
\varphi e := C(\lambda y. fx = fy) e (Q(fx))
\]

It also turns out that these operators satisfy familiar looking algebraic laws.

Exercise 23.1.1 Prove the following algebraic laws for casts and identities \(e^{x=y} \).

a) \(Ce(Qx) = e \)

b) \(Cee = Qy \)

In each case, determine a suitable type function for the cast.
Exercise 23.1.2 (Groupoid operations on paths)
Prove the following algebraic laws for σ and τ:

a) $\sigma(\sigma e) = e$

b) $\tau e_1(\tau e_2 e_3) = \tau(\tau e_1 e_2)e_3$

c) $\tau e(\sigma e) = Qx$

Note that σ and τ give identity proofs a group-like structure: τ is an associative operation and σ obtains inverse elements.

Exercise 23.1.3 Show that J is more general that C by defining C with J.

Exercise 23.1.4 Prove $(T = F) \rightarrow \forall X^T. X$ not using falsity elimination.

Exercise 23.1.5 (Impredicative characterization)
Prove $x = y \rightarrow \forall p^X^\mathcal{P}. p x = p y$ for inductive identities. Note that the equivalence says that inductive identities agree with Leibniz identities (§5.5).

23.2 Uniqueness of Identity Proofs

We will now show that the following properties of types are equivalent:

- $\text{UIP}(X) := \forall x y^X \forall e e'^{x = y}. e = e'$ \hspace{1cm} uniqueness of identity proofs
- $\text{UIP}'(X) := \forall x^X \forall e^{x = x}. e = Qx$ \hspace{1cm} u. of trivial identity proofs
- $\text{K}(X) := \forall x \forall p^X^\mathcal{P}. p(Qx) \rightarrow \forall e. p e$ \hspace{1cm} Streicher’s K
- $\text{CD}(X) := \forall p^X^\mathcal{T} \forall x \forall a^p x \forall e^{x = x}. C e a = a$ \hspace{1cm} cast discharge
- $\text{DPI}(X) := \forall p^X^\mathcal{T} \forall x u v. (x, u)_p = (x, v)_p \rightarrow u = v$ \hspace{1cm} dependent pair injectivity

The flagship property is UIP (uniqueness of identity proofs), saying that identities have at most one proof. What is fascinating is that UIP is equivalent to DPI (dependent pair injectivity), saying that the second projection for dependent pairs is injective. While UIP is all about identity proofs, DPI doesn’t even mention identity proofs. There is a famous result by Hofmann and Streicher [14] saying that computational type theory does not prove UIP. Given the equivalence with DPI, this result is quite surprising. On the other hand, there is Hedberg’s theorem [13] (§23.3) saying that UIP holds for all discrete types. We remark that UIP is an immediate consequence of proof irrelevance.

We now show the above equivalence by proving enough implications. The proofs are interesting in that they need clever generalization steps to harvest the power of the identity eliminators J and C. Finding the right generalizations requires insight and practice.\(^1\)

\(^1\)We acknowledge the help of Gaëtan Gilbert, (Coq Club, November 13, 2020).
23 Inductive Equality

Fact 23.2.1 \(\text{UIP}(X) \rightarrow \text{UIP}'(X) \).

Proof Instantiate \(\text{UIP}(X) \) with \(y := x \) and \(e' := Qx \).

Fact 23.2.2 \(\text{UIP}'(X) \rightarrow \text{K}(X) \).

Proof Instantiate \(\text{UIP}'(X) \) with \(e \) from \(\text{K}(X) \) and rewrite.

Fact 23.2.3 \(\text{K}(X) \rightarrow \text{CD}(X) \).

Proof Apply \(\text{K}(X) \) to \(\forall e^x = x. \ Ce = a \).

Fact 23.2.4 \(\text{CD}(X) \rightarrow \text{DPI}(X) \).

Proof Assume \(\text{CD}(X) \) and \(p^{X \rightarrow T} \). We obtain the claim with backward reasoning:

\[
\forall xuv. \ (x, u)_p = (x, v)_p \rightarrow u = v \quad \text{by instantiation}
\]
\[
\forall ab^{\text{sig}p}. \ a = b \rightarrow \forall e_{(\pi_1 a = \pi_1 b)}. \ Ce(\pi_2 a) = \pi_2 b \quad \text{by elimination on} \ a = b
\]
\[
\forall a^{\text{sig}p} \forall e_{\pi_1 a = \pi_1 a}. \ Ce(\pi_2 a) = \pi_2 a \quad \text{by CD}
\]

Fact 23.2.5 \(\text{DPI}(X) \rightarrow \text{UIP}'(X) \).

Proof Assume \(\text{DPI}(X) \). We obtain the claim with backward reasoning:

\[
\forall e^x = x. \ e = Qx \quad \text{by DPI}
\]
\[
\forall e^x = x. \ (x, e)_{\text{eq}x} = (x, Qx)_{\text{eq}x} \quad \text{by instantiation}
\]
\[
\forall e^x = y. \ (y, e)_{\text{eq}x} = (x, Qx)_{\text{eq}x} \quad \text{by J}
\]

Fact 23.2.6 \(\text{UIP}'(X) \rightarrow \text{UIP}(X) \).

Proof Assume \(\text{UIP}'(X) \). We obtain the claim with backward reasoning:

\[
\forall e' \ e^x = y. \ e = e' \quad \text{by J on} \ e'
\]
\[
\forall e^x = x. \ e = Qx \quad \text{by UIP'}
\]

Theorem 23.2.7 \(\text{UIP}(X), \text{UIP}'(X), \text{K}(X), \text{CD}(X), \) and \(\text{DPI}(X) \) are equivalent.

Proof Immediate by the preceding facts.

Exercise 23.2.8 Verify the above proofs with a proof assistant to appreciate the subtleties.

Exercise 23.2.9 Give direct proofs for the following implications: \(\text{UIP}(X) \rightarrow \text{K}(X) \), \(\text{K}(X) \rightarrow \text{UIP}'(X) \), and \(\text{CD}(X) \rightarrow \text{UIP}(X) \).

Exercise 23.2.10 Prove that dependent pair types are discrete if their component types are discrete: \(\forall X \forall p^{X \rightarrow T}. \ E(X) \rightarrow (\forall x. \ E(pX)) \rightarrow E(\text{sig}p) \).
23.3 Hedberg’s Theorem

We will now prove Hedberg’s theorem [13]. Hedberg’s theorem says that all discrete types satisfy UIP. Hedberg’s theorem is important in practice since it says that the second projection for dependent pair types is injective if the first components are numbers.

The proof of Hedberg’s theorem consists of two lemmas, which are connected with a clever abstraction we call Hedberg functions. In algebraic speak one may see a Hedberg function a polymorphic constant endo-function on paths.

Definition 23.3.1 A function $f : \forall x y X. x = y \rightarrow x = y$ is a **Hedberg function** for X if $\forall x y X \forall e e'. x = y. f e = f e'$.

Lemma 23.3.2 (Hedberg) Every type that has a Hedberg function satisfies UIP.

Proof Let $f : \forall x y X. x = y \rightarrow x = y$ be a Hedberg function for X. We treat x, y as implicit arguments and prove the equation

$$\forall x y \forall e e'. \tau(f e)(\sigma(f(Q y))) = e$$

We first destructure e, which reduces the claim to

$$\tau(f(Q x))(\sigma(f(Q x))) = Q x$$

which is an instance of equation (c) shown in Exercise 23.1.2.

Now let $e, e' : x = y$. We show $e = e'$. Using the above equation twice, we have

$$e = \tau(f e)(\sigma(f(Q y))) = \tau(f e')(\sigma(f(Q y))) = e'$$

since $fe = fe'$ since f is a Hedberg function.

Lemma 23.3.3 Every discrete type has a Hedberg function.

Proof Let d be an equality decider for X. We define a Hedberg function for X as follows:

$$f x y e := \text{IF } d x y \text{ IS } L \hat{e} \text{ THEN } \hat{e} \text{ ELSE } e$$

We need to show $f x y e = f x y e'$. If $d x y = L \hat{e}$, both sides are \hat{e}. Otherwise, we have $e : x = y$ and $x \neq y$, which is contradictory.

Theorem 23.3.4 (Hedberg) Every discrete type satisfies UIP.

Proof Lemma 23.3.3 and Lemma 23.3.2.
23 Inductive Equality

Corollary 23.3.5 Every discrete type satisfies DPI.

Proof Theorems 23.3.4 and 23.2.7. ■

Exercise 23.3.6 Prove Hedberg’s theorem with the weaker assumption that equality on X is propositionally decidable: $\forall x y. x = y \lor x \neq y$.

Exercise 23.3.7 Construct a Hedberg function for X assuming FE and stability of equality on X: $\forall x y. \neg \neg (x = y) \rightarrow x = y$.

Exercise 23.3.8 Assume FE and show that $N \rightarrow B$ satisfies UIP. Hint: Use Exercises 23.3.7 and 13.3.12.

23.4 Inversion with Casts

Sometimes a full inversion operator for an indexed inductive type family can only be expressed with a cast. As example we consider derivation types for comparisons $x < y$ defined as follows:

$$L(x : N) : N \rightarrow T ::=$$
$$| L_1 : Lx(Sx)$$
$$| L_2 : \forall y. Lx y \rightarrow Lx(Sy)$$

The type of the inversion operator for L can be expressed as

$$\forall xy \forall a^{Lxy}. \text{MATCH } y \text{ RETURN } Lxy \rightarrow T$$

$$[0 \Rightarrow \lambda a. \bot]$$
$$| S \rightarrow \lambda a^{Lx(Sy')} \cdot (\Sigma e^{y'=x} \cdot Ce a = L_1 x) + (\Sigma a'. a = L_2 x y' a')$$
$$] a$$

The formulation of the type follows the pattern we have seen before, except that there is a cast in the branch for L_1:

$$\Sigma e^{y'=x} \cdot Ce a = L_1 x$$

The cast is necessary since a has the type $Lx(Sy')$ while $L_1 x$ has the type $Lx(Sx)$. A formulation without a cast seems impossible. The defining equations for the inversion operator discriminate on a, as usual, which yields the obligations

$$\Sigma e^{x=x} \cdot Ce(L_1 x) = L_1 x$$
$$\Sigma a'. L_2 x y' a = L_2 x y' a'$$
23.5 Constructor Injectivity with DPI

The first obligation follows with cast discharge and UIP for numbers. The second obligation is trivial.

We need the inversion operator to show derivation uniqueness of L. As it turns out, we need an additional fact about L:

$$L xx \rightarrow \bot \quad (23.1)$$

This fact follows from a more semantic fact

$$L xy \rightarrow x < y \quad (23.2)$$

which follows by induction on $L xy$. We don’t have a direct proof of (23.1).

We now prove derivation uniqueness

$$\forall xy, \forall ab L^{xy}. a = b$$

for L following the usual scheme (induction on a with b quantified followed by inversion of b). This gives four cases, where the contradictory cases follow with (23.1). The two remaining cases

$$\forall b^{L x(Sx)} \forall e^{x=x}. C eb = b$$

$$L_2 xy a' = L_2 xy b'$$

follow with UIP for numbers and the inductive hypothesis, respectively.

We can also define an index inversion operator for L

$$\forall x y, \forall a^{L xy}. \text{match } y ' : [0 \Rightarrow \bot \mid S y ' \Rightarrow x \neq y ' \rightarrow L x y ']$$

by discriminating on a.

Exercise 23.4.1 The proof sketches described above involve sophisticated type checking and considerable technical detail, more than can be certified reliably on paper. Use the proof assistant to verify the above proof sketches.

23.5 Constructor Injectivity with DPI

We present another inversion fact that can only be verified with UIP for numbers. This time we need DPI for numbers. We consider the indexed type family

$$K (x : N) : N \rightarrow \top ::=$$

$$| K_1 : K x(Sx)$$

$$| K_2 : \forall z y. K x z \rightarrow K z y \rightarrow K x y$$
23 Inductive Equality

which provides a derivation system for arithmetic comparisons \(x < y \) taking transitivity as a rule. Obviously, \(K \) is not derivation unique. We would like to show that the value constructor \(K_2 \) is injective:

\[
\forall a^x \forall b^y. \ K_2\ x\ y\ ab = K_2\ x\ z\ y\ a'b' \rightarrow (a, b) = (a', b') \tag{23.3}
\]

We will do this with a customized index inversion operator

\[
K_{\text{inv}} : \forall x\ y. \ K\ x\ y \rightarrow (y = S\ x) + (\Sigma z. K\ x\ z \times K\ z\ y)
\]

satisfying

\[
K_{\text{inv}}\ x\ y(K_2\ x\ z\ y\ ab) \approx R\ (z, (a, b))
\]

(\(R \) is one of the two value constructors for sums). Defining the inversion operator \(K_{\text{inv}} \) is routine. We now prove (23.3) by applying \(K_{\text{inv}} \) using \(\text{feq} \) to both sides of the assumed equation of (23.3), which yields

\[
R\ (z, (a, b)) = R\ (z, (a', b'))
\]

Now the injectivity of the sum constructor \(R \) (a routine proof) yields

\[
(z, (a, b)) = (z, (a', b'))
\]

which yields \((a, b) = (a', b')\) with DPI for numbers.

The proof will also go through with a simplified inversion operator \(K_{\text{inv}} \) where in the sum type is replaced with the option type \(\theta(\Sigma z. K\ x\ z \times K\ z\ y) \). However, the use of a dependent pair type seems unavoidable, suggesting that injectivity of \(K_2 \) cannot be shown without DPI.

Exercise 23.5.1 Prove injectivity of the constructors for sum using \(\text{feq} \).

Exercise 23.5.2 Prove injectivity of \(K_2 \) using a customized inversion operator employing an option type rather than a sum type.

Exercise 23.5.3 Prove injectivity of \(K_2 \) with the dependent elimination tactic of Coq’s Equations package.

Exercise 23.5.4 Define the full inversion operator for \(K \).

Exercise 23.5.5 Prove \(K\ x\ y \leftrightarrow x < y \).

Exercise 23.5.6 Prove that there is no function \(\forall x\ y. \ K\ x\ y \rightarrow \Sigma z. K\ x\ z \times K\ z\ y \).
23.6 Inductive Equality at Type

We define an inductive equality type at the level of general types

\[\text{id} (X : \mathbb{T}, x : X) : X \rightarrow \mathbb{T} ::= \]

\[| I : \text{id} X x x \]

and ask how propositional inductive equality and computational inductive equality are related. In turns out that we can go back and forth between proofs of propositional identities \(x = y \) and derivations of general identities \(\text{id} xy \), and that UIP at one level implies UIP at the other level. We learn from this example that assumptions concerning only the propositional level (i.e., UIP) may leak out to the computational level and render nonpropositional types inhabited that seem to be unconnected to the propositional level.

First, we observe that we can define transfer functions

\[\uparrow : \forall X \forall xy X \forall e^{x=y}. \text{id} xy \]

\[\downarrow : \forall X \forall xy X \forall a^{\text{id} xy}. x = y \]

such that \(\uparrow (Qx) \approx Ix \) and \(\downarrow (lx) = Qx \) for all \(x \), and \(\uparrow (l e) = e \) and \(\uparrow (l a) = a \) for all \(e \) and \(a \). We can also define a function

\[\phi : \forall XY \forall f^{X \rightarrow Y} \forall xx'. \text{id} xx' \rightarrow \text{id} (f x) (f x') \]

Fact 23.6.1 \(\text{UIP} X \rightarrow \forall xy X \forall ab \text{id} xy. \text{id} ab. \)

Proof We assume \(\text{UIP} X \) and \(x, y : X \) and \(a, b : \text{id} xy \). We show \(\text{id} ab \). It suffices to show

\[\text{id} (\uparrow (l a)) (\uparrow (l b)) \]

By \(\phi \) it suffices to show \(\text{id} (l a) (l b) \). By \(\uparrow \) it suffices to show \(la = lb \), which holds by the assumption \(\text{UIP} X \).

Exercise 23.6.2 Prove the converse direction of Fact 23.6.1.

Exercise 23.6.3 Prove Hedberg’s theorem for general inductive equality. Do not make use of propositional types.

Exercise 23.6.4 Formulate the various UIP characterizations for general inductive equality and prove their equivalence. Make sure that you don’t use propositional types. Note that the proofs from the propositional level carry over to the general level.
23 Inductive Equality

23.7 Notes

The dependently typed algebra of identity proofs identified by Hofmann and Streicher [14] plays an important role in homotopy type theory [24], a recent branch of type theory where identities are accommodated as nonpropositional types and UIP is inconsistent with the so-called univalence assumption. Our proof of Hedberg’s theorem follows the presentation of Kraus et al. [16]. That basic type theory cannot prove UIP was discovered by Hofmann and Streicher [14] in 1994 based on a so-called groupoid interpretation.
24 Vectors

Vector types refine list types with an index recording the length of lists. Working with vector types is smooth in some cases and problematic in other cases. The problems stem from the fact that type checking relies on conversion rather than propositional equality.

24.1 Basic Definitions

The elements of a vector type \(\mathcal{V}_n(X) \) may be though of as lists of length \(n \) over a base type \(X \). The definition of the family of vector types \(\mathcal{V}_n(X) \) accommodates \(X \) as a parameter and \(n \) as an index:

\[
\mathcal{V}(X : \mathbb{T}) : \mathbb{N} \rightarrow \mathbb{T} ::= \\
| \text{Nil} : \mathcal{V}_0(X) \\
| \text{Cons} : \forall n. X \rightarrow \mathcal{V}_n(X) \rightarrow \mathcal{V}_{S_n}(X)
\]

We write vector types \(\mathcal{V} X n \) as \(\mathcal{V}_n(X) \) to agree with the usual notation. The formal definition takes \(X \) before \(n \) since type constructors must take parameters before indices (a convention we adopt from Coq). For concrete vectors, we shall use the notation for lists. For instance, we write

\[
[x, y, z] \sim \text{Cons} \ X \ 2 \ x \ (\text{Cons} \ X \ 1 \ y \ (\text{Cons} \ X \ 0 \ z \ (\text{Nil} \ X))) : \mathcal{V}_3(X)
\]

We shall treat \(X \) as an implicit argument of \(\text{Nil} \) and \(\text{Cons} \). Defining a universal eliminator for vectors

\[
\forall X \mathbb{V} \forall p \forall n. \mathcal{V}_n(X) \rightarrow \mathbb{V}.
\]

\[
p \ 0 \ \text{Nil} \rightarrow
\]

\[
(\forall n x v. p n v \rightarrow p (S n) (\text{Cons} x v)) \rightarrow
\]

\[
\forall n v. p n v
\]

is routine (recursion on the vector \(v \)). We will use the universal eliminator for inductive proofs.
24 Vectors

We also define an inversion operator for vectors

\[\forall X \forall n \forall v \mathcal{V}_n(X) \]

\[
\text{MATCH } n \text{ RETURN } \mathcal{V}_n(X) \to T
\]

\[
[0 \Rightarrow \lambda v. v = \text{Nil} \\
| S n' \Rightarrow \lambda v. \Sigma x v'. v = \text{Cons } n' x v' \\
| v]
\]

by discrimination on \(v \). We have explained the need for the reloading match before. The inversion operator will be essential for defining operations discriminating on nonempty vectors \(\mathcal{V}_{Sn}(X) \).

24.2 Operations

We now define head and tail operation for vectors. In contrast to lists, the operations for vectors can exclude empty vectors through the index argument of their types. Moreover, head and tail can be obtained as instances of the inversion operator \(I \):

\[
\text{hd} : \forall n. \mathcal{V}_{Sn}(X) \to X
\]

\[
\text{hd } n \ v := \pi_1((I(Sn)v))
\]

\[
\text{tl} : \forall n. \mathcal{V}_{Sn}(X) \to \mathcal{V}_n(X)
\]

\[
\text{tl } n \ v := \pi_1(\pi_2((I(Sn)v)))
\]

Note that \(\text{hd} \) and \(\text{tl} \) cannot be defined directly by discrimination on their vector argument since the index argument of the discriminating type is not an unconstrained variable. So to define \(\text{hd} \) and \(\text{tl} \) one must first come up with a generalized operation discriminating on an unconstrained vector type.

The problem reoccurs when we try to prove the \(\eta \)-law for vectors:

\[
\forall n \forall v \mathcal{V}_{Sn}(X). v = \text{Cons } (\text{hd } v)(\text{tl } v)
\]

A direct discrimination of the vector argument is forbidden, and an application of the universal eliminator will not help. On the other hand, instantiating the inversion operator with \(v \) yields \(\Sigma x v'. v = \text{Cons } n' x v' \), which yields the claim by destructuring, rewriting, and conversion.

Now that we have \(\text{hd} \) and \(\text{tl} \), showing injectivity of \(\text{Cons} \)

\[
\text{Cons } n x v = \text{Cons } n x' v' \rightarrow x = x' \land v = v'
\]
using \texttt{feq} is routine. With injectivity it is then routine to construct an equality decider for vectors:

\[
\forall n \forall v_1 v_2^{V_n(X)}. \mathcal{D}(v_1 = v_2)
\]

The proof is as usual by recursion on \(v_1\) (with \(v_2\) quantified) followed by inversion of \(v_2\) (using the inversion operator for vectors). Injectivity of \texttt{Cons} is needed for the negative cases obtained with the inductive hypothesis.

There is also an elegant definition of an operation that yields the last element of a vector:

\[
\text{last : } \forall n. V_{S^n}(X) \to X
\]

\[
\text{last } 0 := \text{hd } 0 : V_{S^0}(X) \to X
\]

\[
\text{last } (S^n) := \lambda v. \text{last } n (\text{tl } (S^n) v) : V_{S^{S^n}}(X) \to X
\]

Note that \text{last} recurses on \(n\) rather than on the vector \(v\), making a direct definition possible.

Another interesting operation on vectors is

\[
\text{sub : } \forall n. \mathcal{N}(n) \to V_n(X) \to X
\]

\[
\text{sub } _Z n := \text{hd } n : V_{S^n}(X) \to X
\]

\[
\text{sub } _U n a := \lambda v. \text{sub } n a (\text{tl } n a) : V_{S^n}(X) \to X
\]

As with lists, \text{sub } n a v yields the element the vector \(v\) carries at position \(a\). If \(Z\) is interpreted as zero and \(U\) as successor operation, the positions are numbered from left to right starting with zero. The interesting fact here is that the numeral type \(\mathcal{N}(n)\) contains exactly one numeral for every position of a vector \(V_n(X)\).

Exercise 24.2.1 Verify the above definitions and proofs using the proof assistant. In each case convince yourself that the inversion operator cannot be replaced by a direct discrimination.

Exercise 24.2.2 (Generalized head and tail) There is a direct realization of a generalized head operation incorporating ideas from the inversion operator:

\[
\text{hd : } \forall n \forall v V_n(X). \text{MATCH } n \left[0 \Rightarrow \top | S^n \Rightarrow X \right]
\]

\[
\text{hd } _\text{Nil} := 1 : \top
\]

\[
\text{hd } _\text{(Cons } n x v) := x : X
\]

Define a generalized tail operation using this idea.
24 Vectors

Exercise 24.2.3 (Reversal) Define functions \(\text{trunc}\), \(\text{snoc}\), and \(\text{rev}\) as follows:

a) \(\text{trunc} \ n \ v\) yields the vector obtained by removing the last position of \(v : \mathcal{V}_n(X)\).

b) \(\text{snoc} \ n \ v \ x\) yields the vector obtained by appending \(x\) at the end of \(v : \mathcal{V}_n(X)\).

c) \(\text{rev} \ n \ v\) yields the vector obtained by reversing \(v : \mathcal{V}_n(X)\).

Prove the following equations for your definitions (index arguments are omitted):

a) \(\text{last} (\text{snoc} \ v \ x) = x\).

b) \(v = \text{snoc} (\text{trunc} \ v) (\text{last} \ v)\).

c) \(\text{rev} (\text{snoc} \ v \ x) = \text{Cons} \ x (\text{rev} \ v)\).

d) \(\text{rev} (\text{rev} \ v) = v\).

Hints: Equation (b) follows by induction on the index variable \(n\) and inversion of \(v\), the others equations follow by induction on \(v\).

Exercise 24.2.4 (Associativity) Define a concatenation operation

\[
+ : \forall X \ m n. \mathcal{V}_m(X) \rightarrow \mathcal{V}_n(X) \rightarrow \mathcal{V}_{m+n}(X)
\]

for vectors. Convince yourself that the statement for associativity of concatenation

\[
(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)
\]

does not type check (first add the implicit arguments and implicit types). Also check that the type checking problem would go away if the terms \((n_1 \cdot n_2) + n_3\) and \(n_1 + (n_2 + n_3)\) were convertible.

Exercise 24.2.5 Define a map function for vectors and prove its basic properties.

24.3 Converting between Vectors and Lists

We define a function that converts vectors into lists:

\[
L : \forall n. \mathcal{V}_n(X) \rightarrow \mathcal{L}(X)
\]

\[
L__ \text{Nil} := []
\]

\[
L__ (\text{Cons} \ n \ x \ v) := x :: Ln v
\]

With a straightforward induction on vectors we show that \(L\) converts vectors of length \(n\) into lists of length \(n\):

\[
\forall n v. \text{len} (Ln v) = n\quad \text{(24.1)}
\]

We can also show that \(L\) is injective:

\[
\forall n \forall v_1 v_2 : \mathcal{V}_{n}(X)\cdot Ln v_1 = Ln v_2 \rightarrow v_1 = v_2\quad \text{(24.2)}
\]
24.3 Converting between Vectors and Lists

The proof is by induction on v_1 and inversion of v_2 and exploits the injectivity of the constructor cons for lists.

Next we show that L is surjective in the sense that every list of length n can be obtained from a vector of length n:

$$\forall A^{L(X)} \Sigma v^{V_{\text{len}(X)}}. \ L(len\ A)\ v = A \tag{24.3}$$

We construct the function (24.3) by induction on A. Function (24.3) gives us a function

$$V : L(X) \rightarrow V_{\text{len}(X)}$$

such that

$$\forall A^{L(X)}. L((\text{len}\ A)\ (V(A))) = A$$

So far, so good. We now run into the problem that the statement

$$\forall n \forall v^{V_n(X)}. V(Ln\ v) = v \tag{24.4}$$

does not type check since the types $V_{\text{len}(Ln\ v)}(X)$ and $V_n(X)$ are not convertible. The problem may be resolved with a type cast transferring from $V_{\text{len}(Ln\ v)}(X)$ to $V_n(X)$ based on the equation (24.1). The type checking problem goes away for concrete equations since conversion is strong enough if there are no variables. For instance, the concrete equation

$$L\ 3\ (V[1, 2, 3]) = [1, 2, 3] \tag{24.5}$$

type checks (since $\text{len}(L\ 3(V[1, 2, 3])) = 3$) and holds by computational equality.

Exercise 24.3.1 Check the above claims with the proof assistant.
Part V

Higher Order Recursion
25 Existential Witness Operators

In this chapter, we will define an existential witness operator that for decidable predicates on numbers obtains a satisfying number from a given satisfiability proof:

\[W : \forall p^N \rightarrow P. (\forall n. D(pn)) \rightarrow (\exists n. pn) \rightarrow (\Sigma n. pn) \]

The interesting point about an existential witness operator is the fact that from a propositional satisfiability proof it obtains a witness that can be used computationally. Existential witness operators are required for various computational constructions.

Given that the elimination restriction disallows computational access to the witness of an existential proof, the definition of a witness operator is not obvious. In fact, our definition will rely on higher-order structural recursion, a feature of inductive definitions we have not used before. The key idea is the use linear search types

\[T(n : N) : \mathbb{P} ::= C (\neg pn \rightarrow T(Sn)) \]

featuring a recursion through the right-hand side of a function type. Derivations of a linear search type \(T_n \) thus carry a continuation function \(\phi : \neg pn \rightarrow T(Sn) \) providing a structurally smaller derivation \(\phi h : T(Sn) \) for every proof \(h : \neg pn \). By recursing on a derivation of \(T_0 \) we will be able to define a function performing a linear search \(n = 0, 1, 2, \ldots \) until \(pn \) holds. Since \(T_0 \) is a computational proposition, we can construct a derivation of \(T_0 \) in propositional mode using the witness from the proof of \(\exists n. pn \).

25.1 Linear Search Types

Recall from §4.3 that a computational proposition is an inductive proposition exempted from the elimination restriction. Proofs of computational propositions can be decomposed in computation mode although they have been constructed in proof mode. Recursive computational propositions thus provide for computational recursion.

We fix a predicate \(p : N \rightarrow \mathbb{P} \) and define linear search types as follows:

\[T(n : N) : \mathbb{P} ::= C (\neg pn \rightarrow T(Sn)) \]
25 Existential Witness Operators

The argument of the single proof constructor C is a function

$$\varphi : \neg pn \to T(\Sigma n)$$

counting as a proof since linear search types are declared as propositions. We will refer to φ as the continuation function of a derivation. The important point now is the fact that the continuation function of a derivation of type Tn yields a structurally smaller derivation $\varphi h : T(\Sigma n)$ for every proof $h : \neg pn$. Since the recursion passes through the right constituent of a function type we speak of a higher-order recursion. It is the flexibility coming with higher-order recursion that makes the definition of a witness operator possible. We remark that Coq’s type theory admits recursion only through the right-hand side of function types, a restriction known as strict positivity condition.

We also remark that the parameter n of T is nonuniform. While T can be defined with the parameter p abstracted out (e.g., as a section variable in Coq), the parameter n cannot be abstracted out since the application $T(\Sigma n)$ appears in the argument type of the proof constructor.

Exercise 25.1.1 (Strict positivity) Assume that the inductive type definition $B : T ::= C(B \to \bot)$ is admitted although it violates the strict positivity condition. Give a proof of falsity. Hint: First define a function $F : B \to \bot$ inductively.

Exercise 25.1.2 Higher-order recursion offers yet another possibility for defining an empty type:

$$A : \mathbb{P} ::= C(\top \to A)$$

Define a function $A \to \bot$.

25.2 Definition of Existential Witness Operator

We now assume that p is a decidable predicate on numbers. We will define an existential witness operator

$$W : (\exists n. pn) \to \Sigma n. pn$$

using two functions

$$W' : \forall n. Tn \to \Sigma n. pn$$
$$V : \forall n. pn \to T0$$

The idea is to first obtain a derivation $d : T0$ using V and the witness of the proof of $\exists n. pn$, and then obtain a computational witness using W' and the derivation $d : T0$.

234
We define W' by recursion on T_n:

$$W' : \forall n. T_n \to \Sigma k. pk$$

$$W' (C\varphi) := \begin{cases}
E n h & \text{if } h : pn \\
W' (S n) (\varphi h) & \text{if } h : \neg pn
\end{cases}$$

Note that the defining equation of W' makes use of the higher-order recursion coming with T_n. The recursion is admissible since every derivation φh counts as structurally smaller than the derivation $C\varphi$. Coq's type theory is designed such that higher-order structural recursion always terminates.

It remains to define a function $V : \forall n. pn \to T_0$. Given the definition of T, we have

$$\forall n. pn \to T_n \quad (25.1)$$

$$\forall n. T(S n) \to T_n \quad (25.2)$$

Using recursion on n, function (25.2) yields a function

$$\forall n. T_n \to T_0 \quad (25.3)$$

Using function (25.1), we have a function $V : \forall n. pn \to T_0$ as required.

