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Preface

This text teaches topics in computational logic computer scientists should know

when discussing correctness and verification of software and hardware. We ac-

quaint the reader with a foundational theory and a programming language for in-

teractively constructing computational models with machine-checked proofs. As

common with programming languages, we teach foundations, case studies, and

practical programming in an interleaved fashion.

The foundational theory we are using is a computational type theory extending

Martin-Löf type theory with inductive definitions and impredicative propositions.

All functions definable in the theory are computable. The proof rules of the theory

are intuitionistic while assuming the law of excluded middle is possible. As it will

become apparent through case studies in this text, computational type theory is

a congenial foundation for computational models and correctness arguments, im-

proving much on the set-theoretic language coming with mainstream mathematics.

We will use the Rocq proof assistant, an implementation of the computational

type theory we are using. The interactive proof assistant assists the user with

the construction of theories and checks all definitions and proofs for correctness.

Learning computational logic with an interactive proof assistant makes a dramatic

difference to learning logic offline. The immediate feedback from the proof as-

sistant provides for rapid experimentation and effectively teaches the rules of the

underlying type theory. While the proof assistant enforces the rules of type theory,

it provides much automation as it comes to routine verifications.

We will use mathematical notation throughout this text and confine all Rocq

code to Rocq files accompanying the chapters. We assume a reader unfamiliar with

type theory and the case studies we consider. So there is a lot of material to be

explained and understood at mathematical levels abstracting from the Rocq pro-

gramming language. In any case, theories and proofs need informal explanations

to be appreciated by humans, and informal explanations are needed to understand

formalisations in Rocq.

The abstraction level coming with mathematical notation gives us freedom in

explaining the type theory and helps with separating type-theoretic design princi-

ples from engineering aspects coming with the Rocq language. For instance, we will

have equational inductive function definitions at the mathematical level and realize

them with Rocq’s primitives at the coding level. This way we get mathematically

satisfying function definitions and a fine explanation of Rocq’s pattern matching
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Basics
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1 Getting Started

We start with basic ideas from computational type theory and the interactive the-

orem prover Rocq. The main issues we discuss are inductive types, structural re-

cursion, and equational reasoning with structural induction. We will see inductive

types for booleans, natural numbers, and pairs. Based on inductive types, we will

define inductive functions using equations and structural case analysis. This will

involve functions that are cascaded, recursive, higher-order (i.e., take functions as

arguments), and polymorphic (i.e., take types as leading arguments). Recursion will

be limited to structural recursion so that functional computation always terminates.

Our main interest is in proving equations involving recursive functions (e.g., com-

mutativity of addition, x + y = y + x). This will involve proof steps known as

simplification, rewriting, structural case analysis, and structural induction. Equal-

ity will appear in a general form called propositional equality, and in a specialized

form called computational equality. Computational equality is a prominent design

aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations.

We will mostly define cascaded functions and use notation known from functional

programming.

Type theory is a foundational theory starting from computational intuitions. Its

approach to mathematical foundations is very different from set theory. We may say

that type theory explains things computationally while set theory explains things

at a level of abstraction where computation is not an issue. When working with

computational type theory, set-theoretic explanations (e.g., of functions) are often

not helpful, so free your mind for a foundational restart.

1.1 Booleans

In Rocq, basic types like the booleans are defined as inductive types. The inductive

definition for the booleans is written

B ::= true | false

3



1 Getting Started

and introduces three typed constants called constructors:

B : T

true : B

false : B

The constructors represent the type B and its two values true and false. Note that

the constructor B also has a type, which is the universe T (a special type whose

members are types).

Inductive types provide for the definition of inductive functions with defining

equations discriminating on value constructors. Our first example for an inductive

function is a boolean negation function:

! : B→ B

! true := false

! false := true

There is a defining equation for each of the two value constructors of B. We say that

an inductive function is defined by discrimination on an inductive argument (an ar-

gument that has an inductive type). There must be exactly one defining equation for

every value constructor of the type of the inductive argument the function discrim-

inates on. In the literature, discrimination is known as structural case analysis.

The defining equations of an inductive function serve as computation rules. For

computation, the equations are applied as left-to-right rewrite rules. For instance,

we have

! ! ! true = ! ! false = ! true = false

by rewriting with the first, the second, and again with the first defining equation of !.

Note that ! ! ! true is to be read as !(!(! true)), and that the first rewrite step replaces

the subterm ! true with false.

Since computation performs rewriting with defining equations, it can be used in

proofs. For instance, the equation

! ! ! true = ! true

follows by computation:

! ! ! true ! true

= ! ! false = false

= ! true

= false

4



1.2 Numbers

We speak of a proof by computational equality.

Proving the equation

! !x = x

involving a boolean variable x takes more than computation since none of the defin-

ing equations applies. What is needed is discrimination (i.e., case analysis) on the

boolean variable x, which reduces the claim ! !x = x to the equations ! ! true = true

and ! ! false = false, which both hold by computational equality.

Next we define inductive functions for boolean conjunction and boolean disjunc-

tion:

& : B→ B → B | : B → B → B

true & y := y

false & y := false

true | y := true

false | y := y

Both functions discriminate on their first argument. Alternatively, one could de-

fine the functions by discrimination on the second argument, resulting in different

computation rules. There is the general principle that computation rules must be

disjoint (at most one computation rule applies to a given term).

The left hand sides of defining equations are called patterns. Often, patterns

bind variables that can be used in the right hand side of the equation. The patterns

of the defining equations for & and | each bind the variable y .

Given the definitions of the basic boolean connectives, we can prove the usual

boolean indenties with discrimination and computational equality. For instance, the

distributivity law

x & (y | z) = (x & y) | (x & z)

follows by discrimination on x and computation, reducing the law to the trivial

equations y | z = y | z and false = false. Note that the commutativity law

x & y = y & x

needs case analysis on both x and y to reduce to computationally valid equations.

1.2 Numbers

The inductive type for the numbers 0, 1, 2, . . .

N ::= 0 | S(N)

5



1 Getting Started

introduces three constructors

N : T

0 : N

S : N→ N

The value constructors provide zero and the successor function. A number n can

be represented by the term that applies the constructor S n-times to the construc-

tor 0. For instance, the term S(S(S0)) represents the number 3. The constructor

representation of numbers dates back to the Dedekind-Peano axioms.

We will use the familiar notations 0, 1, 2, . . . for the terms 0, S0, S(S0), . . . .

Moreover, we will take the freedom to write terms like S(S(Sx)) without parentheses

as SSSx.

We define an inductive addition function discriminating on the first argument:

+ : N→ N → N

0+y := y

Sx +y := S(x +y)

The second equation is recursive since it uses the function ’+’ being defined at the

right hand side.

Computational type theory does only admits total functions that are defined for

all arguments. To comply with this design principle, recursion must always termi-

nate. To ensure termination, recursion is restricted to inductive functions and must

act on a single discriminating argument. One speaks of structural recursion. Recur-

sive applications must be on variables introduced by the constructor of the pattern

of the discriminating argument. In the above definitions of ’+’, only the variable

x in the second defining equation qualifies for recursion. Intuitively, structural re-

cursion terminates since every recursion step skips a constructor of the recursive

argument. The condition for structural recursion can be checked automatically by

a proof assistant.

We define truncating subtraction for numbers:

− : N → N → N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

This time we have two discriminating arguments (we speak of a cascaded

discrimination). The primary discrimination is on the first argument, followed by

6



1.3 Notational Conventions

a secondary discrimination on the second argument in the successor case. The re-

cursion is on the first argument. We require that a structural recursion is always on

the first discriminating argument.

Truncating subtraction gives us a test for comparisons x ≤ y of numbers. We

have x ≤ y if and only if x −y = 0.

Following the scheme we have seen for addition, functions for multiplication and

exponentiation can be defined as follows:

· : N → N → N ˆ : N → N→ N

0 ·y := 0

Sx ·y := y + x ·y
x0 := 1

xSn := x · xn

Exercise 1.2.1 Define functions as follows:

a) A function N → N→ N yielding the minimum of two numbers.

b) A function N → N→ B testing whether two numbers are equal.

c) A function N → N → B testing whether a number is smaller than another number.

Exercise 1.2.2 (Symmetric boolean conjunction and disjunction) Using cascaded

discrimination, we can define an inductive function for boolean conjunction with

symmetric defining equations:

& : B → B → B

true & true := true

true & false := false

false & true := false

false & false := false

a) Prove that the symmetric function satisfies the defining equations for the stan-

dard boolean conjunction function (true & y = y and false & y = false).

b) Prove that the symmetric function agrees with the standard boolean conjunction

function.

c) Define a symmetric boolean disjunction function and show that it agrees with

the standard boolean disjunction function.

1.3 Notational Conventions

We are using notational conventions common in type theory and functional pro-

gramming. In particular, we omit parentheses in types and applications relying on

7



1 Getting Started

the following rules:

s → t → u � s → (t → u)

stu � (st)u

For the arithmetic operations we assume the usual precedences, so multiplication ’·’
binds before addition ’+’ and subtraction ’−’, and all three of them are left associa-

tive. For instance:

x + 2 ·y − 5 · x + z � ((x + (2 ·y))− (5 · x))+ z

1.4 Structural Induction

We will now discuss proofs of the equations

x + 0 = x (1.1)

x + Sy = S(x +y) (1.2)

x +y = y + x (1.3)

(x +y)−y = x (1.4)

None of the equations can be shown with structural case analysis and computation

alone. In each case structural induction on numbers is needed. Structural induction

strengthens structural case analysis by providing an inductive hypothesis in the

successor case. Figure 1.1 shows a proof table for Equation 1.1. The induction rule

reduces the initial proof goal to two subgoals appearing in the lines numbered 1

and 2. The two subgoals are obtained by discrimination on x and by adding the

inductive hypothesis (IH) in the successor case. The inductive hypothesis makes it

possible to close the proof of the successor case by simplification and by rewriting

with the inductive hypothesis. A simplification step simplifies a claim by applying

defining equations from left to right. A rewriting step rewrites with an equation

that is either assumed or has been established as a lemma. In the example above,

rewriting takes place with the inductive hypothesis, an assumption introduced by

the induction rule.

We will explain later why structural induction is a valid proof principle. For now

we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above

proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis

is applied from right to left as first step in the second proof goal.

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations

of the addition function ’+’. Once these equations have been shown, they can be

used for rewriting in proofs.

8



1.4 Structural Induction

x + 0 = x induction x
1 0+ 0 = 0 computational equality

2 IH : x + 0 = x Sx + 0 = Sx simplification

S(x + 0) = Sx rewrite IH

Sx = Sx computational equality

Figure 1.1: Proof table for Equation 1.1

x +y −y = x induction y
1 x + 0− 0 = x rewrite Equation 1.1

x − 0 = x case analysis x
1.1 0− 0 = 0 comp. eq.

1.2 Sx − 0 = Sx comp. eq.

2 IH : x +y −y = x x + Sy − Sy = x rewrite Equation 1.2

S(x +y)− Sy = x simplification

x +y −y = x IH

Figure 1.2: Proof table for Equation 1.4

Figure 1.2 shows a proof table giving an inductive proof of Equation 1.4. Note

that the proof of the base case involves a structural case analysis on x so that

the defining equations for subtraction apply. Also note that the proof rewrites

with Equation 1.1 and Equation 1.2, assuming that the equations have been proved

before. The successor case closes with an application of the inductive hypothesis

(i.e., the remaining claim agrees with the inductive hypothesis).

We remark that a structural case analysis in a proof (as in Figure 1.2) may also

be called a discrimination or a destructuring.

The proof of Equation 1.3 is similar to the proof of Equation 1.4 (induction on x
and rewriting with 1.1 and 1.2). We leave the proof as exercise.

One reason for showing inductive proofs as proof tables is that proof tables

explain how one construct proofs in interaction with Rocq. With Rocq one states

the initial proof goal and then enters commands called tactics performing the proof

actions given in the rightmost column of the proof tables. The induction tactic

displays the subgoals and automatically provides the inductive hypothesis. Except

for the initial claim, all the equations appearing in the proof tables are displayed

automatically by Rocq, saving a lot of tedious writing. Replay all proof tables shown

in this chapter with Rocq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The

proof rules for structural case analysis and structural induction reduce a proof goal

to several subgoals. A proof is complete once all subgoals have been closed.

9
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A proof table comes with three columns listing assumptions, claims, and proof

actions.1 Subgoals are marked by hierarchical numbers and horizontal lines. Our

proof tables may be called have-want digrams since they come with separate

columns for assumptions we have, claims we want to prove, and actions we per-

form to advance the proof.

Exercise 1.4.1 Give a proof table for Equation 1.2. Follow the layout of Figure 1.2.

Exercise 1.4.2 Prove that addition is commutative (1.3). Use equations (1.1)

and (1.2) as lemmas.

Exercise 1.4.3 Shorten the given proofs for Equations 1.1 and 1.4 by applying the

inductive hypothesis from right to left thus avoiding the simplification step.

Exercise 1.4.4 Prove that addition is associative: (x +y)+ z = x + (y + z). Give a

proof table.

Exercise 1.4.5 Prove the distributivity law (x +y) · z = x · z+y · z. You will need

associativity of addition.

Exercise 1.4.6 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.4.7 (Truncating subtraction) Truncating subtraction is different from

the familiar subtraction in that it yields 0 where standard subtraction yields a neg-

ative number. Truncating subtraction has the nice property that x ≤ y if and only

if x −y = 0. Prove the following equations:

a) x − 0 = x
b) x − (x +y) = 0

c) x − x = 0

d) (x +y)− x = y
Hint: (d) follows with equations shown before.

1.5 Quantified Inductive Hypotheses

Sometimes it is necessary to do an inductive proof using a quantified inductive hy-

pothesis. As an example we consider a variant of the subtraction function returning

1In this section, only inductive hypotheses appear as assumption. We will see more assumptions
once we prove claims with implication in Chapter 3.
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the distance between two numbers:

D : N → N → N

D 0y := y

D (Sx)0 := Sx

D (Sx)(Sy) := Dxy

The defining equations discriminate on the first argument and in the successor

case also on the second argument. The recursion occurs in the third equation and

is structural in the first argument.

We now want to prove

Dxy = (x −y)+ (y − x)

We do the proof by induction on x followed by discrimination on y . The base cases

with either x = 0 or y = 0 are easy. The interesting case is

D(Sx)(Sy) = (Sx − Sy)+ (Sy − Sx)

After simplification (i.e., application of defining equations) we have

Dxy = (x −y)+ (y − x)

If this was the inductive hypothesis, closing the proof is trivial. However, the actual

inductive hypothesis is

Dx(Sy) = (x − Sy)+ (Sy − x)

since it was instantiated by the discrimination on y . The problem can be solved by

starting with a quantified claim

∀y. Dxy = (x −y)+ (y − x)

where induction on x gives us a quantified inductive hypothesis that is not affected

by a discrimination on y . Figure 1.3 shows a complete proof table for the quantified

claim.

You may have questions about the precise rules for quantification and induction.

Given that this is a teaser chapter, you will have to wait a little bit. It will take until

Chapter 5 that quantification and induction are explained in depth.

Exercise 1.5.1 Prove Dxy = Dyx by induction on x. No lemma is needed.

Exercise 1.5.2 (Maximum)

Define an inductive maximum function M : N→ N → N and prove the following:

11



1 Getting Started

∀y. Dxy = (x −y)+ (y − x) induction x
1 ∀y. D0y = (0−y)+ (y − 0) disc. y
1.1 D00 = (0− 0)+ (0− 0) comp. eq.

1.2 D0(Sy) = (0− Sy)+ (Sy − 0) comp. eq.

2 IH : ∀y. · · · ∀y. D(Sx)y = (Sx −y)+ (y − Sx) disc. y
2.1 D(Sx)0 = (Sx − 0)+ (0− Sx) simpl.

Sx = Sx + 0 apply (1.1)

2.2 D(Sx)(Sy) = (Sx − Sy)+ (Sy − Sx) simpl.

Dxy = (x −y)+ (y − x) apply IH

Figure 1.3: Proof table for a proof with a quantified inductive hypothesis

a) Mxy = Myx (commutativity)

b) M(x +y)x = x +y (dominance)

Hint: Commutativity needs a quantified inductive hypothesis.

Extra: Do the exercise for a minimum function. Find a suitable reformulation for (b).

Exercise 1.5.3 (Symmetric addition) Using cascaded discrimination, we can define

an inductive addition function with symmetric defining equations:

+ : N→ N → N

0+ 0 := 0

0+ Sy := Sy

Sx + 0 := Sx

Sx + Sy := S(S(x +y))

a) Prove that the symmetric addition function is commutative: x +y = y + x.

b) Prove that the symmetric addition function satisfies the defining equations for

the standard addition function (0+y = y and Sx +y = S(x +y)).
c) Prove that the symmetric addition function agrees with the standard addition

function.

1.6 Preview of Proof Rules

We have seen a number of proofs using structural case analysis and structural in-

duction on numbers. Our presentation is informal and leaves important issues

unexplained, in particular as it comes to structural induction on numbers. Latter in

this text, we will derive formal proof rules for structural case analysis and induction

from first principle in type theory. We now give a preview of the formal proof rules

explaining their meaning informally.
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1.7 Procedural Specifications

The rule for structural case analysis on booleans takes the form

EB : ∀pB→P. p true→ p false → ∀x.px

The rule says that we can prove a proposition px for all booleans x by proving it

for true and false. Type-theoretically, we see EB as a function that given proofs of

the propositions p true and p false yields a proof of the proposition px for every

boolean x.

The rule for structural case analysis on numbers takes the form

MN : ∀pN→P. p0 → (∀n. p(Sn))→ ∀n.pn

The rule says that we can prove a proposition pn for all numbers n by giving proofs

for 0 and all successors Sn. Type-theoretically, we see MN as a function that given

proofs of the propositions p0 and ∀n. p(Sn) yields a proof of the proposition

∀n.pn.

The rule for structural induction on numbers takes the form

EN : ∀pN→P. p0 → (∀n. pn→ p(Sn))→ ∀n.pn

It says that a proposition pn can be proved for all numbers n by giving proofs for

the zero case p0 and the successor case ∀n. pn→ p(Sn). A proof of the successor

case ∀n. pn→ p(Sn) is a function that given a number n and a proof of pn yields

a proof of the proposition p(Sn). In the context of the rule EN the proposition pn
acts as an assumption which is usually referred to as inductive hypothesis.

We may see the proof of the successor case of the induction rule as a method

that for every n upgrades a proof of pn to a proof of p(Sn). By iterating this

method n-times on a proof of p0

p0, p1, p2, . . . , pn

we can obviously get a proof of pn for every n.

We remark that in practice inductive proofs are obtained backwards: One first

announces that the claim is shown by induction and then works on the proof obli-

gations for the zero and the successor case.

1.7 Procedural Specifications

The rules we have given for defining inductive functions are very restrictive as it

comes to termination. There are many cases where a function can be specified

with a system of equations that are exhaustive, disjoint, and terminating. We then

speak of a procedural specification and its specifying equations. It turns out that

13



1 Getting Started

in practice using strict structural recursion one can construct inductive functions

satisfying procedural specifications relying on more permissive termination argu-

ments.

Our first example for a procedural specification specifies a function E : N → B

that checks whether a number is even:

E(0) = true

E(S0) = false

E(S(Sn)) = E(n)

The equations are exhaustive, disjoint, and terminating (two constructors are

skipped). However, the equations cannot serve as defining equations for an in-

ductive function since the recursion skips two constructors (rather that just one).

We can define an inductive function satisfying the specifying equations using the

defining equations

E(0) := true

E(Sn) := !E(n)

(recall that ’!’ is boolean negation). The first and the second equation specifying E
hold by computational equality. The third specifying equation holds by simplifica-

tion and by rewriting with the lemma ! !b = b.

Our second example specifies the Fibonacci function F : N → N with the equa-

tions

F0 = 0

F1 = 1

F(S(Sn)) = Fn+ F(Sn)

The equations do not qualify as defining equations for the same reasons we ex-

plained for E. It is however possible to define a Fibonacci function using strict

structural recursion. One possibility is to obtain F with a helper function F ′ taking

an extra boolean argument such that, informally, F ′nb yields F(n+ b) :

F ′ : N → B → N

F ′0 false := 0

F ′0 true := 1

F ′(Sn) false := F ′n true

F ′(Sn) true := F ′n false+ F ′n true

14



1.8 Pairs and Polymorphic Functions

Note that F ′ is defined by a cascaded discrimination on both arguments. We now

define

F : N→ N

F n := F ′n false

That F satisfies the specifying equations for the Fibonacci function follows by com-

putational equality.

Note that F is defined with a single defining equation without a discrimination.

We speak of a plain function and a plain function definition. Since there is no

discrimination, the defining equation of a plain function can be applied as soon

as the function is applied to enough arguments. The defining equation of a plain

function must not be recursive.

There are other possibilities for defining a Fibonacci function. Exercise 1.10.8

will obtain a Fibonacci function by iteration on pairs, and Exercise 1.12.5 will obtain

a Fibonacci function with a tail recursive helper function taking two extra argu-

ments. Both alternatives employ linear recursion, while the definition shown above

uses binary recursion, following the scheme of the third specifying equation.

We remark that Rocq supports a more permissive scheme for inductive func-

tions, providing for a straightforward definition of a Fibonacci function essentially

following the specifying equations. In this text we will stick to the restrictive for-

mat explained so far. It will turn out that every function specified with a terminating

system of equations can be defined in the restrictive format we are using here (see

Chapter 30).

Exercise 1.7.1 Prove E(n · 2) = true.

Exercise 1.7.2 Verify that Fn := F ′n false satisfies the specifying equations for the

Fibonacci function.

Exercise 1.7.3 Define a function H : N → N satisfying the equations

H 0 = 0

H 1 = 0

H(S(Sn)) = S(Hn)

using strict structural recursion. Hint: Use a helper function with an extra boolean

argument.

1.8 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated as inductive types.

We will now see that pairs (x,y) can also be accommodated with an inductive type

definition.

15



1 Getting Started

A pair (x,y) combines two values x and y into a single value such that the

components x and y can be recovered from the pair. Moreover, two pairs are equal

if and only if they have the same components. For instance, we have (3,2 + 3) =
(1+ 2,5) and (1,2) ≠ (2,1).

Pairs whose components are numbers can be accommodated with the inductive

definition

Pair ::= pair(N,N)

which introduces two constructors

Pair : T

pair : N→ N → Pair

A function swapping the components of a pair can be defined with a single equation:

swap : Pair→ Pair

swap (pair x y) := pair y x

Using discrimination for pairs, we can prove the equation

swap (swapp) = p

for all pairs p (that is, for a variable p of type Pair). Note that discrimination for

pairs involves only a single case for the single value constructor for pairs.

Above we have defined pairs where both components are numbers. Given two

types X and Y , we can repeat the definition to obtain pairs whose first component

has type X and whose second component has type Y . We can do much better,

however, by defining pair types for all component types in one go:

Pair(X : T, Y : T) ::= pair(X, Y)

This inductive type definition gives us two constructors:

Pair : T → T → T

pair : ∀X Y. X → Y → Pair X Y

The polymorphic value constructor pair comes with a polymorphic function type

saying that pair takes four arguments, where the first argument X and the second

argument Y fix the types of the third and the fourth argument. Put differently, the

types X and Y taken as first and second argument are the types for the components

of the pair constructed. We say that the first and second argument of the value

constructor pair are parametric and the third and fourth are proper.

16



1.9 Argument Inference and Implicit Arguments

We shall use the familiar notation X × Y for product types PairX Y .

We can write partial applications of the value constructor pair :

pair N : ∀Y . N → Y → N× Y
pair N B : N → B → N× B

pair N B 0 : B→ N× B

pair N B 0 true : N× B

We can also define a polymorphic swap function working for all pair types:

swap : ∀X Y. X × Y → Y ×X
swap X Y (pair x y) := pair Y X y x

Note that the parametric arguments of pair are omitted in the pattern of the defin-

ing equation (i.e, the left hand side of the defining equation). The reason for the

omission is that the parametric arguments of pair don’t contribute relevant infor-

mation in the pattern of a defining equation.

1.9 Argument Inference and Implicit Arguments

If we look at the type of the polymorphic pair constructor

pair : ∀X Y. X → Y → X × Y

we see that the first and second argument of pair provide the types of the third and

fourth argument. This means that the first and second argument can be derived

from the third and fourth argument. In Rocq, we can write the underline symbol “_”

for arguments the proof assistant should derive from the context. For instance, we

may write pair _ _ 5 true for the term pair N B 5 true. More generally, we may write

pair _ _ s t

for the term pairuv s t if the types of the terms s and t can be determined as u
and v . We can now define the usual pair notation for applications of the constructor

pair:

(s, t) := pair _ _ s t

We remark that Rocq will accept an input only if it can derive all terms specified

with the underline symbol.

17



1 Getting Started

Rocq offers the possibility to declare arguments of functional constants as im-

plicit arguments. This has the effect, that the implicit arguments will always be

inserted as underlines. For instance, if we declare the type arguments of

swap : ∀X Y. X × Y → Y ×X

as implicit arguments, we can write

swap (swap (x,y)) = (x,y)

for the otherwise bloated equation

swap _ _ (swap _ _ (x,y)) = (x,y)

We will routinely use implicit arguments for polymorphic constructors and func-

tions.

With implicit arguments, argument inference, and the notation for pairs we can

write the definition of swap as follows:

swap : ∀X Y. X × Y → Y ×X
swap (x,y) := (y,x)

Note that it takes considerable effort to recover the usual mathematical nota-

tion for pairs in the typed setting of computational type theory. There were four

successive steps:

1. Polymorphic function types for functions taking types as arguments.

2. Argument inference requested with the underline symbol.

3. Notation for pairs and pair types.

4. Implicit arguments for polymorphic functions.

Finally, we define two functions providing the first and the second projection

for pairs:

π1 : ∀X Y. X × Y → X π2 : ∀X Y. X × Y → Y

π1 (x,y) := x π2 (x,y) := y

Note that X and Y are accommodated as implicit arguments of π1 and π2. We can

now state the η-law for pairs

(π1a,π2a) = a

To prove the η-law, one discriminates on the variable a, which replaces it with a

general pair (x,y). This leaves us with the claim

(π1(x,y),π2(x,y)) = (x,y)

which follows by computational equality. We will refer to discriminations where

there is only a single constructor as destructurings.
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Exercise 1.9.1 Write the definitions of the projections and the η-law and in full

detail not using the notations (x,y) and X × Y , underlines, or implicit arguments.

Give the types of all variables.

Exercise 1.9.2 Let a be a variable of type X×Y . Write proof tables for the equations

swap (swapa) = a and (π1a,π2a) = a.

1.10 Iteration

If we look at the equations (all following by computational equality)

3+ x = S(S(Sx))

3 · x = x + (x + (x + 0))

x3 = x · (x · (x · 1))

we see a common scheme we call iteration. In general, iteration takes the form fn x
where a step function f is applied n-times to an initial value x. With the notation

fn x the equations from above generalize as follows:

n+ x = Snx

n · x = (+x)n 0

xn = (·x)n 1

The partial applications (+x) and (·x) supply only the first argument to the func-

tions for addition and multiplication. They yield functions N → N, as suggested by

the cascaded function type N → N→ N of addition and multiplication.

We formalize the notation fnx with a polymorphic function:

iter : ∀X. (X → X)→ N→ X → X

iter X f 0 x := x

iter X f (Sn) x := f(iter X f n x)

We will treat X as implicit argument of iter. The equations

3+ x = iter S 3 x

3 · x = iter (+x) 3 0

x3 = iter (·x) 3 1

now hold by computational equality. More generally, we can prove the following

equations by induction on n:

n+ x = iter S n x

n · x = iter (+x) n 0

xn = iter (·x) n 1
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n · x = iter (+x) n 0 induction n
1 0 · x = iter (+x) 0 0 comp. eq.

2 IH : n · x = iter (+x) n 0 Sn · x = iter (+x) (Sn) 0 simpl.

x +n · x = x + iter (+x) n 0 rewrite IH

x + iter (+x) n 0 = x + iter (+x) n 0 comp. eq.

Figure 1.4: Correctness of multiplication with iter

Figure 1.4 gives a proof table for the equation for multiplication.

Exercise 1.10.1 Check that iter S 2 = λx. S(Sx) holds by computational equality.

Exercise 1.10.2 Prove n+ x = iter S n x and xn = iter (·x) n 1 by induction.

Exercise 1.10.3 Check that the plain function

add : N→ N → N

addxy := iter S xy

satisfies the defining equations for inductive addition

add 0y = y

add (Sx)y = S(addxy)

by computational equality.

Exercise 1.10.4 (Shift) Prove iter f (Sn) x = iter f n (fx).

Exercise 1.10.5 (Tail recursive iteration) Define a tail recursive version of iter and

verify that it agrees with iter.

Exercise 1.10.6 (Even) The term !n true tests whether a number n is even (’!’ is

boolean negation). Prove iter ! (n · 2) b = b and iter ! (S(n · 2)) b = !b.

Exercise 1.10.7 (Factorials with iteration) Factorials n! can be computed by itera-

tion on pairs (k, k!). Find a function f such that (n,n!) = fn(0,1). Define a factorial

function with the equations 0! = 1 and (Sn)! = Sn ·n! and prove (n,n!) = fn(0,1)
by induction on n.

Exercise 1.10.8 (Fibonacci with iteration) Fibonacci numbers (§1.7) can be com-

puted by iteration on pairs. Find a function f such that Fn := π1(fn(0,1)) satisfies

the specifying equations for the Fibonacci function:

F0 = 0

F1 = 1

F(S(Sn)) = Fn+ F(Sn)
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1.11 Ackermann Function

Hint: If you formulate the step function with π1 and π2, the third specifying equa-

tion should follow by computational equality, otherwise discrimination on a sub-

term obtained with iter may be needed.

1.11 Ackermann Function

The following equations specify a function A : N → N → N known as Ackermann

function:

A0y = Sy

A(Sx)0 = Ax1

A(Sx)(Sy) = Ax(A(Sx)y)

The equations cannot serve as a defining equations since the recursion is not struc-

tural. The problem is with the nested recursive application A(Sx)y in the third

equation.

However, we can define a structurally recursive function satisfying the given

equations. The trick is to use a higher-order helper function: 2

A : N→ N → N A′ : (N → N)→ N → N

A0 := S

A(Sx) := A′(Ax)

A′h0 := h1

A′h(Sy) := h(A′hy)

Verifying that A satisfies the three specifying equations is straightforward. Here is

a verification of the third equation:

A(Sx)(Sy) Ax(A(Sx)y)

= A′(Ax)(Sy) = Ax(A′(Ax)y)
= Ax(A′(Ax)y)

Note that the three specifying equations hold by computational equality (i.e., both

sides of the equations reduce to the same term). Thus verifying the equations with

a proof assistant is trivial.

We remark that the three equations specifying A are exhaustive and disjoint.

They are also terminating, which can be seen with a lexical argument: Either the

first argument is decreased, or the first argument stays unchanged and the second

argument is decreased.

Exercise 1.11.1 (Truncating subtraction without cascaded discrimination)

Define a truncating subtraction function that discriminates on the first argument

2A higher-order function is a function taking a function as argument.
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Fib : (N→ N)→ N→ N Ack : (N → N→ N)→ N→ N → N

Fibf 0 := 0

Fibf 1 := 1

Fibf (SSn) := fn+ f(Sn)

Ackf 0y := Sy

Ackf (Sx)0 := fx1

Ackf (Sx)(Sy) := fx(f(Sx)y)

Figure 1.5: Unfolding functions for the Fibonacci and Ackermann functions

and delegates discrimination on the second argument to a helper function. Prove

that your function agrees with the standard subtraction function sub from §1.2.

Arrange your definitions such that your function satisfies the defining equations of

sub by computational equality.

Exercise 1.11.2 (Ackermann with iteration)

There is an elegant iterative definition of the Ackermann function

An := Bn S

using a higher-order helper function B defined with iteration. Define B and verify

that A satisfies the specifying equations for the Ackermann function by computa-

tional equality. Consult Wikipedia to learn more about the Ackermann function.

1.12 Unfolding Functions

Procedural specifications can be faithfully represented as non-recursive inductive

functions taking a continuation function as first argument. We speak of unfold-

ing functions. Figure 1.5 shows the unfolding functions for the procedural spec-

ifications of the Fibonacci and Ackermann functions we have discussed in §1.7

and §1.11.

An unfolding function is a higher-order function specifying a recursive function

without recursion. It does so by abstracting out the recursion by means of a contin-

uation function taken as argument.

Intuitively, it is clear that a function f satisfies the specifying equations for the

Fibonacci function if and only if it satisfies the unfolding equation

fn = Fibf n

for the unfolding function Fib. Formally, this follows from the fact that the specify-

ing equations for the Fibonacci function are computationally equal to the respective
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instances of the unfolding equation:

f0 = Fibf 0

f1 = Fibf 1

f(SSn) = Fibf (SSn)

The same is true for the Ackermann function.

Exercise 1.12.1 Verify with the proof assistant that the realizations of the Fibonacci

function defined in §1.7 and Exercise 1.10.8 satisfy the unfolding equation for the

specifying unfolding function.

Exercise 1.12.2 Verify with the proof assistant that the realizations of the Acker-

mann function defined in §1.11 satisfies the unfolding equation for the specifying

unfolding function.

Exercise 1.12.3 Give unfolding functions for addition and truncating subtraction

and show that the unfolding equations are satisfied by the inductive functions we

defined for addition and subtraction.

Exercise 1.12.4 The unfolding function Fib is defined with a nested pattern SSn
in the third defining equation. Show how the nested pattern can be removed by

formulating the third equation with a helper function.

Exercise 1.12.5 (Iterative definition of a Fibonacci function) There is a different

definition of a Fibonacci function using the helper function

g : N→ N → N→ N

gab0 := a

gab(Sn) := gb(a+ b)n

The underlying idea is to start with the first two Fibonacci numbers and then iterate

n-times to obtain the n-th Fibonacci number. For instance,

g 0 1 5 = g 1 1 4 = g 1 2 3 = g 2 3 2 = g 3 5 1 = g 5 8 0 = 5

a) Prove gab(SSn) = gabn+ gab(Sn) by induction on n.

b) Prove that g01 satisfies the unfolding equation for Fib.

c) Compare the iterative computation of Fibonacci numbers considered here with

the computation using iter in Exercise 1.10.8.
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1.13 Concluding Remarks

The equational language we have seen in this chapter is a sweet spot in the type-

theoretic landscape. With a minimum of luggage we can define interesting func-

tions, explore equational computation, and prove equational properties using struc-

tural induction. Higher-order functions and polymorphic functions are natural fea-

tures of this equational language. The power of the language comes from the fact

that functions and types can be passed as arguments and results of functions.

We have seen how booleans, numbers, and pairs can be accommodated as

inductive types using constructors, and how inductive functions discriminating on

inductive types can be defined using equations. Functional recursion is restricted

to structural recursion so that termination of computation is ensured.

We use the word function with two meanings. Usually, when we talk about a

function, we refer to its concrete definition in type theory. This way, we can distin-

guish between inductive and plain functions, or recursive and non-recursive func-

tions. Sometimes, however, we refer to a function as an abstract object that relates

inputs to outputs but hides how this is done. The abstract view makes it possible

to speak of a uniquely determined Fibonacci function or of a uniquely determined

Ackermann function.

Here is a list of important technical terms introduced in this chapter:

• Inductive type definitions, type and value constructors

• Inductive functions, plain functions

• Booleans, numbers, and pairs obtained with inductive types

• Defining equations, patterns, computation rules

• Disjoint, exhaustive, termining systems of equations

• Cascaded function types, partial applications

• Polymorphic function types, argument inference, implicit arguments

• Structural recursion, structural case analysis, discrimination

• Structural induction, (quantified) inductive hypotheses

• Proof digrams, proof goals, subgoals, proof actions (tactics)

• Simplification steps, rewriting steps , computational equality

• Truncated subtraction, Fibonacci function, Ackermann function

• Iteration

• Procedural specifications, specifying equations

• Unfolding functions, unfolding equations, continuation functions
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2 Basic Computational Type Theory

This chapter presents the basic fragment of computational type theory (CTT) in

a nutshell. The basic fragment covers the type and function definitions we have

seen in Chapter 1. The next two chapters will extend the basic fragment such that

propositions and proofs are covered.

We start with the grammar and the typing rules for terms obtained with ap-

plications and dependent function types. The typing rules yield a type checking

algorithm assigning unique types to well-typed terms.

We continue with inductive type definitions and inductive function definitions.

The defining equations of inductive functions provide for rewriting of terms, a form

of computation we call reduction. The essential properties of reduction are type

preservation, termination, unique normal forms, and canonicity. The properties

will be maintained by all further extensions of CTT. The properties crucially de-

pend on the assumption that only well-typed terms are admitted, a discipline proof

assistants will enforce.

The basic fragment also comes with plain definitions, lambda abstractions, let

expressions, and matches. Matches and plain definitions can be expressed with

inductive function definitions, and let expressions can be expressed with lambda

abstractions.

The proof assistant Rocq we are targeting deviates from the architecture of CTT

in that it obtains inductive functions with recursive abstractions and native matches

rather than with defining equations. Thus we also consider recursive abstractions.

2.1 Simply Typed Terms

We start with a small fragment of CTT featuring simple function types and applica-

tions. The terms of the simply typed fragment are given by the grammar

s, t,u, v ::= c | T | s → t | st

The letter c ranges over constants. The term T is called universe and serves as the

type of all types. A function type s → t applies to functions taking arguments of

type s and returning results of type t. An application st describes the application

of the function described by the term s to the argument described by the term t.
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The typing rules for simply typed terms are as follows:

⊢ T : T

⊢ s : T ⊢ t : T

⊢ s → t : T

⊢ s : u→ v ⊢ t : u

⊢ s t : v

The rule for T says that T has type T (an arrangement to be refined in §5.3). The

rule for function types says that s → t has type T if the constituents s and t have

type T. The rule for applications st says that s can be applied to t if s has a function

type u→ v and t has type u. In this case the application has type v .

A term s is well-typed and has type t if a typing ⊢ s : t can be derived with the

rules. Given unique types for the involved constants, well-typed terms have unique

types. For instance, we can derive the typings

⊢ T → T : T

⊢ T → (T → T) : T

An example for an ill-typed term (i.e., not well-typed term) is the application T T.

Given the typings of the constructors for numbers

⊢ N : T

⊢ 0 : N

⊢ S : N → N

we can derive the typings

⊢ N → N : T

⊢ N → (N → N) : T

⊢ S0 : N

⊢ S(S0) : N

using the typing rules.

Type theory comes with the principle that only well-typed terms are admitted.

Type checking is an algorithm that determines whether a term is well-typed. In

case a term is well-typed, the unique type of the term is determined. The proof

assistant always checks well-typedness of a given term and computes its unique

type. Terms that are not well-typed are rejected. Examples for ill-typed terms are

the applications S T and S S. We will not say much about type checking but rather

rely on the reader’s intuition and the implementation of type checking in the proof

assistant. In case of doubt you may always ask the proof assistant.
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2.2 Dependently Typed Terms

CTT treats types and functions like all other values. We say that types and

functions are first-class citizens in CTT.

Parentheses in right-nested function types may be omitted:

T → T → T � T → (T → T)

N → N→ N � N→ (N → N)

s → t → u � s → (t → u)

Correspondingly, parentheses may be omitted in left-nested applications:

s t u � (s t)u

2.2 Dependently Typed Terms

A distinguishing feature of CTT are dependent function types ∀x : s. t, which may

also be written as ∀xs . t. A dependent function type ∀x :u.v applies to functions

taking arguments of type u and returning a result of type vxs for an argument s.
The notation vxs stands for the term that is obtained from the term v by replacing

the variable x with the term s. We speak of substitution.

CTT sees simple function types s → t as dependent function types∀x : s. t where

the target type t does not depend on the argument x. In other words, s → t is

notation for ∀x : s. t, provided the variable x does not occur in t. For instance,

N → N is notation for ∀x : N.N. You can check this fact with the proof assistant.

Dependently typed terms are given by the grammar

s, t,u, v ::= c | x | T | ∀x : s. t | st

where c ranges over constants and x ranges over variables. The typing rules for

dependently typed terms are as follows:

⊢ T : T

⊢ s : T x : s ⊢ t : T

⊢ ∀x : s. t : T

⊢ s : ∀x :u.v ⊢ t : u

⊢ s t : vxt

Using the typing rules for dependent types, we can derive the typing

⊢ T → T → T : T

which in turn validates the typing

⊢ Pair : T → T → T

of the type constructor for pairs. We can now derive the typing

⊢ ∀X : T.∀Y : T. X → Y → Pair X Y : T
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which validates the typing of the value constructor for pairs:

⊢ pair : ∀X : T.∀Y : T. X → Y → Pair X Y

Given the typings of the constructors for numbers and pairs, we can derive the

following typings:

⊢ Pair N : T → T

⊢ pair N : ∀Y : T. N→ Y → Pair NY

⊢ pair N N : N→ N → Pair N N

⊢ pair N N 0 (S0) : Pair N N

The names of the variables of dependent function types ∀x : s. t do not matter,

as is standard for bound variables in programming languages and mathematics.

For instance, the terms ∀X.X → X and ∀Y .Y → Y are considered equal.

Note that the typing rules admit any type ⊢ u : T as argument type of a depen-

dent function type ∀x :u.v . So far we have only seen examples where u is T but

dependent function types ∀x :u.v where u is not T will turn out to be important

(for instance, u may be the type of numbers N).

Exercise 2.2.1 Convince yourself that the terms

S, Pair N, Pair (Pair N (N → N)), Pair N T, pair (N → N)T S N

are well-typed given the typings for the constructors for numbers and pairs. In each

case determine the type of the term.

2.3 Inductive Type Definitions

Inductive type definitions introduce typed constants called constructors. We have

already seen inductive definitions for a type of numbers and a family of pair types:

N ::= 0 | S(N)

Pair(X : T, Y : T) ::= pair(X, Y)

Every inductive type definition introduces a system of typed constants consisting

of a type constructor and a list of value constructors:

N : T

0 : N

S : N→ N

Pair : T → T → T

pair : ∀XT.∀YT. X → Y → Pair X Y
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Note that the constructors S, Pair, and pair have types classifying them as functions.

From the types of 0 and S and the information that there are no other value con-

structors for N it is clear that the values of N are obtained as the terms 0, S0, S(S0),
S(S(S0)) and so forth. Analogously, given two types s and t, the values of the type

Pair st are described by terms pair stuv where u has type s and v has type t.
We say that the value constructor pair for pairs has two parametric and two

proper arguments. The parametric arguments are the leading arguments shared

with the type constructor Pair.

We take the opportunity to define two particular inductive types called unit and

void by listing their constructors:

1 : T

U : 1

0 : T

Note that 1 (unit) has exactly one value U, and that 0 (void) has no value at all.

2.4 Inductive Function Definitions

Inductive function definitions define functions by case analysis on one or more

inductive arguments called discriminating arguments. We will speak of inductive

functions. Figure 2.4 defines four inductive functions that will serve as examples.

An inductive function definition first declares the name (a constant) and the type

of the defined function. Then defining equations are given realizing a disjoint and

exhaustive case analysis. Note that add, swap, and Fib have one discriminating

argument, while sub has two discriminating arguments. There is only one defining

equation for swap since there is only one value constructor for pairs.

The left hand sides of defining equations are called patterns. The variables oc-

curring in a pattern are local to the equation and can be used in the right hand

side of the equation. We say that a pattern binds the variables occurring in it. An

important requirement for patterns is linearity, that is, none of the variables bound

by a pattern can occur more that once in the pattern. For this reason the parametric

arguments of the constructor pair in the pattern of the defining equation of swap

are omitted (the parametric arguments may also be indicated with the underline

symbol).

The defining equations for a function must be disjoint and exhaustive. In the

simplest case with only one discriminating argument and no nested discrimination

(e.g., add and swap in Figure 2.4), there will be exactly one defining equation for ev-

ery value constructor of the type of the discriminating argument. Fib is an example

for a nested discrimination.
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add : N→ N → N

add 0y := y

add (Sx)y := S(addxy)

sub : N→ N → N

sub 0y := 0

sub (Sx)0 := Sx

sub (Sx) (Sy) := subxy

swap : ∀XT.∀YT. PairXY → PairYX

swapXY(pairxy) := pairYXyx

Fib : (N→ N)→ N→ N

Fibf 0 := 0

Fibf (S0) := 1

Fibf (S(Sn)) := fn+ f(Sn)

Figure 2.1: Inductive function definitions

The defining equations of an inductive function must all take the same number

n ≥ 1 of arguments. We speak of the arity of an inductive function. In Figure 2.4,

add, sub, and Fib have arity 2 and swap has arity 4.

Every defining equation must be well-typed. Using the type declared for the func-

tion, every variable bound by the pattern of a defining equation receives a unique

type. Give the types for the bound variables, type checking of a defining equation

works as usual.

If an inductive function recurses, the recursion must be on the first discriminat-

ing argument and the variables introduced by the pattern for this argument. In the

examples in Figure 2.4, only the variable x in the defining equations for add and

sub qualifies for recursion. We refer to this severely restricted form of recursion as

structural recursion.

2.5 Reduction

The defining equations of an inductive function serve as reduction rules that

rewrite applications of the defined function. For instance, the application

sub (Ss) (St) can be reduced to sub s t using the third defining equation of sub.
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Things are arranged such that at most one defining equation applies to an applica-

tion (disjointness), and such that every application of an inductive function can be

reduced (exhaustiveness) provided all arguments required by the defining equations

are given such that the discriminating arguments start with value constructors. We

refer to the process of applying reductions rules as reduction. We see reduction as

computation and refer to reduction rules also as computation rules.

We consider reduction only for well-typed terms. Reduction has the important

property that it preserves well-typedness and the type of a term.

Things are arranged such that reduction always terminates. Without a restric-

tion on recursion, non-terminating inductive functions are possible. The structural

recursion requirement is a sufficient condition for termination that can be checked

algorithmically.

Since reduction always terminates, we can compute a normal form for every

term. There is no restriction on the application of reduction rules: Reduction rules

can be applied to any subterm of a term and in any order. Since the reduction

rules obtained from the defining equations do not overlap, terms nevertheless have

unique normal forms. We say that a term evaluates to its normal form and refer to

irreducible terms as normal terms.

Terms that are normal and closed (i.e., no unbound variables) are called canoni-

cal terms. Reduction preserves closedness of terms.

We now formulate the key properties of reduction:

• Termination Reduction always terminates.

• Unique normal forms Terms reduce to unique normal forms.

• Type preservation Reduction preserves types: If a term of type t is reduced,

the obtained term is again of type t.

• Canonicity Canonical terms of an inductive type start with a value constructor

of the type.

Canonicity gives an important integrity guarantee for inductive types saying that the

elements of an inductive type do not change when inductive functions returning

values of the type are added. Canonicity ensures that the canonical terms of an

inductive type are exactly the terms that can be obtained with the value constructors

of the type.

The definition format for inductive functions is carefully designed such that the

key properties are preserved when a definition is added. Exhaustiveness of the

defining equations is needed for canonicity, disjointness of the defining equations

is needed for uniqueness, and the structural recursion requirement ensures termi-

nation. Moreover, the type checking conditions for defining equations are needed

for type preservation.

Given an inductive type, we refer to the canonical terms of this type as the values
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of t. This speak is justified by the canonicity property of reduction. The values of

the type N are exactly the terms 0, S0, SS0, . . . .

Exercise 2.5.1 Give all reduction chains that reduce the term

sub (S0) (add (S(S0))0)

to its normal form. Note that there are chains of different length. Here is an example

sub (S0) (Sy) ≻ sub 0y ≻ 0

for a reduction chain to normal form using s ≻ t as notation for a reduction step.

2.6 Plain Definitions

A plain definition introduces a constant with a type, an arity n ≥ 0, and a single

defining equation not discriminating on an argument:

c : t

cx1 . . . xn := s

Chapter 1 contains several examples for plain definitions. Plain definitions can

be expressed as inductive function definitions discriminating on an extra argument

of type 1:

c : 1 → t

c Ux1 . . . xn := s

Expressing plain definitions as inductive function definitions has the benefit that

type checking of plain definitions is explained as type checking of inductive func-

tions. Moreover, reduction of plain function applications is explained with reduc-

tion of inductive function applications. Most importantly, expressing plain defini-

tions as inductive function definitions has the advantage that the properties of the

type theory remain unchanged.

Exercise 2.6.1 Argue why plain definitions cannot be recursive.

Exercise 2.6.2 Recall the definition of iter (§1.10). Explain the difference between

the following plain definitions:

A := iter S

Bxy := iter Sxy

Note that the terms Axy and Bxy both reduce to the normal term iter Sxy . More-

over, note that the terms A and Ax are reducible, while the terms B and Bx are not

reducible.
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Exercise 2.6.3 Type checking is crucial for termination of reduction. Consider the

ill-typed plain function definition cx := xx and the ill-typed term cc, which reduces

to itself: cc ≻ cc. Convince yourself that there cannot be a type for c such that the

self application cc type checks.

2.7 Lambda Abstractions

A key ingredient of computational type theory are terms of the form

λx : t. s

called lambda abstractions. Lambda abstractions describe functions with a single

argument. They come with an argument variable x, an argument type t, and a

body s. A lambda abstraction does not give a name to the function it describes.

The typing rule for lambda abstractions is

⊢ u : T x :u ⊢ s : v

⊢ λx :u. s : ∀xu. v

A nice example is the typing

⊢ λXT.λxX .x : ∀XT. X → X

of a polymorphic identity function.

The reduction rule for lambda abstractions

(λxt.s)u ≻β sxu

is called β-reduction and replaces an application (λxt.s)u with the term sxu ob-

tained from the term s by replacing every free occurence of the argument variable x
with the term u. Applications of the form (λxt.s)u are called β-redexes. Here is an

example featuring two consecutive β-reductions of an application of the polymor-

phic identity function:

(λXT.λxX .x)N 7 ≻β (λxN.x)7 ≻β 7

As with dependent function types, the particular name of an argument variable

of a lambda abstractions does not matter. For instance, λXT.λxX .x and λYT.λyY .y
are understood as equal terms. One speaks of alpha renaming of bound variables

in the textual representation of terms.

A complex operation the β-reduction rules builds on is substitution sxt . Substi-

tution must be performed such that local binders do not capture free variables (a

33



2 Basic Computational Type Theory

free variable is an unbound variable). To make this possible, substitution must be

allowed to rename local variables. For instance, (λx.λy.fxy)y must not reduce to

λy.fyy but to a term λz.fyz where the new bound variable z avoids capture of

the free variable y . We speak of capture-free substitution. We remark that capture-

free substitution sxt is also used with the dependent typing rule for applications and

with reduction steps rewriting with defining equations of inductive functions.

For notational convenience, we usually omit the type of the argument variable of

a lambda abstraction (assuming that it is determined by the context). We also omit

parentheses and lambdas relying on two basic notational rules:

λx.st � λx.(st)

λxy.s � λx.λy.s

To specify the type of an argument variable, we use either the notation xt or the

notation x : t, depending on what we think is more readable.

Adding lambda abstractions and β-reduction to a computational type theory pre-

serves all key properties: unique types, unique normal forms, termination, type

preservation, and canonicity.

Exercise 2.7.1 Type checking is crucial for termination of β-reduction. Convince

yourself that β-reduction of the ill-typed term (λx.xx)(λx.xx) does not terminate,

and that no typing of the argument variable x makes the term well-typed.

2.8 Let Expressions

We will also use let expressions

let x : t = s in u

providing for local definitions. The reduction rule for let expressions is

let x : t = s in u ≻ uxs

The typing rule for let expressions is

⊢ t : T ⊢ s : t x : t ⊢ u : v x not in v

⊢ let x : t = s in u : v

It turns out that in the system we are considering let expressions can be expressed

with β-redexes:

let x : t = s in u � (λx : t.u) s
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This syntactic transformation explains the typing rule and the reduction rule for let

expressions.

There will be a feature of full computational type theory (the conversion rule

in §4.1) that distinguishes let expressions from β-redexes in that let expressions

introduce local reduction rules.

2.9 Matches

Matches are a defined notation for applicative expressions providing structural case

analysis for inductive types. A match has a clause for every constructor of the

underlying inductive type.

Matches for numbers take the form

match s [0 ⇒ u | Sx ⇒ v ]

and reduce with the derived reduction rules

match 0 [0 ⇒ u | Sx ⇒ v ] ≻ u

match S s [0 ⇒ u | Sx ⇒ v ] ≻ (λx.v) s

Matches for booleans take the form

match s [ true⇒ u | false ⇒ v ]

and reduce with the derived reduction rules

match true [ true⇒ u | false ⇒ v ] ≻ u

match false [ true⇒ u | false ⇒ v ] ≻ v

Matches for pairs take the form

match s [ (x,y)⇒ u]

and reduce with the derived reduction rule

match (s, t) [ (x,y)⇒ u] ≻ (λxy.u) s t

Matches are accommodated as applications of match functions:

match s [0 ⇒ u | Sx ⇒ v ] � MN _ s u (λx.v)

match s [ true⇒ u | false ⇒ v ] � MB _ s uv)

match s [ (x,y)⇒ u] � M× _ _ _ s (λxy.u)
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Match functions are inductive functions defined as one would expect form the de-

rived reduction rules:

MN : ∀ZT. N → Z → (N → Z)→ Z MB : ∀ZT. B → Z → Z → Z

MN Z 0 e1e2 := e1

MN Z (Sx)e1e2 := e2x

MB Z true e1e2 := e1

MB Z false e1e2 := e2

M× : ∀XYZT. X × Y → (X → Y → Z)→ Z

M×XYZ (x,y) e := exy

Note that the definition of the match notation as an application of a match func-

tion provides both for type checking and reduction. Informally, we may summarize

the typing of matches as follows: A term match s [· · · ] has type u if s is has an

inductive type v , the match has a clause for every constructor of v , and every clause

of the match yields a result of type u.

We may write boolean matches with the familiar if-then-else notation:

if s then t1 else t2 � match s [ true ⇒ t1 | false ⇒ t2 ]

More generally, we may use the if-then-else notation for all inductive types with ex-

actly two value constructors, exploiting the order of the constructors. For numbers

we have

if s then t1 else t2 � match s [0 ⇒ t1 | S _ ⇒ t2 ]

Recall that x − y = 0 iff x ≤ y . Thus if s1 − s2 then t1 else t2 is a conditional

testing s1 ≤ s2. We may use the notation

if s1 ≤ s2 then t1 else t2 � match (s1 − s2) [0 ⇒ t1 | S _ ⇒ t2 ]

Another notational device we take from Rocq writes matches with exactly one

clause as let expressions. For instance:

let (x,y) = s in t � match s [ (x,y)⇒ t ]

2.10 Terms and Values

We see terms as syntactic descriptions of informal semantic objects called values.

Examples for values are numbers, functions, and types. Reduction of a term pre-

serves the value of the term, and also the type of the term. Informally, we often

talk about values ignoring their syntactic representation as terms. In a proof as-

sistant, however, values will always be represented through syntactic descriptions.
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The same is true for formalizations on paper, where we formalize syntactic descrip-

tions, not values. We may see values as objects of our mathematical imagination.

The values of a type are also referred to as elements, members, or inhabitants

of the type. We call a type inhabited if it has at least one inhabitant, and uninhab-

ited or empty or void if it has no inhabitant. Values of functional types are referred

to as functions, and values of T are referred to as types.

As syntactic objects, terms may not be well-typed. Ill-typed terms are semanti-

cally meaningless and must not be used for computation and reasoning. Ill-typed

terms are always rejected by a proof assistant. Working with a proof assistant is the

best way to develop a reliable intuition for what goes through as well-typed. When

we say term in this text, we always mean well-typed term.

Recall that a term is closed if it has no free variables, and canonical if it is closed

and irreducible. CTT is designed such that every canonical term is either a constant,

or a constant applied to canonical terms, or an abstraction (obtained with λ), or a

function type (obtained with ∀), or a universe (so far we have T). A constant is

either a constructor or the name of an inductive function.

CTT is designed such that every closed term reduces to a canonical term of the

same type. More generally, every term reduces to an irreducible term of the same

type.

Different canonical terms may describe the same value, in particular when it

comes to functions.

For simple inductive types such as N, the canonical terms of the type are in

one-to-one correspondence with the values of the type. In this case we may see

the canonical terms of the type as the values of the type. For function types the

situation is more involved since semantically we may want to consider two functions

as equal if they agree on all arguments.

2.11 Function Definitions in Rocq

The proof assistant Rocq realizes function definitions based on plain definitions of

the form

c : t := s

using lambda abstractions, native matches, and recursive abstractions. In fact, all

plain definitions in Rocq have arity 0. Not having function definitions with arity

n ≥ 1 results in more fine-grained reduction and introduces intermediate normal

forms one doesn’t want to see from the application perspective. To mitigate the

problem, Rocq refines the basic reduction rules with simplification rules simulating

the reductions one would have with inductive function definitions. Sometimes the
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simulation is not perfect and the user is confronted with unpleasant intermediate

terms.

Rocq comes with syntactic sugar facilitating the translation of inductive and

plain function definitions into Rocq’s kernel language.

In this text we work with inductive function definitions and do not use recursive

abstractions at all. The accompanying demo files show how our high-level style can

be simulated with Rocq’s primitives.

Having recursive abstractions and native matches is a design decision from

Rocq’s early days (around 1990) when inductive types where added to a language

designed without having inductive types in mind (around 1985). Agda is a modern

implementation of computational type theory that comes with inductive function

definitions and does not offer matches and recursive abstractions.

To express recursive inductive functions, Rocq has recursive abstractions. Re-

cursive abstractions take the form

fix f s→t xs . u

and represent recursive functions as unfolding functions. There are two local vari-

ables f and x, where f acts as continuation function and x as argument. The type

of u must be t, and the type of the recursive abstraction itself is s → t.
We restrict our discussion to simply typed recursive abstractions. To gain full

expressivity, recursive abstractions in Rocq are dependently typed.

Using an inductive function definition, a function D doubling its argument can

be defined as follows:

D : N→ N

D 0 := 0

D (Sx) := S(S(Dx))

To express this definition in Rocq, we use a plain definition with a recursive abstrac-

tion and a match:

DN→N := fix fN→N xN. match x [0 ⇒ 0 | Sx ⇒ S(S(fx)) ]

The reduction rule for recursive abstractions looks as follows:

(fixfx. s) t ≻ (λf .λx. s) (fixfx. s) t

Without limitations on recursive abstractions, one can easily write recursive abstrac-

tions whose reduction does not terminate. Rocq imposes two limitations:

• An application of a recursive abstraction can only be reduced if the argument

term t starts with a constructor.
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D(S0) ≻ (fix fx. match x [0 ⇒ 0 | Sx′ ⇒ S(S(fx′)) ]) (S0) δ

= D̂ (S0)

≻ (λfx. match x [0 ⇒ 0 | Sx′ ⇒ S(S(fx′))]) D̂ (S0) fix

≻ (λx. match x [0 ⇒ 0 | Sx′ ⇒ S(S(D̂x′))]) (S0) β

≻ match (S0) [0 ⇒ 0 | Sx′ ⇒ S(S(D̂x′))] β

≻ (λx′. S(S(D̂x′)))0 match

≻ S(S(D̂0)) β

≻ S(S((λx. match x [0 ⇒ 0 | Sx′ ⇒ S(S(D̂x′))])0)) fix, β

≻ S(S(match 0 [0 ⇒ 0 | Sx′ ⇒ S(S(D̂x′))])) β

≻ S(S0) match

D̂ is the term the constant D reduces to

Figure 2.2: Reduction chain for D(S0) defined with a recursive abstraction

• A recursive abstraction is only admissible if its recursion goes through a match

and is structural.

Figure 2.2 shows a complete reduction chain for an application D(S0) where D
is defined with a recursive abstraction as shown above. The example shows the

tediousness coming with Rocq’s fine-grained reduction style.

Exercise 2.11.1 (Boolean negation) Consider the inductive type definition

B : T ::= true | false

for booleans and the plain definition

! := λxB. match x [ true⇒ false | false ⇒ true ]

of a boolean negation function. Give a complete reduction chain for !(! true).

Exercise 2.11.2 (Swap function for pairs)

a) Define a function swap swapping the components of a pair using a plain defini-

tion, lambda abstraction, and a match.

b) Give a complete reduction chain for swap N B (S0) true.

Exercise 2.11.3 Verify every single reduction step in Figure 2.2 and convince your-

self that there is no other reduction chain.
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2.12 Summary

We have outlined a typed and terminating functional language where functions and

types are first-class values that may appear as arguments and results of functions.

Termination is ensured by restricting recursion to structural recursion on inductive

types. Termination buys two important properties: decidability of computational

equality and integrity of inductive types (canonicity).

A key feature of modern type theories are dependent function types generalizing

simple function types. One speaks of dependent type theories to acknowledge the

presence of dependent function types.

In the system presented so far type checking and reduction are separated: Type

checking does not involve reduction, and reduction does not involve type checking.

Soon we will boost the expressivity of the system by extending it such that type

checking operates modulo computational equality of types. Type checking modulo

computational equality is needed so that the proof rules for equational rewriting

and induction on numbers can be obtained within computational type theory.

The computational type theory we are considering in this text is based on depen-

dent function types and inductive function definitions. In addition there are lambda

abstractions and let expressions. The language of the proof assistant Rocq we are

using differs in that it replaces native function definitions with native matches and

recursive abstractions

Last but not least we mention that every function expressible with a closed term

in computational type theory is algorithmically computable. This claim rests on

the fact that there is an algorithm that evaluates every closed term to a canonical

term. The evaluation algorithm performs reduction steps as long as reduction steps

are possible. The order in which reduction steps are chosen matters neither for

termination nor for the canonical term finally obtained.

2.13 Notes

Our presentation of computational type theory is informal. We took some motiva-

tion from the previous chapter but it may take time until you fully understand what

is said in the current chapter. Previous familiarity with functional programming

will help. The next few chapters will explore the expressivity of the system and

provide you with examples and case studies. For details concerning type checking

and reduction, the Rocq proof assistant and the accompanying demo files will prove

helpful.

Formalizing the system presented in this chapter and proving the claimed prop-

erties is a substantial project we will not attack in this text. Instead we will explore

the expressivity of the system and study numerous formalizations based on the
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system.

A comprehensive discussion of the historical development of computational type

theories can be found in Constable’s survey paper [8]. We recommend the book

on homotopy type theory [30] for a complementary presentation of computational

type theory. The reader may also be interested in learning more about lambda

calculus [4, 17], a minimal computational system arranged around lambda abstrac-

tions and beta reduction.
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A great idea coming with computational type theory is the propositions as types

principle. The principle says that propositions (i.e., logical statements) can be rep-

resented as types, and that the elements of the representing types can serve as

proofs of the propositions. This simple approach to logic works incredibly well

in practice and theory: It reduces proof checking to type checking, accommodates

proofs as first-call values, and provides a basic form of logical reasoning known as

intuitionistic reasoning.

The propositions as types principle is just perfect for implications s → t and

universal quantifications ∀xs . t. Both kind of propositions are accommodated as

function types (note the notational coincidence) and thus receive proofs as follows:

• A proof of an implication s → t is a function mapping every proof of the

premise s to a proof of the conclusion t.

• A proof of an universal quantification∀xs .t is a function mapping every element

of the type of s to a proof of the proposition t.

The types for conjunctions s∧t and disjunctions s∨t will be obtained with inductive

type constructors such that a proof of s∧ t consists of a proof of s and a proof of t,
and a proof of s ∨ t consists of either a proof of s or a proof of t. The proposition

falsity having no proof will be expressed as an empty inductive type ⊥. With falsity

we will express negations ¬s as implications s → ⊥. The types for equations s = t
and existential quantifications ∃xs .t will be discussed in later chapters once we

have extended the type theory with the conversion rule.

In this chapter you will see many terms describing proofs with lambda abstrac-

tions and matches. The construction of proof terms is an incremental process that

can be carried out in interaction with a proof assistant. On paper we will facilitate

the construction of proof terms with proof tables.
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3.1 Implication and Universal Quantification

We extend our type theory with a second universe of propositional types:

⊢ P : T

⊢ u : P

⊢ u : T

⊢ u : T x :u ⊢ v : P

⊢ ∀x :u.v : P

The second rule establishes P as a subuniverse P ⊆ T of T. The third rule popu-

lates P with all function types ∀xu.v whose target type v is a propositional type.

Given the typing rules for P, we can derive the typings

⊢ ∀XP. X → X : P

⊢ λXP.λxX . x : ∀XP. X → X

We can now write propositions with implications and universal quantifications

as propositional types. For instance, the propositional type ∀XP. X → X represents

a proposition saying that every proposition implies itself, and the term λXP xX .x
appears as proof of this proposition. From now on we reserve the word proposition

for propositional types.

We will soon see inductive propositional types. Two obvious examples are the

propositional variants of void and unit from §2.3:

⊥ : P ::= []

⊤ : P ::= I

For propositions and proofs to be meaningful, there must be propositions that

do not have a proof. In our setup this means that there must be empty propositional

types. Examples for empty propositional types are ⊥ and ∀XP. X.

Here are more examples for propositions and their proofs assuming that X, Y ,

and Z are propositional variables (i.e., variables of type P):

X → X λx.x

X → Y → X λxy.x

X → Y → Y λxy.y

(X → Y → Z)→ Y → X → Z λfyx.fxy

We have omitted the types of the argument variables appearing in the lambda ab-

stractions on the right since they can be derived from the propositions appearing

on the left.

Our final examples express mobility laws for universal quantifiers:

∀XT PP pX→P. (∀x. P → px)→ (P → ∀x.px) λXPpfax. fxa

∀XT PP pX→P. (P → ∀x.px)→ (∀x. P → px) λXPpfxa. fax
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Functions that yield propositions once all arguments are supplied are called

predicates. In the above examples p is a unary predicate on the type X. In gen-

eral, a predicate has a type ending with P.

Exercise 3.1.1 (Exchange law)

Give a proof for the proposition ∀XYT∀pX→Y→P. (∀xy.pxy)→ (∀yx.pxy).

Exercise 3.1.2 Give proofs of the following propositions:

a) ∀XYP. (X → Y)→ ((X → Y)→ X)→ Y

b) ∀XYP. (X → X → Y)→ ((X → Y)→ X)→ Y

3.2 Falsity and Negation

A propositional constant ⊥ having no proof will be helpful since negations ¬s can

be expressed as implications s → ⊥. The official name for ⊥ is falsity. We obtain

falsity as the type constructor of an inductive type definition not declaring a value

constructor:

⊥ : P ::= []

Since ⊥ has no value constructor, the canonicity property of computational type

theory ensures that ⊥ has no element.1 We define an inductive function

E⊥ : ∀ZP. ⊥ → Z

discriminating on its second argument of type ⊥. Since ⊥ has no value constructor,

no defining equation for E⊥ is required. The function E⊥ realizes an important log-

ical principle known as explosion rule or ex falso quodlibet: Given a hypothetical

proof of falsity, we can get a proof of everything. More generally, given a hypo-

thetical proof of falsity, E⊥ gives us an element of every type. Following common

language we explain later, we call E⊥ the eliminator for ⊥.

We now define negation ¬s as notation for an implication s → ⊥:

¬s � s → ⊥

With this definition we have a proof of ⊥ if we have a proof of s and ¬s. Thus, given

a proof of¬s, we can be sure that there is no proof of s. We say that we can disprove

a proposition s if we can give a proof of ¬s. The situation that we have some

proposition s and hypothetical proofs of both s and ¬s is called a contradiction

1Suppose there is a closed term of type ⊥. Because of termination and type preservation there is a
closed and normal term of type ⊥. By canonicity this term must be obtained with a constructor
for ⊥. Contradiction.
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X → ¬X → ⊥ λxf . fx

X → ¬X → Y λxf . E⊥Y(fx)

(X → Y)→ ¬Y → ¬X λfgx. g(fx)

X → ¬¬X λxf .fx

¬X → ¬¬¬X λfg. gf

¬¬¬X → ¬X λfx. f (λg.gx)

¬¬X → (X → ¬X)→ ⊥ λfg. f (λx.gxx)

(X → ¬X)→ (¬X → X)→ ⊥ λfg. let x = g(λx.fxx) in fxx

Variable X ranges over propositions.

Figure 3.1: Proofs of propositions involving negations

in mathematical language. A hypothetical proof is a proof based on unproven

assumptions (called hypotheses in this situation).

Figure 3.1 shows proofs of propositions involving negations. To understand the

proofs, it is essential to see a negation ¬s as an implication s → ⊥. Only the proof

involving the eliminator E⊥ makes use of the special properties of falsity. Note the

use of the let expression in the proof in the last line. It introduces a local name x
for the term g(λx.fxx) so that we don’t have to write it twice. Except for the proof

with let all proofs in Figure 3.1 are normal terms.

Coming from boolean logic, you may ask for a proof of ¬¬X → X. Such a proof

does not exist without assumptions in the type-theoretic system we are exploring.

However, such a proof exists if we assume the law of excluded middle familiar from

ordinary mathematical reasoning. We will discuss this issue later.

Occasionally, it will be useful to have a propositional constant ⊤ having exactly

one proof. The official name for ⊤ is truth. The natural idea for obtaining truth is

using an inductive type definition declaring a single value constructor:

⊤ : P ::= I

We have now seen two inductive type definitions whose type constructors ⊥
and ⊤ are declared as propositional types. We will call the value constructors for

inductive propositions (e.g., ⊤) proof constructors.

We speak of consistency if a type theory can express empty types. Consistency

is needed for a type theory so that it can express negative propositions.

Exercise 3.2.1 Show that ∀XP. X has no proof. That is, disprove ∀XP. X. That is,

prove ¬∀XP. X.
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3.3 Conjunction and Disjunction

Most people are familiar with the boolean interpretation of conjunctions s ∧ t and

disjunctions s ∨ t. In the type-theoretic interpretation, a conjunction s ∧ t is a

proposition whose proofs consist of a proof of s and a proof of t, and a disjunction

s ∨ t is a proposition whose proofs consist of either a proof of s or a proof of t. We

make this design explicit with two inductive type definitions:

∧ (X : P, Y : P) : P ::= C(X, Y) ∨ (X : P, Y : P) : P ::= L(X) | R(Y)

The definitions introduce the following constructors:

∧ : P → P → P ∨ : P → P → P

C : ∀XPYP. X → Y → X ∧ Y L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

With the type constructors ’∧’ and ’∨’ we can form conjunctions s ∧ t and disjunc-

tions s ∨ t from given propositions s and t. With the proof constructors C, L, and R

we can construct proofs of conjunctions and disjunctions:

• If u is a proof of s and v is a proof of t, then the term Cuv is a proof of the

conjunction s ∧ t.
• If u is a proof of s, then the term Lu is a proof of the disjunction s ∨ t.
• If v is a proof of t, then the term Rv is a proof of the disjunction s ∨ t.
Note that we treat the propositional arguments of the proof constructors as implicit

arguments, something we have seen before with the value constructor for pairs.

Since the explicit arguments of the proof constructors for disjunctions determine

only one of the two implicit arguments, the other implicit argument must be derived

from the surrounding context. This works well in practice.

The type constructors ’∧’ and ’∨’ have the type P → P → P, which qualifies

them as predicates. We will call type constructors inductive predicates if their type

qualifies them as predicates. We may say that disjunctions are accommodated with

an inductive predicate coming with two proof constructors.

Proofs involving conjunctions and disjunctions will often make use of matches.

Recall that matches are notation for applications of match functions obtained with

inductive function definitions. For conjunctions and disjunctions, we will use the

definitions appearing in Figure 3.2.

We note that E⊥ (§3.2) is the match function for the inductive type ⊥. We define

the notation

match s [] � E⊥ _ s
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M∧ : ∀XYZP. X ∧ Y → (X → Y → Z)→ Z

M∧XYZ (Cxy)e := exy

M∨ : ∀XYZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

M∨XYZ (Lx)e1e2 := e1x

M∨XYZ (Ry)e1e2 := e2y

match s [Cxy ⇒ t ] � M∧ _ _ _ s (λxy.t)

match s [ Lx ⇒ t1 | Ry ⇒ t2 ] � M∨ _ _ _ s (λx.t1) (λy.t2)

Figure 3.2: Match functions for conjunctions and disjunctions

X → Y → X ∧ Y CXY

X → X ∨ Y LXY

Y → X ∨ Y RXY

X ∧ Y → X λa.match a [Cxy ⇒ x ]

X ∧ Y → Y λa.match a [Cxy ⇒ y ]

X ∧ Y → Y ∧X λa.match a [Cxy ⇒ Cyx ]

X ∨ Y → Y ∨X λa.match a [ Lx ⇒ RYX x | Ry ⇒ LYX y ]

The variables X, Y , Z range over propositions.

Figure 3.3: Proofs for propositions involving conjunctions and disjunctions

Figure 3.3 shows proofs of propositions involving conjunctions and disjunctions.

The propositions formulate familiar logical laws. Note that we supply the implicit

arguments of the proof constructors C, L, and R as subscripts when we think it is

helpful.

Figure 3.4 shows proofs involving matches with nested patterns. Matches with

nested patterns are a notational convenience for nested plain matches. For in-

stance, the match

match a [C(Cxy)z ⇒ Cx(Cyz) ]

with the nested pattern C(Cxy)z translates into the plain match

match a [Cbz ⇒ match b [Cxy ⇒ Cx(Cyz) ] ]

nesting a second plain match.
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(X ∧ Y)∧ Z → X ∧ (Y ∧ Z)
λa.match a [C(Cxy)z ⇒ Cx(Cyz) ]

(X ∨ Y)∨ Z → X ∨ (Y ∨ Z)
λa.match a [ L(Lx)⇒ Lx | L(Ry)⇒ R(Ly) | Rz ⇒ R(Rz) ]

X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z)
λa.match a [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz) ]

Figure 3.4: Proofs with nested patterns

Exercise 3.3.1 Elaborate the proofs in Figure 3.4 such that they use nested plain

matches. Moreover, annotate the implicit arguments of the constructors C, L and R

provided the application does not appear as part of a pattern.

3.4 Propositional Equivalence

We define propositional equivalence s ←→ t as notation for the conjunction of two

implications:

s ←→ t � (s → t)∧ (t → s)

Thus a propositional equivalence is a conjunction of two implications, and a proof

of an equivalence is a pair of two proof-transforming functions. Given a proof of

an equivalence s ←→ t, we can translate every proof of s into a proof of t, and every

proof of t into a proof of s. Thus we know that s is provable if and only if t is

provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.5. The equiva-

lences formulate well-known properties of conjunction and disjunction.
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X ∧ Y ←→ Y ∧X commutativity

X ∨ Y ←→ Y ∨X
X ∧ (Y ∧ Z)←→ (X ∧ Y)∧ Z associativity

X ∨ (Y ∨ Z)←→ (X ∨ Y)∨ Z
X ∧ (Y ∨ Z)←→ X ∧ Y ∨X ∧ Z distributivity

X ∨ (Y ∧ Z)←→ (X ∨ Y)∧ (X ∨ Z)
X ∧ (X ∨ Y)←→ X absorption

X ∨ (X ∧ Y)←→ X

Figure 3.5: Equivalence laws for conjunctions and disjunctions

Exercise 3.4.2 Give proofs for the following propositions:

a) ¬¬⊥ ←→ ⊥
b) ¬¬⊤ ←→ ⊤
c) ¬¬¬X ←→ ¬X
d) ¬(X ∨ Y) ←→ ¬X ∧¬Y
e) (X → ¬¬Y) ←→ (¬Y → ¬X)
f) ¬(X ←→ ¬X)
Equivalence (d) is known as de Morgan law for disjunctions. We don’t ask for a

proof of the de Morgan law for conjunctions ¬(X∧Y)←→ ¬X∨¬Y since it requires

the law of excluded middle (§3.8). We call proposition (f) Russell’s law. Russell’s

law will be used in a couple of prominent proofs.

Exercise 3.4.3 Propositional equivalences yield an equivalence relation on proposi-

tions that is compatible with conjunction, disjunction, and implication. This high-

level speak can be validated by giving proofs for the following propositions:

X ←→ X reflexivity

(X ←→ Y)→ (Y ←→ X) symmetry

(X ←→ Y)→ (Y ←→ Z)→ (X ←→ Z) transitivity

(X ←→ X′)→ (Y ←→ Y ′)→ (X ∧ Y ←→ X′ ∧ Y ′) compatibility with ∧
(X ←→ X′)→ (Y ←→ Y)′ → (X ∨ Y ←→ X′ ∨ Y ′) compatibility with ∨
(X ←→ X′)→ (Y ←→ Y ′)→ ((X → Y)←→ (X′ → Y ′)) compatibility with →

50



3.5 Notational Issues

3.5 Notational Issues

Following Rocq, we use the precedence order

¬ ∧ ∨ ←→ →

for the logical connectives. Thus we may omit parentheses as in the following ex-

ample:

¬¬X ∧ Y ∨ Z ←→ Z → Y � (((¬(¬X)∧ Y)∨ Z)←→ Z)→ Y

The connectives ¬, ∧, and ∨ are right-associative. That is, parentheses may be

omitted as follows:

¬¬X � ¬(¬X)
X ∧ Y ∧ Z � X ∧ (Y ∧ Z)
X ∨ Y ∨ Z � X ∨ (Y ∨ Z)

3.6 Impredicative Characterizations

Quantification over propositions has amazing expressivity. Given two propositional

variables X and Y , we can prove the equivalences

⊥ ←→ ∀ZP. Z

X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z

X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z

which say that ⊥, X∧Y , and X∨Y can be characterized with just function types. The

equivalences are known as impredicative characterizations of falsity, conjunction,

and disjunction. Figure 3.6 gives proof terms for the equivalences. One speaks of

an impredicative proposition if the proposition contains a quantification over all

propositions.

Note that the impredicative characterizations are related to the types of the

match functions for ⊥, X ∧ Y , and X ∨ Y .

Exercise 3.6.1 Find an impredicative characterization for ⊤.

Exercise 3.6.2 (Exclusive disjunction)

Consider exclusive disjunction X ⊕ Y ←→ (X ∧¬Y)∨ (¬X ∧ Y).
a) Define exclusive disjunction with an inductive type definition. Use two proof

constructors and prove the specifying equivalence.

b) Find and verify an impredicative characterization of exclusive disjunction.
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⊥ ←→ ∀ZP. Z

C (E⊥(∀ZP. Z)) (λf . f⊥)

X ∧ Y ←→ ∀ZP. (X → Y → Z)→ Z

C (λaZf .match a [Cxy ⇒ fxy ]) (λf . f (X ∧ Y)CXY )

X ∨ Y ←→ ∀ZP. (X → Z)→ (Y → Z)→ Z

C (λaZfg.match a [ Lx ⇒ fx | Ry ⇒ gy ]) (λf . f (X ∨ Y) LXY RXY )

The subscripts give the implicit arguments of C, L, and R.

Figure 3.6: Impredicative characterizations with proof terms

3.7 Proof Term Construction using Proof Tables

The natural direction for proof term construction is top down, in particular as it

comes to lambda abstractions and matches. When we construct a proof term top

down, we need an information structure keeping track of the types we still have

to construct proof terms for and recording the typed variables introduced by sur-

rounding lambda abstractions and patterns of matches. It turns out that the proof

tables we have introduced in Chapter 1 provide a convenient information structure

for constructing proof terms.

Here is a proof table showing the construction of a proof term for a proposition

we call Russell’s law:

¬(X ←→ ¬X) intro

f : X → ¬X
g : ¬X → X ⊥ assert X

1 X apply g
¬X intro

x : X ⊥ exact fxx
2 x : X ⊥ exact fxx

The table is written top-down beginning with the initial claim. It records the con-

struction of the proof term

λaX←→¬X . match a [ Cfg ⇒ let x = g(λx.fxx) in fxx ]

for the proposition ¬(X ←→ ¬X).
Recall that proof tables are have-want tables that record on the left what we have

and on the right what we want. When we start, the proof table is partial and just
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consists of the first line. As the proof term construction proceeds, we add further

lines and further proof goals until we arrive at a complete proof table.

The rightmost column of a proof table records the actions developing the table

and the corresponding proof term.

• The action intro introduces λ-abstractions and matches.

• The action assert creates subgoals for an intermediate claim and the current

claim with the intermediate claim assumed. An assert action is realised with a

let expression in the proof term.

• The action apply applies a function and creates subgoals for the arguments.

• The action exact proves the claim with a complete proof term. We will not write

the word “exact” in future proof tables since that an exact action is performed

will be clear from the context.