Theorem 25.2.1 (Existential witness operator)

There is a function $W : \forall p N \to P$. ($\forall n. D(pn) \to (\exists n. pn) \to (\Sigma n. pn)$).

Proof Using V we obtain a derivation $d : T_0$ from the witness of the proof of $\exists n. pn$. There is no problem with the elimination restriction since T_0 is a proposition. Now W' yields a computational witness for p.

Exercise 25.2.2 Point out where in the defining equation of W' it is exploited that linear search types are computational (i.e., no elimination restriction).

Exercise 25.2.3 Define W' with `fix` and `match`. Note that `fix` must be given a leading argument n so that the recursive function can receive the type $\forall n. T_n \to \Sigma k. pk$ accommodating the recursive application for $S n$.

25.3 More Existential Witness Operators

Fact 25.3.1 (Existential least witness operator)

There is a function $W : \forall p N \to P$. ($\forall n. D(pn) \to (\exists n. pn) \to (\Sigma n. least pn)$).

Proof There are two ways to construct the operator using W. Either we use Fact 17.3.2 that gives us a least witness for a witness, or Fact 17.3.4 and Corollary 17.3.3 that tell us that $\text{least } p$ is a decidable and satisfiable predicate.
25 Existential Witness Operators

Corollary 25.3.2 (Binary existential witness operator)
There is a function $\forall p^N\to N \to P$. $(\forall xy. D(pxy)) \to (\exists xy. pxy) \to (\Sigma xy. pxy)$.

Proof Follows with W and the paring bijection from Chapter 7. The trick is to use W with $\lambda n. p(\pi_1(Dn))(\pi_2(Dn))$. ■

Corollary 25.3.3 (Disjunctive existential witness operator)
Let p and q be decidable predicates on numbers. Then there is a function $(\exists n.pn) \lor (\exists n.qn) \to (\Sigma n.pn) + (\Sigma n.qn)$.

Proof Use W with the predicate $\lambda n.pn \lor qn$. ■

The following fact was discovered by Andrej Dudenhefner in March 2020.

Fact 25.3.4 (Discreteness via step-indexed equality decider)
Let $f^X\to N\to B$ be a function such that $\forall xy. x = y \iff \exists n. fxy = t$. Then X has an equality decider.

Proof We prove $D(x = y)$ for fixed $x, y : X$. Using the witness operator we obtain n such that $fxxn = t$. If $fxy = t$, we have $x = y$. If $fxy = f$, we have $x \neq y$. ■

Exercise 25.3.5 (Infinite path)
Let $p : N \to N \to P$ be a decidable predicate that is total: $\forall x. \exists y. pxy$.

a) Define a function $f : N \to N$ such that $\forall x. pfx$.

b) Given x, define a function $f : N \to N$ such that $f0 = x$ and $\forall n. p(fn)(f(Sn))$.

We may say that f describes an infinite path starting from x in the graph described by the edge predicate p.

Exercise 25.3.6 Let $f : N \to B$. Prove the following:

a) $(\exists n. fn = t) \iff (\Sigma n. fn = t)$.

b) $(\exists n. fn = t) \iff (\Sigma n. fn = t)$.

Exercise 25.3.7 Let p be a decidable predicate on numbers. Define a function $\forall n. Tn \to \Sigma k. k \geq n \land pk$.

Exercise 25.3.8 Construct a witness operator $(\exists x. px) \to (\Sigma x. px)$ for decidable predicates p on booleans. Exploit that there are only two a priori known candidates for a witness. Note that a computation elimination for \bot is needed.
25.4 Eliminator and Existential Characterization

We define an eliminator for linear search types:

\[E_T : \forall q^{N \rightarrow T}. (\forall n. (\neg pn \rightarrow q(Sn)) \rightarrow qn) \rightarrow \forall n. Tn \rightarrow qn \]

\[E_T q f n(C\varphi) := fn(\lambda h. E_T q f(Sn)(\varphi h)) \]

The eliminator provides for inductive proofs on derivations of \(T \). That the inductive hypothesis \(q(Sn) \) in the type of \(f \) is guarded by \(\neg pn \) ensures that it can be obtained with recursion through \(\varphi \).

We remark that when translating the equational definition of \(E_T \) to a computational definition with \textsc{fix} and \textsc{match}, the recursive abstraction with \textsc{fix} must be given a leading argument \(n \) so that the recursive function can receive the type \(\forall n. Tn \rightarrow pn \), which is needed for the recursive application, which is for \(Sn \) rather than \(n \).

Exercise 25.4.1 Define \(W' \) with the eliminator \(E_T \) for \(T \).

Exercise 25.4.2 (Existential characterization) Prove the following facts about linear search types.

a) \(pn \rightarrow Tn \).

b) \(T(Sn) \rightarrow Tn \).

c) \(T(k + n) \rightarrow Tn \).

d) \(Tn \rightarrow T0 \).

e) \(pn \rightarrow T0 \).

f) \(Tn \rightarrow \exists k. k \geq n \land pk \).

Hints: Direction \(\rightarrow \) of (f) follows with induction on \(T \) using the eliminator \(E_T \). Part (c) follows with induction on \(k \). The rest follows without inductions, mostly using previously shown claims.

Exercise 25.4.3 The eliminator we have defined for \(T \) is not the strongest one. One can define a stronger eliminator where the target type depends on both \(n \) and a derivation \(d : Tn \). This eliminator makes it possible to prove properties of a linear search function \(\forall n. Tn \rightarrow \mathbb{N} \) with a noninformative target type.

25.5 Notes

With linear search types we have seen computational propositions that go far beyond the inductive definitions we have seen so far. The proof constructor of linear search types employs higher-order structural recursion through the right-hand side
of a function type. Higher-order structural recursion greatly extends the power of structural recursion. Higher-order structural recursion means that an argument of a recursive constructor is a function that yields a structurally smaller value for every argument. That higher-order structural recursions always terminates is a basic design feature of Coq's type theory.
26 Well-Founded Recursion

Well-founded recursion is provided with an operator

$$\text{wf}(R) \rightarrow \forall p^{X \rightarrow T}. (\forall x. (\forall y. Ryx \rightarrow py) \rightarrow px) \rightarrow \forall x. px$$

generalizing arithmetic size recursion such that recursion can descend along any well-founded relation. In addition, the well-founded recursion operator comes with an unfolding equation making it possible to prove for the target function the equations used for the definition of the step function. Well-foundedness of relations is defined constructively with recursion types

$$\mathcal{A}_R(x : X) : \mathbb{P} ::= C(\forall y. Ryx \rightarrow \mathcal{A}_Ry)$$

obtaining well-founded recursion from the higher-order recursion coming with inductive types. Being defined as computational propositions, recursion types mediate between proofs and computational recursion.

The way computational type theory accommodates definitions and proofs by general well-founded recursion is one of the highlights of computational type theory.

26.1 Recursion Types

We assume a binary relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$ and pronounce the Ryx as y below x. We define the recursion types for R as follows:

$$\mathcal{A}_R(x : X) : \mathbb{P} ::= C(\forall y. Ryx \rightarrow \mathcal{A}_Ry)$$

and call the elements of recursion types recursion certificates. Note that recursion types are computational propositions. A recursion certificate of type $\mathcal{A}_R(x)$ justifies all recursions starting from x and descending on the relation R. That a recursion on a certificate of type $\mathcal{A}_R(x)$ terminates is ensured by the built-in termination property of computational type theory. Note that recursion types realize higher-order recursion.

We will harvest the recursion provided by recursion certificates with a recursion operator

$$W' : \forall p^{X \rightarrow T}. (\forall x. (\forall y. Ryx \rightarrow py) \rightarrow px) \rightarrow \forall x. \mathcal{A}_Rx \rightarrow px$$

$$W'pFx(C\varphi) ::= Fx(\lambda yr. W'pFy(\varphi yr))$$
Computationally, W' may be seen as an operator that obtains a function

$$\forall x. A_R x \rightarrow px$$

from a step function

$$\forall x. (\forall y. Ryx \rightarrow py) \rightarrow px$$

The step function describes a function $\forall x.px$ obtained with a continuation function

$$\forall y. Ryx \rightarrow py$$

providing recursion for all y below x. We also speak of recursion guarded by R.

We define well-founded relations as follows:

$$\text{wf}(R^X \rightarrow X \rightarrow P^X) := \forall x. A_R(x)$$

Note that a proof of a proposition $\text{wf}(R)$ is a function that yields a recursion certificate $A_R(x)$ for every x of the base type of R. For well-founded relations, we can specialize the recursion operator W' as follows:

$$W : \text{wf}(R) \rightarrow \forall px \rightarrow \forall x. (\forall y. Ryx \rightarrow py) \rightarrow px \rightarrow \forall x. px$$

$$WhpFx := W' pFx (hx)$$

We will refer to W' and W as well-founded recursion operators. Moreover, we will speak of well-founded induction if a proof is obtained with an application of W' or W.

It will become clear that W generalizes the size recursion operator. For one thing we will show that the order predicate $<^N \rightarrow N \rightarrow N$ is a well-founded relation. Moreover, we will show that well-founded relations can elegantly absorb size functions.

The inductive predicates A_R are often called accessibility predicates. They inductively identify the accessible values of a relation as those values x for which all values y below (i.e., Ryx) are accessible. To start with, all terminal values of R are accessible in R. We have the equivalence

$$A_R(x) \iff (\forall y. Ryx \rightarrow A_R(y))$$

Note that the equivalence is much weaker than the inductive definition in that it doesn't provide recursion and in that it doesn't force an inductive interpretation of the predicate A_R (e.g., the full predicate would satisfy the equivalence).

We speak of recursion types $A_R(x)$ rather than accessibility propositions $A_R(x)$ to emphasize that the propositional types $A_R(x)$ support computational recursion.
Fact 26.1.1 (Extensionality) Let \(R \) and \(R' \) be relations \(X \to X \to P \).
Then \((\forall xy. R'xy \to Rxy) \to \forall x. A_R(x) \to A_{R'}(x) \).

Proof By well-founded induction with \(W' \).

Exercise 26.1.2 Prove \(A_R(x) \iff (\forall y. Ryx \to A_R(y)) \) from first principles. Make sure you understand both directions of the proof.

Exercise 26.1.3 Prove \(A_R(x) \to \neg Rxx \).
Hint: Use well-founded induction with \(W' \).

Exercise 26.1.4 Prove \(Rx y \to Ryx \to \neg A_R(x) \).

Exercise 26.1.5 Show that well-founded relations disallow infinite descend:
\(\mathcal{A}_R(x) \to px \to \forall x. px \to \exists y. py \land Ryx \).

Exercise 26.1.6 Prove \((\mathcal{A}_{\lambda \ldots \perp}) \to \forall X\mathcal{P}. X \) not using falsity elimination.
Hint: Use well-founded recursion.

26.2 Well-founded Relations

Fact 26.2.1 The order relation on numbers is well-founded.

Proof We prove the more general claim \(\forall nx. x < n \to A_<(x) \) by induction on the upper bound \(n \). For \(n = 0 \) the premise \(x < n \) is contradictory. For the successor case we assume \(x < Sn \) and prove \(A_<(x) \). By the single constructor for \(A \) we assume \(y < x \) and prove \(A_<(x) \). Follows by the inductive hypothesis since \(y < n \).

Given two relations \(R^X \to X \to P \) and \(S^Y \to Y \to P \), we define the lexical product \(R \times S \) as a binary relation \(X \times Y \to X \times Y \to P \):
\[
R \times S := \lambda(x', y'). (x, y)^{X \times Y}. Rx' x \lor x' = x \land S y'y
\]

Fact 26.2.2 (Lexical products) \(\text{wf}(R) \to \text{wf}(S) \to \text{wf}(S \times R) \).

Proof We prove \(\forall xy. \mathcal{A}_{R \times S}(x, y) \) by nested well-founded induction on first \(x \) in \(R \) and then \(y \) in \(S \). By the constructor for \(\mathcal{A}_{R \times S}(x, y) \) we assume \(Rx' x \lor x' = x \land S y'y \) and prove \(\mathcal{A}_{R \times S}(x', y') \). If \(Rx' x \), the claim follows by the inductive hypothesis for \(x \). If \(x' = x \land S y'y \), the claim is \(\mathcal{A}_{R \times S}(x, y') \) and follows by the inductive hypothesis for \(y \).
26 Well-Founded Recursion

The above proof is completely straightforward when carried out formally with the well-founded recursion operator W.

Another important construction for binary relations are retracts. Here one has a relation $R : Y \to Y \to P$ and uses a function $\sigma : X \to Y$ to obtain a relation R_σ on X:

$$R_\sigma := \lambda x'. R(\sigma x')(\sigma x)$$

We will show that retracts of well-founded relations are well-founded. It will also turn out that well-founded recursion on a retract R_σ is exactly well-founded size recursion on R with the size function σ.

Fact 26.2.3 (Retracts) $\text{wf}(R) \to \text{wf}(R_\sigma)$.

Proof Let $R : Y \to Y \to P$ and $\sigma : X \to Y$. We assume $\text{wf}(R)$. It suffices to show

$$\forall yx. \sigma x = y \to \text{A} R_\sigma(x)$$

We show the lemma by well-founded induction on y and R. We assume $\sigma x = y$ and show $\text{A} R_\sigma(x)$. Using the constructor for $\text{A} R_\sigma(x)$, we assume $R(\sigma x')(\sigma x)$ and show $\text{A} R_\sigma(x')$. Follows with the inductive hypothesis for $\sigma x'$.

Corollary 26.2.4 (Well-founded size recursion)

Let $R : Y \to Y \to P$ be well-founded and $\sigma : X \to Y$. Then:

$$\forall p : X'. (\forall x. (\forall x'. R(\sigma x')(\sigma x) \to p x') \to p x) \to \forall x. p x.$$

We now obtain the arithmetic size recursion operator from §18.1 as a special case of the well-founded size recursion operator.

Corollary 26.2.5 (Arithmetic size recursion)

$$\forall \sigma : X \to N \forall p : X'. (\forall x. (\forall x'. \sigma x' < \sigma x \to p x') \to p x) \to \forall x. p x.$$

Proof Follows with Corollary 26.2.4 and Fact 26.2.1.

There is a story here. We came up with retracts to have an elegant construction of the wellfounded size recursion operator appearing in Corollary 26.2.4. Note that conversion plays an important role in type checking the construction. The proof that retracts of well-founded relations are well-founded (Fact 26.2.3) is interesting in that it first sets up an intermediate that can be shown with well-founded recursion. The equational premise $\sigma x = y$ of the intermediate claim is needed so that the well-founded recursion is fully informed. Similar constructions will appear once we look at inversion operators for indexed inductive types.

Exercise 26.2.6 Prove $R \subseteq R' \to \text{wf}(R') \to \text{wf}(R)$ for all relations $R, R' : X \to X \to \mathbb{P}$.

Tip: Use extensionality (Fact 26.1.1).

Exercise 26.2.7 Give two proofs for $\text{wf}(\lambda xy. Sx = y)$: A direct proof by structural induction on numbers, and a proof exploiting that $\lambda xy. Sx = y$ is a sub-relation of the order relation on numbers.
26.3 Unfolding Equation

Assuming FE, we can prove the equation

\[WFX = Fx(\lambda yr. WFY) \]

for the well-founded recursion operator \(W \). We will refer to this equation as unfolding equation. The equation makes it possible to prove that the function \(WF \) satisfies the equations underlying the definition of the guarded step function \(F \). This is a major improvement over arithmetic size recursion where no such tool is available. For instance, the unfolding equation gives us the equation

\[Dxy = \begin{cases} 0 & \text{if } x \leq y \\ S(D(x - S y)y) & \text{if } x > y \end{cases} \]

for an Euclidean division function \(D \) defined with well-founded recursion on \(<_N \):

\[Dxy := W(Fy)x \]

\[F : N \rightarrow \forall x. (\forall x'. x' < x \rightarrow N) \rightarrow N \]

\[Fyxh := \begin{cases} 0 & \text{if } x \leq y \\ S(h (x - S y)''x' - S y < x'') & \text{if } x > y \end{cases} \]

Note that the second argument \(y \) is treated as a parameter. Also note that the equation for \(D \) is obtained from the unfolding equation for \(W \) by computational equality.

We now prove the unfolding equation using FE. We first show the remarkable fact that under FE all recursion certificates are equal.

Lemma 26.3.1 (Uniqueness of recursion types)

Under FE, all recursion types are unique: \(FE \rightarrow \forall x \forall ab^{A_R(x)} \cdot a = b \).

Proof We prove

\[\forall x \forall a^{A_R(x)} \forall b c^{A_R(x)} \cdot b = c \]

using \(W' \). This gives us the claim \(\forall b c^{A_R(x)} \cdot b = c \) and the inductive hypothesis

\[\forall x'. Rx'x \rightarrow \forall b c^{A_R(x')}. b = c \]

We destruct \(b \) and \(c \), which gives us the claim

\[C\varphi = C\varphi' \]

for \(\varphi, \varphi' : \forall x'. Rx'x \rightarrow A_R(x') \). By FE it suffices to show

\[\varphi x' r = \varphi' x' r \]

for \(r^{Rx'x} \). Holds by the inductive hypothesis.\[\square\]
26 Well-Founded Recursion

Fact 26.3.2 (Unfolding equation)
Let \(R^{X\to X\to P} \), \(p^{X\to X} \), and \(F^{\forall x. (\forall x'. Rx'x \to px') \to px} \).
Then \(FE \to \text{wf}(R) \to \forall x. WFX = Fx(\lambda x'r. WFX') \).

Proof We prove \(WFX = Fx(\lambda x'r. WFX') \). We have
\[
WFX = W'Fxa = W'Fx(C\varphi) = Fx(\lambda yr. fy)
\]
for some \(a \) and \(\varphi \). Using FE, it now suffices to prove the equation
\[
W'Fx'(qx'r) = W'Fx'b
\]
for some \(b \). Holds by Lemma 26.3.1. ■

Fact 26.3.3 (Uniqueness)
Let \(R^{X\to X\to P} \), \(p^{X\to X} \), and \(F^{\forall x. (\forall x'. Rx'x \to px') \to px} \).
Then \(FE \to \text{wf}(R) \to (f = F) \to (f' = F) \to \forall x. fx = f'x \).

Proof We prove \(\forall x. fx = f'x \) using \(W \) with \(R \). Using the assumptions for \(f \) and \(f' \), we reduce the claim to \(Fx(\lambda x'r. fx') = Fx(\lambda x'r. f'x') \). Using FE, we reduce that claim to \(Rx'x \to fx' = f'x' \), an instance of the inductive hypothesis. ■

Exercise 26.3.4 Note that the proof of Lemma 26.3.1 doubles the quantification of \(a \). Verify that this is justified by the general law \((\forall a. \forall a.pa) \to \forall a.pa \).

26.4 Example: GCDs

Our second example for the use of well-founded recursion and the unfolding equation is the construction of a function computing GCDs (§18.3). We start with the procedural specification in Figure 26.1. We will construct a function \(g^{N\to N\to N} \) satisfying the specification using \(W \) on the retract of \(\lt_N \) for the size function
\[
\sigma : N \times N \to N
\]
\[
\sigma(x, y) := x + y
\]
26.4 Example: GCDs

\[g : N \to N \to N \]
\[g(c, 0) = c \]
\[g(c, Sx) = \begin{cases}
 g(Sx, (c - x)) & \text{if } x \leq c \\
 g(Sx, (c - x)) & \text{if } x > c
\end{cases} \]

Guard conditions
\[x \leq y \to Sx + (y - x) < Sx + Sy \]
\[x > y \to (x - y) + Sy < Sx + (c - y) \]

Figure 26.1: Recursive specification of a gcd function

The figure gives the guard conditions for the recursive calls adding the preconditions established by the conditional in the third specifying equation.

Given the specification in Figure 26.1, the formal definition of the guarded step function is straightforward:

\[F : \forall c : N \times N. (\forall c'. \sigma c' < \sigma c \to N) \to N \]
\[F(0, y) := y \]
\[F(Sx, 0) := Sx \]
\[F(Sx, Sy) := \begin{cases}
 h(Sx, (c - x)) & (Sx + (y - x)) < Sx + Sy \\
 h(Sx, (c - x)) & (x - y) + Sy < Sx + Sy
\end{cases} \]

We now define the desired function

\[g : N \to N \to N \]
\[g(x, y) := WHF(x, y) \]

using the recursion operator \(W \) and the function \(H : \forall c : N \times N. (\forall c'. \sigma c' < \sigma c \to N) \to N \)

obtained with the functions for recursion certificates for numbers (Fact 26.2.1) and retracts (Fact 26.2.3). Each of the three specifying equations in Figure 26.1 can now be obtained as an instance of the unfolding equation (Fact 26.3.2).

In summary, we note that the construction of a function computing GCDs with a well-founded recursion operator is routine given the standard constructions for retracts and the order on numbers. Proving that the specifying equations are satisfied is straightforward using the unfolding equation and FE.
That the example can be done so nicely with the general retract construction is
due to the fact that type checking is modulo computational equality. For instance,
the given type of the step function \(F \) is computationally equal to
\[
\forall c^\mathbb{N} \times \mathbb{N}. (\forall c'. (<) c' c \rightarrow \mathbb{N}) \rightarrow \mathbb{N}
\]
Checking the conversions underlying our presentation is tedious if done by hand
but completely automatic in Coq.

Exercise 26.4.1 Construct a function \(f : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \) satisfying the Ackermann equations
(§1.10) using well-founded recursion for the lexical product \(<\mathbb{N} \times <\mathbb{N} >\).

26.5 Unfolding Equation without FE

We have seen a proof of the unfolding equation assuming FE. Alternatively, one
can prove the unfolding equation assuming that the step function has a particular
extensionality property. For concrete step function one can usually prove that they
have this extensionality without using assumptions.

We assume a relation \(R^{X \rightarrow X \rightarrow P} \), a type function \(p^{X \rightarrow T} \), and a step function
\(F : \forall x. (\forall x'. R x' x \rightarrow p x') \rightarrow px \)

We define **extensionality** of \(F \) as follows:

\[
\text{ext}(F) := \forall x h h'. (\forall y r. h y r = h' y r) \rightarrow F x h = F x h'
\]

The property says that \(F x h \) remains the same if \(h \) is replaced with a function agreeing with \(h \). We have \(FE \rightarrow \text{ext}(F) \). Thus all proofs assuming \(\text{ext}(F) \) yields proofs for
the stronger assumption \(FE \).

Fact 26.5.1 \(\text{ext}(F) \rightarrow \forall x a a'. W' F x a = W' F x a'. \)

Proof We assume \(\text{ext}(F) \) and show \(\forall x \forall a. \exists x. R x y x. \forall a a'. W' F x a = W' F x a' \) using \(W' \).
This give us the inductive hypothesis

\[
\forall y \forall r. r^{R y x} \forall a a'. W' F y a = W' F y a'
\]

By destructuring we obtain the claim \(W' F x (C \varphi) = W' F x (C \varphi') \) for two functions \(\varphi, \varphi' : \forall y. R y x \rightarrow A_R(y) \). By reducing \(W' \) we obtain the claim

\[
F x (\lambda y r. W' F y (\varphi y r)) = F x (\lambda y r. W' F y (\varphi' y r))
\]

By the extensionality of \(F \) we now obtain the claim

\[
W' F y (\varphi y r) = W' F y (\varphi' y r)
\]

for \(r^{R y x} \), which is an instance of the inductive hypothesis. ■
Fact 26.5.2 (Unfolding equation)
Let \(R \) be well-founded. Then \(\text{ext}(F) \rightarrow \forall x. WFx = Fx(\lambda yr.WFy) \).

Proof We assume \(\text{ext}(F) \) and prove \(WFx = Fx(\lambda yr.WFy) \). We have \(WFx = W'Fx(C\varphi) = Fx(\lambda yr.WFy(\varphi yr)) \). Extensionality of \(F' \) now gives us the claim \(W'Fy(\varphi yr) = W'Fy(\varphi' yr) \), which follows by Fact 26.5.1.

Exercise 26.5.3 From the definition of extensionality for step function it seems clear that ordinary step functions are extensional. To prove that an ordinary step function is extensional, no induction is needed. It suffices to walk through the matches and confront the recursive calls.

a) Prove that the step function for Euclidean division is extensional (§26.3).
b) Prove that the step function for GCDs is extensional (§26.4).
c) Prove that the step function for the Ackermann equations is extensional (Exercise 26.4.1).

Exercise 26.5.4 Show that all functions satisfying an extensional step function for a well-founded relation agree.

26.6 Witness Operator

There is an elegant and instructive construction of an existential witness operator (Chapter 25) using recursion types. We assume a decidable predicate \(p : N \rightarrow P \) and define a relation

\[Rxy := x = Sy \land \neg py \]

on numbers. We would expect that \(p \) is satisfiable if and only if \(A_R \) is satisfiable. And given a certificate \(A_R(x) \), we can compute a witness of \(p \) doing a linear search starting from \(x \) using well-founded recursion.

Lemma 26.6.1 \(p(x + y) \rightarrow A_R(y) \).

Proof Induction on \(x \) with \(y \) quantified. The base case follows by falsity elimination. For the successor case, we assume \(H : p(Sx + y) \) and prove \(A_R(y) \). Using the constructor for \(A_R \), we assume \(\neg p y \) and prove \(A_R(Sy) \). By the inductive hypothesis it suffices to show \(p(x + Sy) \). Holds by \(H \).

Lemma 26.6.2 \(A_R(x) \rightarrow \text{sig}(p) \).

Proof By well-founded induction with \(W' \). Using the decider for \(p \), we have two cases. If \(px \), we have \(\text{sig}(p) \). If \(\neg p x \), we have \(R(Sx)x \) and thus the claim holds by the inductive hypothesis.
26 Well-Founded Recursion

Fact 26.6.3 (Existential witness operator)
\(\forall p^{N \to P}. (\forall x. D(px)) \rightarrow \text{ex}(p) \rightarrow \text{sig}(p). \)

Proof We assume a decidable and satisfiable predicate \(p^{N \to P} \) and define \(R \) as above. By Lemma 26.6.2 it suffices to show \(\mathcal{A}_{R}(0) \). We can now obtain a witness \(x \) for \(p \). The claim follows with Lemma 26.6.2.

We may see the construction of an existential witness operator in Chapter 25 as a specialization of the construction shown here where the general recursion types used here are replaced with special purpose linear search types.

26.7 Equations Package and Extraction

The results presented so far are such that, given a recursive specification of a function, we can obtain a function satisfying the specification, provided we can supply a well-founded relation and proofs for the resulting guard conditions (see Figure 26.1 for an example). Moreover, if we don’t accept \(\text{FE} \) as an assumption, we need to prove that the specified step function is extensional as defined in §26.5.

The proof assistant Coq comes with a tool named Equations package making it possible to write recursive specifications and associate them with well-founded relations. The tool then automatically generates the resulting proof obligations. Once the user has provided the requested proofs for the specification, a function is defined and proofs are generated that the function satisfies the specifying equations. This uses the well-founded recursion operator and the generic proofs of the unfolding equation we have seen. One useful feature of Equations is the fact that one can specify functions with several arguments and with size recursion. Equations then does the necessary pairing and the retract construction, relieving the user from tedious coding.

Taken together, we can now define recursive functions where the termination conditions are much relaxed compared to strict structural recursion. In contrast to functions specified with strict structural recursion, the specifying equations are satisfied as propositional equations rather than as computational equations. Nevertheless, if we apply functions defined with well-founded recursion to concrete and fully specified arguments, reduction is possible and we get the accompanying computational equalities (e.g., \(\text{gcd} \ 21 \ 56 = 7 \)).

This is a good place to mention Coq’s extraction tool. Given a function specified in computational type theory, one would expect that one can extract related programs for functional programming languages. In Coq, such an extraction tool is available for all function definitions, and works particularly well for functions defined with Equations. The vision here is that one specifies and verifies functions
26.8 Padding and Simplification

in computational type theory and then extracts programs that are correct by construction. A flagship project using extraction is CompCert (compcert.org) where a verified compiler for a subset of the C programming language has been developed.

26.8 Padding and Simplification

Given a certificate \(a : \mathcal{A}_R(x) \), we can obtain a computationally equal certificate \(b : \mathcal{A}_R(x) \) that exhibits any number of applications of the constructor for certificates:

\[
\begin{align*}
 a \approx Cx(\lambda yr. a') \\
 a \approx Cx(\lambda yr. Cy(\lambda y'r'. a''))
\end{align*}
\]

We formulate the idea with two functions

\[
D : \forall x. \mathcal{A}_R(x) \rightarrow \forall y. Ryx \rightarrow \mathcal{A}_R(y)
\]

\[
D xa := \text{match } a [C \phi \Rightarrow \phi]
\]

\[
P : \mathbb{N} \rightarrow \forall x. \mathcal{A}_R(x) \rightarrow \mathcal{A}_R(x)
\]

\[
P 0xa := a
\]

\[
P (Sn)a := Cx(\lambda yr. Pny(Dxayr))
\]

and refer to \(P \) as padding function. We have, for instance,

\[
\begin{align*}
 P(1 + n)xa & \approx Cx(\lambda y_1r_1. Pny_1(Dxay_1r_1)) \\
 P(2 + n)xa & \approx Cx(\lambda y_1r_1. Cy_1(\lambda y_2r_2. Pny_2(Dy_1(Dxay_1r_1)y_2r_2)))
\end{align*}
\]

The construction appears tricky and fragile on paper. When carried out with a proof assistant, the construction is fairly straightforward: Type checking helps with the definitions of \(D \) and \(P \), and simplification automatically obtains the right hand sides of the two examples from the left hand sides.

When we simplify a term \(P(k + n)xa \) where \(k \) is a concrete number and \(n, x, \) and \(a \) are variables, we obtain a term that needs at least \(2k \) additional variables to be written down. Thus the example tells us that simplification may have to introduce an unbounded number of fresh variables.

The possibility for padding functions seems to be a unique feature of higher-order recursion.

Exercise 26.8.1 Write a padding function for linear search types (§25.1)
26.9 Classical Well-foundedness

Well-founded relations and well-founded induction are basic notions in set-theoretic foundations. The standard definition of well-foundedness in set-theoretic foundations asserts that all non-empty sets have minimal elements. The set-theoretic definition is rather different the computational definition based on recursion types. We will show that the two definitions are equivalent under $\mathbb{X}M$, where sets will be expressed as unary predicates.

A meeting point of the computational and the set-theoretic world is well-founded induction. In both worlds a relation is well-founded if and only if it supports well-founded induction.

Fact 26.9.1 (Characterization by well-founded induction)
\[
\forall R^X \to X. \text{wf}(R) \iff \forall x. (\forall y. Ryx \to py) \to px \to \forall x. px.
\]

Proof Direction \rightarrow follows with W. For the other direction, we instantiate p with A_R. It remains to show $\forall x. (\forall y. Ryx \to A_{RY}) \to A_{RX}$, which is an instance of the type of the constructor for A_R. \blacksquare

The characterization of well-foundedness with the principle of well-founded induction is very interesting since no inductive types and only a predicate $p^X \to P$ is used. Thus the computational aspects of well-founded recursion are invisible. They are added by the presence of the inductive predicate A_R admitting computational elimination.

Next we establish a positive characterization of the non-well-founded elements of a relation. We define **progressive predicates** and **progressive elements** for a relation $R^X \to X$ as follows:

\[
\begin{align*}
\text{pro}_R(p^X \to P) & := \forall x. px \to \exists y. py \land Ryx \\
\text{pro}_R(x^X) & := \exists p. px \land \text{pro}_R(p)
\end{align*}
\]

Intuitively, progressive elements for a relation R are elements that have an infinite descent in R. Progressive predicates are defined such that every witness has an infinite descent in R. Progressive predicates generalize the frequently used notion of infinite descending chains.

Fact 26.9.2 (Disjointness) $\forall x. A_R(x) \to \text{pro}_R(x) \to \bot$.

Proof By well-founded induction with W'. We assume a progressive predicate p with px and derive a contradiction. By destructuring we obtain y such that py and Ryx. Thus $\text{pro}_R(y)$. The inductive hypothesis now gives us a contradiction. \blacksquare

Fact 26.9.3 (Exhaustiveness) $\mathbb{X}M \to \forall x. A_R(x) \lor \text{pro}_R(x)$.
Proof Using XM, we assume $\neg A_R(x)$ and show $\text{pro}_R(x)$. It suffices to show $\text{pro}_R(\lambda z. \neg A_R(z))$. We assume $\neg A_R(x)$ and prove $\exists y. \neg A_R(y) \land Ryz$. Using XM, we assume $H : \neg \exists y. \neg A_R(y) \land Ryz$ and derive a contradiction. It suffices to prove $A_R(z)$. We assume Rz' and prove $A_R(z')$. Follows with H and XM. ■

Fact 26.9.4 (Characterization by absence of progressive elements)
$\text{XM} \rightarrow (\text{wf}(R) \iff \neg \exists x. \text{pro}_R(x))$.

Proof For direction \rightarrow, we assume $\text{wf}(R)$ and $\text{pro}_R(x)$ and derive a contradiction. We have $A_R(x)$. Contradiction by Fact 26.9.2.

For direction \leftarrow, we assume $\neg \exists x. \text{pro}_R(x)$ and prove $A_R(x)$. By Fact 26.9.3 we assume $\text{pro}_R(x)$ and have a contradiction with the assumption. ■

We define the minimal elements in $R^X \times X \times P$ and $p^X \times p$ as follows:

$$\text{min}_{R,p}(x) := px \land \forall y. py \rightarrow \neg Ryx$$

Using XM, we show that a predicate is progressive if and only if it has no minimal element.

Fact 26.9.5 $\text{XM} \rightarrow (\text{pro}_R(p) \iff \neg \exists x. \text{min}_{R,p}(x))$.

Proof For direction \rightarrow, we derive a contradiction from the assumptions $\text{pro}_R(p)$, px, and $\forall y. py \rightarrow \neg Ryx$. Straightforward.

For direction \leftarrow, using XM, we derive a contradiction from the assumptions $\neg \exists x. \text{min}_{R,p}(x)$, px, and $H : \neg \exists y. py \land Ryx$. We show $\text{min}_{R,p}(x)$. We assume py and Ryx and derive a contradiction. Straightforward with H. ■

Next we show that R has no progressive element if and only if every satisfiable predicate has a minimal witness.

Fact 26.9.6 $\text{XM} \rightarrow (\neg (\exists x. \text{pro}_R(x)) \iff \forall p. (\exists x. px) \rightarrow \exists x. \text{min}_{R,p}(x))$.

Proof For direction \rightarrow, we use XM and derive a contradiction from the assumptions $\neg (\exists x. \text{pro}_R(x))$, px, and $\neg (\exists x. \text{min}_{R,p}(x))$. With Fact 26.9.5 we have $\text{pro}_R(p)$. Contradiction with $\neg \exists x. \text{pro}_R(x)$.

For direction \leftarrow, we assume px and $\text{pro}_R(p)$ and derive a contradiction. Fact 26.9.5 gives us $\neg (\exists x. \text{min}_{R,p}(x))$. Contradiction with the primary assumption. ■

We now have that a relation R is well-founded if and only if every satisfiable predicate has a minimal witness in R.

Fact 26.9.7 (Characterization by existence of minimal elements)
$\text{XM} \rightarrow (\text{wf}(R) \iff \forall p^X \rightarrow p. (\exists x. px) \rightarrow \exists x. \text{min}_{R,p}(x))$.

251
26.10 Transitive Closure

The transitive closure R^+ of a relation $R : X \rightarrow X \rightarrow P$ is the minimal transitive relation containing R. There are different possibilities for defining R^+. We choose an inductive definition based on two rules:

$$
\begin{align*}
R x y & \quad \frac{R^+ x y'}{R^+ x y} \\
R^+ x y' & \quad \frac{R y' y}{R^+ x y}
\end{align*}
$$

We work with this format since it facilitates proving that taking the transitive closure of a well-founded relation yields a well-founded relation. Note that the inductive predicate behind R^+ has four parameters X, R, x, y, where X, R, x are uniform and y is non-uniform.

Fact 26.10.1 Let $R : X \rightarrow X \rightarrow P$. Then $\text{wf}(R) \rightarrow \text{wf}(R^+)$.

Proof We assume $\text{wf}(R)$ and prove $\forall y. \ A_{R^+}(y)$ by well-founded induction on y and R. This gives us the induction hypothesis and the claim $A_{R^+}(y)$. Using the constructor for recursion types we assume $R^+ x y'$ and show $A_{R^+}(x)$. If $R^+ x y'$ is obtained from $R x y$, the claim follows with the inductive hypothesis. Otherwise we have $R^+ x y'$ and $R y' y$. The inductive hypothesis gives us $A_{R^+}(y')$. Thus $A_{R^+}(x)$ since $R^+ x y'$.

Exercise 26.10.2 Prove that R^+ is transitive.

Hint: Assume $R^+ x y$ and prove $\forall z. R^+ y z \rightarrow R^+ x z$ by induction on $R^+ y z$. First formulate and prove the necessary induction principle for R^+.

26.11 Notes

The inductive definition of the well-founded points of a relation appears in Aczel [1] in a set-theoretic setting. Nordström [21] adapts Aczel’s definition to a constructive type theory without propositions and advocates functions recursing on recursion types. Balaa and Bertot [3] define a well-founded recursion operator in Coq and prove that it satisfies the unfolding equation. They suggest that Coq should support the construction of functions with a tool taking care of the tedious routine proofs coming with well-founded recursion, anticipating Coq’s current Equations package.
27 Aczel Trees and Hierarchy Theorems

Aczel trees are wellfounded trees where each node comes with a type and a function fixing the subtree branching. Aczel trees were conceived by Peter Aczel [2] as a representation of set-like structures in type theory. Aczel trees are accommodated with inductive type definitions featuring a single value constructor and higher-order recursion.

We discuss the dominance condition, a restriction on inductive type definitions ensuring predicativity of nonpropositional universes. Using Aczel trees, we will show an important foundational result: No universe embeds into one of its types. From this hierarchy result we obtain that proof irrelevance is a consequence of excluded middle, and that omitting the elimination restriction in the presence of the impredicative universe of propositions results in inconsistency.

27.1 Inductive Types for Aczel Trees

We define an inductive type providing Aczel trees:

\[
T : \mathbb{T} ::= T (X : \mathbb{T}, X \to T)
\]

There is an important constraint on the universe levels of the two occurrences of \(\mathbb{T}\) we will discuss later. We see a tree \(T X f\) as a tree taking all trees \(f x\) as (immediate) subtrees, where the edges to the subtrees are labelled with the values of \(X\). We clarify the idea behind Aczel trees with some examples. The term

\[
T \perp (\lambda a. \text{match } a [])
\]

describes an atomic tree not having subtrees. Given two trees \(t_1\) and \(t_2\), the term

\[
T B (\lambda b. \text{match } b [T \Rightarrow t_1 | F \Rightarrow t_2])
\]

describes a tree having exactly \(t_1\) and \(t_2\) as subtrees where the boolean values are used as labels. The term

\[
T N (\lambda_. T \perp (\lambda h. \text{match } h []))
\]

describes an infinitely branching tree that has a subtree for every number. All subtrees of the infinitely branching tree are equal (to the atomic tree).
Consider the term $T \ T (\lambda s. s)$ which seems to describe a universal tree having every tree as subtree. It turns out that the term for the universal tree does not type check since there is a universe level conflict. First we note that Coq’s type theory admits the definition

\[T : \mathbb{T}_i ::= T (X : \mathbb{T}_j, X \to T) \]

only if $i > j$. This reflects a restriction on inductive definitions we have not discussed before. We speak of the dominance condition. In its general form, the dominance condition says that the type of every value constructor (without the parameter prefix) must be a member of the universe specified for the type constructor. The dominance condition admits the above definition for $i > j$ since then $\mathbb{T}_j : \mathbb{T}_i$, $X : \mathbb{T}_i$, and $T : \mathbb{T}_i$ and hence

\[(\forall X^{\mathbb{T}_j} . (X \to T) \to T) : \mathbb{T}_i \]

using the universe rules from §4.2. For the reader’s convenience we repeat the rules for universes

\[\mathbb{T}_1 : \mathbb{T}_2 : \mathbb{T}_3 : \cdots \]

\[\mathbb{P} \subseteq \mathbb{T}_1 \subseteq \mathbb{T}_2 \subseteq \mathbb{T}_3 \subseteq \cdots \]

\[\mathbb{P} : \mathbb{T}_2 \]

and function types

\[\vdash u : U \quad \vdash x : u \vdash v : U \]

\[\vdash \forall x^u . v : U \]

\[\vdash u : U \quad \vdash x : u \vdash v : \mathbb{P} \]

\[\vdash \forall x^u . v : \mathbb{P} \]

here. The variable U ranges over the computational universes \mathbb{T}_i. The first rule says that every computational universe is closed under taking function types. The second rule says that the universe \mathbb{P} enjoys a stronger closure property known as impredicativity.

Note that the term for the universal tree $T \ T (\lambda s. s)$ does not type check since we do not have $T : \mathbb{T}_j$ for $i > j$.

Exercise 27.1.1 The dominance condition for inductive type definitions requires that the types of the value constructors are in the target universe of the type constructor, where the types of the value constructor are considered without the parameter prefix. That the parameter prefix is not taken into account ensures that

254
27.2 Propositional Aczel Trees

the universes \mathcal{T}_i are closed under the type constructors for pairs, options, and lists. Verify the following typings for lists:

\[
\begin{align*}
\mathcal{L}(X : \mathcal{T}_i) : \mathcal{T}_i &:= \text{nil} | \text{cons} (X, \mathcal{L}(X)) \\
\mathcal{L} : \mathcal{T}_i \to \mathcal{T}_i &:= \mathcal{T}_{i+1} \\
\text{nil} : \mathcal{L}(X) &:= \mathcal{T}_i (X : \mathcal{T}_i) \\
\text{cons} : X \to \mathcal{L}(X) \to \mathcal{L}(X) &:= \mathcal{T}_i (X : \mathcal{T}_i) \\
\forall X^{\mathcal{T}_i}. \mathcal{L}(X) &:= \mathcal{T}_{i+1} \\
\text{cons} : \forall X^{\mathcal{T}_i}. X \to \mathcal{L}(X) \to \mathcal{L}(X) &:= \mathcal{T}_{i+1}
\end{align*}
\]

Write down an analogous table for pairs and options.

27.2 Propositional Aczel Trees

We now note that the definition

\[
\mathcal{T}_p : \mathcal{P} := \mathcal{T}_p (X : \mathcal{P}, X \to \mathcal{T}_p)
\]

of the type of propositional Aczel trees satisfies the dominance condition since the type of the constructor \mathcal{T}_p is in \mathcal{P} by the impredicativity of the universe \mathcal{P}:

\[
\forall X^{\mathcal{P}}. (X \to \mathcal{T}_p) \to \mathcal{T}_p : \mathcal{P}
\]

Moreover, the term for the universal tree

\[
\mathcal{U}_p := \mathcal{T}_p \mathcal{I}_p (\lambda s. s)
\]

does type check for propositional Aczel trees. So there is a universal propositional Aczel tree.

The universal propositional Aczel tree \mathcal{U}_p is paradoxical in that it conflicts with our intuition that all values of an inductive type are wellfounded. A value of an inductive type is wellfounded if descending to a subvalue through a recursion in the type definition always terminates. Given that reduction of recursive functions is assumed to be terminating, one would expect that values of inductive types are wellfounded. However, the universal propositional Aczel tree $\mathcal{T}_p \mathcal{I}_p (\lambda s. s)$ is certainly not wellfounded. So we have to adopt the view that because of the impredicativity of the universe \mathcal{P} certain recursive propositional types do admit non-wellfounded values. This does not cause harm since the elimination restriction reliably prevents recursion on non-wellfounded values.

We remark that there are recursive propositional types providing for functional recursion. A good example are the linear search types for the existential witness operator (§25.1). It seems that the values of computational propositions are always wellfounded.
27 Aczel Trees and Hierarchy Theorems

27.3 Subtree Predicate and Wellfoundedness

We will consider computational Aczel trees at the lowest universe level
\[T : \mathbb{T}_2 := T(X : \mathbb{T}_1, X \to T) \]
and propositional Aczel trees
\[T_p : \mathbb{P} := T_p(X : \mathbb{P}, X \to T_p) \]
as defined before. We reserve the letters \(s \) and \(t \) for Aczel trees.

To better understand the situation, we define a subtree predicate for computational Aczel trees:
\[\in : T \to T \to \mathbb{P} \]
\[s \in TXf := \exists x. fx = s \]

Remarkably, the elimination restriction prevents us from defining an analogous subtree predicate for propositional Aczel trees (since the return type is not a proposition but the universe \(\mathbb{P} \)).

For computational Aczel trees we can prove \(\forall s. s \notin s \), which disproves the existence of a universal tree. We will prove \(\forall s. s \notin s \) by induction on \(s \).

Definition 27.3.1 (Eliminator for computational Aczel trees)
\[E_T : \forall p : T \to T. (\forall Xf. (\forall x. p(fx)) \to p(TXf)) \to \forall s. ps \]
\[E_T p F (TXf) := FXf(\lambda x. E_T p F (fx)) \]

Fact 27.3.2 (Irreflexivity) \(\forall s^T. s \notin s \).

Proof By induction on \(s \) (using \(E_T \)) it suffice to show \(TXf \notin TXf \) given the inductive hypothesis \(\forall x. fx \notin fx \). It suffices to show for every \(x^X \) that \(fx = TXf \) is contradictory. Since \(fx = TXf \) implies \(fx \in fx \), we have a contradiction with the inductive hypothesis.

For propositional Aczel trees we can prove that a subtree predicate \(R^{T_p \to T_p} \) such that
\[Rs(T_p Xf) \leftrightarrow \exists x. fx = s \]
does not exist. This explains why the existence of the universal propositional Aczel tree does not lead to a proof of falsity.

Definition 27.3.3 (Eliminator for propositional Aczel trees)
\[E_{T_p} : \forall p : T_p \to T_p. (\forall Xf. (\forall x. p(fx)) \to p(T_p Xf)) \to \forall s. ps \]
\[E_{T_p} p F (T_p Xf) := FXf(\lambda x. E_{T_p} p F (fx)) \]
27.4 Propositional Hierarchy Theorem

Fact 27.3.4 \(\neg \exists R \leftarrow \neg \forall s X f. R s(T_p X f) \rightarrow \exists x. f x = s. \)

Proof Let \(R \leftarrow \neg \forall s X f. R s(T_p X f) \rightarrow \exists x. f x = s. \) We derive a contradiction. Since the universal propositional Aczel tree \(u_p := T_p T_p (\Lambda s.s) \) satisfies \(R u u, \) it suffices to prove \(\forall s. \neg \exists s. \) We can do this by induction on \(s \) (using \(E_{T_p} \)) following the proof for computational Aczel trees (Fact 27.3.2).

We summarize the situation as follows. Given a type

\[T : U ::= T(X : V, X \rightarrow T) \]

of Aczel trees, if we can define a subtree predicate \(s \in T X f \rightarrow \exists x. f x = s \)

we cannot define a universal tree \(u \in u. \) This works out such that for propositional Aczel trees we cannot define a subtree predicate (because of the elimination restriction) and for computational Aczel trees we cannot define a universal tree (because of the dominance restriction).

Exercise 27.3.5 Suppose you are allowed exactly one violation of the elimination restriction. Give a proof of falsity.

27.4 Propositional Hierarchy Theorem

A fundamental result about Coq’s type theory says that the universe \(\mathbb{P} \) of propositions cannot be embedded into a proposition, even if equivalent propositions may be identified. This important result was first shown by Thierry Coquand [8] in 1989 for a subsystem of Coq’s type theory. We will prove the result for Coq’s type theory by showing that an embedding as specified provides for the definition of a subtree predicate for propositional Aczel trees.

Theorem 27.4.1 (Coquand) There is no proposition \(A \) such that there exist functions \(E,A \rightarrow A \) and \(D,A \rightarrow P \) such that \(\forall P. D(E(P)) \rightarrow P. \)

Proof Let \(A, E,A \rightarrow A, D,A \rightarrow P \) be given such that \(\forall P. D(E(P)) \rightarrow P. \) By Fact 27.3.4 is suffices to show that

\[R s t := D \left(\text{match} \ t \ [T_p X f \Rightarrow E(\exists x. f x = s) \] \)

satisfies \(\forall s X f. R s(T_p X f) \rightarrow \exists x. f x = s, \) which is straightforward. Note that the match in the definition of \(R \) observes the elimination restriction since the proposition \(\exists x. f x = s \) is encoded with \(E \) into a proof of the proposition \(A. \)

Exercise 27.4.2 Show \(\neg \exists A P. \exists E,A \rightarrow A. D,A \rightarrow P. \)

Exercise 27.4.3 Show \(\forall P. P \neq P. \)
27 Aczel Trees and Hierarchy Theorems

27.5 Excluded Middle Implies Proof Irrelevance

With Coquand’s theorem we can show that the law of excluded middle implies proof irrelevance (see §4.3 for definitions). The key idea is that given a proposition with two different proofs we can define an embedding as excluded by Coquand’s theorem. For the proof to go through we need the full elimination lemma for disjunctions (see Exercise 27.5.2).

Theorem 27.5.1 Excluded middle implies proof irrelevance.

Proof Let \(d^{\forall X : P. X \lor \neg X} \) and let \(a \) and \(b \) be proofs of a proposition \(A \). We show \(a = b \). Using excluded middle, we assume \(a \neq b \) and derive a contradiction with Coquand’s theorem. To do so, we define an encoding \(E^{P \rightarrow A} \) and a decoding \(D^{A \rightarrow P} \) as follows:

\[
E(X) \ := \ \text{IF } dX \ \text{THEN } a \ \text{ELSE } b \\
D(c) \ := \ (a = c)
\]

It remains to show \(D(E(X)) \rightarrow X \) for all propositions \(X \). By computational equality it suffices to show

\[
(a = \text{IF } dX \ \text{THEN } a \ \text{ELSE } b) \rightarrow X
\]

By case analysis on \(dX : X \lor \neg X \) using the full elimination lemma for disjunctions (Exercise 27.5.2) we obtain two proof obligations

\[
\begin{align*}
X & \rightarrow (a = a \rightarrow X) \\
\neg X & \rightarrow (a = b \rightarrow X)
\end{align*}
\]

which both follow by propositional reasoning (recall the assumption \(a \neq b \)).

Exercise 27.5.2 Prove the full elimination lemma for disjunctions

\[
\forall XY \forall p^{X \lor \neg X}. \ (\forall x^X. p(\text{L}x)) \rightarrow (\forall y^Y. p(\text{R}y)) \rightarrow \forall a. pa
\]

which is needed for the proof of Theorem 27.5.1.

27.6 Hierarchy Theorem for Computational Universes

We will now show that no computational universe embeds into one of its types. Note that by Coquand’s theorem we already know that the universe \(P \) does not embed into one of its types.

We define a general embedding predicate \(E^{T \rightarrow \overline{T} \rightarrow P} \) for types:

\[
E_{XY} := \exists E^{X \rightarrow Y} \exists D^{\overline{T} \rightarrow X} \forall x. D(Ex) = x
\]
27.6 Hierarchy Theorem for Computational Universes

Fact 27.6.1 Every type embeds into itself: \(\forall X^U : \exists XX \).

Fact 27.6.2 \(\forall XY^U : \neg \exists XY \rightarrow X \neq Y \).

Fact 27.6.3 \(\neg \exists P^P \).

Proof Follows with Coquand’s theorem 27.4.1.

We now fix a computational universe \(U \) and work towards a proof of \(\forall A^U, \neg \exists UA \). We assume a type \(A^U \) and an embedding \(EUA \) with functions \(E^{U \rightarrow A} \) and \(D^{A \rightarrow U} \) satisfying \(D(EX) = X \) for all types \(X^U \). We will define a customized type \(T : U \) of Aczel trees for which we can define a subtree predicate and a universal tree. It then suffices to show irreflexivity of the subtree predicate to close the proof.

We define a type of customized Aczel trees:

\[
T : U ::= T (a : A, Da \rightarrow T)
\]

and a subtree predicate:

\[
\in : T \rightarrow T \rightarrow \mathbb{P}
\]

\[
s \in Ta f ::= \exists x. fx = s
\]

Fact 27.6.4 (Irreflexivity) \(\forall s^T, s \notin s \).

Proof Analogous to the proof of Fact 27.3.2.

Recall that we have to construct a contradiction. We embark on a little detour before we construct a universal tree. By Fact 27.6.1 and the assumption we have \(ET (D(ET)) \). Thus there are functions \(F^{T \rightarrow D(ET)} \) and \(G^{D(ET) \rightarrow T} \) such that \(\forall s^T, G(Fs) = s \). We define

\[
u := T(ET)G
\]

By Fact 27.6.1 it suffices to show \(u \in u \). By definition of the membership predicate it suffices to show

\[
\exists x. Gx = u
\]

which holds with the witness \(x := Fu \). We now have the hierarchy theorem for computational universes.

Theorem 27.6.5 (Hierarchy) \(\forall X^U, \neg \exists UX \).

Exercise 27.6.6 Show \(\forall X^U, X \neq U \) for all universes \(U \).

Exercise 27.6.7 Let \(i \neq j \). Show \(\mathbb{T}_i \neq \mathbb{T}_j \).

Exercise 27.6.8 Assume the inductive type definition \(A : \mathbb{T}_1 ::= C(\mathbb{T}_1) \) is admitted although it violates the dominance condition. Give a proof of falsity.
27 Aczel Trees and Hierarchy Theorems

Acknowledgements

Thorsten Altenkirch suggested Aczel trees as a means for obtaining negative results in January 2016 at the POPL conference in St. Petersburg, Florida. Steven Schäfer came up with an elegant proof of Coquand’s theorem using Aczel trees in June 2018 at the Types conference in Braga, Portugal.
Part VI

Case Studies
28 Propositional Deduction Systems

The chapter shows how propositional deduction systems can be formalized and studied in computational type theory using indexed inductive types. This gives an idea of how logical systems can be formalized in computational type theory.

We formalize intuitionistic and classical propositional reasoning with both ND systems and Hilbert systems. We show that derivations are intertranslatable between ND and Hilbert systems and also between intuitionistic and classical systems (adding a double negation in one direction). Using a Heyting interpretation, we show that the intuitionistic systems cannot derive the double negation law. We show that the classical systems are sound for the boolean interpretation and that a certifying boolean solver yields completeness and decidability.

The chapter is designed such that it can serve as an introduction to propositional deduction systems and their formalization using indexed inductive type definitions. No previous knowledge of indexed inductive type definitions is assumed.

28.1 ND Systems

We start with an informal explanation of natural deduction systems. Natural deduction systems (ND systems) come with a class of formulas and a system of deduction rules for building derivations of pairs \((A, s)\) consisting of a list of formulas \(A\) (the context) and a single formula \(s\) (the conclusion). The formulas in \(A\) play the role of assumptions. That a pair \((A, s)\) is derivable with the rules of the system is understood as saying that \(s\) is provable with the assumptions in \(A\) and the rules of the system. Given a concrete class of formulas, we can have different sets of rules and compare their deductive power. Given a concrete deduction system, we may ask the following questions:

- **Consistency**: Are there formulas we cannot derive?
- **Weakening property**: Given a derivation of \((A, s)\) and a list \(B\) such that \(A \subseteq B\), can we always obtain a derivation of \((B, s)\)?
- **Cut property**: Given derivations of \((A, s)\) and \((s :: A, t)\), can we always obtain a derivation of \((A, t)\)?
- **Decidability**: Is it decidable whether a pair \((A, s)\) is derivable?

All but the last property formulate basic integrity conditions for natural deduction
28 Propositional Deduction Systems

We will consider the following type of formulas:

$$s, t, u, v : \text{For} := x \mid \bot \mid s \rightarrow t \mid s \land t \mid s \lor t \quad (x : \text{N})$$

Formulas of the kind x are called atomic formulas. Atomic formulas represent atomic propositions whose meaning is left open. For the other kinds of formulas the symbols used give away the intended meaning. Formally, the type For of formulas is accommodated as an inductive type that has a value constructor for each kind of formula (5 altogether).\(^1\) We will use the familiar notation

$$\neg s := s \rightarrow \bot$$

to express negated formulas.

Exercise 28.1.1 (Formulas)

a) Show some of the constructor laws for the type of formulas.
b) Define an eliminator providing for structural induction on formulas.
c) Define an equality decider for formulas.

28.2 Intuitionistic ND System

The deduction rules of the intuitionistic ND system we will consider are given in Figure 28.1 using several notational gadgets:

- Turnstile notation $A \vdash s$ for pairs (A, s).
- Comma notation A, s for lists $s :: A$.
- Ruler notation for deduction rules. For instance,

$$\begin{array}{c}
A \vdash s \rightarrow t \\
A \vdash s
\end{array} \quad \begin{array}{c}
\hline
A \vdash t
\end{array}$$

describes a rule (known as modus ponens) that obtains a derivation of (A, t) from two derivations of $(A, s \rightarrow t)$ and (A, s). We say that the rule has two premises and one conclusion.

All rules in Figure 28.1 express proof rules you are familiar with from mathematical reasoning and the logical reasoning you have seen in this text. In fact, the system of rules in Figure 28.1 can derive exactly those pairs (A, s) that are known to be intuitionistically deducible (given the formulas we consider). Since reasoning in type theory is intuitionistic, Coq can prove a goal (A, s) if and only if the rules in

\(^1\)The use of abstract syntax is discussed more carefully in Chapter 20.
28.2 Intuitionistic ND System

Figure 28.1: Deduction rules of the intuitionistic ND system

Figure 28.1 can derive the pair \((A,s)\) (where atomic formulas are accommodated as propositional variables in type theory). We will exploit this coincidence when we construct derivations using the rules in Figure 28.1.

The rules in Figure 28.1 with a \textit{logical constant} (i.e., \(\bot, \to, \land, \lor\)) in the conclusion are called \textit{introduction rules}, and the rules with a logical constant in the leftmost premise are called \textit{elimination rules}. The first rule in Figure 28.1 is known as \textit{assumption rule}. Note that every rule but the assumption rule is an introduction or an elimination rule for some logical constant. Also note that there is no introduction rule for \(\bot\), and that there are two introduction rules for \(\lor\). The elimination rule for \(\bot\) is also known as \textit{explosion rule}.

Note that no deduction rule contains more than one logical constant. This results in an important modularity property. If we want to omit a logical constant, for instance \(\land\), we just omit all rules containing this constant. Note that every system with \(\bot\) and \(\to\) can express negation. When trying to understand the structural properties of the system, it is usually a good idea to just consider \(\bot\) and \(\to\). Note that the assumption rule cannot be omitted since it is the only rule not taking a derivation as premise.

Here are common conveniences for the turnstile notation we will use in the following:

\[
\begin{align*}
&s \vdash u \quad \leadsto \quad [s] \vdash u \\
&s, t \vdash u \quad \leadsto \quad [s, t] \vdash u \\
\vdash u \quad \leadsto \quad [] \vdash u
\end{align*}
\]
Example 28.2.1 Below is a derivation for \(s \vdash \neg\neg s \) depicted as a derivation tree:

\[
\begin{array}{c}
\underline{s, \neg s \vdash \neg s} \\
A \\
\underline{s, \neg s \vdash s} \\
E_\neg \\
\underline{s, \neg s \vdash \bot} \\
I_\bot \\
\end{array}
\]

The labels \(A \), \(E_\neg \), and \(I_\bot \) at the right of the lines are the names for the rules used (assumption, elimination, and introduction).

Constructing ND derivations

Generations of students have been trained to construct ND derivations. In fact, constructing derivations in the intuitionistic ND system is pleasant if one follows the following recipe:

1. Construct a proof diagram as if the formulas were propositions.
2. Translate the proof diagram into a derivation (using the proof assistant).

Step 1 is the more difficult one, but you already well-trained as it comes to constructing intuitionistic proof diagrams. Once the proof assistant is used, constructing derivations becomes fun. Using the proof assistant becomes possible once the relevant ND system is realized as an inductive type.

The proof assistant comes with a decision procedure for intuitionistically provable quantifier-free propositions. If in doubt whether a certain derivation can be constructed in the intuitionistic ND system, the decision procedure of the proof assistant can readily decide the question.

Exercise 28.2.2 Give derivation trees for \(A \vdash (s \rightarrow s) \) and \(\neg\neg \bot \vdash \bot \).

Exercise 28.2.3 If you are eager to construct more derivations, Exercise 28.3.3 will provide you with interesting examples.

28.3 Formalisation with Indexed Inductive Type Definition

It turns out that propositional deduction systems like the one in Figure 28.2 can be formalized elegantly and directly with inductive type definitions accommodating deduction rules as value constructors of derivation types \(A \vdash s \).

Let us explain this fundamental idea. We may see the deduction rules in Figure 28.1 as functions that given derivations for the pairs in the premises yield a derivation for the pair in the conclusion. The introduction rule for conjunctions, for instance, may be seen as a function that given derivations for \((A, s) \) and \((A, t) \)
28.3 Formalisation with Indexed Inductive Type Definition

\[
\begin{align*}
\text{s} &\in A \Rightarrow A \vdash s \\
A \vdash \perp &\Rightarrow A \vdash s \\
A, s \vdash t &\Rightarrow A \vdash (s \rightarrow t) \\
A \vdash (s \rightarrow t) &\Rightarrow A \vdash s \Rightarrow A \vdash t \\
A \vdash s &\Rightarrow A \vdash t \Rightarrow A \vdash (s \wedge t) \\
A \vdash (s \wedge t) &\Rightarrow A, s, t \vdash u \Rightarrow A \vdash u \\
A \vdash s &\Rightarrow A \vdash (s \vee t) \\
A \vdash t &\Rightarrow A \vdash (s \vee t) \\
A \vdash (s \vee t) &\Rightarrow A, s \vdash u \Rightarrow A, t \vdash u \Rightarrow A \vdash u
\end{align*}
\]

Prefixes for \(A, s, t, u\) omitted, constructor names given at the right

Figure 28.2: Value constructors for derivation types \(A \vdash s\)

yields a derivation for \((A, s \wedge t)\). We now go one step further and formalize the deduction rules as the value constructors of an inductive type constructor

\[\vdash : \mathcal{L}(\text{For}) \rightarrow \text{For} \rightarrow \top\]

This way the values of an inductive type \(A \vdash s\) represent the derivations of the pair \((A, s)\) we can obtain with the deduction rules. To emphasize this point, we call the types \(A \vdash s\) derivation types.