With Rocq we can construct proof terms interactively following the structure of

proof tables. We start with the initial claim and have Rocq perform the proof actions

with commands called tactics. Rocq then maintains the proof goals and displays the

assumptions and claims. Once all proof goals are closed, a proof term for the initial

claim has been constructed.

Technically, a proof goal consists of a list of assumptions called context and a

claim. The claim is a type, and the assumptions are typed variables. There may

be more than one proof goal open at a point in time and one may navigate freely

between open goals.

Interactive proof term construction with Rocq is fun since writing, bookkeeping,

and verification are done by Rocq. Here is a further example of a proof table:

¬¬X → (X → ¬X)→ ⊥ intro

f : ¬¬x
g : X → ¬X ⊥ apply f

¬x intro

x : X ⊥ gxx

The proof term constructed is λfg.f (λx.gxx). As announced before, we write the

proof action “exact gxx” without the word “exact”.

Figure 3.7 shows a proof table for a double negation law for universal quantifi-

cation. Since universal quantifications are function types like implications, no new

proof actions are needed.

Figure 3.8 shows a proof table using a destructuring action contributing a match

in the proof term. The reason we did not see a destructuring action before is that

so far the necessary matches could be inserted by the intro action.

Figure 3.9 gives a proof table for a distributivity law involving 6 subgoals. Note

the symmetry in the proof digram and the proof term constructed.
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∀XT∀pX→P. ¬¬(∀x.px)→ ∀x.¬¬px intro

X : T, p :X → P
f :¬¬(∀x.px)
x :X, g :¬px ⊥ apply f

¬(∀x.px) intro

f ′ :∀x.px ⊥ g(f ′x)

Proof term constructed: λXpfxg.f (λf ′.g(f ′x))

Figure 3.7: Proof table for a double negation law for universal quantification

∀XT∀pX→P∀qX→P.
(∀x.px ←→ qx)→ (∀x.qx)→ ∀x.px intro

X : T, p :X → P, q :X → P
f :∀x.px ←→ qx
g :∀x.qx
x :X px destruct fx
h :qx → px h(gx)

Proof term constructed: λXpqfgx.match fx [C_h⇒ h(gx) ]

Figure 3.8: Proof table using a destructuring action

X ∧ (Y ∨ Z)←→ (X ∧ Y)∨ (X ∧ Z) apply C

1 X ∧ (Y ∨ Z)→ (X ∧ Y)∨ (X ∧ Z) intro

x : X
1.1 y : Y (X ∧ Y)∨ (X ∧ Z) L(Cxy)
1.2 z : Z (X ∧ Y)∨ (X ∧ Z) R(Cxz)
2 (X ∧ Y)∨ (X ∧ Z)→ X ∧ (Y ∨ Z) intro

2.1 x : X, y : Y X ∧ (Y ∨ Z) Cx(Ly)
2.2 x : X, z : Z X ∧ (Y ∨ Z) Cx(Rz)

Proof term constructed:

C (λa. match a [Cx(Ly)⇒ L(Cxy) | Cx(Rz)⇒ R(Cxz)])

(λa. match a [ L(Cxy)⇒ Cx(Ly) | R(Cxz)⇒ Cx(Rz) ])

Figure 3.9: Proof table for a distributivity law
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¬¬(X → Y)←→ (¬¬X → ¬¬Y) apply C, intro

1 f : ¬¬(X → Y)
g : ¬¬X
h : ¬Y ⊥ apply f , intro

f ′ : X → Y ⊥ apply g, intro

x : X ⊥ h(f ′x)
2 f : ¬¬X → ¬¬Y

g : ¬(X → Y) ⊥ apply g, intro

x : X Y exfalso

⊥ apply f
2.1 ¬¬X intro

h : ¬X ⊥ hx
2.2 ¬Y intro

y : Y ⊥ g(λx.y)

Proof term constructed:

C (λfgh. f (λf ′. g(λx. h(f ′x))))

(λfg. g(λx. E⊥Y(f(λh. hx) (λy. g(λx.y)))))

Figure 3.10: Proof table for a double negation law for implication

Figure 3.10 gives a proof table for a double negation law for implication. Note

the use of the exfalso action applying the explosion rule as realized by E⊥.

Exercise 3.7.1 Give proof tables and proof terms for the following propositions:

a) ¬¬(X ∨¬X)
b) ¬¬(¬¬X → X)

c) ¬¬(((X → Y)→ X)→ X)

d) ¬¬((¬Y → ¬X)→ X → Y)

e) ¬¬(X ∨¬X)
f) ¬(X ∨ Y) ←→ ¬X ∧¬Y
g) ¬¬¬X ←→ ¬X
h) ¬¬(X ∧ Y) ←→ ¬¬X ∧¬¬Y
i) ¬¬(X → Y) ←→ (¬¬X → ¬¬Y)
j) ¬¬(X → Y) ←→ ¬(X ∧¬Y)

Exercise 3.7.2 Give a proof table and a proof term for the distribution law

∀XT∀pX→P∀qX→P. (∀x. px ∧ qx)←→ (∀x.px)∧ (∀x.qx).
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Exercise 3.7.3 Find out why one direction of the equivalence

∀XT∀ZP. (∀xX. Z)←→ Z cannot be proved.

Exercise 3.7.4 Prove ∀XT∀pX→P∀ZP. (∀x.px)→ Z → ∀x. px ∧ Z .

3.8 Law of Excluded Middle

The propositions as types approach presented here yields a rich form of logical rea-

soning known as intuitionistic reasoning. Intuitionistic reasoning refines reasoning

in mathematics in that it does not build in the law of excluded middle. This way in-

tuitionistic reasoning makes finer differences than the so-called classical reasoning

used in mathematics. Since type-theoretic logic can quantify over propositions, the

law of excluded middle can be expressed as the proposition ∀PP. P ∨¬P . Once we

assume excluded middle, we can prove all the propositions we can prove in boolean

logic.

Exercise 3.8.1 Let XM be the proposition ∀PP. P ∨ ¬P formalizing the law of ex-

cluded middle. Construct proof terms for the following propositions:

a) XM → ∀PP. ¬¬P → P double negation law

b) XM → ∀PQP. ¬(P ∧Q)→ ¬P ∨¬Q de Morgan law

c) XM → ∀PQP. (¬Q → ¬P)→ P → Q contraposition law

d) XM→ ∀PQP. ((P → Q)→ P)→ P Peirce’s law

It turns out that the reverse directions of the above implications can also be shown

intuitionistically, except in one case. Exercise 17.5.5 will tell you more.

3.9 Discussion

In this chapter we have seen that computational type theory can elegantly express

propositions and their proofs. Implications are expressed as function types s → t,
and functions of type s → t are taken as proofs of the implication s → t. More gen-

erally, universal quantifications ∀xu. t are expressed as dependent function types

∀xu. t. One speaks of the propositions as types approach. In contrast to conven-

tional mathematical reasoning, the propositions as types approach accommodates

propositions and proofs as first-class values that can be passed around with func-

tions.

We have expressed falsity ⊥, conjunction s∧ t, and disjunction s∨ t as inductive

propositions. We have seen that these propositions can be characterized without

inductive types just using function types. Negation ¬s is obtained as implication

s → ⊥.
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The logical reasoning coming with the propositions as types approach is known

as intuitionistic reasoning. Intuitionistic reasoning is more basic than conventional

mathematical reasoning in that it does not provide the law of excluded middle. Con-

ventional mathematical reasoning is then recovered by having the law of excluded

middle as an explicit assumption when needed. The law of excluded middle may be

expressed with the proposition ∀XP. X∨¬X quantifying over propositions. Having

a dedicated universe P : T for propositional types is essential so that assumptions

such as excluded middle can be limited to propositional types and do not concern

computational types such as B and N.

In later chapters, we will see that the propositions as types approach extends to

equations and existential quantifications.

The propositions as types approach uses the typing rules of the underlying type

theory as proof rules. This reduces proof checking to type checking and much

simplifies the implementation of proof assistants.

In the propositions as types approach, formal proofs are obtained as terms built

with constants, variables, function application, and lambda abstraction. Constants

appear as proof constructors for s ∧ t, and s ∨ t and with the inductive match

functions for ⊥, s ∧ t, and s ∨ t. The construction of (proof) terms is best done in

a type-driven top-down fashion recorded with a proof table. The main operation is

function application, where the function applied yields the required propositional

type and subgoals are issued for the arguments of the function. The resulting proof

language is amazingly elegant and easily yields familiar proof patterns: making

assumptions (lambda abstraction), destructuring of assumptions (application of a

match function), applying implicational assumptions (function application).

For the beginner, this chapter is the place where you will get fluent with lambda

abstractions, matches (i.e. applications of match functions), and dependent func-

tion types. We offer dozens of examples for exploration on paper and in interaction

with a proof assistant. For proving on paper, we use proof tables recording incre-

mental top-down constructions of proof terms. When we construct proof terms in

interaction with a proof assistant, we issue proof actions that incrementally build

the proof term and display the information recorded in the proof table.

In the system presented so far, proofs are verified with the typing rules and

no use is made of the reduction rules. This will change in the next chapter where

we extend the typing discipline with a conversion rule identifying computationally

equal types.

The details of the typing rules matter. What prevents a proof of falsity are the

typing rules and the rules restricting the form of inductive definitions. In this text,

we explain the details of the typing rules mostly informally, exploiting that compli-

ance with the typing rules is verified automatically by the proof assistant. To be sure

that something is well-typed or has a certain type, it is always a good idea to have it
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checked by the proof assistant. We expect that you deepen your understanding of

the typing rules using the proof assistant.

We have already pointed out that we have a separate universe P of propositional

types so that assumptions like the law of excluded middle do not affect computa-

tional types. If we were not interested in computational types, we could work with

a single universe T and consider all types as propositions.
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This chapter introduces a typing rule called conversion. The conversion rule

strengthens basic computational type theory so that propositional equality, exis-

tential quantification, and induction lemmas can be defined. The conversion rule

relaxes the type discipline so that the typing rules apply modulo computational

equality of types.

We will define propositional equality s = t following a scheme known as Leibniz

equality. Three typed constants will suffice: One constant accommodating equa-

tions s = t as propositions, one constant providing proofs of trivial equations s = s,
and one constant providing for equational rewriting. As it turns out, the constants

provide for equational reasoning by means of their types, the actual definitions of

the constants are not needed.

The conversion rule of the type theory gives the constants for trivial equations

and for rewriting the proof power required. Due to the conversion rule, proposi-

tional equality will subsume computational equality, and a single rewriting constant

will capture all equational rewriting situations.

We extend the type theory with abstract constant definitions hiding the defini-

tion of constants except for the types of the constants. Abstract constants suffice

for propositional equality and many other purposes, including propositional con-

nectives and theorems.

While abstract constants don’t strengthen the type theory as it comes to what

can be defined and to what can be proven, they provide a means for enforcing

abstraction layers. A system of abstract constants constitutes an interface between

the uses and the definitions of the constants.

In this chapter we start proving theorems in type theory. Theorems will be rep-

resented as abstract constants in type theory. On paper, we will transition from

formal proofs (proof terms) to informal proofs similar to informal proofs in math-

ematical presentations. Our informal proofs will be formulated such that they can

be elaborated into formal proofs, and the scripts constructing the formal proofs in

the proof assistant will appear in the accompanying Rocq files.

There is much elegance and surprise in this chapter. There are plenty of new

subjects, including typing modulo computational equality, propositional equality,

abstract constants, and the representation of theorems. Take your time to fully

understand the beautiful constructions.
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4.1 Conversion Rule

Recall the typing rules from Chapter 2. The conversion rule is an additional typing

rule relaxing typing by making it operate modulo computational equality of types:

⊢ s : u′ u ≈ u′ ⊢ u : T

⊢ s : u

The rule says that a term s has type u if s has type u′ and u and u′ are compu-

tationally equal. We use the notation u ≈ u′ to say that two terms u and u′ are

computationally equal. For now two terms are computationally equal if they reduce

to the same term (up to renaming of bound variables). Later, we will strengthen

computational equality with a law for lambda abstractions called eta equivalence.

Note that the conversion rule has a premise ⊢ u : T, which ensures that the

term u describes a type. Importantly, the conversion rule also applies to proposi-

tional types (since there is a typing rule typing types in P also as types in T).

Adding the conversion rule to the basic typing rules preserves the key properties

of computational type theory (§2.5). As before, there is a type checking algorithm

deriving types for well-typed terms, where the type is now unique up to computa-

tional equality and minimality with respect to universes.

For a first example of the use of the conversion rule consider the proposition

∀pN→P. p(4)→ p(2+ 2)

Without the conversion rule, the proposition has no proof. To see this, consider the

term

λpN→P. λap(4). a

which has the propositional type ∀pN→P. p(4) → p(4), which is equal to the given

proposition up to computational equality. Using the conversion rule the term is a

proof of the proposition. There is also the possibility to use the conversion rule

early as shown in the proof table

∀pN→P. p(4)→ p(2+ 2) intro

p : N→ P
a : p(4) p(2+2) conversion p(2+ 2) ≈ p(4)

p(4) a

The proof table gives us exactly the proof term shown above. So we learn that a

term leaves open where type checking uses the conversion rule. On the other hand,

we can use proof tables to say where the conversion rule is used with type checking.
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4.2 Abstract Propositional Equality

Negation and propositional equivalence as plain functions

Exploiting the presence of the conversion rule, we can accommodate negation and

propositional equivalence as plain functions:

¬ : P → P ←→ : P → P → P

¬X := X → ⊥ X ←→ Y := (X → Y)∧ (Y → X)

The plain definitions provide us with the constants ¬ and ←→ for functions con-

structing negations and propositional equivalences. Reduction replaces applica-

tions ¬s with propositions s → ⊥, and applications s ←→ t with propositions

(s → t) ∧ (t → s). The conversion rules ensures that proofs of s → ⊥ are proofs

of ¬s (and vice versa), and that proofs of (s → t)∧ (t → s) are proofs of s ←→ t (and

vice versa).

A proof term for the proposition ¬X → X → ⊥ is λf¬X . f The conversion facili-

tating the type checking is X → ⊥ ≈ ¬X, or alternatively, ¬X → X → ⊥ ≈ ¬X → ¬X.

Type ascription and polymorphic identity function

Type ascription is the ability to annotate a term with the type we want it to have.

Type ascriptions can be expressed with the polymorphic identity function:

id : ∀XT. X → X

idX x := x

If we write id t s, we force a conversion of the type of s to the type t. If the two

types are not computationally equal, id t s will not type check. Note that the terms

id t s and s are computationally equal.

Exercise 4.1.1 Prove ∀pN→P. p(2) → p(7 − 5) ∨ p(3) with a proof table and give

the constructed proof term.

Exercise 4.1.2 (Leibniz symmetry)

Prove ∀XT∀xyX . (∀pX→P. px → py) → (∀pX→P. py → px) with a proof table

and give the constructed proof term. Hint: Instantiate the predicate p in the premise

with λy.py → px where p is the predicate from the conclusion.

4.2 Abstract Propositional Equality

With the conversion rule at our disposal, we can now show how the propositions

as types approach can accommodate propositional equality. It turns out that all we

need are three typed constants:

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py
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4 Conversion and Leibniz Equality

We will keep the constants abstract. It turns out that we can do equational reasoning

without knowing the definitions of the constants. All we need are the types of the

constants.

The constant eq : ∀XT. X → X → P allows us to write equations as proposi-

tional types:

s = t � eq _ st

s ≠ t � ¬eq _ st

The constants Q and R provide the basic proof rules for equations. For applications

of Q and R the conversion rule of the type theory is essential.

Q provides computational equality

The constant Q : ∀XT∀xX . eqX xx provides for proofs by computational equal-

ity. Obviously, Q can prove trivial equations s = s. Given the conversion rule, Q

can also proof every equation s = t where s and t are computationally equal. This

is the case since computational equality is compatible with the term structure. For

instance, s ≈ s′ and t ≈ t′ implies (s = t) ≈ (s′ = t′).
For instance, Q proves 2 + 3 = 9 − 4 using the conversion rule. This is the case

since 2 + 3 ≈ 5 and 9 − 4 ≈ 5 imply (2 + 3 = 9 − 4) ≈ (5 = 5). This justifies the

proof term Q N 5. Other possible proof terms for 2 + 3 = 9 − 4 are Q N (9 − 4) and

Q N (4+ 1).

R provides equational rewriting

The constant R : ∀XT∀xyX ∀pX→P. eqXxy → px → py provides for equational

rewriting. Given a proof of an equation s = t, we can replace a claim pt with

the claim ps using R. Moreover, we can get from an assumption ps an additional

assumption pt by asserting pt and proving pt with R and ps.
We refer to R as rewriting law, and to the argument p of R as rewriting pred-

icate. Moreover, we refer to the predicate eq as propositional equality or just

equality. We will treat X, x and y as implicit arguments of R, and X as implicit

argument of eq and Q.

The conversion rule is essential for working with the rewriting law. Suppose we

want to prove x = y → y = z → x = z. Then we assume e : x = y and prove

y = z → x = z. With the conversion rule we rewrite the claim to

(λy.y = z → x = z)y

Now rewriting with R and e : x = y reduces the claim to (λy.y = z → x = z)x,

which simplifies to the trivial implication x = z → x = z using the conversion rule.

This reasoning is best represented with a proof table:
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x = y → y = z → x = z intro

e : x = y y = z → x = z conversion

(λy.y = z → x = z)y apply R _ e
(λy.y = z → x = z)x conversion

x = z → x = z λe.e

The table constructs the proof term

λex=y . R (λy.y=z→x=z) e (λex=z.e)

While the uses of the conversion rule appear prominently in the proof table, they

don’t show up explicitly in the proof term. While the first conversion is forced

by the rewriting predicate in the application of R, the second conversion will only

appear if the context imposes the type x = y → y = z → x = z for the proof term.

Target type functions

The type of the rewrite law is our first use of a target type function:

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

Here the predicate p taken as argument determines the target type py of the rewrit-

ing constant R. Target type functions work because of the conversion rule and

lambda abstractions. We will see nonpropositional target type functions in Chap-

ter 5.

Exercise 4.2.1 Give a proof term for the equation ! true = false. Explain why the

term is also a proof term for the equation false = ! ! false.

Exercise 4.2.2 Give a proof term for the converse rewriting law

∀XT∀xy∀pX→P. eqXxy → py → px.

Exercise 4.2.3 Suppose we want to rewrite a subterm u in a proposition t using the

rewriting law R. Then we need a rewrite predicate λx.s such that t and (λx.s)u
are convertible and s is obtained from t by replacing the occurrence of u with the

variable x. Let t be the proposition x +y + x = y .

a) Give a predicate for rewriting the first occurrence of x in t.

b) Give a predicate for rewriting the second occurrence of y in t.

c) Give a predicate for rewriting all occurrences of y in t.

d) Give a predicate for rewriting the term x +y in t.

e) Explain why the term y + x cannot be rewritten in t.

Exercise 4.2.4 Give a term applying R to 7 arguments (including implicit argu-

ments). In fact, for every number n there is a term that applies R to exactly n
arguments.
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4 Conversion and Leibniz Equality

⊤ ≠ ⊥ propositional disjointness

true ≠ false constructor disjointness for B

∀xN. 0 ≠ Sx constructor disjointness for N

∀xNyN. Sx = Sy → x = y injectivity of successor

∀XT xX yX . x = y → y = x symmetry

∀XT xX yX zX . x = y → y = z → x = z transitivity

Figure 4.1: Basic equational facts

4.3 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts.

To say it once more, Q together with the conversion rule provides proofs by com-

putational equality, and R together with the conversion rule provides equational

rewriting. Figure 4.1 shows a collection of basic equational facts, and Figure 4.2

gives proof tables and the resulting proof terms for most of them. The remaining

proofs are left as exercise. It is important that you understand each of the proofs

in detail.

Note that the proof tables in Figure 4.2 all follow the same scheme: First comes

a step introducing assumptions, then a conversion step making the rewriting pred-

icate explicit, then the rewriting step as application of R, then a conversion step

simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps “rewriting” and “proof by compu-

tational equality” used in the tables in Chapter 1 are realized in the propositions as

types approach.

Interestingly, the proof of the transitivity law

∀XT xX yX zX . x = y → y = z → x = z

can be simplified so that the conversion rule is not used. The simplified proof term

λXxyze1e2. R (eqx) e2 e1

exploits the fact that the equation x = z is the application (eqx)z up to notation.

Constructor laws

If we look at the facts in Figure 4.2, we see that three of them

true ≠ false constructor disjointness for B

∀xN. 0 ≠ Sx constructor disjointness for N

∀xNyN. Sx = Sy → x = y injectivity of successor
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Fact: ⊤ ≠ ⊥
Proof term: λe. R (λXP.X) e I

⊤ ≠ ⊥ intro

e : ⊤ = ⊥ ⊥ conversion

(λXP.X)⊥ apply R _ e
(λXP.X)⊤ conversion

⊤ I

Fact: true ≠ false

Proof term: λe. R (λxB. match x [ true⇒⊤|false⇒⊥ ]) e I

true ≠ false intro

e : true = false ⊥ conversion

(λxB. match x [ true⇒ ⊤ | false ⇒ ⊥ ]) false apply R _ e
(λxB. match x [ true⇒ ⊤ | false ⇒ ⊥ ]) true conversion

⊤ I

Fact: ∀xyN. Sx = Sy → x = y
Proof term: λxye. R (λz. x=match z [0⇒0|Sz′⇒z′]) e (Qx)

x : N, y : N Sx = Sy → x = y intro

e : Sx = Sy x = y conversion

(λz. x = match z [0 ⇒ 0 | Sz′ ⇒ z′]) (Sy) apply R _ e
(λz. x = match z [0 ⇒ 0 | Sz′ ⇒ z′]) (Sx) conversion

x = x Qx

Fact: ∀XT∀xyzX . x = y → y = z → x = z
Proof term: λXxyze. R (λy. y=z→x=z) e (λe.e)

X : T, x :X, y :X, z :X, x = y → y = z → x = z intro

e : x = y y = z → x = z conversion

(λy. y = z → x = z)y apply R _ e
(λy. y = z → x = z)x conversion

x = z → x = z λe.e

Figure 4.2: Proof terms for some equational facts
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4 Conversion and Leibniz Equality

concern inductive types while the others are not specifically concerned with induc-

tive types. We speak of constructor laws for inductive types. Note that the proofs

of the constructor laws all involve a match on the underlying inductive type, and

recall that matches are obtained as inductive functions. So to prove a constructor

law, one needs to discriminate on the underlying inductive type at some point. A

proof assistant will automatically provide constructor laws for every inductive type

definition it accepts.

Exercise 4.3.1 Study the two proof terms given for transitivity in detail using Rocq.

Give the proof table for the simplified proof term. Convince yourself that there is

no proof term for symmetry that can be type-checked without the conversion rule.

Exercise 4.3.2 Give proof tables and proof terms for the following propositions:

a) ∀xN. 0 ≠ Sx

b) ∀XT xX yX . x = y → y = x
c) ∀XT YT fX→y xy. x = y → fx = fy
d) ∀XT YT fX→Y gX→Y x. f = g → fx = gx
e) (∀XP. X → X) ≠ (∀XP. X)

Exercise 4.3.3 (Constructor law for pairs)

Prove that the pair constructor is injective: pairxy = pairx′y ′ → x = x′∧y = y ′.

Exercise 4.3.4 (Leibniz characterization of equality)

Verify the following characterization of equality:

x = y ←→ ∀pX→P. px → py

The equivalence is known as Leibniz characterization or as impredicative character-

ization of equality. Also verify the symmetric Leibniz characterization

x = y ←→ ∀pX→P. px ←→ py

which may be phrased as saying that two objects are equal if and only if they satisfy

the same properties.

Note that each of the two equivalences suggests a possible definition of the con-

stant eq. We will choose the first equivalence.

Exercise 4.3.5 (Disequality) From the Leibniz characterization of equality it fol-

lows that x ≠ y if there is a predicate that holds for x but does not hold for y .

Prove the proposition ∀XT∀xyX ∀pX→P. px → ¬py → x ≠ y expressing this

insight.
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4.4 Definition of Leibniz Equality

Here are plain function definitions defining the constants for abstract propositional

equality:

eq : ∀XT. X → X → P

eqXxy := ∀pX→P. px → py

Q : ∀XT∀x. eqX xx

QXx := λpa.a

R : ∀XT∀xy∀pX→P. eqXxy → px → py

RXxypf := fp

The definitions are amazingly simple. Note that the conversion rule is needed to

make use of the defining equation of eq. The definition of eq follows the Leibniz

characterization of equality established in Exercise 4.3.4.

The above definition of propositional equality is known as Leibniz equality and

appears in Whitehead and Russell’s Principia Mathematica (1910-1913). Computa-

tional type theory also provides for the definition of a richer form of propositional

equality using an indexed inductive type family. We will see the definition of induc-

tive equality in §15.1 and study it carefully in Chapter 29. Except for Chapter 29

the concrete definition of propositional equality does not matter since everything

we need can be obtained from the abstract equality constants eq, Q, R introduced

in §4.2.

Arithmetic Comparisons as defined functions

Now that we have equality, we define arithmetic comparisons as plain functions:

≤ : N→ N → P

x ≤ y := (x −y = 0)

In addition, we will use three notational variants:

x ≥ y := y ≤ x x < y := Sx ≤ y x > y := y < x

4.5 Abstract Constants and Theorems

We now extend the definitional facilities of our type theory with abstract constant

definitions. An abstract constant definition is like a plain constant definition but

comes with the proviso that the defining equation is not available for reduction.
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4 Conversion and Leibniz Equality

Thus when we use an abstract constant we cannot make use of its definition. We

may say that the definition of an abstract constant is hidden.

We may use abstract constants to represent the constants for equality, conjunc-

tion, disjunction, and falsity. For using these constructs the definitions of the con-

stants are not needed, all we need are the types of the constants.

In the examples considered so far always a group of constants is defined and the

formation constants can only be made abstract after the accompanying introduction

and elimination constants have been defined.

A mathematical development is a carefully arranged collection of definitions and

theorems that build on each other. Theorems are observations that have been ver-

ified. In type theory, we model theorems as abstract constants with propositional

types. The use of an abstract constant for a theorem models the fact that theorems

can be used without knowing their proofs. It suffices to know that there is a proof.

Sometimes theorems have involved proofs appearing in the literature the user has

never worked through.

Theorems come with several different names including facts, lemmas, and corol-

laries. The different names are a matter of presentation and do not have technical

significance. In type theory all we have are abstract constants with propositional

types. We often use the term lemma to refer to abstract constants with proposi-

tional types.

4.6 Theorems in this Text

All theorems stated as such in this text are theorems in type theory. They are given

informal proofs in the text and formal proofs in the accompanying Rocq files, where

they appear as abstract constants with propositional types. The informal proofs we

give in the text are designed such that they can be elaborated into the formal proofs

appearing in the accompanying Rocq files.

In this text, we mostly use the heading “Fact” to state theorems obtained in type

theory. Here is a first example.

Fact 4.6.1 (Applicative closure)

∀XYT∀fX→Y ∀xx′X . x = x′ → fx = fx′.

Proof Rewriting. ■

Following the usual mathematical conventions we use a numbering scheme to

name facts in this text. In addition we may give a fact a more telling name, such as

“applicative closure” in the above example.

We will mostly give informal proofs for the theorems we state in this text. The

informal proofs will carry enough information so that they can be elaborated into
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formal proofs (i.e., proof terms) using a proof assistant. Typically, we will delegate

the elaboration to the accompanying Rocq files. For the purpose of illustration, we

give a complete proof table for the proof of Fact 4.6.1:

∀XYT∀fX→Y ∀xx′X . x = x′ → fx = fx′ intro

X,Y : T
f : X → Y
x,x′ : X
e : x = x′ fx = fx′ conversion

(λx′.fx = fx′)x′ apply R _ e
(λx′.fx = fx′)x conversion

fx = fx Q (fx)

To demonstrate the use of Fact 4.6.1, we will prove the constructor laws for

numbers using inductive functions for predecessors and not-zero tests:

pred : N→ N notzero : N → P

pred 0 := 0

pred (Sx) := x

notzero 0 := ⊥
notzero (S_) := ⊤

Fact 4.6.2 (Injectivity of successor function) Sx = Sy → x = y .

Proof We assume Sx = Sy and prove x = y . By conversion it suffices to prove

pred (Sx) = pred (Sy), which follows by rewriting with the assumption. ■

Fact 4.6.3 (Disjointness of successor and zero) Sx ≠ 0.

Proof We assume Sx = 0 and prove ⊥.

By conversion it suffices to prove notzero 0. Follows by rewriting with the assump-

tion. ■

Exercise 4.6.4 Give proof terms for Facts 4.6.1, 4.6.2, and 4.6.3.

Exercise 4.6.5 Prove ∀XYT∀fgX→Y ∀xX . f = g → fx = gx. We shall often

tacitly use this applicative closure law.

4.7 Abstract Presentation of Propositional Connectives

Similar to propositional equality, the propositional connectives falsity, conjunction,

and disjunction can be accommodated with systems of abstract constants as shown

in Figure 4.3. This phenomenon demonstrates a general abstractness property of

logical reasoning. Among the constants in Figure 4.3, we distinguish between con-

structors and eliminators. The inductive definitions of falsity, conjunction, and
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⊥ : P

E⊥ : ∀ZP. ⊥ → Z

∧ : P → P → P

C : ∀XPYP. X → Y → X ∧ Y
E∧ : ∀XPYPZP. X ∧ Y → (X → Y → Z)→ Z

∨ : P → P → P

L : ∀XPYP. X → X ∨ Y
R : ∀XPYP. Y → X ∨ Y

E∨ : ∀XPYPZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

Figure 4.3: Abstract constants for falsity, conjunctions, and disjunctions

disjunction in Chapter 3 provide the constructors directly as constructors. The

eliminators may then be obtained as inductive functions. We have seen the elimina-

tors before as match functions (Figure 3.2). If we look at the abstract constants for

equality,

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

E= : ∀XT∀xyX ∀pX→P. eqXxy → px → py

we can identify eq and Q as constructors and E= as eliminator. We now use E= for

the equational constant R to avoid a conflict with the constant R for disjunction.

There is great beauty to the abstract presentation of the propositional connec-

tives and equality with typed constants. Each constant serves a particular purpose:

• The formation constants (⊥, ∧, ∨, =) provide the abstract syntax for the respec-

tive connectives.

• The introduction constants (C, L, R, Q) provide the basic proof rules for the

connectives.

• The elimination constants (E⊥, E∧, E∨, E=) provide proof rules that for the proof

of an arbitrary proposition make use of the proof of the respective connective.

We emphasize that the definitions of the constants do not matter for the use of the

constants as proof rules. In other words, the definitions of the constants do not

contribute to the essence of the propositional connectives.

There is another important fact about the abstract presentation of the logical

connectives: In each case the impredicative characterization can be established us-
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ing the abstract constants, and in each case the impredicative characterization can

be read of the type of the elimination constants. Thus any definition of a forma-

tion constant satisfying the impredicative characterization will be equivalent to the

abstract formation constant. Moreover, in each case, the impredicative characteri-

zation of the formation constant suggests a definition of the abstract constants.

One more observation. If we have the type of the formation constant, the type

of the elimination constant follows from the types of the introduction constants

by thinking of the given constants an as inductive definition. Conversely, given

the types of the formation and elimination constants, the types of the introduction

constants follow from the type of the elimination constant by reconstructing the

connecting inductive definition.

We will see in §6.1 that existential quantification can also be captured with a sys-

tem of abstract constants following the formation-introduction-elimination scheme,

and that the constants can be defined either inductively or impredicatively.

Exercise 4.7.1 (Impredicative characterizations) Assume the abstract constants

for falsity, conjunction, and disjunction and in each case establish the impredicative

characterization of the formation constant.

Exercise 4.7.2 (Impredicative definitions) Define the abstract constants for falsity,

conjunction, and disjunction using the impredicative characterization of the forma-

tion constant. Do not use the inductive definitions.

Exercise 4.7.3 Prove commutativity of conjunction and disjunction using the ab-

stract constants for conjunction and disjunction.

4.8 Computational Equality and Eta Equivalence

Computational equality is an algorithmically decidable equivalence relation on well-

typed terms. Two terms are computationally equal if and only if their normal forms

are identical up to α-equivalence and η-equivalence. The notions of α-equivalence

and η-equivalence will be defined in the following.

Two terms are α-equivalent if they are equal up to renaming of bound vari-

ables. We have introduced several constructs involving bound variables, including

dependent function types ∀xt.s, patterns of defining equations, lambda abstrac-

tions λxt.s, and let expressions. Alpha equivalence abstracts away from the par-

ticular names of bound variables but preserves the reference structure described

by bound variables. For instance, λXT.λxX .x and λYT.λyY .y are α-equivalent ab-

stractions having the α-equivalent types ∀XT. X → X and ∀YT. Y → Y . For all tech-

nical purposes α-equivalent terms are considered equal, so we can write the type of

λXT.λxX .x as either ∀XT. X → X or ∀YT. Y → Y .
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Alpha equivalence is ubiquitous in mathematical language. For instance, the

terms {x ∈ N | x2 > 100 ·x } and {n ∈ N | n2 > 100 ·n } are α-equivalent and thus

describe the same set.

The notion of η-equivalence is obtained with the η-equivalence law

(λx.sx) ≈η s if x does not occur free in s

which equates a well-typed lambda abstraction λx.sx with the term s, provided x
does not occur free in t. Eta equivalence realizes the commitment to not distinguish

between the function described by a term s and the lambda abstraction λx.sx. A

concrete example is the η-equivalence between the constructor S and the lambda

abstraction λnN.Sn.

Computational equality is compatible with the term structure. That is, if we

replace a subterm of a term s with a term that has the same type and is computa-

tionally equal, we obtain a term that is computationally equal to s.
We say that two terms are convertible if they are computationally equal, and

call conversion the process of replacing a term with a convertible term. A simpli-

fication is a conversion where the final term is obtained from the initial term by

reduction. Examples for conversions that are not simplifications are applications of

the η-equivalence law, or expansions, which are reductions in reverse order (e.g.,

proceeding from x to 0+x). Figure 4.2 contains several proof tables with expansion

steps.

Exercise 4.8.1 (Currying) Assume types X, Y , Z and define functions

C : (X × Y → Z)→ (X → Y → Z)

U : (X → Y → Z)→ (X × Y → Z)

such that the equations C(Uf) = f and U(Cg)(x,y) = g(x,y) hold by computa-

tional equality. Find out where η-equivalence is used.

Exercise 4.8.2 Verify that the following equations hold by computational equality

using the definitions of +, −, and iter from Chapter 1.

a) (+)1 = S

b) (+)2 = λx. S(Sx)
c) (+)(3− 2) = S

d) (λx. 1+ x) = S

e) (λx. 3+ x − 2) = S

f) iter S 2 = λx. S(Sx)
Note that all right hand sides are canonical terms. Thus it suffices to compute the

normal forms of the left hand sides and then check whether the two normal forms

are equal up to α- and η-equivalence.
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4.9 Notes

4.9 Notes

Computational equality is also known as definitional equality in type theory.

There are plenty of new ideas in this chapter playing a major role from now on:

• Type checking modulo computational equality of types

• Target type functions

• Abstract constants

• Representation of equality with abstract constants

• Representation of theorems with abstract constants

• Representation of propositional connectives with abstract constants

• Informal proofs rather than formal proofs in the text

• Elaboration of informal proofs in the text into formal proofs in the Rocq files

Exercise 4.9.1 Figure 4.4 summarizes the equational laws we have discussed in this

chapter. Make sure you can give for each law the complete quantifier prefix and a

proof term using the abstract constants eq, Q, and R.
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4 Conversion and Leibniz Equality

Equivalence

x = x
x = y → y = x
x = y → y = z → x = z

Rewriting

x = y → px → py

x = y → py → px

Applicative closure

x = y → fx = fy
f = g → fx = gx

Impredicative characterization

x = y ←→ ∀p. px → py

Disequality

px → ¬py → x ≠ y

Constructor laws

true ≠ false

0 ≠ Sx

Sx = Sy → x = y
(x,y) = (x′, y ′)→ x = x′ ∧y = y ′

Figure 4.4: Summary of equational laws
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5 Inductive Eliminators

For the inductive types we have seen we have defined match functions. Match func-

tions are general inductive functions applying continuations given as arguments.

The type of a match function may be formulated with a target type function, some-

thing we have seen before with the rewriting law. Target type functions raise the

proof power of match functions substantially, as we will see with booleans, num-

bers, and pairs.

Following comon language, we call general inductive functions like match func-

tions (inductive) eliminators. For every inductive type there is a canonical elimina-

tor, which, in some sense, is most general. If the inductive type is recursive (like

the type of numbers), the canonical eliminator will also take care of the recursion.

Speaking from the perspective of proving, the types of eliminators describe proof

rules for structural case analysis and structural induction. With the canonical elimi-

nators for booleans, numbers, and pairs we can finally formalize all informal proofs

we have seen in Chapter 1.

We will study the eliminators for booleans, numbers, and pairs using examples.

This will include a formal proof of the disequation N ≠ B. We will also look at the

eliminators for void and unit.

It is time to spell out two important restrictions of the typing discipline. The

restrictions are needed so that we obtain a consistent type theory that cannot

prove falsity. The restrictions concern propositional discrimination and the self-

containment T : T.

With this chapter we arrive at a computational type theory that can formalize a

large variety of theorems, including all theorems in Chapter 1. The only extension

of computational type theory still to come concerns generalized inductive types

(Chapter 15).

5.1 Generalized Subtyping

The subtyping rule from §3.1

⊢ s : P

⊢ s : T
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5 Inductive Eliminators

makes it possible to see propositional types as types of the full universe T. We now

generalize the subtyping rule such that predicates can be seen as type functions:

⊢ s : ∀x1 : t1. · · · ∀xn : tn. P

⊢ s : ∀x1 : t1. · · · ∀xn : tn. T
n ≥ 0

To have an example for the use of the subtyping rule, suppose we have a function

E : ∀pB→T. p true→ p false → ∀b. pb

Then both λpB→P. Ep and λpB→T. Ep are well-typed terms. A function E with the

given type will appear as the boolean eliminator in §5.4, and the generalized sub-

typing rule frees us from defining E separately for predicates and type functions.

5.2 Propositional Discrimination Restriction

There is a prominent restriction on inductive functions discriminating on argu-

ments with inductive propositional types. The restriction says that in such a case

the target type of the function must be propositional. We speak of the propo-

sitional discrimination restriction (PDR). PDR is needed so that excluded middle

∀XP. X ∨¬X can be assumed consistently. Without the propositional discrimina-

tion restriction, we would have a proof of (∀XP. X ∨¬X)→ ⊥ (see Chapter 31).

There are two exceptions to the propositional discrimination restriction. The

first exception says that discrimination on inductive propositions with no proof

constructor is admissible. Thus the definition of an inductive function

E⊥ : ∀ZT. ⊥ → Z

generalizing the function E⊥ : ∀ZP. ⊥ → Z from §3.2 is admissible. We speak of

computational falsity elimination when we apply E⊥ to a nonpropositional target

type. It will turn out that computational falsity elimination is essential for the

definition of many functions. Examples will appear in §11.1, §11.2, and §19.1.

The second exception to the propositional discrimination restriction concerns

inductive propositions with a single proof constructor where all proper arguments

of the proof constructor have propositional types. This exception applies to the

inductive proposition

⊤ : P ::= I

and provides for the definition of the inductive function

E⊤ : ∀p⊤→T. p I→ ∀a.pa
E⊤ pa I := a
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5.2 Propositional Discrimination Restriction

We will refer to E⊥ and E⊤ as the eliminators for the inductive propositions ⊥ and ⊤.

The eliminator E⊥ makes it possible to obtain a value for every type in a proposi-

tionally contradictory situation. The eliminator E⊤ makes it possible to prove that I

is the only value of ⊤.

The inductive types 0 (void) and 1 (unit) defined in §2.3 correspond to the induc-

tive propositions ⊥ (falsity) and ⊤ (truth). The propositional variants ⊥ and ⊤ are

more flexible than 0 and 1 since they can also be used as propositions. As a matter

of style, we will prefer 1 over ⊤ in computational situations.

We call inductive predicates that are exempted from the discrimination restric-

tion computational predicates. It will take some time until we see computational

predicates that matter. You may check §14.1 (linear search) and Chapter 30 (well-

founded recursion). The inductive predicate ∧P→P→P providing conjunction also

comes out as computational, but there are no worthwhile applications of this fea-

ture.

We call a discrimination on a value of a propositional inductive type a proposi-

tional transfer discrimination if the target type of the discrimination is not propo-

sitional.1 A propositional transfer discrimination is only admissible if its proposi-

tional inductive type is computational. The defining equations of the eliminators E⊥
and E1 are examples for transfer discriminations.

A helpful intuition for the propositional discrimination restriction is that it en-

sures that no information is leaked from the propositional level to the computa-

tional level. For instance, given a proof of a disjunction, it cannot be leaked to the

computational level which side of the disjunction is served by the proof.

Exercise 5.2.1 We can obtain an empty inductive proposition using a recursive

proof constructor:

F : P ::= C(F)

The propositional discrimination restriction does not apply to F since the argument

of the single proof constructor C has a propositional type.

a) Define an inductive function E : ∀ZT. F→ Z .

b) Prove F ←→ ⊥.

Exercise 5.2.2 Prove ∀x⊤. x = I in two ways:

1. By defining an inductive function of this type.

2. Using the eliminator E⊤.

1In Rocq slang transfer discriminations are called large eliminations.
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5 Inductive Eliminators

5.3 Universe Levels

The typing rules involving the universe T need to be refined with universe levels

in order that a consistent type theory is obtained. The problem is with the self-

containment T : T, which permits vicious cycles if not restricted.2 To fix the problem,

every occurrence of the universe T is assigned a positive integer called a universe

level during type checking. The typing rules containing more than one occurrence

of T are augmented so that they exclude cycles Ti : Ti.

⊢ Ti : Ti+1

⊢ u : Ti x :u ⊢ v : Ti

⊢ ∀x :u.v : Ti

So we have Ti : Ti+1 but not Ti : Ti.
Higher universe levels can be forced with function types taking types as argu-

ments. For instance, consider the function type

u := ∀X : Ti. t

where t : Tj but t is not propositional. Then u can only be typed with some Tk
where k > i and k ≥ j. The situation completely changes if t is propositional.

Then u can be typed with P no matter how large the level i is.

One may think of graded universes Ti as an infinite cumulative hierarchy of

universes:

P ⊆ T1 ⊆ T2 ⊆ T3 ⊆ · · ·
P : T1 : T2 : T3 : · · ·

The lowest universe P is distinguished from the higher universes in that it is closed

under function types taking types as arguments. Speaking propositionally, propo-

sitions are closed under all quantifications, including big quantifications over uni-

verses. This feature of P is known as impredicativity. The impredicative character-

izations we have seen for falsity, conjunction, disjunction, and equality exploit the

impredicativity of P.

In practice, there is no need to worry about universe levels since the proof as-

sistant will verify that they can be assigned consistently. It requires agressive con-

structions to force a universe level inconsistency. In Chapter 31 we will present a

construction where universe levels become crucial and ignoring them would lead to

a proof of falsity.

Finally, there is a generalized subtyping rule for graded universes:

⊢ s : ∀x1 : t1. · · · ∀xn : tn. Ti

⊢ s : ∀x1 : t1. · · · ∀xn : tn. Ti+1
n ≥ 0

2A related problem appears in set theory, where the set of all sets must be excluded.
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5.4 Boolean Eliminator

Exercise 5.3.1 Consider the following terms describing functions:

λaT1 . 0 : T1 → N : T2

λaT1→N. 0 : (T1 → N)→ N : T3

λa(T1→N)→N. 0 : ((T1 → N)→ N)→ N : T4

a) Check the consistency of the given universe level assignments.

b) Explain why the application (λaT1 . 0)(T) has no consistent universe level assign-

ment and hence cannot be typed.

c) Explain why the application (λaT. 0)(P) has a consistent universe level assign-

ment and hence can be typed.

d) Give the least types of the terms λaT1 .⊤ and λaT1→N.⊤.

5.4 Boolean Eliminator

Recall the definition of the inductive type of booleans from §1.1 :

B : T ::= true | false

An inductive function f discriminating on a boolean argument has two defining

equations:

f true := s1
f false := s2

We generalize the format by taking the terms s1 and s2 as arguments:

f e1 e2 true := e1

f e1 e2 false := e2

A possible type for this format is

f : ∀ZT. Z → Z → B → Z

A more general type for this format uses a target type function:3

f : ∀pB→T. p true→ p false → ∀x.px

It turns out that the general format with the target type function is necessary when

we use f to do a boolean case analysis. We fix the definition

EB : ∀pB→T. p true→ p false → ∀x.px
EB p e1e2 true := e1 : p true

EB p e1e2 false := e2 : p false

3Recall that target type functions appeared first with the rewriting law for propositional equality.
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5 Inductive Eliminators

and call the function EB the boolean eliminator. We refer to the arguments e1 and e2

of EB as continuations.

The type of EB says that we obtain a proof of ∀xB. px if we provide proofs

of p true and p false. This provides us with a general means to do boolean case

analysis. To do a boolean case analysis with EB, the defining equations of EB are not

needed.

Consider the defining equations of EB. They are well-typed since the patterns

EB pab true and EB pab false on the left instantiate the target type to p true and

p false, which are the types of the variables e1 and e2.

Note that the eliminator E
∀pB→T. p true→p false→∀x.px
B generalizes the match func-

tion MB
∀ZT. B→Z→Z→Z from §2.9. The generalization comes with the target type

function p of EB, which provides more flexibility than the target type Z of MB.

Recall that in type theory a boolean conditional is an abbreviation for an appli-

cation of an inductive function discriminating on B. From now on we shall use the

boolean eliminator for this purpose:

if s1 then s2 else s3 � EB t s2 s3 s1

Note that the term t describing the target type function must be derived from the

context of the boolean conditional.

Exercise 5.4.1 Define boolean negation and boolean conjunction with the boolean

eliminator.

5.5 Example: Boolean Case Analysis

Informally, the proposition

∀xB. x = true∨ x = false

can be proved with a boolean case analysis reducing it to the subgoals

true = true∨ true = false and false = true∨ false = false. Formally, we obtain a

proof term for the proposition using the boolean eliminator:

EB (λx. x = true∨x = false) [true = true∨true = false\ [false = true∨false = false\

The types enclosed in the upper corners are placeholders for terms having the given

types. We refer to the placeholders as subgoals. Note that the types of the subgoals

are obtained with the conversion rule. We may now use the proof terms L(Q true)
and R(Q false) for the subgoals and obtain the complete proof term

EB (λx. x = true∨ x = false) (L(Q true)) (R(Q false))
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5.6 Kaminski’s Equation

∀x. x = true∨ x = false conversion

∀x. (λx. x = true∨ x = false)x apply EB

1 (λx. x = true∨ x = false) true conversion

true = true∨ true = false trivial

2 (λx. x = true∨ x = false) false conversion

false = true∨ false = false trivial

Proof term constructed: EB (λx. x = true∨ x = false) (L(Q true)) (R(Q false))

Figure 5.1: Proof table for a boolean elimination

Figure 5.1 shows a proof table constructing the proof term. The table makes

explicit the conversions handling the applications of the target type functions.

That all boolean case analysis can be obtained with a single eliminator crucially

depends on the use of a target type function in the type of the eliminator. A simply

typed boolean eliminator ∀ZT. Z → Z → B → Z can for instance not express the

boolean case analysis needed for ∀xB. x = true ∨ x = false. And recall that target

type functions only work with lambda abstractions and a conversion rule taking

care of β-reductions.

Exercise 5.5.1 For each of the following propositions give a proof term applying

the boolean eliminator.

a) ∀pB→P∀x. (x = true→ ptrue)→ (x = false → pfalse)→ px.

b) x & y = true ←→ x = true∧y = true.

c) x | y = false ←→ x = false∧y = false.

d) ∀pB→P. (∀xy. y = x → px)→ ∀x.px.

5.6 Kaminski’s Equation

Here is a somewhat challenging fact known as Kaminski’s equation4 that can be

shown with boolean elimination:

∀f B→B∀x. f(f(fx)) = fx

Obviously, a boolean case analysis on just x does not suffice for a proof. What we

need in addition is boolean case analysis on the terms f true and f false. To make

this possible, we prove the equivalent claim

∀xyz. f true = y → f false = z → f(f(fx)) = fx
4The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his

Bachelor’s thesis on a calculus for classical higher-order logic.
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5 Inductive Eliminators

by boolean case analysis on x, y , and z. This yields 8 subgoals, all of which have

straightforward equational proofs. Here is the subgoal for x = false, y = false, and

z = true :

f true = false → f false = true = → f(f(f false)) = f false

Speaking informally, the proof of Kaminski’s equation proceeds by cascaded dis-

crimination on x, f true, and f false, where the equations recording the discrimina-

tions on the terms f true, and f false are made available as assumptions. While this

proof pattern is not primitive in type theory, it can be expressed as shown above. A

proof assistant may support this and other proof patterns with specialized tactics.5

Exercise 5.6.1 (Boolean pigeonhole principle)

a) Prove the boolean pigeonhole principle: ∀xyzB. x = y ∨ x = z ∨y = z.

b) Prove Kaminski’s equation based on the instance of the boolean pigeonhole

principle for f(fx), fx, and x.

Exercise 5.6.2 (Boolean enumeration) Prove ∀xB. x = true ∨ x = false and use it

to prove Kaminski’s equation by enumerating x, fx, and f(fx) and solving the

resulting 23 cases with Rocq’s congruence tactic.

5.7 Eliminator for Numbers

Recall the definition of the inductive type of numbers from §1.2 :

N : T ::= 0 | S(N)

An inductive function f discriminating on a numeric argument has two defining

equations:

f 0 := s1
f (Sn) := s2

We generalize the format by taking the terms s1 and s2 as arguments:

f e1 e2 0 := e1

f e1 e2 (Sn) := e2n(fn)

Note that the argument e2 is a function taking the predecessor n and the result of

the recursive application fn as arguments.6

5Rocq supports the pattern with the eqn modifier of the destruct tactic.
6Since computation in type theory is always terminating, eager recursion cannot cause problems.
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5.7 Eliminator for Numbers

We now come to the typing of the eliminator function. To obtain enough flexi-

bility, we shall employ a target type function pN→T. Given the equations for f , this

design decision forces the type

∀pN→T. p0 → (∀n. pn→ p(Sn))→ ∀n.pn

We now fix the definition

EN : ∀pN→T. p0 → (∀n. pn→ p(Sn))→ ∀n.pn
EN p e1e2 0 := e1 : p0

EN p e1e2(Sn) := e2n(EN p e1e2n) : p(Sn)

of the arithmetic eliminator EN. We refer to the arguments e1 and e2 of EN as

continuations. We say that the arithmetic eliminator takes continuations for the

zero case and the successor case.

Next we look at the type of EN as a proof rule:

EN : ∀pN→T. p0 → (∀n. pn→ p(Sn))→ ∀n.pn

It says that we can obtain a proof of ∀n.pn by supplying proofs for p0 and

∀n. pn → p(Sn). For the second proof obligation we have to supply a function

that for every n yields a proof of p(Sn) given a proof of pn. Thus EN gives us a

proof rule for structural induction on numbers. Note that the so-called inductive

hypothesis appears as pn in the type∀n. pn→ p(Sn) of the continuation function

for the successor case.

We have just seen one of the most elegant and novel aspects of computational

type theory: Induction on numbers is obtained through (the type of) the arithmetic

eliminator, which is obtained as a recursive inductive function on numbers.

The type of EN clarifies many aspects of informal inductive proofs. For instance,

the type of EN makes clear that the variable n in the final claim ∀n.pn is different

from the variable n in the successor case ∀n. pn → p(Sn). Nevertheless, it makes

sense to use the same name for both variables since this makes the inductive hy-

pothesis pn agree with the final claim.

We shall use the notations

match s [0 ⇒ s1 | Sx ⇒ s2 ] � EN t s1 (λx _.s2) s

if s then s1 else s2 � EN t s1 (λ_ _.s2) s

for arithmetic case analysis. The terms t describing the target type function must

be inferred from the context.

Exercise 5.7.1 (Match function for numbers)

A match function for numbers has the type

∀pN→T. p0 → (∀n. p(Sn))→ ∀n.pn
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x + 0 = x conversion

(λx. x + 0 = x)x apply EN

1 (λx. x + 0 = x)0 conversion

0 = 0 comp. eq.

2 ∀x. (λx. x + 0 = x)x → (λx. x + 0 = x)(Sx) conversion

∀x. x + 0 = x → Sx + 0 = Sx intro

IH :x + 0 = x Sx + 0 = Sx conversion

S(x + 0) = Sx rewrite IH

Sx = Sx comp. eq.

Proof term constructed:

EN (λx.x + 0 = x) (Q 0) (λxh. R′ (λz.Sz = Sx)h (Q(Sx)))x

Figure 5.2: Proof table for x + 0 = x

a) Explain how a match function for numbers provides for case analysis.

b) Define a match function for numbers as an inductive function.

c) Define a match function for numbers using the arithmetic eliminator EN.

5.8 A Formal Inductive Proof

We can now do inductive proofs completely formally. As our first example we con-

sider a proof of the fact

∀x. x + 0 = x

We do the proof by induction on x, which amounts to an application of the elimi-

nator EN :

EN (λx. x + 0 = x) [0+ 0 = 0\ [∀x. x + 0 = x → Sx + 0 = Sx\

The application yields two subgoals known as base case and successor case. Both

subgoals have straightforward proofs. Note how the inductive hypothesis appears

as an implicational premise in the successor case. Figure 5.2 shows a proof table

for a proof term completing the partial proof term.

We will see many inductive proofs in this text. We shall write inductive proofs in

an informal style making sure that the informal proof can be easily elaborated into

a formal proof with the proof assistant. A (detailed) informal proof for our example

may look as follows.
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5.9 Equality of Numbers is Logically Decidable

Fact 5.8.1 x + 0 = x.

Proof By induction on x. If x = 0, the claim follows by computational equality.

In the successor case we have the claim Sx + 0 = Sx and the inductive hypothesis

x+0 = x. By conversion is suffices to show S(x+0) = Sx, which follows by rewriting

with the inductive hypothesis. ■

Exercise 5.8.2 Consider the following facts about numbers.

a) Sn ≠ n

b) n+ Sk ≠ n

c) x +y = x + z → y = z (addition is injective in its 2nd argument)

In each case an inductive proof is required. Use the proof assistant to obtain infor-

mal and formal proofs of the facts. Remark: The Rocq file accompanying Chapter 1

contains many examples of inductive proofs.

Exercise 5.8.3 Prove the following equations stating the correctness of addition

functions obtained with the arithmetic eliminator. Both equations require inductive

proofs.

a) x +y = EN (λ_.N)y (λ_.S)x

b) x +y = EN (λ_.N → N) (λy.y) (λ_ay.S(ay))x y

5.9 Equality of Numbers is Logically Decidable

We now show that equality of numbers is logically decidable.

Fact 5.9.1 ∀xNyN. x = y ∨ x ≠ y .

Proof By induction on x with y quantified followed by case analysis on y .

1. x = 0 and y = 0. Then x = y .

2. x = 0 and y = S_. Then x ≠ y by constructor law.

3. x = S_ and y = 0. Then x ≠ y by constructor law.

4. x = Sx′ and y = Sy ′. The induction hypothesis gives us two cases:

a) x′ = y ′. Then x = y .

b) x′ ≠ y ′. We assume Sx′ = Sy ′ and prove ⊥. Injectivity of S gives us x′ = y ′,
which contradicts the assumption x′ = y ′. ■

The informal proof is burdened with many cases and much detail. Constructing

a formal proof with a proof assistant will organize the cases and the details in a

pleasant and more manageable way.
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∀xNyN. x = y ∨ x ≠ y apply EN, intro y
1 0 = y ∨ 0 ≠ y destruct y
1.1 0 = 0∨ 0 ≠ 0 trivial

1.2 0 = Sy ∨ 0 ≠ Sy constructor law

2 IH: ∀yN. x = y ∨ x ≠ y Sx = y ∨ Sx = y destruct y
2.1 Sx = 0∨ Sx ≠ 0 constructor law

2.2 Sx = Sy ∨ Sx ≠ Sy destruct IHy
2.2.1 H: x = y Sx = Sy rewrite H, trivial

2.2.2 H: x ≠ y Sx ≠ Sy intro, apply H

H1: Sx = Sy x = y injectivity S

Figure 5.3: Proof table with a quantified inductive hypothesis

If you are not experienced with inductive proofs, the remark that y be quantified

in the inductive hypothesis may be confusing. The confusion will go away with the

formal proof.

A proof table constructing a proof term following the informal proof appears in

Figure 5.3.

Following the table, we begin the construction of the formal proof with the par-

tial proof term

EN (λx. ∀y. x = y ∨ x ≠ y)
[∀y. 0 = y ∨ 0 ≠ y\

[∀x. (∀y. x = y ∨ x ≠ y)→ ∀y. Sx = y ∨ Sx ≠ y\

This first step makes explicit the quantified inductive hypothesis. Both subgoals are

shown by case analyis on the quantfied target. This can be done with the elimina-

tor EN. To keep things manageable we will work with a match function

MN : ∀pN→T. p0 → (∀n.p(Sn))→ ∀n.pn

omitting the inductive hypothesis.

In the zero case [∀y. 0 = y ∨ 0 ≠ y\ we proceed with

MN (λy. 0 = y ∨ 0 ≠ y)

[0 = 0∨ 0 ≠ 0\

[∀y. 0 = Sy ∨ 0 ≠ Sy\

The first subgoal is trivial, and the second subgoal follows with constructor dis-

jointness.
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In the successor case [∀x. (∀y. x = y ∨ x ≠ y) → ∀y. Sx = y ∨ Sx ≠ y\ we

proceed with

λxh∀y. x=y∨x≠y . MN (λy. Sx = y ∨ Sx ≠ y)

[Sx = 0∨ Sx ≠ 0\

[∀y. Sx = Sy ∨ Sx ≠ Sy\

The first subgoal follows with constructor disjointness. The second subgoal follows

with the instantiated inductive hypothesis hy and injectivity of S.

This completes our explanation of a (formal) proof of Fact 5.9.1. If we do the

proof with a proof assistant, a fully formal proof is constructed but most of the

details are taken care of by the assistant. To document the proof informally for a

human reader, it’s probably best to write something like the following:

The claim follows by induction on x and case analysis on y , where y is quanti-

fied in the inductive hypothesis and disjointness and injectivity of the construc-

tors 0 and S are used.

Exercise 5.9.2 (Boolean equality decider for numbers)

Write a function eqb : N → N → B such that ∀xy. x = y ←→ eqbxy = true. Prove

the correctness of your function.

Exercise 5.9.3 (Antisymmetry)

Prove x ≤ y → y ≤ x → x = y . Recall that comparisons x ≤ y are defined as

x −y = 0. Hint: Induction on x with y quantified using the constructor laws.

5.10 Eliminator for Pairs

Recall the inductive type definition for pairs from §1.8 :

Pair(X : T, Y : T) : T ::= pair(X, Y)

As before we use use the notations

s × t � Pair st

(s, t) � pair _ _ st

Following the scheme we have seen for booleans and numbers, we define an elimi-

nator for pairs as follows:

E× : ∀XTYT∀pX×Y→T. (∀xy. p(x,y))→ ∀a.pa
E×X Yp e (x,y) := exy : p(x,y)
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5 Inductive Eliminators

We shall use the notation

let (x1, x2) = s in s1 � E× t1 t2 t3 (λxy.s1) s

for cartesian destructuring. The terms t1, t2, and t3 describing the component types

and the target type function must be inferred from the context.

Exercise 5.10.1 Prove the following facts for pairs a :X×Y using the eliminator E×:

a) (π1a,π2a) = a η-law

b) swap(swap a) involution law

See §1.8 for the definitions of the projections π1 and π2 and the function swap.

Exercise 5.10.2 Use E× to write functions that agree with π1, π2, and swap.

Exercise 5.10.3 By now you know enough to formalize all proofs of Chapter 1 in

computational type theory. Do some of the proofs in Rocq without using the tactics

for destructuring and induction. Apply the eliminators you have seen in this chapter

instead.

5.11 Disequality of Types

The types N and B of booleans and numbers are different since they have different

cardinality: While there are infinitely many numbers, there are only two booleans.

But how can we show this fact in the logical system we have arrived at?

Since B and N both have type T, we can write the propositions N = B and N ≠ B.

So the question is whether we can prove N ≠ B. We can do this with a property

distinguishing the two types (Exercise 4.3.5). We choose the predicate

p(XT) := ∀xyzX . x = y ∨ x = z ∨y = z

saying that a type has at most two elements. It now suffices to prove pB and ¬pN.

With boolean case analysis on the variables x, y , z we can show that p holds for B.

Moreover, we can disprove pN by choosing x = 0, y = 1, and z = 2 and proving

(0 = 1∨ 0 = 2∨ 1 = 2)→ ⊥

by disjunctive case analysis and the constructor laws for 0 and S.

Fact 5.11.1 N ≠ B.

On paper, it doesn’t make sense to work out the proof in more detail since this

involves a lot of writing and routine verification. With Rocq, however, doing the

complete proof is quite rewarding since the writing and the tedious details are taken

care of by the proof assistant. When we do the proof with Rocq, we can see that the

techniques introduced so far smoothly scale to more involved proofs.
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Exercise 5.11.2 Prove the following inequations between types.

a) B ≠ B× B

b) ⊥ ≠ ⊤
c) ⊥ ≠ B

d) B ≠ ⊤
e) P ≠ ⊤
f) B ≠ T

Exercise 5.11.3 Note that one cannot prove B ≠ B×⊤ since one cannot give a pred-

icate that distinguishes the two types. Neither can one prove B = B×⊤.

5.12 Notes

We may accommodate the eliminators in this chapter as abstract constants (§4.5)

hiding their defining equations. The abstract eliminators will be fine when we use

them as proof rules. However, there are two uses of the eliminators where the

reductions provided by the defining equations matter:

• Reducible matches contributing to type checking through the conversion rule.

See the proofs of the constructor laws for B and N (§4.3).

• Local definitions of reducible inductive functions contributing to type checking.

No examples yet.

We remark that the eliminators for conjunction and disjunction

M∧ : ∀XYZP. X ∧ Y → (X → Y → Z)→ Z

M∨ : ∀XYZP. X ∨ Y → (X → Z)→ (Y → Z)→ Z

used in Chapter 3 (Figure 3.2) don’t use target type functions. In fact, there is no

need for target type functions since in ordinary mathematical reasoning proposi-

tions don’t talk about their proofs.

Functions typed with target type functions are polymorphic in the number of

their arguments. For instance:

E⊥N : ⊥ → N

E⊥ (N → N) : ⊥ → N→ N

E⊥ (N → N→ N) : ⊥ → N → N → N

We remark that the proof assistant Rocq automatically derives eliminators for

every inductive type definition it processes. For the inductive types discussed in

this chapter Rocq derives the eliminators we have presented (except for ⊤).
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6 Existential Quantification

An existential quantification ∃xt. s says that the predicate λxt.s is satisfiable, that

is, that there is some u such that the proposition (λxt.s)u is provable. Follow-

ing this idea, a basic proof of ∃xt. s is a pair (u,v) consisting of a witness u : t
and a certificate v : (λxt.s)u. This design may be realized with an inductive type

definition.

We will prove two prominent logical facts involving existential quantification:

Russell’s Barber theorem (a non-existence theorem) and Lawvere’s fixed point theo-

rem (an existence theorem). From Lawvere’s theorem we will obtain a type-theoretic

variant of Cantor’s power set theorem (there is no surjection from a set to its power

set).

6.1 Inductive Definition and Basic Facts

We first assume a formation constant

ex : ∀XT. (X → P)→ P

so that we can write an existential quantifications as function applications (as

usual, X is treated as implicit argument):

∃xt. s � ex (λxt. s)

Next we assume an introduction constant

E : ∀XT∀pX→P∀xX . px → exX p

so that we can prove an existential quantification ∃xt. s by providing a witness u : t
and a certificate v : (λxt.s)u. Finally, we assume an elimination constant

M∃ : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z

so that given a proof of an existential quantification we can prove an arbitrary

proposition Z by assuming that there is a witness and certificate as asserted by

the existential quantification.

We will see that the constants E and M∃ provide us with all the proof rules we

need for existential quantification. As usual, the definitions of the constants are not

needed for proving with existential quantifications.
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6 Existential Quantification

The constants ex and E can be defined with an inductive type definition:

ex (X : T, p : X → P) : P ::= E (x : X, px)

The inductive type definition for ex and E has two parameters where the type of

the second parameter p depends on the first parameter X. This is the first time

we see such a parameter dependence. The inductive definitions for pair types and

conjunctions also have two parameters, but there is no dependency. Also, the def-

inition for existential quantification is the first time we see a parameter (p) that is

not a type. Moreover, the proof constructor E comes with an additional dependency

between its first proper argument x and the type px of its second proper argument.

Again, this is the first time we see such a dependency. Inductive type definitions

with dependencies between parameters and proper arguments of constructors are

standard in computational type theory.

The elimination constant M∃ can now be defined as an inductive function:

M∃ : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z

M∃XpZ (E _ _xa)f := fxa

We now recognize M∃ as the simply typed match function for existential types.

When convenient, we will use the match notation

match s [ Exa⇒ t ] � M∃ _ _ _ s (λxa.t)

for applications of M∃. Note that the propositional discrimination restriction applies

to all inductive propositions exXp.

Figure 6.1 shows a proof table and the constructed proof term for a de Morgan

law for existential quantification. The proof table makes all conversions explicit so

that you can see where they are needed. Each of the two conversions can be justified

with either the η- or the β-law for λ-abstractions. We also have

(∃x.px) = ex(λx.px) = ex(p)

where the first equation is just a notational change and the second equation is by

application of the η-law.

In practice, it is not a good idea to make explicit inessential conversions like the

ones in Figure 6.1. Instead, it is preferable to think modulo conversion. Figure 6.2

shows a proof table with implicit conversions constructing the same proof term.

This is certainly a better presentation of the proof. The second table gives a fair

representation of the interaction you will have with Rocq. In fact, Rocq will immedi-

ately reduce the first two β-redexes you see in Figure 6.1 as part of the proof actions

introducing them. This way there will be no need for explicit conversion steps.
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6.1 Inductive Definition and Basic Facts

X : T, p :X → P ¬(∃x.px)←→ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intro

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px apply Ex

(λx.px)x conversion

px a

2 (∀x.¬px)→ ¬(∃x.px) intro with M∃
f :∀x.¬px, x :X
a : (λx.px)x ⊥ apply fx

px conversion

(λx.px)x a

Proof term: C (λfxa.f (Epxa)) (λfb.match b [ Exa⇒ fxa])

Figure 6.1: Proof of existential de Morgan law with explicit conversions

X : T, p :X → P ¬(∃x.px)←→ ∀x.¬px apply C

1 ¬(∃x.px)→ ∀x.¬px intro

f :¬(∃x.px), x :X, a :px ⊥ apply f
∃x.px Exa

2 (∀x.¬px)→ ¬(∃x.px) intro with M∃
f :∀x.¬px, x :X, a :px ⊥ fxa

Proof term: C (λfxa.f (Epxa)) (λfb.match b [ Exa⇒ fxa])

Figure 6.2: Proof of existential de Morgan law with implicit conversions

Exercise 6.1.1 Prove the following propositions with proof tables and give the re-

sulting proof terms. Mark the proof actions involving implicit conversions.

a) (∃x∃y. pxy)→ ∃y∃x. pxy
b) (∃x.px)→ ¬∀x.¬px
c) ((∃x.px)→ Z) ←→ ∀x. px → Z

d) (∃x.px)∧ Z ←→ ∃x. px ∧ Z

e) (∃x. px∨qx) ←→ (∃x.px)∨ (∃x.qx)
f) ¬¬(∃x.px) ←→ ¬∀x.¬px
g) (∃x.¬¬px) → ¬¬∃x.px
h) ∀XP. X ←→ ∃xX .⊤

Exercise 6.1.2 Give a proof term for (∃x.px)→ ¬∀x.¬px using the constants ex,

E, and M∃. Do not use matches.

Exercise 6.1.3 Verify the following existential characterization of disequality:

x ≠ y ←→ ∃p. px ∧¬py
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6 Existential Quantification

Exercise 6.1.4 Verify the impredicative characterization of existential quantifica-

tion:

(∃x.px)←→ ∀ZP. (∀x. px → Z)→ Z

Exercise 6.1.5 Universal and existential quantification are compatible with propo-

sitional equivalence. Prove the following compatibility laws:

(∀x. px ←→ qx)→ (∀x.px)←→ (∀x.qx)
(∀x. px ←→ qx)→ (∃x.px)←→ (∃x.qx)

Exercise 6.1.6 (Abstract presentation) We have seen that conjunction, disjunction,

and propositional equality can be modeled with abstract constants (§4.7). For exis-

tential quantification, we may use the constants

Ex : ∀XT. (X → P)→ P

E : ∀XT∀pX→P∀xX . px → ExX p

M : ∀XT∀pX→P∀ZP. exp → (∀x. px → Z)→ Z

we have obtained above with inductive definitions.

a) Assuming the constants, prove that the impredicative characterization holds:

exXp ←→ ∀ZP. (∀x. px → Z)→ Z .

b) Define the constants impredicatively (i.e., not using inductive types).

Exercise 6.1.7 (Intuitionistic drinker) Using excluded middle, one can argue that

in a bar populated with at least one person one can always find a person such that

if this person drinks milk everyone in the bar drinks milk:

∀XT∀pX→P. (∃xX .⊤)→ ∃x. px → ∀y.py

The fact follows intuitionistically once two double negations are inserted:

∀XT∀pX→P. (∃xX .⊤)→ ¬¬∃x. px → ∀y.¬¬py

Prove the intuitionistic version.

6.2 Barber Theorem

Nonexistence results often get a lot of attention. Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain them-

selves: ¬∃x∀y. y ∈ x ←→ y ∉ y .
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6.3 Lawvere’s Fixed Point Theorem

2. Turing: There is no Turing machine that halts exactly on the codes of those

Turing machines that don’t halt on their own code: ¬∃x∀y. Hxy ←→ ¬Hyy .

Here H is a predicate that applies to codes of Turing machines such that Hxy
says that Turing machine x halts on Turing machine y .

It turns out that both results are trivial consequences of a straightforward logical

fact known as barber theorem.

Fact 6.2.1 (Barber Theorem)

∀XT∀pX→X→P. ¬∃x∀y. pxy ←→ ¬pyy .

Proof Suppose there is an x such that ∀y. pxy ←→ ¬pyy . Then pxx ←→ ¬pxx.

Contradiction by Russell’s law ¬(X ←→ ¬X) as shown in §3.7. ■

The barber theorem is related to a logical puzzle known as barber paradox.

Search the web to find out more.

Exercise 6.2.2 Give a proof table and a proof term for the barber theorem. Con-

struct a detailed proof with Rocq.

Exercise 6.2.3 Consider the following predicate on types:

p(XT) := ∃fgX→X∀xy. fx = y ∨ gy = x

Prove p(B) and ¬p(N).
Hint: It suffices to consider the numbers 0, 1, 2.

6.3 Lawvere’s Fixed Point Theorem

Another famous non-existence theorem is Cantor’s theorem. Cantor’s theorem says

that there is no surjection from a set into its power set. If we analyse the situation

in type theory, we find a proof that for no type X there is a surjective function

X → (X → B). If for X we take the type of numbers, the result says that the function

type N → B is uncountable. It turns out that in type theory facts like these are best

obtained as consequences of a general logical fact known as Lawvere’s fixed point

theorem.

A fixed point of a function fX→X is an x such that fx = x.

Fact 6.3.1 Boolean negation has no fixed point.

Proof Consider !x = x and derive a contradiction with boolean case analysis on x.■

Fact 6.3.2 Propositional negation λP.¬P has no fixed point.
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6 Existential Quantification

Proof Suppose ¬P = P . Then ¬P ←→ P . Contradiction with Russell’s law. ■

A function fX→Y is surjective if ∀y∃x. fx = y .

Theorem 6.3.3 (Lawvere) Suppose there exists a surjective function X → (X → Y).
Then every function Y → Y has a fixed point.

Proof Let fX→(X→Y) be surjective and gY→Y . Then fa = λx.g(fxx) for some a.

We have faa = g(faa) by rewriting and conversion. ■

Corollary 6.3.4 There is no surjective function X → (X → B).

Proof Boolean negation doesn’t have a fixed point. ■

Corollary 6.3.5 There is no surjective function X → (X → P).

Proof Propositional negation doesn’t have a fixed point. ■

We remark that Corollaries 6.3.4 and 6.3.5 may be seen as variants of Cantor’s

theorem.

Exercise 6.3.6 Construct with Rocq detailed proofs of the results in this section.

Exercise 6.3.7

a) Prove that all functions ⊤ → ⊤ have fixed points.

b) Prove that the successor function S : N→ N has no fixed point.

c) For each type Y = ⊥, B, B× B, N, P, T give a function Y → Y that has no fixed

point.

Exercise 6.3.8 With Lawvere’s theorem we can give another proof of Fact 6.3.2

(propositional negation has no fixed point). In contrast to the proof given with

Fact 6.3.2, the proof with Lawvere’s theorem uses mostly equational reasoning.

The argument goes as follows. Suppose (¬X) = X. Since the identity is a surjec-

tion X → X, the assumption gives us a surjection X → (X → ⊥). Lawvere’s theorem

now gives us a fixed point of the identity on ⊥ → ⊥. Contradiction since the type of

the fixed point is falsity.

Do the proof with Rocq.
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7 Arithmetic Pairing

Cantor discovered that numbers are in bijection with pairs of numbers. Cantor’s

proof rests on a counting scheme where pairs appear as boxes in a plane. Based

on Cantors scheme, we realize the bijection between numbers and pairs with two

functions inverting each other. We obtain an elegant formal development using only

a few basic facts about numbers.

7.1 Definitions

We will construct and verify two functions

E : N× N → N encode

D : N→ N× N decode

that invert each other: D(E(x,y)) = (x,y) and E(Dn)) = n. The functions are

based on the counting scheme for pairs shown in Figure 7.1. The pairs appear as

points in the plane following the usual coordinate representation. Counting starts

at the origin (0,0) and follows the diagonals from right to left:

(0,0) 1st diagonal 0

(1,0), (0,1) 2nd diagonal 1,2

(2,0), (1,1), (0,2) 3rd diagonal 3,4,5

Assuming a function

η : N× N → N× N

that for every pair yields its successor on the diagonal walk described by the count-

ing scheme, we define the decoding function D as follows:

D(n) := ηn(0,0)

The definition of the successor function η for pairs is straightforward:

η(0, y) := (Sy,0)

η(Sx,y) := (x, Sy)

97



7 Arithmetic Pairing

y
...

5 20

4 14 19

3 9 13 18

2 5 8 12 17

1 2 4 7 11 16

0 0 1 3 6 10 15 · · ·
0 1 2 3 4 5 x

Figure 7.1: Counting scheme for pairs of numbers

We now come to the definition of the encoding function E. We first observe that

all pairs (x,y) on a diagonal have the same sum x + y , and that the length of the

nth diagonal is n. We start with the equation

E(x,y) := σ(x +y)+y

where σ(x +y) is the first number on the diagonal x +y . We now observe that

σn = 0+ 1+ 2+ · · · +n

Thus we define σ recursively as follows:

σ(0) := 0

σ(Sn) := Sn+ σn

We remark that σn is known as Gaussian sum.

7.2 Proofs

We will prove E(Dn)) = n and D(Ea) = a. The first equation is easier than the sec-

ond equation. Both directions will profit from an equation saying that the encoding

of the successor of a pair is the successor of the encoding of the pair.

Fact 7.2.1 (Successor equation) E(ηa) = S(Ea) for all pairs a.

Proof Case analysis on a = (0, y), (Sx,y) and straightforward arithmetic. ■

Fact 7.2.2 E(Dn) = n for all numbers n.

Proof By induction on n using Fact 7.2.1 for the successor case. ■
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7.2 Proofs

We now come to the proof of the second equation D(Ea) = a. The difficulty

here is that there is no n we can do induction on. We solve the problem by doing

induction on the number Ea using an auxiliary variable n = Ea.1 We prepare the

necessary case analysis for the induction with three conditional equations for the

encoding function. Two of the equations tell us how we can obtain for Ea = Sn a

pair a′ such that η(Ea′) = a. Note that a′ is clear from the geometric presentation

of the counting scheme.

Fact 7.2.3 (Backwards equations)

1. Ea = 0 → a = (0,0)
2. E (Sx,0) = Sn→ E(0, x) = n
3. E (x, Sy) = Sn→ E(Sx,y) = n

Proof (1) Follows with a = (x,y) and case analysis on x and y using S _ ≠ 0.

(2) follows with (Sx,0) = η(0, x) and Fact 7.2.1. (3) follows with (x, Sy) = η(Sx,y)
and Fact 7.2.1. ■

Fact 7.2.4 D(Ea) = a for all pairs a.

Proof Given the recursive definition of D and E, we need to do an inductive proof.

The idea is to do induction on the number Ea. Formally, we prove the proposition

∀n∀a. Ea = n → Dn = a

by induction on n.

For n = 0, Fact 7.2.3 gives us a = (0,0) making the conclusion trivial.

For the successor case we prove

Ea = Sn → D(Sn) = a

We consider three cases: a = (0,0), (Sx,0), (x, Sy). The case a = (0,0) is trivial

since the premise is contradictory. The other two cases follow with (2) and (3) of

Fact 7.2.3 and the inductive hypothesis. ■

Exercise 7.2.5 (Walking diagonals the other way) The encoding function for

pairs walks diagonals from right to left. One may also walk the diagonals from

left to right. Rework the Rocq development accordingly.

The exercise will help you with your understanding of arithmetic pairing.

The exercise will boost your understanding of the role a proof assistant can play

in a mathematical development. Modifying a development with a proof assistant is

more efficient and more reliable than doing it on paper. Type checking and proof

checking turn out to be very helpful for this task.

1We have seen a similar unfolding step with Kaminski’s equation in §5.6.
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Exercise 7.2.6 (Bijections) A bijection between two types X and Y consists of two

functions fX→Y and gY→X such that ∀x. g(fx) = x and ∀y. f(gy) = y .

a) Give and verify a bijection between N and (N× N)× N.

b) Prove that there is no bijection between B and 1.

c) Prove that there is no bijection between N and N → B.

Exercise 7.2.7 (Internal Arithmetic pairing)

Arithmetic pairing establishes N as a universal type that can represent pairs inter-

nally. To make this insight explicit, define functions

π : N→ N → N π1 : N → N π2 : N → N

such that you can verify the equations

π1(πnk) = n π2(πnk) = k π(π1n)(π2n) = n

for all n and k.

7.3 Discussion

Arithmetic pairing is a great case study at several levels. The magic starts with

the geometrical presentation of the counting scheme, which informally establishes

a computable bijection. All the rest is about formal verification of what we see

geometrically. The first step is the recursive definition of the encoding and decoding

function, which is a nice programming exercise in computational type theory. As it

comes to the verification of the two roundtrip equations, it is clear that both require

induction on numbers. For one of the equations, the number we can do induction

on needs to be explicated. Both inductive proofs hinge on the fact that a successor

function η for pairs is made explicit that commutes with the successor function on

numbers.

The elaboration of the proof in the accompanying Rocq file is enlightening. We

use it to demo several advanced features of the tactic language. As with most proofs

in the text, the informal proofs in this chapter were written only after formal proofs

had been constructed and polished with the proof assistant.

It is interesting to look up Cantor’s pairing function in the mathematical liter-

ature and in Wikipedia, where the computational aspects of the construction are

ignored as much as possible. One typically starts with the encoding function using

the Gaussian sum formula to avoid the recursion. Then injectivity and surjectivity

of the encoding function are shown, which non-constructively yields the existence

of the decoding function. The simple recursive definition of the decoding function

does not appear. The construction presented here is due to Andrej Dudenhefner

(March 2020) who contributed it to Rocq’s standard library.
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7.3 Discussion

What I like about the development of the pairing function is the interplay be-

tween the geometric presentation of the counting scheme and the formalization

with function definitions and proofs. Their is much elegance at all levels. Cantor’s

pairing function could make a great example for an educated Programming 1 course

addressing functional programming and program verification.
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8 Abstract Syntax

Inductive types provide for a tree-structured representation of syntactic objects.

One speaks of abstract syntax if syntactic objects are represented as tree-structured

objects, and of concrete syntax if syntactic objects are represented as character

strings.