The value constructors for the derivation types \(A \vdash s\) of the intuitionistic ND system appear in Figure 28.2. Note that the types of the constructors follow exactly the patterns of the deduction rules in Figure 28.1.

When we look at the target types of the constructors in Figure 28.2, it becomes clear that the argument \(s\) of the type constructor \(A \vdash s\) is not a parameter since it is instantiated by the constructors for the introduction rules \((I_\rightarrow, I_\wedge, I_1^\lor, I_2^\lor)\). Such nonparametric arguments of type constructors are called indices. In contrast, the argument \(A\) of the type constructor \(A \vdash s\) is a parameter since it is not instantiated in the target types of the constructors. More precisely, the argument \(A\) is a nonuniform parameter of the type constructor \(A \vdash s\) since it is instantiated in some argument types of some of the constructors \((I_\rightarrow, E_\wedge, \text{and } E_\lor)\).

We call inductive type definitions where the type constructor has indices indexed inductive definitions. Indexed inductive definitions can also introduce indexed inductive predicates. In fact, we alternatively could introduce \(\vdash\) as an indexed inductive predicate and this way demote derivations from computational objects to proofs.

The suggestive BNF-style notation we have used so far to write inductive type

28 Propositional Deduction Systems

definitions does not generalize to indexed inductive type definitions. So we will use an explicit format giving the type constructor together with the list of value constructors. Often, the format used in Figure 28.2 will be convenient.

Fact 28.3.1 (Double negation)
1. \(\neg\neg\bot \vdash \bot \)
2. \(s \vdash \neg\neg s \)
3. \((A \vdash \neg\neg\bot) \iff (A \vdash \bot) \)

Proof See Example 28.2.1 and the remarks there after.

In §28.9 we will show that \(\neg\neg s \vdash s \) is not derivable for some formulas \(s \). In particular, \(\neg\neg s \vdash s \) is not derivable if \(s \) is a variable. However, as the above proof shows, \(\neg\neg s \vdash s \) is derivable for \(s = \bot \). This fact will play an important role.

Fact 28.3.2 (Cut) \(A \vdash s \rightarrow A, s \vdash t \rightarrow A \vdash t \).

Proof We assume \(A \vdash s \) and \(A, s \vdash t \) and derive \(A \vdash t \). By I\(_\rightarrow\) we have \(A \vdash (s \rightarrow t) \). Thus \(A \vdash t \) by E\(_\rightarrow\).

The cut lemma gives us a function that given a derivation \(A \vdash s \) and a derivation \(A, s \vdash t \) yields a derivation \(A \vdash t \). Informally, the cut lemma says that once we have derived \(s \) from \(A \), we can use \(s \) like an assumption.

Exercise 28.3.3 Construct derivations as follows:

a) \(A \vdash \neg\neg\bot \rightarrow \bot \)
b) \(A \vdash s \rightarrow \neg\neg s \)
c) \(A \vdash (\neg s \rightarrow \neg\neg\bot) \rightarrow \neg\neg s \)
d) \(A \vdash (s \rightarrow \neg\neg t) \rightarrow \neg\neg(s \rightarrow t) \)
e) \(A \vdash \neg\neg(s \rightarrow t) \rightarrow \neg\neg s \rightarrow \neg\neg t \)
f) \(A \vdash \neg\neg\neg s \rightarrow \neg s \)
g) \(A \vdash \neg s \rightarrow \neg\neg\neg s \)

Exercise 28.3.4 Establish the following functions:

a) \(A \vdash (s_1 \rightarrow s_2 \rightarrow t) \rightarrow A \vdash s_1 \rightarrow A \vdash s_2 \rightarrow A \vdash t \)
b) \(\neg\neg s \in A \rightarrow A, s \vdash \bot \rightarrow A \vdash \bot \)
c) \(A, s, t \vdash \bot \rightarrow A \vdash \neg\neg(s \rightarrow t) \)

Hint: (c) is routine if you first show \(A \vdash (\neg t \rightarrow \neg s) \rightarrow \neg\neg(s \rightarrow t) \).

Exercise 28.3.5 Prove the implicative facts (1)–(6) appearing in Exercise 28.11.2.
28.4 The Eliminator

For more interesting proofs it will be necessary to do inductions on derivations. As it was the case for non-indexed inductive types, we can define an eliminator providing for the necessary inductions. The definition of the eliminator is shown in Figure 28.3. While the definition of the eliminator is frighteningly long, it is regular and modular: Every deduction rule (i.e., value constructor) is accounted for with a separate type clause and a separate defining equation. To understand the definition of the eliminator, it suffices that you pick one of the deduction rules and look at the type clause and the defining equation for the respective value constructor.

The eliminator formalizes the idea of induction on derivations, which informally is easy to master. With a proof assistant, the eliminator can be derived automatically from the inductive type definition, and its application can be supported such that the user is presented the proof obligations for the constructors once the induction is initiated.

As it comes to the patterns (i.e., the left-hand sides) of the defining equations, there is a new feature coming with indexed inductive types. Recall that patterns must be linear, that is, no variable must occur twice, and no constituent must be referred to by more than one variable. With parameters, this requirement was easily satisfied by not furnishing constructors in patterns with their parameter arguments. If the type constructor we do the case analysis on has indices, there is the additional complication that the value constructors for this type constructor may instantiate the index arguments. Thus there is a conflict with the preceding arguments of the defined function providing abstract arguments for the indices. Again, there is a simple general solution: The conflicting preceding arguments of the defined function are written with the underline symbol ‘_’ and thus don’t introduce variables, and the necessary instantiation of the function type is postponed until the instantiating constructor is reached. In the definition shown in Figure 28.3, the critical argument of \(\mathcal{E} \) that needs to be written as ‘_’ in the defining equations is \(s \) in the head type \(\forall A. s \vdash pA \) of \(\mathcal{E} \).

28.5 Induction on Derivations

We are now ready to prove interesting properties of the intuitionistic ND system using induction on derivations. We will carry out the inductions informally and leave it to reader to check (with Coq) that the informal proofs translate into formal proofs applying the eliminator \(\mathcal{E} \).

We start by defining a function translating derivations \(A \vdash s \) into derivations \(B \vdash s \) provided \(B \) contains every formula in \(A \).
\(E_\vdash : \forall p^\llbracket \text{for} \rrbracket \text{--} \text{For}^\llbracket \text{for} \rrbracket. \)

\[\begin{align*}
(\forall As. \; s \in A \rightarrow pAs) \rightarrow \\
(\forall As. \; pA_\bot \rightarrow pAs) \rightarrow \\
(\forall Ast. \; p(s :: A)t \rightarrow pA(s \rightarrow t)) \rightarrow \\
(\forall Ast. \; pA(s \rightarrow t) \rightarrow pAs \rightarrow pAt) \rightarrow \\
(\forall Ast. \; pAs \rightarrow pAt \rightarrow pA(s \land t)) \rightarrow \\
(\forall Astu. \; pA(s \land t) \rightarrow p(s :: t :: A)u \rightarrow pAu) \rightarrow \\
(\forall Ast. \; pAs \rightarrow pA(s \lor t)) \rightarrow \\
(\forall Ast. \; pAt \rightarrow pA(s \lor t)) \rightarrow \\
(\forall Astu. \; pA(s \lor t) \rightarrow p(s :: A)u \rightarrow p(t :: A)u \rightarrow pAu) \rightarrow \\
(\forall As. \; A \vdash s \rightarrow pAs)
\end{align*}\]

\(E_\vdash pe_1 \ldots e_9 A_\vdash (Ash) := e_1 Ash \)

\((E_\bot sd) := e_2 As(E_\vdash \ldots A_\bot d) \)

\((I_1 std) := e_3 Ast(E_\vdash \ldots (s :: A)t d) \)

\((E_\vdash std_1 d_2) := e_4 Ast(E_\vdash \ldots A(s \rightarrow t)d_1)(E_\vdash \ldots Asd_2) \)

\((I_1 std_1 d_2) := e_5 Ast(E_\vdash \ldots Asd_1)(E_\vdash \ldots Atd_2) \)

\((E_\vdash std_1 d_2 d_3) := e_6 Astu(E_\vdash \ldots A(s \land t)d_1)(E_\vdash \ldots (s :: t :: A)ud_2) \)

\((I_1 std) := e_7 Ast(E_\vdash \ldots Asd) \)

\((I_2 std) := e_8 Ast(E_\vdash \ldots Atd) \)

\((E_\lor std_1 d_2 d_3) := e_9 Astu(E_\vdash \ldots A(s \lor t)d_1) \)

\((E_\vdash \ldots (s :: A)ud_2) \)

\((E_\vdash \ldots (t :: A)ud_3) \)

\[\text{Figure 28.3: Eliminator for } A \vdash s\]
Fact 28.5.1 (Weakening) \(A \vdash s \rightarrow A \subseteq B \rightarrow B \vdash s \).

Proof By induction on \(A \vdash s \) with \(B \) quantified. All proof obligations are straightforward. We consider the constructor \(\rightarrow \). We have \(A \subseteq B \) and a derivation \(A, s \vdash t \), and we need a derivation \(B \vdash (s \rightarrow t) \). Since \(A, s \subseteq B, s \), the inductive hypothesis gives us a derivation \(B, s \vdash t \). Thus \(B \vdash (s \rightarrow t) \).

Next we show that premises of top level implications are interchangeable with assumptions.

Fact 28.5.2 (Implication) \(A \vdash (s \rightarrow t) \Leftrightarrow A, s \vdash t \).

Proof Direction \(\Leftarrow \) holds by \(\text{I} \rightarrow \). For direction \(\Rightarrow \) we assume \(A \vdash (s \rightarrow t) \) and obtain \(A, s \vdash (s \rightarrow t) \) with weakening. Now \(A \) and \(E \rightarrow \) yield \(A, s \vdash t \).

As a consequence, we can represent all assumptions of a derivation \(A \vdash s \) as premises of implications at the right-hand side. To this purpose, we define a \textit{reversion function} \(A \cdot s \) with \([] \cdot t := t \) and \((s :: A) \cdot t := A \cdot (s \rightarrow t) \). For instance, we have \([s_1, s_2, s_3] \cdot t = (s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow t) \). To ease our notation, we will write \(\vdash s \) for \([] \vdash s \).

Fact 28.5.3 (Reversion) \(A \vdash s \Leftrightarrow \vdash A \cdot s \).

Proof By induction on \(A \) with \(s \) quantified using the implication lemma.

A formula is \textbf{ground} if it contains no variable. We assume a recursively defined predicate \(\text{ground} s \) for groundness.

Fact 28.5.4 (Ground Prover) \(\forall s. \text{ground } s \rightarrow (\vdash s) + (\vdash \neg s) \).

Proof By induction on \(s \) using weakening.

Exercise 28.5.5 Prove \(\forall s. \text{ground } s \rightarrow \vdash (s \vee \neg s) \).

Exercise 28.5.6 Prove \(\forall A. \text{ground } s \rightarrow A, s \vdash t \rightarrow A, \neg s \vdash t \rightarrow A \vdash t \).

Exercise 28.5.7 Prove the deduction laws for conjunctions and disjunctions:
\begin{enumerate}
\item \(A \vdash (s \land t) \Leftrightarrow A \vdash s \times A \vdash t \)
\item \(A \vdash (s \lor t) \Leftrightarrow \forall u. A, s \vdash u \rightarrow A, t \vdash u \rightarrow A \vdash u \)
\end{enumerate}

28.6 Classical ND System

The classical ND system is obtained from the intuitionistic ND system by replacing the \textbf{explosion rule}

\[
\begin{array}{c}
A \vdash \bot \\
\hline
A \vdash s
\end{array}
\]
28 Propositional Deduction Systems

with the proof by contradiction rule:

\[
\frac{A, \neg s \vdash \bot}{A \vdash s}
\]

Formally, we accommodate the classical ND system with a separate derivation type constructor

\[\vdash : L(\text{For}) \rightarrow \text{For} \rightarrow \top\]

with separate value constructors. Classical ND can prove the double negation law.

Fact 28.6.1 (Double Negation) \(A \vdash (\neg \neg s \rightarrow s) \).

Proof Straightforward using the contradiction rule. ■

Fact 28.6.2 (Cut) \(A \vdash s \rightarrow A, s \vdash t \rightarrow A \vdash t. \)

Proof Same as for the intuitionistic system. ■

Fact 28.6.3 (Weakening) \(A \vdash s \rightarrow A \subseteq B \rightarrow B \vdash s. \)

Proof By induction on \(A \vdash s \) with \(B \) quantified. Same proof as for intuitionistic ND, except that now the proof obligation \((\forall B, A, \neg s \subseteq B \rightarrow B \vdash \bot) \rightarrow A \subseteq B \rightarrow B \vdash s\) for the contradiction rule must be checked. Straightforward with the contradiction rule. ■

The classical system can prove the explosion rule. Thus every intuitionistic derivation \(A \vdash s \) can be translated into a classical derivation \(A \vdash s. \)

Fact 28.6.4 (Explosion) \(A \vdash \bot \rightarrow A \vdash s. \)

Proof By contradiction and weakening. ■

Fact 28.6.5 (Translation) \(A \vdash s \rightarrow A \vdash s. \)

Proof By induction on \(A \vdash s \) using the explosion lemma for the explosion rule. ■

Fact 28.6.6 (Implication) \(A, s \vdash t \iff A \vdash (s \rightarrow t). \)

Proof Same proof as for the intuitionistic system. ■

Fact 28.6.7 (Reversion) \(A \vdash s \iff A \vdash s. \)

Proof Same proof as for the intuitionistic system. ■
Because of the contradiction rule the classical system has the distinguished property that every proof problem can be turned into a refutation problem.

Fact 28.6.8 (Refutation) \(A \vdash \neg s \iff A, \neg s \vdash \bot. \)

Proof Direction \(\Rightarrow \) follows with weakening. Direction \(\Leftarrow \) follows with the contradiction rule.

While the refutation lemma tells us that classical ND can represent all information in the context, the implication lemmas tell us that both intuitionistic and classical ND can represent all information in the claim.

Exercise 28.6.9 Show \(\vdash s \lor \neg s \) and \(\vdash ((s \rightarrow t) \rightarrow s) \rightarrow s \).

Exercise 28.6.10 Prove the deduction laws for conjunctions and disjunctions:

a) \(A \vdash (s \land t) \iff A \vdash s \land A \vdash t \)

b) \(A \vdash (s \lor t) \iff \forall u. A, s \vdash u \rightarrow A, t \vdash u \rightarrow A \vdash u \)

Exercise 28.6.11 Show that classical ND can express conjunction and disjunction with implication and falsity. To do so, define a translation function \(fs \) not using conjunction and prove \(\vdash (s \land t) \rightarrow fs \) and \(\vdash (fs \rightarrow s \land t) \). Do the same for disjunction.

28.7 Glivenko’s Theorem

It turns out that a formula is classically provable if and only if its double negation is intuitionistically provable. Thus a classical provability problem can be reduced to an intuitionistic provability problem.

Lemma 28.7.1 \(A \vdash s \rightarrow A \vdash \neg \neg s. \)

Proof By induction on \(A \vdash s \). This yields the following proof obligations (the obligations for conjunctions and disjunctions are omitted).

- \(s \in A \rightarrow A \vdash \neg \neg s \)
- \(A, \neg s \vdash \neg \neg \bot \rightarrow A \vdash \neg \neg s. \)
- \(A, s \vdash \neg \neg t \rightarrow A \vdash \neg \neg (s \rightarrow t) \)
- \(A \vdash \neg \neg (s \rightarrow t) \rightarrow A \vdash \neg \neg s \rightarrow A \vdash \neg \neg t \)

Using \(\text{E} \rightarrow \) of the intuitionistic system, the proof obligations can be strengthened to

- \(\vdash s \rightarrow \neg \neg s \)
- \(\vdash (\neg s \rightarrow \neg \neg \bot) \rightarrow \neg \neg s \)
- \(\vdash (s \rightarrow \neg \neg t) \rightarrow \neg \neg (s \rightarrow t) \)
The proofs of the strengthened obligations are routine (Exercise 28.3.3).

Theorem 28.7.2 (Glivenko) $\vdash s \iff A \vdash \neg\neg s$.

Proof Direction \Rightarrow follows with Lemma 28.7.1. Direction \Leftarrow follows with translation (28.6.5) and double negation (28.6.1).

Corollary 28.7.3 (Agreement on negated formulas) $A \vdash \neg s \iff A \vdash \neg s$.

Corollary 28.7.4 (Refutation agreement) Intuitionistic and classical refutation agree: $A \vdash \bot \iff A \vdash \bot$.

Proof Glivenko’s theorem and the bottom law 28.3.1.

Corollary 28.7.5 (Equiconsistency) Intuitionistic ND is consistent if and only if classical ND is consistent: $((\vdash \bot) \rightarrow \bot) \iff (\vdash \bot) \rightarrow \bot$.

Proof Immediate consequence of Corollary 28.7.4.

Exercise 28.7.6 We call a formula s **stable** if $\neg\neg s \vdash s$. Prove the following:
a) \bot is stable.
b) If t is stable, then $s \rightarrow t$ is stable.
c) If s is stable, then $A \vdash s \iff A \vdash s$.

28.8 Intuitionistic Hilbert System

Hilbert systems are deduction systems predating ND systems. They are simpler than ND systems in that they come without assumption management. While it is virtually impossible for humans to write proofs in Hilbert systems, one can construct compilers translating derivations in ND systems into derivations in Hilbert systems.

To ease our presentation, we restrict ourselves in this section to formulas not containing conjunctions and disjunctions. Since implications are the primary connective in Hilbert systems and conjunctions and disjunctions appear as extensions, adding conjunctions and disjunctions will be an easy exercise.
28.8 Intuitionistic Hilbert System

We consider an intuitionistic Hilbert system formalized with an inductive type constructor $\mathcal{H} : \text{For} \rightarrow \mathbb{T}$ and the derivation rules

\[
\begin{align*}
\text{H}_A & : s \in A \quad \text{HMP} & : A \vdash s \rightarrow t \quad A \vdash s \quad \text{H}_t & : A \vdash t \\
\text{H}_\Rightarrow & : A \vdash (s \rightarrow t) \rightarrow (s \rightarrow t \rightarrow s) \\
\text{H}_\perp & : A \vdash \perp \rightarrow s
\end{align*}
\]

There are a single two-premise rule called \textbf{modus ponens} and three premise-free rules called \textbf{axiomatic rules}. So all the action comes with modus ponens, which puts implication into the primary position. We will prove that \mathcal{H} derives exactly the formulas intuitionistic ND derives in the empty context (that is, $\mathcal{H}s \equiv \vdash s$). One direction of the proof is straightforward.

\textbf{Fact 28.8.1 (Soundness for ND)} $\mathcal{H}(s) \rightarrow ([\vDash] s)$.

\textbf{Proof} By induction on the derivation of $\mathcal{H}(s)$. The modus ponens rule can be simulated with E_\Rightarrow, and the conclusions of the axiomatic rules are all easily derivable in the intuitionistic system. ■

The other direction of the equivalence proof (completeness for ND) is challenging since it has to internalize the assumption management of the ND system. We will see that this can be done with the axiomatic rules H_\Rightarrow and H_\perp. We remark that the conclusions of H_\Rightarrow and H_\perp may be seen as types for the functions $\lambda xy.y.x$ and $\lambda fgx.(fx)(gx)$.

The completeness proof uses the generalized Hilbert system \vdash shown in Figure 28.4 as an intermediate system. Similar to the ND system, the generalized Hilbert system maintains a context, but this time no rule modifies the context. The assumption rule H_Γ is the only rule reading the context. The context can thus be accommodated as a uniform parameter of the type constructor \vdash.

\textbf{Fact 28.8.2 (Agreement)} $\mathcal{H}(s) \dashv\vdash [\vDash] s$.

\textbf{Proof} Both directions are straightforward inductions. ■
It remains to construct a function translating ND derivations $A \vdash s$ into Hilbert derivations $A \vdash s$. For this we use a simulation function for every rule of the ND system (Figure 28.1). The simulation functions are obvious for all rules of the ND system but for $I \rightarrow$.

Fact 28.8.3 (Basic simulation functions)

1. $\forall A s. \ s \in A \rightarrow A \vdash s$.
2. $\forall A s t. \ (A \vdash s \rightarrow t) \rightarrow (A \vdash s) \rightarrow (A \vdash t)$.
3. $\forall A s. \ (A \vdash \bot) \rightarrow (A \vdash s)$.

Proof Functions (1) and (2) are exactly H_A^K and H_{MP}^S. Function (3) can be obtained with H_{\bot}^K and H_{MP}^S. ■

The translation function for $I \rightarrow$ needs several auxiliary functions.

Fact 28.8.4 (Operational versions of K and S)

1. $\forall A s u. \ (A \vdash u) \rightarrow (A \vdash s \rightarrow u)$.
2. $\forall A s t u. \ (A \vdash s \rightarrow t \rightarrow u) \rightarrow (A \vdash s \rightarrow t) \rightarrow (A \vdash s \rightarrow u)$.

Proof (1) follows with H_A^K and H_{MP}^S. (2) follows with H_A^S and H_{MP}^S. ■

Fact 28.8.5 (Identity) $\forall A s. \ A \vdash s \rightarrow s$.

Proof Follows with the operational version of S (with $s := s$, $t := s \rightarrow s$, and $u := s$) using H_A^K for both premises. ■

The next fact is the heart of the translation of ND derivations into Hilbert derivations. It is well-known in the literature under the name *deduction theorem*.

Fact 28.8.6 (Simulation function for $I \rightarrow$) $\forall A s t. \ (A, s \vdash t) \rightarrow (A \vdash s \rightarrow t)$.

Proof By induction on the derivation $A, s \vdash t$ (the context argument of \vdash is a uniform parameter).

- H_A^K. If $s = t$, the claim follows with Fact 28.8.5. If $t \in A$, the claim follows with H_A^K and the operational version of K (Fact 28.8.4(1)). The case distinction is possible since equality of formulas is decidable.
- H_{MP}^S. Follows with the operational version of S (Fact 28.8.4(2)) and the inductive hypotheses.
- H_A^K, H_A^S, H_{\bot}^K. The axiomatic cases follow with the operational version of K (Fact 28.8.4(1)) and H_A^K, H_A^S, H_{\bot}^K, respectively. ■
28.9 Heyting Interpretation

Fact 28.8.7 (Completeness for ND) \((A \vdash s) \rightarrow (A \models s)\).

Proof By induction on the derivation of \(A \vdash s\) using Facts 28.8.3 and 28.8.6.

Theorem 28.8.8 (Agreement) \(\mathcal{H}(s) \Leftrightarrow \models s\).

Exercise 28.8.9 Show \((A \models s) \Leftrightarrow (A \vdash s)\).

Exercise 28.8.10 Extend the development of this section to formulas with conjunctions and disjunctions. Add axiomatic rules for the following formulas:

1. \(s \rightarrow t \rightarrow s \wedge t\)
2. \(s \wedge t \rightarrow (s \rightarrow t \rightarrow u) \rightarrow u\)
3. \(s \rightarrow s \vee t\)
4. \(t \rightarrow s \vee t\)
5. \(s \vee t \rightarrow (s \rightarrow u) \rightarrow (t \rightarrow u) \rightarrow u\)

Note that the axiomatic rules for conjunctions and disjunctions formulate the essence the ND rules for conjunctions and disjunctions.

Exercise 28.8.11 Define a classical Hilbert system and show its equivalence with the classical ND system. Do this by replacing the axiomatic rule for \(\bot\) with an axiomatic rule providing the double negation law \(\neg\neg s \rightarrow s\).

28.9 Heyting Interpretation

The proof techniques we have seen so far do not suffice to show negative results about the intuitionistic ND system. By a negative result we mean a proof saying that a certain derivation type is empty, for instance,

\[\not\vdash \bot \not\models x \not\vdash (\neg \neg x \rightarrow x) \]

(we write \(\not\vdash s\) for the proposition \(([] \vdash s) \rightarrow \bot\)). Speaking informally, the above propositions say that falsity, atomic formulas, and the double negation law for atomic formulas are not intuitionistically derivable.

A powerful technique for showing negative results is evaluation of formulas into a finite and ordered domain of so-called truth values. Things are arranged such that all derivable formulas evaluate under all assignments to the largest truth value. A formula can then be established as underivable by presenting an assignment under which the formula evaluates to a different truth value.

2 An assignment assigns a truth value to every atomic formula.
Evaluation into the boolean domain $0 < 1$ is well-known and suffices to disprove $\vdash \bot$ and $\vdash x$. To disprove $\vdash (\neg \neg x \rightarrow x)$, we need to switch to a three-valued domain $0 < 1 < 2$. Using the order of the truth values, we interpret conjunction as minimum and disjunction as maximum. Falsity is interpreted as the least truth value (i.e., 0). Implication of truth values is interpreted as a comparison that in the positive case yields the greatest truth value 2 and in the negative case yields the second argument:

\[\text{imp} \ a \ b := \text{if } a \leq b \text{ then } 2 \text{ else } b \]

Note that the given order-theoretic interpretations of the logical constants agree with the familiar boolean interpretations for the two-valued domain $0 < 1$. The order-theoretic evaluation of formulas originated around 1930 with the work of Arend Heyting.

We represent our domain of truth values $0 < 1 < 2$ with an inductive type V and the order of truth values with a boolean function $a \leq b$. As a matter of convenience, we write the numbers 0, 1, 2 for the value constructors of V. An assignment is a function $\alpha : N \rightarrow V$. We define evaluation of formulas $E\alpha s$ as follows:

\[
\begin{align*}
E &: (N \rightarrow V) \rightarrow \text{For} \rightarrow V \\
E\alpha x &:= \alpha x \\
E\alpha \bot &:= 0 \\
E\alpha (s \rightarrow t) &:= \text{if } E\alpha s \leq E\alpha t \text{ then } 2 \text{ else } E\alpha t \\
E\alpha (s \land t) &:= \text{if } E\alpha s \leq E\alpha t \text{ then } E\alpha s \text{ else } E\alpha t \\
E\alpha (s \lor t) &:= \text{if } E\alpha s \leq E\alpha t \text{ then } E\alpha t \text{ else } E\alpha s \\
\end{align*}
\]

Note that conjunction is interpreted as minimum, disjunction is interpreted as maximum, and implications is interpreted as described above.

We will show that all formulas derivable in the Hilbert system \mathcal{H} defined in §28.8 evaluate under all assignments to the largest truth value 2:

\[\forall \alpha s. \ H(s) \rightarrow E\alpha s = 2 \]

For the proof we fix an assignment α and say that a formula s is true if $E\alpha s = 2$. Next we verify that the conclusions of all axiomatic rules (see §28.8) are true, which follows by case analysis on the truth values $E\alpha s$, $E\alpha t$, and $E\alpha u$. It remains to show that modus ponens derives true formulas from true formulas, which again follows by case analysis on the truth values $E\alpha s$ and $E\alpha t$.

Fact 28.9.1 (Soundness) \[\forall \alpha s. \ H(s) \rightarrow E\alpha s = 2. \]
Corollary 28.9.2 (Soundness) \(\vdash s \rightarrow \mathcal{E}s = 2 \).

Proof Fact 28.9.1 and Theorem 28.8.8.

With our definitions we have the computational equalities:

\[
\begin{align*}
\mathcal{E}(\lambda__1) \bot &= 0 \\
\mathcal{E}(\lambda__1)x &= 1 \\
\mathcal{E}(\lambda__1)(\neg x) &= 0 \\
\mathcal{E}(\lambda__1)(\neg\neg x) &= 2 \\
\mathcal{E}(\lambda__1)(\neg\neg\neg x) &= 1
\end{align*}
\]

Thus, with soundness, we can now disprove \(\vdash \bot, \vdash x \), and \(\vdash (\neg\neg x \rightarrow x) \).

A formula \(s \) is independent in \(\vdash \) if one can prove both \((\vdash s) \rightarrow \bot \) and \((\vdash \neg s) \rightarrow \bot \).

Corollary 28.9.3 (Independence) \(x, \neg\neg x \rightarrow x \) and \(x \lor \neg x \) are independent in \(\vdash \).

Proof Follows with Corollary 28.9.2 and the assignment \(\lambda__1 \).

Corollary 28.9.4 (Consistency) \(\not\vdash \bot \) and \(\not\vdash \bot \).

Proof Intuitionistic consistency follows with Corollary 28.9.2 and the assignment \(\lambda__1 \). Classic consistency follows with equiconsistency (Corollary 28.7.5).

Exercise 28.9.5 Show that \(x, \neg x, \) and \((x \rightarrow y) \rightarrow x \rightarrow x \) are independent in \(\vdash \).

Exercise 28.9.6 Show \(\neg \forall s. ((\vdash (\neg\neg s \rightarrow s)) \rightarrow \bot) \).

Exercise 28.9.7 Show that classical ND is not sound for the Heyting interpretation: \(\neg (\forall \alpha s, \vdash s \rightarrow \mathcal{E}s = 2) \).

Exercise 28.9.8 Disprove \(\vdash x \) and \(\vdash \neg x \).

Exercise 28.9.9 Disprove \(\vdash (s \lor t) \iff \vdash s \lor \neg t \).

Exercise 28.9.10 (Heyting interpretation for ND system) One can define evaluation of contexts such that \((A \vdash s) \rightarrow \mathcal{E}\alpha A \leq \mathcal{E}\alpha s \) and \(\mathcal{E}\alpha[] = 2 \).

a) Define evaluation of contexts as specified.

b) Show \(\mathcal{E}\alpha A \leq \mathcal{E}\alpha s \rightarrow A = [] \rightarrow \mathcal{E}\alpha s = 2 \).

c) Prove \((A \vdash s) \rightarrow \mathcal{E}\alpha A \leq \mathcal{E}\alpha s \) by induction on \(A \vdash s \).

Hint: Define evaluation of contexts such that contexts may be seen as conjunctions of formulas.
28 Propositional Deduction Systems

28.10 Boolean Interpretation

Boolean evaluation evaluates formulas into a two-valued domain. We choose the type B of boolean values and fix the order $F < T$. Moreover, we will call functions $\alpha : N \rightarrow B$ boolean assignments. Specializing the ideas we have seen for the three-valued Heyting interpretation, we define boolean evaluation as follows:

$$E : (N \rightarrow B) \rightarrow \text{For} \rightarrow B$$

$$E \alpha x := \alpha x$$

$$E \alpha \bot := F$$

$$E \alpha (s \rightarrow t) := \text{IF } E \alpha s \text{ THEN } E \alpha t \text{ ELSE } T$$

$$E \alpha (s \land t) := \text{IF } E \alpha s \text{ THEN } E \alpha t \text{ ELSE } F$$

$$E \alpha (s \lor t) := \text{IF } E \alpha s \text{ THEN } T \text{ ELSE } E \alpha t$$

Note that the definition respects both the familiar unordered view of boolean evaluation and the ordered view coming with the Heyting interpretation. It is easy to verify that $E \alpha (\neg \neg s \rightarrow s) = T$ for all assignments α and all formulas s.

We call a formula valid if it evaluates under all boolean assignments to T:

$$\text{valid } s := \forall \alpha. E \alpha s = T$$

It turns out that classic derivability and boolean validity of formulas agree:

$$\vdash s \iff \text{valid } s$$

This is a very prominent equivalence connecting classic derivability with boolean evaluation. The two directions of the equivalence are known as soundness (\rightarrow) and completeness (\leftarrow). The soundness direction can be shown following the ideas we saw for the soundness of the Heyting interpretation.

Fact 28.10.1 (Soundness) $\vdash s \rightarrow \text{valid } s$.

Proof We exploit the equivalence of the classical ND system with the classical Hilbert system and show $\hat{H}(s) \rightarrow E \alpha s$ by induction on the derivation $\hat{H}(s)$ with α fixed. It is easy to see that the consequences of all axiomatic rules evaluate positively under α, and that modus ponens preserves positive evaluation under α (since $E \alpha s = T \rightarrow E \alpha (s \rightarrow t) = E \alpha t$).

The computational analysis of the completeness direction leads to the notion of a certifying boolean solver.

Definition 28.10.2 A certifying boolean solver for \vdash is a function $\forall s. (\Sigma \alpha. E \alpha s = T) + (s \vdash \bot)$.

28.11 Refutation Predicates

Fact 28.10.3 (Certifying boolean solver for \vdash)
Given a certifying boolean solver for \vdash, we have the following:

1. $\forall s. \text{valid } s \iff \vdash s$
2. $\forall s. D(\vdash s)$
3. $\forall A s. D(A \vdash s)$

Proof (1) Direction \iff is soundness. For direction \implies we apply the solver to $\neg s$. If $E\alpha(\neg s) = T$, we have $E\alpha s = F$, contradicting validity of s. If $\neg s \not\vdash \bot$, we have $\vdash s$ by the contradiction rule.

(2) We apply the solver to $\neg s$. If $E\alpha(\neg s) = T$, we have $E\alpha s = F$, contradicting validity of s. Thus $(\vdash s) \not\implies \bot$ by soundness. If $\neg s \not\vdash \bot$, we have $\vdash s$ by the contradiction rule.

(3) follows with (2) and reversion (Fact 28.6.7).

Exercise 28.10.4 We say that a formula is satisfiable if it evaluates to T for some assignment: $\text{sat } s := \exists \alpha. E\alpha s = T$. Show that a formula is valid if and only if its negation is unsatisfiable: $\forall s. \text{valid } s \iff \neg \text{sat}(\neg s)$.

Exercise 28.10.5 Give a consistency proof for classical ND that does not make use of intuitionistic ND.

Exercise 28.10.6 Show that x and $\neg x$ are independent in \vdash.

Exercise 28.10.7 Show that $\neg \neg \neg x$ is independent in \vdash.

Exercise 28.10.8 Show $(\forall st. \vdash (s \lor t) \not\implies ((\vdash s) + (\vdash t))) \not\implies \bot$.

28.11 Refutation Predicates

The notion of a certifying boolean solver can be formulated more generally for refutation predicates. A refutation predicate is a predicate $\rho : \mathcal{L}(\text{For}) \rightarrow \mathbb{P}$ satisfying the rules in Figure 28.5. The rules for refutation predicates are explained in §29.7. When applied backwards, the rules yield a terminating formula decomposition algorithm. The leaves of a decomposition tree for a list of formulas are unsatisfiable if they contain \bot or a clash (e.g., x and $\neg x$), and satisfiable otherwise. Thus we can construct for a refutation predicate ρ a certifying solver

$$\forall A. (\Sigma \alpha. \forall s \in A. E\alpha A = T) + \rho A$$

that for a list of formulas A either returns a satisfying assignment or a proof of ρA (i.e., a refutation). The construction is carried out in §29.7.
28 Propositional Deduction Systems

\[\rho(s :: A + B) \rightarrow \rho(A + s :: B) \] rotation
\[\rho(x :: \neg x :: A) \] clash
\[\rho(\bot :: A) \] falsity
\[\rho(\neg s :: A) \rightarrow \rho(t :: A) \rightarrow \rho((s \rightarrow t) :: A) \] implication
\[\rho(s :: \neg t :: A) \rightarrow \rho(\neg(s \rightarrow t) :: A) \] implication\(^-\)
\[\rho(\neg s :: t :: A) \rightarrow \rho((s \land t) :: A) \] conjunction
\[\rho(\neg s :: A) \rightarrow \rho(\neg t :: A) \rightarrow \rho((s \land t) :: A) \] conjunction\(^-\)
\[\rho(s :: A) \rightarrow \rho(t :: A) \rightarrow \rho((s \lor t) :: A) \] disjunction
\[\rho(\neg s :: \neg t :: A) \rightarrow \rho(\neg(s \lor t) :: A) \] disjunction\(^-\)

Figure 28.5: Rules for refutation predicates \(\rho : L(\text{For}) \rightarrow \mathbb{P} \)

Fact 28.11.1 The following predicates are refutation predicates:
1. \(\lambda A. A \vdash \bot \)
2. \(\lambda A. A \vdash \bot \)
3. \(\lambda A. \forall \alpha \exists s. s \in A \land \exists s = \top \)

Proof By refutation agreement (Fact 28.7.4) it suffices to show either (1) or (2). Exercise 28.11.2 shows (2). The proof obligations for (3) all follow by straightforward boolean case analysis.

We show in §29.7 that for every refutation predicate \(\rho \) there is a certifying solver \(\forall A. (\Sigma \alpha. \forall s \in A. \exists \alpha s = \top) + \rho A \) that given a list of formulas yields either a satisfying assignment or a refutation using \(\rho \). With Fact 28.11.1 it then follows that we can construct a certifying solver for \(\vdash \) and obtain the functions asserted by Fact 28.10.3.

Exercise 28.11.2 Prove that \(\lambda A. A \vdash \bot \) is a refutation predicate.

Hint: The proof is modular in that every refutation rule can be shown by itself. The weakening and implication lemmas turn out to be useful (Facts 28.5.1 and 28.5.2). In addition, the following implicative facts provide the essence of the proof obligations for implication, conjunction, and disjunction:
1. \(\vdash \neg \neg s \rightarrow \neg t \rightarrow \neg(s \rightarrow t) \)
2. \(\vdash (t \rightarrow \neg s) \rightarrow \neg \neg(s \rightarrow t) \)
3. \(\vdash (t \rightarrow \neg s) \rightarrow \neg(s \land t) \)
4. \(\vdash \neg \neg s \rightarrow \neg \neg t \rightarrow \neg(s \land t) \)
5. \(\vdash \neg s \rightarrow \neg t \rightarrow \neg(s \lor t) \)
6. \(\vdash (t \rightarrow \neg \neg s) \rightarrow \neg(s \lor t) \)
28.12 Substitution

In the deduction systems we consider in this chapter, atomic formulas act as variables for formulas. We will now show that derivability of formulas is preserved if one instantiates atomic formulas. To ease our language, we call atomic formulas propositional variables in this section.

A substitution is a function \(\theta : \mathbb{N} \rightarrow \text{For} \) mapping every number to a formula. Recall that propositional variables are represented as numbers. We define application of substitutions to formulas and lists of formulas such that every variable is replaced by the term provided by the substitution:

\[
\begin{align*}
\theta \cdot x &:= \theta x \\
\theta \cdot \bot &:= \bot \\
\theta \cdot (s \rightarrow t) &:= \theta \cdot s \rightarrow \theta \cdot t \\
\theta \cdot (s \land t) &:= \theta \cdot s \land \theta \cdot t \\
\theta \cdot (s \lor t) &:= \theta \cdot s \lor \theta \cdot t \\
\theta \cdot [] &:= [] \\
\theta \cdot (s :: A) &:= \theta \cdot s :: \theta \cdot A
\end{align*}
\]

We will write \(\theta s \) and \(\theta A \) for \(\theta \cdot s \) and \(\theta \cdot A \).

We show that intuitionistic and classical ND provability are preserved under application of substitutions. This says that atomic formulas may serve as variables for formulas.

Fact 28.12.1 \(s \in A \rightarrow \theta s \in \theta A \).

Proof By induction on \(A \).

Fact 28.12.2 (Substitutivity) \(A \vdash s \rightarrow \theta A \vdash \theta s \) and \(A \vdash s \rightarrow \theta A \vdash \theta s \).

Proof By induction on \(A \vdash s \) and \(A \vdash s \) using Fact 28.12.1 for the assumption rule.

Exercise 28.12.3 Prove that substitution preserves derivability in the intuitionistic Hilbert system \(\mathcal{H} \). Note that the proof obligation for the axiomatic rules all follow with the same technique. Now use the equivalence with the ND system and Glivenko to show substitutivity for the other three systems.

28.13 Entailment Relations

An entailment relation is a predicate\(^3\)

\[\vdash : \mathcal{L}(\text{For}) \rightarrow \text{For} \rightarrow \mathbb{P} \]

\(^3\)We are reusing the turnstile \(\vdash \) previously used for Hilbert systems.
28 Propositional Deduction Systems

1. **Assumption:** \(s \in A \Rightarrow A \vdash s \).
2. **Cut:** \(A \vdash s \rightarrow A, s \vdash t \rightarrow A \vdash t \).
3. **Weakening:** \(A \vdash s \rightarrow A \subseteq B \rightarrow B \vdash s \).
4. **Consistency:** \(\exists s. \lnot s \).
5. **Substitutivity:** \(A \vdash s \rightarrow \theta A \vdash \theta s \).
6. **Explosion:** \(A \vdash \bot \rightarrow A \vdash s \).
7. **Implication:** \(A \vdash (s \rightarrow t) \leftrightarrow A, s \vdash t \).
8. **Conjunction:** \(A \vdash (s \land t) \leftrightarrow A \vdash s \land A \vdash t \).
9. **Disjunction:** \(A \vdash (s \lor t) \leftrightarrow \forall u. A, s \vdash u \rightarrow A, t \vdash u \rightarrow A \vdash u \).

Figure 28.6: Requirements for entailment relations

satisfying the properties listed in Figure 28.6. Note that the first five requirements don’t make any assumptions on formulas; they are called **structural requirements**. Each of the remaining requirements concerns a particular form of formulas: Variables, falsity, implication, conjunction, and disjunction.

Fact 28.13.1 Intuitionistic provability \((A \vdash s) \) and classical provability \((A \vdash s) \) are entailment relations.

Proof Follows with the results shown so far.

It turns out that every entailment relation is sandwiched between intuitionistic provability at the bottom and classic provability at the top. Let \(\vdash \) be an entailment relation in the following.

Fact 28.13.2 (Modus Ponens) \(A \vdash (s \rightarrow t) \rightarrow A \vdash s \rightarrow A \vdash t \).

Proof By implication and cut.

Fact 28.13.3 (Least entailment relation) Intuitionistic provability is a least entailment relation: \(A \vdash s \rightarrow A \vdash s \).

Proof By induction on \(A \vdash s \) using modus ponens.

Fact 28.13.4 \(\vdash s \rightarrow \vdash \lnot s \rightarrow \bot \).

Proof Let \(\vdash s \) and \(\vdash \lnot s \). By Fact 28.13.2 we have \(\vdash \bot \). By consistency and explosion we obtain a contradiction.

Fact 28.13.5 (Reversion) \(A \vdash s \leftrightarrow \vdash A \cdot s \).

Proof By induction on \(A \) using implication.
To show that classic provability is a greatest entailment relation we shall use boolean entailment:

\[E : (N \rightarrow B) \rightarrow L(For) \rightarrow B \]

\[E\alpha(\emptyset) := T \]

\[E\alpha(s :: A) := \text{IF } E\alpha s \text{ THEN } E\alpha A \text{ ELSE } F \]

\[A \vdash s := \forall \alpha. \text{IF } E\alpha A \text{ THEN } E\alpha s = T \text{ ELSE } \top \]

We first show that bool entailment \(A \vdash s \) is in fact an entailment relation.

Lemma 28.13.6

\(E\alpha(\theta s) = E(\lambda n. E\alpha(\theta n))s \) holds for boolean evaluation.

Fact 28.13.7 \(A \vdash s \rightarrow \theta A \vdash \theta s. \)

Proof By induction on \(A \) using Lemma 28.13.6.

Fact 28.13.8 Boolean entailment \(A \vdash s \) is an entailment relation.

Proof Substitutivity is established by Fact 28.13.7. The other requirements follow with boolean case analysis.

We now come to the key lemma for showing that abstract entailment implies boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a conversion function that given a boolean assignment \(\alpha : N \rightarrow B \) yields a substitution as follows: \(\hat{\alpha} n := \text{IF } \alpha n \text{ THEN } \neg \bot \text{ ELSE } \bot \).

Lemma 28.13.9 (Tebbi) \(\text{IF } E\alpha s \text{ THEN } \not\vdash \hat{\alpha}s \text{ ELSE } \not\vdash \hat{\alpha}s. \)

Proof Induction on \(s \) using Fact 28.13.2 and assumption, weakening, explosion, and implication.

Note that we have formulated the lemma with a conditional. While this style of formulation is uncommon in mathematics, it is compact and convenient in a type theory with computational equality.

Lemma 28.13.10 \(\not\vdash s \rightarrow \not\vdash s. \)

Proof Let \(\not\vdash s \). We assume \(E\alpha s = F \) and derive a contradiction. By Tebbi’s Lemma we have \(\not\vdash \neg\hat{\alpha}s \). By substitutivity we obtain \(\not\vdash \hat{\alpha}s \) from the primary assumption. Contradiction by Fact 28.13.4.
28 Propositional Deduction Systems

Fact 28.13.11 (Greatest entailment relation)
Boolean entailment is a greatest entailment relation: \(A \vdash s \rightarrow A \models s \).

Proof Follows with reversion (Facts 28.13.5 and 28.13.8) and Lemma 28.13.10. ■

Exercise 28.13.12 Let \(\vdash \) be an entailment relation. Prove the following:

a) \(\forall s. \text{ground } s \rightarrow (\vdash s) \lor (\vdash \neg s) \).

b) \(\forall s. \text{ground } s \rightarrow \text{dec}(\vdash s) \).

Exercise 28.13.13 Tebbi’s lemma provides for a particularly elegant proof of Lemma 28.13.10. Verify that Lemma 28.13.10 can also be obtained from the facts (1) \(\vdash \hat{\alpha}s \lor \vdash \neg \hat{\alpha}s \) and (2) \(\vdash \hat{\alpha}s \rightarrow \mathcal{L}\alpha s = \top \) using Facts 28.13.3 and 28.13.4.

28.14 Notes

The study of natural deduction originated in the 1930’s with the work of Gerhard Gentzen [11, 12] and Stanislaw Jaśkowski [15]. The standard text on natural deduction and proof theory is Troelstra and Schwichtenberg [23].

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable. This can be done with a method devised by Gentzen in the 1930s. First one shows that intuitionistic ND is equivalent to a proof system called sequent calculus that has the subformula property. Then one shows that sequent calculus is decidable, which is feasible since it has the subformula property.

Kripke structures and Heyting structures One can construct evaluation-based entailment relations that coincide with intuitionistic ND using either finite Heyting structures or finite Kripke structures. In contrast to classical ND, where a single two-valued boolean structure invalidates all classically unprovable formulas, one needs either infinitely many finite Heyting structures or infinitely many finite Kripke structures to invalidate all intuitionistically unprovable formulas. Heyting structures are usually presented as Heyting algebras and were invented by Arend Heyting around 1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Intuitionistic Independence of logical constants In the classical systems, falsity and implication can express conjunction and disjunction. On the other hand, one can prove using Heyting structures that in intuitionistic systems the logical constants are independent.
29 Boolean Satisfiability

We study satisfiability of boolean formulas by constructing and verifying a DNF solver and a tableau system. The solver translates boolean formulas to equivalent clausal DNFs and thereby decides satisfiability. The tableau system provides a proof system for unsatisfiability and bridges the gap between natural deduction and satisfiability. Based on the tableau system one can prove completeness and decidability of propositional natural deduction.

The development presented here works for any choice of boolean connectives. The independence from particular connectives is obtained by representing conjunctions and disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcase the interplay between evaluation of boolean expressions, nontrivial functions, and indexed inductive type families (the tableau system).

29.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation, which we obtain as inductive functions \(\mathbb{B} \to \mathbb{B} \to \mathbb{B} \) and \(\mathbb{B} \to \mathbb{B} \):

\[
\begin{align*}
\text{T} \& \ b & := b \\
\text{F} \& \ b & := \text{F} \\
\text{T} \mid \ b & := \text{T} \\
\text{F} \mid \ b & := b \\
! \text{T} & := \text{F} \\
! \text{F} & := \text{T}
\end{align*}
\]

With these definitions, boolean identities like

\[
\begin{align*}
a \& b &= b \& a \\
a \mid b &= b \mid a \\
!! b &= b
\end{align*}
\]

have straightforward proofs by boolean case analysis and computational equality. Recall that boolean conjunction and disjunction are commutative and associative.

An important notion for our development is disjunctive normal form (DNF). The idea behind DNF is that conjunctions are below disjunctions, and that negations are below conjunctions. Negations can be pushed downwards with the negation laws

\[
\begin{align*}
!(a \& b) &= !a \mid !b \\
!(a \mid b) &= !a \& !b \\
!! a &= a
\end{align*}
\]

and conjunctions can be pushed below disjunctions with the distribution law

\[
a \& (b \mid c) = (a \& b) \mid (a \& b)
\]
29 Boolean Satisfiability

Besides the defining equations, we will also make use of the negation law

\[b \land \lnot b = \mathbf{F} \]

to eliminate conjunctions.

There are the reflection laws

\[
\begin{align*}
 a \land b = \mathbf{T} & \quad \longrightarrow \quad a = \mathbf{T} \land b = \mathbf{T} \\
 a \lor b = \mathbf{T} & \quad \longrightarrow \quad a = \mathbf{T} \lor b = \mathbf{T} \\
 \lnot a = \mathbf{T} & \quad \longrightarrow \quad \lnot(a = \mathbf{T})
\end{align*}
\]

which offer the possibility to replace boolean operations with logical connectives. As it comes to proofs, this is usually not a good idea since the computation rules coming with the boolean operations are lost. The exception is the reflection rule for conjunctions, which offers the possibility to replace the argument terms of a conjunction with \(\mathbf{T} \).

29.2 Boolean Formulas

Our main interest will be in boolean formulas, which are syntactic representations of boolean terms. We will consider the boolean formulas \(s, t, u \): For ::= \(x \mid \bot \mid s \rightarrow t \mid s \land t \mid s \lor t \) \((x : \mathbb{N})\)

realized with an inductive data type For representing each syntactic form with a value constructor. Variables \(x \) are represented as numbers. We will refer to formulas also as boolean expressions.

Our development would work with any choice of boolean connectives for formulas. We have made the unusual design decision to have boolean implication as an explicit connective. On the other hand, we have omitted truth \(\top \) and negation \(\lnot \), which we accommodate at the meta level with the notations

\[
\begin{align*}
 \top & := \bot \rightarrow \bot \\
 \lnot s & := s \rightarrow \bot
\end{align*}
\]

Given an assignment \(\alpha : \mathbb{N} \rightarrow \mathbb{B} \), we can evaluate every formula to a boolean value. We formalize evaluation of formulas with the evaluation function shown in Figure 29.1. Note that every function \(E\alpha \) translates boolean formulas (object level) to boolean terms (meta level). Also note that implications are expressed with negation and disjunction.

We define the notation

\[\alpha \models s := E\alpha s = \mathbf{T} \]
29.2 Boolean Formulas

\[
E \alpha := \alpha \\
E \perp := \bot \\
E (s \rightarrow t) := \neg E s \lor E t \\
E (s \land t) := E s \land E t \\
E (s \lor t) := E s \lor E t
\]

Figure 29.1: Definition of the evaluation function \(E : (\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \text{For} \rightarrow \mathbb{B}\)

and say that \(\alpha\) satisfies \(s\), or that \(\alpha\) solves \(s\), or that \(\alpha\) is a solution of \(s\). We say that a formula \(s\) is satisfiable and write \(\text{sat } s\) if \(s\) has a solution. Finally, we say that two formulas are equivalent if they have the same solutions.

As it comes to proofs, it will be important to keep in mind that the notation \(\alpha \models s\) abbreviates the boolean equation \(E \alpha s = \top\). Reasoning with boolean equations will be the main workhorse in our proofs.

Exercise 29.2.1 Prove that \(s \rightarrow t\) and \(\neg s \lor t\) are equivalent.

Exercise 29.2.2 Convince yourself that the predicate \(\alpha \models s\) is decidable.

Exercise 29.2.3 Verify the following reflection laws for formulas:

\[
\alpha \models (s \land t) \iff \alpha \models s \land \alpha \models t \\
\alpha \models (s \lor t) \iff \alpha \models s \lor \alpha \models t \\
\alpha \models \neg s \iff \neg (\alpha \models s)
\]

Exercise 29.2.4 (Compiler to implicative fragment) Write and verify a compiler \(\text{For} \rightarrow \text{For}\) translating formulas into equivalent formulas not containing conjunctions and disjunctions.

Exercise 29.2.5 (Equation compiler) Write and verify a compiler

\[
y : \mathcal{L}(\text{For} \times \text{For}) \rightarrow \text{For}
\]

translating lists of equations into equivalent formulas:

\[
\forall \alpha. \ \alpha \models y A \iff \forall (s, t) \in A. \ E \alpha s = E \alpha t
\]

Exercise 29.2.6 (Valid formulas) We say that a formula is valid if it is satisfied by all assignments: \(\text{val } s := \forall \alpha. \ \alpha \models s\). Verify the following reductions.

a) \(s\) is valid iff \(\neg s\) is unsatisfiable: \(\forall s. \ \text{val } s \iff \neg \text{sat } (\neg s)\).
29 Boolean Satisfiability

b) $\forall s. \text{stable}(\text{sat } s) \rightarrow (\text{sat } s \leftrightarrow \neg \text{val}(\neg s))$.

Exercise 29.2.7 Write an evaluator $f : (\mathbb{N} 	o \mathbb{B}) \to \mathbb{P}$ such that $f \alpha s \leftrightarrow \alpha \models s$ and $f \alpha (s \lor t) \approx f \alpha s \lor f \alpha t$ for all formulas s, t.

Hint: Recall the reflection laws from §29.1.

29.3 Clausal DNFs

We are working towards a decider for satisfiability of boolean formulas. The decider will compute a DNF (disjunctive normal form) for the given formula and exploit that from the DNF it is clear whether the formula is decidable. Informally, a DNF is either the formula \bot or a disjunction $s_1 \lor \cdots \lor s_n$ of solved formulas s_i, where a solved formula is a conjunction of variables and negated variables such that no variable appears both negated and unnegated. One can show that every formula is equivalent to a DNF. Since every solved formula is satisfiable, a DNF is satisfiable if and only if it is different from \bot.

There may be many different DNFs for satisfiable formulas. For instance, the DNFs $x \lor \neg x$ and $y \lor \neg y$ are equivalent since they are satisfied by every assignment.

Formulas by themselves are not a good data structure for computing DNFs of formulas. We will work with lists of signed formulas we call clauses:

$$S, T : \text{SFor} ::= s^+ | s^- \quad \text{signed formula}$$
$$C, D : \text{Cla} ::= \mathcal{L}(\text{SFor}) \quad \text{clause}$$

Clauses represent conjunctions. We define evaluation of signed formulas and clauses as follows:

$$E \alpha (s^+) ::= E \alpha s \quad E \alpha [] ::= \mathbb{T}$$
$$E \alpha (s^-) ::= \neg E \alpha s \quad E \alpha (S :: C) ::= E \alpha S \& E \alpha C$$

Note that the empty clause represents the boolean \mathbb{T}. We also consider lists of clauses

$$\Delta : \mathcal{L}(\text{Cla})$$

and interpret them disjunctively:

$$E \alpha [] ::= \mathbb{F}$$
$$E \alpha (C :: \Delta) ::= E \alpha C \lor E \alpha \Delta$$

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously to formulas, and so are the notations $\alpha \models S$, $\alpha \models C$, $\alpha \models \Delta$, and $\text{sat } C$. Since
formulas, signed formulas, clauses, and lists of clauses all come with the notion of satisfying assignments, we can speak about equivalence between these objects although they belong to different types. For instance, \(s, s^+, [s^+], \text{and } [[s^+]]\), are all equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., \(x^+ \text{ and } x^-\)) such that no variable appears positively and negatively. Note that a solved clause \(C\) is satisfied by every assignment that maps the positive variables in \(C\) to \(T\) and the negative variables in \(C\) to \(F\).

Fact 29.3.1 Solved clauses are satisfiable. More specifically, a solved clause \(C\) is satisfied by the assignment \(\lambda x. \leftarrow x^+ \in C\).

A clausal DNF is a list of solved clauses.

Corollary 29.3.2 A clausal DNF is satisfiable if and only if it is nonempty.

Exercise 29.3.3 Prove \(E\alpha(C + + D) = E\alpha C \land E\alpha D\) and \(E\alpha(\Delta + + \Delta') = E\alpha\Delta \lor E\alpha\Delta'.\)

Exercise 29.3.4 Write a function that maps lists of clauses to equivalent formulas.

Exercise 29.3.5 Our formal proof of Fact 29.3.1 is unexpectedly tedious in that it requires two inductive lemmas:
1. \(\alpha \models C \rightarrow \forall S \in C. \alpha \models S.\)
2. solved \(C \rightarrow S \in C \rightarrow \exists x. (S = x^+ \land x^- \notin C) \lor (S = x^- \land x^+ \notin C).\)

The formal development captures solved clauses with an inductive predicate. This is convenient for most purposes but doesn’t provide for a convenient proof of Fact 29.3.1. Can you do better?

29.4 DNF Solver

We would like to construct a function computing clausal DNFs for formulas. Formally, we specify the function with the informative type

\[
\forall s \Sigma \Delta. \ DNF \Delta \land s \equiv \Delta
\]

where

\[
s \equiv \Delta := \forall \alpha. \alpha \models s \rightarrow \alpha \models \Delta
\]

\[
\text{DNF } \Delta := \forall C \in \Delta. \text{ solved } C
\]

To define the function, we will generalize the type to

\[
\forall CD. \text{ solved } C \rightarrow \Sigma \Delta. \ DNF \Delta \land C + + D \equiv \Delta
\]
where \(C \equiv \Delta := \forall \alpha. \alpha \models C \rightarrow \alpha \models \Delta \). To compute a clausal DNF of a formula \(s \), we will apply the function with \(C = [] \) and \(D = [s^+] \).

We base the definition of the function on a purely computational procedure

\[
\text{dnf} : \text{Cla} \rightarrow \text{Cla} \rightarrow \mathcal{L}(\text{Cla})
\]

specified with equations in Figure 29.2. We refer to the first argument \(C \) of the procedure as \textit{accumulator}, and to the second argument as \textit{agenda}. The agenda holds the signed formulas still to be processed, and the accumulator collects signed variables taken from the agenda. The procedure processes the formulas on the agenda one by one decreasing the size of the agenda with every recursion step. We define the \textit{size} of clauses and formulas as follows:

\[
\sigma[] := 0 \\
\sigma x := 1 \\
\sigma(s^+ :: C) := \sigma s + \sigma C \\
\sigma] : = 1 \\
\sigma(s^+ :: C) := \sigma s + \sigma C \\
\sigma(s \circ t) := 1 + \sigma s + \sigma t
\]

Note that the equations specifying the procedure in Figure 29.2 are clear from the correctness properties stated for the procedure, the design that the first formula on the agenda controls the recursion, and the boolean identities given in §29.1.

\textbf{Lemma 29.4.1} \(\forall CD. \) solved \(C \rightarrow \Sigma \Delta \). \(\text{DNF} \Delta \land C + D \equiv \Delta \).

\textbf{Proof} By size induction on \(\sigma D \) with \(C \) quantified in the inductive hypothesis augmenting the design of the procedure \text{dnf} with the necessary proofs. Each of the 13 cases is straightforward.

\hspace{1cm} \blacksquare
Theorem 29.4.2 (DNF solver) \(\forall C \Sigma \Delta. \) DNF \(\Delta \land C \equiv \Delta. \)

Proof Immediate from Lemma 29.4.1.

Corollary 29.4.3 \(\forall s \Sigma \Delta. \) DNF \(\Delta \land s \equiv \Delta. \)

Corollary 29.4.4 There is a solver \(\forall C. (\Sigma \alpha. \alpha = C) + \neg \text{sat } C. \)

Corollary 29.4.5 There is a solver \(\forall s. (\Sigma \alpha. \alpha = s) + \neg \text{sat } s. \)

Corollary 29.4.6 Satisfiability of clauses and formulas is decidable.

Exercise 29.4.7 Convince yourself that the predicate \(S \in C \) is decidable.

Exercise 29.4.8 Rewrite the equations specifying the DNF procedure so that you obtain a boolean decider \(D : \text{Cla} \rightarrow \text{Cla} \rightarrow B \) for satisfiability of clauses. Give an informative type subsuming the procedure and specifying the correctness properties for a boolean decider for satisfiability of clauses.

Exercise 29.4.9 Recall the definition of valid formulas from Exercise 29.2.6. Prove the following:

a) Validity of formulas is decidable.

b) A formula is satisfiable if and only if its negation is not valid.

c) \(\forall s. \text{val } s + (\Sigma \alpha. E \alpha s = F). \)

Exercise 29.4.10 If you are already familiar with well-founded recursion in computational type theory (Chapter 26), define a function \(\text{Cla} \rightarrow \text{Cla} \rightarrow L(\text{Cla}) \) satisfying the equations specifying the procedure \text{dnf} \ in Figure 29.2.

29.5 DNF Recursion

From the equations for the DNF procedure (Figure 29.2) and the construction of the basic DNF solver (Lemma 29.4.1) one can abstract out the recursion scheme shown in Figure 29.3. We refer to this recursion scheme as DNF recursion. DNF recursion has one clause for every equation of the DNF procedure in Figure 29.2 where the recursive calls appear as inductive hypotheses. DNF recursion simplifies the proof of Lemma 29.4.1. However, DNF recursion can also be used for other constructions (our main example is a completeness lemma (29.6.5) for a tableau system) given that it is formulated with an abstract type function \(p. \) Note that DNF recursion encapsulates the use of size recursion on the agenda, the set-up and justification of the case analysis, and the propagation of the precondition \text{solved } C. \) We remark that all clauses can be equipped with the precondition, but for our applications the precondition is only needed in the clause for the empty agenda.
∀p

(∀C. solved C → pC[]) →

(∀CD. x⁻ ∈ C → pC(x⁺ :: D)) →

(∀CD. x⁻ ∉ C → pC(x⁺ :: D ∨ pC(x⁻ :: D)) →

(∀CD. x⁺ ∈ C → pC(x⁻ :: D)) →

(∀CD. x⁺ ∉ C → pC(x⁻ :: D)) →

(∀CD. x⁺ ∉ C → pC(x⁻ :: D ∨ pC(x⁻ :: D)) →

(∀CD. pC(⊥ :: D)) →

(∀CD. pCD → pC(⊥ :: D)) →

(∀CD. pC(s⁻ :: D) → pC(t⁻ :: D ∨ pC((s → t)⁻ :: D)) →

(∀CD. pC(s⁺ :: t⁻ :: D) → pC((s ∧ t)⁻ :: D)) →

(∀CD. pC(s⁺ :: t⁻ :: D) → pC((s ∧ t)⁺ :: D)) →

(∀CD. pC(s⁻ :: D) → pC(t⁻ :: D ∨ pC((s ∧ t)⁻ :: D)) →

(∀CD. pC(s⁻ :: D) → pC((s ∧ t)⁻ :: D)) →

∀CD. solved C → pCD

Figure 29.3: DNF recursion scheme

Lemma 29.5.1 (DNF recursion)
The DNF recursion scheme shown in Figure 29.3 is inhabited.