As example we consider arithmetic expressions and verify a compiler translating

arithmetic expressions into code for a stack machine. We use a reversible compila-

tion scheme and verify a decompiler reconstructing expressions from their codes.

The example hits a sweet spot of computational type theory: Inductive types pro-

vide a perfect representation for abstract syntax, and structural recursion on the

abstract syntax provides for the definitions of the necessary functions (evaluation,

code execution, compiler, decompiler). The correctness conditions for the functions

can be expressed with equations, and generalized versions of the equations can be

verified with structural induction.

This is the first time we see an inductive type with binary recursion and two in-

ductive hypotheses. Moreover, we see catch-all equations, a notational convenience

for inductive function definitions.

This chapter is our first encounter with lists. Lists are obtained with a recursive

inductive type definition refining the definition of numbers with elements. To be

self-contained, we give a quick introduction to lists.

An important point of the chapter is in explaining that the inductive principles

behind numbers and pairs carry over to lists and expressions. The constructor laws

and the eliminators for lists and expressions can be obtained with the same scheme

we have practiced with numbers and pairs.

8.1 Lists

Finite sequences [x1 , . . . , xn] may be represented as tree-structured values using

two constructors nil and cons:

[] , nil

[x] , cons x nil

[x ,y] , cons x (cons y nil)
[x ,y , z] , cons x (cons y (cons z nil))
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The constructor nil provides the empty list. The constructor cons yields for a

value x and a list representing the sequence [x1 , . . . , xn] a list representing the

sequence [x ,x1 , . . . , xn]. Given a list cons x A, we call x the head and A the tail

of the list. We say that lists provide a nested pair representation of sequences.

Following the above design in type theory, we obtain lists with an inductive type

definition

L(X : T) : T ::= nil | cons (X,L(X))

The type constructor L : T → T gives us a list type L(X) for every base type X. The

value constructor nil : ∀XT. L(X) gives us an empty list for every base type. Finally,

the value constructor cons : ∀XT. X → L(X) → L(X) provides for the construction

of nonempty lists by adding an element in front of a given list. The type of cons

ensures that all elements of a list of type L(X) are of type X.

For nil and cons, we don’t write the first argument X. We use the notations

[] � nil

x :: A � consxA

and omit parentheses as follows:

x :: y :: A � x :: (y :: A)

When convenient, we shall use the sequence notation [x1 , . . . , xn] for lists.

The inductive definition of lists provides for case analysis, recursion, and induc-

tion on lists, in a way that is similar to what we have seen for numbers. We may see

the constructors nil and cons as refinements of the constructors 0 and S.

Concatenation of sequences

[x1, . . . , xm]++ [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]

appends two sequences. You may be familiar with concatenation of strings, which

are sequences of characters.

We provide concatenation of lists with an inductive function

++ : ∀XT. L(X)→ L(X)→ L(X)
[]++B := B

(x :: A)++B := x :: (A++B)

Concatenation of lists is similar to addition of numbers. Two basic laws for addition

are x + 0 and (x + y)+ z = x + (y + z). We prove the list versions A++[] = A and

A++(B++C) = (A++B)++C of the laws. The proofs are very similar to the arithmetic

proofs with induction on lists replacing induction on numbers.
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Fact 8.1.1 (Concatenation with nil) A++[] = A.

Proof By induction on A, which yields the proof obligations

[]++[] = []
(x :: A)++[] = x :: A

The first obligations holds by computational equality. The second obligation sim-

plifies to x :: (A++[]) = x :: A and follows with the induction hypothesis. ■

Fact 8.1.2 (Associativity) A++(B++C) = (A++B)++C .

Proof By induction on A. Check the details with the proof assistant. ■

As with numbers, induction on lists is formalized with an eliminator function

EL : ∀XT∀pL(X)→T. p []→ (∀xA. pA→ p(x :: A))→ ∀A.pA

which is obtained with a scheme generalizing the scheme we have seen for numbers.

Proof assistants will generate a suitable eliminator function when they accept an

inductive type definition.

Exercise 8.1.3 (Eliminator for lists) Define the eliminator function for lists with the

type stated above. Verify that the inductive proofs of Facts 8.1.2 and 8.1.1 can be

formalized with the inductive eliminator function.

Exercise 8.1.4 (Length) Define a length function len : ∀X. L(X) → N for lists and

prove len (A++B) = lenA+ lenB. Note that the length function prunes a list into the

number that remains if one cuts away the elements coming with cons.

Exercise 8.1.5 (Reversal) Define a function rev : ∀X. L(X) → L(X) reversing lists

and prove rev (A++B) = revB++ revA and rev (revA) = A. For instance, we have

rev [1,2,3,4] = [4,3,2,1].

8.2 Expressions and Evaluation

We will consider arithmetic expressions obtained with constants, addition, and sub-

traction. Informally, we describe the abstract syntax of expressions with a scheme

known as a BNF grammar:

e : exp ::= x | e1 + e2 | e1 − e2 (x : N)
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The grammar models expressions as tree-structured objects. Following the gram-

mar, we represent expressions with an inductive type

exp : T ::= con(N) | add(exp,exp) | sub(exp,exp)

Note that the inductive type exp has one value constructor for every form of ex-

pression identified by the grammar.

To ease our presentation, we will write the formal expressions provided by the

inductive type exp using the notation suggested by the BNF. For instance:

e1 + e2 − e3 � sub(add e1e2)e3

We can now define an evaluation function computing the value of an expression:

E : exp→ N

E x := x

E (e1 + e2) := E e1 + E e2

E (e1 − e2) := E e1 − E e2

Note that E is defined with binary structural recursion. Moreover, E is executable.

For instance, E(3+ 5− 2) reduces to 6, and the equation E(3+ 5− 2) = E(2+ 3+ 1)
holds by computational equality.

Exercise 8.2.1 Do the reduction E(3 + 5 − 2) ≻∗ 6 step by step (at the equational

level).

Exercise 8.2.2 (Constructor Laws for expressions) Prove some of the constructor

laws for expressions. For instance, show that con is injective and that add and sub

are disjoint.

Exercise 8.2.3 (Eliminator for expressions) Define an eliminator for expressions

providing for structural induction on expressions. As usual the eliminator has a

clause for each of the three constructors for expression. Since additions and sub-

tractions have two subexpressions, the respective clauses of the eliminator have

two inductive hypotheses. Following this design, the type of the eliminator is

∀p exp→T.

(∀x. p(conx)→
(∀e1e2. pe1 → pe2 → p(add e1e2)→
(∀e1e2. pe1 → pe2 → p(sub e1e2)→
∀e.pe
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8.3 Code and Execution

We will compile expressions into lists of numbers. We refer to the list obtained for

an expression as the code of the expression. The compilation will be such that an

expression can be reconstructed from its code, and that execution of the code yields

the same value as evaluation of the expression.

Code is executed on a stack and yields a stack, where stacks are list of numbers.

We define an execution function RCA executing a code C on a stack A as follows:

R : L(N)→ L(N)→ L(N)
R [] A := A

R (0 :: C) (x1 :: x2 :: A) := R C (x1 + x2 :: A)

R (1 :: C) (x1 :: x2 :: A) := R C (x1 − x2 :: A)

R (SSx :: C) A := R C (x :: A)

R _ _ := []

Note that the function R is defined by recursion on the first argument (the code) and

by case analysis on the second argument (the stack). From the equations defining R
you can see that the first number of the code determines what is done:

• 0 : take two numbers from the stack and put their sum on the stack.

• 1 : take two numbers from the stack and put their difference on the stack.

• SSx : put x on the stack.

The first equation defining R returns the stack obtained so far if the code is ex-

hausted. The last equation defining R is a so-called catch-all equation: It applies

whenever none of the preceding equations applies. Catch-all equations are a nota-

tional convenience that can be replaced by several equations providing the full case

analysis.

Note that the execution function is defined with tail recursion, which can be real-

ized with a loop at the machine level. This is in contrast to the evaluation function,

which is defined with binary recursion. Binary recursion needs a procedure stack

when implemented with loops at the machine level.

Exercise 8.3.1 Do the reduction R[5,7,1][] ≻∗ [2] step by step (doing operations

on numbers in one step).

8.4 Compilation

We will define a compilation function γ : exp → L(N) such that ∀e. R(γe)[] = [Ee].
That is, expressions are compiled to code that will yield the same value as evaluation

when executed on the empty stack.
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We define the compilation function by structural recursion on expressions:

γ : exp→ L(N)
γx := [SSx]

γ(e1 + e2) := γe2++γe1++[0]
γ(e1 − e2) := γe2++γe1++[1]

We now would like to show the correctness of the compiler:

R (γe) [] = [Ee]

The first idea is to show the equation by induction on e. This, however, will fail

since the recursive calls of R leave us with nonempty stacks and partial codes not

obtainable by compilation. So we have to generalize both the possible stacks and the

possible codes. The generalization of codes can be expressed with concatenation.

Altogether we obtain an elegant correctness theorem telling us more about code

execution than the correctness equation we started with. Formulated in words, the

correctness theorem says that executing the code γe++C on a stack A gives the

same result as executing the code C on the stack Ee :: A.

Theorem 8.4.1 (Correctness) R (γe++C) A = R C (Ee :: A).

Proof By induction on e. The case for addition proceeds as follows:

R (γ(e1 + e2)++C) A
= R (γe2++γe1++[0]++C) A definition γ

= R (γe1++[0]++C) (Ee2 :: A) inductive hypothesis

= R ([0]++C) (Ee1 :: Ee2 :: A) inductive hypothesis

= R C ((Ee1 + Ee2) :: A) definition R

= R C (E(e1 + e2) :: A) definition E

The equational reasoning shown tacitly employs conversion and associativity of

concatenation (Fact 8.1.2). The details can be explored with the proof assistant. ■

Corollary 8.4.2 R (γe) [] = [Ee].

Proof Theorem 8.4.1 with C = A = [] and Fact 8.1.1. ■

Exercise 8.4.3 Do the reduction γ(5−2) ≻∗ [4,7,1] step by step (at the equational

level).

Exercise 8.4.4 Explore the proof of the correctness theorem starting with the proof

script in the accompanying Rocq development.
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8.5 Decompilation

We now define a decompilation function that for all expressions recovers the expres-

sion from its code. This is possible since the compiler uses a reversible compilation

scheme, or saying it abstractly, the compilation function is injective. The decompi-

lation function closely follows the scheme used for code execution, where this time

a stack of expressions is maintained:

δ : L(N)→ L(exp)→ L(exp)

δ [] A := A

δ (0 :: C) (e1 :: e2 :: A) := δ C (e1 + e2 :: A)

δ (1 :: C) (e1 :: e2 :: A) := δ C (e1 − e2 :: A)

δ (SSx :: C) A := δ C (x :: A)

δ _ _ := []

The correctness theorem for decompilation closely follows the correctness the-

orem for compilation.

Theorem 8.5.1 (Correctness) δ (γe++C) B = δ C (e :: B).

Proof By induction on e. The case for addition proceeds as follows:

δ (γ(e1 + e2)++C) B
= δ (γe2++γe1++[0]++C) B definition γ

= δ (γe1++[0]++C) (e2 :: B) inductive hypothesis

= δ ([0]++C) (e1 :: e2 :: B) inductive hypothesis

= δ C ((e1 + e2) :: B) definition δ

The equational reasoning tacitly employs conversion and associativity for concate-

nation ++. ■

Corollary 8.5.2 δ (γe) [] = [e].

8.6 Notes

The semantics of the expressions and codes considered here is particularly simple

since evaluation of expressions and execution of codes can be accounted for by

structural recursion.

Expressions are represented as abstract syntactic objects using an inductive

type. Inductive types are the canonical representation of abstract syntactic objects.
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A concrete syntax for expressions would represent expressions as strings. While

concrete syntax is important for the practical realization of programming systems,

it has no semantic relevance.

Early papers (late 1960’s) on verifying compilation of expressions are McCarthy

and Painter [25] and Burstall [6]. Burstall’s paper is remarkable because it seems to

be the first exposition of structural recursion and structural induction. Compilation

of expressions appears as first example in Chlipala’s textbook [7], where it is used

to get the reader acquainted with Rocq.

The type of expressions is the first inductive type in this text featuring binary

recursion. This has the consequence that the respective clauses in the induction

principle have two inductive hypotheses. We find it remarkable that the generaliza-

tion from linear recursion (induction) to binary recursion (induction) comes without

intellectual cost.
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In computational type theory one can write function types that specify the input-

output relation of their functions. We speak of certifying function types and of

certifying functions. When proving properties of a certifying function, one ignores

its definition and relies on its type. For this reason, we will accommodate certifying

functions with abstract constants.

Certifying functions are at the heart of type theory and will play a main role

from now on. As it turns out, language used for mathematical proofs generalizes

to language for constructing certifying functions.

Certifying functions are the computational analogue of propositional lemmas.

Like lemmas, they come as abstract constants whose definition does not matter for

their use. Like lemmas, certifying functions are constructed with informal argu-

ments providing for their formal construction in tactic mode. As with lemmas, the

details of the formal definition of certifying functions do not matter.

The types of certifying functions are often obtained with sum types and sigma

types, which are computational variants of propositional disjunctions and existen-

tial quantifications. To keep the amount of new ideas digestible, we postpone the

discussion of sigma types to the next chapter.

One important application of sum type are certifying equality deciders. We refer

to types having a certifying equality decider as discrete types. We will see that the

class of discrete types is closed under taking product types and under taking sum

types. Moreover, discrete types are closed under taking injective preimages.

9.1 Sum Types

Sum types are a basic type construction and it is about time we introduce them.

Like product types X × Y sum types X + Y combine two types X and Y . However,

sum types are dual to product types in that their elements carry a value of one of

the types rather than values of both types. Sum types may be seen as disjoint type

unions. The propositional versions of sum types and product types are conjunc-

tions and disjunctions.
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We define the family of sum types inductively as follows:1

+ (X : T, Y : T) : T ::= L(X) | R(Y)

The definition gives us 3 constructors:

+ : T → T → T

L : ∀XYT. X → X + Y
R : ∀XYT. Y → X + Y

A value of a sum type X + Y carries a value of X or a value of Y , where the infor-

mation which alternative is present can be used computationally. The elements of

sum types are called variants.

Sum types are computational variants of disjunctions. In contrast to disjunc-

tions, sum types are not restricted to propositions and are not subject to the dis-

crimination restriction.

A simply typed eliminator for sum types has the type

∀XYZT. X + Y → (X → Z)→ (Y → Z)→ Z

We will see destructurings where a simply typed eliminator doesn’t suffice. We

define a dependently typed eliminator for sum types as follows:

E+ : ∀XYT∀pX+Y→T. (∀x.p(Lx))→ (∀y.p(Ry))→ ∀a. pa

E+XYpe1e2 (Lx) := e1x

E+XYpe1e2 (Ry) := e2y

We can use sum types to construct finite types of any cardinality:

⊥ no element

⊥+ 1 1 element

(⊥+ 1)+ 1 2 elements

((⊥+ 1)+ 1)+ 1 3 elements

Exercise 9.1.1 Give all elements of the type ((⊥ + 1) + 1) + 1 and prove that your

enumeration is complete: ∀a((⊥+1)+1)+1. a = R I ∨ · · · .

Exercise 9.1.2 (Constructor laws for sum types)

Prove the constructor laws for sum types:

a) Lx ≠ Ry .

b) Lx = Lx′ → x = x′.
c) Ry = Ry ′ → y = y ′.
Hint: The techniques used for numbers (Figure 4.2) also work for sums.

1Relying on the context for disambiguation, we reuse the names L and R also used for the proof
constructors of disjunctions.
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Exercise 9.1.3 Define a truncation function T : ∀XY. X + Y → B such that

∀a. if Ta then (∃x.a=Lx) else (∃y.a=Ry).

9.2 Proving at Type Level

It will be handy to have equivalence types:

X a Y := (X → Y)× (Y → X)

A value of an equivalence type Xa Y is a pair of two functions translating between

the types X and Y . For instance, the equivalence types

(X × Y → Z) a (X → Y → Z)

(X + Y → Z) a (X → Z)× (Y → Z)

(X → Y × Z) a (X → Y)× (X → Z)

are inhabited for all types X, Y , Z .

Equivalence types Xa Y are similar to equivalence propositions P ←→ Q. Equiv-

alence types Xa Y are more general than equivalence propositions P ←→ Q in that

they can take all types as arguments and not just propositions.

It is often advantageous to approach the construction of a value of a type X as a

proof of X. For instance, the construction of a value of the type equivalence

∀XYZT. (X × Y → Z) a (X → Y → Z)

is at a certain abstraction level identical with a proof of the propositional equiva-

lence

∀XYZP. (X ∧ Y → Z) ←→ (X → Y → Z)

The advantage of taking the proof view for types is that the construction of a value

can be done at the proof level rather than at the term level. As we know from

propositions, writing an informal proof that can be elaborated into a formal proof

is much easier than writing a formal proof. Moreover, the elaboration of informal

proofs into formal proofs is greatly assisted by the tactic interpreter of a proof

assistant. It is now time to acknowledge that the tactic interpreter of Rocq works for

types in general, not just propositions. The only significant difference between the

propositional and the general level is the propositional discrimination restriction,

which imposes extra conditions on propositional destructuring.

Exercise 9.2.1 Prove the following type equivalences:

a) ∀XYZT. (X × Y → Z) a (X → Y → Z)

b) ∀XYZT. (X + Y → Z) a (X → Z)× (Y → Z)
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Exercise 9.2.2 Prove the following types:

a) ∀bB. (b = true)+ (b = false).

b) ∀xyB. x & y = false a (x = false)+ (y = false).

c) ∀xyB. x | y = true a (x = true)+ (y = true).

The above types can all be shown by boolean case analysis. To see the dramatic

reduction of formal detail obtained by using proof-oriented language construct the

functions asked for at the term level.

Exercise 9.2.3 Prove that double negated disjunction agrees with double negated

sum: ¬¬(P ∨Q)←→ ¬(P +Q → ⊥).

Exercise 9.2.4 (Functional characterization)

Prove X + Y a ∀ZT. (X → Z)→ (Y → Z)→ Z .

Note that the equivalences is analogous to the impredicative characterization of

disjunctions.

Exercise 9.2.5 Construct a truncation function ∀PQP. P +Q → P ∨Q for sum

types. Note that a converse function ∀PQP. P ∨Q → P +Q cannot be obtained

because of the propositional discrimination restriction.

9.3 Decision Types

An important application of sum types are so-called decision types:

D(XT) : T := X + (X → ⊥)

A value of typeD(X) is a decision carrying either an element of X or a proof X → ⊥
verifying that X is void. In particular, if X is a proposition, a decision of type D(X)
carries either a proof of X or a proof of ¬X.

If we have a decision D(X), we call X a decided type. It turns out that ⊥ and 1
are decided types, and that decided types are closed under taking function types,

product types and sum types. Moreover, decided types are closed under type equiv-

alence. Finally, decided propositions are closed under the propositional connectives

and propositional equivalence.
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Fact 9.3.1 (Closure laws for decided types)

1. D(1) and D(⊥).
2. ∀XYT. D(X)→D(Y)→D(X → Y).

3. ∀XT. D(X)→D(X → ⊥).
4. ∀XYT. D(X)→D(Y)→D(X × Y).
5. ∀XYT. D(X)→D(Y)→D(X + Y).
6. ∀XYT. (Xa Y)→D(X)→D(Y).
7. ∀XYP. D(X)→D(Y)→D(X ∧ Y).
8. ∀XYP. D(X)→D(Y)→D(X ∨ Y).

Proof The proofs are identical with the propositional proofs where + and a are

replaced with ∨ and a. ■

Exercise 9.3.2 Prove Fact 9.3.1 with the proof assistant.

Exercise 9.3.3 Prove ∀XYT. (Xa Y)→ (D(X)aD(Y)).

Exercise 9.3.4 Prove ∀XT fX→B xX . D(fx = true).

Exercise 9.3.5 Prove ∀XT. (D(X)→ ⊥)→ ⊥.

9.4 Certifying Functions

Our lead example for certifying functions are certifying equality deciders for num-

bers:

∀xyN. (x = y)+ (x ≠ y)

Functions of this type take two numbers and decide whether they are equal. The

decision is returned with a proof asserting the correctness of the decision. When

convenient, we will refer to such proofs as certificates.

Constructing a certifying equality decider for numbers in tactic mode is routine.

In fact, we have carried out the construction before (Fact 5.9.1) for the proposition

∀xyN. (x = y)∨ (x ≠ y).

Fact 9.4.1 ∀xNyN. (x = y)+ (x ≠ y).

Proof By induction on x and case analysis on y with y quantified in the inductive

hypothesis. There are four cases which follow with the constructor laws for num-

bers. The most interesting case is the successor-successor case, where we need to

show (Sx = Sy)+ (Sx ≠ Sy) given the inductive hypothesis (x = y)+ (x ≠ y). If

we have x = y , we also have Sx = Sy . If we have x ≠ y , Sx ≠ Sy follows with the

injectivity of S. ■
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Suppose we have a function F : ∀xyN. (x = y)+(x ≠ y). Then we know exactly

what F gives us without knowing how F is defined. So we can use F in proofs

without knowing its definition. The situation is the same as with a propositional

lemma L : ∀xyN. (x = y)∨ (x ≠ y) that we use without knowing its proof. Recall

that we call defined constants with a propositional type lemmas if their definition

is blocked for reduction. We now generalize the notion of a lemma such that it

can have any type. We will use the term certifying functions for lemmas with a

non-propositional functional type.

Recall that the type of a lemma serves as in interface between the uses of a

lemma and possible proofs of the lemma. As with a software interface, the type of

a lemma decouples uses of the lemma from proofs of the lemma.

In practice, most functions we construct in computational type theory are ac-

commodated as certifying functions or propositional lemmas. Accommodating a

function as a lemma is perfect whenever we have a relational specification of the

function. Nevertheless, there are important cases where a function is best speci-

fied with defining equations. Example are the basic operations on numbers (e.g.,

addition) and booleans (e.g., boolean negation).

An interesting kind of functions are eliminators. They are always defined as in-

ductive functions with defining equations. However, when we destructure assump-

tions and do case analysis and induction in proofs, we apply the eliminators without

using their defining equations. So we could restrict the use of eliminators in proofs

to irreducible versions hiding their definitions. There remains one important use of

reducible eliminators in that they facilitate local definitions of inductive functions.

To summarize, we will see many certifying functions from now on, and we will

always construct them in tactic mode.

Exercise 9.4.2

a) Construct a certifying equality decider F : ∀xyB. (x = y)+ (x ≠ y).
b) Prove ∀xy. if Fxy then x = y else x ≠ y .

c) Define a boolean equality decider f B→B→B and prove

∀xy. if fxy then x = y else x ≠ y .

d) Prove ∀xy. fxy = if Fxy then true else false.

9.5 Certifying Equality Deciders

A certifying equality decider for a type X is a function

∀xyX . D(x = y)

Given two values of type X, a certifying equality deciders decides whether the val-

ues are equal and returns its decision together with a certificate (a proof that the
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decision is correct).

We say that a type is discrete if it has a certifying equality decider. It will be con-

venient to have a notation for the type of certifying equality deciders for a type X:

E(X) := (∀xyX . D(x = y))

Formally, E is a plain function T → T.

It turns out that ⊥, 1, B, and N are discrete types, and that discrete types are

closed under taking product types and sum types.

Fact 9.5.1 (Transport of equality deciders)

1. E(⊥), E(1), E(B), E(N).
2. ∀XYT. E(X)→ E(Y)→ E(X × Y).
3. ∀XYT. E(X)→ E(Y)→ E(X + Y).
4. ∀XYT. E(X + Y)→ E(X).
5. ∀XYT. E(X × Y)→ Y → E(X).
6. ∀XYT. E(X × Y)→ E(Y ×X).
7. ∀XYT. E(X + Y)→ E(Y +X).

Proof E(N) is Fact 9.4.1. The remaining claims are left as exercises. ■

Discrete types are also closed under injective preimages.

Fact 9.5.2 (Transport)

Injective functions transport equality deciders backwards:

∀XYT∀fX→Y . injective f→ E(Y)→ E(X).

Exercise 9.5.3 Proof Facts 9.5.1 and 9.5.2.

Exercise 9.5.4 Prove E(1 → ⊥).

Exercise 9.5.5 (Boolean equality)

Define an inductive function fN→N→B testing equality of numbers and prove

∀xy. if fxy then x = y else x ≠ y .

9.6 Computational Decidability

Computational type theory is designed such that every definable function is algo-

rithmically computable. Thus we can prove that predicates are computationally de-

cidable within computational type theory by constructing (certifying) deciders for

them. Decidability proofs in computational type theory are formal computability
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proofs that avoid the unmanageable formal details coming with explicit models of

computation (e.g., Turing machines).

We call a predicate decidable if it has a certifying decision function:

dec (pX→T) := ∀x. D(px)

Decidable predicates are algorithmically decidable. Moreover, every decidable

predicate p is logically decidable in that it satisfies the law of excluded middle

∀x. px ∨¬px.

The above definition of dec(p) is for unary predicates. It can be extended to

predicates with two arguments:

dec2 (pX→Y→T) := ∀xy. D(pxy)

We can also define dec0(X) := D(X). We remark that type theory cannot express a

uniform and readable definition of a type family decn for n ≥ 0.

So far we have focussed on deciders for the equality predicate. We have seen

that the data types ⊥, 1, B, and N have equality deciders, and that this extends to

their closure under product and sum types and injective preimages.

We remark that type theory can easily express undecidable predicates. We will

formalize Post correspondence problem with an inductive predicate in §15.6.
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Sigma types are dependent pair types. Sigma types are obtained with a type function

pX→T and take as values pairs (x,y) with x :X and y :px. Sigma types are the

computational version of the propositional types for existential quantification.

Sigma types are essential for certifying function types. Given a relation pX→Y→P,

we can write the function type ∀x.Σy.pxy whose functions take an argument xX

and yield a result yY such that pxy . More precisely, functions of type∀x.Σy.pxy
yield for every x a pair (y,a) where a : pxy . A concrete example we will consider

is a certifying function type

∀xN. Σn. (x = 2 ·n)+ (x = 2 ·n+ 1)

for division by 2. Functions of this type take a number x and yield the Euclidean

quotient of x/2. Moreover, functions of this type decide whether there is a remain-

der and yield a proof for the correctness of the result (a certificate).

We can translate a certifying function into a simply typed function and a cor-

rectness proof. The translation from simply typed to certified is also possible. For

certifying deciders, we can state the presence of the translations with the computa-

tional equivalence

(∀x. D(px)) a (ΣfX→B.∀x. px ←→ fx = true)

We will define a truncation operator □X that for a type X yields a proposition □X
that is provable if and only if X is inhabited. Using truncation, the correspondence

between disjunctions and sum types and existential quantifications and sigma types

can be expressed with the propositional equivalences

(P ∨Q) ←→ □(P +Q)
(∃x.px) ←→ □(Σx.px)

10.1 Dependent Pair Types

We have seen pair types (better known a product types)

(x,y) : X × Y

119



10 Certifying Functions and Sigma Types

fixing the types X and Y of their components a priori. Dependent pair types

(x,y) : sigp

employ a type function pX→T and admit all pairs (x,y) such that x :X and y :px.

Thus a dependent pair type doesn’t fix the type of the second component a priory

but instead determines it for each pair depending on the first component.

Dependent pair types sigp are usually written as

ΣxX .px

using a quantifier-style notation emphasizing the relationship with existential quan-

tifications ∃xX . px and dependent function types ∀xX . px. All three type families

accommodate a type dependency with a type function p and generalize their sim-

ply typed versions X × Y , X ∧ Y , and X → Y . Note that function types are native

to the type theory while pair types, conjunctions, and existential quantifications are

obtained as inductive types.

The inductive definition of dependent pair types is now routine:

sig (X : T, p : X → T) : T ::= E (x : X, px)

The definition yields a type constructor and a value constructor as follows:

sig : ∀XT. (X → T)→ T

E : ∀XT∀pX→T∀xX . px → sigX p

We will write (x,a) or (x,a)p for a dependent pair EXpxa and call x and a the

first and second component of the pair. When p is a predicate, we may refer to x
as the witness and to a as the certificate, as we did for existential quantification.

We often write ΣxX .px for sigX p. Following common speak, we will often refer to

dependent pair types as sigma types.

We define the universal eliminator for sigma types:

EΣ : ∀XT∀pX→T∀qsigp→T. (∀xy. q (x,y))→ ∀a.qa
EΣX pq e (x,y) := exy

There is considerable typing bureaucracy but the basic idea is familiar from product

types X ×Y and existential quantifications ∃xX . px: If we have a pair s : sigX p, we

can assume x and y and replace s with (x,y). This idea becomes apparent with

the simple type

(∀xX . px → Z)→ (sigX p → Z)

Using the eliminator with the simple type suffices whenever s : sigX p occurs only

once in the context we are working in.

We extend the correspondence table between propositional type constructors

and computational type constructors with ∀, ∃, and Σ:
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10.2 Certifying Division

∀ → + × Σ a computational types in T
∀ → ∨ ∧ ∃ ←→ propositional types in P

10.2 Certifying Division

We discuss certifying division as our lead example for certifying functions whose

target type is a sigma type:

∀xN. Σn. (x = 2 ·n)+ (x = 2 ·n+ 1)

A function of this type takes a number x and returns the Euclidean quotient n of x
and 2 together with a decision of whether x is even or odd. In each case a certificate

(i.e., correctness proof) is provided.

Proving that there is a certifying division function of the given type is straight-

forward. As it comes to the informal proof, there is no difference to proving the

propositional version obtained by replacing Σ with ∃ and + with ∨.

Fact 10.2.1 ∀xN. Σn. (x = 2 ·n)+ (x = 2 ·n+ 1).

Proof By induction on x. For the zero case x = 0, we choose n = 0 and prove

x = 2 · 0. For the successor case x = Sx′, the inductive hypothesis gives us n such

that (x′ = 2·n)+(x′ = 2·n+1). If x′ = 2·n, we have x = 2·n+1. If x′ = 2·n+1,

we have x = 2 · Sn. ■

We remark that the proof uses simply typed applications of the eliminators for

sigma and sum types for destructuring the inductive hypothesis. As usual we do

not mention these type-theoretic details.

Fact 10.2.2 Let F : ∀xN. Σn. (x = 2 ·n)+ (x = 2 ·n+1) and D and M be functions

N → N defined as follows:

Dx := let (n, _) = Fx in n

Mx := let (_, a) = Fx in if a then 0 else 1

Then ∀x. x = 2 ·Dx +Mx and ∀x. Mx ≤ 1.

Proof The let expressions used in the definitions of D and M are notation for sim-

ply typed applications of the eliminator for sigma types. The conditional in the

definition of M is notation for a simply typed application of the eliminator for sum

types.

We fix x and prove x = 2 ·Dx +Mx and Dx ≤ 1. Let Fx = (n,a).
If a = L_, we have x = 2 · n, Dx = n, and Mx = 0. Thus x = 2 ·Dx +Mx and

Mx ≤ 1.

If a = R_, we have x = 2 · n + 1, Dx = n, and Mx = 1. Thus x = 2 ·Dx +Mx
and Mx ≤ 1. ■
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10 Certifying Functions and Sigma Types

The type-theoretic details of the proof can be elaborated and verified with a proof

assistant. On paper, one follows mathematical intuition and ignores type-theoretic

details as done above. In case of doubt, one elaborates the informal proof with a

proof assistant.

We provide a few remarks on the type-theoretic details of the above proof. The

equation x = 2 · Dx +Mx is shown after unfolding of D and M (conversion rule)

by destructuring Fx into (n,a) (dependently typed application of eliminator for

sigma types) and destructuring a (simply typed application of the eliminator for

sum types). If interested, elaborate the proof with the proof assistant so that all de-

structuring is done by explicitly applying the eliminators for sigma and sum types.

Note that Fact 10.2.2 makes explicit that a definition of the assumed certifying

division function F is not available for the proof.

We remark that in tactic mode eliminators are typically used as certifying

functions whose definition is not needed (here the eliminators for numbers in

Fact 10.2.1, and the eliminators for sum types and sigma types in Fact 10.2.2). The

exception are the applications of the eliminators in the local definitions of D and M
in Fact 10.2.2, where the defining equations of the eliminators are needed for the

proof.

Exercise 10.2.3 (Certifying distance function)

Prove ∀xyN ΣzN. (x + z = y)∨ (y + z = x).
Hint: Induction on x with y quantified.

Exercise 10.2.4 (Equational match function for numbers)

Construct a certifying function ∀xN. (x = 0)+ (Σk. x = Sk).

Exercise 10.2.5 (Equational match function for sum types)

Construct a certifying function ∀aX+Y . (Σx. a = Lx)+ (Σy. a = Ry).

Exercise 10.2.6 (Certifying division by 2)

Assume a function F : ∀xN Σn. (x = 2n)+ (x = 2n+ 1).

a) Use F to define a function that for a number x yields a pair (n, k) such that

x = 2n+ k and k is either 0 or 1. Prove the correctness of your function.

b) Use F to define a function N → B that tests whether a number is even. Prove the

correctness of your function.

Exercise 10.2.7 (Certifying division by 2)

Define a recursive function N → N× B such that

∀x. let (n, b) = fx in x = 2 ·n+ if b then 0 else 1

Verify the correctness statement.
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Exercise 10.2.8 (Functional characterization)

Prove sigp a ∀ZT. (∀x. px → Z) → Z . Note that the equivalence is analogous to

the impredicative characterization of existential quantification.

Exercise 10.2.9 Prove that double negated existential quantification agrees with

double negated sigma quantification: ¬¬exp ←→ ¬¬sigp.

Exercise 10.2.10 Define a function ∀XT∀pX→P. sigp → exp. Note that a converse

function exp → sigp cannot be defined because of the propositional discrimination

restriction.

10.3 Translation Theorems

We can translate between certifying and boolean deciders for types and equality.

Using sigma types, we can state this fact formally.

Recall the notation for certifying deciders for type functions:

dec (pX→T) := ∀x. D(px)

A function of type dec (pX→T) decides for every x whether the type px is inhabited.

In case px is inhabited, a witness is returned, and otherwise a proof px → ⊥.

Fact 10.3.1 (Decider translations)

1. ∀XT. E(X)a ΣfX→X→B.∀xy. x = y ←→ fxy = true

2. ∀X∀pX→T. decpa ΣfX→B.∀x. pxa fx = true

Proof We argue (1), claim (2) is similar.

Suppose we have certifying equality decider d for X. Then

fxy := if dxy then true else false

satisfies the equivalence.

Suppose we have a boolean function f deciding equality on x. Then we have px
if fxy = true, and px → ⊥ if fxy = false. ■

Often it is convenient to specify a function fX→Y with a type function pX→Y→T

such that ∀x.px(fx). Given the specification, we may construct either a simply

typed function f as specified, or a certifying function F : ∀x.Σy.pxy giving us

both f and its correctness proof. In most cases it turns out that constructing a

certifying function F : ∀x.Σy.pxy first is the way to go. For a concrete example

consider the type function λxn. (x = 2 ·n)+ (x = 2 ·n+ 1) specifying a certifying

division function as discussed in §10.2
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10 Certifying Functions and Sigma Types

Fact 10.3.2 (Skolem translations)

∀XYT∀pX→Y→T. (∀x Σy. pxy)a (Σf .∀x. px(fx)).

Proof Suppose we have a certifying function F : ∀x Σy. pxy . Then

fx := let (y, _) = Fx in y

satisfies px(fx) for all x. The other direction is obvious since px(fx). ■

We speak of Skolem translations since there is a ressemblance with Skolem func-

tions in first-order logic.

You may have noticed that in the proofs of the translation theorems we omit-

ted all type-theoretical details. Discussing them on paper would just be too boring.

As always, we recommend stepping through the accompanying Rocq scripts. The

scripts in turn hide considerable type-theoretic detail since they rely on Rocq’s de-

structuring facilities. If you want to see more, do the proofs following the scripts

but do all destructuring with explicit eliminator applications.

10.4 Projections

We assume a type function p : X → T and define projections yielding the first and

the second component of a dependent pair asigp :

π1 : sigp → X π2 : ∀asigp. p(π1a)

π1 (x,y) := x π2 (x,y) := y

Note that the type of π2 is given using the projection π1. The use of π1 is necessary

since the type of the second component of a depends on the first component of a.

Type checking the defining equation of π2 requires a conversion step applying the

defining equation of π1.

Fact 10.4.1 (Eta Law) ∀asigp. a = (π1a,π2a).

Proof By computational equality after destructuring of a. ■

Using the projections we can describe the Skolem translations from Fact 10.3.2

concisely as terms.

λF. (λx.π1(Fx), λx.π2(Fx)) : (∀x Σy. pxy)→ (Σf .∀x. px(fx))
λax. (π1ax, π2ax) : (Σf .∀x. px(fx))→ (∀x Σy. pxy)

We emphasize that in practice one would establish the Skolem translations in tactic

mode (see Fact 10.3.2). Still writing the term descriptions using a proof assistant is

fun and demonstrates the smooth working of implicit argument inference and type

conversion.
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Exercise 10.4.2 Define a simply typed match function

∀XT∀pX→T∀ZT. sigp → (∀x. px → Z)→ Z

using the projections π1 and π2.

Exercise 10.4.3 Construct the eliminator for sigma types as a certifying function

using the projections and the eta law (Fact 10.4.1).

Exercise 10.4.4 Express the projections π1 and π2 for sigma types with terms t1
and t2 using the eliminator EΣ such that π1 ≈ t1 and π2 ≈ t2.

Exercise 10.4.5 (Certifying Distance)

Assume a function D : ∀xyN Σz. (x+z = y)+(y+z = x) and prove the following:

a) π1(Dxy) = (x −y)+ (y − x).
b) π1(D 3 7) = 4.

c) x −y = if π2(Dxy) then 0 else π1(Dxy).

Note that a definition of D is not needed for the proofs since all information needed

about D is in its type. Hint: For (a) and (c) discriminate on Dxy and simplify. What

remains are equations involving truncating subtraction only.

Exercise 10.4.6 (Propositional Skolem) Due to the propositional discrimination re-

striction for existential quantification, the direction → of the Skolem correspon-

dence cannot be shown for all types X and Y if Σ-quantification is replaced with ex-

istential quantification. (The unprovability persists if excluded middle is assumed.)

There are two noteworthy exceptions. Prove the following:

a) ∀YT∀pB→Y→P. (∀x∃y. pxy)→ ∃f ∀x. px(fx).
b) ∀XT∀YP∀pX→Y→P. (∀x∃y. pxy)→ ∃f ∀x. px(fx).
Remarks: (1) The boolean version (a) generalizes to all finite types X presented with

a covering list. (2) The unprovability of the propositional Skolem correspondence

persists if the law of excluded is assumed. The difficulty is in proving the existence

of the function f since functions must be constructed with computational princi-

ples. (3) In the literature, f is often called a choice function and the direction → of

the Skolem correspondence is called a choice principle.

Exercise 10.4.7 (Existential quantification) Existential quantifications exXp are

subject to the propositional discrimination restriction if and only if X is not a propo-

sitional types. Thus a function extracting the witness can only be defined if X is a

proposition.

a) Define projections π1 and π2 for quantifications exXp where X is a proposition.

b) Prove a = E (π1a)(π2a) for all a : exXp where X is a proposition.
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Exercise 10.4.8 (Injectivity laws)

One would think that the injectivity laws for dependent pairs

Exy = Ex′y ′ → x = x′

Exy = Exy ′ → y = y ′

are both provable. While the first law is easy to prove, the second law cannot be

shown in general in computational type theory. This certainly conflicts with intu-

itions that worked well so far. The problem is with subtleties of dependent type

checking and conversion. In Chapter 29, we will show that the second injectivity

law holds if we assume proof irrelevance, or if the type of the first component is

discrete.

a) Prove the first injectivity law.

b) Try to prove the second injectivity law. If you think you have found a proof on

paper, check it with Rocq to find out where it breaks. The obvious proof idea

that rewrites π2(Exy) to π2(Exy ′) does not work since there is no well-typed

rewrite predicate validating the rewrite.

10.5 Truncation

We define a type constructor □ : T → P mapping a type X to a proposition □X such

that the proposition □X is provable if and only if the type X is inhabited:

□(X : T) : P ::= T(X)

We refer to a proposition □X as truncation of X. We may read a truncation □X
as “X is inhabited”. If X is a computational type, a truncation Tx : □X disables

the computational facilities coming with the inhabitant x : X. This is due to the

propositional discrimination restriction for □X and matters if X is a sum type or a

sigma type.

As one would expect, conjunction, disjunction, and existential quantification can

be characterized by the truncations of their computational counterparts (pair types,

sum types, and sigma types).

Fact 10.5.1 (Logical truncations)

1. (P ∧Q) ←→ □(P ×Q).
2. (P ∨Q) ←→ □(P +Q).

We obtain truncation with an inductive predicate. Alternatively, truncation can

be obtained with existential quantification or impredicatively with function types.
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Fact 10.5.2 (Characterizations of truncation)

1. ∀XT. □X ←→ ∃xX .⊤
2. ∀XT. □X ←→ ∀ZP. (X → Z)→ Z

3. ∀PP. □(P)←→ P

Exercise 10.5.3 Define a simply typed match function for inhabitation types and

prove Facts 10.5.1 and 10.5.2. Moreover, prove ∀PP. □(P)←→ P .

Exercise 10.5.4 Prove the following truncation laws for all types X:

a) X → □X

b) □X → (X → □Y)→ □Y

c) ¬□X ←→ ¬X
d) □X → ¬¬X
e) XM → □X ∨¬X

Exercise 10.5.5 (Advanced material) We define the type functions

choice X Y := ∀pX→Y→P. (∀x∃y.pxy)→ ∃f ∀x.px(fx)
witness X := ∀pX→P. exp → sigp

You will show that there are translations between ∀XYT. choice X Y and

□(∀XT. witness X). The translation from choice to witness needs to navigate

cleverly around the propositional discrimination restriction. The presence of the

inhabitation operator is essential for this direction.

a) Prove □(∀XT. witness X)→ (∀XYT. choice X Y).

b) Prove (∀XYT. choice X Y)→ □(∀XT. witness X).

c) Convince yourself that the equivalence

(∀XYT. choice X Y)←→ □(∀XT. witness X)

is not provable since the two directions require different universe levels for X
and Y .

Hints. For (a) use f := λx. π1(WY(px)(Fx)) where W is the witness operator and F
is the assumption from the choice operator. For (b) use the choice operator with

the predicate λaΣ(X,p).exp. λb Σ(X,p). sigp. π1a = π1b where pX→P. Keeping the argu-

ments of the predicate abstract makes it possible to obtain the choice function f
before the inhabitation operator is removed. The proof idea is taken from the Rocq

library ChoiceFacts.
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10.6 Notes

Sum and sigma types may be seen as computational variants of disjunctions and

existential quantifications. While sum types provide disjoint unions of types, sigma

types are dependent pair types where the type of the second component depends

on the first component (similar to a dependent function type where the type of the

result depends on the argument). With sum and sigma types we can write function

types specifying an input-output relation. Using such informative function types,

we can construct functions together with their correctness proofs, which often is

superior to a separate construction of the function and the correctness proof. We

speak of certifying functions if the type of the function includes the relational speci-

fication of the function. It turns out that the abstract techniques for proof construc-

tion (e.g., induction) apply to the construction of certifying functions starting from

their types, thus eliminating the need to start with defining equations. Certifying

functions are an essential feature of constructive type theories having no equivalent

in set-theoretic mathematics. With informative types we can describe computational

situations often lacking adequate descriptions in set-theoretic language.

Mathematics comes with a rich language for describing proofs. Using this lan-

guage, we can write informal proofs for human readers that can be elaborated into

formal proofs when needed. The tactic level of the Rocq proof assistant provides an

abstraction layer for the elaboration of informal proofs making it possible to dele-

gate to the proof assistant the type-theoretic details coming with formal proofs.

It turns out that the idea of informal proof extends to the construction of

certifying functions, which are functions whose type encompasses an input-output

relation. The proof-style construction of certifying functions turns out to be benefi-

cial in practice. It comes for free in a proof assistant since the tactic level addresses

types in general, not just propositional types. The proof-style construction of certi-

fying functions is guided by the specifying type and uses high-level building blocks

like induction. Often, one shows a for-all-exists lemma ∀xXΣyY .pxy and then

extracts a function fX→Y and a correctness lemma ∀x.px(fx).
Most propositions have functional readings. Once we describe propositions as

computational types using sum and sigma types, their proofs become certifying

functions that may be used in computational contexts. Certifying functions carry

their specifications in their types and may be seen as computational lemmas. Like

propositional lemmas, certifying functions are best described with high-level proof

outlines, which may be translated into formal proof terms using the tactic inter-

preter of a proof assistant.

Product, sum, and sigma types are obtained as inductive types. In contrast to

the propositional variants, where simply typed eliminators suffice, constructions

involving product, sum, and sigma types often require dependently typed elimina-
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tors. Existential quantifications and sigma types are distinguished from the other

inductive types we have encountered so far in that their value constructors model

a dependency between witness and certificate using a type function.

Computational type theory originated with Martin-Löf type theory [23]. In con-

trast to the type theory we are working in, Martin-Löf type theory does not have a

special universe for propositions but accommodates propositions as ordinary types.

So there is no propositional discrimination restriction and there are no proposi-

tional variants of product, sum and sigma types. This simplicity comes at the price

that assumptions like excluded middle can only be formulated for all types, which

is not meaningful (but consistent). Having an impredicative universe of proposi-

tions is a key feature of the computational type theory underlying the Rocq proof

assistant [9].
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11 More Computational Types

The main tool for relating types are injections and bijections. We consider injections

and bijections that come with inverse functions. For the types of injections and

bijections dependent tuple types are needed. We shall use customised inductive

types for injection and bijection types. We show Cantor’s theorem for injections.

We also show that sigma types can represent sum types and product types up to

bijection.

We discuss option types O(X), which extend a type X with an extra element.

Option types O(X) may be defined as sum types X+1, but we shall use a dedicated

inductive type constructor. For option types, we construct a function that from a

bijection between O(X) and O(Y) obtains a bijection between X and Y . For the

construction a clever use of a certifying function is essential.

We then discuss two prominent type families Nn and VnX known as numeral

types and vector types. We obtain both families by structural recursion on the in-

dex n using option types and product types. Numeral types are finite types On⊥
obtained by applying the option type constructor to void. Vector types are sequence

types (λY .X×Y)n 1 obtained by nesting pair types starting with unit. Both construc-

tions make full use of type conversion.

We remark that the basic notions discussed in this chapter (injections, bijections,

numerals, vectors) are computational refinements of notions that have been studied

in set theory for a long time.

11.1 Injections and Bijections

Given a function fX→Y , we say that a function gY→X inverts f if ∀x. g(fx) = x.

We also say that g is an inverse function for f . We may picture the inversion

property as a roundtrip property allowing us to go with f from X to Y and to

return with g from Y to X to exactly the x we started from. It will be convenient to

have the inversion predicate

inv : ∀XYT. (X → Y)→ (Y → X)→ P

invXYgf := ∀x. g(fx) = x
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Fact 11.1.1 (Inverse functions)

1. invgf → injectivef ∧ surjectiveg.

2. invgf → surjectivef ∨ injectiveg → invfg.

3. All inverse functions of a surjective function agree:

surjectivef → invgf → invg′f → ∀y.gy = g′y .

Proof The proofs are straightforward but interesting. Exercise. ■

We define injection types

I(X : T, Y : T) : T ::= I(f : X → Y , g : Y → X, invgf)

and call their inhabitants injections. An injection IXY is an embedding of the

type X into the type Y where different elements of X are mapped to different ele-

ments of Y . We say that X embeds into Y or that X is a retract of Y if there is an

injection IXY .

Technically, injection types are specialized dependent tuple types. An injection

type IXY can be expressed as a nested sigma type ΣfX→Y ΣgY→X . invgf .

Fact 11.1.2 (Reflexivity and Transitivity)

IXX and IXY → IYZ → IXZ .

Proof Exercise. ■

Fact 11.1.3 (Transport)

IXY → E(Y)→ E(X).

Proof By Fact 9.5.2 it suffices to have an injective function X → Y , which exists by

Fact 11.1.1. ■

Fact 11.1.4 (Cantor) I(X → B)X → ⊥. That is, X → B does not embed into X.

Proof Follows from Fact 6.3.4 since the inverse function of the embedding function

is surjective. ■

A bijection is a symmetric injection where the two functions invert each other in

either direction. We define bijection types

B(X : T, Y : T) : T ::= B(f : X → Y , g : Y → X, invgf , invfg)

and call their inhabitants bijections.

We say that two types X and Y are in bijection if there is a bijection BXY .

Bijectivity is a basic notion in mathematics. A bijection between X and Y establishes

a one-to-one correspondence between the elements of X and the elements of Y .
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Speaking informally, a bijection between X and Y says that X and Y are renamed

versions of each other. This is not necessarily the case for an injection IXY where

the target type Y may have elements not appearing as images of elements of the

source type X.

Fact 11.1.5 BXY → IXY × IYX.

Fact 11.1.6 (Reflexivity, Symmetry, Transitivity)

Bijectivity is a computational equivalence relation on types:

BXX, BXY → BYX, and BXY → BYZ → BXZ .

Fact 11.1.7 All empty types are in bijection: (X → ⊥)→ (Y → ⊥)→ BXY .

Proof We have functions X → ⊥ and Y → ⊥. Computational falsity elimination

gives us functions X → Y and Y → X. The inversion properties hold vacuously with

the assumptions. ■

Note that computational falsity elimination is essential in this proof.

We have already established a prominent bijection.

Fact 11.1.8 N× N and N are in bijection.

Proof Arithmetic pairing as developed in Chapter 7. ■

Fact 11.1.9 (Sigma types can express product and sum types)

Sigma types can express product types X × Y and sum types X + Y up to bijection.

1. X × Y and sig (λxX .Y ) are in bijection.

2. X + Y and sig (λbB. if b then X else Y) are in bijection.

Proof The functions for the bijections can be defined with the simply typed match

function for sigma types. The proofs of the roundtrip equations, however, require

the dependently typed eliminator (with one exception). ■

Exercise 11.1.10 Prove the claims of all facts stated without proofs.

Exercise 11.1.11 Give a function fN→N that has two non-agreeing inverse functions.

Exercise 11.1.12 (Boolean functions) Prove the following:

a) A function B → B is injective if and only if it is surjective.

b) Every injective function B → B agrees with either the identity or boolean negation.

c) Every injective function B → B has itself as unique inverse function:

∀f B→B. invff ∧ (∀g. invgf → agreegf).

Hint: A proof assistant helps to manage the necessary case analysis.
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Exercise 11.1.13 Show that N→ N → X and N→ X are in bijection.

Exercise 11.1.14 Show that the following types are in bijection using bijection

types.

a) B and ⊤+⊤.

b) X × Y and Y ×X.

c) X + Y and Y +X.

d) X and X ×⊤.

Exercise 11.1.15

Show that BXY and ΣfX→Y ΣgY→X . invgf ∧ invfg are in bijection:

a) BXY a ΣfX→Y ΣgY→X . invgf ∧ invfg.

b) B (BXY) (ΣgY→X . invgf ∧ invfg).

Exercise 11.1.16 Prove BN B→ ⊥.

Exercise 11.1.17

Prove that bijections transport equality deciders: BXY → E(X)→ E(Y).

11.2 Option Types

Given a type X, we may see the sum type X + 1 as a type extending X with an

additional element. Such one-element extensions are often useful and can be ac-

commodated with dedicated inductive types called option types:

O(X : T) : T ::= ◦X | �

The inductive type definition introduces the constructors

O : T → T
◦ : ∀XT. X → O(X)
� : ∀XT. O(X)

We treat the argument X of the value constructors as implicit argument. Following

language from functional programming, we pronounce the constructors ◦ and � as

some and none. We offer the intuition that � is the new element and that ◦ injects

the elements of X into O(X).

Fact 11.2.1 (Equality deciders)

Option types transport equality deciders in both directions:

∀XT. E(X)a E(O(X)).

Proof Direction → follows by discrimination on options and both constructor laws

for options. Direction ← follows with the injectivity of the some constructor. ■
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Bijection Theorem for Option Types

Given a bijection between O(X) and O(Y), we can construct a bijection between X
and Y . This intuitively clear result needs a clever proof using a certifying function

through a Skolem translation.

Suppose f and g provide a bijection between O(X) and O(Y). We first define a

bijective function f ′X→Y . To map x, we look at f(◦x). If f(◦x) = ◦y , we map x to y .

If f(◦x) = �, we have f� = ◦y for some y and map x to y . The other direction is

symmetric.

Defining a function f ′X→Y as described above involves a computational falsity

elimination. For this reason we work with a cleverly designed certifying function so

that the definition of the function is not needed for proving the required properties.

We work with the following specification:

lowerfO(X)→O(Y) f ′X→Y := ∀x. match f(◦x) [ ◦y ⇒ f ′x = y | �⇒ ◦f ′x = f� ]

Lemma 11.2.2 ∀fO(X)→O(Y). injectivef → sig (lowerf).

Proof By the Skolem translation (Fact 10.3.2) it suffices to prove

∀x Σz. match f(◦x) [ ◦y ⇒ z = y | �⇒ ◦z = f� ]. Straightforward. ■

Lemma 11.2.3 ∀fO(X)→O(Y). lowerff ′ → lowergg′ → invgf → invg′f ′.

Proof Case analysis following lowerff ′ and lowergg′. ■

Theorem 11.2.4 (Bijection) ∀XY. B (O(X)) (O(Y)) → BXY .

Proof Follows with Lemmas 11.2.2 and 11.2.3. ■

Exercise 11.2.5 (Eliminator and constructor laws)

Define an eliminator for option types and use it to prove the constructor laws.

Follow the techniques used for numbers in §4.3.

Exercise 11.2.6 Prove ∀aO(X). a ≠ � a Σx. a = ◦x.

The direction → needs computational falsity elimination.

Exercise 11.2.7 Prove ∀fX→O(Y). (∀x. fx ≠ �)→ ∀x Σy. fx = ◦y .

Note the need for computational falsity elimination. Show that assuming the above

claim yields computational falsity elimination in the form ∀XT. ⊥ → X (instantiate

with X := ⊥, Y := X, and f = λ_.�).

Exercise 11.2.8 Prove ∀xO3⊥. x = �∨ x = ◦�∨ x = ◦◦�.

Exercise 11.2.9 (Bijectivity) Show that the following types are in bijection:

a) ⊤ and O⊥.

b) B and O2⊥.

c) O(X) and X +⊤.

d) N and O(N).
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Exercise 11.2.10 Prove BXY → B(OX)(OY).

Exercise 11.2.11 Prove the bijection theorem with the proof assistant not looking

at the code we provide. Formulate a lemma providing for the two symmetric cases

in the proof of Theorem 11.2.4.

Exercise 11.2.12 (Injection theorem) Prove X → I (OX) (OY) → IXY . First under-

stand why the assumption X is needed.

Exercise 11.2.13 (Counterexample) Find a type X and functions f : X → O(X) and

g : O(X)→ X such that you can prove invg f and disprove invf g.

Exercise 11.2.14 (Truncating subtraction with flag)

Define a recursive function f : N→ N → O(N) that yields ◦(x −y) if the subtraction

x−y doesn’t truncate, and � if the subtraction x−y truncates. Prove the equation

fxy = if y − x then ◦(x −y) else �.

Exercise 11.2.15 (Kaminski reloaded)

Prove ∀f O3⊥→O3⊥∀x. f 8(x) = f 2(x).
Hint: Prove ∀xO3⊥. x = � ∨ x = ◦� ∨ x = ◦◦� and use it to enumerate x, fx, f 2x,

and f 3x. This yields 34 cases, all of which are solved by Rocq’s congruence tactic.

11.3 Numeral Types

We define numeral types recursively:

N0 := ⊥
NSn := O(Nn)

By construction, Nn is a finite type with n elements. For instance, the elements of

N3 are �, ◦�, ◦◦�. We may think of the elements of NSn as the numbers 0, . . . , n.

Formally, numeral types are obtained with an inductive function N → T.

Fact 11.3.1 (Equality Deciders) E(Nn).

Proof By induction on n using Facts 9.5.1(1) and 11.2.1. ■

We can now give a formal definition of what it means that a type has n elements.

Definition 11.3.2 A type X has cardinality n if it is in bijection with Nn. Moreover,

a type X is finite if it is in bijection with some numeral type Nn.

We would like to prove that a type X has at most one cardinality. Suppose X is

in bijection with Nm and Nn. Then Nm and Nn are in bijection.
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Fact 11.3.3 (Cardinality) B Nm Nn →m = n.

Proof By induction onm and discrimination on n with n quantified in the inductive

hypothesis. There are three nontrivial cases, two of which follows by contradiction

since N0 and NSk cannot be in bijection. The remaining case B NSm NSn → Sm = Sn
follows with the bijection theorem 11.2.4 for option types and the inductive hypoth-

esis. ■

Exercise 11.3.4 (Decidable quantification)

Let d be a certifying decider for p : Nn → T. Prove the following:

a) (Σx.px)+ (∀x.px → ⊥)
b) D(∀x.px)
c) D(Σx.px)
Hint: Use induction on the cardinality n.

11.4 Vector Types

Vectors are sequences ⟨x1, . . . , xn⟩ of values from a common base type. We define

vector types VnX recursively:

V0X := 1

VSnX := X × VnX

Formally, vector types are obtained with an inductive function V : N → T → T
recursing on numbers and representing vectors as nested pairs.1 As an example,

we offer

(1, (2, (3, I))) : V3N ≈ N× (N× (N× 1))

The single element of V0X ≈ 1 is I, and the elements of VSnX ≈ X × VnX are pairs

(x,v) where x : X and v : VnX.

Fact 11.4.1 (Equality deciders) E(X)→ E(VnX).

Proof By induction on n. We have a decider E(V0X) since V0X ≈ 1. Moreover, we

have a decider E(VSnX) since VSnX ≈ X × VnX, we have a decider E(X), and the

inductive hypothesis gives us a decider E(VnX). ■

1The nested pair representation is well-known for lists. It appeared in set theory where it is used to
represent tuples of arbitrary length.
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Vector types can be seen as refinement of list types where in addition to the

element type the length is prescribed. We define a dedicated constant nil for the

empty vector and list-style operations cons, hd, and tl:

nil : ∀X. V0X hd : ∀Xn. VSnX → X

nil := I hdXn(x,v) := x

cons : ∀Xn. X → VnX → VSnX tl : ∀Xn. VSnX → VnX

consXnxv := (x,v) tlXn(x,v) := v

Note that we have defined hd and tl as inductive functions and that conversion is

needed for type checking the patterns of the defining equations. We remark that

for list types hd cannot be defined as a total function since we don’t have a default

value for the empty list. We will treat X and n as implicit arguments.

Fact 11.4.2 (Eta law) cons (hda)(tla) = a.

Proof Discrimination on a : VSnX and computational equality. ■

We define a function returning arithmetic vectors:

enum : N→ ∀n. VnN

enumk0 := nil

enumk (Sn) := consk (enum (Sk)n)

For instance, we have enum 1 3 ≈ cons 1 (cons 2 (cons 3 nil)).

Exercise 11.4.3 (Tuple types) Tuple types generalize vector types in that they de-

termine their component types with a type function N → T:

tup : (N→ T)→ N → T

tupp 0 := I

tupp (Sn) := pn× tuppn

Construct functions as follows:

a) ∀pN→T. (∀n. tuppn→ pn)→ ∀n. tuppn

b) ∀pN→T. (∀n. tuppn→ pn)→ ∀n. pn
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11.4.1 Position Element Maps

We may number the positions of a vector from left to right starting with 0. We define

a function that given a vector and a position returns the element at the position:

sub : ∀Xn. VSnX → N→ X

subX 0vk := hdv

subX (Sn)v 0 := hdv

subX (Sn)v (Sk) := subXn(tlv)k

Note that the primary discrimination is on n. Also note that the type of sub ensures

that in case the given position k is too large the last element of the vector can be

returned.

Note that the numeral type Nn has exactly as many elements as the vectors of

type Vn have positions. Using numerals, we can define a safe position element map

always returning the element at the given position:

sub′ : ∀Xn. VnX → Nn → X

sub′X 0va := E⊥Xa

sub′X (Sn)v ◦a := sub′Xn(tlv)a

sub′X (Sn)v � := hdv

Note the use of the eliminator for void in the contradictory case handled by the first

defining equation.

Exercise 11.4.4 We treat X and n as implicit arguments of sub and sub′. Prove the

following equations. For each equation, first determine the most general type for v .

subv 0 = hdv sub′ v � = hdv

subv 1 = hd(tlv) sub′ v ◦� = hd(tlv)

Exercise 11.4.5

a) Define a function last : ∀Xn. VSnX → X returning the element at the last

position of a vector.

b) Prove ∀vVSnX . subvn = lastv .

c) Define a function snoc : ∀Xn. Vn → X → VSn appending an element at the end

of a vector.

d) Prove last(snocvx) = x.

e) Define a function rev : ∀Xn. VnX → VnX reversing a vector.

f) Prove rev (revv) = v .
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11.4.2 Concatenation

We define a concatenation operation for vectors.

con : ∀Xmn. VmX → VnX → Vm+nX

conX 0nvw := w

conX (Sm)nvw := cons (hdv) (conXmn(tlv)w)

We treat X, m, n as implicit arguments and write v ++w for convw.

Now suppose we have three vectors u : VmX, v : VnX, w : VkX. Then the two

concatenations

(u++v)++w : V(n+m)+kX

u++(v ++w) : Vn+(m+k)X

have incompatible types (that is, nonconvertible types) although they yield the same

value. Thus the associativity law for vector concatenation cannot be expressed di-

rectly. The problem goes away if m, n, and k are concrete numbers rather than

variables.

The type checking problem can be bypassed with a dedicated cast function:

cast : ∀Xmnk. V(m+n)+kX → Vm+(n+k)X

castX 0nkv := v

castX (Sm)nkv := cons (hdv) (castXmnk(tlv))

We treat X, m, n, k as implicit arguments.

Fact 11.4.6 (Associativity)

∀uVmX ∀vVnX ∀wVkX . cast ((u++v)++w) = u++(v ++w).

Proof By induction on m with u quantified. Straightforward. ■

The formulation and proof of the associativity law for vector concatenation come

with massive type conversion and with massive elaboration of implicit arguments.

This is quite feasible with a proof assistant but too tedious to be done with pen and

paper.

Exercise 11.4.7 Prove V(n+m)+kX = Vn+(m+k)X.

Exercise 11.4.8 Convince yourself that the equation

(enum 0 3++enum 3 3)++enum 6 3 = enum 0 3++(enum 3 3++enum 6 3)

type checks and holds by computational equality.
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Numbers 0,1,2, . . . are the basic recursive data structure. Starting from the induc-

tive definition of numbers, we study the algebraic properties of addition and trun-

cating subtraction. Comparisons x ≤ y will be obtained as equations x −y = 0.

The system obtained with addition and subtraction of numbers is called linear

arithmetic. Proof assistants come with automatic provers for linear arithmetic free-

ing users from knowing the basic lemmas for numbers. Linear arithmetic provers

realize an abstraction level that is commonly used in informal proofs.

We also define multiplication and prove its basic algebraic properties.

Studying linear arithmetic in computational type theory starting from first prin-

ciples is fun. As always, the thrill is in finding the right definitions and the right

theorems in the right order. There is beauty and elegance in the development pre-

sented here.

12.1 Inductive Definition of Numbers

The type of numbers 0,1,2 . . . is obtained with an inductive definition

N ::= 0 | S(N)

introducing three constructors:

N : T, 0 : N, S : N → N

Based on the inductive type definition, we can define inductive functions. A basic

inductive function is an eliminator providing for inductive proofs:

EN : ∀pN→T. p 0 → (∀x. px → p(Sx))→ ∀x.px
EN pe1e2 0 := e1

EN pe1e2 (Sx) := e2x(EN pafx)

A discussion of the eliminator appears in §5.7. Matches for numbers can be ob-

tained as applications of the eliminator where no use of the inductive hypothesis

is made. Or more directly, a specialized elimination function for matches omitting

the inductive hypothesis can be defined.

We shall often use the if-then-else notation for zero testing:

if s then s1 else s2 � match s [0 ⇒ s1 | S _ ⇒ s2 ]
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Fact 12.1.1 (Constructor laws)

1. Sx ≠ 0 (disjointness)

2. Sx = Sy → x = y (injectivity)

Proof The results follow with matches, rewriting, and conversion. The proofs are

discussed in §4.3. ■

Exercise 12.1.2 Prove Sx ≠ x.

12.2 Addition

We accommodate addition of numbers with an inductive function:

+ : N→ N → N

0+y := y
Sx +y := S(x +y)

Fact 12.2.1 (Commutativity) x +y = y + x.

Proof By induction on y using the lemmas x + 0 = x and x + Sy = Sx + y . Both

lemmas follow by induction on x. ■

We remark that addition is not symmetric at the level of computational equality

although it is commutative at the level of propositional equality. This unpleasant

situation cannot be avoided in the type theory we work in.

Fact 12.2.2 (Associativity) (x +y)+ z = x + (y + z).

Proof By induction on x. ■

Associativity and commutativity of addition are used tacitly in informal proofs.

moreover, parentheses may be omitted; For instance, x +y + z� (x +y)+ z. The

symmetric versions x+0 = x and x+ Sy = S(x+y) of the defining equations may

also be used tacitly.

Fact 12.2.3 (Zero propagation) x +y = 0 ←→ x = 0∧y = 0.

Proof By discrimination on x and constructor disjointness. ■

Fact 12.2.4 (Injectivity) x +y = x +y ′ → y = y ′

Proof By induction on x. ■

Corollary 12.2.5 (Injectivity) x +y = x → y = 0.

Proof Follows with injectivity since x = x + 0. ■

Corollary 12.2.6 (Contradiction) x + Sy ≠ x.

Proof Follows with injectivity since x = x + 0. ■
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12.3 Subtraction

We define (truncating) subtraction of numbers as an inductive function that yields 0

whenever the standard subtraction operation for integers yields a negative number:

− : N → N → N

0−y := 0

Sx − 0 := Sx

Sx − Sy := x −y

The recursion is on the first argument. The successor case is realized with a sec-

ondary discrimination on the second argument.

Fact 12.3.1 x − 0 = x.

Proof Discrimination of x and computational equality. ■

Fact 12.3.2

1. x +y − x = y
2. x − (y + z) = x −y − z

Proof Both claims follow by induction on x and discrimination on y . ■

Corollary 12.3.3

1. x − x = 0

2. x − (x +y) = 0

12.4 Comparisons

We define comparisons using truncating subtraction:

x ≤ y := (x −y = 0)

We define the usual notational variants for comparisons:

x < y := Sx ≤ y
x ≥ y := y ≤ x
x > y := y < x

We refer to the predicate (≤) : N→ N → P as order relation.

Fact 12.4.1 The following equations hold by computational equality:
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1. (Sx ≤ Sy) = (x ≤ y) (shift law)

2. 0 ≤ x
3. 0 < Sx

Fact 12.4.2

1. x ≤ x +y
2. x ≤ x
3. x ≤ Sx

4. x −y ≤ x

Proof (1) follows with Fact 12.3.3(2). (2) and (3) follow from (1). (4) follows with

Fact 12.3.2(2) and (1). ■

Fact 12.4.3 (Additive characterization) x ≤ y ←→ x + (y − x) = y .

Proof By induction on x with y quantified followed by discrimination on y . ■

Fact 12.4.4 (Antisymmetry) x ≤ y → y ≤ x → x = y .

Proof Follows by equational reasoning after x ≤ y is replaced with the additive

characterization. ■

Fact 12.4.5 (Transitivity)

1. x ≤ y → y ≤ z → x ≤ z
2. x < y → y ≤ z → x < z

3. x ≤ y → y < z → x < z

Proof For (1), replace z and then y in the claim with the additive characterization

for the assumptions. The reduced claim follows with Fact 12.4.2(1).

(2) is an instance of (1), and (3) is an instance of (1) modulo conversion. ■

Fact 12.4.6 x −y = Sz → y < x.

Proof By induction on x with y quantified followed by discrimination on y in the

successor case. ■

Fact 12.4.7 (Contradictions)

1. (x < 0)→ ⊥
2. (x +y < x)→ ⊥
3. (x < x)→ ⊥

Proof (1) follows by the disjointness constructor law. (2) follows by Fact 12.3.2(1).

(3) follows from (2). ■
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Fact 12.4.8 (Negative Characterizations)

1. x ≤ y ←→ (y < x → ⊥)
2. x < y ←→ (y ≤ x → ⊥)

Proof (2) is a conversion instance of (1). (1) follows by induction on y followed by

discrimination on y with y quantified in the inductive hypothesis. ■

Exercise 12.4.9 (Equality by contradiction)

Prove (x < y → ⊥)→ (y < x → ⊥)→ x = y .

Exercise 12.4.10 Prove the following:

a) x ≤ y → x ≤ Sy

b) x < y → x ≤ y
c) x +y ≤ z → x ≤ z
d) x ≤ y → x ≤ y + z
e) x +y ≤ x + z ←→ y ≤ z.

f) 0 < x → x − Sy < x.

Exercise 12.4.11 (Brute force proofs)

Most facts about comparisons can be proved without lemmas using a single induc-

tion and case analysis on variables. A notable exception is x −y ≤ x.

Prove the following types not using lemmas.

a) x ≤ x
b) x ≤ y → y ≤ z → x ≤ z
c) x < y → y ≤ z → x < z

d) x ≤ y → y < z → x < z

e) x ≤ y → y ≤ x → x = y
f) x ≤ x +y
g) x ≤ 0 → x = 0

h) x ≤ y → x + (y − x) = y
i) (x ≤ y)+ (y < x)
j) x ≤ y ←→ ¬(y < x)
k) x ≤ y → y ≤ Sx → (x = y)+ (y = Sx)

l) if x −y then x ≤ y else y < x

m) if (x −y)+ (y − x) then x = y else x ≠ y
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12.5 Arithmetic Testers and Deciders

We say that a function f : N → N → N is reducible if fst reduces to a canonical

term whenever s and t are canonical terms. Addition and subtraction are reducible

functions.

We say that a reducible function f : N → N → N is an arithmetic tester for a

predicate p : N→ N → P if the proposition if fxy then px else ¬px is provable.

Fact 12.5.1 Predicates that have an arithmetic tester have a certifying decider.

Proof Trivial. ■

Fact 12.5.2 (Arithmetic testers)

The predicates x ≤ y , x < y , and x = y have arithmetic testers:

if x −y then x ≤ y else ¬(x ≤ y)
if Sx −y then x < y else ¬(x < y)
if (x −y)+ (y − x) then x = y else x ≠ y

Proof All three propositions follow by discrimination on the guard of the condi-

tional. For the third proposition we need memorizing discrimination. In the zero

case, zero propagation (Fact 12.2.3) gives us x ≤ y and y ≤ x, so the claim follows

with antisymmetry. In the successor case, we assume x = y and obtain a contradic-

tion with constructor disjointness since (x − x)+ (x − x) = 0 with Fact 12.3.3(1).■

Corollary 12.5.3 (Certifying deciders)

The predicates x ≤ y , x < y , and x = y have certifying deciders.

Based on Fact 12.5.2 we shall use the notations

if s ≤ t then u else v � if s − t then u else v

if s < t then u else v � if S s − t then u else v

if s = t then u else v � if (s − t)+ (t − s) then u else v

Fact 12.5.4 (Certifying Deciders)

a) ∀xy. (x ≤ y)+ (y < x)
b) ∀xy. (x ≤ y)→ (x < y)+ (x = y)
c) ∀xy. (x ≤ y)→ (y ≤ Sx)→ (x = y)+ (y = Sx) (tightness)

Proof All claims follow by induction on x and discrimination on y . ■

Exercise 12.5.5 Define a boolean decider for x ≤ y and prove its correctness.
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12.6 Linear Arithmetic Prover

Proof assistants come with terminating provers that for linear arithmetic propo-

sitions construct a proof whenever the proposition is provable. Linear arithmetic

propositions are obtained with =, ≤, ⊥, →, ∧, and ∨ from linear arithmetic ex-

pressions obtained with +, −, and S from numbers and variables. In Rocq a linear

arithmetic prover is available through the automation tactic lia (linear integer arith-

metic). A linear arithmetic prover frees the user from knowing the lemmas for linear

arithmetic, a service making a dramatic difference with more involved proofs where

the details of linear arithmetic would be overwhelming. A linear arithmetic prover

will for instance find a proof for ¬(x > y)←→ ¬(x ≥ y)∨¬(x ≠ y).
From now on we will write proofs involving numbers assuming the abstraction

level provided by linear arithmetic.

Rocq defines comparisons x ≤ y with an inductive type constructor, a defini-

tion that is quite different from our definition. The difference doesn’t matter if

comparisons are handled with lia, and we will do this from now on.

Rocq’s automation tactic lia cannot do type sums. Still, a certifying decider like

∀xy. (x ≤ y) + (y < x) can be constructed with a single memorizing arithmetic

discrimination and linear arithmetic. The trick is matching on the number x − y ,

which determines the result decision. The certificates are then obtained with the

linear arithmetic prover. Similar ideas work for the other deciders in §12.5.

Exercise 12.6.1 Define the certifying deciders in §12.5 in Rocq using in each case a

single memorizing arithmetic discrimination and the linear arithmetic prover lia.

12.7 Multiplication

We accommodate addition of numbers with a recursively defined function:

· : N → N → N

0 ·y := 0

Sx ·y := y + x ·y

With this definition the equations

0 ·y = 0 1 ·y = y + 0 2 ·y = y + (y + 0)

hold by computational equality.
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Fact 12.7.1 (Distributivity)

a) (x +y) · z = x · z +y · z
b) (x −y) · z = x · z −y · z

Proof Both equations follow by induction on x and linear arithmetic. For the equa-

tion with subtraction discrimination on y is needed in the successor case. Hence y
must be quantified in the inductive hypothesis. ■

Fact 12.7.2 (Associativity) (x ·y) · z = x · (y · z).

Proof By induction on x. The successor case follows with distributivity over “+”. ■

Fact 12.7.3 (Commutativity) x ·y = y · x.

Proof By induction on y using x · 0 = 0 in the zero case and x · Sy = x + x · y in

the successor case. Both lemmas follow by induction on x. The successor case of

the successor lemma needs linear arithmetic. ■

12.8 Notes

The inclined reader may compare the computational development of linear arith-

metic given here with Landau’s [22] classical set-theoretic development from 1929.
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13 Least Witness Operators

A least witness operator (LWO) decides for a decidable predicate pN→P and a

bound n whether p is satisfied by some k ≤ n. In this is the case, the operator

returns the least such k called the least witness of p.

The most principled way to obtain an LWO is, as usual, to construct it as a certi-

fying function in tactic mode. Based on the certifying LWO, we construct certifying

deciders for finite quantifications ∀k<n. pk and ∃k<n. pk.

We also present and verify a number of simply typed reducible least witness

functions. The correctness proofs for these functions provide us the with opportu-

nity to demonstrate basic program verification techniques in the context of compu-

tational type theory.

We define divisibility and primality of numbers with finite quantification and

obtain deciders for the corresponding predicates with the general deciders for finite

quantification.

On the foundational side, and related to LWOs, we prove that satisfiable pred-

icates on numbers have least witnesses if and only if the law of excluded middle

holds.

13.1 Least Witness Predicate

In this chapter, p will denote a predicate N → P and n and k will denote numbers.

We will use the notations (with ≤)

∀k<n. pk := ∀k. k < n→ pk

∃k<n. pk := ∃k. k < n∧ pk
Σk<n. pk := Σk. k < n∧ pk

and speak of finite quantifications. We say thatn is a witness of p if pn is provable,

and that p is satisfiable if ∃n.pn is provable. We define a least witness predicate

as follows:

safepn := ∀k<n. ¬pk
leastpn := pn∧ safepn

Note that safepn says that no number below n is a witness.
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Fact 13.1.1 (Uniqueness)

Least witnesses are unique: leastpn→ leastpn′ → n = n′.

Proof Follows with antisymmetry. ■

Fact 13.1.2 (Safety propagation)

1. safep0 (init)

2. safepn→ ¬pn→ safep(Sn) (upgrade)

Proof (1) follows with linear arithmetic. For (2), we have the assumption k < Sn.

Thus k < n or k = n. Both cases are straightforward. ■

Exercise 13.1.3 Prove the following:

a) safe pn←→ ∀k. pk→ k ≥ n
b) safe p(Sn)←→ safe pn∧¬pn
c) safepn→ k ≤ n→ pk→ k = n

Exercise 13.1.4 (Subtraction) Prove x −y = z ←→ least (λz. x ≤ y + z)z.

Exercise 13.1.5 (Extensionality)

Prove (∀n. pn←→ p′n)→ (∀n. leastpn←→ leastp′n).

13.2 Certifying Least Witness Operators

A least witness operator (LWO) decides for a decidable predicate pN→P and a

bound n whether p is satisfied by some k < n. In the positive case the opera-

tor yields the least such k (that is, the least witness of p). In the negative case the

operator yields a certificate that there is no witness below n.

Fact 13.2.1 (Certifying LWO)

There is a function decp → ∀n. (Σk<n. leastpk)+ safepn.

Proof By induction on n using the propagation rules for safety (Fact 13.1.2).

The zero case is trivial since we have safep 0. In the successor case we have

(Σk<n. leastpk)+ safepn and need

(Σk<Sn. leastpk)+ safep(Sn)

The case Σk<n. leastpk is straightforward. Otherwise, we have safepn. If pn, we

have leastpk and the claim follows. Otherwise, we have ¬pn and hence safep(Sn)
by the safety upgrade rule (Fact 13.1.2(2)). ■
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13.3 Decidability Results

Corollary 13.2.2 (Certifying LWO)

There is a function decp → ∀n. (Σk≤n. leastpk)+ safep(Sn).

Proof Instantiate the LWO from Fact 13.2.1 with Sn. ■

Given a witness, we can obtain a least witness.

Corollary 13.2.3 (Informed LWO)

There is a function decp → sigp → sig (leastp).

Proof Straightforward with the LWO from Fact 13.2.1. ■

Corollary 13.2.4 There is a function decp → exp → ex (leastp).

Proof Straightforward with the LWO from Fact 13.2.1. ■

Fact 13.2.5 (Existential least witness operator)

There is a function decp → exp → sig(leastp).

Proof Immediate with Corollary 13.2.3 and Fact 14.2.2. ■

The existential least witness operator is obviously extensional; that is, the wit-

ness computed does not depend on the decider and does not change if we switch

to an equivalent predicate.

Fact 13.2.6 (Extensional EWO) Assume W : ∀pN→P. decp → exp → sig(leastp)
and two predicates p,p′ : N → P with deciders d and d′ and satisfiability proofs

h : exp and h′ : exp′. Then π1(Wpdh) = π1(Wp′d′h′) whenever ∀n. pn←→ p′n.

Proof Straightforward. Exercise. ■

Exercise 13.2.7 (Greatest witness operator)

Let greatestpnk := pk∧(k < n)∧(∀i. k<i<n→ ¬pi). Construct a certifying func-

tion ∀n. sig(greatestpn)+ (∀k<n. ¬pk) computing the greatest witness below n
of p if there is one.

13.3 Decidability Results

Fact 13.3.1 (Decidability)

1. decp → dec(safep)

2. decp → dec(leastp)

Proof The construction of the decider (1) is straightforward with the LWO from

Fact 13.2.1. The construction of (2) is straightforward with the decider (1) ■
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13 Least Witness Operators

Finite quantifications over decidable predicates satisfy both de Morgan laws.

Fact 13.3.2 (De Morgan laws for finite quantifications)

1. ¬(∃k<n. pk)←→ (∀k<n. ¬pk)
2. decp → ¬(∀k<n. pk)←→ (∃k<n. ¬pk)

Proof (1) is straightforward and holds for all quantifications. This is also true for

the direction “←” of (2). In contrast, the direction “→” of (2) depends on the decid-

ability of p. If follows with the certifying LWO from Fact 13.2.1 instantiated with

λk.¬pk and exploits the double negation law for p. ■

Finite quantifications over decidable predicates are decided.

Fact 13.3.3 (Deciders for finite quantifications)

1. decp → dec(λn.∀k<n. pk)
2. decp → dec(λn.∃k<n. pk)

Proof (1) follows with the decider for the safeness predicate (Fact 13.3.1) instanti-

ated with λk.¬pk exploiting the double negation law for p.

(2) follows with the certifying LWO from Fact 13.2.1 and the de Morgan law for

negated finite existential quantification (Fact 13.3.2(1)). ■

Exercise 13.3.4 Obtain deciders for finite quantification with “≤” using the deciders

for “<” instantiated with Sn.

Exercise 13.3.5 (Decidability of Primality)

We define divisibility and primality using finite quantification:

n | x := x ≠ 0 → n ≠ 1 → n ≠ x → ∃k<x. x = k ·n
primex := x ≥ 2∧∀k<x. k | x → k = 1

a) Prove that both predicates are decidable.

b) Prove n | x ←→ ∃k. x = k ·n.

Remark. In Rocq we can define a reducible certifying decider for primality comput-

ing proofs for prime 101 and ¬prime 117, for instance. This approach requires that

the underlying proof scripts carefully separate the computational level from the

propositional level where automation tactics will insert abstract proof functions.

See the accompanying Rocq file to learn more.

13.4 Reducible LWOs

The deciders and LWOs obtained so far are not reducible since they are derived

from the abstract certifying LWO provided by Fact 13.2.1. We can obtain a reducible
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13.4 Reducible LWOs

LWO by defining a simply typed recursive function following the construction of the

certifying LWO.

We assume a predicate pN→P with a boolean decider p̂N→B such that

∀n. if p̂n then pn else ¬pn

and define an inductive function

G : N→ O(N)
G 0 := �

G (Sn) := match Gn [ ◦k⇒ ◦k | �⇒ if p̂n then ◦n else � ]

We also define an inductive predicate

ϕ : N→ O(N)→ P

ϕn� := safepn

ϕn ◦k := leastpk∧ k < n

Fact 13.4.1 (Correctness)

∀n. ϕn(Gn).

Proof By induction on n. In the zero case, the claim reduces to safep0, which holds

by Fact 13.1.2(1). In the successor case, we have the inductive hypothesis ϕn(Gn)
and the claim ϕ(Sn)(G(Sn)). We discriminate on Gn. If Gn = ◦k, the inductive

hypothesis simplifies to k < n ∧ leastpk and the claim to k < Sn ∧ leastpk. The

claim follows.

If Gn = �, the inductive hypothesis is safepn. We discriminate on p̂n in the claim.

If pn, the claim reduces to n < Sn∧ leastpn and follows. If ¬pn, the claim reduces

to safep(Sn) and follows with Fact 13.1.2(2). ■

Step-indexed linear search

The canonical algorithm for computing least witnesses is linear search: Test p on

a counter m = 0,1,2, . . . until the first m satisfying p is found. Linear search

terminates if and only if p is satisfiable. Realizing linear search with a terminat-

ing function in computational type theory requires a modification. The trick is to

switch to a step-indexed linear search function Lnm testing p starting from m for

at most n steps:

L : N→ N → O(N)
L0m := �

L (Sn)m := if p̂m then ◦m else Ln(Sm)
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Note that L tail-recurses on the step index n.

We would like to prove Ln0 = Gn. To do so, we need to understand the linear

search function Lnm for all n and m.

Fact 13.4.2 (Correctness) ∀nm. safepm →ϕ(n+m)(Lnm).

Proof By induction on n withm quantified. The zero case is trivial. In the successor

case we discriminate on p̂m. If pm, we have the trivial proof obligation

pm → safepm →m < S(n+m)∧ leastpm

If ¬pm, we have the proof obligation

¬pm → safepm →ϕ(Sn+m)(Ln(Sm))

which reduces to an instance of Fact 13.1.2(2) using the inductive hypothesis for Sm
and rewriting with Sn+m = n+ Sm. ■

Fact 13.4.3 (Correctness) ∀n. ϕn(Ln0).

Proof Fact 13.4.2 instantiated with m = 0. ■

Fact 13.4.4 (Agreement) Ln0 = Gn.

Proof Given the correctness theorems for G and L (Facts 13.4.1 and 13.4.3), the

claim follows with the uniqueness of ϕn which follows with the uniqueness of

leastp after discrimination on the option arguments. ■

The proofs we have just seen for L are typical for program verifications. While

the underlying ideas are clear, the detailed execution of the proofs is tedious and

calls for the help of a proof assistant.

Exercise 13.4.5 (Invariant Puzzle) We have one more reducible LWO in the offer.

Consider the function

W : N→ N

W 0 := 0

W (Sn) := let k = Wn in if p̂k then k else Sn

Verify that Fn := if n ≤ Wn then � else ◦Wn agrees with G.

Hint: The worker function W computes the largest k ≤ n that is safe for p.

Hint: You need a specification δ for W such that ∀n. δn(Wn). For the correct-

ness proof to go through, δ must be an invariant for W ’s recursion, which imposes

the proof obligation ∀nk. δnk→ if p̂n then δ(Sn)k else δ(Sn)(Sn).
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13.5 Least Witness Existence and Excluded Middle

Exercise 13.4.6 (Reducible deciders for finite quantifications)

a) Obtain the deciders for finite quantifications as reducible functions using G or L.

b) Verify the correctness of your deciders.

c) Prove prime 101 in the proof assistant using a boolean decider for primality.

13.5 Least Witness Existence and Excluded Middle

It turns out that the existence of least witnesses for satisfiable predicates on num-

bers is equivalent to the law of excluded middle:

ELW := ∀pN→P. exp → ex(leastp)

XM := ∀PP. P ∨¬P

The direction XM → ELW is unsurprising since XM gives us decidability of predicates

at the propositional level, which means that we can use the construction for LWOs

if we lower them to the propositional level.

Fact 13.5.1 XM→ ELW.

Proof Assume XM. Then every predicate is logically decidable: ∀n. pn ∨ ¬pn.

Hence we can carry out the constructions of Facts 13.2.1 and 13.2.4 at the proposi-

tional level:

∀pN→P∀n. (∃k < n. leastpk)∨ safepn

∀pN→P. exp → ex (leastp) ■

The other direction ELW → XM is very easy to prove.

Fact 13.5.2 ELW→ XM.

Proof We pick a proposition P and prove P∨¬P . Using the assumption, we discrim-

inate on the least witness n of the satisfiable predicate pn := if n then P else ⊤.

We have p0 ←→ P . Thus if the least witness is 0, we have P , and otherwise ¬P . ■

Exercise 13.5.3 (Boolean least witness existence)

Prove XM ←→ ∀pN→B. exp → ∃x. px ∧ (ptrue→ x = true).

Exercise 13.5.4 Prove that the following propositions are equivalent.

1. XM

2. ∀pn. ex(leastp)∨ safepn

3. ∀p. exp → ex(leastp).
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14 EWOs

In computational type theory, functional recursion comes as structural recursion

based on recursive inductive types. A canonical recursive type is the type of num-

bers. In this chapter we will consider a recursive type constructor

T(p : N→ P)(n : N) : P ::= C (¬pn→ Tp(Sn))

featuring a higher-order structural recursion through the right-hand side of a func-

tion type serving as argument type of a single proof constructor C . We will see that

with the inductive predicate T we can construct an existential witness operator

∀pN→P. decp → exp → sigp

testing p on n = 0,1,2, . . . until a number satisfying p is found. For this construc-

tion the higher-order recursion of T and the fact that T is a computational predicate

(no PDR) are essential. Recall that a naive witness operator just unpacking the given

existential witness is not possible since it would violate the PDR.

EWOs (existential witness operators) exist for many computational types, not

just the type of numbers. In particular, finite types and types embedding into the

numbers do have EWOs. Moreover, EWOs transport through option types. With

EWOs we can construct inverses for bijective functions and co-inverses for surjec-

tive functions.

14.1 Linear Search Types

We start with the definition of an inductive predicate1

T(p : N → P)(n : N) : P ::= C (¬pn→ Tp(Sn))

The first point to notice about the definition of T is that there is recursion through

the right-hand side of the function type serving as argument type of the single proof

constructor C . Such higher-order structural recursions are legal in computational

type theory. The second point to notice about the definition of T is that T is a com-

putational predicate (§5.2) since the type ¬pn → Tp(Sn) of the proper argument

1The letter T derives from the intuition that propositions obtained with the computational T provide
for a transfer from the propositional level to the computational level.
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14 EWOs

of the proof constructor C is propositional. This means that inductive propositions

obtained with T are exempted from the discrimination restriction (§5.2).

There is a third aspect of the inductive type definition of T deserving discussion:

The parameter n of Tpn is nonuniform in that it is changed to Sn in the recursive

application of T . We remark that nonuniform parameters are fine in computational

type theory, and in fact are needed for meaningful higher-order structural recur-

sion.

Recall that proofs of computational propositions can be decomposed at the com-

putational level although they have been constructed at the propositional level. Re-

cursive computational propositions thus provide for computational recursion.

The next essential step is the definition of an eliminator for T making use of the

higher-order recursion provided by T :

E : ∀pN→P∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n. Tpn→ qn

E pqe n(Cϕ) := en(λa. E pqe (Sn) (ϕa))

Note that the discrimination of the defining equation is a propositional transfer

discrimination. It is admissible since T is computational. As it comes to the guard

condition for termination, the argument is that every application of the continuation

functionϕ (appearing as proper argument of the constructor C in the pattern of the

defining equation) qualifies for (higher-order) structural recursion.

Why does this liberal guard condition for higher-order structural recursion pre-

serve termination of reduction in computational type theory? We can offer two

answers to this question:

1. Computational type theory is designed such that reduction terminates in the

presence of higher-order recursion.

2. Before we can construct a value Cϕ, we need to construct the function ϕ. Hence

all values ϕa are in some sense smaller than Cϕ.

We remark that the eliminator E is the only inductive function we will consider

for T . So, all the magic of higher-order structural recursion is in the definitions

of T and E.

We will refer to the propositions Tpn as linear search types.

14.2 EWO for Numbers

We will construct an EWO for N based on an abstract interface that we realize with

the inductive predicate T . The interface provides an abstract computational predi-

cate T ′ with two constructors.
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14.2 EWO for Numbers

Fact 14.2.1 (First-order interface)

For every predicate pN→P there are functions as follows:

T ′ : N → P

I : ∀n. pn→ T ′n

D : ∀n. T ′(Sn)→ T ′n

E′ : ∀qN→T. decp → (∀n. pn→ qn)→ (∀n. q(Sn)→ qn)→ (∀n. T ′n→ qn)

We refer to I and D as abstract constructors and to E′ as abstract eliminator.

Proof Assume pN→P. We set T ′ := Tp. Now the abstract constructors I and D are

easily obtained from the concrete constructor C . The abstract eliminator E′ can

be obtained with the concrete eliminator E. Having a decider for p is essential to

separate the base case pn from the recursive case ¬pn. ■

Note that the abstract constructors I and D and the abstract eliminator E′ make

the predicate T ′ appear as a computational inductive predicate obtained with two

first-order constructors. A proof of T ′pn verifies that there is k ≥ n such that pk.

Fact 14.2.2 (EWO for numbers)

There is a function ∀pN→P. decp → exp → sigp.

Proof We assume d : decp, H : exp, and the functions from Fact 14.2.1. We obtain

sigp with E′ instantiated with qn := sigp, d, and n := 0. This results in three

proof obligations:

1. ∀n. pn→ sigp

2. ∀n. sigp → sigp

3. T ′0.

Obligations (1) and (2) are trivial. For (3) we note that T ′0 is a proposition. Thus we

can unpack H and obtain pn and T ′n using I. We now close the proof by proving

∀n. T ′n→ T ′0 by induction on n using D. ■

Exercise 14.2.3 (Computational characterization of linear search predicate)

Assume a predicate pN→P and prove the following:

a) m ≤ n→ Tpn→ Tpm

b) decp → Tpn→ Σm. m ≥ n∧ pm
c) decp → (Tpna Σm. m ≥ n∧ pm)

Exercise 14.2.4 (Empty search type) With linear search types we can express an

empty propositional type allowing for computational elimination:

V : P := T(λn.⊥)0

Define a function V → ∀XT. X.
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Exercise 14.2.5 With higher-order recursion we can define an empty propositional

type allowing for computational elimination as follows:

V : P ::= C(⊤ → V)

Define an elimination function V → ∀XT. X.

Exercise 14.2.6 Let p be a decidable predicate on numbers. Construct a function

∀n. Tpn→ Σk. k ≥ n∧ pk.

Exercise 14.2.7 (Strict positivity condition)

We remark that computational type theory admits recursion only through the right-

hand side of function types, a restriction known as strict positivity condition.

Assume that the inductive type definition B : T ::= C(B → ⊥) is admitted al-

though it violates the strict positivity condition. Give a proof of falsity assuming

that the illegal definition of B provides constants as follows:

B : T

C : (B → ⊥)→ B

E : ∀Z. B → ((B → ⊥)→ Z)→ B → Z

First define a function f : B → ⊥ using the constant E.

14.3 General EWOs

We define the type of EWOs for a type X as follows:

EWOXT := ∀pX→P. decp → exp → sigp

Fact 14.3.1 The types ⊥, 1, B, and N have EWOs.

Proof The EWO for N was obtained with Fact 14.2.2. For the other three types

computational falsity elimination is essential. For ⊥ an EWO is trivial since it is

given an element of ⊥. For ⊤ and B we can check p for all elements and obtain a

contradiction if p holds for no element. ■

Fact 14.3.2 (Disjunctive EWOs)

Let p and q be decidable predicates on a type X with an EWO.

Then there is a function (exp ∨ exq)→ (sigp + sigq).

Proof Use the EWO for X with the predicate λx.px ∨ qx. ■
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14.3 General EWOs

Next we show that all numeral types On⊥ have EWOs. The key insight for this

result is that EWOs transport from X to O(X). It turns out that EWOs also transport

backwards from O(X) to X.

Fact 14.3.3 (Option types transport EWOs)

EWO (O(X))a EWOX.

Proof Suppose p is a decidable and satisfiable predicate on X. Then

λa. match a [ ◦x ⇒ px | �⇒ ⊥ ]

is a decidable and satisfiable predicate on O(X). The EWO for O(X) gives us ◦x such

that px.

For the other direction, suppose p is a decidable and satisfiable predicate

on O(X). Then λx.p(◦x) is a decidable and satisfiable predicate on X. The EWO

for X gives x with p(◦x). ■

Corollary 14.3.4 (Numeral types have EWOs)

The numeral types On⊥ have EWOs.

Proof By induction on n using Facts 14.3.1 and 14.3.3. ■

It turns out that injections transport EWOs backwards.

Fact 14.3.5 (Injections transport EWOs)

IXY → EWOY → EWOX.

Proof Let invXYfg. To show that there is an EWO for X, we assume a decidable and

satisfiable predicate pX→P. Then λy.p(gy) is a decidable and satisfiable predicate

on Y . The EWO for Y now gives us a y such that p(gy). ■

Fact 14.3.6 Every type that embeds into N has an EWO: IXN→ EWOX.

Proof Facts 14.3.5 and 14.2.2. ■

Fact 14.3.7 N× N has an EWO.

Proof Follows with Fact 14.3.6 since N× N and N are in bijection (Fact 11.1.8). ■

Fact 14.3.8 (Binary EWO)

There is a function ∀pN→N→P. (∀xy.D(pxy))→ (∃xy.pxy)→ (Σxy.pxy).

Proof Follows with the EWO for N× N and the predicate λa. p(π1a)(π2a). ■
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Exercise 14.3.9 (EWO for boolean deciders)

We will consider EWOs for boolean deciders on numers:

∀fN→B. (∃n. fn = true)→ (Σn. fn = true)

a) Define an EWO for boolean deciders (i) using the EWO for numbers, and (ii) from

scratch using customized linear search types.

b) Using an EWO for boolean deciders, define an EWO for decidable predicates on

numbers.

c) Using an EWO for boolean deciders, define an EWO

∀XT∀pX→P. sig(enump)→ exp → sigp

for enumerable predicates

enum pX→P fN→O(X) := ∀x. px ←→ ∃n. fn = ◦x

14.4 EWO Applications

Fact 14.4.1 (Co-inverse for surjective functions)

Let fX→Y be a surjective function. Then there is a function

EWO X → E Y → Σg. invfg yielding a co-inverse function for f .

Proof It suffices to construct a function ∀y.Σx. fx = y . We fix y and use the EWO

for X to obtain x with fx = y . This works since f is surjective and equality on Y
is decidable. ■

Fact 14.4.2 (Inverse for bijective functions)

Let fX→Y be a bijective function. Then there is a function

EWO X → E Y → Σg. invgf ∧ invfg yielding an inverse function for f .

Proof Fact 14.4.1 gives us g with invfg. Now invgf follows since f is injective

(Fact 11.1.1). ■

The following fact was discovered by Andrej Dudenhefner in March 2020.

Fact 14.4.3 (Discreteness via step-indexed boolean equality decider)

Let fX→X→N→B be a function such that ∀xy. x = y ←→ ∃n. fxyn = true.

Then X has an equality decider.

Proof We prove D(x = y) for fixed x,y : X. Using the EWO for numbers we

obtain n such that fxxn = true. If fxyn = true, we have x = y . If fxyn = false,

we have x ≠ y . ■
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14.5 Notes

Exercise 14.4.4 (Infinite path)

Let pN→N→P be a decidable predicate that is total: ∀x∃y. pxy .

a) Define a function fN→N such that ∀x. px(fx).
b) Given x, define a function fN→N such that f0 = x and ∀n. p(fn)(f(Sn)). We

may say that f describes an infinite path starting from x in the graph described

by the edge predicate p.

Exercise 14.4.5 Let f : N → B. Prove the following:

a) (∃n. fn = true)a (Σn. fn = true).

b) (∃n. fn = false)a (Σn. fn = false).

14.5 Notes

With linear search types we have seen an inductive predicate going beyond of the

inductive type definitions we have seen so far. The proof constructor of linear

search types employs higher-order structural recursion through the right-hand side

of a function type. Higher-order structural recursion greatly extends the power

of structural recursion. Higher-order structural recursion means that an argument

of a recursive constructor is a function that yields a structurally smaller value for

every argument. That higher-order structural recursion terminates is a basic design

feature of computational type theories.
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15 Indexed Inductives

Indexed inductive type definitions are generalized inductive type definitions where

the target types of value constructors may instantiate nonparametric arguments

(called indices) of their type constructors. Indexed inductive type definitions pro-

vide for the formalization of derivation systems as they appear in the study of proof

systems, computational systems, and programming languages.

We discuss indexed inductives at the example of two derivation systems, one for

the reflexive transitive closure of relations, and one for arithmetic comparisons. We

also model numeral types and vector types as indexed inductive types and show

that the inductive formalizations are in bijection with non-inductive formalizations

employing arithmetic recursion.

It turns out that the constants for equality can be defined as indexed inductives,

and that the inductive definition adds properties to the Leibniz characterization of

equality that are of foundational interest.

15.1 Inductive Equality

We start with inductive equality since its indexed inductive definition is particularly

simple. Recall that we have accommodated equality with three constants (§4.2):

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

We can obtain eq and Q with an indexed inductive definition:

eq (X : T, x : X) : X → P ::=
| Q : eq Xxx

Note that the target type of the constructor Q is eqX xx and not eqX xy . This

means that only X and x are parametric arguments of eqX xy , and that y is a

nonparametric argument. Following common speak we will refer to nonparametric

arguments of type constructors as indices. The extra freedom coming with index-

ical arguments of type constructors is that they can be freely instantiated in the

target types of value constructors.
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We can now obtain the rewriting constant R with an inductive function definition:

R : ∀XT∀xyX ∀pX→T. eqXxy → px → py

RX x _pQ a := a : px

The definition discriminates on the inductive argument of type eqXxy . Note that

the value constructor Q equates the variables x and y in the defining equation. Also

note that the pattern of the defining equation of R gives the argument y with an

underline. The accounts for the fact that the argument y of R is determined by the

discrimination with Q.

We have defined R with a general type function pX→T rather than just a predicate

pX→P. This is possible since the inductive predicate eq is computational since the

value constructor Q has no proper argument.

There is a single but important restriction on the types of inductive functions

discriminating on arguments of indexed inductive types: The indexed argument

type must be given with variables in the index positions that don’t occur otherwise

in the argument type. We speak of the index condition. The index condition dis-

allows an inductive function discriminating on an argument of type eqXxx, for

instance.

Inductive equality has a number of properties Leibniz equality doesn’t have, an

issue we will study in Chapter 29.

15.2 Reflexive Transitive Closure

We may see a relation RX→X→P as a description of a graph with vertices in X and

edges Rxy . We will write R∗xy if there is a path x → ·· · → y from x to y in the

graph described by R. We may characterize R∗xy with two derivation rules:

R∗xx

Rxy R∗yz

R∗xz

The first rule says that for every x : X there is a path R∗xx. The second rule says

that there is a path R∗xz if there is an edge Rxy and a path R∗yz.

We formalize the notation R∗xy and the two derivation rules with an indexed

inductive predicate star defined as follows:

star (X : T, R : X → X → P, x : X) : X → P ::=
| Nil : starXRxx

| Cons : ∀yz. Rxy → starXRyz → starXRxz

We now write R∗ for the relation starXR. Note that a proof of R∗xy with the

constructors Nil and Cons describes a path from x to y . We may see an inductive
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15.2 Reflexive Transitive Closure

proposition R∗xy as the type of all paths from x to y . We remark that the inductive

formalization of R∗ is minimal in that it doesn’t presuppose numbers or lists.

Considering the inductive predicate starXRxy from a formal point of view, the

arguments X and R are uniform parameters, x is a nonuniform parameter, and y
is an index. That y is an index is forced by the type of the constructor Nil.

Let p and p′ be predicates X → X → P. We define inclusion of predicates as one

would expect:

p ⊆ p′ := ∀xy. pxy → p′xy

The relation R∗ is known as the reflexive transitive closure of the relation R.

This speak is justified since every reflexive and transitive relation that contains R
also contains R∗. We are going to prove this fact.

Fact 15.2.1 (Inclusion) R ⊆ R∗.

Proof Let Rxy . We show R∗xy . We have R∗yy with Nil. Thus R∗xy with Cons. ■

We would like to prove that the relation R∗ is transitive; that is, if there are paths

R∗xy and R∗yz, then there is a path R∗xz. We prove this fact by induction on the

first path R∗xy .

Fact 15.2.2 (Transitivity) R∗xy → R∗yz → R∗xz.

Proof By induction on the path R∗xy . If R∗xy is obtained with Nil, we have x = y
and the claim is trivial. If R∗xy is obtained with Cons, we have an edge Rxx′ and

a shorter path R∗x′y . The inductive hypothesis gives us a path R∗x′z. Now we

obtain a path R∗xz with Cons. ■

To formalize the path induction in the transitivity proof, we need an eliminator

function for the inductive predicate star. An eliminator function with the type

E : ∀X∀R∀pX→X→P.

(∀x. pxx)→
(∀xyz. Rxy → pyz → pxz)→
∀xy. R∗xy → pxy

will suffice. For the transitivity proof E can be used with the target predicate

pxy := R∗yz → R∗xz

assuming that z is introduced outside. The formalization of the proof is now

straightforward. While checking the details with paper and pencil is tedious, con-

structing the formal proof with the proof assistant is pleasant. See the accompany-

ing Rocq file.
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15 Indexed Inductives

We define the eliminator function E following its type

E : ∀X∀R∀pX→X→P.

(∀x. pxx)→
(∀xyz. Rxy → pyz → pxz)→
∀xy. R∗xy → pxy

as an inductive function discriminating on paths R∗xy :

EXRp e1e2 x _ Nil := e1

EXRp e1e2 x _ (Consx′z ra) := e2xx′z r(EXRp e1e2 x′za)

The equation for Cons may look complicated but it is just a routine construction

following the types of E and Cons.

Fact 15.2.3 (Reflexive transitive closure)

Let pX→X→P be a reflexive and transitive relation. Then R ⊆ p → R∗ ⊆ p.

Proof We prove ∀xy. R∗xy → pxy by induction on the path R∗xy . If R∗xy
is obtained with Nil, we have x = y and the claim holds since p is reflexive. If

R∗xy is obtained with Cons, we have an edge Rxx′ and a shorter path R∗x′y .

Now pxx′ since R ⊆ p and px′y by the inductive hypothesis. Hence pxy since p
is transitive. ■

Exercise 15.2.4 Prove R∗(R∗) ⊆ R∗.

Exercise 15.2.5 (Definition with arithmetic recursion)

There is an elegant definition of the relation R∗ as a recursive predicate:

path : ∀X. (X → X → P)→ N → X → X → P

pathXR0xy := (x = y)
pathXR(Sn)xy := (∃x′. Rxx′ ∧ pathXRnxy)

Prove starXRxy ←→ ∃n. pathXRnxy .

Exercise 15.2.6 Here is another inductive definition of reflexive transitive closure:

star′ (X : T, R : X → X → P, x : X) : X → P ::=
| Incl : ∀xy. Rxy → star′XRxy

| Refl : star′XRxx

| Trans : ∀xyz. → star′XRxy → star′XRyz → star′XRxz

Prove starXRxy ←→ star′XRxy .
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15.3 Inductive Comparisons

Two derivation rules for arithmetic comparisons x ≤ y are

x ≤ x
x ≤ y
x ≤ Sy

The rules are obviously correct. We will show that they are also complete in the

sense that they can derive every valid comparison.

We formalize the derivation system comprised by the two rules with an inductive

type definition:

le (x : N) : N → P ::=
| leE : lexx

| leS : ∀y. lexy → lex (Sy)

Note that in lexy the argument x is a uniform parameter and the argument y is

an index.

Completeness of the derivation system le can now be shown with induction on

numbers.

Fact 15.3.1 (Completeness) x ≤ y → lexy .

Proof By induction on y .

Let y = 0. The x = 0 and hence lexy with leE.

In the successor case we assume x ≤ Sy and show lex(Sy). If x = Sy , the claim

follows with leE. If x ≤ y , the inductive hypothesis gives us lexy . The claim

follows with leS. ■

The other direction is intuitively obvious since both derivation rules represent

valid facts about arithmetic comparisons. To do the proof formally, we need induc-

tion on derivations of comparisons lexy , which can be provided with an inductive

function

E : ∀x∀pN→P.

px →
(∀y. py → p(Sy))→
∀y. x ≤ y → py

Expe1e2 _ leE := e1

Expe1e2 _ (leSya) := e2y(Expe1e2ya)
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Fact 15.3.2 (Soundness) lexy → x ≤ y .

Proof By induction on the derivation of lexy . If lexy is obtained with leE, we have

x = y and hence x ≤ y . If lexy is obtained with leS, we have a smaller derivation

lexy ′ and y = Sy ′. The inductive hypothesis gives us x ≤ y ′, which give us the

claim x ≤ Sy ′. ■

Exercise 15.3.3 Give two derivation rules for comparisons x < y and show their

soundness and completeness.

15.4 Inductive Numeral Types

Numeral types are a family of finite types providing a canonical finite type for every

cardinality. In §11.3, we obtained numeral types recursively as On⊥. Numeral types

may also be obtained as indexed inductive types:

fin : N→ T ::=
| Old : ∀n. finn→ fin (Sn)

| New : ∀n. fin (Sn)

the constructors Old and New are in correspondence with the option type construc-

tor some and none. The definition suggests that fin0 is empty and that finSn has one

more element than finn. We prove this fact by establishing a bijection between finn
and Nn:

f : ∀n. finn → Nn g : ∀n. Nn → finn

f _ (Oldna) := ◦fna

f _ (Newn) := �

g 0a := E⊥fin0 a

g (Sn) ◦a := Oldn(gna)

g (Sn)� := Newn

The definitions of the inductive functions f and g clarify how the numeral types

finn and Nn relate to each other. While the definition of f is straightforward, the

definition of g is quite involved. In the zero case void elimination E⊥ is needed. In

the successor case a secondary discrimination on options is needed. Note that in the

patterns of the equations defining f the first argument n is given as an underline,

as is required by the fact that n provides the index argument of finn in the type

of f .
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Fact 15.4.1 gn(fna) = a.

Proof By induction on a : finn. For the constructor Old we have the proof obligation

g(Sn)(f(Sn)(Oldna)) = Oldna, which simplifies to Oldn(gn(fna)) = Oldna,

which holds by the inductive hypothesis gn(fna) = a. For the constructor New

we have the proof obligation g(Sn)(f(Sn)(Newn)) = Newn, which simplifies to

Newn = Newn. ■

The proof does an induction on values of the inductive type finn. The induction

can be formalized with an eliminator function defined as follows:

E : ∀p∀n. finn→T

(∀na. pna→ p(Sn)(Oldna))→
(∀n. p(Sn)(Newn))→
∀na. pna

Epe1e2 _ (Oldna) := e1na(Epe1e2na)

Epe1e2 _ (Newn) := e2n

Fact 15.4.2 fn(gna) = a.

Proof By induction on nN and discrimination on aNn . The proof obligation

f0(g0a) = a is trivial since a : ⊥. The proof obligation f(Sn)(g(Sn)(◦a)) = ◦a
reduces to ◦fn(gna) = ◦a and follows with the inductive hypothesis. The proof

obligation f(Sn)(g(Sn)�) = � reduces to � = �. ■

Corollary 15.4.3 The types finn and Nn and are in bijection.

Exercise 15.4.4 Use the bijection between inductive and recursive numeral types to

show that the inductive numeral types finn have equality deciders and EWOs.

Exercise 15.4.5 We want to prove that the inductive numeral type fin0 is empty.

Formally, we represent this statement with the proposition fin0 → ⊥.

a) Prove fin0 → ⊥ using the eliminator for inductive numeral types.

b) Prove fin0 → ⊥ using the bijection between inductive and recursive numeral

types.

Hint: For (a) prove the equivalent proposition ∀n. finn → n ≠ 0.
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15.5 Inductive Vector Types

Vector types as introduced in §11.4 have an elegant definition as indexed inductive

types:

vec (X : T) : N → T ::=
| Nil : vecX 0

| Cons : ∀n. X → vecXn→ vecX(Sn)

The constructors Nil and Cons give us the functions nil and cons we defined for the

recursive representation with products and unit.

We define a bijection between inductive and recursive vector types. For simplic-

ity we don’t write the base type X.

f : ∀n. vecn → Vn g : ∀n. Vn → vecn

f _ Nil := I

f _ (Consnxa) := (x, fna)

g 0a := Nil

g (Sn) (x,a) := Consnx(gna)

The definitions demonstrate that the structure of inductive and recursive vector

types is in full agreement.

Fact 15.5.1 gn(fna) = a.

Proof By induction on a : vecn.

The proof obligation g0(f0Nil) = Nil simplifies to Nil = Nil.

The proof obligation g(Sn)(f(Sn)(Consnxa)) = Consnxa simplifies to the

equation Consnx(gn(fna)) = Consnxa, which follows with the inductive hy-

pothesis. ■

The proof does an induction on values of inductive vector types vecn. The in-

duction can be formalized with an eliminator function defined as follows:

E : ∀p∀n. vecn→T

p 0 Nil →
(∀nxa. pna→ p(Sn)(Consnxa))→
∀na. pna

Epe1e2 _ Nil := e1

Epe1e2 _ (Consnxa) := e2nxa(Epe1e2na)

Fact 15.5.2 fn(gna) = a.

Proof By induction on nN and discrimination on aVn . The proof obligation

f0(g 0 I) = I reduces to I = I. The proof obligation f(Sn)(g(Sn)(x,a)) = (x,a)
reduces to (x, fn(gna)) = (x,a) and follows with the inductive hypothesis. ■
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Corollary 15.5.3 The types vecnX and VnX are in bijection.

Exercise 15.5.4 Use the bijection between inductive and recursive vector types to

show that inductive vector types have equality deciders and EWOs.

15.6 Post Correspondence Problem

Many problems in computer science have elegant specifications using inductive rela-

tions. As an example we consider the Post correspondence problem (PCP), a promi-

nent undecidable problem providing a base for undecidability proofs. The problem

involves cards with an upper and a lower string. Given a list C of cards, one has to

decide whether there is a nonempty list D of cards in C (possibly containing dupli-

cates) such that the concatenation of all upper strings equals the concatenation of

all lower strings. For instance, assuming the binary alphabet {a,b}, the list

C = [a/ϵ, b/a, ϵ/bb]

has the solution

D = [ϵ/bb, b/a, b/a, a/ϵ, a/ϵ]

On the other hand,

C′ = [a/ϵ, b/a]

has no solution.

We formalize PCP over the binary alphabet B with an inductive predicate

post : L(L(B)×L(B))→ L(B)→ L(B)→ P

defined with the rules

(A, B) ∈ C
post C AB

(A,B) ∈ C post C A′ B′

post C (A++A′) (B++B′)

Note that postCAB is derivable if there is a nonempty list D ⊆ C of cards such that

the concatenation of the upper strings of D is A and the concatenation of the lower

strings of D is B. Undecidability of PCP over a binary alphabet now means that there

is no computable function

∀C. D(∃A. postCAA) (15.1)

Since Rocq’s type theory can only define computable functions, we can conclude

that no function of type (15.1) is definable.

As it comes to the arguments of the inductive predicate postCAB, the defining

rules establish C as a uniform parameter and A and B as indices.
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15 Indexed Inductives

15.7 Index Elimination

Inductive type definitions with indices can be translated into inductive type defini-

tions without indices using equations in the premises. For instance, the initial rule

for reflexive transitive closure may be written as

x = y
R∗xy

Rxx′ R∗x′y

R∗xy

which yields an equivalent inductive predicate

star (X : T, R : X → X → P, x : X, y : X) : P ::=
| Nil : x = y → starXRxy

| Cons : ∀x′. Rxx′ → starXRx′y → starXRxy

with no index and a single nonuniform parameter x.

Index elimination will not work for inductive equality. Here the best we can do

is to express the coreference in the target type with Leibniz equality:

∀pX→P. px → py

eqXxy

Formally, this yields the inductive predicate definition

eq (X : T, x : X, y : X) : P ::=
| L : (∀pX→P. px → py)→ eqXxy

Based on this definition we can define

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

What we cannot do, however, is define R with a type function pX→T. The only way to

obtain rewriting of types is to work with the indexed inductive equality predicate.

We remark that rewriting of types is not needed for the usual things we do in

computational type theory. We may thus say that indexed inductive types are a

convenience not essential for our purposes. The benefits of inductive equality only

show at an internal technical level we will explore in Chapter 29.

15.8 Notes

The index condition is a restriction on the types of inductive function discriminating

on values of indexed inductive types. It simply says that the index positions of an
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discriminating argument type must be given with variables not appearing otherwise

in the argument type.

Recall that the proof assistant Rocq simulates inductive functions as plain func-

tions discriminating with native matches. There are situations called inversions in

the literature where a match for an indexed inductive type does not type check al-

though intuition says it should. An example appears as Exercise 15.4.5. The reason

for the mismatch with intuition is that the type of the inductive function explaining

the match would violate the index condition.

As it comes to expressivity added by indexed inductives, inductive equality gives

us something we didn’t have before (see Chapter 29). Numeral types and vector

types can be obtained elegantly with type functions recursing on numbers not in-

volving indexed inductives. There is a noninductive definition of a reflexive tran-

sitive closure predicate using recursion on the path length (Exercise 15.2.5), but

the representation with indexed inductives is simpler and doesn’t involve numbers,

which need to be erased anyway (with existential quantification) to state the transi-

tivity law (see the discussion for vectors in §11.4.2).

Indexed inductives really pay when it comes to derivation systems as they

are common in proof theory and programming languages. Examples appear in

Chapters 24 (propositional deduction systems) and Chapter 26 (regular expression

matching).

Section §20.6 gives an indexed inductive predicate characterizing greatest

comon divisors with three computation rules.
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16 Extensionality

Computational type theory does not fully determine equality of functions, propo-

sitions, and proofs. The missing commitment can be added through extensionality

assumptions.

16.1 Extensionality Assumptions

Computational type theory fails to fully determine equality between functions,

propositions, and proofs:

• Given two functions of the same type that agree on all elements, computational

type theory does not prove that the functions are equal.

• Given two equivalent propositions, computational type theory does not prove

that the propositions are equal.

• Given two proofs of the same proposition, computational type theory does not

prove that the proofs are equal.

From a modeling perspective, it would be desirable to add the missing proof power

for functions, propositions, and proofs. This can be done with three assumptions

expressible as propositions:

• Function extensionality

FE := ∀XT∀pX→T. ∀fg∀x.px. (∀x.fx = gx)→ f = g
• Propositional extensionality

PE := ∀PQP. (P ←→ Q)→ P = Q
• Proof irrelevance

PI := ∀QP. ∀abQ. a = b
Function extensionality gives us the equality for functions we are used to from

set-theoretic foundations. Together, function and propositional extensionality turn

predicates X → P into sets: Two predicates (i.e., sets) are equal if and only if they

have the same witnesses (i.e., elements). Proof irrelevance ensures that functions

taking proofs as arguments don’t depend on the particular proofs given. This way

propositional arguments can play the role of preconditions. Moreover, dependent

pair types sigp taken over predicates pX→P can model subtypes of X. Proof irrele-

vance also gives us dependent pair injectivity in the second component (§29.2).
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We can represent boolean functions f B→B as boolean pairs (f true, f false). Un-

der FE, the boolean function can be fully recovered from the pair.

Fact 16.1.1 FE → ∀f B→B. f = (λab. if b then π1a else π2a) (f true, f false).

Exercise 16.1.2 Prove the following:

a) FE → ∀fgB→B. f true = gtrue→ f false = gfalse→ f = g.

b) FE → ∀f B→B. (f = λb. b)∨ (f = λb. !b)∨ (f = λb. true)∨ (f = λb. false).

Exercise 16.1.3 Prove the following:

a) FE → ∀f⊤→⊤. f = λa⊤.a.

b) FE → B (⊤ → ⊤)⊤.

c) FE → B ≠ (⊤ → ⊤).
d) FE→ B (B → B) (B× B).

e) FE → E(B→ B).

16.2 Set Extensionality

Given FE and PE, predicates over a type X correspond exactly to sets whose elements

are taken from X. We may define membership as x ∈ p := px. In particular, we

obtain that two sets (represented as predicates) are equal if they have the same

elements (set extensionality). Moreover, we can define the usual set operations:

� := λxX .⊥ empty set

p ∩ q := λxX .px ∧ qx intersection

p ∪ q := λxX .px ∨ qx union

p − q := λxX .px ∧¬qx difference

Exercise 16.2.1 Prove x ∈ (p − q) ←→ x ∈ p ∧ x ∉ q. Check that the equation

(x ∈ (p − q)) = (x ∈ p ∧ x ∉ q) holds by computational equality.

Exercise 16.2.2 We define set extensionality as

SE := ∀XT∀pqX→P. (∀x. px ←→ qx)→ p = q

Prove the following:

a) FE → PE→ SE.

b) SE → PE.

c) SE → (∀x. x ∈ p ←→ x ∈ q)→ p = q.

d) SE→ p − (q ∪ r) = (p − q)∩ (p − r).
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16.3 Proof Irrelevance

We call a type unique if it has at most one element:

unique (XT) := ∀xyX . x = y

Note that PI says that all propositions are unique.

Fact 16.3.1 ⊥ and ⊤ are unique.

Proof Follows with the eliminators for ⊥ and ⊤. ■

It turns out that PI is a straightforward consequence of PE.

Fact 16.3.2 PE→ PI.

Proof Assume PE and let a and b be two proofs of a proposition X. We show a = b.

Since X ←→ ⊤, we have X = ⊤ by PE. Hence X is unique since ⊤ is unique. The claim

follows. ■

Exercise 16.3.3 Prove D(unique(⊤+⊥)) and D(unique(⊤+⊤)).

Exercise 16.3.4 Prove the following for all types X:

a) unique(X)→ E(X).
b) X → unique(X)→ BX⊤.

Exercise 16.3.5 Prove the following:

a) Uniqueness propagates forward through surjective functions:

∀XYT∀fX→Y . surjective f→ unique(X)→ unique(Y).

b) Uniqueness propagates backwards through injective functions:

∀XYT∀fX→Y . injective f→ unique(Y)→ unique(X).

Exercise 16.3.6 Prove FE→ unique (⊤ → ⊤).

Exercise 16.3.7 Assume PI and pX→P. Prove ∀xy∀ab. x = y → (x,a)p = (y, b)p.

Exercise 16.3.8 Suppose there is a function f : (⊤ ∨ ⊤) → B such that f(L I) = true

and f(R I) = false. Prove ¬ PI. Convince yourself that without the propositional

discrimination restriction you could define a function f as assumed.

Exercise 16.3.9 Suppose there is a function f : (∃xB.⊤) → B such that f(Ex I) = x
for all x. Prove ¬ PI. Convince yourself that without the propositional discrimination

restriction you could define a function f as assumed.

Exercise 16.3.10 Assume functions E : P → A and D : A → P embedding P into a

proposition A. That is, we assume ∀PP. D(EP)←→ P . Prove that A is not unique.

Remark: Later we will show Coquand’s theorem (31.4.1), which says that P embeds

into no proposition.
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16.4 Notes

There is general agreement that a computational type theory should be extensional,

that is, prove FE and PE. In our case, we may assume FE and PE as constants. There

are general results saying that adding the extensionality assumptions is consistent,

that is, does not enable a proof of falsity. There is research underway aiming at

a computational type theory integrating extensionality assumptions in such a way

that canonicity of the type theory is preserved. This is not the case in our setting

since reduction of a term build with assumed constants may get stuck on one of the

constants before a canonical term is reached.

Rocq offers a facility that determines the assumed constants a constant depends

on. Terms not depending on assumed constants are guaranteed to reduce to canon-

ical terms.

We will always make explicit when we use extensionality assumptions. It turns

out that most of the theory in this text does not require extensionality assumptions.
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17 Excluded Middle and Double Negation

One of the first laws of logic one learns in an introductory course on mathematics

is excluded middle saying that a proposition is either true or false. On the other

hand, computational type theory does not prove P ∨ ¬P for every proposition P .

It turns out that most results in computational mathematics can be formulated

such that they can be proved without assuming a law of excluded middle, and that

such a constructive account gives more insight than a naive account using excluded

middle. On the other hand, the law of excluded middle can be formulated with the

proposition

∀PP. P ∨¬P

and assuming it in computational type theory is consistent and meaningful.

In this chapter, we study several characterizations of excluded middle and the

special reasoning patterns provided by excluded middle. We show that these rea-

soning patterns are locally available for double negated claims without assuming

excluded middle.

17.1 Characterizations of Excluded Middle

We formulate the law of excluded middle with the proposition

XM := ∀PP. P ∨¬P

Computational type theory neither proves nor disproves XM. Thus it is interesting

to assume XM and study its consequences. This study becomes most revealing if

we assume XM only locally using implication.

There are several propositionally equivalent characterizations of excluded mid-

dle. Most amazing is may be Peirce’s law that formulates excluded middle with just

implication.

Fact 17.1.1 The following propositions are equivalent. That is, if we can prove one

of them, we can prove all of them.

1. ∀PP. P ∨¬P excluded middle

2. ∀PP. ¬¬P → P double negation

3. ∀PPQP. (¬P → ¬Q)→ Q → P contraposition

4. ∀PPQP. ((P → Q)→ P)→ P Peirce’s law
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Proof We prove the implications 1 → 2 → 3 → 4 → 1.

1 → 2. Assume ¬¬P and show P . By (1) we have either P or ¬P . Both cases are

easy.

2 → 3. Assume ¬P → ¬Q and Q and show P . By (2) it suffices to show ¬¬P . We

assume ¬P and show ⊥. Follows from the assumptions.

3 → 4. By (3) it suffices to show ¬P → ¬((P → Q)→ P)). Straightforward.

4 → 1. By (4) with P , (P ∨¬P) and Q , ⊥ we can assume ¬(P ∨¬P) and prove

P ∨¬P . We assume P and prove ⊥. Straightforward since we have ¬(P ∨¬P). ■

A common use of XM in mathematics is proof by contradiction: To prove s, we

assume ¬s and derive a contradiction. The lemma justifying proof by contradiction

is double negation:

XM → (¬P → ⊥)→ P

There is another characterization of excluded middle asserting existence of

counterexamples, often used as tacit assumption in mathematical arguments.

Fact 17.1.2 (Counterexample) XM ←→ ∀XT∀pX→P. (∀x.px)∨ ∃x.¬px.

Proof Assume XM and pX→P. By XM we assume ¬∃x.¬px and prove∀x.px. By the

de Morgan law for existential quantification we have ∀x.¬¬px. The claim follows

since XM implies the double negation law.

Now assume the right hand side and let P be a proposition. We prove P∨¬P . We

choose p := λa⊤.P . By the right hand side and conversion we have either ∀a⊤.P or

∃a⊤.¬P . In each case the claim follows. Note that choosing an inhabited type for X
is essential. ■

Figure 17.1 shows prominent equivalences whose left-to-right directions are only

provable with XM. Note the de Morgan laws for conjunction and universal quantifi-

cation. Recall that the de Morgan laws for disjunction and existential quantification

¬(P ∨Q) ←→ ¬P ∧¬Q de Morgan

¬(∃x.px) ←→ ∀x.¬px de Morgan

have constructive proofs.

Exercise 17.1.3

a) Prove the right-to-left directions of the equivalences in Figure 17.1.

b) Prove the left-to-right directions of the equivalences in Figure 17.1 using XM.
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17.1 Characterizations of Excluded Middle

¬(P ∧Q) ←→ ¬P ∨¬Q de Morgan

¬(∀x.px) ←→ ∃x.¬px de Morgan

(¬P → ¬Q) ←→ (Q → P) contraposition

(P → Q) ←→ ¬P ∨Q classical implication

Figure 17.1: Prominent equivalences only provable with XM

Exercise 17.1.4 Prove the following equivalences possibly using XM. In each case

find out which direction needs XM.

¬(∃x.¬px) ←→ ∀x.px
¬(∃x.¬px) ←→ ¬¬∀x.px
¬(∃x.¬px) ←→ ¬¬∀x.¬¬px
¬¬(∃x.px) ←→ ¬∀x.¬px

Exercise 17.1.5 Make sure you can prove the de Morgan laws for disjunction and

existential quantification (not using XM).

Exercise 17.1.6 Prove that ∀PQRP. (P → Q)∨ (Q → R) is equivalent to XM.

Exercise 17.1.7 Explain why Peirce’s law and the double negation law are indepen-

dent in Rocq’s type theory.

Exercise 17.1.8 Prove the equivalence of Peirce’s law and the double negation law

directly without going through other laws or disjunction. In each case only a single

instance of the other law is needed, which can be taken right at the beginning. Use

Rocq’s tactic tauto to convince yourself that you have chosen the right instance.

Exercise 17.1.9 (De Morgan for universal quantification)

Prove XM ←→ ∀XT∀pX→P. ¬(∀x.px)→ (∃x.¬px).
Hint: For direction ← prove P ∨ ¬P with X := P ∨ ¬P and λ_.⊥, and exploit that

¬¬(P ∨¬P) is provable.

Exercise 17.1.10 (Drinker Paradox) Consider a bar populated by at least one per-

son. Using excluded middle, one can argue that one can pick some person in the

bar such that everyone in the bar drinks Wodka if this person drinks Wodka.

We assume an inhabited type X representing the persons in the bar and a pred-

icate pX→P identifying the persons who drink Wodka. The job is now to prove the

proposition ∃x. px → ∀y.py . Do the proof in detail and point out where XM and
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17 Excluded Middle and Double Negation

inhabitation of X are needed. A nice proof can be done with the counterexample

law Fact 17.1.2.

An informal proof may proceed as follows. Either everyone in the bar is drinking

Whisky. Then we can pick any person for x. Otherwise, we pick a person for x not

drinking Whisky, making the implication vacuously true.

Exercise 17.1.11 (Drinker implies excluded middle)

When formulated in full generality

∀XT∀pX→P. X → ∃x. px → ∀y.py

the drinker proposition implies excluded middle. The proof was found by Dominik

Kirst in March 2023 and goes as follows. We show P ∨¬P for some proposition P .

To do so, we instantiate the drinker proposition with the type X := O(P ∨¬P) and

the predicate defined by p(◦_) := ¬P and p(�) := ⊤. We now obtain some a such

that pa→ ∀y.py . If a is obtained with some, a gives us a proof of the claim P∨¬P .

Otherwise, we have ∀y.py and prove ¬P . We assume P and obtain a contradiction

with the some case of p.

Kirst’s proof exploits that we are in a logical framework where proofs are values.

There is a paper [31] discussing the drinker paradox and suggesting it does not

imply excluded middle in a more conventional logical framework.

Exercise 17.1.12 (Dual drinker)

Prove that the so-called dual drinker proposition

∀X∀pX→P. X → ∃x. (∃y.py)→ px

is equivalent to excluded middle.

17.2 Double Negation

Given a proposition P , we call ¬¬P the double negation of P . It turns out that the

double negation of a quantifier-free proposition is provable even if the proposition

by itself is only provable with XM. For instance,

∀PP. ¬¬(P ∨¬P)

is provable. This metaproperty cannot be proved in Rocq. However, for every in-

stance a proof can be given in Rocq. Moreover, for concrete propositional proof

systems the translation of classical proofs into constructive proofs of the double

negated claim can be formalized and verified (Glivenko’s theorem 24.7.2).

There is a useful proof technique for working with double negation: If we have a

double negated assumption and need to derive a proof of falsity, we can drop the
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double negation. The lemma behind this is an instance of the polymorphic identity

function:

¬¬P → (P → ⊥)→ ⊥

With excluded middle, double negation distributes over all connectives and

quantifiers. Without excluded middle, we can still prove that double negation dis-

tributes over implication and conjunction.

Fact 17.2.1 The following distribution laws for double negation are provable:

¬¬(P → Q) ←→ (¬¬P → ¬¬Q)
¬¬(P ∧Q) ←→ ¬¬P ∧¬¬Q

¬¬⊤ ←→ ⊤
¬¬⊥ ←→ ⊥

Exercise 17.2.2 Prove the equivalences of Fact 17.2.1.

Exercise 17.2.3 Prove the following propositions:

¬(P ∧Q) ←→ ¬¬(¬P ∨¬Q)
(¬P → ¬Q) ←→ ¬¬(Q → P)

(¬P → ¬Q) ←→ (Q → ¬¬P)
(P → Q) → ¬¬(¬P ∨Q)

Exercise 17.2.4 Prove ¬(∀x.¬px) ←→ ¬¬∃x.px.

Exercise 17.2.5 Prove the following implications:

¬¬P ∨¬¬Q → ¬¬(P ∨Q)
(∃x.¬¬px) → ¬¬∃x.px
¬¬(∀x.px) → ∀x.¬¬px

Also prove the converse directions using excluded middle.

Exercise 17.2.6 Make sure you can prove the double negations of the following

propositions:

P ∨¬P
¬¬P → P

¬(P ∧Q)→ ¬P ∨¬Q
(¬P → ¬Q)→ Q → P

((P → Q)→ P)→ P

(P → Q)→ ¬P ∨Q
(P → Q)∨ (Q → P)
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Exercise 17.2.7 (Double negation shift)

An prominent logical law is double negation shift:

DNS := ∀XT∀pX→P. (∀x. ¬¬px)→ ¬¬∀x. px

DNS is provable for finite types but unprovable in general. Prove the following:

a) ∀pB→P. (∀x. ¬¬px)→ ¬¬∀x. px
b) ¬¬XM ←→ DNS

c) ∀XT∀pX→P. ¬¬(∀x. px)→ (∀x. ¬¬px)
Hint: Direction ← of (b) follows with λP.P ∨¬P .

Exercise 17.2.8 (Double negation shift for existential quantification)

Prove XM ←→ ∀XT∀pX→P. (¬¬∃x. px)→ ∃x. ¬¬px.

Hint: For direction← prove P ∨¬P with X := P ∨¬P and p := λ_.⊤, and exploit that

¬¬(P ∨¬P) is provable.

17.3 Definite Propositions

We define definite propositions as propositions for which excluded middle holds:

definite PP := P ∨¬P

Fact 17.3.1 XM←→ ∀PP. definiteP .

We may see definite propositions as propositionally decided propositions. Com-

putationally decided propositions are always propositionally decided, but not nec-

essarily vice versa.

Fact 17.3.2

1. Decidable propositions are definite: ∀PP. D(P)→ definiteP .

2. ⊤ and ⊥ are definite.

3. Extensionality: Definiteness is invariant under propositional equivalence:

(P ←→ Q)→ definiteP → definiteQ.

Fact 17.3.3 (Closure Rules)

Implication, conjunction, disjunction, and negation preserve definiteness:

1. definite P → definite Q → definite (P → Q).

2. definite P → definite Q → definite (P ∧Q).
3. definite P → definite Q → definite (P ∨Q).
4. definite P → definite (¬P).

Fact 17.3.4 (Definite de Morgan) definite P ∨ definiteQ → ¬(P∧Q) ←→ ¬P∨¬Q.

Exercise 17.3.5 Prove the above facts.
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17.4 Stable Propositions

We define stable propositions as propositions where double negation elimination

is possible:

stable PP := ¬¬P → P

Stable propositions matter since there are proof rules providing classical reason-

ing for stable claims.

Fact 17.4.1 XM←→ ∀PP. stableP .

Definite propositions are stable, but not necessarily vice versa.

Fact 17.4.2 Definite propositions are stable: ∀PP. definiteP → stableP .

A negated proposition ¬P where P is a variable is stable but not definite.

Fact 17.4.3 (Characterization) stableP ←→ ∃QP. P ←→ ¬Q.

Corollary 17.4.4 Negated propositions are stable: ∀PP. stable(¬P).

Fact 17.4.5 ⊤ and ⊥ are stable.

Fact 17.4.6 (Closure Rules)

Implication, conjunction, and universal quantification preserve stability:

1. stable Q → stable (P → Q).

2. stable P → stable Q → stable (P ∧Q).
3. (∀x. stable (px)) → stable (∀x.px).

Fact 17.4.7 (Extensionality) Stability is invariant under propositional equivalence:

(P ←→ Q)→ stableP → stableQ.

Fact 17.4.8 (Classical reasoning rules for stable claims)

1. stableQ → (definiteP → Q)→ Q.

2. stableQ → (stableP → Q)→ Q.

The rules say that when we prove a stable claim, we can assume for every propo-

sition P that it is definite or stable. Note that the second rule follows from the first

rule since definiteness implies stability.

Exercise 17.4.9 Prove the above facts.
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Exercise 17.4.10 Prove the following classical reasoning rules for stable claims:

a) stableQ → (P → Q)→ (¬P → Q)→ Q.

b) stableQ → ¬(P1 ∧ P2)→ (¬P1 ∨¬P2 → Q)→ Q.

c) stableQ → (¬P1 → ¬P2)→ ((P2 → P1)→ Q)→ Q.

Exercise 17.4.11 Prove (∀x. stable (px)) → ¬(∀x.px) ←→ ¬¬∃x.¬px.

Exercise 17.4.12 Prove FE→ ∀fgN→B. stable(f = g).

Exercise 17.4.13 Prove XM←→ ∀PP ∃QP. P ←→ ¬Q.

Exercise 17.4.14 We define classical variants of conjunction, disjunction, and ex-

istential quantification:

P ∧c Q := (P → Q → ⊥)→ ⊥ ¬(P → ¬Q)
P ∨c Q := (P → ⊥)→ (Q → ⊥)→ ⊥ ¬P → ¬¬Q
∃cx.px := (∀x.px → ⊥)→ ⊥ ¬(∀x.¬px)

The definitions are obtained from the impredicative characterizations of ∧, ∨, and ∃
by replacing the quantified target proposition Z with ⊥. At the right we give com-

putationally equal variants using negation. The classical variants are implied by

the originals and are equivalent to the double negations of the originals. Under

excluded middle, the classical variants thus agree with the originals. Prove the fol-

lowing propositions.

a) P ∧Q → P ∧c Q and P ∧c Q ←→ ¬¬(P ∧Q).
b) P ∨Q → P ∨c Q and P ∨c Q ←→ ¬¬(P ∨Q).
c) (∃x.px)→ ∃cx.px and (∃cx.px)←→ ¬¬(∃x.px).
d) P ∨c ¬P .

e) ¬(P ∧c Q)←→ ¬P ∨c ¬Q.

f) (∀x. stable (px)) → ¬(∀x.px)←→ ∃cx.¬px.

g) P ∧c Q, P ∨c Q, and ∃cx.px are stable.

17.5 Variants of Excluded Middle

A stronger formulation of excluded middle is truth value semantics:

TVS := ∀PP. P = ⊤∨ P = ⊥

TVS is equivalent to the conjunction of XM and PE.

Fact 17.5.1 TVS←→ XM∧ PE.
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Proof We show TVS → PE. Let P ←→ Q. We apply TVS to P and Q. If they are both

assigned ⊥ or ⊤, we have P = Q. Otherwise we have ⊤ ←→ ⊥, which is contradictory.

The remaining implications TVS → XM and XM∧PE → TVS are also straightforward.■

There are interesting weaker formulations of excluded middle. We consider two

of them in exercises appearing below:

WXM := ∀PP. ¬P ∨¬¬P weak excluded middle

IXM := ∀PPQP. (P → Q)∨ (Q → P) implicational excluded middle

Altogether we have the following hierarchy: TVS ⇒ XM⇒ IXM ⇒ WXM.

Exercise 17.5.2 Prove TVS ←→ ∀XYZ : P. X = Y ∨ X = Z ∨ Y = Z . Note that the

equivalence characterizes TVS without using ⊤ and ⊥.

Exercise 17.5.3 Prove TVS ←→ ∀pP→P. p⊤ → p⊥ → ∀X.pX. Note that the equiva-

lence characterizes TVS without using propositional equality.

Exercise 17.5.4 Prove (∀XT. X = ⊤∨X = ⊥)→ ⊥.

Exercise 17.5.5 (Weak excluded middle)

a) Prove XM → WXM.

b) Prove WXM ←→ ∀PP. ¬¬P ∨¬¬¬P .

c) Prove WXM ←→ ∀PPQP. ¬(P ∧Q)→ ¬P ∨¬Q.

Note that (c) says that WXM is equivalent to the de Morgan law for conjunction. We

remark that computational type theory proves neither WXM nor WXM → XM.

Exercise 17.5.6 (Implicational excluded middle)

a) Prove XM → IXM.

b) Prove IXM → WXM.

c) Assuming that computational type theory does not prove WXM, argue that com-

putational type theory proves neither IXM nor XM nor TVS.

We remark that computational type theory does not prove WXM. Neither does com-

putational type theory prove any of the implications WXM → IXM, IXM → XM, and

XM → TVS.

17.6 Notes

Proof systems not building in excluded middle are called intuitionistic proof systems,

and proof systems building in excluded middle are called classical proof systems.

The proof system coming with computational type theory is clearly an intuitionistic
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17 Excluded Middle and Double Negation

system. What we have seen in this chapter is that an intuitionistic proof system pro-

vides for a fine grained analysis of excluded middle. This is in contrast to a classical

proof system that by construction does not support the study of excluded middle.

It should be very clear from this chapter that an intuitionistic system provides for

classical reasoning (i.e., reasoning with excluded middle) while a classical system

does not provide for intuitionistic reasoning (i.e., reasoning without excluded mid-

dle).

Classical and intuitionistic proof systems have been studied for more than a

century. That intuitionistic reasoning is not made explicit in current introductory

teaching of mathematics may have social reasons tracing back to early advocates of

intuitionistic reasoning who argued against the use of excluded middle.
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18 Provability

A central notion of computational type theory and related systems is provability.

A type (or more specifically a proposition) is provable if there is a term that type

checks as a member of this type. Importantly, type checking is a decidable relation

between terms that can be machine checked. We say that provability is a verifiable

relation. Given the explanations in this text and the realization provided by the

proof assistant Rocq, we are on solid ground when we construct proofs.

In contrast to provability, unprovability is not a verifiable relation. Thus the

proof assistant will, in general, not be able to certify that types are unprovable.

As it comes to unprovability, this text makes some strong assumptions that

cannot be verified with the methods the text develops. The most prominent such

assumption says that falsity is unprovable.

Recall that we call a type X disprovable if the type X → ⊥ is provable. If we trust

in the assumption that falsity is unprovable, every disprovable type is unprovable.

Thus disprovable types give us a class of types for which unprovability is verifiable

up to the assumption that falsity is unprovable.

Types that are neither provable nor disprovable are called independent types.

There are many independent types. In fact, the extensionality assumptions from

Chapter 16 and the different variants of excluded middle from Chapter 17 are all

claimed independent. These claims are backed up by model-theoretic studies in the

literature.

18.1 Provability Predicates

It will be helpful to assume an abstract provability predicate

provable : P → P

With this trick provable (P) and ¬provable (P) are both propositions in compu-

tational type theory we can reason about. We define three standard notions for

propositions and the assumed provability predicate:

disprovable (P) := provable (¬P)
consistent (P) := ¬provable (¬P)

independent (P) := ¬provable (P)∧¬provable (¬P)
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With these definitions we can easily prove the following implications:

independent (P)→ consistent (P)

consistent (P)→ ¬disprovable (P)

provable (P)→ ¬independent (P)

To show more, we make the following assumptions about the assumed provability

predicate:

PMP : ∀PQ. provable (P → Q)→ provable (P)→ provable (Q)

PI : ∀P. provable (P → P)

PK : ∀PQ. provable (Q)→ provable (P → Q)

PC : ∀PQZ. provable (P → Q)→ provable ((Q → Z)→ P → Z)

Since the provability predicate coming with computational type theory satisfies

these properties, we can expect that properties we can show for the assumed prov-

ability predicate also hold for the provability predicate coming with computational

type theory.

Fact 18.1.1 (Transport)

1. provable(P → Q) → ¬provableQ → ¬provable (P).

2. provable(P → Q) → consistent (P) → consistent (Q).

Proof Claim 1 follows with PMP. Claim 2 follows with PC and (1). ■

From the transport properties it follows that a proposition is independent if it

can be sandwiched between a consistent and an unprovable proposition.

Fact 18.1.2 (Sandwich) A proposition Z is independent if there exists a consistent

proposition P and an unprovable proposition Q such that P → Z and Z → Q are

provable: consistent (P)→ ¬provableQ → (P → Z)→ (Z → Q)→ independent (Z).

Proof Follows with Fact 18.1.1. ■

Exercise 18.1.3 Show that the functions λPP.P and λPP.⊤ are provability predi-

cates satisfying PMP, PI, PK, and PC.

Exercise 18.1.4 Let P → Q be provable. Show that P and Q are both independent

if P is consistent and Q is unprovable.

Exercise 18.1.5 Assume that the provability predicate satisfies

PE : ∀PP. provable (⊥)→ provable (P)

in addition to PMP, PI, PK, and PC. Prove ¬provable (⊥)←→ ¬∀PP. provable (P).
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18.2 Consistency

Fact 18.2.1 (Consistency) The following propositions are equivalent:

1. ¬provable (⊥).
2. consistent (¬⊥).
3. ∃P. consistent (P).

4. ∀P. provable (P)→ consistent (P).

5. ∀P. disprovable (P)→ ¬provable (P).

Proof 1 → 2. We assume provable (¬¬⊥) and show provable (⊥). By PMP it suffices

to show provable(¬⊥), which holds by PI.

2 → 3. Trivial.

3 → 1. Suppose P is consistent. We assume provable⊥ and show provable (¬P).
Follows by PK.

1 → 4. We assume that ⊥ is unprovable, P is provable, and ¬P is provable. By

PMP we have provable⊥. Contradiction.

4 → 1. We assume that ⊥ is provable and derive a contradiction. By the primary

assumption it follows that ¬⊥ is unprovable. Contradiction since ¬⊥ is provable

by PI.

1 → 5. Follows with PMP.

5 → 1. Assume disprovable (⊥)→ ¬provable (⊥). It suffices to show

disprovable(¬⊥), which follows with PI. ■

Exercise 18.2.2 We may consider more abstract provability predicates

provable : prop→ P

where prop is an assumed type of propositions with an assumed constant

impl : prop→ prop → prop

Show that all results of this chapter hold for such abstract proof systems.

Exercise 18.2.3 (Hilbert style assumptions) The assumptions PI, PK, and PC can be

obtained from the simpler assumptions

PK′ : ∀PQ. provable (P → Q → P)

PS : ∀PQZ. provable ((P → Q → Z)→ (P → Q)→ P → Z)

that will look familiar to people acquainted with propositional Hilbert systems.

Prove PK, PI, and PC from the two assumptions above. PK and PI are easy. PC

is difficult if you don’t know the technique. You may follow the proof tree

S(S(KS)(S(KK)I))(KH). Hint: PI follows with the proof tree SKK.

The exercise was prompted by ideas of Jianlin Li in July 2020.
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19 Arithmetic Recursion

This chapter is about functions recursing on numeric arguments in a non-structural

manner. The examples we consider are Euclidean division, greatest common divi-

sors, and the Fibonacci numbers. We describe the functions with procedural speci-

fications and construct satisfying reducible functions using structural recursion on

a step index formalizing the arithmetic termination argument. We show uniqueness

of the procedural specifications using complete induction and size induction, two

induction operators obtained by structural induction on a step index.

We also define course-of-values recursion as structural recursion on the length

of vectors. With course-of-values recursion we obtain a Fibonacci function from the

step function generating the Fibonacci sequence.

19.1 Complete Induction

Complete induction is a well-known proof rule saying that to prove px it is ok to

assume py holds for all y < x:

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px

We will establish complete induction as a certifying function with the above type.

Complete induction can be used to construct functions since p may be a type

function.

When we use complete induction to construct a proof, we will refer to the hy-

pothesis

∀y. y < x → py

as the inductive hypothesis. When we use complete induction to construct a func-

tion, we will refer to the function of the type

∀x. (∀y. y < x → py)→ px

as the step function. Moreover, we will refer to the certifying function for complete

induction as the complete induction operator.

Compared to structural induction

∀pN→T. p0 → (∀x. px → p(Sx))→ ∀x.px
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19 Arithmetic Recursion

complete induction introduces only one proof obligation. Moreover, the inductive

hypothesis of complete induction is stronger than the inductive hypothesis of struc-

tural induction in that it provide py for all y < x, not just the predecessor.

Computationally, complete induction says that when we compute a function f
for a number x, we can obtain fy for all y < x by recursion.

Constructing a complete induction operator with a structural induction operator

is straightforward. The trick is to replace the claim∀x.px with the equivalent claim

∀nx. x < n→ px and do structural induction on the introduced upper bound n.

Definition 19.1.1 (Complete induction operator)

∀pN→T. (∀x. (∀y. y < x → py)→ px)→ ∀x.px.

Proof We assume p and the step function

F : ∀x. (∀y. y < x → py)→ px

and show ∀x.px. The trick is to prove the equivalent claim

∀nx. x < n→ px

by structural induction on the upper bound n. For n = 0, the claim follows withe

computational falsity elimination since we have the hypothesis x < 0. In the suc-

cessor case, we assume x < Sn and prove px. We apply the step function F , which

gives us the assumption y < x and the claim py . By the inductive hypothesis it

suffices to show y < n, which follows by linear arithmetic ■

Exercise 19.1.2 (Uniqueness of procedural specification)

We call a procedural specification unique if all functions satisfying the specifica-

tion agree. Prove with complete induction that the procedural specification (of the

Fibonacci function)

Fib : (N→ N)→ N→ N

Fibf n := if n ≤ 1 then n else f(n− 2)+ f(n− 1)

is unique: ∀ff ′. (∀n. fn = Fibf n)→ (∀n. f ′n = Fibf ′n)→ (∀n. fn = f ′n).
Exercise 19.1.3 (Uniqueness of procedural specification)

Prove that the procedural specification (of the Ackermann function)

Ack : (N→ N → N)→ N → N → N

Ackf 0y := Sy

Ackf (Sx)0 := fx1

Ackf (Sx)(Sy) := fx(f(Sx)y)

is unique.
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Exercise 19.1.4 (Double induction) Prove the following double induction principle

for numbers (from Smullyan and Fitting [27]):

∀pN→N→T.

(∀x. px0)→
(∀xy. pxy → pyx → px(Sy))→
∀xy. pxy

There is a nice geometric intuition for the truth of the principle: See a pair (x,y) as

a point in the discrete plane spanned by N and convince yourself that the two rules

are enough to reach every point of the plane.

Hint: First do induction on y with x quantified. In the successor case, first apply

the second rule and then prove pxy by induction on x.

19.2 Size Induction

Size induction is a generalization of complete induction working for all types that

have a numeric size function:

∀XT∀σX→N∀pX→T.

(∀x. (∀y. σy < σx → py)→ px)→
∀x.px

With size induction, when we prove px, we can assume py for all y whose size

is smaller than the size of x. The construction of the size induction operator is a

straightforward adaption of the construction of the complete induction operator.

Definition 19.2.1 (Size induction operator)

∀XT ∀σX→N ∀pX→T.

(∀x. (∀y. σy < σx → py)→ px) →
∀x.px

Proof We assume X, σ , p and the step function F : ∀x. (∀y. y < x → py) → px
and show ∀x.px. We prove the equivalent claim

∀nx. σx < n→ px

by structural induction on the upper bound n. For n = 0, the claim follows withe

computational falsity elimination since we have the hypothesis x < 0. In the succes-

sor case, we assume σx < Sn and prove px. We apply the step function F , which

gives us the assumption σy < σx and the claim py . By the inductive hypothesis it

suffices to show σy < σn, which follows by linear arithmetic ■
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19 Arithmetic Recursion

There will be applications of size induction where the size function has two

arguments. We establish a binary size induction operator adapted to this situation.

Definition 19.2.2 (Binary size induction operator)

∀XYT ∀σX→Y→N ∀pX→Y→T.

(∀xy. (∀x′y ′. σx′y ′ < σxy → px′y ′)→ pxy)→
∀xy. pxy

Proof Straightforward adaption of the construction of the unary size induction op-

erator (Fact 19.2.1). ■

Exercise 19.2.3 Assume a size induction operator and construct a binary size

induction operator and a structural induction operator not using structural induc-

tion.

19.3 Euclidean Quotient

The Euclidean quotient of two numbers x and Sy is the number of times Sy can be

subtracted from x without truncation. This computational characterization of the

Euclidean quotient can be formalized with a procedural specification

Dxy = if x ≤ y then 0 else S(D(x − Sy)y)

The computation captured by the equation terminates since the first argument is

decreased upon recursion. Thus if D is a function satisfying the equation, Dxy is

the Euclidean quotient of x and Sy for all numbers x and y . There are obvious

questions about the procedural specification of Euclidean division:

• Existence: Is there a function satisfying the specification?

• Uniqueness: Do all functions satisfying the specification agree?

• Formalization: How can the specification be expressed in type theory?

We will answer the first two questions positively. Existence will be shown with a

general technique called step indexing that applies to all procedural specifications

whose recursion is guarded by an arithmetic size function. Uniqueness will follow

with complete induction on the first argument x.

First we take care of the formalization of the procedural specification. We ex-

press the procedural specification with an unfolding function (§1.12)

∆ : (N→ N)→ N→ N → N

∆fxy := if x ≤ y then 0 else S(f (x − Sy)y)

We prepare the uniqueness statement with a notation for function agreement:

f ≡ f ′ � ∀xy. fxy = f ′xy
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Fact 19.3.1 (Uniqueness)

All functions satisfying ∆ agree:

∀ff ′. f ≡ ∆f → f ′ ≡ ∆f ′ → f ≡ f ′.

Proof We assume H1 : f ≡ ∆f and H2 : f ′ ≡ ∆f ′ and prove fxy = f ′xy by

complete induction on x. By rewriting with H1 and H2 the claim reduces to

(if x ≤ y then 0 else S(f (x − Sy)y))

= (if x ≤ y then 0 else S(f ′(x − Sy)y))

We now discriminate on x − y . If x ≤ y , the claim reduces to 0 = 0. If x > y , the

claim reduces to

S(f (x − Sy)y) = S(f ′(x − Sy)y)

which follows with the inductive hypothesis instantiated with x − Sy < x. ■

Exercise 19.3.2 Let D be a function satisfying the procedural specification for the

Euclidean quotients: D ≡ ∆D. Prove Dxy · Sy ≤ x < Dxy · Sy + Sy .

Exercise 19.3.3 (Euclidean remainder) The Euclidean remainder of x and Sy is the

number that remains if Sy is subtracted from x as long as this is possible without

truncation.

a) Give a procedural specification Γ formalizing the specification of the remainder.

b) Show that Γ is unique.

c) Show that every function M satisfying Γ satisfies Mxy ≤ y .

d) Let D be a function satisfying δ and M be a function satisfying Γ .
Show x = Dxy · Sy +Mxy .

Exercise 19.3.4 We have shown some results about the procedural specification ∆
using complete induction. It turns out that the results can also be shown using

structural induction on an upper bound for the variable used for complete induc-

tion. For instance, if D satisfies Γ , one may prove

∀nx. x < n→ Dxy · Sy ≤ x < Dxy · Sy + Sy

by structural induction on n to obtain ∀x. Dxy · Sy ≤ x < Dxy · Sy + Sy .

Exercise 19.3.5 Construct an induction operator

∀yN∀pN→T.

(∀x ≤ y. px)→
(∀x > y. p(x − Sy)→ px)→
∀x. px
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19.4 Step-Indexed Function Construction

We now introduce a technique called step indexing providing for the direct con-

struction of functions satisfying procedural specifications. Step indexing works

whenever the termination of the procedural specification can be argued with an

arithmetic size function.

Suppose we have a procedural specification whose termination can be argued

with an arithmetic size function. Then we can define an helper function taking the

size (a number) as an additional argument called step index and arrange things such

that the recursion is structural recursion on the step index. We obtain the specified

function by using the helper function with a sufficiently large step index.

We demonstrate the technique with the procedural specification δ of Euclidean

quotients. The step-indexed helper function comes out as follows:

Div 0xy := 0

Div (Sn)xy := ∆ (Divn)xy

The essential result about Div is index independence : Divnxy = Divn′xy whenever

the step indices are large enough.

Lemma 19.4.1 (Index independence)

∀nn′xy. n > x → n′ > x → Divnxy = Divn′xy .

Proof By induction on nwith n′ and x quantified. The base case has a contradictory

assumption. In the successor case, we destructure n′. The case n′ = 0 has a

contradictory assumption. If n = Sn1 and n′ = Sn′1, the claim reduces to

if x ≤ y then 0 else S(Divn1(x − Sy)y)

= if x ≤ y then 0 else S(Divn2(x − Sy)y)

The claim now follows by discrimination on x − y using the inductive hypothesis

for n1 > x − Sy and n2 > x − Sy . ■

Fact 19.4.2 (Existence) Let Dx := Div(Sx)x. Then D ≡ ∆D.

Proof The claim simplifies to

if x ≤ y then 0 else S(Divx(x − Sy)y)

= if x ≤ y then 0 else S(Div (S(x − Sy))(x − Sy)y)

The reduced claim follows by discrimination on x − y using index independence

(Lemma 19.4.1) for x > x − Sy and S(x − Sy) > x − Sy . ■
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19.5 Greatest Common Divisor

The techniques we have seen for Euclidean quotients also work for GCDs (greatest

common divisors). Recall that the GCD of two numbers can be computed by re-

peated non-truncating subtraction. We formalize the algorithm with the procedural

specification

Γ : (N→ N)→ N→ N → N

Γfxy := if x then y else if x ≤ y then fx(y − x) else fyx

The recursion of the specification terminates since it decreases the binary size func-

tion σxy := 2 · x +y .

Fact 19.5.1 (Uniqueness)

All functions satisfying Γ agree:

∀ff ′. f ≡ Γf → f ′ ≡ Γf ′ → f ≡ f ′.

Proof We assume H1 : f ≡ Γf and H2 : f ′ ≡ Γf ′ and prove fxy = f ′xy by

binary size induction on σxy . Following Γ , we consider three cases: (1) x = 0,

(2) 0 < x ≤ y , and (3) y > x > 0. The base case follows by computational equality,

and the recursive cases follow with the inductive hypothesis. ■

To construct a function satisfying Γ , we define a step-indexed helper function:

Gcd 0xy := 0

Gcd (Sn)xy := Γ (Gcdn)xy

Lemma 19.5.2 (Index independence)

∀nn′xy. n > σxy → n′ > σxy → Gcdnxy = Gcdn′xy .

Proof By induction on n with n′, x, and y quantified. The base case has a contra-

dictory assumption. In the successor case, we destructure n′. The case n′ = 0 has

a contradictory assumption. Let n = Sn1 and n′ = Sn′1. Following Γ , we consider

three cases: (1) x = 0, (2) 0 < x ≤ y , and (3) y > x > 0. The base case follows by

computational equality, and the recursive cases follow with the inductive hypothe-

sis. ■

Fact 19.5.3 (Existence) Let Gxy := Gcd(S(σxy))xy . Then G ≡ ΓG.

Proof Following Γ , we consider three cases: (1) x = 0, (2) 0 < x ≤ y , and (3)

y > x > 0. The base case follows by computational equality, and the recursive cases

follow with index independence (Lemma 19.5.2). ■
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19 Arithmetic Recursion

Exercise 19.5.4 Construct a GCD induction operator

∀pN→N→T.

(∀y. p0y)→
(∀xy. x ≤ y → px(y − x)→ pxy)→
(∀xy. pxy → pyx)→
∀xy. pxy

19.6 Course-of-values Recursion

Recall the definition of vector types in §11.4 with a type function recursing on

numbers:

V : T → N → T

VX 0 := 1

VX (Sn) := X × VX n

Also recall that we are using the notation VnX for VX n. The values of a vector

type VnX represent sequences ⟨x1, . . . , xn⟩ whose elements are of type X. For in-

stance, we have

(1, (2, (3, I))) : V3N ≈ N× (N× (N× 1))

Given a step function f : ∀n. VnX → X, we can start from the empty vector and

recursively compute vectors (fnv,v) : VSnX. We speak of vector recursion and

formalize the computation scheme with a function

vecrec : ∀XT. (∀n. VnX → X)→ ∀n. VnX
vecrecX f 0 := I

vecrecX f (Sn) := let v = vecrecX f n in (fnv,v)

Building on vector recursion, we define course-of-values recursion as follows:

covrec : ∀XT. (∀n. VnX → X)→ N → X

covrecX f n := π1(vecrecX f (Sn))

An untyped form of course by value recursion appeared with the study of primitive

recursive functions in the 1920s.

Course-of-values recursion can be used to construct the functions representing

sequences like those of the square numbers, factorials, and Fibonacci numbers:

1,4,9,16,25,36, . . .

1,1,2,6,24,120, . . .

0,1,1,2,3,5, . . .
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The function for the square number sequence is

covrec N (λn_. n2)

The function for the factorial sequence is obtained with the step function

facstep : ∀n. VnN → N

facstep 0 _ := 1

facstep (Sn) v := Sn ·π1v

Note that type checking of the second defining equation requires conversion to

validate the application of the projection π1. Finally the function for the Fibonacci

sequence is obtained with the step function.

fibstep : ∀n. VnN → N

fibstep 0 _ := 0

fibstep 1 _ := 1

fibstep (SSn) v := π1(π2v)+π1v

Informally, the step function says that the first two Fibonacci numbers are 0 and 1,

and that higher Fibonacci numbers are obtained as the sum of the two preceding

Fibonacci numbers.

We prove that the Fibonacci function obtained with course-of-values recursion

satisfies the standard specification of the Fibonacci sequence.

Fact 19.6.1 (Correctness) Let fib := covrec N fibstep.

Then ∀n. fibn = if n ≤ 1 then n else fib (n− 2)+ fib (n− 1).

Proof The claim follows by case analysis on n. If n = 0 or n = 1, the claim follows

by computational equality. If n = SSn′, the claim follows by computational equality

after SSn′ − 2 is replaced with n′. ■
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20 Euclidean Division

We study functions for Euclidean division. We start with a relational specifica-

tion and show with a certifying function that Euclidean quotients and remainders

uniquely exist. The certifying function gives us abstract quotient and remainder

functions satisfying a defining property. We show that the abstract functions can

be computed with repeated subtraction.

Following the ideas used for quotient and remainder, we construct an abstract

GCD function satisfying a relational specification of greatest common divisors. We

show that the abstract GCD function can be computed by taking remainders. We

also give an inductive characterization of greatest common divisors.

20.1 Existence of Quotient and Remainder

Suppose you have a chocolate bar of length x and you want to cut it in pieces of

length Sy . Then the number of pieces you can obtain is the Euclidean quotient of

x and Sy and the short piece possibly remaining is the Euclidean remainder of x
and Sy .

Mathematically speaking, the Euclidean quotient of x and Sy is the maximal

number a such that a · Sy ≤ x. Following this characterization, we define a

relational specification

δxyab := x = a · Sy + b ∧ b ≤ y

Given δxyab, we say that a is the quotient and b is the remainder of x and Sy .