Proof By size recursion on the σD with C quantified using the decidability of membership in clauses. Straightforward.

DNF recursion provides the abstraction level one would use in an informal correctness proof of the DNF procedure. In particular, DNF recursion separates the termination argument from the partial correctness argument. We remark that DNF recursion generalizes the functional induction scheme one would derive for a DNF procedure.

Exercise 29.5.2 Use DNF recursion to construct a certifying boolean solver for clauses: ∀C. (Σα. α ⊨ C) + (~sat(C)).
29.6 Tableau Refutations

Figure 29.4 defines an indexed inductive type family \(\text{tab} : \text{Cla} \rightarrow \mathbb{T} \) for which we will prove

\[
\text{tab}(C) \iff \neg \text{sat}(C)
\]

We call the inhabitants of a type \(\text{tab}(C) \) **tableau refutations** for \(C \). The above equivalence says that for every clause unsatisfiability proofs are inter-translatable with tableau refutations. Tableau refutations may be seen as explicit syntactic unsatisfiability proofs for clauses. Since we have \(\neg \text{sat}\left[s^+\right] \), tableau refutations may also serve as refutations for formulas.

We speak of **tableau refutations** since the type family \(\text{tab} \) formalizes a proof system that belongs to the family of tableau systems. We call the value constructors for the type constructor \(\text{tab} \) **tableau rules** and refer to type constructor \(\text{tab} \) as **tableau system**.

We may see the tableau rules in Figure 29.4 as a simplification of the equations specifying the DNF procedure in Figure 29.2. Because termination is no longer an issue, the accumulator argument is not needed anymore. Instead we have a tableau rule (the first rule) that rearranges the agenda.

We refer to the first rule of the tableau system as **move rule** and to the second rule as **clash rule**. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion to the premises). All but the first rule are decomposition rules simplifying the clause to be derived. The second and third rule derive clauses that are obviously unsatisfiable. The move rule is needed so that non-variable formulas can be moved
29 Boolean Satisfiability

to the front of a clause as it is required by most of the other rules.

Fact 29.6.1 (Soundness)
Tableau refutable clauses are unsatisfiable: \(\text{tab}(C) \rightarrow \neg \text{sat}(C) \).

Proof Follows by induction on \(\text{tab} \).

For the completeness lemma we need a few lemmas providing derived rules for the tableau system.

Fact 29.6.2 (Clash)
All clauses containing a conflicting pair of signed variables are tableau refutable: \(x^+ \in C \rightarrow x^- \in C \rightarrow \text{tab}(C) \).

Proof Without loss of generality we have \(C = C_1 + x^+ :: C_2 + x^- :: C_3 \). The primitive clash rule gives us \(\text{tab}(x^+ :: x^- :: C_1 + C_2 + C_3) \). Using the move rule twice we obtain \(\text{tab}(C) \).

Fact 29.6.3 (Weakening)
Adding formulas preserves tableau refutability:
\[\forall CS. \text{tab}(C) \rightarrow \text{tab}(S :: C) \]

Proof By induction on \(\text{tab} \).

The move rule is strong enough to reorder clauses freely.

Fact 29.6.4 (Move Rules) The following rules hold for \(\text{tab} \):

\[
\begin{align*}
\text{tab}(\text{rev } D + C + E) & \rightarrow \text{tab}(D + C + E) & \rightarrow \text{tab}(C + S :: D) \\
\text{tab}(C + D + E) & \rightarrow \text{tab}(C + D + E) & \rightarrow \text{tab}(S :: C + D)
\end{align*}
\]

We refer to the last rule as inverse move rule.

Proof The first rule follows by induction on \(D \). The second rule follows from the first rule with \(C = [] \) and \(\text{rev}(\text{rev } D) = D \). The third rule follows from the second rule with \(C = [S] \).

Lemma 29.6.5 (Completeness)
\[\forall DC. \text{solved } C \rightarrow \neg \text{sat } (D + C) \rightarrow \text{tab}(D + C) \]

Proof By DNF recursion. The case for the empty agenda is contradictory since solved clauses are satisfiable. The cases with conflicting signed variables follow with the clash lemma. The cases with nonconflicting signed variables follow with the inverse move rule. The case for \(\bot \) follows with the weakening lemma.
Theorem 29.6.6
A clause is tableau refutable if and only if it is unsatisfiable:
\[\text{tab}(C) \iff \neg \text{sat}(C). \]

Proof Follows with Fact 29.6.1 and Lemma 29.6.5.

Corollary 29.6.7 \[\forall C. \text{tab}(C) + (\text{tab}(C) \rightarrow \bot). \]

We remark that the DNF solver and the tableau system adapt to any choice of boolean connectives. We just add or delete cases as needed. An extreme case would be to not have variables. That one can choose the boolean connectives freely is due to the use of clauses with signed formulas.

The tableau rules have the **subformula property**, that is, a derivation of a clause \(C \) does only employ subformulas of formulas in \(C \). That the tableau rules satisfies the subformula property can be verified rule by rule.

Exercise 29.6.8 Prove \(\text{tab}(C + S :: D + T :: E) \iff \text{tab}(C + T :: D + S :: E). \)

Exercise 29.6.9 Give an inductive type family deriving exactly the satisfiable clauses. Start with an inductive family deriving exactly the solved clauses.

29.7 Abstract Refutation Systems

An unsigned clause is a list of formulas. We will now consider a tableau system for unsigned clauses that comes close to the refutation system associated with natural deduction. For the tableau system we will show decidability and agreement with unsatisfiability. Based on the results for the tableau system one can prove decidability and completeness of classical natural deduction (Chapter 28).

The switch to unsigned clauses requires negation and falsity, but as it comes to the other connectives we are still free to choose what we want. Negation could be accommodated as an additional connective, but formally we continue to represent negation with implication and falsity.

We can turn a signed clause \(C \) into an unsigned clause by replacing positive formulas \(s^+ \) with \(s \) and negative formulas \(s^- \) with negations \(\neg s \). We can also turn an unsigned clause into a signed clause by labeling every formula with the positive sign. The two conversions do not change the boolean value of a clause for a given assignment. Moreover, going from an unsigned clause to a signed clause and back yields the initial clause. From the above it is clear that satisfiability of unsigned clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters \(A \) and \(B \) will range over unsigned clauses. We define \(\alpha \models A \) and satisfiability of unsigned clauses analogous to signed clauses. We use \(\hat{C} \) to denote the unsigned version of a signed clause and \(A^+ \) to denote the signed version of an unsigned clause.
29 Boolean Satisfiability

\[\rho (s :: A + B) \quad \rho (A + s :: B) \quad \rho (x :: \neg x :: A) \quad \rho (\bot :: A) \]

\[\rho (\neg s :: A) \quad \rho (t :: A) \quad \rho (s :: \neg t :: A) \quad \rho (\neg (s - t) :: A) \]

\[\rho ((s \rightarrow t) :: A) \quad \rho (\neg s :: A) \quad \rho (\neg t :: A) \]

\[\rho ((s \land t) :: A) \quad \rho (s :: A) \quad \rho (t :: A) \quad \rho ((s \lor t) :: A) \]

\[\rho (\neg (s \land t) :: A) \quad \rho (\neg s :: t :: A) \quad \rho (\neg (s \lor t) :: A) \]

Figure 29.5: Rules for abstract refutation systems \(\rho : \mathcal{L}(\text{For}) \rightarrow \mathcal{P} \)

Fact 29.7.1 \(\mathcal{E} \alpha \hat{C} = \mathcal{E} \alpha C \), \(\mathcal{E} \alpha A^+ = \mathcal{E} \alpha A \), and \(\hat{A}^+ = A \).

Fact 29.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.

Proof Follows with Corollary 29.4.6 and \(\mathcal{E} \alpha A^+ = \mathcal{E} \alpha A \).

We call a type family \(\rho \) on unsigned clauses an abstract refutation system if it satisfies the rules in Figure 29.5. Note that the rules are obtained from the tableau rules for signed clauses by replacing positive formulas \(s^+ \) with \(s \) and negative formulas \(s^- \) with negations \(\neg s \).

Lemma 29.7.3 Let \(\rho \) be a refutation system. Then \(\text{tab } C \rightarrow \rho \hat{C} \).

Proof Straightforward by induction on \(\text{tab } C \).

Fact 29.7.4 (Completeness) Every refutation system derives all unsatisfiable unsigned clauses.

Proof Follows with Theorem 29.6.6 and Lemma 29.7.3.

We call an abstract refutation system sound if it derives only unsatisfiable clauses (that is, \(\forall A. \rho A \rightarrow \neg \text{sat } A \)).

Fact 29.7.5 A sound refutation system is decidable and derives exactly the unsatisfiable unsigned clauses.

Proof Facts 29.7.4 and 29.7.2.
Theorem 29.7.6 The minimal refutation system inductively defined with the rules for abstract refutation systems derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 29.7.4 and a soundness lemma similar to Fact 29.6.1. ■

Exercise 29.7.7 (Certifying Solver) Construct a function $\forall A. (\Sigma \alpha. \alpha \models A) + \text{tab } A$.

Exercise 29.7.8 Show that boolean entailment

$$A \models s := \forall \alpha. \alpha \models A \rightarrow \alpha \models s$$

is decidable.

Exercise 29.7.9 Let $A \models s$ be the inductive type family for classical natural deduction. Prove that $A \models s$ is decidable and agrees with boolean entailment. Hint: Exploit refutation completeness and show that $A \models \bot$ is a refutation system.
30 Semi-Decidability and Markov’s Principle

Computability theory distinguishes between decidable and semi-decidable predicates, where Post’s theorem says that a predicate is decidable if and only if both the predicate and its complement are semi-decidable. Many important problems are semi-decidable but not decidable. It turns out that semi-decidability has an elegant definition in type theory, and that Post’s theorem is equivalent to Markov’s principle.

We will see many uses of witness operators and pairing functions.

30.1 Preliminaries

Recall boolean deciders \(f \) for predicates \(p \):

\[
\text{dec} \; p \; X \to P \; f \; X \to B
\]

We have two possibilities to express that a predicate \(p \) is decidable:\(^1\)

- \(\text{ex}(\text{dec} \; p) \) says that we know that there is a boolean decider for \(p \).
- \(\text{sig}(\text{dec} \; p) \) says that we have a concrete boolean decider for \(p \).

Note that \(\text{sig}(\text{dec} \; p) \) is stronger than \(\text{ex}(\text{dec} \; p) \) since we have a function

\[
\forall p \; \text{sig}(\text{dec} \; p) \rightarrow \text{ex}(\text{dec} \; p)
\]

but not necessarily a function for the converse direction. When we informally say that a predicate \(p \) is decidable we leave it to the context to determine whether the computational interpretation \(\text{sig}(\text{dec} \; p) \) or the propositional interpretation \(\text{ex}(\text{dec} \; p) \) is meant.

We will make frequent use of certifying deciders and their inter-translatability with boolean deciders (Fact 11.1.1).

\textbf{Fact 30.1.1} \(\forall p \; \text{dec} \; X \to P \; \text{sig}(\text{dec} \; p) \Leftrightarrow \forall x \; D(p \; x) \).

\(^1\) Note that we have the computational equalities \(\text{ex}(\text{dec} \; p) = \exists f \; \text{dec} \; p \; f \) and \(\text{sig}(\text{dec} \; p) = \Sigma f \; \text{dec} \; p \; f \).
30 Semi-Decidability and Markov’s Principle

For several results in this chapter, we will use an existential witness operator for numbers (Chapter 25):
\[\forall p^{N\to P}. \, \text{sig}(\text{dec} \, p) \to \text{ex} \, p \to \text{sig} \, p \]
We also need arithmetic pairing functions (Chapter 7)
\[(_ , _) : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \]
\[\pi_1 : \mathbb{N} \to \mathbb{N} \]
\[\pi_2 : \mathbb{N} \to \mathbb{N} \]
satisfying \(\pi_1 (x , y) = x \) and \(\pi_2 (x , y) = y \) for all \(x, y \).

We call functions \(\mathbb{N} \to \mathbb{B} \) tests and say that a test \(f \) is satisfiable if \(\exists n. \, fn = \mathbf{T} \):
\[\text{tsat} f^{N\to\mathbb{B}} := \exists n. \, fn = \mathbf{T} \]
Tests may be thought of as decidable predicates on numbers. Tests will play a major role in our development of semi-decidability. The witness operator ensures that test satisfiability is computational.

Fact 30.1.2 \(\forall f^{N\to\mathbb{B}}. \, (\exists n. \, fn = \mathbf{T}) \iff (\Sigma n. \, fn = \mathbf{T}) \).

Recall the notion of a stable proposition:
\[\text{stable} \, P^\mathbb{P} := \neg \neg P \to P \]
Note that stable proposition satisfy a weak form of excluded middle providing for proof by contradiction. We will often tacitly exploit that stability is extensional (i.e. invariant under propositional equivalence).

Fact 30.1.3 (Extensionality) \((P \iff Q) \to \text{stable} \, P \to \text{stable} \, Q \).

Markov’s principle says that satisfiability of tests is stable:
\[\text{MP} := \forall f^{N\to\mathbb{B}}. \, \text{stable} (\text{tsat} \, f) \]
MP is a consequence of excluded middle that is weaker than excluded middle. It is known that computational type theory does not prove MP.

Fact 30.1.4 (MP characterization)
MP holds if and only if satisfiability of decidable predicates on numbers is stable:
\[\text{MP} \iff \forall p^{N\to P}. \, \text{ex} (\text{dec} \, p) \to \text{stable} (\text{ex} \, p). \]

Proof Decidable predicates on numbers are like tests. We leave a detailed proof as exercise.

Exercise 30.1.5 Show that excluded middle implies MP.

Exercise 30.1.6 Prove \(\text{MP} \iff \forall f^{N\to\mathbb{B}}. \, \neg (\forall n. \, fn = \mathbf{F}) \to \text{tsat} \, f \).

Exercise 30.1.7 Give a function \(\forall f^{N\to\mathbb{B}}. \, \text{tsat} \, f \to \Sigma n. \, fn = \mathbf{T} \).

Exercise 30.1.8 Prove \(\text{MP} \iff \forall f^{N\to\mathbb{B}}. \, \neg \neg \text{tsat} \, f \to \Sigma n. \, fn = \mathbf{T} \).

302
30.2 Boolean Semi-Deciders

Boolean semi-deciders f for predicates p are defined as follows:

$$sdec \ p^X \rightarrow \mathbb{B} := \forall x. \ p x \longrightarrow \text{tsat}(f x)$$

We offer two intuitions for semi-deciders. Let f be a semi-decider for p. This means we have $p x \longrightarrow \exists n. \ f x n = \top$ for every x. The fuel intuition says that f confirms $p x$ if and only if $p x$ holds and f is given enough fuel n. The proof intuition says that the proof system f admits a proof n of $p x$ if and only if $p x$ holds.

Fact 30.2.1 Decidable predicates are semi-decidable: $\text{sig(}\text{dec } p\text{)} \rightarrow \text{sig(}\text{sdec } p\text{)}$.

Proof Let f be a boolean decider p. Then $\lambda x n. f x$ is a semi-decider for p. ■

It turns out that we can strengthen a witness operator for decidable predicates on numbers to a witness operator for semi-decidable predicates on numbers using arithmetic pairing of numbers.

Fact 30.2.2 (Witness operator) $\forall p^N \rightarrow \mathbb{P}. \ \text{sig(}\text{sdec } p\text{)} \rightarrow \text{ex } \rightarrow \text{sig } p$.

Proof Let f be a semi decider for a satisfiable predicate p. Then

$$\lambda n. f(\pi_1 n)(\pi_2 n) = \top$$

is a decidable and satisfiable predicate on numbers. Thus a witness operator for numbers gives us an n such that $f(\pi_1 n)(\pi_2 n) = \top$. We have $p(\pi_1 n)$. ■

Fact 30.2.3 (Semi-decidable equality)

Semi-decidable equality predicates are decidable:

$$\forall X. \ \text{sig(}\text{sdec(}\text{eq } X\text{)}\text{)} \rightarrow \text{sig(}\text{dec (}\text{eq}\text{))}.$$

Proof Let $f^X \rightarrow \mathbb{X} \rightarrow \mathbb{N} \rightarrow \mathbb{B}$ satisfy $\forall xy^X. \ x = y \longrightarrow \exists n. \ f x y n = \top$. Assume x, y^X. With an existential witness operator for numbers we obtain k such that $f x x k = \top$. We now check $f x y k$. If $f x y k = \top$, we have $x = y$. If $f x y k = \bot$, we have $x \neq y$. To see this, assume $f x y k = \bot$ and $x = y$. Then $f x x k = \top$, which contradicts $f x x k = \bot$. ■

Given the results of computability theory, no decider for tsat can be defined in Coq’s type theory. We cannot expect a proof of this claim within Coq’s type theory. On the other hand, there is a trivial semi-decider for tsat.

Fact 30.2.4 tsat is semi-decidable.

Proof $\lambda f n. f n$ is a semi-decider for tsat. ■
It turns out that under \(MP \) all semi-decidable predicates are stable. In fact, this property is also sufficient for \(MP \) since \(\text{tsat} \) is semi-decidable.

Fact 30.2.5 (MP characterization)

\(MP \) holds if and only if semi-decidable predicates are pointwise stable:

\[
\text{MP} \iff \forall X. \forall p^{X \to \mathbb{P}}. \text{ex}(\text{sdec}(p)) \to \forall x. \text{stable}(px).
\]

Proof Direction \(\rightarrow \) holds since \(\text{tsat} \) is semi-decidable (Fact 30.2.4).

Direction \(\leftarrow \). Let \(f \) be a semi-decider for \(p \). We show that \(px \) is stable. We have \(px \to \exists n. fnx = \top \). Since \(\exists n. fnx = \top \) is stable by \(MP \), we have that \(px \) is stable.

Exercise 30.2.6 (Projection) Let \(f^{X \to \mathbb{N} \to \mathbb{B}} \) be a semi-decider for \(p^{X \to \mathbb{P}} \). Give a semi-decider for \(\lambda x. \exists n. pxn \).

Exercise 30.2.7 (Skolem function) Let \(R^{X \to \mathbb{N} \to \mathbb{P}} \) be a total relation (i.e., \(\forall x \exists y. RXy \)) and let \(f^{X \to \mathbb{N} \to \mathbb{B}} \) be a semi-decider for \(R \). Give a function \(g^{X \to \mathbb{N}} \) such that \(\forall x. RX(gx) \).

Exercise 30.2.8 Let \(p^{X \to \mathbb{P}} \) be semi-decidable. Prove \(\forall x. px \to \forall y. py + (y \neq x) \).

Hint: The proof is similar to the proof of Fact 30.2.3. Using the witness operator one obtains \(n \) such that \(fnx = \top \) and then discriminates on \(fyn \). In fact, Fact 30.2.3 is a consequence of the above result.

30.3 Certifying Semi-Deciders

Recall that boolean deciders are inter-translatable with certifying deciders, and that certifying deciders are technically convenient for many proofs. Following this design, we will now define semi-decisions and certifying semi-deciders. The idea for semi-decisions is implicit in boolean semi-deciders, which yield for \(x \) a test such that \(px \) holds if and only if the test is satisfiable. Following this idea, we define **semi-decision types** \(S(P) \) as follows:

\[
S : \mathbb{P} \to \mathbb{T} \\
S(P) := \Sigma f^{N \to \mathbb{B}}. p \to \text{tsat}(f)
\]

We may say that a semi-decision for \(P \) is a test that is satisfiable if and only if \(P \) holds.

Fact 30.3.1 \(\forall P^P. D(P) \to S(P) \).

Proof If \(P \) holds, we choose the always succeeding test, otherwise the always failing test. \(\blacksquare \)
30.3 Certifying Semi-Deciders

Fact 30.3.2 (Transport) \(\forall p^P q^P. (P \longrightarrow Q) \rightarrow S(P) \rightarrow S(Q). \)

Fact 30.3.3 \(\forall p^P q^P. S(P) \rightarrow S(Q) \rightarrow S(P \land Q). \)

Proof Let \(f \) be the test for \(P \) and \(g \) be the test for \(Q \). Then \(\lambda n. f(\pi_1 n) \& g(\pi_2 n) \) is a test for \(P \land Q \). Note the use of the pairing functions \(\pi_1 \) and \(\pi_2 \). ■

Fact 30.3.4 \(\forall p^P q^P. S(P) \rightarrow S(Q) \rightarrow S(P \lor Q). \)

Proof Let \(f \) be the test for \(P \) and \(g \) be the test for \(Q \). Then \(\lambda n. fn \mid gn \) is a test for \(P \lor Q \). ■

Fact 30.3.5 \(\forall p q^P. S(P) \rightarrow S(Q) \rightarrow (P \lor Q) \rightarrow (P + Q). \)

Proof Let \(f \) be the test for \(P \) and \(g \) be the test for \(Q \). Then \(\lambda n. fn \mid gn \) is a test for \(P \lor Q \). Since we have \(P \lor Q \), an existential witness operator for numbers gives us an \(n \) such that \(fn \mid gn = T \). Thus \((fn = T) + (gn = T) \). If \(fn = T \), we have \(P \). If \(gn = T \), we have \(Q \). ■

Fact 30.3.6 \(S(tsat f). \)

Proof Trivial. ■

Fact 30.3.7 (MP characterization)

MP holds if and only if semi-decidable propositions are stable:

\[\text{MP} \iff \forall p^P. S(P) \rightarrow \text{stable}(P). \]

Proof Direction \(\Rightarrow \). Let \(P \rightarrow tsat f \). The claim \(\text{stable}(P) \) follows by extensionality and MP.

Direction \(\Leftarrow \). We show \(\text{stable}(tsat f) \). By the assumption it suffices to show
\(S(tsat f) \). Trivial. ■

A certifying semi-decider for a predicate \(p^{X \rightarrow P} \) is a function \(\forall x^X. S(px) \). From a certifying semi-decider for \(p \) we can obtain a semi-decider for \(p \) by forgetting the proofs. Vice versa, we can construct from a semi-decider and its correctness proof a certifying semi-decider.

Fact 30.3.8

We can translate between semi-deciders and certifying semi-deciders:

\[\forall x^X p^{X \rightarrow P}. \text{sig}(\text{sdec} p) \leftrightarrow \forall x. S(px). \]

Proof Direction \(\Rightarrow \). We assume \(\forall x. px \rightarrow \exists n. fnx = T \) and \(x^X \) and obtain \(S(px) \) with \(fx \) as test.

Direction \(\Leftarrow \). We assume \(g^{\forall x. S(px)} \) and use \(fx := \pi_1(gx) \) as semi-decider. It remains to show \(px \rightarrow \exists n. fnx = T \), which is straightforward. ■
30 Semi-Decidability and Markov’s Principle

We offer another characterization of semi-decisions.

Fact 30.3.9 \(\forall P \subseteq \Sigma^* \rightarrow \exists \alpha. \exists n. fn \neq \alpha\).

Proof Direction \(\Rightarrow\). Let \(g\) be the test for \(P\). Then

\[fn := \text{if } gn \text{ then } \alpha \text{ else } \emptyset \]

is a function as required.

Direction \(\Leftarrow\). Let \(P \Rightarrow \exists n. fn \neq \emptyset\). Then

\[gn := \text{if } \neg fn = \emptyset \text{ then } \alpha \text{ else } \top \]

is a test for \(P\).

It turns out that from a decider for \(\text{tsat}\) we can get a function translating semi-decisions into decisions, and vice versa.

Fact 30.3.10 \(\text{sig}(\text{dec}(\text{tsat})) \iff \forall P \subseteq \Sigma^*. S(P) \rightarrow D(P)\).

Proof Direction \(\Leftarrow\) follows since \(f\) is a test for \(S(\text{tsat} f)\). For direction \(\Rightarrow\) we assume \(P \iff \text{tsat} f\) and show \(D(P)\). By the primary assumption we have either \(\text{tsat} f\) or \(\neg \text{tsat} f\). Thus \(D(P)\).

Exercise 30.3.11 Prove \(\forall P \subseteq \Sigma^*. (P \lor \neg P) \rightarrow S(P) \rightarrow S(\neg P) \rightarrow D(P)\).

Exercise 30.3.12 Prove \(\text{MP} \iff (\forall P \subseteq \Sigma^*. D(P) \iff S(P) \times S(\neg P))\).

30.4 Post Operators

We will consider **Post operators**,\(^2\) which are functions of the type

\[\text{Post} := \forall P \subseteq \Sigma^*. S(P) \rightarrow S(\neg P) \rightarrow D(P) \]

We will show that \(\text{MP}\) gives us a Post operator, and that the existence of a Post operator implies \(\text{MP}\).

Fact 30.4.1 \(\text{MP} \rightarrow \text{Post}\).

Proof Assume \(\text{MP}\). Let \(f\) be a test for \(P\) and \(g\) be a test for \(\neg P\). We show \(D(P)\). Let \(hn := fn \mid gn\). It suffices to show \(\Sigma n. hn = \top\). Since we have a witness operator and \(\text{MP}\), we assume \(H : \neg \text{tsat} h\) and derive a contradiction. To do so, we show \(\neg P\) and \(\neg \neg P\). If we assume either \(P\) or \(\neg P\), we have \(\text{tsat} h\) contradicting \(H\).

\(^2\)Post operators are named after Emil Post, who first showed that predicates are decidable if they are semi-decidable and co-semi-decidable.
30.5 Enumerators

Fact 30.4.2 Post → MP.

Proof We assume Post and \(H : \neg \neg \text{tsat} f \) and show \(\text{tsat} f \). It suffices to show \(D(\text{tsat} f) \). Using Post it suffices to show \(S(\text{tsat} f) \) and \(S(\neg \text{tsat} f) \). \(\neg \text{tsat} f \) holds with \(f \) as test, and \(S(\neg \text{tsat} f) \) holds with \(\lambda f. \text{F} \) as test.

Theorem 30.4.3 (MP Characterization) \(\text{MP} \Leftrightarrow \text{Post} \).

Proof Facts 30.4.1 and 30.4.2.

We define the complement of predicates \(p^{X \to P} \) as \(\overline{p} := \lambda x. \neg p x \).

Corollary 30.4.4 Given MP, a predicate is decidable if and only if it is semi-decidable and co-semi-decidable:
\(\text{MP} \Rightarrow \forall p^{X \to P}. \text{sig}(\text{dec} p) \Rightarrow \text{sig}(\text{sdec} p) \times \text{sig}(\text{sdec} \overline{p}) \).

Proof Direction \(\Rightarrow \) doesn't need MP and follows with Fact 30.2.1 and \(\text{sig}(\text{dec} p) \Rightarrow \text{sig}(\text{sdec} p) \times \text{sig}(\text{sdec} \overline{p}) \). For direction \(\Leftarrow \) we use Fact 30.1.1 and obtain \(D(p x) \) from \(S(p x) \) and \(S(\neg p x) \) using Facts 30.4.1 and 30.3.8.

30.5 Enumerators

We define enumerators \(f \) for predicates \(p \) as follows:

\[
\text{enum } p^{X \to P} f^{N \to O(X)} := \forall x. p x \iff \exists n. f n = ^x
\]

We will show that for predicates on data types (§32.4) one can freely translate between enumerators and semi-deciders.

We define equality deciders as follows:

\[
\text{eqdec } X^{T}. f^{X \to X \to B} := \forall x y X. x = y \implies f x y = \text{T}
\]

Fact 30.5.1 \(\forall p^{X \to P}. \text{sig}(\text{eqdec} X) \Rightarrow \text{sig}(\text{enum} p) \Rightarrow \text{sig}(\text{sdec} p) \).

Proof Let \(d \) be an equality decider for \(X \) and \(f \) be an enumerator for \(p \). Then

\[
\lambda x n. \text{IF } ^f n = ^x \text{ THEN T ELSE F}
\]

is a semi-decider for \(p \).

For the other direction, we need an enumerator for the base type \(X \). To ease the statement, we define a predicate as follows:

\[
\text{enum } X^{T}. f^{N \to O(X)} := \forall x \exists n. f n = ^x
\]
30 Semi-Decidability and Markov’s Principle

Fact 30.5.2 \(\forall p^X \rightarrow P. \) \(\text{sig(enum } X) \rightarrow \text{sig(sdec } p) \rightarrow \text{sig(enum } p). \)

Proof Let \(g \) be an enumerator for \(X \) and \(f \) be a semi-decider for \(p \). We define an enumerator \(h \) for \(p \) interpreting its argument as a pair consisting of a number for \(g \) and an index for \(f \):

\[
h_n := \begin{cases} \pi_1 n & \text{if } g(\pi_1 n) = \pi_1 \land f(\pi_2 n) = T \\ 0 & \text{otherwise} \end{cases}
\]

is an enumerator for \(p \). ■

Recall that a type is a data type if and only if it has an enumerator and an equality decider (Fact 32.4.5).

Corollary 30.5.3 One can translate between enumerators and semi-deciders for predicates on data types.

Fact 30.5.4 Decidable predicates on enumerable types are enumerable:

\(\forall p^X \rightarrow P. \) \(\text{sig(dec } p) \rightarrow \text{sig(enum } X) \rightarrow \text{sig(enum } p). \)

Fact 30.5.5 (MP characterization)

MP holds if and only if satisfiability of enumerable predicates is stable:

\(\text{MP} \iff \forall X^T \forall p^X \rightarrow P. \) \(\text{ex(enum } p) \rightarrow \text{stable(ex } p). \)

Proof Direction \(\rightarrow \). Let \(f \) be an enumerator for \(p \). Then

\(\text{ex } p \rightarrow \exists n. f n = \pi_1 \)

Since \(\lambda n. \exists x. f n = \pi_1 x \) is decidable, stability of \(\text{ex } p \) follows with Fact 30.1.4.

Direction \(\leftarrow \). By Fact 30.1.4 it suffices to show that satisfiability of decidable predicates on numbers is stable. Follows since decidable predicates on numbers are enumerable (Fact 30.5.4). ■

Fact 30.5.6 (MP characterization)

MP holds if and only if enumerable predicates on discrete types are pointwise stable:

\(\text{MP} \iff \forall X^T \forall p^X \rightarrow P. \) \(\text{ex(eqdec } X) \rightarrow \text{ex(enum } p) \rightarrow \forall x. \text{stable}(p x). \)

Proof Direction \(\rightarrow \). We assume MP, a discrete type \(X \), a predicate \(p^X \rightarrow P \), and an enumerator \(f \) for \(p \). It suffices to show that \(\exists n. f n = \pi_1 x \) is stable. Since we have an equality decider for \(X \), we have a decider for \(\lambda n. f n = \pi_1 x \). Thus \(\exists n. f n = \pi_1 x \) is stable by Fact 30.1.4 and MP.

Direction \(\leftarrow \). We show \(\text{stable(tsat } f) \) for \(f^{N \rightarrow B} \). We define \(p(k^N) := \text{tsat } f \). By the primary assumption it suffices to show \(\text{ex } (\text{enum } p) \). By Fact 30.5.2 it suffices to give a semi-decider for \(p \). Clearly, \(\lambda kn. f n \) is a semi-decider for \(p \). ■

308
30.6 Reductions

Exercise 30.5.7 Let \(f \) be an enumerator for \(p^X \rightarrow P \) and \(g \) be an enumerator for \(q^X \rightarrow P \).
1. Give an enumerator for \(\lambda x. px \lor qx \).
2. Give an enumerators for \(\lambda x. px \land qx \) assuming \(X \) is discrete.

Exercise 30.5.8 (Projections) Let \(f^N \rightarrow O(X \times Y) \) be an enumerator for \(p^X \rightarrow Y \rightarrow P \). Give enumerators for the projections \(\lambda x. \exists y. pxy \) and \(\lambda y. \exists x. pxy \).

Exercise 30.5.9 (Skolem functions) Let \(R^X \rightarrow Y \rightarrow P \) be a total relation (i.e., \(\forall x \exists y. Rx \).) Moreover, let \(f^N \rightarrow O(X \times Y) \) be an enumerator for \(R \) and \(d^X \rightarrow Y \) be a equality decider for \(X \). Give a function \(g^X \rightarrow Y \) such that \(\forall x. Rx(gx) \).

30.6 Reductions

Computability theory employs so-called many-one reductions to transport decidability and undecidability results between problems. We model problems as predicates and many-one reductions as functions. We define *reductions* from a predicate \(p \) to a predicate \(q \) as follows:

\[
\text{red } p^X \rightarrow P q^Y \rightarrow P f^X \rightarrow Y := \forall x. p(x) \iff q(fx)
\]

Fact 30.6.1

Decidability and undecidability transport through reductions as follows:

1. \(\text{sig (red } pq \text{) } \rightarrow \text{sig (dec } q \text{) } \rightarrow \text{sig (dec } p \text{) } \)
2. \(\text{sig (red } pq \text{) } \rightarrow \text{sig (sdec } q \text{) } \rightarrow \text{sig (sdec } p \text{) } \)
3. \(\text{red } pqf \rightarrow (\forall y. D(qy)) \rightarrow (\forall x. D(px)) \)
4. \(\text{red } pqf \rightarrow (\forall y. S(qy)) \rightarrow (\forall x. S(px)) \)
5. \(\text{ex (red } pq \text{) } \rightarrow \text{ex (dec } q \text{) } \rightarrow \text{ex (dec } p \text{) } \)
6. \(\text{ex (red } pq \text{) } \rightarrow \neg \text{ex (dec } p \text{) } \rightarrow \neg \text{ex (dec } q \text{) } \)
7. \(\text{ex (red } pq \text{) } \rightarrow \text{ex (sdec } q \text{) } \rightarrow \text{ex (sdec } p \text{) } \)
8. \(\text{ex (red } pq \text{) } \rightarrow \neg \text{ex (sdec } p \text{) } \rightarrow \neg \text{ex (sdec } q \text{) } \)

Proof

1. Let \(\text{red } pqf \) and \(\text{dec } qg \). Then \(\lambda x. g(fx) \) is a boolean decider for \(p \).
2. Let \(\text{red } pqf \) and \(\text{sdec } qg \). Then \(\lambda x. g(fx) \) is a semi decider for \(p \).
3. Follows from (1) with Fact 30.1.1.
4. Follows from (2) with Fact 30.3.8.
5. Straightforward with (1).
6. Straightforward with (5).
7. Straightforward with (2).
30 Semi-Decidability and Markov’s Principle

8. Straightforward with (6).

Fact 30.6.2 Stability transports through reductions:
\[\text{ex} (\text{red } pq) \rightarrow (\forall y. \text{stable}(qy)) \rightarrow (\forall x. \text{stable}(px)). \]

Fact 30.6.3 A predicate is semi-decidable if and only if it reduces to tsat:
\[\forall X \exists^p. (\forall x. S(px)) \leftrightarrow \text{sig (red } p \text{ tsat}). \]

Proof Direction \(\Rightarrow\) follows with the reduction mapping \(x\) to the test for \(S(px)\).
Direction \(\Leftarrow\) uses the test the reduction yields for \(x\).

Exercise 30.6.4 The reducibility relation between predicates is reflexive and transitive. Prove \(\text{red } pp(\lambda x.x)\) and \(\text{red } pqf \rightarrow \text{red } qrg \rightarrow \text{red } pr(\lambda x.g(fx))\) to establish this claim.

Exercise 30.6.5 Prove \(\text{red } p q f \rightarrow \text{red } q f p\).

30.7 Summary of Markov Characterizations

We have established many different equivalent characterizations of Markov’s principle making connections between tests, deciders, semi-deciders, enumerators, and semi-decisions. Most of the characterizations use the notion of stability. The following fact collects prominent characterizations of Markov’s principle we have considered in this chapter.

Fact 30.7.1 (Markov equivalences) The following types are equivalent:
1. Satisfiability of tests is stable.
2. Satisfiability of decidable predicates on numbers is stable.
3. Satisfiability of semi-decidable predicates is stable.
4. Satisfiability of enumerable predicates is stable.
5. Semi-decidable predicates are pointwise stable.
6. Enumerable predicates on discrete types are pointwise stable.
7. Semi-decidable propositions are stable.
8. \(\forall P^p. S(P) \rightarrow S(\neg P) \rightarrow D(P)\).

Exercise 30.7.2 Make sure you can prove equivalent the characterizations of Markov’s principle stated in Fact 30.7.1. Start by writing down formally the characterizations stated informally.
Notes

The chapter originated with Forster et al. [10]. Andrej Dudenhefner and Yannick Forster contributed nice facts about semi-deciders. Forster et al. [9] certify a reduction from the halting problem for Turing machines (HTM) to the Post correspondence problem (PCP) (§22.6) in Coq. Thus PCP is undecidable if HTM is undecidable. We believe that Coq’s type theory is consistent with assuming that HTM is undecidable. One can show in Coq’s type theory that there is no Turing machine deciding HTM.

What we have developed here is a little bit of synthetic computability theory in Coq’s type theory. We have assumed all definable functions as computable, which is in contrast to conventional computability theory, where computable functions are functions definable in some model of computation (i.e., Turing machines). We also mention that in conventional computability theory computable functions are restricted to specific data types like strings or numbers. A main advantage of synthetic computability theory is that all constructions can be carried out rigorously, which is practically impossible if Turing machines are used as model of computation.
31 Abstract Reduction Systems

Warning: This chapter is under construction.

31.1 Paths Types

We assume a relation $R : X \rightarrow X \rightarrow T$. We see R as a graph whose vertices are the elements of X and whose edges are the pairs (x, y) such that $Rx y$. Informally, a path in R is a walk

$$x_0 \xrightarrow{R} x_1 \xrightarrow{R} \cdots \xrightarrow{R} x_n$$

through the graph described by R following the edges. We capture this design formally with an indexed inductive type

$$\text{path} (x : X) : X \rightarrow T ::=
\begin{array}{l}
| P_1 : \text{path} xx \\
| P_2 : \forall x'y. Rx x' \rightarrow \text{path} x'y \rightarrow \text{path} xy
\end{array}$$

The constructors are chosen such that that the elements of a path type $\text{path} x y$ formalize the paths from x to y. The first argument of the type constructor path is a nonuniform parameter and the second argument of path is an index. The second argument cannot be made a parameter because it is instantiated to x by the value constructor P_1. Here are the full types of the constructors:

$$\begin{array}{l}
\text{path} : \forall X \forall T. (X \rightarrow X \rightarrow T) \rightarrow X \rightarrow X \rightarrow T \\
P_1 : \forall X \forall R \forall x x' \forall y. \text{path}_{x \rightarrow y} x x' \\
P_2 : \forall X \forall R \forall x x' \forall y \forall y'. R x x' \rightarrow \text{path}_{x \rightarrow y} x' y' \rightarrow \text{path}_{x \rightarrow y} x y
\end{array}$$

Note that the type constructor path takes three parameters followed by a single index as arguments. There is the general rule that parameters must go before indices.

We shall use notation with implicit arguments in the following. It is helpful to see the value constructors in simplified form as inference rules:

$$\begin{array}{l}
P_1 \text{ path}_{x \rightarrow y} x x \\
P_2 \text{ \begin{array}{c} R x x' \text{ path}_{x' \rightarrow y} \\
\text{ path}_{x \rightarrow y}
\end{array}}
\end{array}$$
31 Abstract Reduction Systems

The second constructor is reminiscent of a cons for lists. The premise \(R x x' \) ensures that adjunctions are licensed by \(R \). And, in contrast to plain lists, the endpoints of a path are recorded in the type of the path.

Fact 31.1.1 (Step function) \(\forall x y. R x y \rightarrow \text{path}_R x y. \)

Proof The function claimed can be obtained with the value constructors \(P_1 \) and \(P_2 \):

\[
\begin{array}{c}
R x y \\
\text{path}_R y y' \\
\hline
\text{path}_R x y' \\
P_1 \\
P_2
\end{array}
\]

We now define an inductive function \(\text{len} \) that yields the length of a path (i.e., the number of edges the path runs through).

\[
\text{len} : \forall x y. \text{path}_R x y \rightarrow \mathbb{N}
\]

\[
\text{len} x (P_1 x) := 0
\]

\[
\text{len} x (P_2 x' y r a) := S(\text{len} x' y a)
\]

Note the underlines in the patterns. The underlines after \(P_1 \) and \(P_2 \) are needed since the first arguments of the constructors are parameters (instantiated to \(x \) by the pattern). The underlines before the applications of \(P_1 \) and \(P_2 \) are needed since the respective argument is an index argument. The index argument appears as variable \(y \) in the type declared for \(\text{len} \). We refer to \(y \) (in the type of \(\text{len} \)) as index variable. What identifies \(y \) as index variable is the fact that it appears as index argument in the type of the discriminating argument. The index argument must be written as underline in the patterns since the succeeding pattern for the discriminating argument determines the index argument. There is the general constraint that the index arguments in the type of the discriminating argument must be variables not occurring otherwise in the type of the discriminating argument (the so-called index condition). Moreover, the declared type must be such that all index arguments are taken immediately before the discriminating argument.

Type checking elaborates the defining equations into quantified propositional equations where the pattern variables are typed and the underlines are filled in. For the defining equations of \(\text{len} \), elaboration yields the following equations:

\[
\forall x^\mathbb{N}. \text{len} x x (P_1 x) = 0
\]

\[
\forall x x' y^\mathbb{N} \forall R x x' \forall a^\text{path}_R x' y. \text{len} x y (P_2 x x' y r a) = S(\text{len} x' y a)
\]

We remark that the underlines for the parameters are determined by the declared type of the discriminating argument, and that the underlines for the index arguments are determined by the elaborated type for the discriminating argument.
We now define an append function for paths

\[
\text{app} : \forall zxy. \text{path } xy \rightarrow \text{path } yz \rightarrow \text{path } xz
\]

discriminating on the first path. The declared type and the choice of the discriminating argument (not explicit yet) identify \(y \) as an index variable and fix an index argument for \(\text{app} \). Note that the index condition is satisfied. The argument \(z \) is taken first so that the index argument \(y \) can be taken immediately before the discriminating argument. We can now write the defining equations:

\[
\begin{align*}
\text{app } zx _ (P_1 _) & := \lambda b.b & : \text{path } xz \rightarrow \text{path } xz \\
\text{app } zx _ (P_2 _ x' y r a) & := \lambda b.P_2 xx' z r (\text{app } x' y ab) & : \text{path } yz \rightarrow \text{path } xz
\end{align*}
\]

As always, the patterns are determined by the declared type and the choice of the discriminating argument. We have the types \(r : Rxx' \) and \(a : \text{path } x'y \) for the respective pattern variables of the second equation. Note that the index argument is instantiated to \(x \) in the first equation and to \(y \) in the second equation.

We would now like to verify the equation

\[
\forall xyz \forall a \text{path } xy \forall b \text{path } yz. \text{len } (\text{app } ab) = \text{len } a + \text{len } b
\]

which is familiar from lists. As for lists, the proof is by induction on \(a \). Doing the proof by hand, ignoring the type checking, is straightforward. After conversion, the case for \(P_2 \) gives us the proof obligation

\[
S(\text{len } (\text{app } ab)) = S(\text{len } a + \text{len } b)
\]

which follows by the inductive hypothesis, Formally, the induction can be validated with the universal eliminator for \(\text{path} \):

\[
E : \forall p \forall xy. \text{path } xy \rightarrow T.
\]

\[
\begin{align*}
(\forall x. pxx(P_1 x)) & \rightarrow \\
(\forall xyz \forall rxy \forall a \text{path } yz. pxz(P_2 xyz r a)) & \rightarrow \\
\forall xy a. px y a
\end{align*}
\]

\[
\begin{align*}
E pe_1 e_2 x _ , (P_1 _) & := e_1 x \\
E pe_1 e_2 x _ (P_2 _ x' y r a) & := e_2 xx' y r (E pe_1 e_2 x' y a)
\end{align*}
\]

Not that the type function \(p \) takes the nonuniform parameter, the index, and the discriminating argument as arguments. The general rule to remember here is that all nonuniform parameters and all indices appear as arguments of the return type.
function of the universal eliminator. As always with universal eliminators, the defining equations follow from the type of the eliminator, and the types of the continuation functions e_1 and e_2 follow from the types of the value constructors and the type of the return type function.

No doubt, type checking the above examples by hand is a tedious exercise, also for the author. In practice, one leaves the type checking to the proof assistant and designs the proofs assuming that the type checking works out. With trained intuitions, this works out well.

Exercise 31.1.2 Give the propositional equations obtained by elaborating the defining equations for len, app, and E. Hint: The propositional equations for len are explained above. Use the proof assistant to construct and verify the equations.

Exercise 31.1.3 Define the step function asserted by Fact 31.1.1 with a term.

Exercise 31.1.4 (Index eliminator) Define an index eliminator for path:

$$
\forall p^{X \rightarrow X \rightarrow T}.
(\forall x. p xx) \rightarrow
(\forall xx' y. R xx' \rightarrow px' y \rightarrow p xy) \rightarrow
(\forall xy. \text{path} xy \rightarrow p xy)
$$

Note that the type of the index eliminator is obtained from the type of the universal eliminator by deleting the dependencies on the paths.

Exercise 31.1.5 Use the index eliminator to prove that the relation path is transitive: $\forall xyz. \text{path} xy \rightarrow \text{path} yz \rightarrow \text{path} xz$.

Exercise 31.1.6 (Arithmetic graph) Let $R xy := (Sx = y)$. We can see R as the graph on numbers having the edges (x, Sx). Prove $\text{path}_R xy \leftrightarrow x \leq y$.

Hints. Direction \Rightarrow follows with index induction (i.e., using the index eliminator from Exercise 31.1.4). Direction \Leftarrow follows with $\forall k. \text{path}_R x(k + x)$, which follows by induction on k with x quantified.

31.2 Reflexive Transitive Closure

We can see the type constructor path as a function that maps relations $X \rightarrow X \rightarrow T$ to relations $X \rightarrow X \rightarrow T$. We will write R^* for path_R in the following and speak of the reflexive transitive closure of R. We will explain later why this speak is meaningful.

We first note that R^* is reflexive. This fact is stated by the type of the value constructor P_1.

316
We also note that R^* is transitive. This fact is stated by the type of the inductive function app.

Moreover, we note that R^* contains R (i.e., $\forall xy. \ Rxy \rightarrow R^*xy$). This fact is stated by Fact 31.1.1.

Fact 31.2.1 (Star recursion)

Every reflexive and transitive relation containing R contains R^*:

$$\forall p^{X \rightarrow X \rightarrow \top}. \ \text{refl} \ p \rightarrow \text{trans} \ p \rightarrow R \subseteq p \rightarrow R^* \subseteq p.$$

Proof Let p be a relation as required. We show $\forall xy. \ R^*xy \rightarrow pxy$ using the index eliminator for path (Exercise 31.1.4). Thus we have to show that p is reflexive, which holds by assumption, and that $\forall xx'y. \ Rxx' \rightarrow px'y \rightarrow pxy$. So we assume Rxx' and $px'y$ and show pxy. Since p contains R we have pxx' and thus we have the claim since p is transitive. ■

Star recursion as stated by Fact 31.2.1 is a powerful tool. The function realized by star recursion is yet another eliminator for path. We can use star recursion to show that R^* and $(R^*)^*$ agree.

Fact 31.2.2 R^* and $(R^*)^*$ agree.

Proof We have $R^* \subseteq (R^*)^*$ by Fact 31.1.1. For the other direction $(R^*)^* \subseteq R^*$ we use star recursion (Fact 31.2.1). Thus we have to show that R^* is reflexive, transitive, and contains R^*. We have argued reflexivity and transitivity before, and the containment is trivial. ■

Fact 31.2.3 R^* is a least reflexive and transitive relation containing R.

Proof This fact is a reformulation of what we have just shown. On the one hand, it says that R^* is a reflexive and transitive relation containing R. On the other hand, it says that every such relation contains R^*. This is asserted by star recursion. ■

If we assume function extensionality and propositional extensionality, Fact 31.2.2 says $R^* = (R^*)^*$. With extensionality R^* can be understood as a closure operator which for R yields the unique least relation that is reflexive, transitive, and contains R. In an extensional setting, R^* is commonly called the reflexive transitive closure of R.

We have modeled relations as general type functions $X \rightarrow X \rightarrow \top$ rather than as predicates $X \rightarrow X \rightarrow \mathbb{P}$. Modeling path types R^*xy as computational types gives us paths as computational values and provides for computational recursion on paths as it is needed for the length function len. If we switch to propositional relations $X \rightarrow X \rightarrow \mathbb{P}$, everything we did carries over except for the length function.

Exercise 31.2.4 (Functional characterization)

Prove $R^*xy \iff \forall p^{X \rightarrow X \rightarrow \top}. \ \text{refl} \ p \rightarrow \text{trans} \ p \rightarrow R \subseteq p \rightarrow pxy$.

317
Part VII

Data Types
32 Data Types

We study computational bijections and injections. Both are bidirectional and are obtained with two functions inverting each other. The inverse function of injections yields options so that it can exist if the primary function is not surjective. Injections transport equality deciders and existential witness operators from their codomain to their domain.

We define data types as types that come with an injection into the type of numbers. Data types inherit the order features of numbers and include all first-order inductive types. Data types can be characterized as types having an equality decider and an enumerator. Infinite data types can be characterized as types that are in bijection with the numbers.

You will see many option types and sigma types in this chapter. Option types are needed for the inverses of injections. Sigma types are used to represent the structures for bijections, injections, and data types.

32.1 Inverse Functions

We define predicates formulating basic properties of functions:

\[
\text{injective } f := \forall x x'. f x = f x' \rightarrow x = x'
\]

\[
\text{surjective } f := \forall y \exists x. f x = y
\]

\[
\text{bijective } f := \text{injective } f \land \text{surjective } f
\]

\[
\text{inv } g f := \forall x. g(f x) = x
\]

The predicate \(\text{inv } g f \) is to be read as \(g \) inverts \(f \) or as \(g \) is an inverse function for \(f \). There may be different inverse functions for a given function, even with functional extensionality.

Fact 32.1.1

1. \(\text{inv } g f \rightarrow \text{surjective } g \land \text{injective } f \)
2. \(\text{inv } g f \rightarrow \text{injective } g \lor \text{surjective } f \rightarrow \text{inv } f g \)
3. \(\text{surjective } f \rightarrow \text{inv } g f \rightarrow \text{inv } g' f \rightarrow \forall y. g y = g' y \)

Proof All claims follow by straightforward equational reasoning. Details are best understood with the proof assistant.
32 Data Types

Note that Fact 32.1.1 (3) says that all inverse functions of a surjective function agree.

The following lemma facilitates the construction of inverse functions.

Lemma 32.1.2 \(\forall f^X \rightarrow Y. (\forall y \Sigma x. fx = y) \rightarrow \Sigma g. \text{inv } fg. \)

Proof Let \(G : \forall y \Sigma x. fx = y \) and define \(gy := \pi_1 (Gy) \).

Fact 32.1.3 (Transport) injective \(f^X \rightarrow Y \rightarrow \Sigma X \rightarrow \Sigma Y \).

Proof Exercise.

Exercise 32.1.4 Give a function \(N \rightarrow N \) that has disagreeing inverse functions.

32.2 Bijections

A bijection between two types \(X \) and \(Y \) consists of two functions

\[
\begin{align*}
f &: X \rightarrow Y \\
g &: Y \rightarrow X
\end{align*}
\]

inverting each other

\[
\begin{align*}
\forall x. g(fx) = x \\
\forall y. f(gy) = y
\end{align*}
\]

and thus establishing a bidirectional one-to-one connection between the elements of the two types. Formally, we define bijection types as nested sigma types:

\[
\mathcal{B}XY := \Sigma f^{X \rightarrow Y} \Sigma g^{Y \rightarrow X}. \text{inv } fg \land \text{inv } gf
\]

We say that two types are in bijection if we have a bijection between them.

Fact 32.2.1 Bijectivity is a computational equivalence relation on types:

1. \(\mathcal{B}XX \).
2. \(\mathcal{B}XY \rightarrow \mathcal{B}YX \).
3. \(\mathcal{B}XY \rightarrow \mathcal{B}YZ \rightarrow \mathcal{B}XZ \).

Proof Straightforward.

Fact 32.2.2 Both functions of a bijection are bijective.

Proof Straightforward.
Theorem 32.2.3 (Pairing) \(B \ N (N \times N) \).

Proof See Chapter 7.

Exercise 32.2.4 Show that the following types are in bijection.

a) \(B \) and \(\top + \top \).

b) \(B \) and \(O(\bot) \).

c) \(\top \) and \(O(\bot) \).

d) \(O(X) \) and \(X + \top \).

e) \(X + Y \) and \(Y + X \).

f) \(X \times Y \) and \(Y \times X \).

g) \(N \) and \(L(N) \).

32.3 Injections

An **injection** of a type \(X \) into a type \(Y \) consists of two functions

\[
\begin{align*}
 f : X &\to Y \\
 g : Y &\to O(X)
\end{align*}
\]

such that

\[
\begin{align*}
 \forall x. \ g(fx) &= \^x \\
 \forall xy. \ gy &= \^x \leftarrow fx = y
\end{align*}
\]

We say that \(f \) and \(g \) **quasi-invert** each other. We may think of an injection as an encoding or an embedding of a type \(X \) into a type \(Y \). Following the encoding metaphor, we will refer to \(f \) as the **encoding function** and to \(g \) as the **decoding function**. We have the property that every \(x \) has a unique **code** and that every code can be uniquely decoded.

The decoding function determines whether a member of \(Y \) is a code (\(gy \neq \emptyset \iff y \) is a code). Obtaining this property is a main reason for using option types. Option types also ensure that the empty type embeds into every type.

Formally, we define **injection types** as nested sigma types:

\[
\begin{align*}
 IXY &:= \Sigma f: X \to Y \Sigma g: Y \to O(X). \ (\forall x, \ g(fx) = \^x) \land (\forall xy, \ gy = \^x \leftarrow fx = y)
\end{align*}
\]

We remark that our definition of injections is carefully chosen to fit practical and theoretical concerns. A previous version did not require the second equation for \(f \) and \(g \). From the first equation one can obtain the second equation provided one is willing to modify the decoding function (Lemma 32.3.5). The second equation for injections for instance facilitates the construction of a least witness operator for data types (Fact 32.5.2).
32 Data Types

Fact 32.3.1
Let \(f \) and \(g \) be the encoding and decoding function of an injection. Then:
1. The encoding function is injective: \(fx = fx' \rightarrow x = x' \).
2. The decoding function is quasi-injective: \(gy \neq \emptyset \rightarrow gy = gy' \rightarrow y = y' \).
3. The decoding function is quasi-surjective: \(\forall x \exists y.gy = \ast x \).
4. The decoding function determines the codes: \(gy \neq \emptyset \iff \exists x.fx = y \).

Proof Straightforward.

Fact 32.3.2
1. \(IXX \) (reflexivity)
2. \(IXY \rightarrow IYZ \rightarrow IXZ \) (transitivity)
3. \(BXY \rightarrow IXY \)
4. \(I \perp X \)
5. \(I X (\varnothing (X)) \)

Proof Straightforward. Claim 5 follows with \(fx := \ast x \) and \(ga := a \). ■

Fact 32.3.3 (Transport of equality deciders)
\(IXY \rightarrow EY \rightarrow EX \).

Proof Let \(f^X \rightarrow Y \) from \(IXY \). Then \(x = x' \rightarrow fx = fx' \) since \(f \) is injective. Thus an equality decider for \(Y \) yields an equality decider for \(X \). ■

We define a type of witness operators:
\[
\mathcal{W}^T := \forall p^X \rightarrow p. (\forall X. D(pX)) \rightarrow (\exists x.pX) \rightarrow (\Sigma x.pX)
\]

Fact 32.3.4 (Transport of witness operators)
\(IXY \rightarrow \mathcal{W} Y \rightarrow \mathcal{W} X \).

Proof Let \(f^X \rightarrow Y \) and \(g^Y \rightarrow \varnothing (X) \) from \(IXY \). To show that there is a witness operator for \(X \), we assume a decidable and satisfiable predicate \(p^X \rightarrow p \). We define a decidable and satisfiable predicate \(q^Y \rightarrow p \) as follows:
\[
qy := \text{MATCH } gy [\ast x \Rightarrow px \mid \emptyset \Rightarrow \bot]
\]

The witness operator for \(Y \) gives us a \(y \) such that \(qy \). The definition of \(q \) gives us an \(x \) such that \(px \). ■

When we construct an injection, it is sometimes convenient to first construct a preliminary decoding function \(g \) that satisfies the first equation \(\forall x. g(fx) = \ast x \) and then use a general construction that from \(g \) obtains a proper decoding function satisfying both equations.
Lemma 32.3.5 (Upgrade) Given two functions \(f : X \to Y \) and \(g : Y \to \mathcal{O}(X) \) such that \(Y \) is discrete and \(\forall x. g(fx) = \check{x} \), one can define a function \(g' \) such that \(f \) and \(g' \) form an injection \(I_{XY} \).

Proof We assume \(f : X \to Y \) and \(g : Y \to \mathcal{O}(X) \) such that
\[
\forall x. g(fx) = \check{x}
\]
and define \(g' : Y \to \mathcal{O}(X) \) as follows:
\[
g' y := \begin{cases}
\check{x} & \text{if } gy = \check{x} \land fx = y \\
\emptyset & \text{otherwise}
\end{cases}
\]
Verifying the two conditions
\[
\forall x. g'(fx) = \check{x} \quad \forall xy. g'(y) = \check{x} \iff fx = y
\]
required so that \(f \) and \(g' \) form an injection is straightforward.

Using a technique known as diagonalisation, Cantor showed that for no set the power set of a set embeds into the set. The result transfers to type theory where the function type \(X \to B \) takes the role of the power set.

Fact 32.3.6 (Cantor) \(I(X \to B)X \to \bot \).

Proof Let \(f \) and \(g \) be the functions from \(I(X \to B)X \). We define a function
\[
h : X \to B
\]
\[
h x := \text{match } gX [\check{\varphi} \Rightarrow \check{\varphi} x | \emptyset \to \mathbb{F}]
\]
It suffices to show \(h(fh) = \check{h}(fh) \). Follows using the definition of \(h \) and the equation \(g(fh) = \check{h} \) on the right hand side.

A related result is discussed in §8.3.

Exercise 32.3.7 Show \(I(X \to \mathbb{N})X \to \bot \).

Exercise 32.3.8 Show \(\forall f : X \to Y \forall g. \text{inv} gf \to EY \to I_{XY} \).
32 Data Types

32.4 Data Types

We define data types as types that come with an injection into the type N of numbers:

$$\text{dat } X := 1XN$$

With this definition, data types are closed under forming product types, sum types, option types, and list types. Moreover, data types will come with equality deciders, existential witness operators, and least witness operators.

Fact 32.4.1

1. \perp, \top, and B are data types: $\text{dat } \perp$, $\text{dat } \top$, $\text{dat } B$.
2. N is a data type: $\text{dat } N$.
3. Types that embed into data types are data types: $IXY \rightarrow \text{dat } Y \rightarrow \text{dat } X$.
4. If X and Y are data types, then so are $X \times Y$, $X + Y$, $O(X)$, and $L(X)$:
 a) $\text{dat } X \rightarrow \text{dat } Y \rightarrow \text{dat } (X \times Y)$
 b) $\text{dat } X \rightarrow \text{dat } Y \rightarrow \text{dat } (X + Y)$
 c) $\text{dat } X \rightarrow \text{dat } (O(X))$
 d) $\text{dat } X \rightarrow \text{dat } (L(X))$

Proof The injections required for (4a) and (4b) can be constructed with the bijection of Theorem 32.2.3. \blacksquare

Fact 32.4.2 (Equality decider)

Data types have equality deciders.

Proof Follows with Fact 32.3.3. \blacksquare

Fact 32.4.3 (Existential witness operator)

Data types have existential witness operators.

Proof Follows with Fact 32.3.4. \blacksquare

Fact 32.4.4 (Inverse functions)

Bijective functions from data types to discrete types have inverse functions: bijective $f^{X \rightarrow Y} : \text{dat } X \rightarrow \Sigma^{Y \rightarrow X}$, $\text{inv } g f \wedge \text{inv } f g$.

Proof By Fact 32.1.1 (2) it suffices to construct a function g such that $\text{inv } f g$. By Lemma 32.1.2 it suffices to show $\forall y \Sigma x. \ f x = y$. Follows from the surjectivity of f with the existential witness operator for X (Fact 32.4.3) and the discreteness of Y. \blacksquare
32.5 Data Types are Ordered

An enumerator for a type \(T \) is a function \(g^{N \rightarrow \sigma(T)} \) such that \(\forall x \exists n. \ g n = x \). It turns out that data types can be characterized as discrete enumerable types. To state the connection precisely, we define enumerator types:

\[
\text{enum } T := \Sigma g^{N \rightarrow \sigma(T)} \forall x \exists n. \ g n = x
\]

Fact 32.4.5 (Enumerator)
A type is a data type if and only if it has an equality decider and an enumerator:

\[
\text{dat } T \iff \exists X \times \text{enum } X.
\]

Proof Direction \(\Rightarrow \) is obvious. For the other direction, we assume an equality decider and an enumerator \(g^{N \rightarrow \sigma(T)} \) for \(X \). The equality decider gives us a decider for the satisfiable predicate \(\lambda n.g n = x \). Thus the existential witness operator for \(N \) gives us a function \(f^X \rightarrow N \) such that \(\forall x. \ g(f x) = x \). Now the upgrade lemma 32.3.5 yields an injection \(2XN \).

Exercise 32.4.6 Show that \(N \rightarrow B \) is not a data type.

Exercise 32.4.7 Show \(\text{dat } X \rightarrow W(L(X)) \).