For instance, we have 8 = 2 · 3 + 2 saying that 2 is the quotient and the remainder

of 8 and 3.

Note that we consider Euclidean division for x and Sy to avoid the division-by-

zero problem.

We will construct functions that for x and y compute a and b such that δxyab.

This tells us that Euclidean quotients and remainders always exist. We will also

show that quotients and remainders uniquely exist.

Given x and y , we compute a and b such that δxyab by structural recursion

on x. The zero case is trivial:

0 = 0 · Sy + 0
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20 Euclidean Division

In the successor case, we obtain

x = a · Sy + b and b ≤ y

by recursion. If b < y , then

Sx = a · Sy + Sb and Sb ≤ y

Otherwise, b = y and we have

Sx = Sa · Sy + 0

Fact 20.1.1 (Certifying division function) ∀xy.Σab. δxyab.

Proof By induction on x with y fixed following the arguments given above. ■

Definition 20.1.2 (D and M)

We fix two function DN→N→N and MN→N→N such that ∀xy. δxy(Dxy)(Mxy).

Proof Let F be a function ∀xy.Σab. δxyab as provided by Fact 20.1.1. We define

the functions D and M as Dxy := π1(Fxy) and Mxy := π1(π2(Fxy)). Now

π2(π2(Fxy)) is a proof of δxy(Dxy)(Mxy) (up to conversion). ■

Note that Definition 20.1.2 provides D and M as abstract constants. The only

thing we know about the functions D and M is that they yield quotients and re-

mainders as asserted by the defining property ∀xy. δxy(Dxy)(Mxy). We know

have examples for simply typed abstract functions that are specified with a defining

property.

Corollary 20.1.3 Mxy < Sy .

Corollary 20.1.4 Mxy = 0 ←→ x = Dxy · Sy .

Exercise 20.1.5

Convince yourself that the following statements follow by linear arithmetic:

a) δxyab → b = x − a · Sy

b) Mxy = x −Dxy · Sy

Exercise 20.1.6 Prove least (λk. x ≤ Sk · Sy) (Dxy).

Exercise 20.1.7 Establish a bijection B (N + N)N by mapping the left numbers to

the even numbers and the right numbers to the odd numbers. For the decoding use

Mx1 and Dx1. The only thing you need to know about D and M for the proofs is

δxy (Dxy) (Mxy), the rest is linear arithmetic.
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20.2 Uniqueness of Quotient and Remainder

We now show that quotients and remainders are unique.

Fact 20.2.1 (Uniqueness of δ)

δxyab → δxya′b′ → a = a′ ∧ b = b′.

Proof Using linear arithmetic, it suffices to prove

(b ≤ y)→ (b′ ≤ y)→ (a · Sy + b = a′ · Sy + b′)→ a = a′

We prove the claim by induction on a with a′ quantified, followed by discrimination

on a′.
The three cases where a = 0 or a′ = 0 follow by linear arithmetic.

Suppose a = Sa1 and a′ = Sa2. Then the inductive hypothesis reduces the claim to

a1 · Sy + b = a2 · Sy + b′, which follows by linear arithmetic (injectivity of S and

injectivity of + (Fact 12.2.4)). ■

To obtain a solid proof, the above outline needs elaboration and verification.

This is best done with a proof assistant, where the reasoner for linear arithmetic

takes care of all arithmetic details.

The uniqueness of δ has important applications.

Fact 20.2.2 x = a · Sy ←→ Dxy = a∧Mxy = 0.

Proof Follows with linear arithmetic from uniqueness of δ (20.2.1) and the defining

property of D and M 20.1.2. ■

Example 20.2.3 To show the ground equations D 100 3 = 25 and M 100 3 = 0, it

suffices to show δ100 3 25 0 (because of uniqueness of δ and the defining property

of D and M). The reduced claim δ100 3 25 0 follows with computational equality.

Exercise 20.2.4 Let b ≤ y . Prove D(a · Sy + b)y = a and M(a · Sy + b)y = b.

Exercise 20.2.5 Prove the following:

a) Dxy = a←→ ∃b.δxyab
b) Mxy = b ←→ ∃a.δxyab

Exercise 20.2.6 There is a specification ofthe Euclidean quotient not mentioning

the remainder: γxya := a · Sy ≤ x < a · Sy + Sy . Prove the following:

a) γxya←→ ∃b. δxyab
b) Dxy = a←→ γxya

c) γxy(Dxy)
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Exercise 20.2.7 Prove x · SSz + 1 ≠ y · SSz + 0.

Hint: Use uniqueness of δ.

Exercise 20.2.8 Let evenn := ∃k. n = k · 2. Prove the following:

a) D (evenn)

b) evenn → ¬even (Sn)

c) ¬evenn → even (Sn)

Hint: Characterize even with the remainder function M .

20.3 Quotient and Remainder with Repeated Subtraction

Euclidean quotient and reminder can be computed by repeated subtraction. The

geometric intuition tells us that the Euclidean quotient of x and Sy is the number

of times Sy can be subtracted from x without truncation, and that the remainder

of x and Sy is the number that remains.

How can we formalize this insight in computational type theory? We face the

difficulty that repeated subtraction is a recursive process whose recursion is not

structurally recursive. What we can do in this situation is to verify that the func-

tions D and M satisfy the equations for repeated subtraction. Moreover, we can

formulate and verify the subtraction rules for the relational specification δ.

Fact 20.3.1 (Repeated subtraction, relational version)

The following rules hold for all numbers x, y , a, b :

1. x ≤ y → δxy0x

2. x > y → δ(x − Sy)yab → δxy(Sa)b

Proof Both rules follow by linear arithmetic. ■

The rules justify an algorithm taking x and y as input and computing a and b
such that δxyab by repeated subtraction. The relational algorithm can be factor-

ized into two functional algorithms computing quotient and remainder separately.

The functional algorithms can be formalized with unfolding functions as follows:

DIV : (N→ N)→ N→ N → N

DIVfxy := if x ≤ y then 0 else S(f (x − Sy)y)

MOD : (N→ N)→ N→ N → N

MODfxy := if x ≤ y then 0 else S(f (x − Sy)y)

Fact 20.3.2 (Repeated subtraction, functional version)

The following equations hold for all numbers x, y :

Dxy = DIVDxy and M xy = MODM xy .
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Proof By the uniqueness of δ (Fact 20.2.1) and the definition of D and M (Defini-

tion 20.1.2) it suffices to show

δxy (if x ≤ y then 0 else S(D(x − Sy)y))

(if x ≤ y then x else M(x − Sy)y)

We discriminate on x − y . If x ≤ y , the claim reduces to δxy0x, which follows

with Fact 20.3.1(1). If x > y , the claim reduces to

δxy (S(D(x − Sy)y)) (M(x − Sy)y)

which with Fact 20.3.1(2) reduces to

δ(x − Sy)y (D(x − Sy)y) (M(x − Sy)y)

which is an instance of the defining property of D and M . ■

Fact 20.3.2 is remarkable, both as it comes to the result and to the proof. It states

that the abstract functions D and M satisfy procedural specifications employing re-

peated subtraction. The proof of the result hinges on the uniqueness of the rela-

tional specifications δ, the correctness of repeated subtraction for δ (Fact 20.3.1),

and the definition of D and M .

Recall that we studied the procedural specifications DIV and Mod in §19.3. In

particular we showed that both specifications are unique (Fact 19.3.1 and Exer-

cise 19.3.3). Thus we now know that all functions satisfying the specifications agree

with D and M .

Corollary 20.3.3 All functions satisfying DIV agree with D, and all functions satis-

fying MOD agree with M .

Exercise 20.3.4 Let F : ∀xy.Σab. δxyab and fxy := (π1(Fxy), π1(π2(Fxy)).

a) Prove that f satisfies δxy(π1(fxy))(π2(fxy)).

b) Prove that f satisfies the equation

fxy = if x ≤ y then (0, x) else let (a, b) = f (x − Sy)y in (Sa,b).

Remark: Both proof are straightforward when done with a proof assistant. Checking

the details rigorously is annoyingly tedious if done by hand. The second proof best

follows the proof of Fact 20.3.2 using uniqueness (Fact 20.2.1) and the rules for

repeated subtraction (Fact 20.3.1). No induction is needed.

20.4 Divisibility

We define a divisibility predicate as follows:

n | x := ∃k. x = k ·n

We read n | x as either n divides x, or n is a divisor of x, or n is a factor of x.
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Fact 20.4.1 Sn | x ←→ Mxn = 0.

Proof Follows with Facts 20.2.2 and 20.1.4. ■

Corollary 20.4.2 (Decidability) ∀nx. D(n | x)

Fact 20.4.3 (Divisibility)

1. n | 0 and x | x.

2. x ≤ y → n | x → (n | y ←→ n | y − x).
3. x > 0 → n | x → n ≤ x.

4. n > x → n | x → x = 0.

5. (∀n. n | x ←→ n | y)→ x ≤ y .

6. (∀n. n | x ←→ n | y)→ x = y .

Proof Claims 1–4 have straightforward proofs unfolding the definition of divisibil-

ity. Claim 6 follows from claim 5.

For claim 5, we consider y = 0 and y > 0. For y = 0, we obtain x = 0 by (4) with

n := Sx and (1). For y > 0, we obtain x ≤ y by (3) and (1). ■

20.5 Greatest Common Divisors

The greatest common divisor of two numbers x and y is a number z such that the

divisors of z are exactly the common divisors of x and y . Following this character-

ization, we define a GCD predicate:

γxyz := ∀n. n | z ←→ n | x ∧n | y

We say z is the GCD of x and y if γxyz.

Fact 20.5.1 (Uniqueness) γxyz → γxyz′ → z = z′.

Proof Straightforward with Fact 20.4.3(6). ■

Similar to Euclidean quotients, GCDs can be computed with repeated subtrac-

tion. This follows from the fact that non-truncating subtraction leaves the common

divisors of two numbers unchanged.

Fact 20.5.2 x ≤ y → n | x → (n | y ←→ n | y − x).

Proof Straightforward using distribution a ·n+ b ·n = (a+ b) ·n. ■

Corollary 20.5.3 (Subtraction rule) x ≤ y → γx(y − x)z → γxyz.
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Recall thatMxy subtracts Sy from x as long as the subtraction doesn’t truncate.

Thus we may use the remainder function to compute GCDs.

Fact 20.5.4 (Remainder rule) γ(Sx)(Myx)z → γ(Sx)yz.

Proof By complete induction on y using Facts 20.3.2 and 20.5.3. ■

To compute GCDs, we need two further rules for γ. The correctness of both

rules is obvious from the definition of δ.

Fact 20.5.5 (Symmetry rule) γyxz → γxyz.

Fact 20.5.6 (Zero rule) γ0yy .

We formulate a GCD algorithm using remainders with a procedural specification:

Γ : (N→ N → N)→ N → N → N

Γf 0y := y

Γf (Sx)y := f(Myx)(Sx)

The recursion terminates since the first argument is decreased. We use the algo-

rithm to show that GCDs exist.

Fact 20.5.7 (Existence) ∀xy.Σz. γxyz.

Proof We prove the claim by complete induction on x. If x = 0, the claim follows

with the zero rule. Otherwise we prove Σz. γ(Sx)yz. The inductive hypothesis

gives us γ(Myx)(Sx)z since Myx < Sx (Fact 20.1.3). The claim follows with the

symmetry and the remainder rule. ■

Definition 20.5.8 (GCD function)

We fix a function gcd such that ∀xy. γxy(gcdxy).

Proof Immediate with Fact 20.5.7 ■

It remains to show that gcd satisfies the procedural specification.

Fact 20.5.9 gcd ≡ Γ gcd.

Proof By uniqueness of γ and the defining property of gcd it suffices to show

γxy(Γ gcdxy). If x = 0, the claim follows with the zero rule. Otherwise the claim

reduces to γ(Sx)y(gcd(Myx)(Sx)), which in turn reduces with the remainder and

symmetry rule to an instance of the defining property of gcd. ■

Exercise 20.5.10

Show that every function satisfying the procedural specification Γ agrees with gcd.

Exercise 20.5.11

Show gcdxy = if x then y else if x ≤ y then gcdx(y − x) else gcdyx.
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20.6 Inductive GCD Predicate

The three computation rules for GCDs

G1
G 0yy

G2

Gxyz

Gyxz
G3

x ≤ y Gx(y − x)z
Gxyz

yield an inductive predicate G : N → N → N → P. We accommodate all three argu-

ments of G as non-parametric. We will show that G agrees with the GCD predicate γ.

This establishes G as an inductive characterization of GCDs.

We will cary out the equivalence proof for abstract predicates pN→N→N→P satisfy-

ing the computation rules for GCDs:

1. p0yy zero rule

2. pxyz → pyxz symmetry rule

3. x ≤ y → px(y − x)z → pxyz subtraction rule

We call such predicates gcd relations.

Fact 20.6.1 (Soundness) For every gcd relation: Gxyz → pxyz.

Proof By induction on the derivation of Gxyz. Straightforward since the defining

rules of G agree with the properties required for gcd relations. ■

We may phrase soundness as saying that G is the least gcd relation. The other

direction of the equivalence is more demanding.

Fact 20.6.2 (Totality) ∀xy. Σz. Gxyz.

Proof By size induction of x +y . If x = 0 or y = 0, the claim follows with the zero

and possibly the symmetry rule. Otherwise we have either 1 ≤ x ≤ y or 1 ≤ y ≤ x.

Using the symmetry rule the case 1 ≤ x ≤ y remains. The inductive hypothesis

gives us Gx(y − x)z. The claim follows with the subtraction rule. ■

For the completeness direction we need a functional gcd relation:

∀xyzz′. pxyz → pxyz′ → z = z′

Fact 20.6.3 (Completeness) For every functional gcd relation: pxyz → Gxyz.

Proof Let pxyz. By totality and soundness we have Gxyz′ and pxyz′. Now z = z′
by functionality of p. Thus Gxyz′. ■

Corollary 20.6.4 G agrees with every functional gcd relation.
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Theorem 20.6.5 G agrees with the GCD predicate γ.

Proof We have shown in §20.5 that γ is a functional gcd relation. ■

Assuming extensionality (PE and FE), our results say that G = γ and that γ is the

only functional gcd relation.

Exercise 20.6.6 Give and verify an inductive characterization of the Euclidian divi-

sion predicate λxyz. z · Sy ≤ x < Sz · Sy .

Exercise 20.6.7 Give and verify an inductive characterization of the Euclidian re-

mainder predicate.

Exercise 20.6.8 Define an eliminator for G justifying induction on derivations as

used in the proof of the soundness result (Fact 20.6.1).

20.7 Reducible Quotient and Remainder Functions

We now define reducible functions Divxcy and Modxcy for quotient and remain-

der by structural recursion on x. The auxiliary argument c will be decremented

upon recursion. We will have Dxy = Divxyy and Mxy = Modxyy .

Definition 20.7.1

Div : N→ N → N→ N Mod : N → N→ N → N

Div 0 c y := 0

Div Sx 0 y := S(Div xyy)

Div Sx Sc y := Div xcy

Mod 0 c y := y − c
Mod Sx 0 y := Mod xyy

Mod Sx Sc y := Mod xcy

The design of Div and Mod is explained with a correctness lemma relating the

functions with the specification δ.

Lemma 20.7.2 (Correctness of Div and Mod)

c ≤ y → δ(x +y − c)y (Divxcy) (Modxcy).

Proof By induction on x with c quantified.

Let x = 0 and c ≤ y . We show δ(y − c)y0(y − c). Follows by linear arithmetic.

For the successor case we assume c ≤ y and show

δ(Sx +y − c)y(Div (Sx)cy) (Mod(Sx)cy). We discriminate on c.

Let c = 0. Then the claim simplifies to δ(x + Sy)y (S(Divxyy)) (Modxyy).
The inductive hypothesis instantiated with y gives us δxy (Divxyy) (Modxyy).
The claim follows with linear arithmetic.

Let c = Sc′. Then the claim simplifies to δ(x + y − c)y (Divxcy) (Modxcy),
which is the inductive hypothesis instantiated with c. ■
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Fact 20.7.3 (Correctness of Div and Mod)

Dxy = Divxyy and Mxy = Modxyy .

Proof Follows with the uniqueness of δ, the defining property of D and M , and

Lemma 20.7.2 instantiated with c = y . ■

Exercise 20.7.4 (Remainder without subtraction) The first equation of Mod uses

subtraction. The use of subtraction can be eliminated with an additional argument d
acting as a counter initialized with 0 and being incremented such that c + d = y .

Verify the correctness of such a remainder function.

20.8 Notes

Informally, one may start a development of Euclidean division with separate recur-

sive functions for quotient and remainder applying subtraction. However, this is

not an option in a computational type theory where recursion is restricted to struc-

tural recursion. Thus our development started with a certifying division function

obtaining quotient and remainder with structural recursion. The certifying func-

tion gives us abstract functions for quotient and remainder. Using the uniqueness

of the specification of Euclidean division, we showed that the abstract functions

satisfy the equations for repeated subtraction and agree with reducible functions

employing an auxiliary argument.

The proofs in this section often involve considerable formal detail, which is typ-

ical for program verification. They are examples of proofs whose construction and

analysis profits much from working with a proof assistant, where a prover for linear

arithmetic takes care of tedious arithmetic details. When done by hand, the details

of the proofs can be overwhelming and their verification is error-prone.
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21 Lists

Finite sequences [x1 , . . . , xn] are omnipresent in mathematics and computer

science, appearing with different interpretations and notations, for instance, as

vectors, strings, or states of stacks and queues. In this chapter, we study inductive

list types providing a recursive representation for finite sequences whose elements

are taken from a base type. Besides numbers, lists are the most important recursive

data type in computational type theory. Lists have much in common with numbers,

given that recursion and induction are linear for both data structures. Lists also

have much in common with finite sets, given that both have a notion of member-

ship. In fact, our focus will be on the membership relation for lists.

We will see recursive predicates for membership and disjointness of lists, and

also for repeating and nonrepeating lists. We will study nonrepeating lists and

relate non-repetition to cardinality of lists.

21.1 Inductive Definition

Lists represent finite sequences [x1 , . . . , xn] with two constructors nil and cons:

[] , nil

[x] , cons x nil

[x ,y] , cons x (cons y nil)
[x ,y , z] , cons x (cons y (cons z nil))

The constructor nil provides the empty list. The constructor cons yields for a

value x and a list representing the sequence [x1 , . . . , xn] a list representing the

sequence [x ,x1 , . . . , xn]. Given a list cons x A, we call x the head and A the tail

of the list. We say that lists provide a nested pair representation of sequences.

Formally, we obtain lists with an inductive type definition

L(X : T) : T ::= nil | cons (X,L(X))

The type constructor L : T → T gives us a list type L(X) for every base type X. The

value constructor nil : ∀XT. L(X) gives us an empty list for every base type. Finally,

the value constructor cons : ∀XT. X → L(X) → L(X) provides for the construction

of nonempty lists by adding an element in front of a given list. Lists of type L(X)
are called lists over X. Note that all elements of a list over X must have type X.
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For nil and cons, we don’t write the first argument X. We use the notations

[] := nil

x :: A := consxA

and omit parentheses as follows:

x :: y :: A � x :: (y :: A)

When convenient, we shall use the sequence notation [x1 , . . . , xn] for lists.

Given a list [x1 , . . . , xn], we call n the length of the list, x1, . . . , xn the elements

of the list, and the numbers 0, . . . , n − 1 the positions of the list. An element may

appear at more than one position in a list. For instance, [2 ,2 ,3] is a list of length 3

that has 2 elements, where the element 2 appears at positions 0 and 1.

The inductive definition of lists provides for case analysis, recursion, and induc-

tion on lists, in a way that is similar to what we have seen for numbers. We define

the eliminator for lists as follows:

EL : ∀XT∀pL(X)→T. p []→ (∀xA. pA→ p(x :: A))→ ∀A.pA
ELXpe1e2 [] := e1

ELXpe1e2 (x :: A) := e2xA(ELXpe1e2A)

The eliminator provides for inductive proofs, recursive function definitions, and

structural case analysis.

Fact 21.1.1 (Constructor laws)

1. [] ≠ x :: A (disjointness)

2. x :: A = y :: B → x = y (injectivity)

3. x :: A = y :: B → A = B (injectivity)

4. x :: A ≠ A (progress)

Proof The proofs are similar to the proofs for numbers in §4.3. Claim (4) corre-

sponds to Sn ≠ n and follows by induction on A with x quantified. ■

Fact 21.1.2 (Decidable Equality) If X is a discrete type, then L(X) is a discrete type:

E(X)→ E(L(X)).

Proof Let X be discrete and A, B be lists over X. We show D(A = B) by induction

over A with B quantified followed by destructuring of B using disjointness and

injectivity from Fact 21.1.1. In case both lists are nonempty with heads x and y , an

additional case analysis on x = y is needed. ■

Exercise 21.1.3 Prove ∀XTAL(X). D(A = []).

Exercise 21.1.4 Prove ∀XTAL(X). (A = [])+ ΣxB. A = x :: B.
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21.2 Basic Operations

We introduce three basic operations on lists, which yield the length of a list, con-

catenate two lists, and apply a function to every position of a list:

len [x1, . . . , xn] = n length

[x1, . . . , xm]++ [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn] concatenation

f@ [x1, . . . , xn] = [fx1, . . . , fxn] map

Formally, we define the operations as recursive functions:

len : ∀XT. L(X)→ N

len [] := 0

len (x :: A) := S (len A)

++ : ∀XT. L(X)→ L(X)→ L(X)
[]++B := B

(x :: A)++B := x :: (A++B)

@ : ∀XYT. (X → Y)→ L(X)→ L(Y)
f@ [] := []

f@(x :: A) := fx :: (f@A)

We treat X and Y as implicit arguments.

Fact 21.2.1

1. A++(B++C) = (A++B)++C (associativity)

2. A++[] = A
3. len (A++B) = lenA+ lenB

4. len (f@A) = lenA

5. lenA = 0 ←→ A = []

Proof The equations follow by induction on A. The equivalence follows by case

analysis on A. ■

21.3 Membership

Informally, we may characterize membership in lists with the equivalence

x ∈ [x1 , . . . , xn] ←→ x = x1 ∨ · · · ∨ x = xn ∨⊥
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Formally, we define the membership predicate by structural recursion on lists:

(∈) : ∀XT. X → L(X)→ P

(x ∈ []) := ⊥
(x ∈ y :: A) := (x = y ∨ x ∈ A)

We treat the type argument X of the membership predicate as implicit argument. If

x ∈ A, we say that x is an element of A.

Fact 21.3.1 (Existential Characterization) x ∈ A ←→ ∃A1A2. A = A1++x :: A2.

Proof Direction → follows by induction on A. The nil case is contradictory. In

the cons case a case analysis on x ∈ a :: A′ closes the proof with the inductive

hypothesis.

Direction ← follows by induction on A1. ■

Fact 21.3.2 ∀xaX∀AL(X). E(X)→ x ∈ a :: A→ (x = a)+ (x ∈ A).

Proof Straightforward. ■

Fact 21.3.3 (Factorization) ∀xX AL(X). E(X)→ x ∈ A→ ΣA1A2. A = A1++x :: A2.

Proof By induction on A. The nil case is contradictory. In the cons case a case

analysis using Fact 21.3.2 closes the proof. ■

Fact 21.3.4 (Decidable Membership) ∀xX∀AL(X). E(X)→D(x ∈ A).

Proof By induction on A. ■

Fact 21.3.5 (Membership laws)

1. x ∈ A++B ←→ x ∈ A∨ x ∈ B.

2. x ∈ f@A ←→ ∃a. a ∈ A∧ x = fa.

Proof By induction on A. ■

Fact 21.3.6 (Injective map)

injectivef → fx ∈ f@A→ x ∈ A.

Proof Follows with 21.3.5(2). ■
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Recall that finite quantification over numbers preserves decidability (Fact 13.3.3).

Similarly, quantification over the elements of a list preserves decidability. In fact,

quantification over the elements of a list is a form of finite quantification.

We will use the notations

∀x∈A. px := ∀x. x ∈ A→ px

∃x∈A. px := ∃x. x ∈ A∧ px
Σx∈A. px := Σx. x ∈ A× px

for quantifications over the elements of a list.

Fact 21.3.7 (Bounded Quantification) Let pX→T be a decidable type function. Then

there are decision functions as follows:

1. ∀A. (Σx∈A. px)+ (∀x∈A. ¬px)
2. ∀A. D(∀x∈A. px)
3. ∀A. D(Σx∈A. px)
Proof By induction on A. ■

Exercise 21.3.8

Define a function δ : L(O(X))→ L(X) such that x ∈ δA←→ ◦x ∈ A.

Exercise 21.3.9 (EWO) Let p be a decidable predicate on a type X.

Construct a function ∀A. (∃x ∈ A. px)→ (Σx ∈ A. px).

21.4 Inclusion and Equivalence

We may see a list as a representation of a finite set. List membership then corre-

sponds to set membership. The list representation of sets is not unique since the

same set may have different list representations. For instance, [1 ,2], [2 ,1], and

[1 ,1 ,2] are different lists all representing the set {1,2}. In contrast to sets, lists

are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may

not have representations in type theory. This is in sharp contrast to set-based math-

ematics where sets are taken as basic formal objects. The reason sets don’t appear

natively in computational type theory is that sets in general are noncomputational

objects.

We will take lists over X as type-theoretic representations of finite sets over X.

With this interpretation of lists in mind, we define list inclusion and list equiva-

lence as follows:

A ⊆ B := ∀x. x ∈ A→ x ∈ B
A ≡ B := A ⊆ B ∧ B ⊆ A
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Note that two lists are equivalent if and only if they represent the same set.

Fact 21.4.1 List inclusion A ⊆ B is reflexive and transitive. List equivalence A ≡ B
is reflexive, symmetric, and transitive.

Fact 21.4.2 We have the following properties for membership, inclusion, and equiv-

alence of lists.

x ∉ [] x ∈ [y]←→ x = y
[] ⊆ A A ⊆ []→ A = []
x ∈ y :: A→ x ≠ y → x ∈ A x ∉ y :: A→ x ≠ y ∧ x ∉ A
A ⊆ B → x ∈ A→ x ∈ B A ≡ B → x ∈ A←→ x ∈ B
A ⊆ B → x :: A ⊆ x :: B A ≡ B → x :: A ≡ x :: B

A ⊆ B → A ⊆ x :: B x :: A ⊆ B ←→ x ∈ B ∧A ⊆ B
x :: A ⊆ x :: B → x ∉ A→ A ⊆ B x :: A ⊆ [y]←→ x = y ∧A ⊆ [y]
x :: A ≡ x :: x :: A x :: y :: A ≡ y :: x :: A

x ∈ A→ A ≡ x :: A

x ∈ A++B ←→ x ∈ A∨ x ∈ B
A ⊆ A′ → B ⊆ B′ → A++B ⊆ A′++B′ A++B ⊆ C ←→ A ⊆ C ∧ B ⊆ C

Proof Except for the membership fact for concatenation, which already appeared

as Fact 21.3.5, all claims have straightforward proofs not using induction. ■

Fact 21.4.3 (Rearrangement)

x ∈ A→ ∃B. A ≡ x :: B ∧ lenA = len(x :: B).

Proof Follows with Fact 21.3.1. There is also a direct proof by induction on A. ■

Fact 21.4.4 (Rearrangement)

E(X)→ ∀xX . x ∈ A→ ΣB. A ≡ x :: B ∧ lenA = len(x :: B).

Proof Follows with Fact 21.3.3. There is also a direct proof by induction on A using

Fact 21.3.2. ■

Fact 21.4.5 Let A and B be lists over a discrete type. ThenD(A ⊆ B) andD(A ≡ B).

Proof Holds since membership is decidable (Fact 21.3.4) and bounded quantifica-

tion preserves decidability (Fact 21.3.7). ■
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21.5 Nonrepeating Lists

A list is repeating if it contains some element more than once. For instance, [1,2,1]
is repeating and [1,2,3] is nonrepeating. Formally, we define repeating lists over a

base type X with a recursive predicate:

rep : L(X)→ P

rep [] := ⊥
rep (x :: A) := x ∈ A∨ repA

Fact 21.5.1 (Characterization)

For every list A over a discrete type we have:

repA ←→ ∃xA1A2. A = A1++x :: A2 ∧ x ∈ A2.

Proof By induction on repA using Fact 21.3.1. ■

We also define a recursive predicate for nonrepeating lists over a base type X:

nrep : L(X)→ P

nrep [] := ⊤
nrep (x :: A) := x ∉ A∧ nrepA

Theorem 21.5.2 (Partition) Let A be a list over a discrete type. Then:

1. repA→ nrepA→ ⊥ (disjointness)

2. repA+ nrepA (exhaustiveness)

Proof Both claims follow by induction on A. Discreteness is only needed for the

second claim, which needs decidability of membership (Fact 21.3.4) for the cons

case. ■

Corollary 21.5.3 Let A be a list over a discrete type. Then:

1. D(repA) and D(nrepA).

2. repA←→ ¬nrepA and nrepA←→ ¬repA.

Fact 21.5.4 (Equivalent nonrepeating list)

For every list A over a discrete type one can obtain an equivalent nonrepeating list B
such that lenB ≤ lenA: ∀A.ΣB. B ≡ A∧ nrepB ∧ lenB ≤ lenA.

Proof By induction on A. For x :: A, let B be the list obtained for A with the

inductive hypothesis. If x ∈ A, B has the required properties for x :: A. If x ∉ A,

x :: B has the required properties for x :: A. ■
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The next fact formulates a key property concerning the cardinality of lists (num-

ber of different elements). It is carefully chosen so that it provides a building block

for further results (Corollary 21.5.6). Finding this fact took experimentation. To

get the taste of it, try to prove that equivalent nonrepeating lists have equal length

without looking at our development.

Fact 21.5.5 (Discriminating element)

Every nonrepeating list over a discrete type contains for every shorter list an ele-

ment not in the shorter list: ∀AB. nrepA→ lenB < lenA→ Σx. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. For A = a :: A′ we do case analysis on (a ∈ B) + (a ∉ B). The

case a ∉ B is trivial. For a ∈ B, Fact 21.4.4 yields some B′ shorter than B such that

B ≡ a :: B′. The inductive hypothesis now yields some x ∈ A′ such that x ∉ B′. It

now suffices to show x ∉ B. We assume x ∈ B ≡ a :: B′ and derive a contradiction.

Since x ∉ B′, we have x = a, which is in contradiction with nrep (a :: A′). ■

Corollary 21.5.6 Let A and B be lists over a discrete type X. Then:

1. nrepA→ A ⊆ B → lenA ≤ lenB.

2. nrepA→ nrepB → A ≡ B → lenA = lenB.

3. A ⊆ B → lenB < lenA → repA.

4. nrepA→ A ⊆ B → lenB ≤ lenA→ nrepB.

5. nrepA→ A ⊆ B → lenB ≤ lenA→ B ≡ A.

Proof Interestingly, all claims follow without induction from Facts 21.5.5, 21.5.1,

and 21.5.3.

For (1), assume lenA > lenB and derive a contradiction with Fact 21.5.5.

Claims (2) and (3) follow from Claim (1), where for (3) we assume nrepA and

derive a contradiction (justified by Corollary 21.5.3).

For (4), we assume repB and derive a contradiction (justified by Corollary 21.5.3).

By Fact 21.5.1, we obtain a list B′ such that A ⊆ B′ and lenB′ < lenA. Contradiction

with (1).

For (5), it suffices to show B ⊆ A. We assume x ∈ B and show x ∈ A. Exploiting

the decidability of membership we assume x ∉ A and derive a contradiction. Using

Fact 21.5.5 for x :: A and B, we obtain z ∈ x :: A and z ∉ B, which is contradictory.■

We remark that Corollary 21.5.6 (3) may be understood as a pigeonhole lemma.

Exercise 21.5.7 Prove the following facts about map and nonrepeating lists:

a) injectivef → nrepA→ nrep (f@A).

b) nrep (f@A)→ x ∈ A→ x′ ∈ A→ fx = fx′ → x = x′.
c) nrep (f@A)→ nrepA.
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Exercise 21.5.8 (Injectivity-surjectivity agreement) Let X be a discrete type and A
be a list containing all elements of X. Prove that a function X → X is injective if and

only if it is surjective.

This is an interesting exercise. It can be stated as soon as membership in lists

is defined. To solve it, however, one needs properties of length, map, element

removal, and nonrepeating lists. If one doesn’t know these notions, the exercise

makes an interesting project since one has to invent these notions. Our solution

uses Corollary 21.5.6 and Exercise 21.5.7.

We can sharpen the problem of the exercise by asking for a proof that a function

On(X)→ On(X) is injective if and only if it is surjective. There should be a proof

not using lists. See §22.6.

Exercise 21.5.9 (Factorization) Let A be a list over a discrete type.

Prove repA → ΣxA1A2A3. A = A1++x :: A2++x :: A3.

Exercise 21.5.10 (Partition) The proof of Corollary 21.5.3 is straightforward and

follows a general scheme. Let P and Q be propositions such that P → Q → ⊥
and P + Q. Prove decP and P ←→ ¬Q. Note that decQ and Q ←→ ¬P follow by

symmetry.

Exercise 21.5.11 (List reversal)

Define a list reversal function rev : L(X)→ L(X) and prove the following:

a) rev(A++B) = revB++ revA

b) rev(revA) = A
c) x ∈ A←→ x ∈ revA

d) nrepA→ x ∉ A→ nrep(A++[x])
e) nrepA→ nrep(revA)

f) Reverse list induction: ∀pX→T. p[]→ (∀xA. p(A)→ p(A++[x]))→ ∀A.pA.

Hint: By (a) it suffices to prove ∀A. p(revA), which follows by induction on A.

Exercise 21.5.12 (Equivalent nonrepeating lists) Show that equivalent nonrepeat-

ing lists have equal length without assuming discreteness of the base type. Hint:

Show nrepA→ A ⊆ B → lenA ≤ lenB by induction on A with B quantified using the

rearrangement lemma 21.4.3.

Exercise 21.5.13 (Even and Odd) Define recursive predicates even and odd on

numbers and show that they partition the numbers: evenn → oddn → ⊥ and

evenn+ oddn.
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21.6 Lists of Numbers

We now come to some facts about lists of numbers whose truth is intuitively clear

but whose proofs are surprisingly tricky. The facts about nonrepeating lists turn

out to be essential.

A segment is a list containing all numbers smaller than its length:

segmentA := ∀k. k ∈ A←→ k < lenA

A list of numbers is serial if for every element it contains all smaller numbers:

serialA := ∀n∈A.∀k≤n. k ∈ A

We will show that a list is a segment if and only if it is nonrepeating and serial.

Fact 21.6.1 The empty list is a segment.

Fact 21.6.2 Segments of equal length are equivalent.

Fact 21.6.3 Segments are serial.

Fact 21.6.4 (Segment existence)

∀n. ΣA. segmentA∧ lenA = n∧ nrepA.

Proof By induction on A. ■

Fact 21.6.5 Segments are nonrepeating.

Proof Let A be a segment. By Facts 21.6.4 and 21.6.2 we have an equivalent nonre-

peating segment B of the same length. Hence A is nonrepeating by Fact 21.5.6(4). ■

Fact 21.6.6 (Large element)

Every nonrepeating list of numbers of length Sn contains a number k ≥ n:

∀A. nrepA→ lenA = Sn→ Σk∈A. k ≥ n.

Proof Let A be a nonrepeating list of numbers of length Sn. By Fact 21.3.7(1) we can

assume∀k∈A. k < n and derive a contradiction. Fact 21.6.4 gives us a nonrepeating

list B of length n such that ∀k. k ∈ B ←→ k < n. Now A ⊆ B and lenB < lenA.

Contradiction by Fact 21.5.6(1). ■

Fact 21.6.7 A nonrepeating serial list is a segment.

Proof Let A be a nonrepeating serial list. If A = [], the claim is trivial. Otherwise,

lenA = Sn. Fact 21.6.6 gives us x ∈ A such that x ≥ n. Fact 21.6.4 gives us a

nonrepeating segment B of length Sn. We now see that A is a segment if A ≡ B. We

have B ⊆ A since A is serial and hence contains all k ≤ n ≤ x. Now A ⊆ B follows

with Fact 21.5.6(5). ■
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Fact 21.6.8 (Next number) There is function that for every list of numbers yields a

number that is not in the list: ∀AL(N). Σn. ∀k∈A. k < n.

Proof By induction on A. ■

Fact 21.6.8 says that there are infinitely many numbers. More generally, if we

have an injection INX, we can obtain a new element generator for X and thus know

that X is infinite.

Fact 21.6.9 (New element generator)

Given an injection INX, there is function that for every list over X yields a number

that is not in the list: ∀AL(X). Σx. ∀a∈A. a ≠ x.

Proof Let invNX fg and ALX . Then Fact 21.6.8 gives us a number n ∉ g@A. To

show fn ∉ A, assume fn ∈ A. Then n = g(fn) ∈ g@A contradicting an above

assumption. ■

Exercise 21.6.10 (Pigeonhole) Prove that a list of numbers whose sum is greater

than the length of the list must contain a number that is at least 2:

sumA > lenA → Σx. x ∈ A∧ x ≥ 2

First define the function sum.

Exercise 21.6.11 (Andrej’s Puzzle) Assume an increasing function fN→N (that is,

∀x. x < fx) and a list A of numbers satisfying ∀x. x ∈ A ←→ x ∈ f@A. Show

that A is empty.

Hint: First verify that A contains for every element a smaller element. It then

follows by complete induction that A cannot contain an element.

Exercise 21.6.12 Define a function seq : N → N → L(N) for which you can prove the

following:

a) seq 2 5 = [2,3,4,5,6]
b) seqn(Sk) = n :: seq (Sn)k

c) len (seqnk) = k
d) x ∈ seqnk ←→ n ≤ x < n+ k
e) nrep (seqnk)

21.7 Position-Element Mappings

The positions of a list [x1 , . . . , xn] are the numbers 0, . . . , n − 1. More formally, a

number n is a position of a list A if n < lenA. If a list is nonrepeating, we have a
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bijective relation between the positions and the elements of the list. For instance,

the list [7,8,5] gives us the bijective relation

0 � 7, 1 � 8, 2 � 5

It turns out that for a discrete type X we can define two functions

pos : L(X)→ X → N

sub : X → L(X)→ N→ X

realizing the position-element bijection:

x ∈ A→ subyA(posAx) = x
nrepA→ n < lenA→ posA(subyAn) = n

The function pos uses 0 as escape value for positions, and the function sub uses

a given yX as escape value for elements of X. The name sub stands for subscript.

The functions pos and sub will be used in Chapter 22 for constructing injections

and bijections between finite types and in Chapter 23 for constructing injections

into N.

Here are the definitions of pos and sub we will use:

pos : L(X)→ X → N

pos []x := 0

pos (a :: A)x := if [a = x\ then 0 else S(posAx)

sub : X → L(X)→ N→ X

suby []n := y

suby (a :: A)0 := a

suby (a :: A) (Sn) := subyAn

Fact 21.7.1 Let A be a list over a discrete type. Then:

1. x ∈ A → subaA(posAx) = x
2. x ∈ A → posAx < lenA

3. n < lenA → subaAn ∈ A
4. nrepA→ n < lenA→ posA(subaAn) = n

Proof All claims follow by induction on A. For (3), the inductive hypothesis must

quantify n and the cons case needs case analysis on n. ■

Exercise 21.7.2 Prove (∀XT. L(X)→ N → X)→ ⊥.
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Exercise 21.7.3 Let A and B be lists over a discrete type X. Prove the following:

a) x ∈ A→ posAx = pos (A++B)x
b) k < lenA→ subAk = sub (A++B)k
c) x ∈ A→ y ∈ A→ posAx = posAy → x = y
Note that (a) relies on the fact that posAx yields the first position of x in A, which

matters if x occurs more than once in A.

Exercise 21.7.4 One can realize pos and sub with option types

pos : L(X)→ X → O(N)
sub : L(X)→ N → O(X)

and this way avoid the use of escape values. Define pos and sub with option types

for a discrete base type X and verify the following properties:

a) x ∈ A→ Σn. posAx = ◦n

b) n < lenA → Σx. subAn = ◦x

c) posAx = ◦n→ subAn = ◦x

d) nrepA→ subAn = ◦x → posAx = ◦n

e) subAn = ◦x → x ∈ A
f) posAx = ◦n → n < lenA

21.8 Constructive Discrimination Lemma

Using XM, we can prove that every non-repeating list contains for every shorter list

an element that is not in the shorter list:

XM → ∀X∀ABL(X). nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B

We speak of the classical discrimination lemma. We have already shown a computa-

tional version of the lemma (Fact 21.5.5)

∀X∀ABL(X). E(X)→ nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B

replacing XM with an equality decider for the base type X. In this section our main

interest is in proving the constructive discrimination lemma

∀X∀ABL(X). nrepA→ lenB < lenA→ ¬¬∃x. x ∈ A∧ x ∉ B

which assumes neither XM nor an equality decider. Note that the classical discrim-

ination lemma is a trivial consequence of the constructive discrimination lemma.

We may say that the constructive discrimination lemma is obtained from the classi-

cal discrimination lemma by eliminating the use of XM by weakening the existential
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claim with a double negation. Elimination techniques for XM have useful applica-

tions.

We first prove the classical discrimination lemma following the proof of

Fact 21.5.5.

Lemma 21.8.1 (Classical discrimination)

XM → ∀ABL(X). nrepA→ lenB < lenA→ ∃x. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. For A = a :: A′, we do case analysis on (a ∈ B) ∨ (a ∉ B)
exploiting XM. The case a ∉ B is trivial. For a ∈ B, Fact 21.4.3 yields some B′ shorter

than B such that B ≡ a :: B′. The inductive hypothesis now yields some x ∈ A′ such

that x ∉ B′. It now suffices to show x ∉ B. We assume x ∈ B ≡ a :: B′ and derive a

contradiction. Since x ∉ B′, we have x = a, which contradicts nrep (a :: A′). ■

We observe that there is only a single use of XM. When we prove the constructive

version with the double negated claim, we will exploit that XM is available for stable

claims (Fact 17.4.8 (1)). Moreover, we will use the rule formulated by Fact 17.4.8 (2)

to erase the double negation from the inductive hypothesis so that we can harvest

the witness.

Lemma 21.8.2 (Constructive discrimination)

∀ABL(X). nrepA→ lenB < lenA→ ¬¬∃x. x ∈ A∧ x ∉ B.

Proof By induction on A with B quantified. The base case follows by computational

falsity elimination. Otherwise, we have A = a :: A′. Since the claim is stable, we

can do case analysis on a ∈ B ∨ a ∉ B (Fact 17.4.8 (1)). If a ∉ B, we have found a

discriminating element and finish the proof with ∀P. P → ¬¬P . Otherwise, we have

a ∈ B. Fact 21.4.3 yields some B′ shorter than B such that B ≡ a :: B′. Using

Fact 17.4.8 (2), the inductive hypothesis now gives us x ∈ A′ such that x ∉ B′.
By ∀P. P → ¬¬P it now suffices to show x ∉ B, which follows as in the proof of

Fact 21.8.1. ■

Exercise 21.8.3 Prove that the double negation of ∃ agrees with the double negation

of Σ : ¬¬exp ←→ ((sigp → ⊥)→ ⊥).

21.9 Element Removal

We assume a discrete type X and define a function A\x for element removal as

follows:

\ : L(X)→ X → L(X)
[]\_ := []

(x :: A)\y := if [x = y\ then A\y else x :: (A\y)
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Fact 21.9.1

1. x ∈ A\y ←→ x ∈ A∧ x ≠ y
2. len (A\x) ≤ lenA

3. x ∈ A→ len (A\x) < lenA.

4. x ∉ A→ A\x = A

Proof By induction on A. ■

Exercise 21.9.2 Prove x ∈ A → A ≡ x :: (A \ x).

Exercise 21.9.3 Prove the following equations, which are useful in proofs:

1. (x :: A)\x = A\x
2. x ≠ y → (y :: A)\x = y :: (A\x)

21.10 Cardinality

The cardinality of a list is the number of different elements in the list. For instance,

[1,1,1] has cardinality 1 and [1,2,3,2] has cardinality 3. Formally, we may say

that the cardinality of a list is the length of an equivalent nonrepeating list. This

characterization is justified since equivalent nonrepeating lists have equal length

(Corollary 21.5.6 (3)), and every list is equivalent to a non-repeating list (Fact 21.5.4).

We assume that lists are taken over a discrete type X and define a cardinality

function as follows:

card : L(X)→ N

card [] := 0

card(x :: A) := if [x ∈ A\ then cardA else S(cardA)

Note that we write [x ∈ A\ for the application of the membership decider provided

by Fact 21.3.4. We prove that the cardinality function agrees with the cardinalities

provided by equivalent nonrepeating lists.

Fact 21.10.1 (Cardinality)

1. ∀AΣB. B ≡ A∧ nrepB ∧ lenB = cardA.

2. cardA = n ←→ ∃B. B ≡ A∧ nrepB ∧ lenB = n.

Proof Claim 1 follows by induction on A. Claim 2 follows with Claim 1 and Corol-

lary 21.5.6 (2). ■

Corollary 21.10.2
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1. cardA ≤ lenA

2. A ⊆ B → cardA ≤ cardB

3. A ≡ B → cardA = cardB.

4. repA ←→ cardA < lenA (pigeonhole)

5. nrepA ←→ cardA = lenA

6. x ∈ A ←→ cardA = S(card(A \ x))

Proof All facts follow without induction from Fact 21.10.1, Corollary 21.5.6, and

Corollary 21.5.3. ■

Exercise 21.10.3 Given direct proofs of (1), (4) and (5) of Corollary 21.10.2 by in-

duction on A. Use (1) for (4) and (5).

Exercise 21.10.4 (Cardinality predicate) We define a recursive cardinality predi-

cate:

Card : L(X)→ X → P

Card []0 := ⊤
Card [] (Sn) := ⊥

Card (x :: A)0 := ⊥
Card (x :: A) (Sn) := if [x ∈ A\ then CardA(Sn) else CardAn

Prove that the cardinality predicate agrees with the cardinality function:

∀An. CardAn←→ cardA = n.

Exercise 21.10.5 (Disjointness predicate) We define disjointness of lists as fol-

lows:

disjointAB := ¬∃x. x ∈ A∧ x ∈ B

Define a recursive predicate Disjoint : L(X)→ L(X)→ P in the style of the cardinal-

ity predicate and verify that it agrees with the above predicate disjoint.

21.11 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional

equivalence P ←→ P ′ or a list equivalence A ≡ A′, provided the subterm P or A to

be rewritten occurs in a compatible position. This form of rewriting is known as

setoid rewriting. The following facts identify compatible positions by means of

compatibility laws.
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Fact 21.11.1 (Compatibility laws for propositional equivalence)

Let P ←→ P ′ and Q ←→ Q′. Then:

P ∧Q ←→ P ′ ∧Q′ P ∨Q ←→ P ′ ∨Q′ (P → Q)←→ (P ′ → Q′)

¬P ←→ ¬P ′ (P ←→ Q)←→ (P ′ ←→ Q′)

Fact 21.11.2 (Compatibility laws for list equivalence)

Let A ≡ A′ and B ≡ B′. Then:

x ∈ A←→ x ∈ A′ A ⊆ B ←→ A′ ⊆ B′ A ≡ B ←→ A′ ≡ B′

x :: A ≡ x :: A′ A++B ≡ A′++B′ f@A ≡ f@A′

Rocq’s setoid rewriting facility makes it possible to use the rewriting tactic for

rewriting with equivalences, provided the necessary compatibility laws and equiv-

alence relations have been registered with the facility. The compatibility laws for

propositional equivalence are preregistered.

Exercise 21.11.3 Which of the compatibility laws are needed to justify rewriting

the claim ¬(x ∈ y :: (f@A)++B) with the equivalence A ≡ A′ ?
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We may call a type finite if we can provide a list containing all its elements. With

this characterization we capture the informal notion of finitely many elements with

covering lists. If the list covering the elements of a type is nonrepeating, the length

of the list gives us the cardinality of the type (the number of its elements). This leads

us to defining a finite type as a tuple consisting of a type, a list covering the type, and

an equality decider for elements of the type. The equality decider ensures that the

finite type is sufficiently concrete so that we can compute a covering nonrepeating

list yielding the cardinality of the type.

With this definition the numeral types Nn are in fact finite types of cardinality n.

We will show that finite types are closed under retracts and that two finite types of

equal cardinality are always in bijection. It then follows that finite types have EWOs,

and that the class of finite types is generated from the empty type by taking option

types and including types that are in bijection with a member of the class. We also

show that a function between finite types of the same cardinality

• is injective if and only if it is surjective.

• has an inverse function if it is surjective or injective.

• yields a bijection with every inverse function.

22.1 Coverings and Listings

We prepare the definition of finite types by looking at lists covering all elements of

their base type.

A covering of a type is a list that contains every member of the type:

coveringX A := ∀xX . x ∈ A

A listing of a type is a nonrepeating covering of the type:

listingX A := covering A∧ nrepA

We need a couple of results for coverings and listings of discrete types. First note

that all coverings of a type are equivalent lists.
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Fact 22.1.1 Given a covering of a discrete type, one can obtain a listing of the type:

EX → coveringX A→ ΣB. listingX B ∧ lenB ≤ lenA.

Proof Follows with Facts 21.5.4. ■

Fact 22.1.2 All listings of a discrete type have the same length.

Proof Immediate with Fact 21.5.6 (2). ■

Fact 22.1.3 Let A and B be lists over a discrete type X. Then:

listingA→ lenB = lenA→ (nrepB ←→ coveringB).

Proof Follows with Fact 21.5.6 (4,5). ■

Exercise 22.1.4 Prove IXY → coveringYB → ΣA. coveringXA.

Exercise 22.1.5 Let A and B be lists over a discrete type X. Prove:

a) coveringA→ nrepB → lenA ≤ lenB → listingB.

b) listingA→ coveringB → lenB ≤ lenA→ listingB.

22.2 Basics of Finite Types

We define finite types as discrete types that come with a covering list:

finXT := E(X) × ΣA. coveringX A

We may see the values of finX as handlers providing an equality decider for X and a

listing of X. A handler finX turns a type X into a computational type where we can

iterate over all elements and decide equality of elements. Given a handler finX, we

can compute a listing of X and thus determine the cardinality of X (i.e., the number

of elements). It will be convenient to have a second type of handlers

finn XT := E(X) × ΣA. listingX A∧ lenA = n

declaring the cardinality of the type and providing a listing rather than a covering

of the type.

Fact 22.2.1 For every type X:

1. finmX → finnX →m = n (uniqueness of cardinality)

2. finX a Σn.finnX (existence of cardinality)

Proof Facts 22.1.2 and 22.1.1. ■
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Fact 22.2.2 (Empty types)

Finite types with cardinality 0 are the empty types: fin0Xa (X → ⊥).

Proof Exercise. ■

Fact 22.2.3 (Closure under O)

Finite types are closed under O: finnX → finSn (OX).

Proof Fact 11.2.1 gives us an equality decider for OX. Moreover, � :: (◦)@A) is a

listing of OX if A is a listing of X. ■

Recall the recursive definition of numeral types Nn in §11.3.

Fact 22.2.4 (Numeral types) finnNn.

Proof Induction on n using Facts 22.2.2 and 22.2.3. ■

Finite types are also closed under sums and products.

Fact 22.2.5 If X and Y are finite types, then so are X + Y and X × Y :

1. finmX → finn Y → finm+n(X + Y).
2. finmX → finn Y → finm·n(X × Y).

Proof Discreteness follows with Fact 9.5.1. We leave the construction of the listing

as exercise. ■

Quantification over finite types preserves decidability. This fact can be obtained

from the fact that quantification over lists preserves decidability.

Fact 22.2.6 (Decidability)

Let p be a decidable predicate on a finite type X. Then:

1. D(∀x.px)
2. D(∃x.px)
3. (Σx.px)+ (∀x.¬px)

Proof Follows with Fact 21.3.7. ■

Fact 22.2.7 (Type of numbers is not finite)

The type N of numbers is not finite: fin N→ ⊥.

Proof Suppose N is finite. Then we have a list A containing all numbers. Contradic-

tion with Fact 21.6.8. ■
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Exercise 22.2.8 Prove fin0⊥, fin1⊤, and fin2 B.

Exercise 22.2.9 (Double negation shift)

Prove ∀n∀pNn→P. (∀x. ¬¬px)→ ¬¬∀x. px.

Exercise 22.2.10 (EWO) Give an EWO for finite types.

Hint: Use an EWO for lists as in Exercise 21.3.9.

Exercise 22.2.11 (Pigeonhole)

Prove finmX → finn Y →m > n→ ∀fX→Y . Σxx′. x ≠ x′ ∧ fx = fx′.
Intuition: If we have m pigeons sitting in n < m holes, there must be two pigeons

sitting in the same hole.

22.3 Finiteness by Injection

We can establish the finiteness of a nonempty type by embedding it into a finite type

with large enough cardinality. More precisely, a type is finite with cardinality m ≥ 1

if it can be embedded into a finite type with cardinality n ≥m.

Fact 22.3.1 (Finiteness by embedding)

IXY → finn Y → Σm ≤ n. finmX.

Proof Let invXY gf and B be a listing of Y such that lenB = n. Fact 9.5.2 gives us an

equality decider for X. Moreover, g@B is a covering of X because of the inversion

property. By Fact 22.1.1 we obtain a listing A of X such that lenA ≤ len (g@B) =
lenB = n. The claim follows. ■

Corollary 22.3.2 (Alignment)

IXY → finmX → finn Y →m ≤ n.

Proof Facts 22.3.1 and 22.2.1 (1). ■

Corollary 22.3.3 (Transport)

IXY → IYX → finnX → finn Y .

Proof Follows with Facts 22.3.1 and 22.3.2. ■

Corollary 22.3.4 (Closure under bijection)

BXY → finnX → finn Y .

Proof Follows with Facts 22.3.3 and 11.1.5. ■

Corollary 22.3.5 The type N of numbers does not embed into finite types:

I NX → finX → ⊥.

Proof Facts 22.3.1 and 22.2.7. ■
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22.4 Existence of Injections

Given two finite types, the smaller one can always be embedded into the larger one.

There is the caveat that the smaller type must not be empty so that the embedding

function can have an inverse.

Fact 22.4.1 (Existence)

finmX → finn Y → 1 ≤m ≤ n→ IXY .

Proof Let A and B be listings of X and Y . Then A has length m and B has length n.

Since 1 ≤ m ≤ n, we can map the elements of A to elements of B preserving the

position in the lists. We realize the resulting bijection between X and Y using the

list operations sub and pos with escape values a ∈ A and b ∈ B (§21.7):

fx := subbB (posAx)

gy := subaA (posB y)

Recall that pos yields the position of a value in a list, and that sub yields the value

at a position of a list. ■

An embedding of a finite type into a finite type of the same cardinality is in fact

a bijection since in this case the second roundtrip property does hold.

Fact 22.4.2 finn X → finn Y → invXY gf → invfg.

Proof We show f(gy) = y for arbitrary y . We choose a covering A of X and know

by Fact 22.1.3 that f@A is a covering of Y . Hence fx = y for some x. We now have

f(gy) = f(g(fx)) = fx = y . ■

Next we show that all finite types of the same size are in bijection.

Corollary 22.4.3 (Existence) finnX → finn Y → BXY .

Proof For n = 0 the claim follows with Facts 22.2.2 and 11.1.7. For n > 0 the claim

follows with Facts 22.4.1 and 22.4.2. ■

Corollary 22.4.4 (Existence) IXY → IYX → finX → BXY .

Proof Facts 22.2.1 (2), 22.3.3, and 22.4.3 ■

Corollary 22.4.5 (Listless Characterization) finnXa BXNn.

Proof Direction → follows with Facts 22.2.4 and 22.4.3. Direction ← follows with

Facts 22.2.4 and 22.3.4. ■
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Corollary 22.4.6 finX → Σn. BXNn

Proof Facts 22.2.1 and 22.4.5. ■

Corollary 22.4.7 (EWOs) Finite types have EWOs.

Proof Follows with Fact 22.4.5 since numeral types have EWOs (Fact 14.3.4) and

injections transport EWOs (Fact 14.3.5). ■

Fact 22.4.8 (Existence) Every nonempty finite type can be embedded into N:

finSnX → I XN.

Proof Let A be a listing of X. We realize the injection of X into N using the list

operations pos and sub with an escape values a ∈ A (§21.7):

fx := posAx

gn := subaAn ■

Exercise 22.4.9 Show the following facts:

a) finm Nn →m = n.

b) BNmNn → m = n.

22.5 Upgrade Theorem

Fact 22.5.1 (Injectivity-surjectivity agreement)

Functions between finite types of the same cardinality are injective if and only if

they are surjective: finnX → finn Y → (injectiveXYf ←→ surjectiveXYf ).

Proof Let A and B be listings for X and Y , respectively, with lenA = lenB. We fix

fX→Y and have covering(f@A)←→ nrep(f@A) by Fact 22.1.3.

Let f be injective. Then f@A is nonrepeating by Exercise 21.5.7 (a). Thus f@A
is covering. Hence f is surjective.

Let f be surjective. Then f@A is covering and thus nonrepeating. Thus f is

injective by Exercise 21.5.7 (b). ■

Fact 22.5.2 (Upgrade) Let fX→Y be a surjective or injective function between finite

types of the same cardinality. Then one can obtain a function g such that f and g
constitute a bijection between X and Y .

Proof Let finnX and finnY . The both types have equality deciders and EWOs

(Fact 22.4.7). By Fact 22.5.1 we can assume a surjective function fX→Y . Fact 14.4.1

gives us a function g such that invfg. Fact 22.4.2 gives us invgf as claimed. ■
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Exercise 22.5.3

Prove finmX → finn Y →m > 0 → (∀fX→Y . injectivef ←→ surjectivef)→ m = n.

Exercise 22.5.4 Show that all inverse functions of an injective function between

finite types of the same cardinality agree.

22.6 Listless Development

Fact 22.4.5 characterizes finite types with numeral types and bijections not using

lists. In fact, in set theory finite sets are usually obtained as sets that are in bijection

with canonical finite sets. Moreover, a number n is represented as a particular set

with exactly n elements. Following the development in set theory, one may study

finite types in type theory not using lists. Important results of such a development

would be the following theorems:

1. BNmNn →m = n
2. ∀fg Nn→Nn . invgf → invfg

3. I NnN

4. I N Nn → ⊥
In the proofs of these results induction over numbers (i.e., the cardinality n) will

replace induction over lists.

We will give a few list-free proofs for numeral types since they are interesting

from a technical perspective. They require a different mindset and sometimes re-

quire tricky techniques for option types.

The main tool for proving properties of numeral types Nn is induction on the

cardinality n. An important insight we will use is that we can lower an embedding

of O2(X) into O2(Y) into an embedding of O(X) into O(Y). We realize the idea with

a lowering operator as follows:

L : ∀XY. (O(X)→ O2(Y))→ X → O(Y)
LXYfx := match f(◦x) [ ◦b ⇒ b | �⇒ match f� [ ◦b ⇒ b | �⇒ � ] ]

The idea behind L is simple: Given x, Lf checks whether f maps ◦x to ◦b. If so, Lf
maps x to b. Otherwise, Lf checks whether f maps � to ◦b. If so, Lf maps x to b.

If not, Lf maps x to �.

Lemma 22.6.1 (Lowering) Let f : O2(X)→ O2(Y) and g : O2(Y)→ O2(X).
Then invgf → inv (Lg)(Lf).

Proof Let invgf . We show (Lg)(Lfa) = a by brute force case analysis following the

matches of Lf and Lg. There are 24 cases that all follow with equational reasoning

as provided by the ongruence tactic. ■
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We can now show that a self-injection of a numeral type is always a bijection.

Theorem 22.6.2 (Self-injection)

Let f and g be functions Nn → Nn. Then invgf → invfg.

Proof We prove the claim by induction on n. For n = 0 and n = 1 the proofs are

straightforward.

Let f ,g : OSSn(⊥) → OSSn(⊥) and invgf . By Lemma 22.6.1 and the inductive

hypothesis we have inv (Lf)(Lg). We consider 2 cases:

1. f(g�) = �. We show f(g◦b) = ◦b. We have (Lf)(Lgb) = b. The claim now

follows by case analysis and linear equational reasoning following the definitions

of Lf and Lg (7 cases are needed).

2. f(g�) = ◦b. We derive a contradiction.

a) f� = ◦b′ We have (Lf)(Lgb′) = b′. A contradiction follows by case anal-

ysis and linear equational reasoning following the definitions of Lf and Lg
(4 cases are needed).

b) f� = �. Contradictory since invgf . ■

The above proof requires the verification of 12 cases by linear equational reason-

ing as realized by Rocq’s congruence tactic. The cascaded case analysis of the proof

is cleverly chosen as to minimize the cases that need to be considered. The need

for cascaded case analysis of function applications so that linear equational rea-

soning can finish the current branch of the proof appeared before with Kaminski’s

equation (§5.4).

We remark that the lowering operator L is related to the certifying lowering op-

erator established by Lemma 11.2.2. However, there are essential differences. The

lowering operator L uses a default value while Lemma 11.2.2 exploits an assump-

tion and computational falsity elimination to avoid the need for a default value.

In fact, the default value is not available in the setting of Lemma 11.2.2, and the

assumption is not available in the setting of the lowering operator.

Theorem 22.6.2 stands out in that its proof requires the verification of more

cases than one feels comfortable with on paper. Here the accompanying verification

with a proof assistant gives confidence beyond intuition and common belief.

We now generalize self-injection to general finite types.

Corollary 22.6.3 BXNn → BYNn → invXY gf → invfg.

Proof Let f1, g1 form a bijection BXNn and f2, g2 form a bijection BXNn. We have

inv (λa.f1(g(g2a))) (λa.f2(f (g1a)))

by equational reasoning (congruence tactic in Rocq). Theorem 22.6.2 gives us

inv (λa.f2(f (g1a))) (λa.f1(g(g2a)))
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This gives us invfg by equational reasoning (congruence tactic in Rocq). ■

Using the lowering lemma, we can also prove a cardinality result for numeral

types.

Theorem 22.6.4 (Cardinality)

I(Nm)Nn →m ≤ n.

Proof Let f : Nm → Nn and invgf . If m = 0 or n = 0 the claim is straightforward.

Otherwise we have f : OSm(⊥)→ OSn(⊥) and invgf . We prove m ≤ n by induction

on m with n, f , and g quantified. For m = 0 the claim is trivial. In the successor

case, we need to show Sm ≤ n. If n = 0, we have f : OSSm(⊥)→ O(⊥) contradicting

invgf . If n > 0, the claim follows by Lemma 22.6.1 and the inductive hypothesis. ■

Exercise 22.6.5 Show BNmNn → m = n using induction and the bijection theorem

for option types (11.2.4).

Exercise 22.6.6 Try to do the proof of Theorem 22.6.2 without looking at the details

of the given proof. This will make you appreciate the cleverness of the case analysis

of the given proof. It took a few iterations to arrive at this proof. Acknowledgements

go to Andrej Dudenhefner.

Exercise 22.6.7 (Pigeonhole)

Prove ∀f NSn→Nn . Σab. a ≠ b ∧ fa = fb not using lists.

Hint: A proof similar to the proof of Theorem 22.6.4 works, but the situation is

simpler. The decision function from Fact 22.2.6 (c) is essential.

Exercise 22.6.8 (Double negation shift)

Prove ∀n∀pNn→P. (∀x. ¬¬px)→ ¬¬∀x. px not using lists.

Exercise 22.6.9 (Embedding numeral types into the type of numbers)

Numeral types can be embedded into the numbers by interpreting the constructor �
as 0 and the constructor ◦ as successor.

a) Define an encoding function E : ∀n. Nn → N.

b) Define a decoding function D : N→ ∀n. NSn.

c) Prove Ena < n.

d) Prove D(E(Sn)a)n = a.

e) Prove k ≤ n→ E(Sn)(Dkn) = k.

Hint: The definition of E needs computational falsity elimination.
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Exercise 22.6.10 (Decidability)

Let p be a decidable predicate on Nn. Then:

1. D(∀x.px)
2. D(∃x.px)
3. (Σx.px)+ (∀x.¬px)

Exercise 22.6.11 (Finite Choice)

We define the choice property for two types X and Y as follows:

choiceXY := ∀pX→Y→P. (∀x∃y.pxy)→ ∃f ∀x.px(fx)

The property says that every total relation from X to Y contains a function from X
to Y . Prove choiceXY for all finite types X:

a) choice⊥Y
b) choiceX Y → choice (OX)Y
c) choice Nn Y

d) BX Nn → choiceXY

The proposition choice NY is known as countable choice for Y . The computational

type theory we are considering cannot prove countable choice for B.

22.7 Notes

We have chosen to define finite types using lists. This is a natural and convenient

definition given that lists are a basic computational data structure. On the other

hand, we could define finite types more abstractly as types that are in bijection with

numeral types obtained with option types and recursion. This definition is backed

up by two bijection theorems (22.6.4 and 22.6.2).
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Countable types include finite types and N, and are closed under retracts, sums,

cartesian products, and list types. All countable types have equality deciders, enu-

merators, and EWOs. Infinite countable types are in bijection with N. Typical ex-

amples for infinite countable types are inductive types for syntactic objects (e.g.,

expressions and formulas). As it comes to characterizations of countable types, a

type X is countable iff X has an enumerator and an equality decider, or iff OX is a

retract of N, or iff X is a retract of N and also inhabited.

23.1 Enumerable Types

An enumerator of a type X is a function fN→O(X) that reaches all elements of X.

Formally, we define the type of enumerators of a type X as follows:

enum′X fN→OX := ∀x ∃n. fn = ◦x

enumX := Σf .enum′Xf

We say that a type is enumerable if it has an enumerator.

Fact 23.1.1 (Enumerable types)

1. ⊥ and N are enumerable types: enum⊥ and enum N.

2. Enumerable types are closed under retracts, O, +, and × :

a) IXY → enumY → enumX

b) enumXa enum(OX)
c) enumX × enumY a enum(X + Y)
d) enumX → enumY → enum(X × Y)

3. Finite types are enumerable: finX → enumX.

Proof Straightforward. Closure under + and × follows with I(N× N)N (Chapter 7).

(3) follows since finX → Σn. IX(On⊥) (Fact 22.4.6). ■

Given a function fN→OX , we call a function gX→N such that ∀x. f(gx) = ◦x
a co-enumerator for f .
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Fact 23.1.2 (Co-enumerator) If fN→OX has a co-enumerator g, then f is an enumer-

ator of X, g is injective, and X has an equality decider.

Fact 23.1.3 (Co-enumerator) Enumerators of discrete types have co-enumerators:

EX → enum′Xf → Σg.∀x. f(gx) = ◦x.

Proof It suffices to show ∀x.Σn. fn = ◦x. Follows with an EWO of N since OX is

discrete. ■

23.2 Countable Types

A countable type is a type coming with an equality decider and an enumerator:

ctyX := E(X)× enumX

Fact 23.2.1 (Countable types)

1. ⊥ and N are countable types: cty⊥ and cty N.

2. Countable types are closed under retracts, O, +, and × :

a) IXY → ctyY → ctyX

b) ctyXa cty(OX)
c) ctyX × ctyY a cty(X + Y)
d) ctyX → ctyY → cty(X × Y)

3. Finite types are countable: finX → ctyX.

Proof Follows with Fact 23.1.1 and the concomitant closure facts for discrete

types. ■

Fact 23.2.2 (Co-enumerator characterization)

A type X is countable if and only if there are functions fN→OX and gX→N such that g
is a co-enumerator of f .

Proof Facts 23.1.3 and 23.1.2. ■

It turns out that a type X is countable if and only if OX is a retract of N.
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Fact 23.2.3 (Retract characterization) ctyX a I(OX)N.

Proof Suppose ctyX. Fact 23.2.2 gives us f and g such that ∀x. f(gx) = ◦x. We

obtain an injection I(OX)N as follows:

g′a := match a [ ◦x ⇒ S(gx) | �⇒ 0]

f ′n := match n [0 ⇒ � | Sn⇒ fn]

The other direction follows with the transport lemmas for equality deciders 11.1.3

and 11.2.1 and the observation that the inverse function of the injection is an enu-

merator of X. ■

Fact 23.2.4 (EWOs) Countable types have EWOs.

Proof Follows with an EWO for N (Fact 14.2.2) and Facts 23.2.3, 14.3.5, and 14.3.3.■

Fact 23.2.5 An injection IXN can be raised into an injection I(OX)N.

Proof Let f and g be the functions of IXN. Then

f ′a := match a [ ◦x ⇒ S(fx) | �⇒ 0]

g′n := match n [0 ⇒ � | Sn⇒ ◦gn]

yield an injection I(OX)N. ■

Fact 23.2.6

An injection I(OX)Y with X inhabited can be lowered into an injection IXY :

I(OX)Y → X → IXY .

Proof Let f and g be the functions of I(OX)Y and x0 an element of X. Then

f ′x := f(◦x)

g′y := match gy [ ◦x ⇒ x | �⇒ x0]

yield an injection IXY . ■

Fact 23.2.7 Nonempty countable types are exactly the retracts of N:

X → (ctyXa IXN).

Proof Follows with Facts 23.2.3, 23.2.5, and 23.2.6. ■

Fact 23.2.8 (Uncountable type) The function type N→ B is not countable.

Proof Suppose N → B is countable. Then Fact 23.2.7 give us an injection I(N → B)N
and thus a surjective function N → (N → B). Contradiction with Cantor’s theorem

(Fact 6.3.4). ■
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23.3 Injection into N via List Enumeration

Infinite countable types appear frequently in computational settings. Typical exam-

ples are the syntactic types for expressions and for formulas appearing in Chap-

ters 8 and 24. For these types constructing equality deciders is routine, but so

far we don’t have a method for constructing enumerators. In fact, constructing an

enumerating function N → O(X) directly is not feasible since we need recursion

on N but don’t have the necessary termination arguments. We are now providing a

method obtaining enumerators by constructing injections IXN.

The key idea is to have an infinite sequence L1, L2, L3, . . . of lists over X such

that Ln is a prefix of LSn and every x appears eventually is some Ln. Because of the

prefix property, the first position of x in Ln does not dependent on the n as long

as x ∈ Ln. For the retract, we now map x to its first position in some list Ln with

x ∈ Ln, and n to the element at position n of a sufficiently long list Lm.

We define prefixes as follows: prefixAB := ∃C. A++C = B.

Fact 23.3.1 prefixAB → k < lenA→ subAk = subB k.

Proof ∀k. k < lenA→ subAk = sub (A++C)k follows by induction on A. ■

Theorem 23.3.2 (List enumeration)

An injection IXN can be obtained from an equality decider for X and two functions

LN→L(X) and βX→N such that:

1. ∀n. prefixLn LSn ∧ lenLn < lenLSn

2. ∀x. x ∈ Lβx

Proof Let X be a discrete type and L and β be functions as specified. Since L1 is not

empty by (1), we have a default value x0 : X. We define functions fX→N and gN→X

fx := posLβx x

gn := subLSnn

and show invgf . We prepare the proof with the following lemmas:

3. m ≤ n→ prefixLm Ln
4. prefixLm Ln ∨ prefixLn Lm
5. k < lenLm → k < lenLn → subLm k = subLn k

6. n ≤ lenLn
(3) follows by induction on n. (4) is a straightforward consequence of (3). (5) follows

with Fact 23.3.1 and (4). (6) follows by induction on n and (1).

To show invgf , we fix x and set k := posLβx x and show subLSk k = x. By

Fact 21.7.1(1) it suffices to show subLSk k = subLβx k, which follows by (5) since

k < lenLSk by (6) and k < lenLβx by (2) and Fact 21.7.1(2). ■
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Given a type X, we call functions L and β as specified by Theorem 23.3.2 a list

enumeration of X. Note that types are inhabited if they have a list enumeration.

23.4 More Countable Types

Using a list enumeration, we now show that the recursive inductive type

tree ::= A (N) | T (tree, tree)

closing N under pairing is countable.

Fact 23.4.1 E(tree).

Proof Routine. By induction and case analysis on trees. ■

To define a list enumeration for tree, we need a function that given a list A of

trees returns a list containing all trees Tst with s, t ∈ A.

Lemma 23.4.2 (List product)

∀ABL(tree). ΣC. ∀u. u ∈ C ←→ ∃ s∈A∃ t∈B. u = Tst.

Proof We fix B and prove the claim by induction on A following the scheme

[] · B = []

(s :: A) · B = (Ts)@B ++ A · B ■

Fact 23.4.3 I tree N.

Proof By Theorem 23.3.2 and Fact 23.4.1 it suffices to construct a list enumeration

for tree. We define:

L(0) := []

L(Sn) := L(n)++An++{T(s, t) | s, t ∈ L(n) }

β(An) := Sn

β(T st) := S(βs + βt)

where {T(s, t) | s, t ∈ L(n) } is notation for the application of the list product

function from Lemma 23.4.2 to L(n) and L(n). We show ∀t. t ∈ L(βt) by induction

on t, the rest is obvious.

For A, we show An ∈ L(Sn), which is straightforward.

For T, we show T st ∈ L(S(βs + βt)). By induction we have s ∈ L(βs) and

t ∈ L(βt). It suffices to show s, t ∈ L(βs + βt). Follows with the monotonicity

property

∀mn. m ≤ n→ Lm ⊆ Ln
which in turn follows by induction on n. ■
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Fact 23.4.4 cty tree.

Proof Follows with Facts 23.4.3, 23.2.1(2a), and 23.2.1(1). ■

We can now show countability of a type by embedding it into tree. This is in

many cases straightforward.

Fact 23.4.5 cty (N× N).

Proof By Facts 23.4.4 and 23.2.1(2a) it suffices to embed N× N into tree, which can

be done as follows:

f(x,y) := T(Ax)(Ay)

g(T(Ax)(Ay)) := (x,y)

g _ := (0,0)

Now g(f(x,y)) = (x,y) holds by computational equality. ■

Note that Fact 23.4.5 can also be obtained with Cantor pairing (Fact 11.1.8). The

point is that Fact 23.4.5 obtains countability of N× N with a routine method rather

than the ingenuous Cantor pairing.

Fact 23.4.6 cty (LN).

Proof By Facts 23.4.4 and 23.2.1(2a) it suffices to embed LN into tree, which can be

done as follows:

f [] := A 0

f (x :: A) := T(Ax)(fA)

g(T(Ax) t) := x :: gt

g _ := []

Now g(fA) = A follows by induction on A. ■

Fact 23.4.7 Countable types are closed under taking list types: ctyX → cty(LX).

Proof Let ctyX. The retract characterization (Fact 23.2.3) gives us functions FOX→N

and GN→OX such that invGF . By Facts 23.4.6 and 23.2.1(2a) it suffices to embed LX
into LN, which can be done as follows:

f A := (λx. F(◦x))@A

g [] := []

g (n :: A) := match Gn [ ◦x ⇒ x :: gA | �⇒ [] ]

Now ∀A. g(fA) = A follows by induction on A. ■
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Exercise 23.4.8 Prove IXN→ I(LX)(LN).

Exercise 23.4.9 Prove that the type of expressions (§8.2) and the type of formu-

las (§24.1) are countable by embedding them into tree. No recursion is needed for

the embedding.

Exercise 23.4.10 (General list product) Assume a function fX→Y→Z . Construct a

function ∀AB. ΣC. ∀z. z ∈ C ←→ ∃x∈A∃y∈B. z = fxy .

23.5 Alignments

We start with an informal presentation of ideas we are going to formalize. An

alignment of a type X is a nonrepeating sequence x0, x1, x2, . . . listing all values

of X. The sequence may be finite or infinite depending on the cardinality of X.

Countable types have alignments since they have enumerators. If a type has an

infinite alignment, it is in bijection with N. Moreover, a type is finite if and only if it

has a finite alignment.

Formally, we define alignments as follows:

hitX fX→Nn := ∃x. fx = n
serialX fX→N := ∀nk. hitfn→ k ≤ n→ hitfk

alignmentX fX→N := serialf ∧ injectivef

We call an alignment infinite if it is surjective. We call an alignment finite if it

it has a cutoff n such that it hits exactly the numbers k < n. Formally, we define

cutoffs as follows:

cutoffX fX→Nn := ∀k. hitfk←→ k < n

Fact 23.5.1 Cutoffs are unique. That is, all cutoffs of a function X → N agree.

Fact 23.5.2 The surjective alignments are exactly the bijective functions X → N.

Fact 23.5.3 (Bijection)

Countable types with surjective alignments are in bijection with N:

ctyX → alignmentX f → surjectivef → BXN.

Proof Follows with Fact 14.4.2 since countable types have EWOs (Fact 23.2.4). ■

Fact 23.5.4 (Witnesses of Hits)

Witnesses of hits over countable types are computable:

ctyX → hitX fn→ Σx. fx = n.

Proof Immediate since countable types have EWOs and equality on N is decidable.■
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Lemma 23.5.5 (Segment)

Let f be an alignment of a countable type. Then for every n hit by f one can obtain

a nonrepeating list A of length Sn such that f@A is a segment.

Proof Let f be an alignment of a countable type X. Let hitfn. By induction on n
we construct a non-repeating list B of length Sn such that f@B is a segment.

Base case n = 0. Since countable types have EWOs, we can obtain x such that

fx = 0. Then A = [x] satisfies the claim.

Successor case. We assume hitf(Sn) and construct a nonrepeating list A of

length SSn such that f@A is a segment. Since f is serial, we have hitfn. The

inductive hypothesis gives us a nonrepeating list A of length Sn such that f@A is

a segment. Since countable types have EWOs, we can obtain x such that fx = Sn.

Now x :: A satisfies the claim. We show x ∉ A, the rest is obvious. Suppose x ∈ A.

Then fx < Sn contradicting fx = Sn. ■

23.6 Alignment Construction

We will now show that countable types have alignments. The construction proceeds

in two steps and starts from the enumerator of a countable type. The first step

obtains a nonrepeating enumerator by removing repetitions.

An enumerator fN→OX is nonrepeating if ∀mn. fm = fn ≠ �→m = n.

Fact 23.6.1 (Nonrepeating enumerator)

Every countable type has a nonrepeating enumerator:

ctyX → ΣfN→OX . enum′ f ∧ nonrepeatingf .

Proof Let f be an enumerator of a countable type X. We obtain a nonrepeating

enumerator of X by keeping for all x only the first n such that fn = ◦x:

f ′n :=


� if fn = �
◦x if fn = ◦x ∧ least (λn.fn = ◦x)n

� if fn = ◦x ∧¬least (λn.fn = ◦x)n

The definition of f ′ is admissible since D(least (λn.fn = ◦x)n) since X is discrete

and least preserves decidability (Fact 13.3.1). That f ′ enumerates X and is nonre-

peating follows with Facts 13.2.4 and 13.1.1 for least. ■

There is a second characterization of seriality that is useful for the second step

of the alignment construction.

Fact 23.6.2 A function fX→N is serial if and only if ∀n. hitf(Sn)→ hitfn.

Proof One direction is trivial. For the other direction we assume ∀n. hitf(Sn) →
hitfn and prove ∀nk. hitfn→ k ≤ n→ hitfk by induction on n. ■
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Theorem 23.6.3 (Alignment)

Every countable type has an alignment:

∀X. ctyX → ΣgX→N. alignmentg.

Proof Let X be a countable type. By Facts 23.6.1 and 23.1.3 X has a nonrepeating

enumerator fN→OX with a co-enumerator gX→N. We define a function hN→N such

that hn is the number of hits f has for k < n:

h(0) := 0

h(Sn) := if fn ≠ � then S(hn) else hn

By induction on n we show two intuitively obvious facts about h:

1. ∀kn. hn = Sk→ Σmy. m < n∧ fm = ◦y ∧ hm = k.

2. ∀mxn. fm = ◦x →m < n→ hm < hn.

We now show that g′x := h(gx) is an alignment of X.

That g′ is serial follows with (1) and Fact 23.6.2.

That g′ is injective follows with

3. ∀xy. h(gx) = h(gy)→ gx = gy
since the co-enumerator g is injective. To see (3), assume h(gx) = h(gy). Then

f hits both gx and gy . By (2) we have that gx < gy and gy < gx are both

contradictory. Hence gx = gy . ■

23.7 Bijection Theorem

We now show that two countable types are in bijection if they are retracts of each

other: ctyX → ctyY → IXY → IYX → BXY .

Lemma 23.7.1 (Transport)

Let X and Y be countable types with alignments f and g and IXY . Then:

∀x. Σy. gy = fx.