Exercise 32.4.8 Show that injections transport enumerators:

\[
\forall XY. \ I_X \rightarrow \text{enum } Y \rightarrow \text{enum } X.
\]

32.5 Data Types are Ordered

Data types inherit the order of numbers. If \(x \) is a member of a data type \(X \), we will write \(\#x \) for the unique code the encoding function of the injection \(1XN \) assigns to \(x \).

Fact 32.5.1 (Trichotomy) Let \(X \) be a data type. Then:

\[
\forall xy(X. \ (\#x < \#y) + (x = y) + (\#y < \#x)).
\]

Proof Trichotomy operator for numbers and injectivity of the encoding function.

Fact 32.5.2 (Least witness operator)

\[
\text{dat } X \rightarrow (\forall x. \ D(px)) \rightarrow (\Sigma x. px) \rightarrow (\Sigma x. px \land \forall y. py \rightarrow \#x \leq \#y).
\]

Proof Let \(f \) and \(g \) be the functions from \(1XN \). We define a predicate on numbers.

\[
qn := \text{match } g n \ [\text{match } f x \ | \ \emptyset \Rightarrow \bot]
\]

It is easy to see that \(q \) is decidable and \(\Sigma \)-satisfiable. Thus the least witness operator for numbers (Fact 17.3.2) gives us a least witness \(n \) of \(q \). By the definition of \(q \) there is \(x \) such that \(px \) and \(fx = n \). It remains to show \(\forall y. \ py \rightarrow n \leq fy \). Let \(py \). Then \(q(fy) \). Thus \(n \leq fy \) since \(n \) is the least witness of \(q \).

Exercise 32.5.3 Define an existential least witness operator for data types:

\[
\forall X T. \ \text{dat } X \rightarrow (\forall x. \ D(px)) \rightarrow (\exists x. px) \rightarrow (\Sigma x. px \land \forall y. py \rightarrow \#x \leq \#y).
\]

327
32 Data Types

32.6 Infinite Types

There are several possibilities for defining infiniteness of types, not all of which are equivalent. We choose a propositional definition that is strong enough to put infinite data types into bijection with numbers. We define infinite types as types that for every list have an element that is not in the list:

\[\text{infinite } X^Y := \forall A^L(X) \exists x^X. x \notin A \]

Fact 32.6.1 \(\mathbb{N} \) is infinite.

Proof \(\forall A^L(\mathbb{N}) \exists n. \forall x. x \in A \rightarrow x < n \) follows by induction on \(A \).

Fact 32.6.2 (Transport) \(\text{I}X \text{Y} \rightarrow \text{infinite } X \rightarrow \text{infinite } Y \).

Proof Let \(B \) be a list over \(Y \), and let \(f^{X \rightarrow Y} \) and \(g^{Y \rightarrow \mathcal{O}(X)} \) be the functions coming with \(\text{I}X \text{Y} \). We show \(\exists y. y \notin B \). Let \(A^L(X) \) be the list obtained from \(g@B \) by deleting the occurrences of \(\mathcal{O} \) and erasing the constructor \(\circ \) (Exercise 19.3.7). Since \(X \) is infinite, we have \(x \notin A \). Then \(fx \notin B \) (if \(fx \in B \), then \(x \in A \)).

Given a type \(X \), we call a function \(\forall A^L(X) \Sigma x. x \notin A \) a generator function for \(X \).

Fact 32.6.3 (Generator function)

1. Types with generator functions are infinite.
2. Infinite data types have generator functions.
3. Discrete types \(X \) with an injective function \(\mathbb{N} \rightarrow X \) have generator functions.

Proof (1) is obvious.

(2) Follows from the fact that data types have equality deciders and witness operators (Facts 32.4.2 and 32.4.3).

For (3) we assume a discrete type \(X \) and an injective function \(f^{\mathbb{N} \rightarrow X} \). Let \(A^L(X) \) and \(n := \text{len} A \). Since \(f \) is injective, the list \(f@[0, \ldots, n] \) is nonrepeating (Exercise 19.6.7). Since \(\text{len } A < \text{len } (f@[0, \ldots, n]) \), the discrimination lemma 19.6.5 gives us an \(x \notin A \).

Exercise 32.6.4 Show that \(B \) is not infinite.

Exercise 32.6.5 Show \(\text{dat } X \rightarrow \text{infinite } X \rightarrow \Sigma x^X. \tau \).
32.7 Infinite Data Types

We will show that a data type is infinite if and only if it is in bijection with the type of numbers. We base this result on a lemma we call compression lemma.

Suppose we have a function \(g : \mathbb{N} \rightarrow \mathcal{O}(X) \) where \(X \) is an infinite data type. Then we can see \(g \) as a sequence over \(X \) that has holes and repetitions.

\[
g : \emptyset, x_0, x_1, x_0, \emptyset, x_2, x_1, x_3, \ldots
\]

If \(g \) covers all members of \(X \), we can compress \(g \) into a sequence \(h : \mathbb{N} \rightarrow X \) without holes and repetitions:

\[
h : x_0, x_1, x_3, \ldots
\]

Seeing \(h \) as a function again, we have that \(h \) is a bijective function \(\mathbb{N} \rightarrow X \).

Lemma 32.7.1 (Compression) Let \(X \) be an infinite data type. Then we can define a bijective function \(\mathbb{N} \rightarrow X \).

Proof Let \(g : \mathbb{N} \rightarrow \mathcal{O}(X) \) be the decoding function from \(\mathcal{I}X \mathbb{N} \). We first define a chain \(G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots \) collecting the values of \(g \) in \(X \):

\[
G_0 := \emptyset
\]

\[
G_{Sn} := \text{match } g[n \circ x \Rightarrow x :: G_n | \emptyset = Gn]
\]

We have \(\forall x \exists n. x \in G_n \) since \(g \) is the decoding function from \(\mathcal{I}X \mathbb{N} \).

For the next step we need a function

\[
\Phi : \forall A \mathcal{L}(X). \exists x. x \notin A \land \exists n. g n = x \land G_n \subseteq A
\]

that for a list \(A \) yields the first \(x \) in \(g \) such that \(x \notin A \). We postpone the construction of \(\Phi \) and first show that \(\Phi \) provides for the construction of a bijective function \(\mathbb{N} \rightarrow X \).

Let \(\varphi A := \pi_1(\Phi A) \). We define a chain \(H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots \) over \(X \) and \(h : \mathbb{N} \rightarrow X \) as follows:

\[
H_0 := \emptyset
\]

\[
H_{Sn} := \varphi H_n :: H_n
\]

\[
h_n := \varphi(H_n)
\]

It’s now straightforward to verify the following facts:

1. \(x \in A \rightarrow x \neq \varphi A \).
2. \(m < n \rightarrow hm \in H_n \).
32 Data Types

3. \(m < n \rightarrow hm \neq hn \).
 Thus \(h \) is injective.

 To show that \(h \) is surjective, it suffices to show \(G_n \subseteq H_n \) and
 \[
 x \in H_n \rightarrow \exists k. \ hk = x
 \]
 Both claims follow by induction on \(n \).

 To conclude the proof, it remains to construct \(\Phi \), which in fact is the most
 beautiful part of the proof. We fix \(A \) and use the generator function provided by
 Fact 32.6.3 to obtain some \(x_0 \notin A \). Using the encoding function from \(IN \), we obtain
 \(n_0 \) such that \(gn_0 = ^*x_0 \). We now do a linear search \(k = 0, 1, 2, \ldots \) until we find the
 first \(k \) such that \(\exists x. \ gk = ^*x \land Gn \subseteq A \). The search can be realized with structural
 recursion since we have the bound \(k \leq n_0 \). Formally, we construct a function

 \[
 \forall k. \ k \leq n_0 \rightarrow G_k \subseteq A \rightarrow \Sigma x. \ x \notin A \land \exists n. \ gn = ^*x \land Gn \subseteq A
 \]
 by size recursion on \(n_0 - k \). For \(gk = \emptyset \), we recurse with \(Sk \). For \(gk = ^*y \), we check
 \(y \in A \). If \(y \in A \), we recurse with \(Sk \). If \(y \notin A \), we terminate with \(x = y \) and \(n = k \).

 We can now show that infinite data types are exactly those types that are in
 bijection with \(N \). In other words, up to bijection, \(N \) is the only infinite data type.

Theorem 32.7.2 (Characterizations of infinite data types)
For every type \(X \) the following types are equivalent:
1. \(2XN \times \text{infinite} \ X \)
2. \(2X \times \Sigma f^{N \rightarrow X} . \ \text{bijective} \ f \)
3. \(BNX \)
4. \(2XN \times 2NX \)
5. \(2XN \times \Sigma f^{N \rightarrow X} . \ \text{injective} \ f \)

Proof 1 \(\rightarrow \) 2. Compression lemma 32.7.1.
2 \(\rightarrow \) 3. Inverse function lemma 32.4.4.
3 \(\rightarrow \) 4. Fact 32.3.2 (3).
4 \(\rightarrow \) 5. Fact 32.3.1.
5 \(\rightarrow \) 1. Fact 32.6.3 (3).
33 Finite Types

We define finite types as types that come with an equality decider and a list containing all elements of the type. We fix the cardinality of finite types with nonrepeating and covering lists. We show that finite types are data types and that finite types embed into each other if and only if their cardinality permits. As one would expect, finite types of the same cardinality are in bijection. For every number \(n \), a finite type of cardinality \(n \) can be obtained by \(n \)-times taking the option type of the empty type.

33.1 Coverings and Listings

A covering of a type is a list that contains every member of the type:

\[
\text{covering } A^L(X) := \forall x^X. x \in A
\]

A listing of a type is a nonrepeating covering of the type:

\[
\text{listing } A^L(X) := \text{covering } A \land \text{nrep } A
\]

We need a couple of results for coverings and listings of discrete types.

Fact 33.1.1 Given a covering of a discrete type, one can obtain a listing of the type:

\[
\mathcal{E} X \to \text{covering } A^L(X) \to \Sigma B^L(X), \text{ listing } B.
\]

Proof Fact 19.6.4.

Fact 33.1.2 All listings of a discrete type have the same length.

Proof Follows with Corollary 19.6.6 (2).

Fact 33.1.3 Let \(A \) and \(B \) be lists over a discrete type \(X \).

1. covering \(A \to \text{nrep } B \to \text{len } A \leq \text{len } B \to \text{listing } B \).
2. listing \(A \to \text{covering } B \to \text{len } B \leq \text{len } A \to \text{listing } B \).
3. listing \(A \to \text{len } B = \text{len } A \to (\text{nrep } B \iff \text{covering } B) \).

Proof Follows with Corollary 19.6.6.
33 Finite Types

33.2 Finite Types

We define finite types as discrete types that come with a covering list:

\[
\text{fin } X^T := E(X) \times \Sigma A^{L(X)}. \text{ covering } A
\]

This definition ensures that finite types are computational objects we can put our hands on. We already know that for a covering of a discrete type we can compute a listing of the type having a uniquely determined length. It will be convenient to have a second definition for finite types fixing a listing and announcing the size of the type:

\[
\text{fin}_n X^T := E(X) \times \Sigma A^{L(X)} \text{ listing } A \land \text{len } A = n
\]

Fact 33.2.1 For every type \(X\):
1. \(\text{fin } X \iff \Sigma n. \text{fin}_n X\)
2. \(\text{fin}_n X \Rightarrow \text{fin}_n X \rightarrow m = n\) (uniqueness)

Proof Facts 33.1.1 and 33.1.2.

Fact 33.2.2 If \(X\) and \(Y\) are finite types, then so are \(X \times Y\), \(X + Y\) and \(\emptyset(X)\).

Proof Discreteness follows with Facts 11.2.1 and 33.3.1. We leave the construction of the covering lists as an exercise.

Fact 33.2.3 Finite types are data types: \(\text{fin } X \rightarrow C X\).

Proof By Fact 33.2.1 we assume a covering \(A\) for \(X\). We use the upgrade lemma 32.3.5 so that only the first equation for \(IN\) needs to be verified. If \(A\) is empty, we construct \(IN\) with \(f_x := 0\) and \(g_n := \emptyset\). Otherwise, \(A\) contains an element \(a\). We now use the position-element mappings \(\text{pos}\) and \(\text{sub}\) from §19.10 and define

\[
\begin{align*}
f_x & := \text{pos } A x \\
g_n & := \ast \text{sub } a A n
\end{align*}
\]

The equation \(g(fx) = \ast x\) now follows with Fact 19.10.1

Fact 33.2.4 Finite types are not infinite: \(\text{fin } X \rightarrow \text{infinite } X \rightarrow \bot\).

Proof Exercise.

Fact 33.2.5 Finite \(X \rightarrow IN\) \(X \rightarrow \bot\).

Proof Follows with Facts 32.6.2, 32.6.1, and 33.2.4.
Fact 33.2.6 (Injectivity-surjectivity agreement) Functions between finite types of the same cardinality are injective if and only if they are surjective:

\[\text{fin}_n X \rightarrow \text{fin}_n Y \rightarrow \forall f^{X \rightarrow Y}. \text{injective } f \iff \text{surjective } f. \]

Proof Let \(A \) and \(B \) be listings for \(X \) and \(Y \), respectively, with \(\text{len} A = \text{len} B \). We fix \(f^{X \rightarrow Y} \) and have covering \((f \circ A) \leftrightarrow \text{nrep}(f \circ A)\) by Fact 33.1.3 (3).

Let \(f \) be injective. Then \(f \circ A \) is nonrepeating by Exercise 19.6.7 (a). Thus \(f \circ A \) is covering. Hence \(f \) is surjective.

Let \(f \) be surjective. Then \(f \circ A \) is covering and thus nonrepeating. Thus \(f \) is injective by Exercise 19.6.7 (b).

\[\blacksquare\]

Exercise 33.2.7 Prove \(\text{fin}_0 \bot \), \(\text{fin}_1 \top \), and \(\text{fin}_2 B \).

Exercise 33.2.8 Prove the following:

a) \(\text{dat} X \rightarrow (\exists A^{L(X)} \forall x. x \in A) \rightarrow \text{fin} X \).

b) \(X M \rightarrow \text{dat} X \rightarrow \text{infinite} X \lor (\exists A^{L(X)} \forall x. x \in A) \).

Proving (b) with a sum type rather than a disjunction seems impossible.

Exercise 33.2.9 (Bounded quantification)

Let \(p \) be a decidable predicate on a finite type \(X \). Prove the following types:

a) \(D(\forall x.p x) \)

b) \(D(\exists x.p x) \)

c) \((\Sigma x.p x) + (\forall x.\neg p x) \)

Exercise 33.2.10

Prove \(\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow m > 0 \rightarrow (\forall f^{X \rightarrow Y}. \text{injective } f \iff \text{surjective } f) \rightarrow m = n. \)

33.3 Finite Ordinals

We define for every number \(n \) a finite type \(F_n \) with exactly \(n \) elements by applying \(n \)-times the option type constructor to the empty type \(\bot \):

\[F_n := O^n(\bot) \]

We refer to the types \(F_n \) as **finite ordinals**.

Fact 33.3.1 (Discreteness) The finite ordinals are discrete: \(\mathcal{E}(F_n) \).

Proof Follows by induction on \(n \) since \(\bot \) is discrete (Fact 11.2.1) and \(O \) preserves discreteness (Fact 11.3.2).
33 Finite Types

We define a function $L : \forall n. L(F_n)$ that yields a listing for every finite ordinal:

$$L_0 := []$$
$$L_sn := 0 :: (\ast \ast \ast \ast \ast n)$$

For instance, $L_4 = [\emptyset, \emptyset, \emptyset, \emptyset]$.

Fact 33.3.2 L_n is a listing of F_n having length n.

Proof By induction on n.

Fact 33.3.3 F_n is a finite type of size n: $\text{fin}_n F_n$.

Proof Facts 33.3.1 and 33.3.2.

33.4 Bijections and Finite Types

Fact 33.4.1 (Transport) $B X Y \rightarrow \text{fin}_n X \rightarrow \text{fin}_n Y$.

Proof Bijections map listings to listings and preserve their length.

Theorem 33.4.2 (Finite bijection)

Finite types of the same size are in bijection: $\text{fin}_n X \rightarrow \text{fin}_n Y \rightarrow B X Y$.

Proof Let A and B be listings of X and Y, respectively, both of length n. If $A = B = []$, we can define functions $X \rightarrow \bot$ and $Y \rightarrow \bot$ and thus the claim follows with computational elimination for \bot. Otherwise, we have $a \in A$ and $b \in B$. The listings A and B give us bijective connections between the elements of X and the positions $0, \ldots, n - 1$, and the elements of Y and the positions $0, \ldots, n - 1$. We realize the resulting bijection between X and Y using the list operations sub and pos with escape values (\S19.10):

$$f x := \text{sub} b B (\text{pos} A x)$$
$$g y := \text{sub} a A (\text{pos} B y)$$

Recall that pos yields the position of a value in a list, and that sub yields the value at a position of a list. Since A and B are covering, the escape values a and b will not be used by sub.

Corollary 33.4.3 $\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow (BXY \iff m = n)$.

Proof Direction \Rightarrow follows with Facts 33.4.1 and 33.2.1 (2). Direction \Leftarrow follows with Theorem 33.4.2.
Exercise 33.4.4 Prove the following:
a) \(\text{fin}_n X \rightarrow B \times F_n \).
b) \(B \times F_m \rightarrow m = n \).
c) \(B \times F_{5n} \rightarrow \bot \).

33.5 Injections and Finite Types

We may consider a type \(X \) is smaller than a type \(Y \) if \(X \) can be embedded into \(Y \) with an injection. For finite types, this abstract notion of size agrees with the numeric size we have assigned to finite types through nonrepeating lists.

Lemma 33.5.1 (Transport of covering lists)
\(I_{XY} \rightarrow \text{covering}_B Y \rightarrow \Sigma A. \text{covering}_X A \).

Proof Let \(B \) be a covering of \(Y \), and let \(f : X \rightarrow Y \) and \(g : Y \rightarrow \mathcal{O}(X) \) be the functions coming with \(I_{XY} \). Let \(A : \mathcal{L}(X) \) be the list obtained from \(g@B \) by deleting the occurrences of \(\emptyset \) and erasing the constructor \(* \) (Exercise 19.3.7). We show that \(A \) is covering. Let \(x : X \). Then \(fx \in B \). Hence \(*x = g(fx) \in g@B \). Thus \(x \in A \).

Fact 33.5.2 (Transport of finiteness)
\(I_{XY} \rightarrow \text{fin} Y \rightarrow \text{fin} X \).

Proof Fact 32.3.3 and Lemma 33.5.1.

Fact 33.5.3 (Characterizations of finite types)
For every type \(X \) the following types are equivalent:
1. \(\text{fin}_X \)
2. \(\Sigma n. \text{fin}_n X \)
3. \(\Sigma n. B \times F_n \)
4. \(\Sigma Y. I_{XY} \times Y \times \text{fin} Y \)

Note that each of the types gives us a characterization of finite types.

Proof The equivalences follow with Facts 33.2.1 and 33.3.3, Theorem 33.4.2, and Facts 32.3.2 (3) and 33.5.2.

Fact 33.5.4
\(\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow m \leq n \rightarrow I_{XY} \).

Proof The proof is similar to the proof of Theorem 33.4.2. Again we use the upgrade lemma 32.3.5 so that only the first equation for \(I_{XY} \) needs to be verified.
Let A be listing of X of length m and B be a listings of Y of length $n \geq m$. If $A = []$, we can define a function $X \rightarrow \bot$ and the claim follows with computational elimination for \bot. Otherwise, we have an escape values $a \in A$ and $b \in B$. We realize the injection of X into Y as follows:

$$
fx := \text{sub } bB(\text{pos } A x) \\
gy := \text{sub } aA(\text{pos } B y)
$$

Fact 33.5.5
\[\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow IXY \rightarrow m \leq n. \]

Proof Let A be a nonrepeating list of length m over X, B be a covering list over Y of length n, and $f : X \rightarrow Y$ be injective. Then $f @ A \subseteq B$ is nonrepeating and thus $m \leq n$ by Corollary 19.6.6.

Theorem 33.5.6 (Finite injection) \[\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow (m \leq n \Leftrightarrow IXY). \]

Proof Follows with Facts 33.5.4 and 33.5.5.

Corollary 33.5.7 \[\text{fin}_m X \rightarrow \text{fin}_n Y \rightarrow m > n \rightarrow IXY \rightarrow \bot. \]

Fact 33.5.8 (Finite sandwich)
1. $IXY \rightarrow IYX \rightarrow (\text{fin}_n X \Leftrightarrow \text{fin}_n Y)$.
2. $IXY \rightarrow IYX \rightarrow \text{fin } X \rightarrow BXY$.

Proof Claim 1 follows with Facts 33.2.1, 33.5.2, and 33.5.5. Claim 2 follows with Fact 33.2.1, Claim 1, and Theorem 33.4.2.

Exercise 33.5.9 Prove the following:
- a) $JF_m F_n \Leftrightarrow m \leq n.$
- b) $JF_n \rightarrow \bot.$

Exercise 33.5.10 Prove the following:
1. $JNF_n \rightarrow \bot.$
2. $F_n \neq N.$
Part VIII

Appendices
Appendix: Typing Rules

- The constants \(P \subset \top_1 \subset \top_2 \subset \cdots \) are called universes. There is no \(\top_0 \).
- Computational equality \(s \approx t \) is defined with reduction and \(\alpha \) - and \(\eta \)-equivalence.
- \(v^\pi_i \) is capture-free substitution.
- Assumptions \((x : u \text{ before } \vdash)\) must be introduced by the rules for \(\forall \) and \(\lambda \).
- Simple function types \(u \rightarrow v \) are notation for dependent function types \(\forall x : u . v \) where \(x \) does not occur in \(v \).
- \(\top_1 \) is called Set in Coq.
- Functions whose type ends with the universe \(P \) are called predicates.
- Functions whose type ends with a universe are called type functions or type families.
Appendix: Inductive Definitions

We collect technical information about inductive definitions here. Inductive definitions come in two forms, inductive type definitions and inductive function definitions. Inductive type definitions introduce typed constants called constructors, and inductive function definitions introduce typed constants called inductive functions. Inductive function definitions come with defining equations serving as computation rules. Inductive definitions are designed such that they preserve consistency.

Inductive Type Definitions

An inductive type definition introduces a system of typed constants consisting of a type constructor and $n \geq 0$ value constructors. The type constructor must target a universe, and the value constructors must target a type obtained with the type constructor. The first $n \geq 0$ arguments of the type constructor may be declared as parameters. The remaining arguments of a type constructor are called indices.

Parameter condition: Each value constructor must take the parameters as leading arguments and must target the type constructor applied to the parameters.

Strict positivity condition: If a value constructor uses the type constructor in an argument type, a path to the type constructor must not go through the left-hand side of a function type.

Dominance condition: If the type constructor targets a universe \mathbb{T}_i, the types of the nonparametric arguments of the value constructors must be in \mathbb{T}_i.

Inductive Function Definitions

An inductive function definition introduces a constant called an inductive function together with a system of defining equations serving as computation rules. An inductive function must be defined with a functional type, a number of required arguments, and a distinguished required argument called the discriminating argument. The type of an inductive function must have the form

$$\forall x_1 \ldots x_k \forall y_1 \ldots y_m. \ c s_1 \ldots s_n y_1 \ldots y_m \rightarrow t$$

where the following conditions are satisfied:
Appendix: Inductive Definitions

- $c_{s_1} \ldots s_n y_1 \ldots y_m$ types the discriminating argument.
- c is a type constructor with $n \geq 0$ parameters and $m \geq 0$ indices.
- **Index condition**: The index variables y_1, \ldots, y_m must be distinct and must not occur in s_1, \ldots, s_n.
- **Elimination restriction**: t must be a proposition if c is not computational. A type constructor c is computational if in case it targets P it has at most one proof constructor d and all nonparametric arguments of d have propositional types.

For every value constructor of c a defining equation must be provided, where the pattern and the target type of the defining equations are determined by the type of the inductive function, the position of discriminating argument, and the number of arguments succeeding the discriminating argument. Each pattern contains exactly two constants, the inductive function and a value constructor in the position of the discriminating argument. Patterns must be linear (no variable appears twice) and must give the index arguments of the inductive function and the parametric arguments of the value constructor with underlines.

Every defining equation must satisfy the **guard condition**, which constrains the recursion of the inductive function to be structural on the discriminating argument. The guard condition must be realized as a decidable condition. There are different possibilities for the guard condition. In this text we have been using the strictest form of the guard condition.

Remarks

1. The format for inductive functions is such that universal eliminators can be defined that can express all other inductive functions. Inductive functions may also be called eliminators.
2. The special case of zero value constructors is redundant. A proposition \bot with an eliminator $\bot \rightarrow \forall X \exists Y X$ can be defined with a single proof constructor $\bot \rightarrow \bot$.
3. Assuming type definitions at the computational level, accommodating type definitions at the propositional level adds the elimination restriction. Note that the dominance condition is vacuously satisfied for propositional type definitions.
4. Defining equations with a secondary case analysis (e.g., subtraction) are a syntactic convenience. They can be expressed with auxiliary functions defined as inductive functions.
5. Our presentation of inductive definitions is compatible with Coq but takes away some of the flexibility provided by Coq. Our format requires that in Coq terms a fix is directly followed by a match on the discriminating argument. This excludes a direct definition of Euclidean division. It also excludes the (redundant)
eager recursion pattern frequently used for well-founded recursion in the Coq literature.
Appendix: Basic Definitions

We summarize basic definitions concerning functions and predicates. We make explicit the generality coming with dependent typing. As it comes to arity, we state the definitions for the minimal number of arguments and leave the generalization to more arguments to the reader (as there is no formal possibility to express this generalization).

A fixed point of a function \(f^X \to X \) is a value \(x^X \) such that \(f^X(x^X) = x^X \).

Two types \(X \) and \(Y \) are in bijection if there are functions \(f^X \to Y \) and \(g^Y \to X \) inverting each other; that is, the roundtrip equations \(\forall x. g(f^X(x)) = x \) and \(\forall y. f(g^Y(y)) = y \) are satisfied. We define:

\[
\text{inv } g \ f := \forall x. g(f^X(x)) = x \quad \text{\(g \) inverts \(f \)}
\]

For functions \(f : \forall X^X. p^X \) we define:

\[
\begin{align*}
\text{injective } (f) & := \forall x x'. f^X(x) = f^X(x') \to x = x' \quad \text{injectivity} \\
\text{surjective } (f) & := \forall y \exists x. f^X(x) = y \quad \text{surjectivity} \\
\text{bijective } (f) & := \text{injective } (f) \land \text{surjective } (f) \quad \text{bijectivity} \\
\text{f } \equiv \text{f'} & := \forall x. f^X(x) = f^X(x') \quad \text{agreement}
\end{align*}
\]

The definitions extend to functions with \(n \geq 2 \) arguments as one would expect. Note that injectivity, surjectivity, and bijectivity are invariant under agreement.

For binary predicates \(P : \forall X^X. p^X \to P \) we define:

\[
\begin{align*}
\text{functional } (P) & := \forall x y y'. P^X(x y) \to P^X(x y') \to y = y' \quad \text{functionality} \\
\text{total } (P) & := \forall x \exists y. P^X(x y) \quad \text{totality}
\end{align*}
\]

The definitions extend to predicates with \(n \geq 2 \) arguments as one would expect.

For unary predicates \(P, Q : X \to P \) we define:

\[
\begin{align*}
P \subseteq Q & := \forall x. P^X(x) \to Q^X(x) \quad \text{respect} \\
P \equiv Q & := \forall x. P^X(x) \iff Q^X(x) \quad \text{agreement}
\end{align*}
\]

The definitions extend to predicates with \(n \geq 2 \) arguments as one would expect.

For functions \(f : \forall X^X. p^X \) and predicates \(P : \forall X^X. p^X \to P \):

\[
\begin{align*}
f \subseteq P & := \forall x. P^X(f^X(x)) \quad \text{respect}
\end{align*}
\]
Appendix: Basic Definitions

The definitions extend to functions with \(n \geq 2 \) arguments and predicates with \(n + 1 \) arguments as one would expect.

The following facts have straightforward proofs:
1. \(P \subseteq Q \rightarrow \text{functional}(Q) \rightarrow \text{functional}(P) \)
2. \(P \subseteq Q \rightarrow \text{total}(P) \rightarrow \text{total}(Q) \)
3. \(P \subseteq Q \rightarrow \text{total}(P) \rightarrow \text{functional}(Q) \rightarrow P \equiv Q \)
4. \(f \subseteq P \rightarrow \text{functional}(P) \rightarrow (\forall x y. P xy \rightarrow fx = y) \)
Appendix: Glossary

Here is a list of technical terms used in the text but not used (much) otherwise. The technical terms are given in the order they appear first in the text.

• Discrimination
• Inductive function
• Elimination restriction
• Computational falsity elimination
• Index condition and index variables
• Reloading match
Appendix: Favorite Problems

Here is a list of problems the author likes to discuss with students in oral exams. The problems are given in the order they appear first in the text.
1. Fibonacci function with iter, uniqueness of procedural specification
2. Russell’s law
3. Leibniz symmetry
4. Leibniz equality
5. Constructor laws for numbers
6. Kaminski’s equation
7. Eliminator for numbers
8. Equality decider for numbers
9. \(\mathbb{N} \neq \mathbb{B} \)
10. Cantor pairing
11. Barber theorem
12. Bijection between sum types and sigma types
13. Skolem equivalence
14. Certifying decider equivalence
15. Bijection and cardinality theorems for finite types
16. Bijection between \((\mathbb{B} \rightarrow \mathbb{B})\) and \(\mathbb{B} \times \mathbb{B}\) under FE
17. PE implies PI
18. Counterexample characterization of XM
19. Classical reasoning for stable claims
20. Antisymmetry of order on numbers from first principles
21. Euclidean division
22. Step-indexed linear search (correctness)
23. Size recursion operator
24. GCD functions and relations (step-indexed, certifying, inductive constructions)
25. Discriminating element lemmas
26. Equivalent nonrepeating lists have equal length
27. Correctness of arithmetic expression compiler
Appendix: Favorite Problems

28. Predecessor and constructor laws for indexed numeral types
29. Inversion operator and equality decider for indexed numeral types
30. Decidability of regular expression matching
31. Glivenko’s theorem and agreement of ND and Hilbert systems
32. Intuitionistic unprovability of double negation law
33. Inductive equality versus Leibniz equality
34. Hedberg’s theorem and CD(X) → DPI(X)
Appendix: Historical Remarks

Appendix: Ideas for Improvements

1. **Bijections** and their representation with an inductive type should be introduced more prominently. Maybe one also should do injections early.

2. The presentation of **finite types** could be harmonized and extended. There are four equivalent representations:
 - Recursive numeral types
 - As refinement types of \(\mathbb{N} \)
 - List-based representation
 - Indexed numeral types

 The representation as refinement type is not mentioned so far, neither are refinement types. Recursive numeral types are reintroduced twice, with somewhat different notations. The two bijection theorems are first shown for recursive numeral types in §11.4, and then again for list-based finite types in Chapter 33. The injection theorems shown for list-based finite types may also be shown for recursive numeral types (but obtaining the results for list-based finite types seems easier). An early chapter on recursive numeral types proving the cardinality and injection theorems should be nice.
Bibliography

Bibliography