Proof Let FX→Y and GY→X be such that ∀x. G(Fx) = x. We fix x and show

Σy. gy = fx. By Fact 23.5.4 it suffices to show that g hits fx. With the Seg-

ment Lemma 23.5.5 we obtain a nonrepeating list A : L(X) of length S(fx). Now

g@(F@A) has length S(fx) and is nonrepeating since g and F are injective. The

Large Element Lemma 21.6.6 gives k ∈ g@(F@A) such that k ≥ fx. Thus g hits k.

Since g is serial and fx ≤ k, g hits fx. ■
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Theorem 23.7.2 (Bijection)

Countable types are in bijection if they are retracts of each other:

ctyX → ctyY → IXY → IYX → BXY .

Proof X and Y have alignments f and g by Fact 23.6.3. With the Transport

Lemma 23.7.1 we obtain functions F : ∀x. Σy. gy = fx and G : ∀y.Σx. fx = gy .

Using the injectivity of f and g one verifies that λx.π1(Fx) and λy.π1(Gy) form

a bijection. ■

Corollary 23.7.3 Infinite countable types are in bijection with N:

INX → ctyX → BXN.

Proof Let INX and ctyX. Then X is inhabited and thus IXN by Fact 23.2.7. Now

the bijection theorem 23.7.2 gives us a bijection BXN since cty N. ■

23.8 Alignments of Finite Types

We will show that a countable type X is finite with cardinality n if and only if n is

the cutoff of some alignment of X.

Fact 23.8.1 Let n be the cutoff of an alignment of a countable type X. Then finnX.

Proof Let X be a countable type, f be an alignment of X, and n be the cutoff of f .

It suffices to show that X has a listing of length n.

If n = 0, then X is empty and [] is a listing as required.

Now assume n > 0. Then f hits n − 1. The Segment Lemma 23.5.5 gives us a

nonrepeating list A of length n such that f@A contains exactly the numbers k < n.

We assume x : X and show that x ∈ A. Since n is a cutoff of f , we have fx < n.

Hence fx ∈ f@A. Since f is injective, we have x ∈ A. ■

Fact 23.8.2 If finnX, then n is a cutoff of every alignment of X.

Proof Let finnX and f be an alignment of X. Let A be a listing of X. Then f@A
is a nonrepeating list of length n containing exactly the numbers hit by f . Thus

it suffices to show that f@A contains exactly the numbers k < n. Follows with

Fact 21.6.7 since f@A is serial and nonrepeating. ■

Corollary 23.8.3 Alignments of finite types are not surjective.

Proof Let finnX and f be a alignment of X. It suffices to show that f doesn’t hit n.

By Fact 23.8.2 we have a cutoff n of f . Thus n < n if f hits n. ■
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23.9 Finite or Infinite

Assuming the law of excluded middle, we show that a serial function either has a

cutoff or is surjective. Since there is no algorithm deciding this property, assuming

excluded middle seems necessary.

Fact 23.9.1 XM→ serialf → ex(cutofff)∨ surjectivef .

Proof Assume XM and let f be serial. Using XM, we assume that f is not surjective

and show that f has a cutoff. Using XM, we obtain a k not hit by f . Using XM and

Fact 13.5.2, we obtain the least n not hit by f . Since f is serial, n is the cutoff of f .■

We now have that under XM a countable type is either finite or in bijection with N.

Fact 23.9.2 XM→ ctyX → □ (finX + bijectionX N).

Proof Follows with Facts 23.6.3, 23.9.1, 23.8.1, and 23.5.3. ■

The truncation □ in Fact 23.9.2 is needed so that the disjunctive assumption XM

can be harvested. Truncations are introduced in §10.5.

Fact 23.9.3 XM→ ctyX → □ I XN∨ (X → ⊥).

Proof Follows with Facts 23.9.2, 22.2.2 and 22.4.8. ■

23.10 Discussion

We have shown that a countable type is either a finite type or an infinite type that

is in bijection with N. In fact, most results in this chapter generalize results we

have already seen for finite types. The generalized results include the construction

of alignments for countable types and the construction of bijections for countable

types of the same cardinality.

Cantor pairing is an ingenuous construction establishing N × N as an infinite

countable type. We gave a more general construction (list enumeration) that works

for N× N and for syntactic types in general.

We did not give a formal definition of infinite types since there are several possi-

bilities: We may call a type X infinite if X is not a finite type, if there is an injection

INX, or if there is a new element generator, among other possibilities.

As it comes to cardinalities of countable types, we may say that the cardinality

of a countable type is a value of O(N), where ◦n represents the finite cardinality n
and � represents the single infinite cardinality.
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24 Propositional Deduction

In this chapter we study propositional deduction systems. Propositional deduction

systems can be elegantly formalized with indexed inductive type families. The chap-

ter is designed such that it can serve as an introduction to propositional deduction

systems and to indexed inductive type definitions at the same time. No previous

knowledge of indexed inductive type definitions is assumed.

We present ND systems and Hilbert systems for intuitionistic provability and for

classical provability. We show the equivalence of the respective systems and that

classical provability reduces to intuitionistic provability (Glivenko’s theorem). We

consider three-valued and two-valued interpretations of formulas and show that

certain formulas are unprovable in the systems (e.g., the double negation law in

intuitionistic systems).

We characterize classical provability with a refutation system based on boolean

formula decomposition. The refutation system provides the basis for a certifying

solver, from which we obtain that classical provability is decidable and agrees with

boolean entailment. We construct the certifying solver using size induction.

The chapter can serve as an introduction to deduction systems in general,

preparing the study of deduction systems for programming languages (e.g., type

systems, operational semantics). More specifically, in this chapter we learn how in-

ductive types elegantly represent abstract syntax, judgments, and derivation rules.

24.1 ND Systems

We start with an informal explanation of natural deduction systems. Natural deduc-

tion systems (ND systems) come with a class of formulas and a system of deduction

rules for building derivations of judgments A ⊢ s consisting of a list of formulas A
serving as assumptions and a single formula s serving as conclusion. That a judg-

ment A ⊢ s is derivable with the rules of the system is understood as saying that s
is provable with the assumptions in A and the rules of the system. Given a concrete

class of formulas, we can have different sets of rules and compare their deductive

power. Given a concrete deduction system, we may ask the following questions:
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• Consistency: Are there judgments we cannot derive?

• Weakening property: Given a derivation of A ⊢ s and a list B containing A, can

we always obtain a derivation of B ⊢ s?
• Cut property: Given derivations of A ⊢ s and s :: A ⊢ t, can we always obtain a

derivation of A ⊢ t?
• Decidability: Is it decidable whether a judgment A ⊢ s is derivable?

We will consider the following type of formulas:

s, t,u, v : For := x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

Formulas of the kind x are called atomic formulas. Atomic formulas represent

atomic propositions whose meaning is left open. For the other kinds of formulas the

symbols used give away the intended meaning. Formally, the type For of formulas

is accommodated as an inductive type that has a value constructor for each kind of

formula (5 altogether).1 We will use the familiar notation

¬s := s → ⊥

to express negated formulas.

Exercise 24.1.1 (Formulas)

a) Show some of the constructor laws for the type of formulas.

b) Define an eliminator providing for structural induction on formulas.

c) Define a certifying equality decider for formulas.

24.2 Intuitionistic ND System

The deduction rules of the intuitionistic ND system we will consider are given in

Figure 24.1 using several notational gadgets:

• Comma notation A, s for lists s :: A.

• Ruler notation for deduction rules. For instance,

A ⊢ s → t A ⊢ s
A ⊢ t

describes a rule (known as modus ponens) that obtains a derivation of A ⊢ t
from derivations of A ⊢ (s → t) and A ⊢ s. We say that the rule has two

premises and one conclusion.

1The use of abstract syntax is discussed more carefully in Chapter 8.
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24.2 Intuitionistic ND System

A
s ∈ A
A ⊢ s

E⊥
A ⊢ ⊥
A ⊢ s

I→
A, s ⊢ t
A ⊢ s → t

E→
A ⊢ s → t A ⊢ s

A ⊢ t

I∧
A ⊢ s A ⊢ t
A ⊢ s ∧ t

E∧
A ⊢ s ∧ t A, s, t ⊢ u

A ⊢ u

I1∨
A ⊢ s

A ⊢ s ∨ t
I2∨

A ⊢ t
A ⊢ s ∨ t

E∨
A ⊢ s ∨ t A, s ⊢ u A, t ⊢ u

A ⊢ u

Figure 24.1: Deduction rules of the intuitinistic ND system

All rules in Figure 24.1 express proof rules you are familiar with from mathematical

reasoning and the logical reasoning you have seen in this text. In fact, the system

of rules in Figure 24.1 can derive exactly those judgments A ⊢ s that are known to

be intuitionistically deducible (given the formulas we consider). Since reasoning

in type theory is intuitionistic, Rocq can prove a goal (A, s) if and only if the rules

in Figure 24.1 can derive the judgment A ⊢ s (where atomic formulas are accom-

modated as propositional variables in type theory). We will exploit this coincidence

when we construct derivations using the rules in Figure 24.1.

The rules in Figure 24.1 with a logical constant (i.e., ⊥, →, ∧, ∨) in the conclusion

are called introduction rules, and the rules with a logical constant in the leftmost

premise are called elimination rules. The first rule in Figure 24.1 is known as

assumption rule. Note that every rule but the assumption rule is an introduction or

an elimination rule for some logical constant. Also note that there is no introduction

rule for⊥, and that there are two introduction rules for∨. The elimination rule for⊥
is also known as explosion rule.

Note that no deduction rule contains more than one logical constant. This re-

sults in an important modularity property. If we want to omit a logical constant, for

instance ∧, we just omit all rules containing this constant. Note that every system

with ⊥ and → can express negation. When trying to understand the structural prop-

erties of the system, it is usually a good idea to just consider ⊥ and→. Note that the

assumption rule cannot be omitted since it is the only rule not taking a derivation

as premise.

Here are common conveniences for the turnstile notation we will make use of in

the following:

s ⊢ u � [s] ⊢ u
s, t ⊢ u � [s, t] ⊢ u

⊢ u � [] ⊢ u
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Example 24.2.1 Below is a derivation for s ⊢ ¬¬s depicted as a derivation tree:

s,¬s ⊢ ¬s
A

s,¬s ⊢ s
A

s,¬s ⊢ ⊥
E→

s ⊢ ¬¬s
I→

The labels A, E→, and I→ at the right of the lines are the names for the rules used

(assumption, elimination, and introduction).

Constructing ND derivations

Generations of students have been trained to construct ND derivations. In fact,

constructing derivations in the intuitionistic ND system is pleasant if one follows

the following recipe:

1. Construct a proof table as if the formulas were propositions.

2. Translate the proof table into a derivation using the proof assistant.

Step 1 is the more difficult one, but you already well-trained as it comes to con-

structing intuitionistic proof tables. Once the proof assistant is used, constructing

derivations becomes fun. Using the proof assistant becomes possible once the rele-

vant ND system is realized as an inductive type.

The proof assistant comes with a decision procedure for intuitionistically prov-

able quantifier-free propositions. If in doubt whether a certain derivation can be

constructed in the intuitionistic ND system, the decision procedure of the proof

assistant can readily decide the question.

Exercise 24.2.2 Give derivation trees for A ⊢ (s → s) and ¬¬⊥ ⊢ ⊥.

Exercise 24.2.3 If you are eager to construct more derivations, Exercise 24.3.3 will

provide you with interesting examples.

24.3 Formalization with Indexed Inductive Type Family

It turns out that propositional deduction systems like the one in Figure 24.2 can be

formalized elegantly and directly with inductive type definitions accommodating

deduction rules as value constructors of derivation types A ⊢ s.
Let us explain this fundamental idea. We may see the deduction rules in Fig-

ure 24.1 as functions that given derivations for the judgments in the premises yield

a derivation for the judgment appearing as conclusion. The introduction rule for

conjunctions, for instance, may be seen as a function that given derivations for

A ⊢ s and A ⊢ t yields a derivation for A ⊢ s ∧ t. We now go one step further
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24.3 Formalization with Indexed Inductive Type Family

s ∈ A → A ⊢ s A

A ⊢ ⊥ → A ⊢ s E⊥

A, s ⊢ t → A ⊢ (s → t) I→

A ⊢ (s → t) → A ⊢ s → A ⊢ t E→

A ⊢ s → A ⊢ t → A ⊢ (s ∧ t) I∧

A ⊢ (s ∧ t) → A, s, t ⊢ u → A ⊢ u E∧

A ⊢ s → A ⊢ (s ∨ t) I1∨

A ⊢ t → A ⊢ (s ∨ t) I2∨

A ⊢ (s ∨ t) → A, s ⊢ u → A, t ⊢ u → A ⊢ u E∨

Prefixes for A, s, t, u omitted, constructor names given at the right

Figure 24.2: Value constructors for derivation types A ⊢ s

and formalize the deduction rules as the value constructors of an inductive type

constructor

⊢ : L(For)→ For→ T

This way the values of an inductive type A ⊢ s represent the derivations of the

judgment A ⊢ s we can obtain with the deduction rules. To emphasize this point,

we call the types A ⊢ s derivation types.

The value constructors for the derivation types A ⊢ s of the intuitionistic ND

system appear in Figure 24.2. Note that the types of the constructors follow exactly

the patterns of the deduction rules in Figure 24.1.

When we look at the target types of the constructors in Figure 24.2, it becomes

clear that the argument s of the type constructor A ⊢ s is not a parameter since

it is instantiated by the constructors for the introduction rules (I→, I∧, I1∨, I2∨). Such

nonparametric arguments of type constructors are called indices. In contrast, the

argument A of the type constructor A ⊢ s is a parameter since it is not instanti-

ated in the target types of the constructors. More precisely, the argument A is a

nonuniform parameter of the type constructor A ⊢ s since it is instantiated in some

argument types of some of the constructors (I→, E∧, and E∨).

We call inductive type definitions where the type constructor has indices indexed

inductive definitions. Indexed inductive definitions can also introduce indexed

inductive predicates. In fact, we alternatively could introduce ⊢ as an indexed

inductive predicate and this way demote derivations from computational objects to

proofs.

The suggestive BNF-style notation we have used so far to write inductive type
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24 Propositional Deduction

definitions does not generalize to indexed inductive type definitions. So we will

use an explicit format giving the type constructor together with the list of its value

constructors. Often, the format used in Figure 24.2 will be convenient.

Fact 24.3.1 (Double negation)

1. ¬¬⊥ ⊢ ⊥
2. s ⊢ ¬¬s
3. (A ⊢ ¬¬⊥) a (A ⊢ ⊥)

Proof See Example 24.2.1 and the remarks there after. ■

In §24.9 we will show that ¬¬s ⊢ s is not derivable for some formulas s. In

particular, ¬¬s ⊢ s is not derivable if s is a variable. However, as the above proof

shows, ¬¬s ⊢ s is derivable for s = ⊥. This fact will play an important role.

Fact 24.3.2 (Cut) A ⊢ s → A, s ⊢ t → A ⊢ t.

Proof We assume A ⊢ s and A, s ⊢ t and derive A ⊢ t. By I→ we have A ⊢ (s → t).
Thus A ⊢ t by E→. ■

The cut lemma gives us a function that given a derivation A ⊢ s and a derivation

A, s ⊢ t yields a derivation A ⊢ t. Informally, the cut lemma says that once we have

derived s from A, we can use s like an assumption.

Exercise 24.3.3 Construct derivations as follows:

a) A ⊢ ¬¬⊥ → ⊥
b) A ⊢ s → ¬¬s
c) A ⊢ (¬s → ¬¬⊥)→ ¬¬s
d) A ⊢ (s → ¬¬t)→ ¬¬(s → t)

e) A ⊢ ¬¬(s → t)→ ¬¬s → ¬¬t
f) A ⊢ ¬¬¬s → ¬s
g) A ⊢ ¬s → ¬¬¬s

Exercise 24.3.4 Establish the following functions:

a) A ⊢ (s1 → s2 → t) → A ⊢ s1 → A ⊢ s2 → A ⊢ t
b) ¬¬s ∈ A → A, s ⊢ ⊥ → A ⊢ ⊥
c) A, s,¬t ⊢ ⊥ → A ⊢ ¬¬(s → t)

Hint: (c) is routine if you first show A ⊢ (¬t → ¬s)→ ¬¬(s → t).

Exercise 24.3.5 Prove the implicative facts (1)–(6) appearing in Exercise 24.11.6.
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24.4 The Eliminator

For more interesting proofs it will be necessary to do inductions on derivations.

As it was the case for non-indexed inductive types, we can define an eliminator

providing for the necessary inductions. The definition of the eliminator is shown in

Figure 24.3. While the definition of the eliminator is frighteningly long, it is regular

and modular: Every deduction rule (i.e., value constructor) is accounted for with a

separate type clause and a separate defining equation. To understand the definition

of the eliminator, it suffices that you pick one of the deduction rules and look at the

type clause and the defining equation for the respective value constructor.

The eliminator formalizes the idea of induction on derivations, which informally

is easy to master. With a proof assistant, the eliminator can be derived automatically

from the inductive type definition, and its application can be supported such that

the user is presented the proof obligations for the constructors once the induction

is initiated.

As it comes to the patterns (i.e., the left-hand sides) of the defining equations,

there is a new feature coming with indexed inductive types. Recall that patterns

must be linear, that is, no variable must occur twice, and no constituent must be

referred to by more than one variable. With parameters, this requirement was easily

satisfied by not furnishing constructors in patterns with their parameter arguments.

If the type constructor we do the case analysis on has indices, there is the additional

complication that the value constructors for this type constructor may instantiate

the index arguments. Thus there is a conflict with the preceding arguments of the

defined function providing abstract arguments for the indices. Again, there is a sim-

ple general solution: The conflicting preceding arguments of the defined function

are written with the underline symbol ’_’ and thus don’t introduce variables, and

the necessary instantiation of the function type is postponed until the instantiating

constructor is reached. In the definition shown in Figure 24.3, the critical argument

of E⊢ that needs to be written as ’_’ in the defining equations is s in the target type

∀As. A ⊢ s → pAs of E⊢.

24.5 Induction on Derivations

We are now ready to prove interesting properties of the intuitionistic ND system

using induction on derivations. We will carry out the inductions informally and

leave it to reader to check (with Rocq) that the informal proofs translate into formal

proofs applying the eliminator E⊢.

We start by defining a function translating derivations A ⊢ s into derivations

B ⊢ s provided B contains every formula in A.
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E⊢ : ∀pL(For)→For→T.

(∀As. s ∈ A→ pAs)→
(∀As. pA⊥ → pAs)→
(∀Ast. p(s :: A)t → pA(s → t))→
(∀Ast. pA(s → t)→ pAs → pAt)→
(∀Ast. pAs → pAt → pA(s ∧ t))→
(∀Astu. pA(s ∧ t)→ p(s :: t :: A)u→ pAu)→
(∀Ast. pAs → pA(s ∨ t))→
(∀Ast. pAt → pA(s ∨ t))→
(∀Astu. pA(s ∨ t)→ p(s :: A)u→ p(t :: A)u→ pAu)→
∀As. A ⊢ s → pAs

E⊢ pe1 . . . e9A _ (A sh) := e1Ash

(E⊥ sd) := e2As(E⊢ . . . A⊥d)
(I→ std) := e3Ast(E⊢ . . . (s :: A)td)

(E→ std1d2) := e4Ast(E⊢ . . . A(s → t)d1)(E⊢ . . . Asd2)

(I∧ std1d2) := e5Ast(E⊢ . . . Asd1)(E⊢ . . . Atd2)

(E∧ stud1d2) := e6Astu(E⊢ . . . A(s ∧ t)d1)(E⊢ . . . (s :: t :: A)ud2)

(I1∨ std) := e7Ast(E⊢ . . . Asd)

(I2∨ std) := e8Ast(E⊢ . . . Atd)

(E∨ stud1d2d3) := e9Astu(E⊢ . . . A(s ∨ t)d1)

(E⊢ . . . (s :: A)ud2)

(E⊢ . . . (t :: A)ud3)

Figure 24.3: Eliminator for A ⊢ s
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Fact 24.5.1 (Weakening) A ⊢ s → A ⊆ B → B ⊢ s.

Proof By induction on A ⊢ s with B quantified. All proof obligations are straight-

forward. We consider the constructor I→. We have A ⊆ B and a derivation A, s ⊢ t,
and we need a derivation B ⊢ (s → t). Since A, s ⊆ B, s, the inductive hypothesis

gives us a derivation B, s ⊢ t. Thus I→ gives us a derivation B ⊢ (s → t). ■

Next we show that premises of top level implications are interchangeable with

assumptions.

Fact 24.5.2 (Implication) A ⊢ (s → t) a A, s ⊢ t.

Proof Direction ⇐ holds by I→. For direction ⇒ we assume A ⊢ (s → t) and obtain

A, s ⊢ (s → t) with weakening. Now A and E→ yield A, s ⊢ t. ■

As a consequence, we can represent all assumptions of a derivation A ⊢ s as

premises of implications at the right-hand side. To this purpose, we define a rever-

sion function A · s with [] · t := t and (s :: A) · t := A · (s → t). For instance, we have

[s1, s2, s3] · t = (s3 → s2 → s1 → t). To ease our notation, we will write ⊢ s for [] ⊢ s.

Fact 24.5.3 (Reversion) A ⊢ sa ⊢ A · s.

Proof By induction on A with s quantified using the implication lemma. ■

A formula is ground if it contains no variable. We assume a recursively defined

predicate ground s for groundness.

Fact 24.5.4 (Ground Prover) ∀s. ground s → (⊢ s)+ (⊢ ¬s).

Proof By induction on s using weakening. ■

Design principles

The intuitionistic ND system satisfies the following design principles:

1. Modularity: Every logical constant is accommodated with introduction and elim-

ination rules where the constant appears once and no other constant appears.

2. Weakening: If s can be derived for A, s can be derived for every B containing all

formulas in A.

3. Agreement: Implication → agrees with the external turnstile ⊢.

Exercise 24.5.5 Prove ∀s. ground s → ⊢ (s ∨¬s).

Exercise 24.5.6 Prove ∀As. ground s → A, s ⊢ t → A,¬s ⊢ t → A ⊢ t.

Exercise 24.5.7 Prove the deduction laws for conjunctions and disjunctions:

a) A ⊢ (s ∧ t) a A ⊢ s × A ⊢ t
b) A ⊢ (s ∨ t) a ∀u. A, s ⊢ u → A, t ⊢ u → A ⊢ u
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Exercise 24.5.8 Construct derivations for the following judgments:

a) ⊢ (t → ¬s)→ ¬(s ∧ t)
b) ⊢ ¬¬s → ¬¬t → ¬¬(s ∧ t)
c) ⊢ ¬s → ¬t → ¬(s ∨ t)
d) ⊢ (¬t → ¬¬s)→ ¬¬(s ∨ t)
e) ⊢ ¬¬s → ¬t → ¬(s → t)

f) ⊢ (¬t → ¬s)→ ¬¬(s → t)

Exercise 24.5.9 (Order-preserving reversion)

We define a reversion function A · s preserving the order of assumptions:

[] · s := s

(t :: A) · s := t → (A · s)

Prove A ⊢ sa ⊢ A · s.
Hint: Prove the generalization ∀B. B++A ⊢ sa B ⊢ A · s by induction on A.

24.6 Classical ND System

The classical ND system is obtained from the intuitionistic ND system by replacing

the explosion rule

A ⊢ ⊥
A ⊢ s

with the proof by contradiction rule:

A,¬s ⊢ ⊥
A ⊢ s

Formally, we accommodate the classical ND system with a separate derivation type

constructor (written as a doted turnstile)

⊢̇ : L(For)→ For → T

with separate value constructors. Classical ND can prove the double negation law.

Fact 24.6.1 (Double Negation) A ⊢̇(¬¬s → s).

Proof Straightforward using the contradiction rule. ■

Fact 24.6.2 (Cut) A ⊢̇ s → A, s ⊢̇ t → A ⊢̇ t.
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Proof Same as for the intuitionistic system. ■

Fact 24.6.3 (Weakening) A ⊢̇ s → A ⊆ B → B ⊢̇ s.

Proof By induction on A ⊢̇ s with B quantified. Same proof as for intuitionistic ND,

except that now the proof obligation (∀B. A,¬s ⊆ B → B ⊢̇⊥) → A ⊆ B → B ⊢̇ s
for the contradiction rule must be checked. Straightforward with the contradiction

rule. ■

The classical system can prove the explosion rule. Thus every intuitionistic

derivation A ⊢ s can be translated into a classical derivation A ⊢̇ s.

Fact 24.6.4 (Explosion) A ⊢̇⊥ → A ⊢̇ s.

Proof By contradiction and weakening. ■

Fact 24.6.5 (Translation) A ⊢ s → A ⊢̇ s.

Proof By induction on A ⊢ s using the explosion lemma for the explosion rule. ■

Fact 24.6.6 (Implication) A, s ⊢̇ t a A ⊢̇(s → t).

Proof Same proof as for the intuitionistic system. ■

Fact 24.6.7 (Reversion) A ⊢̇ sa ⊢ A · s.

Proof Same proof as for the intuitionistic system. ■

Because of the contradiction rule the classical system has the distinguished prop-

erty that every proof problem can be turned into a refutation problem.

Fact 24.6.8 (Refutation) A ⊢̇ s a A,¬s ⊢̇⊥.

Proof Direction ⇒ follows with weakening. Direction ⇐ follows with the contradic-

tion rule. ■

While the refutation lemma tells us that classical ND can represent all infor-

mation in the context, the implication lemmas tell us that both intuitionistic and

classical ND can represent all information in the claim.

Exercise 24.6.9 Show (A ⊢ s → t → u) ⇐⇒ (A ⊢ t → s → u).

Exercise 24.6.10 Show ⊢̇ s ∨¬s and ⊢̇((s → t)→ s)→ s.
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Exercise 24.6.11 Prove the deduction laws for conjunctions and disjunctions:

a) A ⊢̇(s ∧ t) a A ⊢̇ s × A ⊢̇ t
b) A ⊢̇(s ∨ t) a ∀u. A, s ⊢̇u → A, t ⊢̇u → A ⊢̇u

Exercise 24.6.12 Show that classical ND can express conjunction and disjunction

with implication and falsity. To do so, define a translation function fst not using

conjunction and prove ⊢̇(s ∧ t → fst) and ⊢̇(f st → s ∧ t). Do the same for disjunc-

tion.

Exercise 24.6.13 (Double negation rule)

A classical ND system can also be obtained with a double negation rule

A ⊢̇¬¬s → s

in place of the contradiction rule.

a) Show that the modified system can derive the contradiction rule.

b) Show that the unmodified system can derive the double negation rule.

c) Show that the two systems are equivalent (that is, derive the same pairs (A, s)).

d) Note that weakening is not required for the equivalence proof.

Modularity with Peirce’s rule

The contradiction rule of the classical system violates the modularity principle since

it involves 2 logical constants (⊥ and →). This design flaw can be fixed by replacing

the contradiction rule with the elimination rule for ⊥ (as in the intuitionistic system)

and a rule formulating Peirce’s law (§17.1):

E⊥
A ⊢̇⊥
A ⊢̇ s

Peirce
A, s → t ⊢̇ s
A ⊢̇ s

What speaks in favor of the contradiction rule is that in contrast to Peirce’s rule it

formulates a familiar mathematical reasoning principle.

Exercise 24.6.14 (Peirce’s rule)

a) Show that the system with the contradiction rule can derive Peirce’s rule:

∀Ast. (A, s → t ⊢̇ s)→ (A ⊢̇ s).
b) Assume Peirce’s rule (∀Ast. (A, s → t ⊢̇ s) → (A ⊢̇ s)) and derive the contradic-

tion rule (∀As. (A,¬s ⊢̇⊥)→ (A ⊢̇ s)) using explosion.

c) Model the system with Peirce’s rule as a separate inductive type familiy and show

that the system with Peirce’s rule and E⊥ can derive the same pairs (A, s) as the

system with the contradiction rule.
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24.7 Glivenko’s Theorem

It turns out that a formula is classically provable if and only if its double negation

is intuitionistically provable. Thus a classical provability problem can be reduced

to an intuitionistic provability problem.

Lemma 24.7.1 A ⊢̇ s → A ⊢ ¬¬s.

Proof By induction on A ⊢̇ s. This yields the following proof obligations (the obli-

gations for conjunctions and disjunctions are omitted).

• s ∈ A → A ⊢ ¬¬s
• A,¬s ⊢ ¬¬⊥ → A ⊢ ¬¬s.
• A, s ⊢ ¬¬t → A ⊢ ¬¬(s → t)

• A ⊢ ¬¬(s → t) → A ⊢ ¬¬s → A ⊢ ¬¬t
Using rule E→ of the intuitionistic system, the obligations can be strengthened to:

• ⊢ s → ¬¬s
• ⊢ (¬s → ¬¬⊥)→ ¬¬s
• ⊢ (s → ¬¬t)→ ¬¬(s → t)

• ⊢ ¬¬(s → t)→ ¬¬s → ¬¬t.
The proofs of the strengthened obligations are routine (Exercise 24.3.3). ■

Theorem 24.7.2 (Glivenko) A ⊢̇ s a A ⊢ ¬¬s.

Proof Direction ⇒ follows with Lemma 24.7.1. Direction ⇐ follows with translation

(24.6.5) and double negation (24.6.1). ■

Corollary 24.7.3 (Refutation agreement)

Intuitionistic and classical refutation agree: A ⊢ ⊥a A ⊢̇⊥.

Proof Glivenko’s theorem and the bottom law 24.3.1. ■

Corollary 24.7.4 (Agreement on negated formulas) A ⊢̇¬s a A ⊢ ¬s.

Corollary 24.7.5 (Equiconsistency)

Intuitionistic ND is consistent if and only if classical ND is consistent:

((⊢⊥)→ ⊥) ⇐⇒ ((⊢̇⊥)→ ⊥).

Proof Immediate consequence of Corollary 24.7.3. ■

Exercise 24.7.6 We call a formula s stable if ¬¬s ⊢ s. Prove the following:

a) ⊥ is stable.

b) If t is stable, then s → t is stable.

c) If s is stable, then A ⊢̇ s a A ⊢ s.
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24.8 Intuitionistic Hilbert System

Hilbert systems are deduction systems predating ND systems.2 They are simpler

than ND systems in that they come without assumption management. While it is

virtually impossible for humans to write proofs in Hilbert systems, one can con-

struct compilers translating derivations in ND systems into derivations in Hilbert

systems.

To ease our presentation, we restrict ourselves in this section to formulas not

containing conjunctions and disjunctions. Since implications are the primary con-

nective in Hilbert systems and conjunctions and disjunctions appear as extensions,

adding conjunctions and disjunctions will be an easy exercise.

We consider an intuitionistic Hilbert system formalized with an inductive type

constructor H : For→ T and the derivation rules

HMP

H (s → t) H (s)

H (t)
HK H (s → t → s)

HS H ((s → t → u)→ (s → t)→ s → u)
H⊥ H (⊥ → s)

There are a single two-premise rule called modus ponens and three premise-free

rules called axiomatic rules. So all the action comes with modus ponens, which

puts implication into the primary position. Note that the single argument of the

type constructor H comes out as an index.

A Hilbert system internalizes the assumption list of the ND system using impli-

cation. It keeps the elimination rule for implications (now called modus ponens)

but reformulates all other rules as axiomatic rules using implication. Surprisingly,

only two rules (HK and HS) suffice to simulate the assumption management and the

introduction rule for implication. The axiomatic rules for conjunction and disjunc-

tion follow the ND rules and the translation scheme we see in the falsity elimination

rule H⊥ and come with the following conclusions:

s → t → s ∧ t
s ∧ t → (s → t → u)→ u

s → s ∨ t
t → s ∨ t

s ∨ t → (s → u)→ (t → u)→ u

2Hilbert systems are also known as axiomatic systems. They originated with Gottlob Frege before
they were popularized by David Hilbert and coworkers.
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HðA
s ∈ A
A ð s

HðMP

A ð s → t A ð s
A ð t

HðK A ð s → t → s

HðS A ð (s → t → u)→ (s → t)→ s → u
Hð⊥ A ð ⊥ → s

Figure 24.4: Generalized Hilbert system ð : L(For)→ For → T

We will prove that H derives exactly the formulas intuitionistic ND derives in

the empty context (that is,H sa ⊢s). One direction of the proof is straightforward.

Fact 24.8.1 (Soundness for ND) H (s)→ ([] ⊢ s).

Proof By induction on the derivation of H (s). The modus ponens rule can be

simulated with E→, and the conclusions of the axiomatic rules are all easily derivable

in the intuitionistic system. ■

The other direction of the equivalence proof (completeness for ND) is challenging

since it has to internalize the assumption management of the ND system. We will

see that this can be done with the axiomatic rules HK and HS. We remark that

the conclusions of HK and HS may be seen as types for the functions λxy.x and

λfgx.(fx)(gx).
The completeness proof uses the generalized Hilbert system ð shown in Fig-

ure 24.4 as an intermediate system. Similar to the ND system, the generalized

Hilbert system maintains a context, but this time no rule modifies the context. The

assumption rule HðA is the only rule reading the context. The context can thus be

accommodated as a uniform parameter of the type constructor ð.

Fact 24.8.2 (Agreement) H (s)←→ [] ð s.

Proof Both directions are straightforward inductions. ■

It remains to construct a function translating ND derivations A ⊢ s into Hilbert

derivations A ð s. For this we use a simulation function for every rule of the ND

system (Figure 24.1). The simulation functions are obvious for all rules of the ND

system but for I→.

Fact 24.8.3 (Basic simulation functions)

1. ∀As. s ∈ A→ A ð s.
2. ∀Ast. (A ð s → t)→ (A ð s)→ (A ð t).
3. ∀As. (A ð ⊥)→ (A ð s).
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Proof Functions (1) and (2) are exactly HðA and HðMP. Function (3) can be obtained

with Hð⊥ and HðMP. ■

The translation function for I→ needs several auxiliary functions.

Fact 24.8.4 (Operational versions of K and S)

1. ∀Asu. (A ð u)→ (A ð s → u).

2. ∀Astu. (A ð s → t → u)→ (A ð s → t)→ (A ð s → u).

Proof (1) follows with HðK and HðMP. (2) follows with HðS and HðMP. ■

Fact 24.8.5 (Identity) ∀As. A ð s → s.

Proof Follows with the operational version of S (with s := s, t := s → s, and u := s)
using HðK for both premises. ■

The next fact is the heart of the translation of ND derivations into Hilbert deriva-

tions. It is well-known in the literature under the name deduction theorem.

Fact 24.8.6 (Simulation function for I→) ∀Ast. (A, s ð t)→ (A ð s → t).

Proof By induction on the derivation A, s ð t (the context argument of ð is a uni-

form parameter).

• HðA . If s = t, the claim follows with Fact 24.8.5. If t ∈ A, the claim follows with HðA
and the operational version of K (Fact 24.8.4(1)). The case distinction is possible

since equality of formulas is decidable.

• HðMP. Follows with the operational version of S (Fact 24.8.4(2)) and the inductive

hypotheses.

• HðK , HðS , Hð⊥. The axiomatic cases follow with the operational version of K

(Fact 24.8.4(1)) and HðK , HðS , Hð⊥, rspectively. ■

Fact 24.8.7 (Completeness for ND) (A ⊢ s)→ (A ð s).

Proof By induction on the derivation of A ⊢ s using Facts 24.8.3 and 24.8.6. ■

Theorem 24.8.8 (Agreement) H (s)a ⊢s.

Proof Follows with Facts 24.8.1, 24.8.7, and 24.8.2. ■

Exercise 24.8.9 Show (A ð s)a (A ⊢ s).

Exercise 24.8.10 Extend the development of this section to formulas with conjunc-

tions and disjunctions. Add the axiomatic rules shown at the beginning of §24.8.

Exercise 24.8.11 Define a classical Hilbert system and show its equivalence with

the classical ND system. Do this by replacing the axiomatic rule for ⊥ with an

axiomatic rule providing the double negation law ¬¬s → s.
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24.9 Heyting Evaluation

The proof techniques we have seen so far do not suffice to show negative results

about the intuitionistic ND system. By a negative result we mean a proof saying that

a certain derivation type is empty, for instance,

̸⊢ ⊥ ̸⊢ x ̸⊢ (¬¬x → x)

(we write ̸⊢ s for the proposition ([] ⊢ s) → ⊥). Speaking informally, the above

propositions say that falsity, atomic formulas, and the double negation law for

atomic formulas are not intuitionistically derivable.

A powerful technique for showing negative results is evaluation of formulas into

a finite and ordered domain of so-called truth values. Things are arranged such that

all derivable formulas evaluate under all assignments to the largest truth value.3 A

formula can then be established as underivable by presenting an assignment under

which the formula evaluates to a different truth value.

Evaluation into the boolean domain 0 < 1 is well-known and suffices to disprove

⊢ ⊥ and ⊢ x. To disprove ⊢ (¬¬x → x), we need to switch to a three-valued

domain 0 < 1 < 2. Using the order of the truth values, we interpret conjunction

as minimum and disjunction as maximum. Falsity is interpreted as the least truth

value (i.e., 0). Implication of truth values is interpreted as a comparison that in the

positive case yields the greatest truth value 2 and in the negative case yields the

second argument:

imp ab := if a ≤ b then 2 else b

Note that the given order-theoretic interpretations of the logical constants agree

with the familiar boolean interpretations for the two-valued domain 0 < 1. The

order-theoretic evaluation of formulas originated around 1930 with the work of

Arend Heyting.

We represent our domain of truth values 0 < 1 < 2 with an inductive type V and

the order of truth values with a boolean function a ≤ b. As a matter of convenience,

we write the numbers 0, 1, 2 for the value constructors of V. An assignment is a

function α : N→ V. We define evaluation of formulas Eαs as follows:

E : (N→ V)→ For→ V

Eαx := αx

Eα⊥ := 0

Eα(s → t) := if Eαs ≤ Eαt then 2 else Eαt
Eα(s ∧ t) := if Eαs ≤ Eαt then Eαs else Eαt
Eα(s ∨ t) := if Eαs ≤ Eαt then Eαt else Eαs

3An assignment assigns a truth value to every atomic formula.
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Note that conjunction is interpreted as minimum, disjunction is interpreted as max-

imum, and implications is interpreted as described above.

We will show that all formulas derivable in the Hilbert systemH defined in §24.8

evaluate under all assignments to the largest truth value 2:

∀αs. H (s)→ Eαs = 2

For the proof we fix an assignment α and say that a formula s is true if Eαs = 2.

Next we verify that the conclusions of all axiomatic rules (see §24.8) are true, which

follows by case analysis on the truth values Eαs, Eαt, and Eαu. It remains to show

that modus ponens derives true formulas from true formulas, which again follows

by case analysis on the truth values Eαs and Eαt.

Fact 24.9.1 (Soundness) ∀αs. H (s)→ Eαs = 2.

Proof By induction on the derivationH (s). The cases for the axiomatic rules follow

by case analysis on the truth values Eαs, Eαt, and Eαu. The case for modus

ponens follows by the inductive hypotheses and case analysis on the truth values

Eαs and Eαt. ■

Corollary 24.9.2 (Soundness) ⊢ s → Eαs = 2.

Proof Fact 24.9.1 and Theorem 24.8.8. ■

With our definitions we have the computational equalities

E(λ_.1)⊥ = 0

E(λ_.1)x = 1

E(λ_.1)(¬x) = 0

E(λ_.1)(¬¬x) = 2

E(λ_.1)(¬¬x → x) = 1

Thus, with soundness, we can now disprove ⊢ ⊥, ⊢ x, and ⊢ (¬¬x → x).
A formula s is independent in ⊢ if one can prove both (⊢ s)→ ⊥ and

(⊢ ¬s)→ ⊥.

Corollary 24.9.3 (Independence) x, ¬¬x → x and x ∨¬x are independent in ⊢.

Proof Follows with Corollary 24.9.2 and the assignment λ_.1. ■

Corollary 24.9.4 (Consistency) ̸⊢ ⊥ and ̸⊢̇ ⊥.

Proof Intuitionistic consistency follows with Corollary 24.9.2 and the assignment

λ_.1. Classic consistency follows with equiconsistency (Corollary 24.7.5). ■
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Exercise 24.9.5 Show that x, ¬x, and (x → y)→ x)→ x are independent in ⊢.

Exercise 24.9.6 Show ¬∀s. ((⊢ (¬¬s → s))→ ⊥).

Exercise 24.9.7 Show that classical ND is not sound for the Heyting interpretation:

¬(∀αs. ⊢̇s → Eαs = 2).

Exercise 24.9.8 Disprove ⊢̇x and ⊢̇¬x.

Exercise 24.9.9 Disprove ⊢̇(s ∨ t)a ⊢̇s ∨A ⊢̇ t.

Exercise 24.9.10 (Heyting interpretation for ND system) One can define evalua-

tion of contexts such that (A ⊢ s)→ EαA ≤ Eαs and Eα[] = 2.

a) Define evaluation of contexts as specified.

b) Show EαA ≤ Eαs → A = []→ Eαs = 2.

c) Prove (A ⊢ s)→ EαA ≤ Eαs by induction on A ⊢ s.
Hint: Define evaluation of contexts such that contexts may be seen as conjunctions

of formulas.

Exercise 24.9.11 (Diamond Heyting interpretation) The formulas

¬x ∨¬¬x
(x → y)∨ (y → x)

evaluate in our Heyting interpretation to 2 but are unprovable intuitionistically.

They can be shown unprovable with a 4-valued diamond-ordered

⊥ < a,b < ⊤

Heyting interpretation as follows:

• x ∧y is the infimum of x and y .

• x ∨y is the supremum of x and y .

• x → y is the maximal z such that x ∧ z ≤ y .

a) Verify (¬a∨¬¬a) = ⊥
b) Verify ((a→ b)∨ (b → a)) = ⊥.

c) Prove H (s)→ Eαs = ⊤.

To know more, google Heyting algebras.
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24.10 Boolean Evaluation

We define boolean evaluation of formulas following familiar ideas:

E : (N→ B)→ For→ B

Eαx := αx

Eα⊥ := false

Eα(s → t) := if Eαs then Eαt else true

Eα(s ∧ t) := if Eαs then Eαt else false

Eα(s ∨ t) := if Eαs then true else Eαt

We call functions α : N→ B boolean assignments.

Boolean evaluation may be seen as a special Heyting evaluation with only two

truth values false < true.

We define

satαs := (Eαs = true) α satisfies s

satαA := ∀s ∈ A. satαs α satisfies A

satA := Σα. satαA A is satisfiable

It will be convenient to use the word clause for lists of formulas. It is well

known that boolean satisfiability of clauses is decidable. There exist various prac-

tical tools for deciding boolean satisfiability. We will develop a certifying decider

∀A.D(satA) for satisfiability and refine it into a certifying decider ∀As.D(A ⊢̇ s)
for classical ND.

24.11 Boolean Formula Decomposition

Our decider∀A.D(satA) for boolean satisfiability will be based on boolean formula

decomposition. We describe boolean formula decomposition with the decompo-

sition table in Figure 24.5. One way to read the table is saying that a boolean

assignment satisfies the formula on the left if and only if it satisfies both or one of
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¬⊥ nothing

s ∧ t s and t

¬(s ∧ t) ¬s or ¬t
s ∨ t s or t

¬(s ∨ t) ¬s and ¬t
s → t ¬s or t

¬(s → t) s and ¬t

Figure 24.5: Boolean decomposition table

the possibly negated subformulas on the right. Formally we have the equivalences

satα(¬⊥) ←→ ⊤
satα(s ∧ t) ←→ satαs ∧ satαt

satα(¬(s ∧ t)) ←→ satα(¬s) ∨ satα(¬t)
satα(s ∨ t) ←→ satαs ∨ satαt

satα(¬(s ∨ t)) ←→ satα(¬s) ∧ satα(¬t)
satα(s → t) ←→ satα(¬s) ∨ satαt

satα(¬(s → t)) ←→ satαs ∧ satα(¬t)

for all boolean assignment α. The equivalences follow with the de Morgan laws

Eα(¬(s ∧ t)) = Eα(¬s ∨¬t)
Eα(¬(s ∨ t)) = Eα(¬s ∧¬t)

and the implication and double negation laws:

Eα(s → t) = Eα(¬s ∨ t)
Eα(¬¬s) = Eα(s)

The decomposition table suggests an algorithm that given a list of formulas re-

places decomposable formulas with smaller formulas. This way we obtain from an

initial list A one or several decomposed lists A1, . . . , An containing only formulas of

the forms

x, ¬x, ⊥

such that an assignment satisfies the initial list A if and only if it satisfies one of the

decomposed lists A1, . . . , An. We may get more than one decomposed list since the
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decomposition rules for ¬(s∧t), s∨t and s → t are branching (see Figure 24.5). For

a decomposed list, we can either construct an assignment satisfying all its formulas,

or prove that no such satisfying assignment exists. Put together, this will give us a

certifying decider ∀A. D(satA).
We are now facing the challenge to give a formal account of boolean formula

decomposition. We do this with two derivation systems σ(A) and ρ(A) for clauses

shown in Figures 24.6 and 24.7. Like the derivation systems we have seen before,

σ(A) and ρ(A) can be formalized as inductive type families L(For) → T. We will

see that σ derives all satisfiable clauses and ρ derives all unsatisfiable clauses. We

define the application conditions for the terminal rules as follows:

• solvedA := ∀s ∈ A. Σx. (s = x ∧¬x ∉ A)+ (s = (¬x)∧ x ∉ A)
Every formula in A is either a variable or a negated variable and there is no

clash x ∈ A∧¬x ∈ A.

• clashedA := ⊥ ∈ A + Σs. s ∈ A∧ (¬s) ∈ A
A contains either ⊥ or a clash s ∈ A∧¬s ∈ A.

Fact 24.11.1 (Solved and clashed clauses)

Solved clauses are satisfiable, and clashed clauses are unsatisfiable and refutable:

1. solvedA→ satA

2. clashedA→ satA→ ⊥
3. clashedA→ (A ⊢̇⊥)

Proof Straightforward. Exercise. ■

Except for the terminal rule and the second so-called rotation rule, the derivation

rules of both systems correspond to the decomposition schemes in Figure 24.5. The

relationship with the decomposition rules becomes clear if one reads the derivation

rules backwards from the conclusion to the premises. If a scheme decomposes

with an “or”, this translates for σ to two rules and for ρ to one rule with two

premises. The rotation rule (second rule in both systems) makes it possible to move

a decomposable formula into head position, as required by the decomposition rules.

The informal design rational for the rules of ρ is as follows: An assignment

satisfies the conclusion of the rule if and only if it satisfies one premise of the rule.

Fact 24.11.2 (Boolean soundness)

σA→ satA.

Proof By induction on the derivation of σA exploiting that solved clauses are sat-

isfiable, and that for every recursive rule assignments satisfying the premise satisfy

the conclusion. ■
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solvedA

σ(A)

σ(A++[s])
σ(s :: A)

σ(A)

σ(¬⊥ :: A)

σ(s :: t :: A)

σ(s ∧ t :: A)

σ(¬s :: A)

σ(¬(s ∧ t) :: A)

σ(¬t :: A)

σ(¬(s ∧ t) :: A)

σ(s :: A)

σ(s ∨ t :: A)

σ(t :: A)

σ(s ∨ t :: A)

σ(¬s :: ¬t :: A)

σ(¬(s ∨ t) :: A)

σ(¬s :: A)

σ(s → t :: A)

σ(t :: A)

σ(s → t :: A)

σ(s :: ¬t :: A)

σ(¬(s → t) :: A)

Figure 24.6: Corefutation system σ(A)

clashedA

ρ(A)

ρ(A++[s])
ρ(s :: A)

ρ(A)

ρ(¬⊥ :: A)

ρ(s :: t :: A)

ρ(s ∧ t :: A)

ρ(¬s :: A) ρ(¬t :: A)

ρ(¬(s ∧ t) :: A)

ρ(s :: A) ρ(t :: A)

ρ(s ∨ t :: A)

ρ(¬s :: ¬t :: A)

ρ(¬(s ∨ t) :: A)

ρ(¬s :: A) ρ(t :: A)

ρ(s → t :: A)

ρ(s :: ¬t :: A)

ρ(¬(s → t) :: A)

Figure 24.7: Refutation system ρ(A)
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Fact 24.11.3 (Boolean soundness)

ρA→ satA→ ⊥.

Proof By induction on the derivation of ρA. As a representative example, we con-

sider the proof obligation for the positive implication rule:

(sat(¬s :: A)→ ⊥)→ (sat(t :: A)→ ⊥)→ sat((s → t) :: A)→ ⊥

By assumption we have an assignment α satisfying A and s → t. Thus α satisfies

either ¬s or t. Hence α satisfies either ¬s :: A or t :: A. Both cases are contradictory

with the assumptions. ■

We now observe that ρ is also sound for ND refutation.

Fact 24.11.4 (ND soundness)

ρA→ (A ⊢̇⊥).

Proof By induction on the derivation of ρA. As a representative example, we con-

sider the proof obligation for the positive implication rule:

(¬s :: A ⊢̇⊥)→ (t :: A ⊢̇⊥)→ (s → t :: A ⊢̇⊥)

By the implication lemma (Fact 24.5.2). it suffices to show ⊢̇¬¬s → ¬t → ¬(s → t),
which is routine. ■

Exercise 24.11.5 Define the derivation systems σ and ρ as inductive type families

and say whether the arguments are parameters or an indices.

Exercise 24.11.6 Verify the proof of ND soundness (Lemma 24.11.4) in detail. The

proof is modular in that there is a separate proof obligation for every rule of the

refutation systems (Figure 24.7). The obligation for the rotation rule

(A++[s] ⊢ ⊥)→ (s :: A ⊢ ⊥)

follows with weakening, and the obligations for the terminal rules are obvious.

The obligations for the decomposition rules follow with the implication lemma

(Fact 24.5.2) and the derivability of the ND judgments from Exercise 24.5.8.

24.12 Certifying Boolean Solvers

We now construct a certifying solver ∀A. σ(A) + ρ(A). Given the soundness

theorems for σ and ρ, this solver yields certifying solvers ∀A. D(satA) and

∀A. satA+(A ⊢̇⊥). The main issue in constructing the basic solver∀A. σ(A)+ρ(A)
is finding a terminating strategy for formula decomposition.
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We start with a presolver ∀A. decomposable(A)+ solved(A)+ clashed(A) that

given a clause A either exhibits a decomposable formula in A or established A as

solved or clashed. A formula is decomposable if it has the form s ∧ t, ¬(s ∧ t),
s ∨ t, ¬(s ∨ t), s → t with t ≠ ⊥, or ¬(s → t). A clause is decomposable if it

contains a decomposable formula:

decomposable(A) := ΣBsC. A = B++ s :: C ∧ decomposable(s)

Lemma 24.12.1 (Presolver)

∀A. decomposable(A)+ solved(A)+ clashed(A).

Proof By induction on A. Straightforward. ■

To establish the termination of our decomposition strategy, we employ a size

function

γ : L(For)→ N

counting the constructors in the formulas in the list but omitting top-level nega-

tions. For instance,

γ [(x → ¬x), ¬(¬x ∧ x), ¬x] = 11

Note that ¬x counts 1 if appearing at the top level, but 3 if not appearing at the top

level (since ¬x abbreviates x → ⊥). We observe that every scheme in the decompo-

sition table (Figure 24.5) reduces the size of a clause as obtained with γ.

Next we obtain a certifying function rotating a given formula in a clause to the

front of the clause such that derivability with σ and τ is propagated and the size

of the clause is preserved.

Lemma 24.12.2 (Rotator)

∀AsB. ΣC. (σ(s :: C)→ σ(A++ s :: B)) ×
(ρ(s :: C)→ ρ(A++ s :: B)) ×
(γ(s :: C) = γ(A++ s :: B)).

Proof By induction on A using the rotation rules of σ and ρ. ■

Lemma 24.12.3 (Basic certifying solver)

∀A. σ(A)+ ρ(A).

Proof By size induction on A. We first apply the presolver to A. If the presolver

yields the claim using the terminal rules, we are done. Otherwise, we use the rotator

to move the decomposable formula found by the presolver into head position. We

now recurse following the unique decomposition scheme applying. ■

We now come to the theorem we were aiming at in this and the previous section.
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Theorem 24.12.4 (ND solver) ∀A. satA+ (A ⊢̇⊥).

Proof Lemma 24.12.3 and soundness theorems. ■

Exercise 24.12.5 (Decidability of satisfiability)

Prove the following facts.

a) ∀A. σ(A) a sat(A)

b) ∀A. ρ(A) a (sat(A)→ ⊥)
c) ∀A. D(σ(A))
d) ∀A. D(ρ(A))
e) ∀A. D(sat(A)).

Exercise 24.12.6 From our development it is clear that a solver ∀A. satA+ (A ⊢̇⊥)
can be constructed without making the derivation systems σ and ρ and the accom-

panying soundness lemmas explicit. Try to rewrite the existing Rocq development

accordingly. This will lead to a shorter (as it comes to lines of code) but less trans-

parent proof.

24.13 Boolean Entailment

We define boolean entailment as follows:

A î̇ s := ∀α. satαA→ satαs

Boolean entailment describes the boolean consequence relation commonly used in

mathematics. We will show that classical ND agrees with boolean entailment.

Fact 24.13.1 (ND soundness) (A ⊢̇ s)→ (A î̇ s).

Proof By induction on the derivation A ⊢̇ s. ■

Fact 24.13.2 (ND completeness) (A î̇ s)→ (A ⊢̇ s).

Proof We assume A î̇ s. Using the ND solver (Theorem 24.12.4), we have

sat(¬s :: A)+ (¬s :: A ⊢̇⊥). If ¬s :: A ⊢̇⊥, the claim follows with the contradiction

rule. If sat(¬s :: A), we have a contradiction with A î̇ s. ■

Corollary 24.13.3 Boolean entailment A î̇ s and classical ND A ⊢̇ s agree.

Note that the proofs of the two directions of the agreement (A ⊢̇ s) a (A î̇ s)
are independent, and that only the completeness direction requires the ND solver.

Next we observe that boolean entailment reduces to unsatisfiability.
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Fact 24.13.4 (Reduction to unsatisfiability)

(A î̇ s)a (sat(¬s :: A)→ ⊥).

Proof Direction → is easy. For the other direction we assume sat(¬s :: A) → ⊥ and

satαA and show Eαs = true. We now assume Eαs = false and obtain a contradic-

tion from our assumptions since Eα(¬s) = true. ■

Fact 24.13.5 (ND decidability) ∀As. D(A ⊢̇ s).

Proof With the ND solver (Theorem 24.12.4) we obtain sat(¬s :: A)+ (¬s :: A ⊢̇⊥).
If ¬s :: A ⊢̇⊥, we have A ⊢̇ s by the contradiction rule. Otherwise, we assume

sat(¬s :: A) and A ⊢̇ s and obtain a contradiction with soundness (Fact 24.13.1) and

Fact 24.13.4. ■

Exercise 24.13.6 Note that the results in this section did not use results from the

previous two sections except for the ND solver (Theorem 24.12.4). Prove the follow-

ing facts using the results from this section and possibly the ND solver.

a) ∀As. D(A î̇ s)
b) ∀A. D(satA)

c) ∀A. satAa ((A ⊢̇⊥)→ ⊥)

Exercise 24.13.7 Give a consistency proof for classical ND that does not make use

of intuitionistic ND.

Exercise 24.13.8 Show that x and ¬x are independent in ⊢̇.

Exercise 24.13.9 Show that ¬¬¬x is independent in ⊢̇.

Exercise 24.13.10 Show (∀st. ⊢̇(s ∨ t)→ ( ⊢̇ s)∨ ( ⊢̇ t))→ ⊥.

24.14 Cumulative Refutation System

Refutation systems based on formula decomposition exist in many variations in the

literature, where they often appear under the names tableaux systems and Gentzen

systems. They also exist for intuitionistic provability and modal logic. See Troel-

stra’s and Schwichtenberg’s textbook [28] to know more.

Figure 24.8 shows a refutation system γ modifying our refutation system ρ so

that the formula to be decomposed can be at any position of the list and is not

deleted when it is decomposed. Hence no rotation rule is needed.

We speak of the cumulative refutation system. When realized with an inductive

type family, the argument A of the type constructor γ comes out as a nonuniform
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⊥ ∈ A
γ(A)

s ∈ A ¬s ∈ A
γ(A)

(s ∧ t) ∈ A γ(s :: t :: A)

γ(A)

¬(s ∧ t) ∈ A γ(¬s :: A) γ(¬t :: A)

γ(A)

(s ∨ t) ∈ A γ(s :: A) γ(t :: A)

γ(A)

¬(s ∨ t) ∈ A γ(¬s :: ¬t :: A)

γ(A)

(s → t) ∈ A γ(¬s :: A) γ(t :: A)

γ(A)

¬(s → t) ∈ A γ(s :: ¬t :: A)

γ(A)

Figure 24.8: Cumulative refutation system

parameter. So, in contrast to the derivation systems we considered before, the

inductive type family γ(A) has no index argument and thus belongs to the BNF

class of inductive types.

Fact 24.14.1 (Boolean soundness)

γ(A)→ ∃s ∈ A. Eαs = false.

Proof By induction on the derivation γ(A). Similar to the proof of Fact 24.11.3. ■

Fact 24.14.2 (Weakening)

γ(A)→ A ⊆ B → γ(B).

Proof By induction on γ(A) with B quantified. ■

Fact 24.14.3 (Completeness)

ρ(A)→ γ(A).

Proof Straightforward using weakening. ■

Fact 24.14.4 (Agreement)

ρ(A) a γ(A).

Proof Completeness (Fact 24.14.3), certifying boolean solver for ρ (Theo-

rem 24.12.3), and boolean soundness (Fact 24.14.1). ■

The rules of the cumulative refutation system yield a method for refuting formu-

las working well with pen and paper. We demonstrate the method at the example

of the unsatisfiable formula ¬(((s → t)→ s)→ s).
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¬(((s → t)→ s)→ s) negated implication

(s → t)→ s positive implication

¬s
1 ¬(s → t) negative implication

s clash with ¬s
¬t

2 s clash with ¬s

Exercise 24.14.5 Refute the negations of the following formulas with the cumula-

tive refutation system writing a table as in the example above.

a) s ∨¬s
b) s → ¬¬s
c) ⊢ ¬¬s → ¬t → ¬(s → t)

d) ⊢ (¬t → ¬s)→ ¬¬(s → t)

e) ⊢ (t → ¬s)→ ¬(s ∧ t)
f) ⊢ ¬¬s → ¬¬t → ¬¬(s ∧ t)
g) ⊢ ¬s → ¬t → ¬(s ∨ t)
h) ⊢ (¬t → ¬¬s)→ ¬¬(s ∨ t)

Exercise 24.14.6 (Saturated lists) A list A is saturated if the decomposition rules

of the cumulative refutation system do not add new formulas:

1. If (s ∧ t) ∈ A, then s ∈ A and t ∈ A.

2. If ¬(s ∧ t) ∈ A, then ¬s ∈ A or ¬t ∈ A.

3. If (s ∨ t) ∈ A, then s ∈ A or t ∈ A.

4. If ¬(s ∨ t) ∈ A, then ¬s ∈ A and ¬t ∈ A.

5. If (s → t) ∈ A, then ¬s ∈ A or t ∈ A.

6. If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

Prove that an assignment α satisfies a saturated list A not containing ⊥ if it satisfies

all atomic formulas (x and ¬x) in A.

Hint: Prove

∀s. (s ∈ A→ Eαs = true)∧ (¬s ∈ A→ Eα(¬s) = true)

by induction on s.

24.15 Substitution

In the deduction systems we consider in this chapter, atomic formulas act as vari-

ables for formulas. We will now show that derivability of formulas is preserved if

one instantiates atomic formulas. To ease our language, we call atomic formulas

propositional variables in this section.

A substitution is a function θ : N → For mapping every number to a formula.

Recall that propositional variables are represented as numbers. We define applica-

tion of substitutions to formulas and lists of formulas such that every variable is
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replaced by the term provided by the substitution:

θ·x := θx

θ·⊥ := ⊥
θ·(s → t) := θ·s → θ·t
θ·(s ∧ t) := θ·s ∧ θ·t
θ·(s ∨ t) := θ·s ∨ θ·t

θ·[] := []

θ·(s :: A) := θ·s :: θ·A

We will write θs and θA for θ·s and θ·A.

We show that intuitionistic and classical ND provability are preserved under ap-

plication of substitutions. This says that atomic formulas may serve as variables

for formulas.

Fact 24.15.1 s ∈ A→ θs ∈ θA.

Proof By induction on A. ■

Fact 24.15.2 (Substitutivity) A ⊢ s → θA ⊢ θs and A ⊢̇ s → θA ⊢̇θs.

Proof By induction on A ⊢ s and A ⊢̇ s using Fact 24.15.1 for the assumption rule.■

Exercise 24.15.3 Prove that substitution preserves derivability in the intuitionistic

Hilbert system H . Note that the proof obligation for the axiomatic rules all follow

with the same technique. Now use the equivalence with the ND system and Glivenko

to show substitutivity for the other three systems.

24.16 Entailment Relations

An entailment relation is a predicate4

ð: L(For)→ For → P

satisfying the properties listed in Figure 24.9. Note that the first five requirements

don’t make any assumptions on formulas; they are called structural requirements.

Each of the remaining requirements concerns a particular form of formulas: Vari-

ables, falsity, implication, conjunction, and disjunction.

4We are reusing the turnstile ð previously used for Hilbert systems.
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1. Assumption: s ∈ A→ A ð s.
2. Cut: A ð s → A, s ð t → A ð t.
3. Weakening: A ð s → A ⊆ B → B ð s.
4. Consistency: ∃s. ̸ð s.
5. Substitutivity: A ð s → θA ð θs.
6. Explosion: A ð ⊥ → A ð s.
7. Implication: A ð (s → t) ←→ A, s ð t.
8. Conjunction: A ð (s ∧ t) ←→ A ð s ∧ A ð t.
9. Disjunction: A ð (s ∨ t) ←→ ∀u. A, s ð u → A, t ð u → A ð u.

Figure 24.9: Requirements for entailment relations

Fact 24.16.1 Intuitionistic provability (A ⊢ s) and classical provability (A ⊢̇ s) are

entailment relations.

Proof Follows with the results shown so far. ■

Fact 24.16.2 Boolean entailment A î̇ s is an entailment relation.

Proof Follows with Fact 24.16.1 since boolean entailment agrees with classical ND

(Fact 24.13.3). ■

It turns out that every entailment relation is sandwiched between intuitionistic

provability at the bottom and classic provability at the top. Let ð be an entailment

relation in the following.

Fact 24.16.3 (Modus Ponens) A ð (s → t) → A ð s → A ð t.

Proof By implication and cut. ■

Fact 24.16.4 (Least entailment relation)

Intuitionistic provability is a least entailment relation: A ⊢ s → A ð s.

Proof By induction on A ⊢ s using modus ponens. ■

Fact 24.16.5 ð s → ð ¬s → ⊥.

Proof Let ð s and ð ¬s. By Fact 24.16.3 we have ð ⊥. By consistency and explosion

we obtain a contradiction. ■

Fact 24.16.6 (Reversion) A ð s ←→ ð A · s.

Proof By induction on A using implication. ■
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We now come to the key lemma for showing that abstract entailment implies

boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a

conversion function that given a boolean assignment α : N → B yields a substitution

as follows: α̂n := if αn then ¬⊥ else ⊥.

Lemma 24.16.7 (Tebbi) if Eαs then ð α̂s else ð ¬α̂s.

Proof Induction on s using Fact 24.16.3 and assumption, weakening, explosion, and

implication. ■

Note that we have formulated the lemma with a conditional. While this style of

formulation is uncommon in mathematics, it is compact and convenient in a type

theory with computational equality.

Lemma 24.16.8 ð s → î̇ s.

Proof Let ð s. We assume Eαs = false and derive a contradiction. By Tebbi’s

Lemma we have ð ¬α̂s. By substitutivity we obtain ð α̂s from the primary assump-

tion. Contradiction by Fact 24.16.5. ■

Fact 24.16.9 (Greatest entailment relation)

Boolean entailment is a greatest entailment relation: A ð s → A î̇ s.

Proof Follows with reversion (Facts 24.16.6 and 24.16.2) and Lemma 24.16.8. ■

Theorem 24.16.10 (Sandwich) Every entailment relation ð satisfies ⊢ ⊆ ð ⊆ ⊢̇.

Proof Facts 24.16.4, 24.16.9, and 24.13.3. ■

Exercise 24.16.11 Let ð be an entailment relation. Prove the following:

a) ∀s. ground s → (ð s)+ (ð ¬s).
b) ∀s. ground s → dec(ð s).

Exercise 24.16.12 Tebbi’s lemma provides for a particularly elegant proof of

Lemma 24.16.8. Verify that Lemma 24.16.8 can also be obtained from the facts

(1) ⊢ α̂s ∨ ⊢ ¬α̂s and (2) î̇ α̂s → Eαs = true using Facts 24.16.4 and 24.16.5.

24.17 Notes

The study of natural deduction originated in the 1930’s with the work of Gerhard

Gentzen [14, 15] and Stanisław Jaśkowski [19]. The standard text on natural deduc-

tion and proof theory is Troelstra and Schwichtenberg [28].
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24.17 Notes

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable.

This can be done with a formula decomposition method devised by Gentzen in the

1930s. First one shows that intuitionistic ND is equivalent to a proof system called

sequent calculus that has the subformula property. Then one shows that sequent

calculus is decidable, which is feasible since it has the subformula property.

Kripke structures and Heyting structures One can construct evaluation-based

entailment relations that coincide with intuitionistic ND using either finite Heyting

structures or finite Kripke structures. In contrast to classical ND, where a single two-

valued boolean structure invalidates all classically unprovable formulas, one needs

either infinitely many finite Heyting structures or infinitely many finite Kripke struc-

tures to invalidate all intuitionistically unprovable formulas. Heyting structures are

usually presented as Heyting algebras and were invented by Arend Heyting around

1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Intuitionistic Independence of logical constants In the classical systems, falsity

and implication can express conjunction and disjunction. On the other hand, one

can prove using Heyting structures that in intuitionistic systems the logical con-

stants are independent.

Certifying Functions The construction of the certifying solvers and their auxil-

iary functions in this chapter are convincing examples for the efficiency and power

of certifying functions. Imagine you would have to carry out these constructions

in a functional programming language with simply typed functions defined with

equations based on informal specifications.
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25 Boolean Satisfiability

We study satisfiability of boolean formulas by constructing and verifying a DNF

solver and a tableau system. The solver translates boolean formulas to equivalent

clausal DNFs and thereby decides satisfiability. The tableau system provides a proof

system for unsatisfiability and bridges the gap between natural deduction and satis-

fiability. Based on the tableau system one can prove completeness and decidability

of propositional natural deduction.

The development presented here works for any choice of boolean connectives.

The independence from particular connectives is obtained by representing conjunc-

tions and disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcast

the interplay between evaluation of boolean expressions, nontrivial functions, and

indexed inductive type families (the tableau system).

25.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation,

which we obtain as inductive functions B → B→ B and B → B:

true & b := b true | b := true ! true := false

false & b := false false | b := b ! false := true

With these definitions, boolean identities like

a & b = b & a a | b = b | a ! !b = b

have straightforward proofs by boolean case analysis and computational equality.

Recall that boolean conjunction and disjunction are commutative and associative.

An important notion for our development is disjunctive normal form (DNF). The

idea behind DNF is that conjunctions are below disjunctions, and that negations are

below conjunctions. Negations can be pushed downwards with the negation laws

!(a & b) = !a | !b !(a | b) = !a & !b ! !a = a

and conjunctions can be pushed below disjunctions with the distribution law

a & (b | c) = (a & b) | (a & b)
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Besides the defining equations, we will also make use of the negation law

b ∧ !b = false

to eliminate conjunctions.

There are the reflection laws

a & b = true ←→ a = true∧ b = true

a | b = true ←→ a = true∨ b = true

!a = true ←→ ¬(a = true)

which offer the possibility to replace boolean operations with logical connectives.

As it comes to proofs, this is usually not a good idea since the computation rules

coming with the boolean operations are lost. The exception is the reflection rule

for conjunctions, which offers the possibility to replace the argument terms of a

conjunction with true.

25.2 Boolean Formulas

Our main interest will be in boolean formulas, which are syntactic representations

of boolean terms. We will consider the boolean formulas

s, t,u : For ::= x | ⊥ | s → t | s ∧ t | s ∨ t (x : N)

realized with an inductive data type For representing each syntactic form with a

value constructor. Variables x are represented as numbers. We will refer to formu-

las also as boolean expressions.

Our development would work with any choice of boolean connectives for formu-

las. We have made the unusual design decision to have boolean implication as an

explicit connective. On the other hand, we have omitted truth ⊤ and negation ¬,

which we accommodate at the meta level with the notations

⊤ := ⊥ → ⊥ ¬s := s → ⊥

Given an assignment α : N → B, we can evaluate every formula to a boolean

value. We formalize evaluation of formulas with the evaluation function shown

in Figure 25.1. Note that every function Eα translates boolean formulas (object

level) to boolean terms (meta level). Also note that implications are expressed with

negation and disjunction.

We define the notation

αsats := Eαs = true
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Eαx := αx

Eα⊥ := false

Eα(s → t) := !Eαs | Eαt
Eα(s ∧ t) := Eαs & Eαt
Eα(s ∨ t) := Eαs | Eαt

Figure 25.1: Definition of the evaluation function E : (N→ B)→ For→ B

and say that α satisfies s, or that α solves s, or that α is a solution of s. We say

that a formula s is satisfiable and write sat s if s has a solution. Finally, we say that

two formulas are equivalent if they have the same solutions.

As it comes to proofs, it will be important to keep in mind that the notation αsats
abbreviates the boolean equation Eαs = true. Reasoning with boolean equations

will be the main workhorse in our proofs.

Exercise 25.2.1 Prove that s → t and ¬s ∨ t are equivalent.

Exercise 25.2.2 Convince yourself that the predicate αsats is decidable.

Exercise 25.2.3 Verify the following reflection laws for formulas:

αsat(s ∧ t) ←→ αsats ∧αsatt

αsat(s ∨ t) ←→ αsats ∨αsatt

αsat¬s ←→ ¬(αsats)

Exercise 25.2.4 (Compiler to implicative fragment) Write and verify a compiler

For → For translating formulas into equivalent formulas not containing conjunc-

tions and disjunctions.

Exercise 25.2.5 (Equation compiler) Write and verify a compiler

γ : L(For× For)→ For

translating lists of equations into equivalent formulas:

∀α. αsatγA ←→ ∀(s, t) ∈ A. Eαs = Eαt

Exercise 25.2.6 (Valid formulas) We say that a formula is valid if it is satisfied by

all assignments: val s := ∀α. αsats. Verify the following reductions.

a) s is valid iff ¬s is unsatisfiable: ∀s. val s ←→ ¬sat(¬s).
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b) ∀s. stable(sat s)→ (sat s ←→ ¬val(¬s)).

Exercise 25.2.7 Write an evaluator f : (N → B) → For → P such that fαs ←→ αsats
and fα(s ∨ t) ≈ fαs ∨ fαt for all formulas s, t.
Hint: Recall the reflection laws from §25.1.

25.3 Clausal DNFs

We are working towards a decider for satisfiability of boolean formulas. The decider

will compute a DNF (disjunctive normal form) for the given formula and exploit

that from the DNF it is clear whether the formula is decidable. Informally, a DNF

is either the formula ⊥ or a disjunction s1 ∨ · · · ∨ sn of solved formulas si, where

a solved formula is a conjunction of variables and negated variables such that no

variable appears both negated and unnegated. One can show that every formula is

equivalent to a DNF. Since every solved formula is satisfiable, a DNF is satisfiable if

and only if it is different from ⊥.

There may be many different DNFs for satisfiable formulas. For instance, the

DNFs x∨¬x and y∨¬y are equivalent since they are satisfied by every assignment.

Formulas by themselves are not a good data structure for computing DNFs of

formulas. We will work with lists of signed formulas we call clauses:

S, T : SFor ::= s+ | s− signed formula

C,D : Cla := L(SFor) clause

Clauses represent conjunctions. We define evaluation of signed formulas and

clauses as follows:

Eα(s+) := Eαs Eα[] := true

Eα(s−) := !Eαs Eα(S :: C) := EαS & EαC

Note that the empty clause represents the boolean true. We also consider lists of

clauses

∆ : L(Cla)

and interpret them disjunctively:

Eα[] := false

Eα(C :: ∆) := EαC | Eα∆

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously

to formulas, and so are the notations αsatS, αsatC , αsat∆, and sat C . Since for-

mulas, signed formulas, clauses, and lists of clauses all come with the notion of
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satisfying assignments, we can speak about equivalence between these objects al-

though they belong to different types. For instance, s, s+, [s+], and [[s+]], are all

equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., x+ and x−) such

that no variable appears positively and negatively. Note that a solved clause C is

satisfied by every assignment that maps the positive variables in C to true and the

negative variables in C to false.

Fact 25.3.1 Solved clauses are satisfiable. More specifically, a solved clause C is

satisfied by the assignment λx. [x+ ∈ C\.

A clausal DNF is a list of solved clauses.

Corollary 25.3.2 A clausal DNF is satisfiable if and only if it is nonempty.

Exercise 25.3.3 Prove Eα(C ++D) = EαC & EαD and Eα(∆++∆′) = Eα∆ | Eα∆′.

Exercise 25.3.4 Write a function that maps lists of clauses to equivalent formulas.

Exercise 25.3.5 Our formal proof of Fact 25.3.1 is unexpectedly tedious in that it

requires two inductive lemmas:

1. αsatC ←→ ∀S ∈ C. αsatS.

2. solved C → S ∈ C → ∃x. (S = x+ ∧ x− ∉ C)∨ (S = x− ∧ x+ ∉ C).
The formal development captures solved clauses with an inductive predicate. This

is convenient for most purposes but doesn’t provide for a convenient proof of

Fact 25.3.1. Can you do better?

25.4 DNF Solver

We would like to construct a function computing clausal DNFs for formulas. For-

mally, we specify the function with the informative type

∀s Σ∆. DNF∆∧ s ≡ ∆

where

s ≡ ∆ := ∀α. αsats ←→ αsat∆

DNF∆ := ∀C ∈ ∆. solvedC

To define the function, we will generalize the type to

∀CD. solvedC → Σ∆. DNF∆∧ C ++D ≡ ∆
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dnf C [] = [C]

dnf C (x+ :: D) = if [x− ∈ C\ then [] else dnf (x+ :: C) D

dnf C (x− :: D) = if [x+ ∈ C\ then [] else dnf (x− :: C) D

dnf C (⊥+ :: D) = []

dnf C (⊥− :: D) = dnf C D

dnf C ((s → t)+ :: D) = dnf C (s− :: D)++dnf C (t+ :: D)

dnf C ((s → t)− :: D) = dnf C (s+ :: t− :: D)

dnf C ((s ∧ t)+ :: D) = dnf C (s+ :: t+ :: D)

dnf C ((s ∧ t)− :: D) = dnf C (s− :: D)++dnf C (t− :: D)

dnf C ((s ∨ t)+ :: D) = dnf C (s+ :: D)++dnf C (t+ :: D)

dnf C ((s ∨ t)− :: D) = dnf C (s− :: t− :: D)

Figure 25.2: Specification of a procedure dnf : Cla → Cla → L(Cla)

where C ≡ ∆ := ∀α. αsatC ←→ αsat∆. To compute a clausal DNF of a formula s,
we will apply the function with C = [] and D = [s+].

We base the definition of the function on a purely computational procedure

dnf : Cla→ Cla → L(Cla)

specified with equations in Figure 25.2. We refer to the first argument C of the

procedure as accumulator, and to the second argument as agenda. The agenda

holds the signed formulas still to be processed, and the accumulator collects signed

variables taken from the agenda. The procedure processes the formulas on the

agenda one by one decreasing the size of the agenda with every recursion step. We

define the size of clauses and formulas as follows:

σ[] := 0 σx := 1

σ(s+ :: C) := σs + σC σ⊥ := 1

σ(s− :: C) := σs + σC σ(s ◦ t) := 1+ σs + σt

Note that the equations specifying the procedure in Figure 25.2 are clear from the

correctness properties stated for the procedure, the design that the first formula on

the agenda controls the recursion, and the boolean identities given in §25.1.

Lemma 25.4.1 ∀CD. solvedC → Σ∆. DNF∆∧ C ++D ≡ ∆.

Proof By size induction on σD with C quantified in the inductive hypothesis aug-

menting the design of the procedure dnf with the necessary proofs. Each of the 13

cases is straightforward. ■

298



25.5 DNF Recursion

Theorem 25.4.2 (DNF solver) ∀C Σ∆. DNF∆∧ C ≡ ∆.

Proof Immediate from Lemma 25.4.1. ■

Corollary 25.4.3 ∀s Σ∆. DNF∆∧ s ≡ ∆.

Corollary 25.4.4 There is a solver ∀C. (Σα. αsatC)+¬sat C .

Corollary 25.4.5 There is a solver ∀s. (Σα. αsats)+¬sat s.

Corollary 25.4.6 Satisfiability of clauses and formulas is decidable.

Exercise 25.4.7 Convince yourself that the predicate S ∈ C is decidable.

Exercise 25.4.8 Rewrite the equations specifying the DNF procedure so that you

obtain a boolean decider D : Cla → Cla → B for satisfiability of clauses. Give an in-

formative type subsuming the procedure and specifying the correctness properties

for a boolean decider for satisfiability of clauses.

Exercise 25.4.9 Recall the definition of valid formulas from Exercise 25.2.6. Prove

the following:

a) Validity of formulas is decidable.

b) A formula is satisfiable if and only if its negation is not valid.

c) ∀s. val s + (Σα. Eαs = false).

Exercise 25.4.10 If you are already familiar with well-founded recursion in compu-

tational type theory (Chapter 30), define a function Cla → Cla → L(Cla) satisfying

the equations specifying the procedure dnf in Figure 25.2.

25.5 DNF Recursion

From the equations for the DNF procedure (Figure 25.2) and the construction of the

basic DNF solver (Lemma 25.4.1) one can abstract out the recursion scheme shown

in Figure 25.3. We refer to this recursion scheme as DNF recursion. DNF recursion

has one clause for every equation of the DNF procedure in Figure 25.2 where the

recursive calls appear as inductive hypotheses. DNF recursion simplifies the proof

of Lemma 25.4.1. However, DNF recursion can also be used for other constructions

(our main example is a completeness lemma (25.6.5) for a tableau system) given

that it is formulated with an abstract type function p. Note that DNF recursion

encapsulates the use of size induction on the agenda, the set-up and justification

of the case analysis, and the propagation of the precondition solvedC . We remark

that all clauses can be equipped with the precondition, but for our applications the

precondition is only needed in the clause for the empty agenda.
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∀pCla→Cla→T

(∀C. solvedC → pC[])→
(∀CD. x−∈ C → pC(x+ :: D))→
(∀CD. x−∉ C → p(x+ :: C)D → pC(x+ :: D))→
(∀CD. x+∈ C → pC(x− :: D))→
(∀CD. x+∉ C → p(x− :: C)D → pC(x− :: D))→
(∀CD. pC(⊥+ :: D))→
(∀CD. pCD → pC(⊥− :: D))→
(∀CD. pC(s− :: D)→ pC(t+ :: D)→ pC((s → t)+ :: D))→
(∀CD. pC(s+ :: t− :: D)→ pC((s → t)− :: D))→
(∀CD. pC(s+ :: t+ :: D)→ pC((s ∧ t)+ :: D))→
(∀CD. pC(s− :: D)→ pC(t− :: D)→ pC((s ∧ t)− :: D))→
(∀CD. pC(s+ :: D)→ pC(t+ :: D)→ pC((s ∨ t)+ :: D))→
(∀CD. pC(s− :: t− :: D)→ pC((s ∨ t)− :: D))→
∀CD. solvedC → pCD

Figure 25.3: DNF recursion scheme

Lemma 25.5.1 (DNF recursion)

The DNF recursion scheme shown in Figure 25.3 is inhabited.

Proof By size induction on the σD with C quantified using the decidability of mem-

bership in clauses. Straightforward. ■

DNF recursion provides the abstraction level one would use in an informal cor-

rectness proof of the DNF procedure. In particular, DNF recursion separates the

termination argument from the partial correctness argument. We remark that DNF

recursion generalizes the functional induction scheme one would derive for a DNF

procedure.

Exercise 25.5.2 Use DNF recursion to construct a certifying boolean solver for

clauses: ∀C. (Σα. αsatC)+ (¬sat(C)).
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tab(S :: C ++D)
tab(C ++S :: D) tab(x+ :: x− :: C) tab(⊥+ :: C)

tab(s− :: C) tab(t+ :: C)

tab((s → t)+ :: C)

tab(s+ :: t− :: C)

tab((s → t)− :: C)

tab(s+ :: t+ :: C)

tab((s ∧ t)+ :: C)

tab(s− :: C) tab(t− :: C)

tab((s ∧ t)− :: C)

tab(s+ :: C) tab(t+ :: C)

tab((s ∨ t)+ :: C)

tab(s− :: t− :: C)

tab((s ∨ t)− :: C)

Figure 25.4: Inductive type family tab : Cla→ T

25.6 Tableau Refutations

Figure 25.4 defines an indexed inductive type family tab : Cla → T for which we will

prove

tab(C) a ¬sat(C)

We call the inhabitants of a type tab(C) tableau refutations for C . The above equiv-

alence says that for every clause unsatisfiability proofs are inter-translatable with

tableau refutations. Tableau refutations may be seen as explicit syntactic unsatis-

fiability proofs for clauses. Since we have ¬sat s a ¬sat [s+], tableau refutations

may also serve as refutations for formulas.

We speak of tableau refutations since the type family tab formalizes a proof

system that belongs to the family of tableau systems. We call the value construc-

tors for the type constructor tab tableau rules and refer to type constructor tab as

tableau system.

We may see the tableau rules in Figure 25.4 as a simplification of the equations

specifying the DNF procedure in Figure 25.2. Because termination is no longer an

issue, the accumulator argument is not needed anymore. Instead we have a tableau

rule (the first rule) that rearranges the agenda.

We refer to the first rule of the tableau system as move rule and to the second

rule as clash rule. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion

to the premises). All but the first rule are decomposition rules simplifying the

clause to be derived. The second and third rule derive clauses that are obviously

unsatisfiable. The move rule is needed so that non-variable formulas can be moved
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to the front of a clause as it is required by most of the other rules.

Fact 25.6.1 (Soundness)

Tableau refutable clauses are unsatisfiable: tab(C)→ ¬sat(C).

Proof Follows by induction on tab. ■

For the completeness lemma we need a few lemmas providing derived rules for

the tableau system.

Fact 25.6.2 (Clash)

All clauses containing a conflicting pair of signed variables are tableau refutable:

x+ ∈ C → x− ∈ C → tab(C).

Proof Without loss of generality we have C = C1++x+ :: C2++x− :: C3. The primitive

clash rule gives us tab(x+ :: x− :: C1++C2++C3). Using the move rule twice we obtain

tab(C). ■

Fact 25.6.3 (Weakening)

Adding formulas preserves tableau refutability:

∀CS. tab(C)→ tab(S :: C).

Proof By induction on tab. ■

The move rule is strong enough to reorder clauses freely.

Fact 25.6.4 (Move Rules) The following rules hold for tab:

tab(revD++C ++E)
tab(C ++D++E)

tab(D++C ++E)
tab(C ++D++E)

tab(C ++S :: D)

tab(S :: C ++D)

We refer to the last rule as inverse move rule.

Proof The first rule follows by induction on D. The second rule follows from the

first rule with C = [] and rev (revD) = D. The third rule follows from the second

rule with C = [S]. ■

Lemma 25.6.5 (Completeness)

∀DC. solvedC → ¬sat (D++C)→ tab(D++C).

Proof By DNF recursion. The case for the empty agenda is contradictory since

solved clauses are satisfiable. The cases with conflicting signed variables follow

with the clash lemma. The cases with nonconflicting signed variables follow with

the inverse move rule. The case for ⊥− follows with the weakening lemma. ■
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Theorem 25.6.6

A clause is tableau refutable if and only if it is unsatisfiable:

tab(C) a ¬sat(C).

Proof Follows with Fact 25.6.1 and Lemma 25.6.5. ■

Corollary 25.6.7 ∀C. tab(C)+ (tab(C)→ ⊥).

We remark that the DNF solver and the tableau system adapt to any choice of

boolean connectives. We just add or delete cases as needed. An extreme case would

be to not have variables. That one can choose the boolean connectives freely is due

to the use of clauses with signed formulas.

The tableau rules have the subformula property, that is, a derivation of a

clause C does only employ subformulas of formulas in C . That the tableau rules

satisfies the subformula property can be verified rule by rule.

Exercise 25.6.8 Prove tab(C ++S :: D++T :: E) ←→ tab(C ++T :: D++S :: E).

Exercise 25.6.9 Give an inductive type family deriving exactly the satisfiable

clauses. Start with an inductive family deriving exactly the solved clauses.

25.7 Abstract Refutation Systems

An unsigned clause is a list of formulas. We will now consider a tableau system for

unsigned clauses that comes close to the refutation system associated with natural

deduction. For the tableau system we will show decidability and agreement with un-

satisfiability. Based on the results for the tableau system one can prove decidability

and completeness of classical natural deduction (Chapter 24).

The switch to unsigned clauses requires negation and falsity, but as it comes to

the other connectives we are still free to choose what we want. Negation could be

accommodated as an additional connective, but formally we continue to represent

negation with implication and falsity.

We can turn a signed clause C into an unsigned clause by replacing positive

formulas s+ with s and negative formulas s− with negations ¬s. We can also turn

an unsigned clause into a signed clause by labeling every formula with the positive

sign. The two conversions do not change the boolean value of a clause for a given

assignment. Moreover, going from an unsigned clause to a signed clause and back

yields the initial clause. From the above it is clear that satisfiability of unsigned

clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters A and B will range

over unsigned clauses. We define αsatA and satisfiability of unsigned clauses anal-

ogous to signed clauses. We use Ĉ to denote the unsigned version of a signed clause

and A+ to denote the signed version of an unsigned clause.
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ρ (s :: A++B)
ρ (A++ s :: B) ρ (x :: ¬x :: A) ρ (⊥ :: A)

ρ (¬s :: A) ρ (t :: A)

ρ ((s → t) :: A)

ρ (s :: ¬t :: A)

ρ (¬(s → t) :: A)

ρ (s :: t :: A)

ρ ((s ∧ t) :: A)

ρ (¬s :: A) ρ (¬t :: A)

ρ (¬(s ∧ t) :: A)

ρ (s :: A) ρ (t :: A)

ρ ((s ∨ t) :: A)

ρ (¬s :: ¬t :: A)

ρ (¬(s ∨ t) :: A)

Figure 25.5: Rules for abstract refutation systems ρ : L(For)→ P

Fact 25.7.1 EαĈ = EαC , EαA+ = EαA, and Â+ = A.

Fact 25.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.

Proof Follows with Corollary 25.4.6 and EαA+ = EαA. ■

We call a type family ρ on unsigned clauses an abstract refutation system if it

satisfies the rules in Figure 25.5. Note that the rules are obtained from the tableau

rules for signed clauses by replacing positive formulas s+ with s and negative for-

mulas s− with negations ¬s.

Lemma 25.7.3 Let ρ be a refutation system. Then tab C → ρĈ .

Proof Straightforward by induction on tab C . ■

Fact 25.7.4 (Completeness)

Every refutation system derives all unsatisfiable unsigned clauses.

Proof Follows with Theorem 25.6.6 and Lemma 25.7.3. ■

We call an abstract refutation system sound if it derives only unsatisfiable

clauses (that is, ∀A. ρA→ ¬satA).

Fact 25.7.5 A sound refutation system is decidable and derives exactly the unsatis-

fiable unsigned clauses.

Proof Facts 25.7.4 and 25.7.2. ■
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Theorem 25.7.6 The minimal refutation system inductively defined with the rules

for abstract refutation systems derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 25.7.4 and a soundness lemma similar to Fact 25.6.1. ■

Exercise 25.7.7 (Certifying Solver) Construct a function ∀A. (Σα. αsatA)+ tabA.

Exercise 25.7.8 Show that boolean entailment

A î̇ s := ∀α. αsatA → αsats

is decidable.

Exercise 25.7.9 Let A ⊢̇ s be the inductive type family for classical natural deduc-

tion. Prove that A ⊢̇ s is decidable and agrees with boolean entailment. Hint: Exploit

refutation completeness and show that A ⊢̇⊥ is a refutation system.
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We consider regular expressions describing list of numbers. The expressions are

formed with constructors for singleton lists, concatenation, star concatenation, and

union, among others. Using derivatives, we show that regular expression matching

is decidable.

26.1 Basics

Regular expressions are patterns for strings used in text search. There is a relation

A ⊢ s saying that a string A satisfies a regular expression s. One also speaks of a

regular expression matching a string. We are considering regular expressions here

since the satisfaction relation A ⊢ s has an elegant definition with derivation rules.

We represent strings as lists of numbers, and regular expressions with an induc-

tive type realizing the BNF

s, t : exp ::= x | 0 | 1 | s + t | s · t | s∗ (x : N)

We model the satisfaction relation A ⊢ s with an indexed inductive type family

⊢ : L(N)→ exp → T

providing value constructors for the following rules:

[x] ⊢ x [] ⊢ 1

A ⊢ s
A ⊢ s + t

A ⊢ t
A ⊢ s + t

A ⊢ s B ⊢ t
A++B ⊢ s · t [] ⊢ s∗

A ⊢ s B ⊢ s∗

A++B ⊢ s∗

Note that both arguments of ⊢ are indices. Concrete instances of the satisfaction

relation, for instance,

[1,2,2] ⊢ 1 · 2∗

can be shown with just constructor applications. Inclusion and equivalence of

regular expressions are defined as follows:

s ⊆ t := ∀A. A ⊢ s → A ⊢ t
s ≡ t := ∀A. A ⊢ s a A ⊢ t
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An easy to show inclusion is

s ⊆ s∗ (26.1)

(only constructor applications and rewriting with A++[] = A are needed). More

challenging is the inclusion

s∗ · s∗ ⊆ s∗ (26.2)

We need an inversion function

A ⊢ s · t → ΣA1A2. (A = A1++A2) × (A1 ⊢ s) × (A2 ⊢ t) (26.3)

and a lemma

A ⊢ s∗ → B ⊢ s∗ → A++B ⊢ s∗ (26.4)

The inversion function can be obtained as an instance of a more general inversion

operator

∀As. A ⊢ s → match s

[x ⇒ A = [x]
| 0 ⇒ ⊥
| 1 ⇒ A = []
| u+ v ⇒ (A ⊢ u)+ (A ⊢ v)
| u · v ⇒ ΣA1A2. (A = A1++A2) × (A1 ⊢ u) × (A2 ⊢ v)
| u∗ ⇒ (A = [])+ ΣA1A2. (A = A1++A2) × (A1 ⊢ u) × (A2 ⊢ u∗)
]

which can be defined by discrimination on A ⊢ s. Note that the index s determines

a single rule except for s∗.

We now come to the proof of lemma (26.4). The proof is by induction on the

derivation A ⊢ s∗ with B fixed. There are two cases. If A = [], the claim is trivial.

Otherwise A = A1++A2, A1 ⊢ s, and A2 ⊢ s∗. Since A2 ⊢ s∗ is obtained by a sub-

derivation, the inductive hypothesis gives us A2++B ⊢ s∗. Hence A1++A2++B ⊢ s∗
by the second rule for s∗.

The above induction is informal. It can be made formal with an universal elimi-

nator for A ⊢ s and a reformulation of the claim as follows:

∀As. A ⊢ s → match s [ s∗ ⇒ B ⊢ s∗ → A++B ⊢ s∗ | _ ⇒ ⊤ ]

The reformulation provides an unconstrained inductive premises A ⊢ s so that

no information is lost by the application of the universal eliminator. Defining the

universal eliminator with a type function ∀As. A ⊢ s → T is routine. We remark

that a weaker eliminator with a type function L(N)→ exp→ T suffices.
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We now have (26.2). A straightforward consequence is

s∗ · s∗ ≡ s∗

A less obvious consequence is the equivalence

(s∗)∗ ≡ s∗ (26.5)

saying that the star operation is idempotent. Given (26.1), it suffices to show

A ⊢ (s∗)∗ → A ⊢ s∗ (26.6)

The proof is by induction on A ⊢ (s∗)∗. If A = [], the claim is obvious. Other-

wise, we assume A1 ⊢ s∗ and A2 ⊢ (s∗)∗, and show A1++A2 ⊢ s∗. The inductive

hypothesis gives us A2 ⊢ s∗, which gives us the claim using (26.4).

The above proof is informal since the inductive premise A ⊢ (s∗)∗ is index

constrained. A formal proof succeeds with the reformulation

∀As. A ⊢ s → match s [ (s∗)∗ ⇒ A ⊢ s∗ | _ ⇒ ⊤ ]

Exercise 26.1.1 (Certifying solver)

Define a certifying solver ∀s. (ΣA. A ⊢ s)+ (∀A. A ⊢ s → ⊥).

Exercise 26.1.2 (Restrictive star rule) The second derivation rule for star expres-

sions can be replaced with the more restrictive rule

x :: A ⊢ s B ⊢ s∗

x :: A++B ⊢ s∗

Define an inductive family A ⊢̇ s adopting the more restrictive rule and show that

it is intertranslatable with A ⊢ s : ∀As. A ⊢̇ s a A ⊢ s.

Exercise 26.1.3 After reading this section, do the following with a proof assistant.

a) Define a universal eliminator for A ⊢ s.
b) Define an inversion operator for A ⊢ s.
c) Prove s∗ · s∗ ≡ s∗.

d) Prove (s∗)∗ ≡ s∗.

Exercise 26.1.4 (Denotational semantics) The informal semantics for regular ex-

pressions described in textbooks can be formalized as a recursive function on reg-

ular expressions that assigns languages to regular expressions. We represent lan-

guages as type functions L(N)→ T and capture the semantics with a function

R : exp→ L(N)→ T
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defined as follows:

RxA := (A = [x])
R0A := ⊥
R1A := (A = [])

R (s + t)A := RsA+RtA
R (s · t)A := ΣA1A2. (A = A1++A2)×RsA1 ×RtA2

R (s∗)A := Σn. P (Rs)nA

Pϕ 0A := (A = [])
Pϕ(Sn)A := ΣA1A2. (A = A1++A2)×ϕA1 ×PϕnA

a) Prove R sA a A ⊢ s.
b) We have represented languages as type functions L(N) → T. A representation

as predicates L(N)→ P would be more faithful to the literature. Rewrite the

definitions of ⊢ and R accordingly and show their equivalence.

26.2 Decidability of Regular Expression Matching

We will now construct a decider for A ⊢ s. The decidability of A ⊢ s is not obvious.

We will formalize a decision procedure based on Brzozowski derivatives [5].

A function D : N→ exp → exp is a derivation function if

∀xAs. x :: A ⊢ sa A ⊢ Dxs

In words we may say that a string x :: A satisfies a regular expression s if and only

if A satisfies the derivative Dxs. If we have a decider ∀s.D([] ⊢ s) and in addition

a derivation function, we have a decider for A ⊢ s.

Fact 26.2.1 ∀s. D([] ⊢ s).

Proof By induction on s. For 1 and s∗ we have a positive answer, and for x and 0

we have a negative answer using the inversion function. For s + t and s · t we rely

on the inductive hypotheses for the constituents. ■

Fact 26.2.2 ∀As. D(A ⊢ s) provided we have a derivation function.

Proof By recursion on A using Fact 26.2.1 in the base case and the derivation func-

tion in the cons case. ■
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We define a derivation function D as follows:

D : N→ exp → exp

Dxy := if [x = y\ then 1 else 0

Dx 0 := 0

Dx 1 := 0

Dx (s + t) := Dxs +Dxt
Dx (s · t) := if [[] ⊢ s\ then Dxs · t +Dxt else Dxs · t
Dx (s∗) := Dxs · s∗

It remains to show thatD is a derivation function. For this proof we need a strength-

ened inversion lemma for star expressions.

Lemma 26.2.3 (Eager star inversion)

∀xAs. x :: A ⊢ s∗ → ΣA1A2. A = A1++A2 × x :: A1 ⊢ s × A2 ⊢ s∗.

Proof By induction on the derivation of x :: A ⊢ s∗. Only the second rule for star

expressions applies. Hence we have x :: A = A1++A2 and subderivations A1 ⊢ s
and A2 ⊢ s∗. If A1 = [], we have A2 = x :: A and the claim follows by the inductive

hypothesis. Otherwise, we have A1 := x :: A′1, which gives us the claim.

The formal proof follows this outline but works on a reformulation of the claim

providing an unconstrained inductive premise. ■

Theorem 26.2.4 (Derivation) ∀xAs. x :: A ⊢ sa A ⊢ Dxs.

Proof By induction on s. All cases but the direction ⇒ for s∗ follow with the inver-

sion operator and case analysis. The direction ⇒ for s∗ follows with the eager star

inversion lemma 26.2.3. ■

Corollary 26.2.5 ∀As. D(A ⊢ s).

Proof Follows with Fact 26.2.2 and Theorem 26.2.4. ■
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Warning: This chapter is under construction.

27.1 Paths Types

We assume a relation R : X → X → T. We see R as a graph whose vertices are the

elements of X and whose edges are the pairs (x,y) such that Rxy . Informally,

a path in R is a walk

x0
R→ x1

R→ ·· · R→ xn

through the graph described by R following the edges. We capture this design

formally with an indexed inductive type

path (x : X) : X → T ::=
| P1 : pathxx

| P2 : ∀x′y. Rxx′ → pathx′y → pathxy

The constructors are chosen such that that the elements of a path type pathxy
formalize the paths from x to y . The first argument of the type constructor path is

a nonuniform parameter and the second argument of path is an index. The second

argument cannot be made a parameter because it is instantiated to x by the value

constructor P1. Here are the full types of the constructors:

path : ∀XT. (X → X → T)→ X → X → T

P1 : ∀XT∀RX→X→P∀xX . pathXR xx

P2 : ∀XT∀RX→X→P∀xx′yX . Rxx′ → pathXR x′y → pathXR xy

Note that the type constructor path takes three parameters followed by a single in-

dex as arguments. There is the general rule that parameters must go before indices.

We shall use notation with implicit arguments in the following. It is helpful to

see the value constructors in simplified form as inference rules:

P1
pathR xx

P2

Rxx′ pathR x′y

pathR xy
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The second constructor is reminiscent of a cons for lists. The premise Rxx′ ensures

that adjunctions are licensed by R. And, in contrast to plain lists, the endpoints of

a path are recorded in the type of the path.

Fact 27.1.1 (Step function) ∀xy. Rxy → pathRxy .

Proof The function claimed can be obtained with the value constructors P1 and P2:

Rxy pathR yy
P1

pathR xy
P2

■

We now define an inductive function len that yields the length of a path (i.e., the

number of edges the path runs trough).

len : ∀xy. pathxy → N

lenx _ (P1_) := 0

lenx _ (P2 _x′y ra) := S(lenx′y a)

Note the underlines in the patterns. The underlines after P1 and P2 are needed since

the first arguments of the constructors are parameters (instantiated to x by the pat-

tern). The underlines before the applications of P1 and P2 are needed since the re-

spective argument is an index argument. The index argument appears as variable y
in the type declared for len. We refer to y (in the type of len) as index variable.

What identifies y as index variable is the fact that it appears as index argument

in the type of the discriminating argument. The index argument must be written

as underline in the patterns since the succeeding pattern for the discriminating ar-

gument determines the index argument. There is the general constraint that the

index arguments in the type of the discriminating argument must be variables not

occurring otherwise in the type of the discriminating argument (the so-called index

condition). Moreover, the declared type must be such that all index arguments are

taken immediately before the discriminating argument.

Type checking elaborates the defining equations into quantified propositional

equations where the pattern variables are typed and the underlines are filled in. For

the defining equations of len, elaboration yields the following equations:

∀xN. lenxx (P1 x) = 0

∀xx′yN∀rRxx′ ∀apathx′y . lenxy (P2 xx′y ra) = S(lenx′y a)

We remark that the underlines for the parameters are determined by the declared

type of the discriminating argument, and that the underlines for the index argu-

ments are determined by the elaborated type for the discriminating argument.
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We now define an append function for paths

app : ∀zxy. pathxy → pathyz → pathxz

discriminating on the first path. The declared type and the choice of the discrimi-

nating argument (not explicit yet) identify y as an index variable and fix an index

argument for app. Note that the index condition is satisfied. The argument z is

taken first so that the index argument y can be taken immediately before the dis-

criminating argument. We can now write the defining equations:

appzx _ (P1 _) := λb.b : pathxz → pathxz

appzx _ (P2 _x′y ra) := λb. P2 xx′z r(appzx′y ab) : pathyz → pathxz

As always, the patterns are determined by the declared type and the choice of the

discriminating argument. We have the types r : Rxx′ and a : pathx′y for the

respective pattern variables of the second equation. Note that the index argument

is instantiated to x in the first equation and to y in the second equation.

We would now like to verify the equation

∀xyz∀apathxy ∀bpathyz. len (appab) = lena+ lenb

which is familiar from lists. As for lists, the proof is by induction on a. Doing the

proof by hand, ignoring the type checking, is straightforward. After conversion, the

case for P2 gives us the proof obligation

S(len (appab)) = S(lena+ lenb)

which follows by the inductive hypothesis, Formally, the induction can be validated

with the universal eliminator for path:

E : ∀p∀xy. pathxy→T.

(∀x. pxx(P1 x))→
(∀xyz∀rRxy ∀apathyz. pxz(P2 xyz ra))→
∀xya. pxya

E pe1e2 x _ , (P1 _) := e1x

E pe1e2 x _ (P2 _x′y r a) := e2 xx′y r(E pe1e2 x′y a)

Not that the type function p takes the nonuniform parameter, the index, and the dis-

criminating argument as arguments. The general rule to remember here is that all

nonuniform parameters and all indices appear as arguments of the target type func-

tion of the universal eliminator. As always with universal eliminators, the defining
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equations follow from the type of the eliminator, and the types of the continuation

functions e1 and e2 follow from the types of the value constructors and the type of

the target type function.

No doubt, type checking the above examples by hand is a tedious exercise, also

for the author. In practice, one leaves the type checking to the proof assistant

and designs the proofs assuming that the type checking works out. With trained

intuitions, this works out well.

Exercise 27.1.2 Give the propositional equations obtained by elaborating the defin-

ing equations for len, app, and E. Hint: The propositional equations for len are

explained above. Use the proof assistant to construct and verify the equations.

Exercise 27.1.3 Define the step function asserted by Fact 27.1.1 with a term.

Exercise 27.1.4 (Index eliminator) Define an index eliminator for path:

∀pX→X→T.

(∀x. pxx)→
(∀xx′y. Rxx′ → px′y → pxy)→
(∀xy. pathxy → pxy)

Note that the type of the index eliminator is obtained from the type of the universal

eliminator by deleting the dependencies on the paths.

Exercise 27.1.5 Use the index eliminator to prove that the relation path is transi-

tive: ∀xyz. pathxy → pathyz → pathxz.

Exercise 27.1.6 (Arithmetic graph) Let Rxy := (Sx = y). We can see R as the

graph on numbers having the edges (x, Sx). Prove pathR xy a x ≤ y .

Hints. Direction ⇒ follows with index induction (i.e., using the index eliminator

from Exercise 27.1.4). Direction ⇐ follows with ∀k. pathR x(k + x), which follows

by induction on k with x quantified.

27.2 Reflexive Transitive Closure

We can see the type constructor path as a function that maps relations X → X → T
to relations X → X → T. We will write R∗ for pathR in the following and speak

of the reflexive transitive closure of R. We will explain later why this speak is

meaningful.

We first note that R∗ is reflexive. This fact is stated by the type of the value

constructor P1.
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We also note that R∗ is transitive. This fact is stated by the type of the inductive

function app.

Moreover, we note that R∗ contains R (i.e., ∀xy. Rxy → R∗xy). This fact is

stated by Fact 27.1.1.

Fact 27.2.1 (Star recursion)

Every reflexive and transitive relation containing R contains R∗ :

∀pX→X→T. reflp → transp → R ⊆ p → R∗ ⊆ p.

Proof Let p be a relation as required. We show∀xy. R∗xy → pxy using the index

eliminator for path (Exercise 27.1.4). Thus we have to show that p is reflexive, which

holds by assumption, and that ∀xx′y. Rxx′ → px′y → pxy . So we assume Rxx′

and px′y and show pxy . Since p contains R we have pxx′ and thus we have the

claim since p is transitive. ■

Star recursion as stated by Fact 27.2.1 is a powerful tool. The function realized

by star recursion is yet another eliminator for path. We can use star recursion to

show that R∗ and (R∗)∗ agree.

Fact 27.2.2 R∗ and (R∗)∗ agree.

Proof We have R∗ ⊆ (R∗)∗ by Fact 27.1.1. For the other direction (R∗)∗ ⊆ R∗

we use star recursion (Fact 27.2.1). Thus we have to show that R∗ is reflexive,

transitive, and contains R∗. We have argued reflexivity and transitivity before, and

the containment is trivial. ■

Fact 27.2.3 R∗ is a least reflexive and transitive relation containing R.

Proof This fact is a reformulation of what we have just shown. On the one hand, it

says that R∗ is a reflexive and transitive relation containing R. On the other hand,

it says that every such relation contains R∗. This is asserted by star recursion. ■

If we assume function extensionality and propositional extensionality,

Fact 27.2.2 says R∗ = (R∗)∗. With extensionality R∗ can be understood as a

closure operator which for R yields the unique least relation that is reflexive,

transitive, and contains R. In an extensional setting, R∗ is commonly called the

reflexive transitive closure of R.

We have modeled relations as general type functions X → X → T rather than as

predicates X → X → P. Modeling path types R∗xy as computational types gives us

paths as computational values and provides for computational recursion on paths

as it is needed for the length function len. If we switch to propositional relations

X → X → P, everything we did carries over except for the length function.

Exercise 27.2.4 (Functional characterization)

Prove R∗xy a ∀pX→X→T. reflp → transp → R ⊆ p → pxy .
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All functions definable in CTT without assumptions are computable. Nevertheless,

there are noncomputational interpretations of CTT where the function type N → N

contains uncomputable functions. Moreover, there are degenerate interpretations

of CTT where all predicates N → P are decidable. Consequently, CTT can only prove

undecidability if we have an assumption excluding degenerate interpretations. In

this chapter, we study such an assumption called Axiom CT. Axiom CT is consistent

with excluded middle and extensionality and provides for undecidability proofs

within CTT.

We will base Axiom CT on the diophantine characterization of recursively enu-

merable sets, which has a straightforward formalization in CTT. Axiom CT will say

that for every function fN→N→B there is a diophantine expression describing the

predicate λn. ∃k. fnk = true.

We will give a self-contained development of type-theoretic computability not as-

suming knowledge of set-theoretic computability theory. The main notions in this

enterprise are semidecidable predicates and promising functions. While semidecid-

able predicates model recursively enumerable sets, promising functions model com-

putable set-theoretic functions as step-indexed type-theoretic functions. Assuming

Axiom CT, we will construct undecidable semidecidable predicates and promising

functions not having total extensions.

Remarkably, our primary development does not use excluded middle. If we as-

sume excluded middle, we can characterize decidable predicates as semidecidable

predicates that are cosemidecidable. As it turns out, this characterization is equiv-

alent to a prominent instance of excluded middle known as Markov’s principle.

We will make essential use of the extra-expressivity computational type theory

has over set theory:

• Functions in CTT are computational. In contrast, set theory has no native no-

tion of computability. Set-theoretic functions are merely notational sugar for

functional relations.

• Computational availability (Σ) can be used besides propositional existence (∃).

• Complex computational constructions can be carried out with certifying func-

tions combining specification and verification using the Skolem translation.
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28 Axiom CT and Semidecidability

28.1 Tests and Basic Predicates

Basic predicates are an abstract type-theoretic version of r.e. sets from set-theoretic

computability theory. R.e. sets are sets of numbers that can be algorithmically

enumerated. R.e. sets are also known recursively enumerable sets.

We define complement and equivalence of predicates pX→P and qX→P:

p := λx.¬px complement

p ≡ q := ∀x. px ←→ qx equivalence

We have p ≡ q → p ≡ q. We define basic predicates as follows:

T := N→ B unary tests

T2 := N → N → B binary tests

K f T := ∃k. fk = true satisfiability

D f T2 := λn. K(fn) domain

basic pN→P := ∃f T2 . p ≡ Df basic predicates

We say that basic predicates are the domains of binary tests, and that basic predi-

cates are generated by binary tests.

Fact 28.1.1 Decidable predicates on numbers are basic: ∀pN→P. decp → basicp.

Proof p is equivalent to the domain of the test λnk. if pn then true else false. ■

Computational intuition tells us that K and K are computationally undecidable.

For K the situation is somewhat better than for K since every n such that fn = true

is a certificate for Kf . For K no such certificate system exists.

Given a test f , we can perform a linear search f0, f1, f2, . . . that halts with the

first n such that fn = true. We refer to this n is the least witness of f . Using an

EWO, we can compute the least witness of a satisfiable test and use it as a certificate

for satf .

Fact 28.1.2 (Witness)

For a satisfiable test one can compute a satisfying number: satf → Σn. fn = true.

Proof Follows with an EWO for N (Fact 14.2.2) since boolean equality is decidable.■

Exercise 28.1.3 Prove the following:

a) ¬Kf ←→ ∀k. fk = false

b) D (λn.f ) ≡ D (λn.g)←→ (Kf ←→ Kg)

c) D (λn.f ) ≡ D (λnk.false)←→ ¬Kf
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Exercise 28.1.4 Construct certifying functions as follows:

a) ∀PP. DP → Σf . P ←→ Kf

b) ∀pN→P. decp → Σf . exp ←→ Kf

Exercise 28.1.5 (Conjunction and disjunction of tests)

Construct certifying functions for unary tests as follows:

a) ∀fg. Σh. Kh←→ Kf ∧ Kg

b) ∀fg. Σh. Kh←→ Kf ∨ Kg

28.2 UT and Undecidability

Before we formulate Axiom CT, we look at a consequence of Axiom CT that suffices

for almost all results in this chapter:

UT := ΣUN→T2 ∀f T2 ∃c. Df ≡ D (Uc)

We refer to the function U provided by UT as universal test, and to the number c as

the code for the test f . We see U as a function enumerating the domains of binary

tests via binary tests. That computational objects are computationally enumerable

is a prominent insight in computability theory.

With UT we will show a number of undecidability results, including the existence

of an undecidable basic set and the undecidability of the satisfaction predicate K

for unary tests.

We now come to our first undecidability result. The key idea of the proof is to

show that the complement of the domain of the diagonal test λn.Unn of a universal

test U is not basic.

Fact 28.2.1 (Undecidability)

UT → Σf T2 . ¬basic Df .

Proof We show that the complement of the domain of the diagonal binary test

λn.Unn is not basic. Suppose Df ≡ (λn.¬K(Unn)) for some binary test f . By UT

we have Df ≡ D (Uc) for some c. Hence ¬K(Ucc) ←→ D (Uc)c = K(Ucc), which is

contradictory. ■

Fact 28.2.2 (Undecidability)

1. UT → Σp. basicp ∧¬basicp

2. UT → Σp. basicp ∧¬decp

Proof (1) follows from Fact 28.2.1 with p := Df . (2) follows from (1) since comple-

ments of decidable predicates are decidable and hence basic. ■
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Fact 28.2.3 (Undecidability)

1. UT → ¬dec K

2. UT → ¬dec K

Proof (2) follows from (1) since complements of decidable predicates are decidable.

For (1), we assume a decider d : ∀f . ¬Kf and derive a contradiction. We consider

the binary test fn := if d(Unn) then λk.true else λk.false with Df ≡ D (Uc).
We have K (fc) ←→ K (Ucc). We do a case analysis on d(Ucc). If ¬K (Ucc), fc =
λk.true and we have a contradiction. If ¬¬K (fc), fc = λk.false and we also have a

contradiction. ■

Note that in the above proof the diagonal test plays a key role again. Later

(Fact 28.8.5) we will see a different proof building on Fact 28.2.1 rather than UT.

Fact 28.2.4 (Undecidability)

Domain membership and domain satisfiability are undecidable for binary tests:

1. UT → ∀n. ¬dec (λf T2 . Dfn)

2. UT → ¬dec (λf T2 . ex (Df))

Proof Straightforward consequences of the undecidability of K (Fact 28.2.3 (2)). ■

Exercise 28.2.5 Assuming UT, prove that there is a basic predicate that cannot be

expressed as a unary test: UT → Σp. basicp ∧ (¬∃f T∀n. npn←→ fn = true).

Exercise 28.2.6 Assuming UT, prove that there is a binary test f such that for every

binary test g whose domain is disjoint from the domain of f there exists a numbern
such that neither fn nor gn is satisfiable.

28.3 Diophantine Expressions

Axiom CT will say that every basic predicate can be described with a diophantine

expression. CT implies that all basic predicates are generated by countably many

arithmetic expressions.

In what follows arithmetic pairing will be essential.
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Fact 28.3.1 (Arithmetic pairing) There are functions

π : N→ N → N π1 : N → N π2 : N → N

satisfying the equations

π1(πn1n2) = n1 π2(πn1n2) = n2 π(π1n)(π2n) = n

for all n1, n2, and n.

Proof Exercise 7.2.7. ■

Diophantine expressions are arithmetic expressions obtained with variables, the

constants 0 and 1, and addition, subtraction, and multiplication. We obtain dio-

phantine expressions with an inductive type:

e : exp ::= x | 0 | 1 | e+ e | e− e | e · e (x : N)

To evaluate an expression, we need values for the variables occurring in the expres-

sion. We assemble the values of variables into a single number using arithmetic

pairing:

consn1n2 := S(π n1n2)

get 0 _ := 0

get Sn 0 := π1n

get Sn Sk := get (π2n)k

Note that getnk gets the value for variable k from n. If n doesn’t provide an explicit

value for a variable, get returns 0 as default value.

We evaluate expressions with a function evaN→exp→N defined follows:

eva n x := getnx

eva n 0 := 0

eva n 1 := 1

eva n (e1 + e2) := evane1 + evane2

eva n (e1 − e2) := evane1 − evane2

eva n (e1 · e2) := evane1 · evane2

We now define functions obtaining diophantine predicates and diophantine tests

from diophantine expressions:

P e : N → P := λn. ∃k. eva (consnk)e) = 0

τ e : T2 := λnk. if eva (consnk)e then true else false
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Fact 28.3.2 (Diophantine predicates)

Diophantine predicates are basic:

1. pred e ≡ D (τe)

2. basic (pred e)

Proof Straightforward. ■

Diophantine predicates are a type-theoretic representation of recursively enu-

merable sets. Augmenting diophantine expressions with additional operations, for

instance the arithmetic pairing functions π , π1, and π2, will not change the class

of diophantine predicates. That addition, subtraction, and multiplication suffice

to obtain all recursively enumerable sets is a famous result of Yuri Matiyasevich

from 1970. The result implies that satisfiability of diophantine equations is unde-

cidable, thus solving Hilbert’s tenth problem from 1900. See Matiyasevich [24] for

a fascinating first-hand discussion of the diophantine representation of recursively

enumerable sets.

Fact 28.3.3 The type exp of expressions is in bijection with N.

Proof By Corollary 23.7.3 and Theorem 23.3.2, it suffices to construct an equality

decider and a list enumeration for exp. We leave these routine constructions as

exercises. It is also necessary to show that exp is an infinite type, which is straight-

forward. ■

Exercise 28.3.4 (Binary universal test) UT models a universal test as a ternary test.

With arithmetic pairing, a universal test can be modeled equivalently with a binary

test. Prove UT a Σg∀f ∃c. Df ≡ D (λn.g(πcn)).

28.4 Axiom CT

We now formulate Axiom CT:

CT := ∀f T2 ∃e. Df ≡ P e

Axiom CT is consistent with excluded middle and extensionality. CT excludes de-

generate interpretations of CTT where all predicates are interpreted as computa-

tionally decidable predicates. We may say that type theory becomes fully computa-

tional only once CT is assumed.

We mention that in informal constructive mathematics there is an assumption

called Church’s thesis saying that every total function is computable. CT as defined

here may be seen as an adaption of Church’s thesis to CTT and the diophantine

representation of recursive enumerability.
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Fact 28.4.1 CT→ UT.

Proof Let δN→exp the surjective function provided by Fact 28.3.3. We verify that

U := λc. τ(δc) is a universal test. We assume f T2 and prove ∃c. Df ≡ D (Uc). CT

gives us an expression e such that Df ≡ P e. Since δ is surjective, we have δc = e
for some c. It remains to show Df ≡ D (Uc), which holds by the assumptions and

P e ≡ D (τe) (Fact 28.3.2 (1)). ■

Fact 28.4.2 (Undecidability)

1. CT → ∃e. ¬basic (Pe)

2. CT → ∃e. ¬dec (Pe)

3. CT → ¬∀en. D(Pen)

Proof (1) follows with Facts 28.2.1 and 28.4.1. (2) is a consequence of (1), and (3) is

a consequence of (2). ■

Exercise 28.4.3

Prove CT → (basicp ←→ diophantinep) where diophantinep := ∃e. p ≡ Pe.

Exercise 28.4.4 Prove the following:

a) ∀e ∃e′∀k. eva (cons 0k) e = evake′

b) CT → ∀f T ∃e. Kf ←→ ∃n. evane = 0

Exercise 28.4.5 (Undecidability challenges) We formulate proof challenges that

will require serious work with diophantine arithmetic.

a) CT → ¬dec(λe. ∃n. P en)
b) CT → ¬dec(λe. ∃n. evane = 0)

Note that the second challenge is a variant of the undecidability of the satisfiability

of diophantine equations (Hilbert’s 10th problem). The best starting point we can

offer is Fact 28.4.2.

Exercise 28.4.6 (Abstract CT)

We have chosen to obtain the r.e. predicates with diophantine expressions building

on Matiyasevich’s result. There is also the possibility to obtain the r.e. predicates

with expressions describing partial recursive functions or Turing machines. In any

case we have a countable type of expressions that yields the r.e. predicates through

binary tests. We may capture the generating expressions and Axiom CT with an

abstraction described by the predicate

ACT AT τA→T2 δN→A := (∀f ∃a. Df ≡ D (τa)) ∧ (∀a∃n. δn = a)

where A is an abstract type of expressions. Prove the following:
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28 Axiom CT and Semidecidability

a) CT → sig (ACT exp τ)

b) ACT Aτδ → ∀p. basicp ←→ ∃a. p ≡ D (τa)

c) ACT Aτδ→ UT

28.5 Recusant Relations

We may ask whether there are functional and total relations that cannot be repre-

sented with functions. Assuming UT, we will show that such relations exist. This

confirms our expectation that relations are more expressive than functions since

there is no computability constraint for relations.

We define the characteristic relation ρp of predicates pX→P :

ρ : ∀X. (X → P)→ (X → B → P)

ρpxb := if b then px else ¬px

Fact 28.5.1 Characteristic relations are functional. Moreover, assuming XM, charac-

teristic relations are total.

Next we show that the characteristic predicate ρp can be represented as a func-

tion if and only if p is decidable.

Fact 28.5.2 decpa Σf ∀x. ρpx(fx).

Proof Let d be a decider for p. Then fx := if dx then true else false repre-

sents ρp. Conversely, let f represent ρp. Then f is a boolean decider for p. ■

Assuming UT and XM, we can now construct a functional and total relation

RN→B→P that cannot be represented with a function. We speak of a recusant re-

lation.

Fact 28.5.3 (Recusant relation)

UT → XM→ ΣRN→B→P. functionalR ∧ totalR ∧¬∃f ∀x. Rx(fx).

Proof Fact 28.2.2 gives us an undecidable predicate pN→P. By Fact 28.5.2 we know

that ρp cannot be represented with a function. Moreover, Fact 28.5.1 tells us that

ρp is functional and total. ■

28.6 Inconsistent Strengthening of UT

One must be extremely careful with axioms one adds to a foundational sytem. A

good example is

UTΣ := ΣUN→T2 ∀f T2 Σc. Df ≡ D (Uc)
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which strengthens UT by replacing propositional existence of c with computational

availability of c. We will show that UTΣ is inconsistent with function extensionality.1

In fact, extensionality for tests

TE := ∀fgT. (∀n. fn = gn)→ f = g

suffices for the inconsistency.

Lemma 28.6.1 UTΣ → TE → dec K.

Proof UTΣ gives us functions UN→T2 and γT→N such that ∀f . Kf ←→ K (U(γf)0).
We now assume f and construct a decisionD(¬Kf). We consider the codes γf and

γ(λk.false).
If γf = γ(λk.false), we assume Kf and derive a contradiction. We have Kf ←→
K (λk.false), a contradiction.

If γf ≠ γ(λk.false), we assume ¬Kf and prove γf = γ(λk.false). By the extension-

ality assumption it suffice to show ∀k. fk = false, which follows from ¬Kf . ■

Fact 28.6.2 (Inconsistency) UTΣ → TE → ⊥.

Proof Follows with Lemma 28.6.1 and Fact 28.2.3. ■

Exercise 28.6.3 Prove UT→ UTΣ.

28.7 Post Hierarchy

The Post hierarchy is obtained with a preorder p ⪯ q on unary predicates such

that p is decidable if q is decidable. We shall use the Post hierarchy to define the

semidecidable predicates as the predicates p ⪯ K. Semidecidable predicates are a

generalization of basic predicates to general argument types.

Given predicates pX→P and qY→P, a reduction of p to q is a function fX→Y such

that ∀x. p(x)←→ q(fx). Given a reduction of p to q, we can obtain a decider for p
from a decider of q. We define a predicate

red : ∀XY. (X → P)→ (Y → P)→ (X → Y)→ P

redXYpqf := ∀x. p(x)←→ q(fx)

expressing that p reduces to q with f . We now define reduction types:

p ⪯ q := sig (redpq)

1The result appears in Troelstra and Van Dalen [29] and Forster [10].
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Reduction types p ⪯ q describe a preorder on predicates called reducibility

that is compatible with predicate complement, subsumes predicate equivalence,

and transports predicate decidability from right to left. We read p ⪯ q as p is

below q or as q is above p. We will use two standard notations for the reduction

preorder:

p ç q := ¬(p ⪯ q)
p ≺ q := (p ⪯ q)× (p ç q)

Informally, we may see a preorder as a hierarchy. With this metaphor in mind, we

refer to reducibility as the Post hierarchy to remember Emil Post who came up with

computational reductions (called many-one reductions in computability theory) and

studied their hierarchy in the 1940’s.

Fact 28.7.1 We have functions as follows:

1. p ⪯ p
2. p ⪯ q → q ⪯ r → q ⪯ r
3. p ⪯ q → p ⪯ q

4. p ≡ q → p ⪯ q
5. p ⪯ q → decq → decp

We also define interreduction types:

p ≈ q := (p ⪯ q)× (q ⪯ p)

Interreduction types p ≈ q describe the equivalence relation obtained as the sym-

metric closure of the reduction preorder p ⪯ q. We speak of reduction equivalence.

Fact 28.7.2 We have functions as follows:

1. p ≈ p
2. p ≈ q → q ≈ p
3. p ≈ q → q ≈ r → q ≈ r
4. p ≈ q → p ≈ q

5. p ≡ q → p ≈ q
6. p ≈ q → decp → decq

When we construct concrete reductions, it is often helpful to make use of the

Skolem translation (Fact 10.3.2).

Fact 28.7.3 (Skolem for Reductions)

(∀x Σy. px ←→ qy)→ p ⪯ q.
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Under XM we have p ≡ p for all predicates p. We analyse the situation on a

per-predicate basis using stability of predicates:

stablep := ∀x. ¬¬px → px

Fact 28.7.4 (Stable predicates)

1. stablep ←→ p ≡ p
2. stablep

3. decp → stablep

4. p ⪯ q → stableq → stablep

5. stablep → p ⪯ q → p ⪯ q
6. stableq → p ⪯ q → p ⪯ q

The above fact is sharp in that in no statement an implication can be replaced

with an equivalence.

Exercise 28.7.5 (Constancy of tests)

Prove that the following predicates on tests are reduction equivalent to K :

1. λgT.∀n. gn = false

2. λgT.∀n. gn = true

3. λgT.∃b.∀n. gn = b
4. λf T2 . ∃b∀nk. fnk = b
Exercise 28.7.6 (Domain membership and domain satisfiability)

Prove the following:

a) ∀n. (λf . Dfn) ≈ K

b) (λf . ex (Df)) ≈ K

Hint for (b): Use arithmetic pairing to translate between unary and binary tests.

Exercise 28.7.7 (General Tests) Besides unary and binary tests we may also con-

sider tests with three and more arguments. With arithmetic pairing we can show

that satisfiability of tests with n > 1 arguments is interreducible with satisfiabil-

ity of unary tests. What makes the problem interesting is its dependently typed

formalization. We define a family TN→T of test types

T0 := B

TSn := N → Tn

and a family sat∀n. Tn→P of satisfaction predicates :

sat0 f := (f = true)

satSn f := ∃k. satn(fk)

Prove the following:
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a) ∀n. satSSn ≈ satSn

b) ∀n. satSn ≈ K

Hint: The proof for (a) is basically the proof for Exercise 28.7.6.

28.8 Semidecidable Predicates

We will define semidecidable predicates as the predicates p ⪯ K. We also introduce

a decidable predicate D ⪯ K such that a predicate p is decidable if and only if p ⪯ D.

We define D as follows:

D := λbB. b = true

Fact 28.8.1 (Decidable predicates)

1. decD

2. stableD

3. p ⪯ Da decp

4. decp → decp

5. p ⪯ D→ p ⪯ D

6. D ≈ D

We call a predicate semidecidable if it is below K and refer to reductions of p to

K as semideciders for p. In other words, a predicate pX→P is semidecidable if and

only if there is a function fX→T such that∀x. px ←→ K(fx). We refer to reductions

of p to K as semideciders for p and define a notation for semidecider types:

sdecX pX→P := (p ⪯ K)

Finally, we call a predicate cosemidecidable if its complement is semidecidable.

Fact 28.8.2 Basic predicates are the semidecidable predicates on numbers:

∀pN→P. basicp ←→ □ (sdecp).

Recall that □ is the truncation operator defined in §10.5.

Fact 28.8.3

1. ∀f T2 . Df ⪯ K

2. D ⪯ K

3. D ⪯ K

4. K ⪯ D→ K ⪯ K
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Proof (1) is obvious from the definitions.

(2) λb.λn.b reduces D to K.

3 We have D ⪯ D ⪯ D ⪯ K. Thus D ⪯ K and hence D ⪯ K.

(4) We have K ⪯ D ⪯ K. Thus K ⪯ D since D is closed under complements. Now

K ⪯ K. ■

Fact 28.8.4

1. sdec K

2. p ⪯ q → sdecq → sdecp

3. decp → sdecp

4. decp → sdecp

5. ∀f T2 . sdec (Df)

We already know that K and K are undecidable (Fact 28.2.3). We now show

the stronger result that K is not semidecidable building on Fact 28.2.1. The proof

demonstrates the elegance of arguing within the Post hierarchy.

Fact 28.8.5 (Undecidabilty)

1. UT → ¬ sdec K

2. UT → ¬dec K

Proof (1) We have ¬ sdec Df for some binary test f by Fact 28.2.1. By contraposi-

tion we assume sdec K and prove sdec Df . It now suffices to prove Df ⪯ K, which

follows from Df ⪯ K.

(2) We have ¬ sdec K by (1). By contraposition we assume dec K and prove sdec K.

Easy since the assumption yields dec K and thus K ⪯ D ⪯ K. ■

Exercise 28.8.6 Argue D ≺ K and K ç K.

Exercise 28.8.7 (Extensionality law via transport law)

Prove the extensionality law p ≡ p′ → sdecp → sdecp′ using the transport law for

sdec and the reduction law p ≡ p′ → p ⪯ p′.

Exercise 28.8.8 (Constancy of tests)

Prove that constancy of tests λgT.∃b.∀n. gn = b is not semidecidable.

Hint: Exercise 28.7.5.

Exercise 28.8.9 Prove that domain emptiness of binary tests is not semidecidable:

¬ sdec (λf T2 .¬ex(Df)).
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28.9 More Semidecidability

One may see semidecidable predicates as arithmetic projections λx.∃k.p(x, k) of

decidable predicates pX×N→P. In fact, because of arithmetic pairing, the projection

predicate λx.∃k. p(x, k) is semidecidable already if the underlying predicate p is

semidecidable. Moreover, the underlying predicate p may have more than one step

index. For instance, λx.∃k1k2. p(x, k1, k2) is semidecidable if pX×N×N→P is semide-

cidable.

In the following we assume that π1 and π2 are the projections for an arithmetic

pairing function π (Exercise 7.2.7).

Fact 28.9.1 (Arithmetic projection)

Given a semidecidable predicate pX×N→P, λx. ∃n. p(x,n) is semidecidable:

∀pX×N→P. sdecp → sdec (λx.∃n. p(x,n)).

Proof Let fX×N→T be a semidecider for pX×N→P. We show that

gxn := if f(x,π1n)(π2n) then true else false

satisfies (∃n.p(x,n))←→ K (gx) for all x.

For→, we assume p(x,n) and show K(gx). From p(x,n) we obtain K (f (x,n)) and

thus f(x,n)k for some k. Now gx(πnk) = true follows.

For ←, we assume gxk = true and show p(x,π1k). By the primary assumption it

suffices to show f(x,π1k)(π2k), which follows. ■

Corollary 28.9.2 (Arithmetic double projection)

Given a semidecidable predicate pX×N×N→P, λx. ∃nk. pxnk is semidecidable:

∀pX×N×N→P. sdecp → sdec (λx. ∃nk. p(x,n, k)).

Proof Apply Fact 28.9.1 twice. Note that X×N×N = (X×N)×N, and that (x,n, k) =
((x,n), k). ■

It took several iterations until the author arrived at the formalization of arith-

metic projection appearing above. There are two essential design decisions: Assume

that the underlying predicate is semidecidable (rather than decidable) and use the

cartesian representation for predicates with more than one argument.

Using arithmetic pairing, we can obtain an EWO for basic predicates, a fact no-

ticed by Andrej Dudenhefner in 2020.

Fact 28.9.3 (EWO for basic predicates)

∀pN→P. sdecp → exp → sigp.

Proof Suppose sdecpf and exp. Then qn := (f (π1n)(π2n) = true) is decidable

and satisfiable. Hence an EWO for decidable predicates gives us n such that qn.

Thus p(π1n). ■
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Andrej Dudenhefner also discovered in 2020 that semidecidable equality predi-

cates are decidable.

Fact 28.9.4 (Semidecidable Equality)

Equality predicates are decidable if and only if they are semidecidable:

EX a Σf X→X→T.∀xyX . x = y ←→ K(fxy).

Proof Direction → is obvious. For direction ← suppose ∀xyX . x = y ←→ satfxy
and fix x,y : X. We need to construct a decision D(x = y). With an arithmetic

EWO we compute k such that fxxk = true. Now if fxyk then x = y else x ≠ y
providing the decision. ■

Exercise 28.9.5 (Arithmetic projection) Show the following using Fact 28.9.1:

a) ∀pX→N→P. (∀xn. D(pxn))→ sdec (λx. ex(px))

b) ∀pX×N×N×N→P. sdecp → sdec (λx. ∃k1k2k3. p(x, k1, k2, k3))

Exercise 28.9.6 Construct a function sdecp → ∀xy. px → (py + (y ≠ x)).
Hint: The proof is similar to the proof of Fact 28.9.4. Using the witness operator one

obtains n such that fxn = true and then discriminates on fyn. In fact, Fact 28.9.4

is a consequence of the above result. The exercise was contributed by Marc Hermes

in March 2021.

28.10 Markov’s Principle

Suppose we have a proposition P and two tests f and g characterizing P and ¬P :

P ←→ Kf and ¬P ←→ Kg. Then we can perform a linear search

f0 |g0, f1 |g1, f2 |g2, . . .

on the disjunctive test λn. fn | gn. If the proposition P is definite (i.e., P ∨ ¬P ),

the disjunctive test is satisfiable and the linear search will find the first n such that

fn | gn = true. From fn | gn = true we can obtain a decision Kf +Kg, from which

we can obtain a decision DP . In short, if we have a definite proposition P and tests

characterizing P and ¬P , we can construct a decision for P .

The definiteness of all propositions P where P and ¬P can be characterized by

tests can be obtained from an instance of excluded middle known as Markov’s

principle :

MP := ∀fN→B. ¬¬Kf → Kf

Markov’s principle says that satisfiability of tests is stable. In fact, MP = stable K.
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Fact 28.10.1 (Markov equivalenc)

The following propositions are equivalent: MP ←→ stable K ←→ K ≡ K.

Fact 28.10.2 (Markov complement law) MP→ p ⪯ K → p ⪯ K.

Proof Follows with Facts 28.7.1 and 28.10.1. ■

We define the disjunction f |g of two tests f and g as the test

f |g := λn. if fn then true else gn

Fact 28.10.3 Kf ∨ Kg ←→ K(f |g) a Kf + Kg.

Proof Follows with Fact 28.1.2. ■

Fact 28.10.4 (Markov)

The following types are equivalent:

1. MP

2. ∀fgN→B. (¬Kf ←→ Kg)→ (Kf + Kg)

3. ∀PP∀fgN→B. (P ←→ Kf)→ (¬P ←→ Kg)→DP

Proof 1 → 2. Let ¬Kf ←→ Kg. Using Fact 28.10.3 and (1) we assume ¬satf |g and

derive a contradiction. Using the assumptions, we have ¬Kf and ¬¬Kf .

2 → 1. We assume ¬¬Kf and prove Kf . It suffices to prove Kf + satλn.false.

By (2) it suffices to prove ¬Kf ←→ ⊥, which follows from the assumption ¬¬Kf .

2 → 3. We assume P ←→ Kf and ¬P ←→ Kg and prove DP . It suffice to show

Kf + Kg, which follows with (2).

3 → 2. We assume ¬Kf ←→ Kg and prove Kf + Kg. We instantiate (3) with

P := Kf and obtain DKf , which yields the claim. ■

Corollary 28.10.5 (Bi-Testability) MP→ (P ←→ Kf)→ (¬P ←→ Kg)→DP .

Under MP, a predicate is decidable if and only if both the predicate and its com-

plement are semidecidable.

Fact 28.10.6 (Bisemidecidability) ∀pX→P. MP → sdecp → sdecp → decp.

Proof Suppose f and g are semideciders for p and p. We fix x and construct

a decision D(px). The assumptions give us tests fx and gx characterizing px
and ¬px. Now Corollary 28.10.5 yields a decision D(px). ■

The results on Markov’s principle and semi-decidability appear in [12].

Exercise 28.10.7 Prove the following equivalences:
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a) MP → decp a sdecp × sdecp

b) MP → dec K a sdec K

Exercise 28.10.8 Prove ∀XT. X → (∀pX→P. sdecp → sdecp → decp)→ MP

Exercise 28.10.9 Prove MP→ ¬(∀n. fn = b)←→ (∃n. fn = !b).

28.11 Promises

We call functions f N→OX promises. We see promises as tests with output. Given

a promise f , we can perform a linear search f0, f1, f2, . . . until we find the first n
and x such that fn = ◦x. If the search terminates, we refer to n as the span and

to x as the value of f . Formally, we define the predicates

del f N→OX n := (fn ≠ �)

span f N→OX n := least (delf)n

δ f N→OX xn := spanf n∧ fn = ◦x

f⇓ := ex (delf)

f ↓x := ex (δfx)

The least witness predicate least is from §13.1.

We assume the implicit typings fN→OX and xX for the rest of the section.

Fact 28.11.1 f ↓x → f⇓.

Fact 28.11.2 (Uniqueness)

Spans and values of promises are unique:

1. spanfn→ spanfn′ → n = n′

2. f ↓x → f ↓x′ → x = x′

Proof Follows with the uniqueness of least (Fact 13.1.1). ■

Fact 28.11.3 (Decidability)

1. D (delfn)

2. D (spanfn)

3. E(X)→D (δfxn)

Proof Follows with the decidability of least (Fact 13.3.1). ■

Fact 28.11.4 (Computability)
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1. f⇓ → Σn. spanfn

2. f⇓ → Σx. f ↓x

Proof (1) follows with an existential least witness operator (Fact 13.2.5) and the

decidability of del (Fact 28.11.3). (2) is a straightforward consequence of (1). ■

Fact 28.11.5 (Semidecidability)

1. sdec (λf .f⇓)
2. EX → sdec (λf .f ↓x)

Proof (1) λfn. if fn then true else false is a reduction (λf .f⇓) ⪯ K.

(2) λfn. if dfxn then true else false where d decides δ (Fact 28.11.3) is a reduc-

tion (λf .f ↓x) ⪯ K. ■

Lemma 28.11.6 (Reductions)

1. X → K ⪯ (λf .f⇓)
2. (λf .f⇓) ⪯ (λf .f ↓x)

Proof (1) λgn. if gn then ◦x else � is a reduction K ⪯ (λf .f⇓).
(2) λfn. if fn then ◦x else � is a reduction (λf .f⇓) ⪯ (λf .f ↓ x). Direction

f⇓ → rf ↓x of the correctness proof uses Fact 28.11.4 (2). ■

Fact 28.11.7 (Interreducibility)

Promise delivery and test satisfiability are interreducible:

1. X → (λf .f⇓) ≈ K

2. EX → (λf .f ↓x) ≈ K

Proof Follows with Facts 28.11.5 and 28.11.6. ■

Fact 28.11.8 (Pruning) For every promise one can construct a value-equivalent

promise that delivers at most once:

∀f Σf ′. (∀x. f ↓x ←→ f ′ ↓x) ∧ (∀xn. f ′n = ◦x → δfxn).

Proof Function f ′n := if dfn then fn else � where d is a decider for spanfn
(Fact 28.11.3) does it. Correctness can be verified by a case analysis following the

definition of f ′. ■

Exercise 28.11.9 Show that the promise delivery predicates λf . f⇓ and λf . f ↓x
are not cosemidecidable, assuming UT and an inhabited and discrete output type.
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28.12 Promising Functions

A promising function is a function fX→(N→OY) mapping values to promises. We use

the notation

PFXY := X → N → OY

for the types of promising functions. Given a promising function f PFXY , we call

the predicate λx.fx⇓ the domain of f and the predicate λxy.fx ↓y the delivery

relation of f . We call a promising function is total if its delivery relation is total.

Fact 28.12.1 (Promising functions)

1. The delivery relation of a promising function is functional.

2. The values of promising functions are computable: fx⇓ → Σy. fx↓y .

Proof Immediate with Facts 28.11.2 and 28.11.4. ■

Fact 28.12.2 (Total promising functions)

Functions gX→Y and total promising functions f PFXY are intertranslatable:

1. ∀gX→Y Σf PFXY . ∀x. fx↓hx.

2. ∀f PFXY . (∀x. fx⇓)→ ΣhX→Y . ∀x. fx↓hx.

Proof (1) follows with constant promises. (2) follows with the Skolem translation

and Fact 28.12.1 (2). ■

Fact 28.12.3 (Composition)

Promising functions are closed under composition:

∀f PFXY ∀g PFYZ Σh PFXZ ∀xz. hx↓z ←→ (∃y. fx↓y ∧ gy ↓z).

Proof We combine the spans for fx ↓ y and gy ↓ z with arithmetic pairing and

make use of the decidability of span:

hxn := match fx(π1n)

[�⇒ �

| ◦y ⇒ if span (fx)(π1n)

then if span (gy)(π2n) then gy(π2n) else �

else � ]

Correctness of h can be verified with a case analysis following the definition of h
and using the uniqueness of span. ■
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Promising functions are semideciders with output. They can be seen as type-

theoretic representation of computable functions as they appear in set-theoretic

computability theory. We can translate between semideciders and promising func-

tions such that the domain is preserved.

Fact 28.12.4 (Translations)

1. Y → ∀gX→N→B. Σf PFXY . ∀x. K(gx)←→ fx⇓
2. ∀f PFXY . ΣgX→N→B. ∀x. K(gx)←→ fx⇓

Proof (1) follows with fxn := if gxn then ◦y else � assuming yY . (2) follows

with gxn := if fxn then true else false. ■

It follows that a predicate is semidecidable if and only if it agrees with the do-

main of a promising function.

Fact 28.12.5 (Semidecidable domains)

1. ∀f PFXY . sdec (λx.fx⇓)
2. Y → ∀pX→P. sdecpa Σf PFXY . p ≡ λx.fx⇓

Fact 28.12.6 (Undecidable domain)

UT → Y → Σf PF NY . ¬ sdec λn. fn⇓.

Proof Follows with Facts 28.2.1 and 28.12.5 (2). ■

Fact 28.12.7 (Semidecidability of delivery)

EY → ∀f PFXY . sdec (λx. fx↓y).

Proof Let f PFXY . We use the Skolem translation and show

∀x. Σg. fx↓y ←→ Kg

The test gn := if d(fx)yn then true else false where d decides δ (Fact 28.11.3)

does it. ■

28.13 Recusant Partial Deciders

We call a promising function f PFXY recusant if it cannot be extended to a total

promising function:

recusantf PFXY := ∀g. (∀xy. fx↓y → gx↓y)→ ∃x. ¬gx⇓

Note that the definition of recusant states the nontotality of the extending func-

tion g existentially as ∃x.¬gx⇓ rather than negatively as ¬(∀x.gx⇓). While the
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existential version implies the negative version, it takes excluded middle for the

negative version to imply the existential version.

We call promising functions f PFX B partial deciders. Assuming UT, we will con-

struct a recusant partial decider. Recusant partial deciders capture the notion of

recursively inseparable sets from set-theoretic computability theory. If f PF N B is a

recusant partial decider, the predicates λx. fx↓true and λx. fx↓ false represent re-

cursively inseparable sets of numbers. The idea to capture recursive inseparability

with partial deciders appears in Kirst and Peters [20].

Fact 28.13.1 (Decidable domain)

Promising functions with decidable domains have total extensions:

Y → ∀f PFXY . dec (λx. fx⇓)→ Σg. (∀x.gx⇓)∧ (∀xy. fx↓y → g↓y).

Proof Suppose yY and ddec (λx. fx⇓). Then gx := if dx then fx else λk.y is a

total extension of f . ■

Corollary 28.13.2 (Undecidable domain)

Recusant functions have undecidable domains: recusantf → ¬dec (λx.fx⇓).

Fact 28.13.3 (Right composition)

∀f PFXY ∀hY→Z ΣgPFXZ ∀xy. fx↓y → gx↓hy .

Proof gxn := match fxk [ ◦y ⇒ ◦hy | �⇒ � ] does it. ■

We define universal partial deciders as follows:

UPD := ΣUN→PF N B. ∀f PF N B ∃c∀nb. fn↓b ←→ Ucn↓b

Given a universal partial decider U , we show that the diagonal partial decider

λn.Unn is recusant.

Fact 28.13.4 (Recusant partial decider)

UPD → Σ f PF N B. recusantf .

Proof Let U be a universal partial decider. We show that the diagonal partial de-

cider λn.Unn is recusant. Suppose f PF N B is an extension of λn.Unn. Fact 28.13.3

gives us g PF N B such that ∀nb. fn ↓ b → gn ↓ !b. Since U is universal, we have

∀nb. gn↓b ←→ Ucn↓b for some c. We now assume fc⇓ and derive a contradic-

tion. By Fact 28.11.4 (2) we have fc ↓b. We instantiate the assumptions as follows:

Ucc ↓ !b → fc ↓ !b

gc ↓ !b ←→ Ucc ↓ !b

fc ↓b → gc ↓ !b

Hence we have both fc ↓b and fc ↓ !b. Contradiction with functionality of delivery

(Fact 28.11.2). ■
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Exercise 28.13.5 We say that a partial decider f PFX B is sound for a predicate pX→P

if ∀x. if fx then px else ¬px. Show that a predicate is decidable if and only if it

has a sound and total partial decider.

28.14 Universal Partial Deciders

We now construct a universal partial decider from a universal test. The idea is as

follows: Given a partial decider f PF N B, we slice it into two binary tests g1 and g2

such that the domains of g1 and g2 agree with λn.fn ↓ true and λn.fn ↓ false.

From the slices g1 and g2 we can rebuild the partial decider f . The universal partial

decider will now use the code πc1c2 for a partial decider whose slices have the

codes c1 and c2 for the given universal test.

We define a function γfg combining two unary tests into a boolean promise:

γ : (N→ B)→ (N→ B)→ (N→ OB)

γfg := λn. if fn then ◦true else if gn then ◦false else �

Fact 28.14.1 γfg↓b → if b then Kf else Kg.

Proof We assume γfgn = ◦b and prove if b then Kf else Kg by case analysis on

fn and gn. Straightforward. ■

We define disjointness of unary tests as follows: f ∥ g := Kf → Kg → ⊥.

Fact 28.14.2 (Disjoint test combination)

f ∥ g → γfg↓b ←→ (if b then Kf else Kg).

Proof Direction → follows with Fact 28.14.1. We prove direction ← for b = true, the

other case is analogous.

We assume f ∥ g and Kf and prove γfg↓true. The assumption gives us fn = true

for some n and thus γfg⇓. Now γfg ↓ b for some b with Fact 28.11.4 (2). This

closes the proof since γfg↓ false is contradictory by Fact 28.14.1 and f ∥ g. ■

Fact 28.14.3 UT→ UPD.

Proof Let U be a universal test. We define

Vcn := γ (U(π1c)n) (U(π2c)n)

and show

∀f PF N B ∃c∀nb. fn↓b ←→ Vcn↓b
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We assume f PF N B and slice it into binary tests g1 and g2 using Fact 28.12.7:

∀n. fn↓true ←→ K (g1n)

∀n. fn↓ false ←→ K (g2n)

We now exploit the universality of U and obtain the codes for g1 and g2:

∀n. K (g1n)←→ K (Uc1n)

∀n. K (g2n)←→ K (Uc2n)

We now show

fn↓b ←→ V(πc1c2)n↓b

for given n and B. Using the definition of V , it remains to show

fn↓b ←→ γ(Uc1n)(Uc2n)↓b

We now verify Uc1n ∥ Uc2n using uniqueness of delivery for fn (Fact 28.11.2) and

reduce the claim to

fn↓b ←→ if b then K(Uc1n) else K(Uc2n)

using Fact 28.14.2. This closes the proof since the equivalence is a straightforward

consequence of the assumption for c1 and c2. ■

Theorem 28.14.4 (Recusant partial decider) UT→ Σ f PF N B. recusantf .

Proof Follows with Facts 28.13.4 and 28.14.3. ■

28.15 Notes

This chapter was written January to April 2024. I’m thankful to Dominik Kirst,

whose slides for an Australian summer school got me started, and with whom I

had weekly lunches and discussions during the writing. Dominik supplied me with

results from the literature that evolved into Facts 28.5.3, 28.6.2, and 28.13.4.

We may say that this chapter investigates results from set-theoretic computabil-

ity in computational type theory. The type-theoretic development profits from the

fact that an explicit model of computation (e.g. Turing machines) can be replaced

with the synthetic notion of computability that comes with CTT.

Different variants of Axiom CT (Church’s thesis) appear in the literature. Troel-

stra and Van Dalen [29] discuss CT informally in the context of constructive Math-

ematics. Forster [10, 11] is the first to study CT in computational type theory.

Forster [11] shows for a call-by-value lambda calculus L [13] formalized in CTT the

following formulations of CT are equivalent:
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1. Every function N → N in CTT is computable in L.

2. Every function N → B in CTT is computable in L.

3. The domain of every binary test in CTT can be obtained as the domain of a

function in L.

Forster [11] also covers the diophantine representation of recursively enumerable

sets.
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29 Inductive Equality

Inductive equality extends Leibniz equality with eliminators discriminating on iden-

tity proofs. The definitions are such that inductive identities appear as computa-

tional propositions enabling reducible casts between computational types.

There is an important equivalence between uniqueness of identity proofs (UIP)

and injectivity of dependent pairs (DPI) (i.e., injectivity of the second projection). As

it turns out, UIP holds for discrete types (Hedberg’s theorem) but is unprovable in

computational type theory in general

Hedberg’s theorem is of practical importance since it yields injectivity of depen-

dent pairs and reducibility of identity casts for discrete types, two features that are

essential for inversion lemmas for indexed inductive types.

The proofs in this chapter are of surprising beauty. They are obtained with de-

pendently typed algebraic reasoning about identity proofs and often require tricky

generalizations.

29.1 Basic Definitions

We define inductive equality as an inductive predicate with two parameters and one

index:

eq (X : T, x : X) : X → P ::=
| Q : eq X x x

We treat the argument X of the constructors eq and Q as implicit argument and

write s = t for eq st. Moreover, we call propositions s = t identities, and refer to

proofs of identities s = t as paths from s to t.
Note that identities s = t are computational propositions. This provides for

expressivity we cannot obtain with Leibniz equality. We define two eliminators for

identities

C : ∀XT∀xX ∀pX→T∀y. x = y → px → py

CXxp _ (Q_)a := a : px

J : ∀XT∀xX ∀p∀y. x=y→T. px(Qx)→ ∀ye. pye
J Xxpa _ (Q_) := a : px(Qx)
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called cast operator and full eliminator. For C we treat the first four arguments as

implicit arguments, and for J the first two arguments.

We call applications of the cast operator casts. A cast Cpea with ex=y changes

the type of a from px to py for every admissible type function p. We have

C(Qx)a ≈ a

and say that trivial casts C(Qx)a can be discharged. We also have

∀pX→T∀ex=y∀apx. Cpea ≈ J(λy_.py)aye

which says that the cast eliminator can be expressed with the full eliminator.

Inductive quality as defined here is stronger than the Leibniz equality considered

in Chapter 4. The constructors of the inductive definition give us the constants eq

and Q, and with the cast operator we can easily define the constant for the rewrit-

ing law. Inductive equality comes with two essential generalizations over Leibniz

equality: Rewriting can now take place at the universe T using the cast operator,

and both the cast operator and the full eliminator come with computation rules.

We will make essential use of both features in this chapter.

We remark that equality in Rocq is defined as inductive equality and that the full

eliminator J corresponds exactly to Rocq’s matches for identities.

The laws for propositional equality can be seen as operators on paths. It turns

out that that these operators have elegant algebraic definitions using casts:

σ : x = y → y = x
σe := C(λy.y=x) e (Qx)

τ : x = y → y = z → x = z
τe := C(λy.y=z→x=z) e (λe.e)

ϕ : x = y → fx = fy
ϕe := C(λy.fx=fy) e (Q(fx))

It also turns out that these operators satisfy familiar looking algebraic laws.

Exercise 29.1.1 Prove the following algebraic laws for casts and identities ex=y .

a) Ce(Qx) = e
b) Cee = Qy

In each case, determine a suitable type function for the cast.
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Exercise 29.1.2 (Groupoid operations on paths)

Prove the following algebraic laws for σ and τ :

a) σ(σe) = e
b) τe1(τe2e3) = τ(τe1e2)e3

c) τe(σe) = Qx

Note that σ and τ give identity proofs a group-like structure: τ is an associative

operation and σ obtains inverse elements.

Exercise 29.1.3 Show that J is more general that C by defining C with J .

Exercise 29.1.4 Prove (true = false)→ ∀XT. X not using falsity elimination.

Exercise 29.1.5 (Impredicative characterization)

Prove x = y ←→ ∀pX→P. px → py for inductive identities. Note that the equiva-

lence says that inductive identities agree with Leibniz identities (§4.5).

29.2 Uniqueness of Identity Proofs

We will now show that the following properties of types are equivalent:

UIP(X) := ∀xyX ∀ee′x=y . e = e′ uniqueness of identity proofs

UIP′(X) := ∀xX ∀ex=x. e = Qx u. of trivial identiy proofs

K(X) := ∀x∀px=x→P. p(Qx)→ ∀e.pe Streicher’s K

CD(X) := ∀pX→T∀x∀apx∀ex=x. Cea = a cast discharge

DPI(X) := ∀pX→T∀xuv. (x,u)p = (x,v)p → u = v dependent pair injectivity

The flagship property is UIP (uniqueness of identity proofs), saying that identities

have at most one proof. What is fascinating is that UIP is equivalent to DPI (de-

pendent pair injectivity), saying that the second projection for dependent pairs is

injective. While UIP is all about identity proofs, DPI doesn’t even mention identity

proofs. There is a prominent result by Hofmann and Streicher [18] saying that com-

putational type theory does not prove UIP. Given the equivalence with DPI, this re-

sult is quite surprising. On the other hand, there is Hedberg’s theorem [16] (§29.3)

saying that UIP holds for all discrete types. We remark that UIP is an immediate

consequence of proof irrelevance.

We now show the above equivalence by proving enough implications. The proofs

are interesting in that they need clever generalization steps to harvest the power of

the identity eliminators J and C. Finding the right generalizations requires insight

and practice.1

1We acknowledge the help of Gaëtan Gilbert, (Coq Club, November 13, 2020).
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Fact 29.2.1 UIP(X)→ UIP′(X).

Proof Instantiate UIP(X) with y := x and e′ := Qx. ■

Fact 29.2.2 UIP′(X)→ K(X).

Proof Instantiate UIP′(X) with e from K(X) and rewrite. ■

Fact 29.2.3 K(X)→ CD(X).

Proof Apply K(X) to ∀ex=x. Cea = a. ■

Fact 29.2.4 CD(X)→ DPI(X).

Proof Assume CD(X) and pX→T. We obtain the claim with backward reasoning:

∀xuv. (x,u)p = (x,v)p → u = v by instantiation

∀absigp. a = b → ∀eπ1a=π1b. Ce(π2a) = π2b by elimination on a = b
∀asigp∀eπ1a=π1a. Ce(π2a) = π2a by CD ■

Fact 29.2.5 DPI(X)→ UIP′(X).

Proof Assume DPI(X). We obtain the claim with backward reasoning:

∀ex=x. e = Qx by DPI

∀ex=x. (x, e)eqx = (x,Qx)eqx by instantiation

∀ex=y . (y, e)eqx = (x,Qx)eqx by J ■

Fact 29.2.6 UIP′(X)→ UIP(X).

Proof Assume UIP′(X). We obtain the claim with backward reasoning:

∀e′ex=y . e = e′ by J on e′

∀ex=x. e = Qx by UIP′ ■

Theorem 29.2.7 UIP(X), UIP′(X), K(X), CD(X), and DPI(X) are equivalent.

Proof Immediate by the preceding facts. ■

Exercise 29.2.8 Verify the above proofs with a proof assistant to appreciate the

subtleties.

Exercise 29.2.9 Give direct proofs for the following implications: UIP(X) → K(X),
K(X)→ UIP′(X), and CD(X)→ UIP′(X).

Exercise 29.2.10 Prove that dependent pair types are discrete if their component

types are discrete: ∀X∀pX→T. E(X)→ (∀x. E(pX))→ E(sigp).
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29.3 Hedberg’s Theorem

We will now prove Hedberg’s theorem [16]. Hedberg’s theorem says that all discrete

types satisfy UIP. Hedberg’s theorem is important in practice since it says that the

second projection for dependent pair types is injective if the first components are

numbers.

The proof of Hedberg’s theorem consists of two lemmas, which are connected

with a clever abstraction we call Hedberg functions. In algebraic speak one may see

a Hedberg function a polymorphic constant endo-function on paths.

Definition 29.3.1 A function f : ∀xyX . x = y → x = y is a Hedberg function

for X if ∀xyX ∀ee′x=y . f e = fe′.

Lemma 29.3.2 (Hedberg) Every type that has a Hedberg function satisfies UIP.

Proof Let f : ∀xyX . x = y → x = y be a Hedberg function for X. We treat x, y as

implicit arguments and prove the equation

∀xy∀ex=y . τ(fe)(σ(f(Qy))) = e

We first destructure e, which reduces the claim to

τ(f(Qx))(σ(f(Qx))) = Qx

which is an instance of equation (c) shown in Exercise 29.1.2.

Now let e, e′ : x = y . We show e = e′. Using the above equation twice, we have

e = τ(fe)(σ(f(Qy))) = τ(fe′)(σ(f(Qy))) = e′

since fe = fe′ since f is a Hedberg function. ■

Lemma 29.3.3 Every discrete type has a Hedberg function.

Proof Let d be an equality decider for X. We define a Hedberg function for X as

follows:

fxye := if dxy is L ê then ê else e

We need to show fxye = fxye′. If dxy = L ê, both sides are ê. Otherwise, we

have e : x = y and x ≠ y , which is contradictory. ■

Theorem 29.3.4 (Hedberg) Every discrete type satisfies UIP.

Proof Lemma 29.3.3 and Lemma 29.3.2. ■
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Corollary 29.3.5 Every discrete type satisfies DPI.

Proof Theorems 29.3.4 and 29.2.7. ■

Exercise 29.3.6 Prove Hedberg’s theorem with the weaker assumption that equality

on X is propositionally decidable: ∀xyX . x = y ∨ x ≠ y .

Exercise 29.3.7 Construct a Hedberg function for X assuming FE and stability of

equality on X: ∀xyX . ¬¬(x = y)→ x = y .

Exercise 29.3.8 Assume FE and show that N→ B satisfies UIP.

Hint: Use Exercises 29.3.7 and 17.4.12.

29.4 Inversion with Casts

Sometimes a full inversion operator for an indexed inductive type family can only

be expressed with a cast. As example we consider derivation types for comparisons

x < y defined as follows:

L (x : N) : N → T ::=
| L1 : Lx(Sx)

| L2 : ∀y. Lxy → Lx(Sy)

The type of the inversion operator for L can be expressed as

∀xy∀aLxy . match y return Lxy → T

[0 ⇒ λa.⊥
| Sy ′ ⇒ λaLx(Sy′). (Σey

′=x. Cea = L1x)+ (Σa′. a = L2xy ′a′)

]a

The formulation of the type follows the pattern we have seen before, except that

there is a cast in the branch for L1:

Σey
′=x. Cea = L1x

The cast is necessary since a has the type Lx(Sy ′) while L1x has the type Lx(Sx).
A formulation without a cast seems impossible. The defining equations for the

inversion operator discriminate on a, as usual, which yields the obligations

Σex=x. Ce(L1x) = L1x

Σa′. L2xy ′a = L2xy ′a′
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The first obligation follows with cast discharge and UIP for numbers. The second

obligation is trivial.

We need the inversion operator to show derivation uniqueness of L. As it turns

our, we need an additional fact about L:

Lxx → ⊥ (29.1)

This fact follows from a more semantic fact

Lxy → x < y (29.2)

which follows by induction on Lxy . We don’t have a direct proof of (29.1).

We now prove derivation uniqueness

∀xy∀abLxy . a = b

for L following the usual scheme (induction on a with b quantified followed by

inversion of b). This gives four cases, where the contradictory cases follow with

(29.1). The two remaining cases

∀bLx(Sx)∀ex=x. Ceb = b
L2 xya′ = L2 xyb′

follow with UIP for numbers and the inductive hypothesis, respectively.

We can also define an index inversion operator for L

∀xy∀aLxy . matchy [0 ⇒ ⊥ | Sy ′ ⇒ x ≠ y ′ → Lxy ′ ]

by discriminating on a.

Exercise 29.4.1 The proof sketches described above involve sophisticated type

checking and considerable technical detail, more than can be certified reliably on

paper. Use the proof assistant to verify the above proof sketches.

29.5 Constructor Injectivity with DPI

We present another inversion fact that can only be verified with UIP for numbers.

This time we need DPI for numbers. We consider the indexed type family

K (x : N) : N → T ::=
| K1 : Kx(Sx)

| K2 : ∀zy. Kxz → Kzy → Kxy

351



29 Inductive Equality

which provides a derivation system for arithmetic comparisons x < y taking tran-

sitivity as a rule. Obviously, K is not derivation unique. We would like to show that

the value constructor K2 is injective:

∀aKxz∀bKzy . K2xzyab = K2xzya′b′ → (a, b) = (a′, b′) (29.3)

We will do this with a customized index inversion operator

Kinv : ∀xy. Kxy → (y = Sx)+ (Σz. Kxz × Kzy)

satisfying

Kinv xy(K2xzyab) ≈ R (z, (a, b))

(R is one of the two value constructors for sums). Defining the inversion operator

Kinv is routine. We now prove (29.3) by applying Kinv using Fact 4.6.1 to both sides

of the assumed equation of (29.3), which yields

R (z, (a, b)) = R (z, (a′, b′))

Now the injectivity of the sum constructor R (a routine proof) yields

(z, (a, b)) = (z, (a′, b′))

which yields (a, b) = (a′, b′) with DPI for numbers.

The proof will also go through with a simplified inversion operator Kinv where

in the sum type is replaced with the option type O(Σz. Kxz × Kzy). However, the

use of a dependent pair type seems unavoidable, suggesting that injectivity of K2

cannot be shown without DPI.

Exercise 29.5.1 Prove injectivity of the constructors for sum using the applicative

closure law (Fact 4.6.1).

Exercise 29.5.2 Prove injectivity of K2 using a customized inversion operator em-

ploying an option type rather than a sum type.

Exercise 29.5.3 Prove injectivity of K2 with the dependent elimination tactic of

Rocq’s Equations package.

Exercise 29.5.4 Define the full inversion operator for K.

Exercise 29.5.5 Prove Kxy a x < y .

Exercise 29.5.6 Prove that there is no function ∀xy. Kxy → Σz. Kxz × Kzy .
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29.6 Inductive Equality at Type

We define an inductive equality type at the level of general types

id (X : T, x : X) : X → T ::=
| I : id X x x

and ask how propositional inductive equality and computational inductive equal-

ity are related. In turns out that we can go back and forth between proofs of propo-

sitional identities x = y and derivations of general identities idxy , and that UIP

at one level implies UIP at the other level. We learn from this example that as-

sumptions concerning only the propositional level (i.e., UIP) may leak out to the

computational level and render nonpropositional types inhabited that seem to be

unconnected to the propositional level.

First, we observe that we can define transfer functions

↑ : ∀X∀xyX ∀ex=y . idxy

↓ : ∀X∀xyX ∀aidxy . x = y

such that ↑(Qx) ≈ Ix and ↓(Ix) ≈ Qx for all x, and ↓(↑ e) = e and ↑(↓a) = a for

all e and a. We can also define a function

ϕ : ∀XY ∀fX→Y∀xx′X . idxx′ → id (fx)(fx′)

Fact 29.6.1 UIPX → ∀xyX ∀abidxy . idab.

Proof We assume UIPX and x,y : X and a,b : idxy . We show idab. It suffices to

show

id (↑(↓a))(↑(↓b))

By ϕ it suffices to show id (↓a)(↓b). By ↑ it suffices to show ↓a = ↓b, which holds

by the assumption UIPX. ■

Exercise 29.6.2 Prove the converse direction of Fact 29.6.1.

Exercise 29.6.3 Prove Hedberg’s theorem for general inductive equality. Do not

make use of propositional types.

Exercise 29.6.4 Formulate the various UIP characterizations for general inductive

equality and prove their equivalence. Make sure that you don’t use propositional

types. Note that the proofs from the propositional level carry over to the general

level.

353



29 Inductive Equality

29.7 Notes

The dependently typed algebra of identity proofs identified by Hofmann and

Streicher [18] plays an important role in homotopy type theory [30], a recent branch

of type theory where identities are accommodated as nonpropositional types and

UIP is inconsistent with the so-called univalence assumption. Our proof of Hed-

berg’s theorem follows the presentation of Kraus et al. [21]. That basic type theory

cannot prove UIP was discovered by Hofmann and Streicher [18] in 1994 based on

a so-called groupoid interpretation.
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30 Well-Founded Recursion

Well-founded recursion is provided with an operator

wf(R)→ ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px

generalizing arithmetic size induction such that recursion can descend along any

well-founded relation. In addition, the well-founded recursion operator comes with

an unfolding equation making it possible to prove for the target function the equa-

tions used for the definition of the step function. Well-foundedness of relations is

defined constructively with recursion types

AR(x : X) : P ::= C (∀y. Ryx →ARy)

obtaining well-founded recursion from the higher-order recursion coming with in-

ductive types. Being defined as computational propositions, recursion types medi-

ate between proofs and computational recursion.

The way computational type theory accommodates definitions and proofs by

general well-founded recursion is one of the highlights of computational type

theory.

30.1 Recursion Types

We assume a binary relation RX→X→P and pronounce the Ryx as y below x. We

define the recursion types for R as follows:

AR(x : X) : P ::= C (∀y. Ryx →ARy)

and call the elements of recursion types recursion certificates. Note that recur-

sion types are computational propositions. A recursion certificate of type AR(x)
justifies all recursions starting from x and descending on the relation R. That a

recursion on a certificate of type AR(x) terminates is ensured by the built-in ter-

mination property of computational type theory. Note that recursion types realize

higher-order recursion.

We will harvest the recursion provided by recursion certificates with a recursion

operator

W ′ : ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.ARx → px

W ′pFx(Cϕ) := Fx(λyr . W ′pFy(ϕyr))
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30 Well-Founded Recursion

Computationally, W ′ may be seen as an operator that obtains a function

∀x.ARx → px

from a step function

∀x. (∀y. Ryx → py)→ px

The step function describes a function ∀x.px obtained with a continuation func-

tion

∀y. Ryx → py

providing recursion for all y below x. We also speak of recursion guarded by R.

We define well-founded relations as follows:

wf(RX→X→P) := ∀x.AR(x)

Note that a proof of a proposition wf(R) is a function that yields a recursion cer-

tificate AR(x) for every x of the base type of R. For well-founded relations, we can

specialize the recursion operator W ′ as follows:

W : wf(R)→ ∀pX→T. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px
WhpFx := W ′pFx(hx)

We will refer to W ′ and W as well-founded recursion operators. Moreover, we will

speak of well-founded induction if a proof is obtained with an application of W ′

or W .

It will become clear thatW generalizes the size induction operator. For one thing

we will show that the order predicate <N→N→N is a well-founded relation. Moreover,

we will show that well-founded relations can elegantly absorbe size functions.

The inductive predicates AR are often called accessibility predicates. They in-

ductively identify the accessible values of a relation as those values x for which all

values y below (i.e., Ryx) are accessible. To start with, all terminal values of R are

accessible in R. We have the equivalence

AR(x) ←→ (∀y. Ryx →AR(y))

Note that the equivalence is much weaker than the inductive definition in that it

doesn’t provide recursion and in that it doesn’t force an inductive interpretation of

the predicate AR (e.g., the full predicate would satisfy the equivalence).

We speak of recursion typesAR(x) rather than accessibility propositionsAR(x)
to emphasize that the propositional typesAR(x) support computational recursion.
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Fact 30.1.1 (Extensionality) Let R and R′ be relations X → X → P.

Then (∀xy. R′xy → Rxy)→ ∀x.AR(x)→AR′(x).

Proof By well-founded induction with W ′. ■

Exercise 30.1.2 Prove AR(x)←→ (∀y. Ryx →AR(y)) from first principles. Make

sure you understand both directions of the proof.

Exercise 30.1.3 Prove AR(x)→ ¬Rxx.

Hint: Use well-founded induction with W ′.

Exercise 30.1.4 Prove Rxy → Ryx → ¬AR(x).

Exercise 30.1.5 Show that well-founded relations disallow infinite descend:

AR(x)→ px → ¬∀x. px → ∃y. py ∧ Ryx.

Exercise 30.1.6 Suppose we narrow the propositional discrimination restriction of

the underlying type theory such that recursion types are the only propositional

types allowing for computational discrimination. We can still express an empty

propositional type with computational falsity elimination:

V : P ::= A(λab⊤.⊤)(I)

Define a function V → ∀XT. X.

30.2 Well-founded Relations

Fact 30.2.1 The order relation on numbers is well-founded.

Proof We prove the more general claim ∀nx. x < n →A<(x) by induction on the

upper bound n. For n = 0 the premise x < n is contradictory. For the successor

case we assume x < Sn and prove A<(x). By the single constructor for A we

assume y < x and proveA<(x). Follows by the inductive hypothesis since y < n.■

Given two relations RX→X→P and SY→Y→P, we define the lexical product R× S as

a binary relation X × Y → X × Y → P :

R × S := λ(x′, y ′) (x,y)X×Y .Rx′x ∨ x′ = x ∧ Sy ′y

Fact 30.2.2 (Lexical products) wf(R)→ wf(S)→ wf(S × R).
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Proof We prove ∀xy.AR×S(x,y) by nested well-founded induction on first x in R
and then y in S. By the constructor forAR×S(x,y)we assume Rx′x∨x′ = x∧Sy ′y
and prove AR×S(x′, y ′). If Rx′x, the claim follows by the inductive hypothesis

for x. If x′ = x ∧ Sy ′y , the claim is AR×S(x,y ′) and follows by the inductive

hypothesis for y . ■

The above proof is completely straightforward when carried out formally with

the well-founded recursion operator W .

Another important construction for binary relations are retracts. Here one has

a relation RY→Y→P and uses a function σX→Y to obtain a relation Rσ on X:

Rσ := λx′x. R(σx′)(σx)

We will show that retracts of well-founded relations are well-founded. It will also

turn out that well-founded recursion on a retract Rσ is exactly well-founded size

induction on R with the size function σ .

Fact 30.2.3 (Retracts) wf(R)→ wf(Rσ ).

Proof Let RY→Y→P and σX→Y . We assume wf(R). It suffices to show

∀yx.σx = y →ARσ (x)

We show the lemma by well-founded induction on y and R. We assume σx = y
and show ARσ (x). Using the constructor for ARσ (x), we assume R(σx′)(σx) and

show ARσ (x′). Follows with the inductive hypothesis for σx′. ■

Corollary 30.2.4 (Well-founded size induction)

Let RY→Y→P be well-founded and σX→Y . Then:

∀pX→T. (∀x. (∀x′. R(σx′)(σx)→ px′)→ px)→ ∀x.px.

We now obtain the arithmetic size induction operator from §19.2 as a special

case of the well-founded size induction operator.

Corollary 30.2.5 (Arithmetic size induction)

∀σX→N∀pX→T. (∀x. (∀x′.σx′ < σx → px′)→ px)→ ∀x.px.

Proof Follows with Corollary 30.2.4 and Fact 30.2.1. ■

There is a story here. We came up with retracts to have an elegant construction

of the wellfounded size induction operator appearing in Corollary 30.2.4. Note that

conversion plays an important role in type checking the construction. The proof

that retracts of well-founded relations are well-founded (Fact 30.2.3) is interesting in

that it first sets up an intermediate that can be shown with well-founded recursion.

The equational premise σx = y of the intermediate claim is needed so that the

well-founded recursion is fully informed. Similar constructions will appear once we

look at inversion operators for indexed inductive types.
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Exercise 30.2.6 Prove R ⊆ R′ → wf(R′) → wf(R) for all relations R,R′ : X → X → P.

Tip: Use extensionality (Fact 30.1.1).

Exercise 30.2.7 Give two proofs for wf(λxy. Sx = y) : A direct proof by structural

induction on numbers, and a proof exploiting that λxy. Sx = y is a sub-relation of

the order relation on numbers.

30.3 Unfolding Equation

Assuming FE, we can prove the equation

WFx = Fx(λyr . WFy)

for the well-founded recursion operator W . We will refer to this equation as un-

folding equation. The equation makes it possible to prove that the function WF
satisfies the equations underlying the definition of the guarded step function F .

This is a major improvement over arithmetic size induction where no such tool is

available. For instance, the unfolding equation gives us the equation

Dxy =

0 if x ≤ y
S(D(x − Sy)y) if x > y

for an Euclidean division function D defined with well-founded recursion on <N :

Dxy := W(Fy)x

F : N→ ∀x. (∀x′. x′ < x → N)→ N

Fyxh :=

0 if x ≤ y
S(h(x − Sy)[x − Sy < x\) if x > y

Note that the second argument y is treated as a parameter. Also note that the

equation for D is obtained from the unfolding equation for W by computational

equality.

We now prove the unfolding equation using FE. We first show the remarkable

fact that under FE all recursion certificates are equal.

Lemma 30.3.1 (Uniqueness of recursion types)

Under FE, all recursion types are unique: FE → ∀x∀abAR(x). a = b.

Proof We prove

∀x∀aAR(x)∀bcAR(x). b = c
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using W ′. This gives us the claim ∀bcAR(x). b = c and the inductive hypothesis

∀x′. Rx′x → ∀bcAR(x′). b = c

We destructure b and c, which gives us the claim

Cϕ = Cϕ′

for ϕ,ϕ′ : ∀x′. Rx′x →AR(x′). By FE it suffices to show

ϕx′r =ϕ′x′r

for rRx′x . Holds by the inductive hypothesis. ■

Fact 30.3.2 (Unfolding equation)

Let RX→X→P, pX→T, and F∀x. (∀x′. Rx′x→px′)→px .

Then FE → wf(R)→ ∀x. WFx = Fx(λx′r . WFx′).

Proof We prove WFx = Fx(λx′r . WFx′). We have

WFx = W ′Fxa = W ′Fx(Cϕ) = Fx(λx′r . W ′Fx′(ϕx′r))

for some a and ϕ. Using FE, it now suffices to prove the equation

W ′Fx′(ϕx′r) = W ′Fx′b

for some b. Holds by Lemma 30.3.1. ■

For functions f∀x.px and F∀x. (∀x′. Rx′x→px′)→px we define

f î F := ∀x. fx = Fx(λyr .fy)

and say that f satisfies F . Given this notation, we may write

FE → wf(R)→ WF î F

for Fact 30.3.2. We now prove that all functions satisfying a step function agree if

FE is assumed and R is well-founded.

Fact 30.3.3 (Uniqueness)

Let RX→X→P, pX→T, and F∀x. (∀x′. Rx′x→px′)→px .

Then FE → wf(R)→ (f î F)→ (f ′ î F)→ ∀x. fx = f ′x.

Proof We prove∀x. fx = f ′x usingW with R. Using the assumptions for f and f ′,
we reduce the claim to Fx(λx′r .fx′) = Fx(λx′r .f ′x′). Using FE, we reduce that

claim to Rx′x → fx′ = f ′x′, an instance of the inductive hypothesis. ■

Exercise 30.3.4 Note that the proof of Lemma 30.3.1 doubles the quantification

of a. Verify that this is justified by the general law (∀a.∀a.pa)→ ∀a.pa.
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g : N→ N → N

g 0y = y

g (Sx)0 = Sx

g (Sx) (Sy) =

g (Sx) (y − x) if x ≤ y
g (x −y) (Sy) if x > y

guard conditions

x ≤ y → Sx + (y − x) < Sx + Sy

x > y → (x −y)+ Sy < Sx + Sy

Figure 30.1: Recursive specification of a gcd function

30.4 Example: GCDs

Our second example for the use of well-founded recursion and the unfolding equa-

tion is the construction of a function computing GCDs (§20.5). We start with the

procedural specification in Figure 30.1. We will construct a function gN→N→N satis-

fying the specification using W on the retract of <N for the size function

σ : N× N → N

σ(x,y) := x +y

The figure gives the guard conditions for the recursive calls adding the precondi-

tions established by the conditional in the third specifying equation.

Given the specification in Figure 30.1, the formal definition of the guarded step

function is straightforward:

F : ∀cN×N. (∀c′. σc′ < σc → N)→ N

F (0, y) _ := y

F (Sx,0) _ := Sx

F (Sx, Sy)h :=

h(Sx, y − x) [Sx + (y − x) < Sx + Sy\ if x ≤ y
h(x −y, Sy) [(x −y)+ Sy < Sx + Sy\ if x > y

We now define the desired function

g : N→ N → N

gxy := WHF(x,y)
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using the recursion operator W and the function

H : ∀cN×N.A(<N)σ (c)

obtained with the functions for recursion certificates for numbers (Fact 30.2.1) and

retracts (Fact 30.2.3). Each of the three specifying equations in Figure 30.1 can now

be obtained as an instance of the unfolding equation (Fact 30.3.2).

In summary, we note that the construction of a function computing GCDs with a

well-founded recursion operator is routine given the standard constructions for re-

tracts and the order on numbers. Proving that the specifying equations are satisfied

is straightforward using the unfolding equation and FE.

That the example can be done so nicely with the general retract construction is

due to the fact that type checking is modulo computational equality. For instance,

the given type of the step function F is computationally equal to

∀cN×N. (∀c′. (<N)σ c′c → N)→ N

Checking the conversions underlying our presentation is tedious if done by hand

but completely automatic in Rocq.

Exercise 30.4.1 Construct a function fN→N→N satisfying the Ackermann equations

(§1.11) using well-founded recursion for the lexical product <N ×<N.

30.5 Unfolding Equation without FE

We have seen a proof of the unfolding equation assuming FE. Alternatively, one

can prove the unfolding equation assuming that the step function has a particular

extensionality property. For concrete step function one can usually prove that they

have this extensionality without using assumptions.

We assume a relation RX→X→P, a type function pX→T, and a step function

F : ∀x. (∀x′. Rx′x → px′)→ px

We define extensionality of F as follows:

ext(F) := ∀xhh′. (∀yr. hyr = h′yr)→ Fxh = Fxh′

The property says that Fxh remains the same if h is replaced with a function agree-

ing with h. We have FE→ ext(F). Thus all proofs assuming ext(F) yields proofs for

the stronger assumption FE.

Fact 30.5.1 ext(F)→ ∀xaa′. W ′Fxa = W ′Fxa′.
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Proof We assume ext(F) and show ∀x∀aAR(x).∀aa′. W ′Fxa = W ′Fxa′ using W ′.

This give us the inductive hypothesis

∀y∀rRyx∀aa′. W ′Fya = W ′Fya′

By destructuring we obtain the claim W ′Fx(Cϕ) = W ′Fx(Cϕ′) for two functions

ϕ,ϕ′ : ∀y.Ryx →AR(y). By reducing W ′ we obtain the claim

Fx(λyr . W ′Fy(ϕyr)) = Fx(λyr . W ′Fy(ϕ′yr))

By the extensionality of F we now obtain the claim

W ′Fy(ϕyr) = W ′Fy(ϕ′yr)

for rRyx , which is an instance of the inductive hypothesis. ■

Fact 30.5.2 (Unfolding equation)

Let R be well-founded. Then ext(F)→ ∀x. WFx = Fx(λyr . WFy).

Proof We assume ext(F) and prove WFx = Fx(λyr . WFy). We have WFx =
W ′Fx(Cϕ) = Fx(λyr . W ′Fy(ϕyr)). Extensionality of F ′ now gives us the claim

W ′Fy(ϕyr) = W ′Fy(ϕ′yr), which follows by Fact 30.5.1. ■

Exercise 30.5.3 From the definition of extensionality for step function it seams

clear that ordinary step functions are extensional. To prove that an ordinary step

function is extensional, no induction is needed. It suffices to walk through the

matches and confront the recursive calls.

a) Prove that the step function for Euclidean division is extensional (§30.3).

b) Prove that the step function for GCDs is extensional (§30.4).

c) Prove that the step function for the Ackermann equations is extensional (Exer-

cise 30.4.1).

Exercise 30.5.4 Show that all functions satisfying an extensional step function for

a well-founded relation agree.

30.6 Witness Operator

There is an elegant and instructive construction of an existential witness operator

for numbers (Fact 14.2.2) using recursion types. We assume a decidable predicate

pN→P and define a relation

Rxy := x = Sy ∧¬py

on numbers. We would expect that p is satisfiable if and only if AR is satisfiable.

And given a certificate AR(x), we can compute a witness of p doing a linear search

starting from x using well-founded recursion.
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Lemma 30.6.1 p(x +y)→AR(y).

Proof Induction on x with y quantified. The base case follows by falsity elimina-

tion. For the successor case, we assume H : p(Sx +y) and prove AR(y). Using the

constructor for AR, we assume ¬py and prove AR(Sy). By the inductive hypothe-

sis it suffices to show p(x + Sy). Holds by H. ■

Lemma 30.6.2 AR(x)→ sig(p).

Proof By well-founded induction with W ′. Using the decider for p, we have two

cases. If px, we have sig(p). If ¬px, we have R(Sx)x and thus the claim holds by

the inductive hypothesis. ■

Fact 30.6.3 (Existential witness operator)

∀pN→P. (∀x. D(px))→ ex(p)→ sig(p).

Proof We assume a decidable and satisfiable predicate pN→P and define R as above.

By Lemma 30.6.2 it suffices to show AR(0). We can now obtain a witness x for p.

The claim follows with Lemma 30.6.2. ■

We may see the construction of an existential witness operator for numbers with

linear search types (Fact 14.2.2) as a specialization of the construction shown here

where the general recursion types used here are replaced with special purpose linear

search types.

Exercise 30.6.4 Prove AR(n)←→ T(n).

Exercise 30.6.5 Prove thatAR yields the elimination lemma for linear search types:

∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n.AR(n)→ qn

Do the proof without using linear search types.

30.7 Equations Package and Extraction

The results presented so far are such that, given a recursive specification of a func-

tion, we can obtain a function satisfying the specification, provided we can supply a

well-founded relation and proofs for the resulting guard conditions (see Figure 30.1

for an example). Moreover, if we don’t accept FE as an assumption, we need to prove

that the specified step function is extensional as defined in §30.5.

The proof assistant Rocq comes with a tool named Equations package making it

possible to write recursive specifications and associate them with well-founded re-

lations. The tool then automatically generates the resulting proof obligations. Once
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the user has provided the requested proofs for the specification, a function is de-

fined and proofs are generated that the function satisfies the specifying equations.

This uses the well-founded recursion operator and the generic proofs of the unfold-

ing equation we have seen. One useful feature of Equations is the fact that one can

specify functions with several arguments and with size induction. Equations then

does the necessary pairing and the retract construction, relieving the user from

tedious coding.

Taken together, we can now define recursive functions where the termination

conditions are much relaxed compared to strict structural recursion. In contrast

to functions specified with strict structural recursion, the specifying equations are

satisfied as propositional equations rather than as computational equations. Nev-

ertheless, if we apply functions defined with well-founded recursion to concrete

and fully specified arguments, reduction is possible and we get the accompanying

computational equalities (e.g., gcd 21 56 ≈ 7).

This is a good place to mention Rocq’s extraction tool. Given a function spec-

ified in computational type theory, one would expect that one can extract related

programs for functional programming languages. In Rocq, such an extraction tool

is available for all function definitions, and works particularly well for functions

defined with Equations. The vision here is that one specifies and verifies functions

in computational type theory and then extracts programs that are correct by con-

struction. A flagship project using extraction is CompCert (compcert.org) where a

verified compiler for a subset of the C programming language has been developed.

30.8 Padding and Simplification

Given a certificate a : AR(x), we can obtain a computationally equal certificate

b : AR(x) that exhibits any number of applications of the constructor for certifi-

cates:

a ≈ Cx(λyr. a′)
a ≈ Cx(λyr.Cy(λy ′r ′. a′′))

We formulate the idea with two functions

D : ∀x.AR(x)→ ∀y. Ryx →AR(y)

Dxa := match a [C ϕ ⇒ϕ]

P : N→ ∀x.AR(x)→AR(x)

P 0xa := a

P (Sn)a := Cx(λyr. Pny(Dxayr))

365



30 Well-Founded Recursion

and refer to P as padding function. We have, for instance,

P(1+n)xa ≈ Cx(λy1r1. Pny1(Dxay1r1))

P(2+n)xa ≈ Cx(λy1r1. Cy1(λy2r2. Pny2(Dy1(Dxay1r1)y2r2)))

The construction appears tricky and fragile on paper. When carried out with a proof

assistant, the construction is fairly straightforward: Type checking helps with the

definitions of D and P , and simplification automatically obtains the right hand sides

of the two examples from the left hand sides.

When we simplify a term P(k + n)xa where k is a concrete number and n, x,

and a are variables, we obtain a term that needs at least 2k additional variables to be

written down. Thus the example tells us that simplification may have to introduce

an unbounded number of fresh variables.

The possibility for padding functions seems to be a unique feature of higher-

order recursion.

Exercise 30.8.1 Write a padding function for linear search types (§14.1).

30.9 Classical Well-foundedness

Well-founded relations and well-founded induction are basic notions in set-theoretic

foundations. The standard definition of well-foundedness in set-theoretic founda-

tions asserts that all non-empty sets have minimal elements. The set-theoretic def-

inition is rather different the computational definition based on recursion types.

We will show that the two definitions are equivalent under XM, where sets will be

expressed as unary predicates.

A meeting point of the computational and the set-theoretic world is well-founded

induction. In both worlds a relation is well-founded if and only if it supports well-

founded induction.

Fact 30.9.1 (Characterization by well-founded induction)

∀RX→X→P. wf(R) ←→ ∀pX→P. (∀x. (∀y. Ryx → py)→ px)→ ∀x.px.

Proof Direction → follows with W . For the other direction, we instantiate p
with AR. It remains to show ∀x. (∀y. Ryx →ARy) →ARx, which is an instance

of the type of the constructor for AR. ■

The characterization of well-foundedness with the principle of well-founded in-

duction is very interesting since no inductive types and only a predicate pX→P is

used. Thus the computational aspects of well-founded recursion are invisible. They

are added by the presence of the inductive predicate AR admitting computational

elimination.
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Next we establish a positive characterization of the non-well-founded elements

of a relation. We define progressive predicates and progressive elements for a

relation RX→X→P as follows:

proR(pX→P) := ∀x. px → ∃y. py ∧ Ryx
proR(xX) := ∃p. px ∧ proR(p)

Intuitively, progressive elements for a relation R are elements that have an infinite

descent in R. Progressive predicates are defined such that every witness has an

infinite descent in R. Progressive predicates generalize the frequently used notion

of infinite descending chains.

Fact 30.9.2 (Disjointness) ∀x.AR(x)→ proR(x)→ ⊥.

Proof By well-founded induction with W ′. We assume a progressive predicate p
with px and derive a contradiction. By destructuring we obtain y such that py and

Ryx. Thus proR(y). The inductive hypothesis now gives us a contradiction. ■

Fact 30.9.3 (Exhaustiveness) XM→ ∀x.AR(x)∨ proR(x).

Proof Using XM, we assume ¬AR(x) and show proR(x). It suffices to show

proR(λz.¬AR(z)). We assume ¬AR(z) and prove ∃y. ¬AR(y) ∧ Ryz. Using XM,

we assume H : ¬∃y. ¬AR(y)∧Ryz and derive a contradiction. It suffices to prove

AR(z). We assume Rz′z and prove AR(z′). Follows with H and XM. ■

Fact 30.9.4 (Characterization by absence of progressive elements)

XM → (wf(R) ←→ ¬∃x. proR(x)).

Proof For direction → we assume wf(R) and proR(x) and derive a contradiction.

We have AR(x). Contradiction by Fact 30.9.2.

For direction ← we assume ¬∃x. proR(x) and prove AR(x). By Fact 30.9.3 we

assume proR(x) and have a contradiction with the assumption. ■

We define the minimal elements in RX→X→P and pX→P as follows:

minR,p(x) := px ∧∀y. py → ¬Ryx

Using XM, we show that a predicate is progressive if and only if it has no minimal

element.

Fact 30.9.5 XM→ (proR(p)←→ ¬∃x. minR,p(x)).
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Proof For direction →, we derive a contradiction from the assumptions proR(p),
px, and ∀y. py → ¬Ryx. Straightforward.

For direction ←, using XM, we derive a contradiction from the assumptions

¬∃x. minR,p(x), px, and H : ¬∃y. py ∧ Ryx. We show minR,p(x). We assume

py and Ryx and derive a contradiction. Straightforward with H. ■

Next we show that R has no progressive element if and only if every satisfiable

predicate has a minimal witness.

Fact 30.9.6 XM→ (¬(∃x. proR(x)) ←→ ∀p. (∃x.px)→ ∃x. minR,p(x)).

Proof For direction →, we use XM and derive a contradiction from the assumptions

¬∃x. proR(x), px, and ¬∃x. minR,p(x). With Fact 30.9.5 we have proR(p). Contra-

diction with ¬∃x. proR(x).
For direction ←, we assume px and proR(p) and derive a contradiction.

Fact 30.9.5 gives us ¬∃x. minR,p(x). Contradiction with the primary assumption. ■

We now have that a relation R is well-founded if and only if every satisfiable

predicate has a minimal witness in R.

Fact 30.9.7 (Characterization by existence of minimal elements)

XM → (wf(R) ←→ ∀pX→P. (∃x.px)→ ∃x. minR,p(x).

Proof Facts 30.9.4 and 30.9.6. ■

The above proofs gives us ample opportunity to contemplate about the role of

XM in proofs. An interesting example is Fact 30.9.3, where XM is used to show that

an element is either well-founded or progressive.

30.10 Transitive Closure

The transitive closure R+ of a relation RX→X→P is the minimal transitive relation

containing R. There are different possibilities for defining R+. We choose an induc-

tive definition based on two rules:

Rxy

R+xy

R+xy ′ Ry ′y

R+xy

We work with this format since it facilitates proving that taking the transitive clo-

sure of a well-founded relation yields a well-founded relation. Note that the induc-

tive predicate behind R+ has four parameters X,R,x,y , where X,R,x are uniform

and y is non-uniform.
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Fact 30.10.1 Let RX→X→P. Then wf(R)→ wf(R+).

Proof We assume wf(R) and prove ∀y. AR+(y) by well-founded induction on y
and R. This gives us the induction hypothesis and the claim AR+(y). Using the

constructor for recursion types we assume R+xy and show AR+(x). If R+xy is

obtained from Rxy , the claim follows with the inductive hypothesis. Otherwise we

have R+xy ′ and Ry ′y . The inductive hypothesis gives us AR+(y ′). Thus AR+(x)
since R+xy ′. ■

Exercise 30.10.2 Prove that R+ is transitive.

Hint: Assume R+xy and prove ∀z. R+yz → R+xz by induction on R+yz. First

formulate and prove the necessary induction principle for R+.

30.11 Notes

The inductive definition of the well-founded points of a relation appears in Aczel [1]

in a set-theoretic setting. Nordström [26] adapts Aczel’s definition to a constructive

type theory without propositions and advocates functions recursing on recursion

types. Balaa and Bertot [3] define a well-founded recursion operator in Rocq and

prove that it satisfies the unfolding equation. They suggest that Rocq should sup-

port the construction of functions with a tool taking care of the tedious routine

proofs coming with well-founded recursion, anticipating Rocq’s current Equations

package.
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Aczel trees are wellfounded trees where each node comes with a type and a function

fixing the subtree branching. Aczel trees were conceived by Peter Aczel [2] as a

representation of set-like structures in type theory. Aczel trees are accommodated

with inductive type definitions featuring a single value constructor and higher-order

recursion.

We discuss the dominance condition, a restriction on inductive type definitions

ensuring predicativity of nonpropositional universes. Using Aczel trees, we will

show an important foundational result: No universe embeds into one of its types.

From this hierarchy result we obtain that proof irrelevance is a consequence of

excluded middle, and that omitting the propositional discrimination restriction in

the presence of the impredicative universe of propositions results in inconsistency.

31.1 Inductive Types for Aczel Trees

We define an inductive type providing Aczel trees:

T : T ::= T (X : T, X → T )

There is an important constraint on the universe levels of the two occurrences of T
we will discuss later. We see a tree TXf as a tree taking all trees fx as (immediate)

subtrees, where the edges to the subtrees are labelled with the values of X. We

clarify the idea behind Aczel trees with some examples. The term

T⊥ (λa.match a [])

describes an atomic tree not having subtrees. Given two trees t1 and t2, the term

T B (λb.match b [ true⇒ t1 | false ⇒ t2])

describes a tree having exactly t1 and t2 as subtrees where the boolean values are

used as labels. The term

T N (λ_. T⊥ (λh.match h [])

describes an infinitely branching tree that has a subtree for every number. All

subtrees of the infinitely branching tree are equal (to the atomic tree).
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Consider the term

TT (λs.s)

which seems to describe a universal tree having every tree as subtree. It turns out

that the term for the universal tree does not type check since there is a universe

level conflict. First we note that Rocq’s type theory admits the definition

T : Ti ::= T (X : Tj , X → T )

only if i > j. This reflects a restriction on inductive definitions we have not dis-

cussed before. We speak of the dominance condition. In its general form, the

dominance condition says that the type of every value constructor (without the pa-

rameter prefix) must be a member of the universe specified for the type constructor.

The dominance condition admits the above definition for i > j since then Tj : Ti,
X : Ti, and T : Ti and hence

(∀XTj . (X → T )→ T ) : Ti

using the universe rules from §5.3. For the reader’s convenience we repeat the rules

for universes

T1 : T2 : T3 : · · ·
P ⊆ T1 ⊆ T2 ⊆ T3 ⊆ · · ·
P : T2

and function types

⊢ u : U x : u ⊢ v : U

⊢ ∀xu.v : U

⊢ u : U x :u ⊢ v : P

⊢ ∀xu. v : P

here. The variable U ranges over the computational universes Ti. The first rule

says that every computational universe is closed under taking function types. The

second rule says that the universe P enjoys a stronger closure property known as

impredicativity.

Note that the term for the universal tree TT (λs.s) does not type check since we

do not have T : Tj for i > j.

Exercise 31.1.1 The dominance condition for inductive type definitions requires

that the types of the value constructors are in the target universe of the type con-

structor, where the types of the value constructor are considered without the pa-

rameter prefix. That the parameter prefix is not taken into account ensures that
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the universes Ti are closed under the type constructors for pairs, options, and lists.

Verify the following typings for lists:

L(X : Ti) : Ti ::= nil | cons (X,L(X))
L : Ti → Ti : Ti+1

nil : L(X) : Ti (X : Ti)

cons : X → L(X)→ L(X) : Ti (X : Ti)

nil : ∀XTi . L(X) : Ti+1

cons : ∀XTi . X → L(X)→ L(X) : Ti+1

Write down an analogous table for pairs and options.

31.2 Propositional Aczel Trees

We now note that the definition

Tp : P ::= Tp (X : P, X → Tp)

of the type of propositional Aczel trees satisfies the dominance condition since the

type of the constructor Tp is in P by the impredicativity of the universe P:

(∀XU . (X → Tp)→ Tp) : P

Moreover, the term for the universal tree

up := TpTp (λs.s)

does type check for propositional Aczel trees. So there is a universal propositional

Aczel tree.

The universal propositional Aczel tree up is paradoxical in that it conflicts with

our intuition that all values of an inductive type are wellfounded. A value of an

inductive type is wellfounded if descending to a subvalue through a recursion in the

type definition always terminates. Given that reduction of recursive functions is as-

sumed to be terminating, one would expect that values of inductive types are well-

founded. However, the universal propositional Aczel tree TpTp (λs.s) is certainly

not wellfounded. So we have to adopt the view that because of the impredicativity

of the universe P certain recursive propositional types do admit non-wellfounded

values. This does not cause harm since the propositional discrimination restriction

reliably prevents recursion on non-wellfounded values.

We remark that there are recursive propositional types providing for functional

recursion. A good example are the linear search types for the existential witness op-

erator for numbers (§14.1)). It seems that the values of computational propositions

are always wellfounded.
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31.3 Subtree Predicate and Wellfoundedness

We will consider computational Aczel trees at the lowest universe level

T : T2 ::= T (X : T1, X → T )

and propositional Aczel trees

Tp : P ::= Tp (X : P, X → Tp)

as defined before. We reserve the letters s and t for Aczel trees.

To better understand the situation, we define a subtree predicate for computa-

tional Aczel trees:

∈ : T → T → P

s ∈ TXf := ∃x. fx = s

Remarkably, the propositional discrimination restriction prevents us from defining

an analogous subtree predicate for propositional Aczel trees (since the target type

is not a proposition but the universe P).

For computational Aczel trees we can prove ∀s. s ∉ s, which disproves the exis-

tence of a universal tree. We will prove ∀s. s ∉ s by induction on s.

Definition 31.3.1 (Eliminator for computational Aczel trees)

ET : ∀pT→T. (∀Xf . (∀x. p(fx))→ p(TXf))→ ∀s. ps
ET p F (TXf) := FXf(λx. ET p F (fx))

Fact 31.3.2 (Irreflexivity) ∀sT . s ∉ s.

Proof By induction on s (using ET ) it suffice to show TXf ∉ TXf given the induc-

tive hypothesis ∀x. fx ∉ fx. It suffices to show for every xX that fx = TXf is

contradictory. Since fx = TXf implies fx ∈ fx, we have a contradiction with the

inductive hypothesis. ■

For propositional Aczel trees we can prove that a subtree predicate RTp→Tp→P

such that

R s (TpXf)←→ ∃x. fx = s

does not exist. This explains why the existence of the universal propositional Aczel

tree does not lead to a proof of falsity.

Definition 31.3.3 (Eliminator for propositional Aczel trees)

ETp : ∀pTp→P. (∀Xf . (∀x. p(fx))→ p(TpXf))→ ∀s. ps
ETp p F (TpXf) := FXf(λx. ETp p F (fx))
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Fact 31.3.4 ¬∃RTp→Tp→P. ∀sXf . Rs(TpXf)←→ ∃x. fx = s.

Proof Let RTp→Tp→P be such that ∀sXf . Rs(TpXf) ←→ ∃x. fx = s. We derive a

contradiction. Since the universal propositional Aczel tree up := TpTp (λs.s) satis-

fies Ruu, it suffices to prove ∀s.¬Rss. We can do this by induction on s (using ETp )

following the proof for computational Aczel trees (Fact 31.3.2). ■

We summarize the situation as follows. Given a type

T : U ::= T(X : V, X → T )

of Aczel trees, if we can define a subtree predicate ∈ : T → T → P such that

s ∈ TXf ←→ ∃x. fx = s

we cannot define a universal tree u ∈ u. This works out such that for propositional

Aczel trees we cannot define a subtree predicate (because of the propositional dis-

crimination restriction) and for computational Aczel trees we cannot define a uni-

versal tree (because of the dominance restriction).

Exercise 31.3.5 Suppose you are allowed exactly one violation of the propositional

discrimination restriction. Give a proof of falsity.

31.4 Propositional Hierarchy Theorem

A fundamental result about Rocq’s type theory says that the universe P of proposi-

tions cannot be embedded into a proposition, even if equivalent propositions may

be identified. This important result was first shown by Thierry Coquand [9] in 1989

for a subsystem of Rocq’s type theory. We will prove the result for Rocq’s type

theory by showing that an embedding as specified provides for the definition of a

subtree predicate for propositional Aczel trees.

Theorem 31.4.1 (Coquand) There is no proposition AP such that there exist func-

tions EP→A and DA→P such that ∀PP. D(E(P))←→ P .

Proof Let AP, EP→A, DA→P be given such that ∀PP. D(E(P)) ←→ P . By Fact 31.3.4

is suffices to show that

Rst := D (match t [TpXf ⇒ E(∃x. fx = s)])

satisfies ∀sXf . Rs(TpXf) ←→ ∃x. fx = s, which is straightforward. Note that the

match in the definition of R observes the propositional discrimination restriction

since the proposition ∃x. fx = s is encoded with E into a proof of the proposition

A. ■

Exercise 31.4.2 Show ¬∃AP ∃EP→A ∃DA→P∀PP. D(E(P)) = P .

Exercise 31.4.3 Show ∀PP. P ≠ P.

375



31 Aczel Trees and Hierarchy Theorems

31.5 Excluded Middle Implies Proof Irrelevance

With Coquand’s theorem we can show that the law of excluded middle implies proof

irrelevance (see §5.2 for definitions). The key idea is that given a proposition with

two different proofs we can define an embedding as excluded by Coquand’s theo-

rem. For the proof to go through we need the full elimination lemma for disjunc-

tions (see Exercise 31.5.2).

Theorem 31.5.1 Excluded middle implies proof irrelevance.

Proof Let d∀X : P. X∨¬X and let a and b be proofs of a proposition A. We show a = b.

Using excluded middle, we assume a ≠ b and derive a contradiction with Coquand’s

theorem. To do so, we define an encoding EP→A and a decoding DA→P as follows:

E(X) := if dX then a else b

D(c) := (a = c)

It remains to show D(E(X))←→ X for all propositions X. By computational equality

it suffices to show

(a = if dX then a else b)←→ X

By case analysis on dX : X ∨ ¬X using the full elimination lemma for disjunctions

(Exercise 31.5.2) we obtain two proof obligations

X → (a = a←→ X)

¬X → (a = b ←→ X)

which both follow by propositional reasoning (recall the assumption a ≠ b). ■

Exercise 31.5.2 Prove the full elimination lemma for disjunctions

∀XYP∀pX∨Y→P. (∀xX . p(Lx))→ (∀yY . p(Ry))→ ∀a.pa

which is needed for the proof of Theorem 31.5.1.

31.6 Hierarchy Theorem for Computational Universes

We will now show that no computational universe embeds into one of its types. Note

that by Coquand’s theorem we already know that the universe P does not embed

into one of its types.

We define a general embedding predicate ET→T→P for types:

EXY := ∃EX→Y ∃DY→X ∀x. D(Ex) = x
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Fact 31.6.1 Every type embeds into itself: ∀XT : EXX.

Fact 31.6.2 ∀XYT : ¬EXY → X ≠ Y .

Fact 31.6.3 P embeds into no proposition: ∀PP. ¬EPP .

Proof Follows with Coquand’s theorem 31.4.1. ■

We now fix a computational universe U and work towards a proof of

∀AU . ¬EUA. We assume a type AU and an embedding EUA with functions EU→A

and DA→U satisfying D(EX) = X for all types XU . We will define a customized type

T : U of Aczel trees for which we can define a subtree predicate and a universal

tree. It then suffices to show irreflexivity of the subtree predicate to close the proof.

We define a type of customized Aczel trees:

T : U ::= T (a : A, Da→ T )

and a subtree predicate:

∈ : T → T → P

s ∈ Taf := ∃x. fx = s

Fact 31.6.4 (Irreflexivity) ∀sT . s ∉ s.

Proof Analogous to the proof of Fact 31.3.2. ■

Recall that we have to construct a contradiction. We embark on a little de-

tour before we construct a universal tree. By Fact 31.6.1 and the assumption we

have ET (D(ET )). Thus there are functions F T→D(ET ) and GD(ET )→T such that

∀sT . G(Fs) = s. We define

u := T(ET )G

By Fact 31.6.1 it suffices to show u ∈ u. By definition of the membership predicate

it suffices to show

∃x. Gx = u

which holds with the witness x := Fu. We now have the hierarchy theorem for

computational universes.

Theorem 31.6.5 (Hierachy) ∀XU . ¬EUX.

Exercise 31.6.6 Show ∀XU . X ≠ U for all universes U .

Exercise 31.6.7 Let i ≠ j. Show Ti ≠ Tj .

Exercise 31.6.8 Assume the inductive type definition A : T1 ::= C(T1) is admitted

although it violates the dominance condition. Give a proof of falsity.
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Appendix: Typing Rules

We give the typing rules for graded universes T0, T1, . . . and P := T0. In this

formulation P = T0 requires one extra rule distinguishing it from the other graded

universes. The extra rule says that P = T0 admits impredicative function types.

⊢ Ti : Ti+1

⊢ u : Ti x :u ⊢ v : Ti

⊢ ∀x :u.v : Ti

⊢ u : Ti x :u ⊢ v : T0

⊢ ∀xu. v : T0

⊢ s : ∀x :u.v ⊢ t : u

⊢ s t : vxt

⊢ u : Ti x :u ⊢ s : v

⊢ λxu. s : ∀xu. v

⊢ s : u′ u′ ≈ u ⊢ u : Ti

⊢ s : u

⊢ s : ∀x1 : t1. · · · ∀xn : tn. Ti

⊢ s : ∀x1 : t1. · · · ∀xn : tn. Ti+1
n ≥ 0

• In practice, one writes just P and T and checks that all occurrences of T can be

assigned universe levels i ≥ 1. The particular universe level assignment does not

matter, provided it type checks.

• The subtyping rule (appearing last) realizes P ⊆ T1 ⊆ T2 ⊆ · · · with n = 0.

• We have ø Ti : Ti.

• vxt is capture-free substitution.

• Computational equality s ≈ t is defined with reduction and α- and η-equivalence.

• Variable typings (x :u before ⊢) are introduced by the rules for ∀ and λ and the

patterns of defining equations.

• Simple function types u→ v are notation for dependent function types∀x :u.v
where x does not occur in v .

• Functions whose type ends with the universe P are called predicates.

• Functions whose type ends with a universe Ti with i > 0 are called type functions.
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Appendix: Inductive Definitions

We collect technical information about inductive definitions here. Inductive defini-

tions come in two forms, inductive type definitions and inductive function defini-

tions. Inductive type definitions introduce typed constants called constructors, and

inductive function definitions introduce typed constants called inductive functions.

Inductive function definitions come with defining equations serving as computation

rules. Inductive definitions are designed such that they preserve consistency.

Inductive Type Definitions

An inductive type definition introduces a system of typed constants consisting of a

type constructor and n ≥ 0 value constructors. The type constructor must target

a universe, and the value constructors must target a type obtained with the type

constructor. The first n ≥ 0 arguments of the type constructor may be declared as

parameters. The remaining arguments of a type constructor are called indices.

Parameter condition: Each value constructor must take the parameters of the

type constructor as leading arguments and must target the type constructor ap-

plied to these arguments. We speak of the parametric arguments and the proper

arguments of a value constructor.

Strict positivity condition: If a value constructor uses the type constructor in an

argument type, the path to the type constructor must not go through the left-hand

side of a function type.

Dominance condition: If the type constructor targets a universe Ti, the types

of the proper arguments of the value constructors must be in Ti.

Inductive Function Definitions

An inductive function definition introduces a constant called an inductive function

together with a system of defining equations serving as computation rules. An

inductive function must be defined with a functional type, a number of required

arguments, and a distinguished required argument called the discriminating argu-

ment. The type of an inductive function must have the form

∀x1 . . . xk∀y1 . . . ym. cs1 . . . sny1 . . . ym → t
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Appendix: Inductive Definitions

where the following conditions are satisfied:

• cs1 . . . sny1 . . . ym types the discriminating argument.

• c is a type constructor with n ≥ 0 parameters and m ≥ 0 indices.

• Index condition: The index variables y1, . . . , ym must be distinct and must not

occur in s1, . . . , sn.

• Propositional discrimination restriction: t must be a proposition if c is not

computational. A type constructor c is computational if in case it targets P it

has at most one proof constructor d and all proper arguments of d have propo-

sitional types.

For every value constructor of c a defining equation must be provided, where the

pattern and the target type of the defining equations are determined by the type of

the inductive function, the position of discriminating argument, and the number of

arguments succeeding the discriminating argument. Each pattern contains exactly

two constants, the inductive function and a value constructor in the position of the

discriminating argument. Patterns must be linear (no variable appears twice) and

must give the index arguments of the inductive function as underlines. The patterns

for constructors must omit the parametric arguments of the constructor.

Every defining equation must satisfy the guard condition, which constrains the

recursion of the inductive function to be structural on the discriminating argument.

The guard condition must be realized as a decidable condition. There are different

possibilities for the guard condition. In this text we have been using the strictest

form of the guard condition.

The format of inductive function definitions is such that for every inductive type

a universal inductive function (a universal eliminator) can be obtained taking as

arguments continuations for the value constructors of the type. A particular induc-

tive function for the type can then be obtained by providing the particular continua-

tions. If a constructor is recursive, its continuation takes the results of the recursive

calls as arguments. Eager recursion is fine since computation terminates. Universal

eliminators usually employ target type functions.

Remarks

1. The format for inductive functions is such that universal eliminators can be

defined that can express all other inductive functions. Inductive functions may

also be called eliminators.

2. The special case of zero value constructors is redundant. A proposition ⊥ with

an eliminator ⊥ → ∀XT. X can be defined with a single proof constructor ⊥ → ⊥.

3. Assuming type definitions at the computational level, accommodating type def-

initions also at the propositional level is responsible for the propositional dis-
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crimination restriction.

4. The dominance condition is vacuously satisfied for propositional type defini-

tions.

5. Defining equations with a secondary case analysis (e.g., subtraction) come as

syntactic convenience. They can be expressed with auxiliary functions defined

as inductive functions.

6. Our presentation of inductive definitions is compatible with Rocq but takes away

some of the flexibility provided by Rocq. Our format requires that in Rocq a re-

cursive abstraction (i.e., fix) is directly followed by a match on the discriminating

argument. This excludes a direct definition of Euclidean division. It also excludes

the (redundant) eager recursion pattern sometimes used for well-founded recur-

sion in the Rocq literature.

Examples

We give for some inductive type families discussed in this text

• the type of the type constructor.

• the type of one of the value constructors.

• the type of the eliminator we have been using (prefix and target, clauses for value

constructors omitted).

• The pattern of the defining equation for the eliminator and the given value con-

structor.

Lists

L : T → T

cons : ∀X. X → L(X)→ L(X)
E : ∀X.∀pL(X)→T. . . . → ∀A. pA
EXp · · · (consxA) := exA(E · · ·A)

L(X) has uniform parameter X.

Linear search types

T : (N→ P)→ N → T

C : ∀qn. (¬qn→ Tq(Sn))→ Tqn

E : ∀q.∀pN→T. . . . → ∀n. Tqn→ pn

Eqp · · ·n(Cϕ) := en(λa.E · · · (Sn)(ϕa))

Tqn has uniform parameter q and nonuniform parameter n.
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Hilbert derivation types

H : For→ T

K : ∀st. H (s → t → s)

E : ∀pFor→T. . . . → ∀s.H (s)→ ps

Ep · · · _ (Kst) := e st

H (s) has index s.

ND derivation types

⊢ : L(For)→ For → T

I→ : ∀Ast. (s :: A ⊢ t)→ (A ⊢ (s → t))

E : ∀pL(For)→For→T. . . . → ∀As. (A ⊢ s)→ pAs

Ep · · ·A _ (I→std) := eAst(E · · · (s :: A)td)

A ⊢ s has nonuniform parameter A and index s.
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Appendix: Basic Definitions

We summarize basic definitions concerning functions and predicates. We make

explicit the generality coming with dependent typing. As it comes to arity, we state

the definitions for the minimal number of arguments and leave the generalization

to more arguments to the reader (as there is no formal possibility to express this

generalization).

A fixed point of a function fX→X is a value xX such that fx = x.

Two types X and Y are in bijection if there are functions fX→Y and gY→X invert-

ing each other; that is, the roundtrip equations∀x. g(fx) = x and∀y. f(gy) = y
are satisfied. We define:

invg f := ∀x. g(fx) = x g inverts f

For functions f : ∀xX . px we define:

injective (f ) := ∀xx′. fx = fx′ → x = x′ injectivity

surjective (f ) := ∀y ∃x. fx = y surjectivity

bijective (f ) := injective (f )∧ surjective (f ) bijectivity

f ≡ f ′ := ∀x. fx = fx′ agreement

The definitions extend to functions with n ≥ 2 arguments as one would expect.

Note that injectivity, surjectivity, and bijectivity are invariant under agreement.

For binary predicates P : ∀xX . px → P we define:

functional (P) := ∀xyy ′. Pxy → Pxy ′ → y = y ′ functionality

total (P) := ∀x ∃y. Pxy totality

The definitions extend to predicates with n ≥ 2 arguments as one would expect. To

functional relations we may also refer as unique relations.

For unary predicates P,Q : X → P we define:

P ⊆ Q := ∀x. Px → Qx respect

P ≡ Q := ∀x. Px ←→ Qx agreement

The definitions extend to predicates with n ≥ 2 arguments as one would expect.
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Appendix: Basic Definitions

For functions f : ∀xX . px and predicates P : ∀xX . px → P:

f ⊆ P := ∀x. Px(fx) respect

The definitions extend to functions with n ≥ 2 arguments and predicates with n+1

arguments as one would expect.

The following facts have straightforward proofs:

1. P ⊆ Q → functional (Q)→ functional (P)

2. P ⊆ Q → total (P)→ total (Q)

3. P ⊆ Q → total (P)→ functional (Q)→ P ≡ Q
4. f ⊆ P → functional (P)→ (∀xy. Pxy ←→ fx = y)
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Topics ICL 2024

Propositions as types

• → and ∀ for free

• Lemmas for free (abstract constants)

• ⊥, ∧, ∨, ∃, =
– obtained with abstract constants (formation, introduction, elimination)

– definition inductively or impredicatively

• ¬ and ←→ as notation

• Case analysis and induction as lemmas

• Target type functions need conversion (∃, =, induction)

• Constructor laws are equality laws obtained with reducible match functions

• PAT motivates most of computational type theory

• Proofs need assumption management and lemma application (have-want tables)

Law of excluded middle

• Basic reasoning is intuitionistic

• Excluded middle can be assumed for P

• Equates all proofs XM → ∀XP∀xyX . x = y
• Many equivalent formulations:

– ∀XP. X ∨¬X disjunctive characterization

– ∀XP. ¬¬X → X double negation law

– ∀XYP. ((X → Y)→ X)→ X) Peirce’s law

– ∀pN→P. exp → ex(leastp) least witness characterization

Inductive predicates

• PDR required for consistency

• Mostly convenience, non-inductive definition usually possible

• Exceptions are falsity and linear search predicate providing for essential compu-

tational discrimination

• Inductive definition of equality also provides computational discrimination but

not essential for applications
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Topics ICL 2024

Computational reasoning

• All definable functions in T are computable

• Excluded middle is not computational

• Σ versus ∃
• + versus ∨
• Truncation

• Certifying function types are specifications

• Certifying functions are modeled as abstract constants (like lemmas)

• Construction of certifying functions subsumes verification

• Construction of certifying functions in proof mode

Prominent certifying functions

• Euclidean quotient ∀x Σa. a · Sy ≤ x < Sa · Sy .

• Least witness ∀pN→P. decp → ∀nΣx. if x ≥ n then safepn else leastpx

• EWO ∀pN→P. decp → exp → sigp

• Certifying solver ∀A. σA+ ρA
• Bijection theorem for option types ∀XY. B(OX)(OY)→ BXY
• Size induction

• Skolem translation (∀x Σy. pxy)→ Σf ∀x. px(fx)
• Translation lemmas for certifying deciders and boolean tests

Procedural specifications

• Fibonacci, Euclidean division, gcds

• Unfolding functions

• Unique with size induction (termination)

• Existence ad hoc or with step indexing, constructed functions reduce

• Size induction and step-indexing don’t work for Ackermann, but nested induc-

tion does
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Basics

• Reducible match functions, simply typed and dependently typed

• Barber theorem, Russell

• Lawvere fixed points, Cantor

• Injections, transport lemmas

• X × Y and X + Y can be expressed with sigma types up to bijection

• Arithmetic pairing BN (N× N)

• Finite types

– via bijection to numeral types BXNn

– Cardinality theorem ∀mn. B(Nm)(Nn)→m = n
• List membership x ∈ A by recursion on lists

• Compilation of arithmetic expressions

• Reflexive transitive closure

Propositional deduction systems

• ND, weakening, reversion

• Classic ND with Peirce

• Glivenko A ⊢̇ s → A ⊢ ¬¬s
• Hilbert systems

• Henkin evaluation, ∀x. ¬(⊢ ¬¬x → x)

• Boolean evaluation, A î̇ s
– A ⊢ s → A î̇ s
– σA→ Σα. satαA

– ρA→ A ⊢ ⊥
– ∀A. σA+ ρA
– A ⊢̇ sa A î̇ s
– D(A ⊢̇ s)
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Appendix: Exercise Sheets

Below you will find the weekly exercise sheets for the course Introduction to

Computational Logic as given at Saarland University in the summer semester 2022

(13 weeks of full teaching). The sheets tell you which topics of MPCTT we covered

and how much time we spent on them.
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Appendix: Exercise Sheets

Assignment 1

Do the following exercises on paper using mathematical notation and also with the

proof assistant Rocq. Follow the style of Chapter 1 and the accompanying Rocq file

gs.v. For each function state the type and the defining equations. Make sure you

understand the definitions and proofs you give.

Exercise 1.1 Define an addition function add for numbers and prove that it is com-

mutative.

Exercise 1.2 Define a distance function dist for numbers and prove that it is com-

mutative. Do not use helper functions.

Exercise 1.3 Define a minimum function min for numbers and prove that it is com-

mutative. Do not use helper functions. Prove minx (x +y) = x.

Exercise 1.4 Define a function fib satisfying the procedural Fibonacci equations.

Define the unfolding function for the equations and prove your function satisfies

the unfolding equation.

Exercise 1.5 Define an iteration function computing fn(x) and prove the shift laws

f Sn(x) = fn(fx) = f(fn(x)).

Exercise 1.6 Give the types of the constructors pair and Pair for pairs and pair

types. Give the inductive type definition. Define the projections fst and snd and

prove the η-law. Define a swap function and prove that it is self-inverting. Do not

use implicit arguments.

Want More?

You will find further exercises in Chapter 1 of MPCT. You may for instance define

Ackermann functions using either a higher-order helper function or iteration and

verify that your functions satisfy the procedural specification given as unfolding

function.
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Assignment 2

Do the exercises on paper using mathematical notation and also with the proof

assistant Rocq.

Exercise 2.1 Define a truncating subtraction function using a plain constant defini-

tion and a recursive abstraction.

Exercise 2.2 Assume A := fixf x.λy.match x [0 ⇒ y | Sx ⇒ S(fxy) ].

a) Gives the types for A, f , x, and y .

b) For each of the following equations, give the normal forms of the two sides and

say which reduction rules are needed. Decide whether the equation holds by

computational equality.

(i) A1 = S.

(ii) A2 = λy.SSy

(iii) (letf = A1 inf) = S

(iv) A = λxy.Axy
(v) A = fixf x.match x [0 ⇒ λy.y | Sx ⇒ λy. S(fxy) ]

Exercise 2.3 Prove the following propositions (tables, terms, and Rocq). Assume

that X, Y , Z are propositions.

a) X → Y → X

b) (X → Y → Z)→ (X → Y)→ X → Z

c) (X → Y)→ ¬Y → ¬X
d) (X → ⊥)→ (¬X → ⊥)→ ⊥
e) ¬(X ↔ ¬X)
f) ¬¬(¬¬X → X)

g) ¬¬(((X → Y)→ X)→ X)

h) ¬¬((¬Y → ¬X)→ X → Y)

i) (X ∧ Y → Z)→ (X → Y → Z)

j) (X → Y → Z)→ (X ∧ Y → Z)

k) ¬¬(X ∨¬X)
l) ¬(X ∨ Y)→ ¬X ∧¬Y
m) ¬X ∧¬Y → ¬(X ∨ Y)
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Assignment 3

Do the exercises on paper using mathematical notation and also with the proof

assistant Rocq.

Exercise 3.1 (Match functions and impredicative characterizations) Give the

types and the defining equations for the matching functions for ⊥, ∧ and ∨.

Following the types of the matching functions, state the impredicative characteriza-

tions for ⊥, ∧ and ∨. Make sure you can prove the impredicative characterizations

(proof table, proof term, Rocq script). Type the type arguments of the matching

functions with T (rather than P) if this is possible (propositional discrimination

restriction). Explain why in the impredicative characterizations all type arguments

must be typed with P.

Exercise 3.2 (Exclusive disjunction) Exclusive disjunction X ⊕ Y is a logical con-

nective satisfying the equivalence X ⊕ Y ←→ (X ∧¬Y)∨ (Y ∧¬X).
a) Give an inductive definition of exclusive disjunction and prove the above equiv-

alence.

b) Define the matching function for inductive exclusive disjunction.

c) Give and verify the impredicative characterization of exclusive disjunction.

Exercise 3.3 (Double negation law) Prove the equivalence

(∀XP. X ∨¬X)←→ (∀XP.¬¬X → X)

to show that the law of excluded middle is intuitionistically equivalent to the double

negation law. Do the proof first with a table and then verify your reasoning with

Rocq.

Exercise 3.4 (Conversion rule) Prove

(∀pX→P. py → px)→ (∀pX→P. px ←→ py)

with a table and with Rocq. Assume X : T and determine the types of the variables

x and y .
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Exercise 3.5 (Propositional equality) Assume the constants

eq : ∀XT. X → X → P

Q : ∀XT∀xX . eqX xx

R : ∀XT∀xyX ∀pX→P. eqXxy → px → py

for propositional equality and prove the following proposition assuming the vari-

able types x :X, y :X, z :X, f :X → Y , X : T, and Y : T:

a) eqxy → eqyx

b) eqxy → eqyz → eqxz

c) eqxy → eq (fx) (fy)

d) ¬eq⊤⊥
e) ¬eq true false

For each occurrence of eq determine the implicit argument.
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Assignment 4

Do the exercises on paper using mathematical notation and verify your findings

with the proof assistant Rocq.

Exercise 4.1 Define the equational constants eq, Q, and R.

Exercise 4.2 MPCTT gives two proofs of transitivity, one using the conversion rule

and one not using the conversion rule. Give each proof as a table and as a term and

verify your findings with the proof assistant Rocq.

Exercise 4.3 Define the eliminators for booleans, numbers, and pairs.

Exercise 4.4 (Truncating subtraction)

Define a truncating subtraction function using the eliminator for numbers and not

using discrimination. Show that your function agrees with the standard subtraction

function from Chapter 1 using the eliminator for numbers.

Exercise 4.5 (Boolean equality decider)

Define a boolean equality decider eqb : N → N → B using the eliminator for numbers

and not using discrimination. Show that your function satisfies eqbxy = true ←→
x = y using the eliminator for numbers. Use this result to show∀xyN. x = y∨x ≠
y .

Exercise 4.6 (Boolean pigeonhole principle)

a) Prove the pigeonhole principle for B: ∀xyzB. x = y ∨ x = z ∨y = z.

b) Prove Kaminski’s equation based on the instance of the boolean pigeonhole

principle for f(fx), fx, and x.

Exercise 4.7 (Pair types)

a) Define the eliminator for pair types.

b) Prove that the pair constructor is injective using the eliminator.

c) Use the eliminator to define the projections π1, π2 and swap.

d) Prove the eta law using the eliminator.

e) Prove swap(swapa) = a.

Exercise 4.8 (Unit type ⊤)

a) Define the eliminator for ⊤ (following the scheme for B).

b) Prove the pigeonhole principle for ⊤: ∀xy⊤. x = y .

c) Prove B ≠ ⊤.

Exercise 4.9 Show B ≠ T.

We remark that B = P cannot be proved or disproved.
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Assignment 5

Do the exercises on paper and verify your findings with Rocq.

Exercise 5.1 Define the constants ex, E, and M∃ for existential quantification both

inductively and impredicatively.

Exercise 5.2 Give and verify the impredicative characterization of existential quan-

tification.

Exercise 5.3 Give a proof term for (∃x.px) → ¬∀x.¬px using the constants for

existential quantification. Do not use matches.

Exercise 5.4 Prove the following facts about existential quantification:

a) (∃x∃y. pxy)→ ∃y∃x. pxy
b) (∃x. px ∨ qx) ←→ (∃x.px)∨ (∃x.qx)
c) ((∃x.px)→ Z) ←→ ∀x. px → Z

d) ¬¬(∃x.px) ←→ ¬∀x.¬px
e) (∃x.¬¬px) → ¬¬∃x.px
f) (∃x.px)∧ Z ←→ ∃x. px ∧ Z
g) x ≠ y ←→ ∃p. px ∧¬py

Exercise 5.5 (Fixed points)

a) Prove that all functions ⊤ → ⊤ have fixed points.

b) Prove that the successor function S : N→ N has no fixed point.

c) For each type Y = ⊥, B, B× B, N, P, T give a function Y → Y that has no fixed

point.

d) State and prove Lawvere’s fixed point theorem.

Exercise 5.6 (Intuitionistic drinker) Using excluded middle, one can argue that in

a bar populated with at least one person one can always find a person such that if

this person drinks milk everyone in the bar drinks milk:

∀XT∀pX→P. (∃xX .⊤)→ ∃x. px → ∀y.py

The fact follows intuitionistically once two double negations are inserted:

∀XT∀pX→P. (∃xX .⊤)→ ¬¬∃x. px → ∀y.¬¬py

Prove the intuitionistic version.
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Exercise 5.7 Give the procedural specification for the Fibonacci function as an un-

folding function and prove that all functions satisfying the unfolding equation

agree.

Exercise 5.8 (Puzzle) Give two types that satisfy and dissatisfy the predicate

λXT.∀fgX→X ∀xyX . fx = y ∨ gy = x.

400



Assignment 6

Exercise 6.1 (Constructor laws for sum types)

Prove the constructor laws for sum types.

a) Lx ≠ Ry .

b) Lx = Lx′ → x = x′.
c) Ry = Ry ′ → y = y ′.

Exercise 6.2 (Sum and sigma types)

a) Define the universal eliminator for sum types and use it to prove

∀aX+Y . (Σx. a = Lx)+ (Σy. a = Ry).

b) Define the projections π1 and π2 for sigma types.

c) Write the eta law ∀asigp. a = (π1a,π2 a) for sigma types without notational

sugar and without implicit arguments and fully quantified.

d) Define the universal eliminator for sigma types and use it to prove the eta law.

e) Prove ∀xyB. x & y = false a (x = false)+ (y = false).

Exercise 6.3 (Certifying division by 2)

Define a function ∀xN Σn. (x = n · 2)+ (x = S(n · 2)).

Exercise 6.4 (Certifying distance function)

Assume a function ∀xyN Σz. (x + z = y) + (y + z = x) and use it to define

functions f as follows. Verify that your functions satisfy the specifications.

a) fxy = x −y
b) fxy = true ←→ x = y
c) fxy = (x −y)+ (y − x)
d) fxy = true ←→ (x −y)+ (y − x) ≠ 0

Exercise 6.5 (Certifying deciders) Define functions as follows.

a) ∀XYT. D(X)→D(Y)→D(X + Y).
b) ∀XT. (D(X)→ ⊥)→ ⊥.

c) ∀XT fX→B xX . D(fx = true).

d) ∀XT. D(X) a ΣbB. Xa b = true.
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Exercise 6.6 (Bijectivity)

a) Prove B B (⊤+⊤).
b) Prove (B B ⊤)→ ⊥.

c) Prove B (X × Y) (sig (λxX .Y )).

d) Prove B (X + Y) (sig (λbB. if b then X else Y)).

e) Find a type X for which you can prove BX (X +⊤).
f) Assume function extensionality and prove B (⊤ → ⊤)⊤.

g) Assume function extensionality and prove B (B→ B) (B× B).
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Assignment 7

Do the proofs with the proof assistant and explain the proof ideas on paper.

Exercise 7.1 (Option types)

a) State and prove the constructor laws for option types.

b) Give the universal eliminator for option types.

c) Prove B (O(X)) (X +⊤).
d) Prove E(X)a E(O(X)).
e) Prove ∀aO(X). a ≠ � a Σx. a = ◦x.

f) Prove ∀fX→O(Y). (∀x. fx ≠ �)→ ∀x Σy. fx = ◦y .

g) Prove ∀xO3(⊥). x = �∨ x = ◦�∨ x = ◦◦�.

h) Prove ∀f O3(⊥)→O3(⊥)∀x. f 8(x) = f 2(x).

i) Find a type X and functions f : X → O(X) and g : O(X) → X such that you can

prove invg f and disprove invf g.

Exercise 7.2 (Finite types)

Let d be a certifying decider for p : On(⊥)→ T. Prove the following:

a) D(∀x.px).
b) D(Σx.px).
c) (Σx.px)+ (∀x.px → ⊥).
d) The type N of numbers is not finite.

Exercise 7.3 (Pigeonhole)

Prove ∀fOSn(⊥)→On(⊥).Σab. a ≠ b ∧ fa = fb.

Intuition: If n + 1 pigeons are in n holes, there must be a hole with at least two

pigeons in it.

Exercise 7.4 (Function extensionality)

Assume function extensionality and prove the following.

a) ∀f⊤→⊤. f = λa⊤.a.

b) B (⊤ → ⊤)⊤.

c) B ≠ (⊤ → ⊤).
d) E(B→ B).

Exercise 7.5 (Proof irrelevance)

a) Prove PE → PI.

b) Suppose there is a function f : (⊤ ∨ ⊤) → B such that f(L I) = true and f(R I) =
false. Prove ¬ PI. Why can’t you define f inductively?
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Appendix: Exercise Sheets

Exercise 7.6 (Set extensionality)

We define set extensionality as SE := ∀XT∀pqX→P. (∀x. px ←→ qx) → p = q.

Prove the following:

a) FE → PE→ SE.

b) SE → PE.

c) SE → p − (q ∪ r) = (p − q)∩ (p − r).
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Assignment 8

Do the proofs with the proof assistant and explain the proof ideas on paper.

Exercise 8.1 (Arithmetic proofs from first principles)

Prove the following statements not using lemmas from the Rocq library. Use

the predefined definitions of addition and subtraction and define order as

(x ≤ y) := (x −y = 0). Start from the accompanying Rocq file providing the nec-

essary definitions.

a) x +y = x → y = 0

b) x − 0 = x
c) x − x = 0

d) (x +y)− x = y
e) x − (x +y) = 0

f) x ≤ y → x + (y − x) = y
g) (x ≤ y)+ (y < x)
h) ¬(y ≤ x)→ x < y

i) x ≤ y ←→ ∃z. x + z = y
j) x ≤ x +y
k) x ≤ Sx

l) x +y ≤ x → y = 0

m) x ≤ 0 → x = 0

n) x ≤ x
o) x ≤ y → y ≤ z → x ≤ z
p) x ≤ y → y ≤ x → x = y
q) x ≤ y < z → x < z

r) ¬(x < 0)

s) ¬(x +y < x)
t) ¬(x < x)
u) x ≤ y → x ≤ y + z
v) x ≤ y → x ≤ Sy

w) x < y → x ≤ y
x) ¬(x < y)→ ¬(y < x)→ x = y
y) x ≤ y ≤ Sx → x = y ∨y = Sx

z) x +y ≤ x + z → y ≤ z

Exercise 8.2 (Arithmetic proofs with automation)

Do the problems of Exercise 1 with Rocq’s definition of order and the automation

tactic lia.
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Appendix: Exercise Sheets

Exercise 8.3 (Complete induction)

a) Define a certifying function ∀xy. (x ≤ y)+ (y < x).
b) Prove a complete induction lemma.

c) Prove ∀xy.Σab. x = a ·Sy +b ∧ b ≤ y using complete induction and repeated

subtraction.

d) Formulate the procedural specification

f : N→ N → N

fx y := if [x ≤ y\ then x else f (x − Sy y)y

as an unfolding function using the function from (a).

e) Prove that all functions satisfying the procedural specification agree.

f) Let f be a function satisfying the procedural specification.

i) Prove ∀xy. fxy ≤ y .

ii) Prove ∀xy. Σk. x = k · Sy + fxy .
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Assignment 9

Do all exercises with the proof assistant.

Exercise 9.1 (Certifying deciders with lia)

Define deciders of the following types using lia but not using induction.

a) ∀xy. (x ≤ y)+ (y < x)
b) ∀xy. (x ≤ y)+¬(x ≤ y)

c) ∀xyN. (x = y)+ (x ≠ y)
d) ∀xy. (x < y)+ (x = y)+ (y < x)

Exercise 9.2 (Uniqueness with trichotomy)

Show the uniqueness of the predicate δ for Euclidean division using nia but not

using induction.

Exercise 9.3 (Euclidean quotient)

We consider γ xya := (a · Sy ≤ x < Sa · Sy).

a) Show that γ specifies the Euclidean quotient: γ xya←→ ∃b. δxyab.

b) Show that γ is unique: γxya→ γxya′ → a = a′.
c) Show that every function fN→N→N satisfies

(∀xy. γ xy(fxy)) ←→ ∀xy. fxy = if [x ≤ y\ then 0 else S(f (x − Sy)y)

d) Consider the function

f : N→ N → N

f0yb := 0

f(Sx)yb := if [b = y\ then S(fxy0) else fxy(Sb)

Show γ xy(fxy0); that is, fxy0 is the Euclidean quotient of x and Sy . This

requires a lemma. Hint: Prove b ≤ y → γ (x + b)y (fxyb).

Exercise 9.4 (Least and safe predicates)

a) Prove safe p(Sn)←→ safe pn∧¬pn.

b) Prove least (λa. x < Sa · Sy)a←→ ∃b. x = a · Sy + b ∧ b ≤ y .

c) Prove least (λz. x ≤ y + z)z ←→ z = x −y .

d) Show that the predicates in (b) and (c) are decidable using lia.

e) Prove (∀pN→P. exp → ex (leastp))→ ∀x. safe px ∨ ex (leastp).
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Appendix: Exercise Sheets

Exercise 9.5 (Least witness search)

Let pN→P be a decidable predicate and L and G be the functions from §17.4 of

MPCTT. Prove the following:

a) ∀n. leastp (Gn)∨ (Gn = n∧ safepn)

b) ∀n. pn→ leastp (Gn)

c) ∀nk. safepk→ leastp (Lnk)∨ (Lnk = k+n∧ safep(k+n)
d) ∀n. pn→ leastp (Ln0)
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Assignment 10

Do all exercises with the proof assistant.

Exercise 10.1 (Relational specification of least witness operators)

One can give a relational specification of least witness operators in the way we have

seen it for division operators. Given a decidable predicate pN→P, we define

δxy := (leastpy ∧y ≤ x)∨ (y = x ∧ safepx)

Understand and prove the following:

a) ∀nxy. pn→ n ≤ x → δxy → leastpy soundness

b) ∀xyy ′. δxy → δxy ′ → y = y ′ uniqueness

c) ∀x Σy. δxy satisfiability

d) ∀x. δx(Gx) correctness of G

e) ∀x. δx(Lx0) correctness of L

Claim (e) needs to be generalized to Lxy for the induction to go through.

Exercise 10.2 (List basics)

Define the universal eliminator and the constructor laws for lists. First on paper

using mathematical notation, then with Rocq.

Exercise 10.3 (List facts)

Understand and prove the following facts about lists:

a) x :: A ≠ A

b) (A++B)++C = A++(B++C)
c) len (A++B) = lenA+ lenB

d) x ∈ A++B ←→ x ∈ A∨ x ∈ B.

e) x ∈ f@A ←→ ∃a. a ∈ A∧ x = fa.

Exercise 10.4 (Lists over discrete type)

Understand and prove the following facts about lists over a discrete type:

a) repA+ nrepA

b) nrepA←→ ¬repA

c) dec (repA)

d) x ∈ A→ ΣB. lenB < lenA∧A ⊆ x :: B

e) nrepA→ lenB < lenA→ Σz. z ∈ A∧ z ̸∈ B
f) nrepA→ nrepB → A ≡ B → lenA = lenB

Exercise 10.5 (Pigeonhole)

Prove that a list of numbers whose sum is greater than the length of the list must

contain a number that is at least 2: sumA > lenA → Σx. x ∈ A ∧ x ≥ 2. First

define the function sum.
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Appendix: Exercise Sheets

Exercise 10.6 (Andrej’s Challenge)

Assume an increasing function fN→N (i.e., ∀x. x < fx) and a list A of numbers

satisfying ∀x. x ∈ A←→ x ∈ f@A. Show that A is empty.
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Assignment 11

Exercise 11.1 (Even and Odd)

Define recursive predicates even and odd on numbers and show that they partition

the numbers: evenn→ oddn→ ⊥ and evenn+ oddn.

Exercise 11.2 (Non-repeating lists)

Assume a discrete base type and prove the following facts. You may use the dis-

criminating element lemma.

a) D(x ∈ A) and D(A ⊆ B)
b) ∀A.ΣB. B ≡ A∧ nrepB

c) A ⊆ B → lenB < lenA → repA

d) nrepA→ A ⊆ B → lenB ≤ lenA→ nrepB

e) nrepA→ A ⊆ B → lenB ≤ lenA→ B ≡ A
f) nrep (f@A)→ nrepA

g) nrepA→ nrep(revA)

Exercise 11.3 (Equivalent nonrepeating lists)

Show that equivalent nonrepeating lists have equal length without assuming dis-

creteness of the base type. Hint: Show nrepA→ A ⊆ B → lenA ≤ lenB by induction

on A with B quantified using a deletion lemma.

Exercise 11.4 (Existential characterizations)

Give non-recursive existential characterizations for x ∈ A and repA and prove their

correctness.

Exercise 11.5 (Existential witness operator for booleans)

Let pB→P be a decidable predicate. Prove exp → sigp.

Exercise 11.6 (Search types)

Prove the following facts about search types for a decidable predicate pN→P.

a) pn→ Tn

b) T(Sn)→ Tn

c) T(k+n)→ Tn

d) Tn→ T0

e) pn→ T0.

f) pn→m ≤ n→ Tm

g) ∀ZT. ((¬pn→ T(Sn))→ Z)→ Tn→ Z

h) ∀qN→T. (∀n. (¬pn→ q(Sn))→ qn)→ ∀n. Tn→ qn

i) Tn ←→ ∃k. k ≥ n∧ pk
Note that (h) provides an induction lemma for T useful for direction → of (i).
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Exercise 11.7 (Strict positivity)

Assume that the inductive type definition B : T ::= C(B → ⊥) is admitted although

it violates the strict positivity condition. Give a proof of falsity. Hint: Assume the

definition gives you the constants

B : T C : (B → ⊥)→ B M : ∀Z. B → ((B → ⊥)→ Z)→ Z

First define a function f : B → ⊥ using the matching constant M .
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Assignment 12

Exercise 12.1 (Intuitionistic ND)

Assume the weakening lemma and prove the following facts with tables giving for

each line the names of the deduction rules used:

a) (A ⊢ ¬¬⊥)→ (A ⊢ ⊥)
b) (A ⊢ ¬¬¬s)→ (A ⊢ ¬s)
c) (A ⊢ s)→ (A ⊢ ¬¬s)
d) A ⊢ s → A, s ⊢ t → A ⊢ t
e) A ⊢ ¬¬(s → t)→ ¬¬s → ¬¬t
f) (⊢ s → t → u)→ (A ⊢ s)→ (A ⊢ t)→ (A ⊢ u)
g) (A ⊢ s → t)→ (A, s ⊢ t)
h) (A ⊢ s ∨ t) a ∀u. (A, s ⊢ u) → (A, t ⊢ u) → (A ⊢ u)

Exercise 12.2 (Classical ND)

Assume the weakening lemma and prove the following facts with tables giving for

each line the names of the deduction rules used:

a) (A ⊢̇⊥)→ (A ⊢̇ s)
b) (A ⊢̇¬¬s)→ (A ⊢̇ s)
c) ⊢̇ s ∨¬s
d) ⊢̇ ((s → t)→ s)→ s

Exercise 12.3 (Glivenko)

Assume ∀As. (A ⊢ s) → (A ⊢̇ s) and ∀As. (A ⊢̇ s) → (A ⊢ ¬¬s) and prove the

following:

a) A ⊢̇¬s a A ⊢ ¬s
b) A ⊢̇⊥ a A ⊢ ⊥
c) ((⊢⊥)→ ⊥)a ((⊢̇⊥)→ ⊥)

Exercise 12.4 (Induction)

a) (A ⊢ s) → pAs can be shown by induction on the derivation of A ⊢ s. Give the

proof obligation for each of the 9 deduction rules.

b) How do the obligations change if we switch to the classical system and prove

(A ⊢̇ s)→ pAs?

c) As an example, give the proof obligations for a proof of

(A ⊢̇ s)→ (A ⊢ ¬¬s).
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Exercise 12.5 (Reversion, challenging)

We define a reversion function A · s preserving the order of assumptions:

[] · s := s

(t :: A) · s := t → (A · s)

Prove (A ⊢ s)a ( ⊢ A · s).
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Assignment 13

Exercise 13.1 (Formulas)

We consider an inductive type for formulas s ::= x | ⊥ | s → t with the constructors

for, Var, Bot, and Imp.

a) Give the types of the constructors.

b) Give the type of the eliminator for formulas.

c) Define a recursive predicate ground for formulas saying that a formula contains

no variables.

d) Prove ground(s)→ ([] ⊢ s)+ ([] ⊢ ¬s) using the eliminator from (b).

Exercise 13.2 (Hilbert Systems)

We consider formulas s ::= x | ⊥ | s → t | s ∨ t.
a) Give the rules for the Hilbert systems H (s).

b) Give the types of the constructors for the inductive type family A ð s. Explain

why A is a uniform parameter and s is an index.

c) Complete the type of the induction lemma ∀Ap. · · · → ∀s. A ð s → ps.

d) Prove (A ð s → s).

e) Prove (A ð t)→ (A ð s → t).

f) Prove (s :: A ð t)→ (A ð s → t).

Exercise 13.3 (Heyting evaluation)

Consider the Heyting interpretation 0 < 1 < 2.

a) Define the evaluation function E.

b) Give an assignment such that ((x → y)→ x)→ x evaluates to 1.

c) Explain how one shows H (((x → y)→ x)→ x)→ ⊥ using (b).

d) Give a formula that evaluates under all assignments to 2 but is not intuitionisti-

cally provable.

Exercise 13.4 (Certifying solver)

Assume that E is the boolean evaluation function and that every refutation pred-

icate ρ has a certifying solver ∀A. (Σα.∀s ∈ A. Eαs = true) + ρA. Show the

following:

a) λA.A ⊢̇⊥ is a refutation predicate.

b) D( ⊢̇ s).
c) ⊢̇ sa ∀α. Eαs = true.
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Exercise 13.5 (Refutation system)

Consider the predicate ρFor→P inductively defined with the following rules:

⊥ ∈ A
ρ(A)

s ∈ A ¬s ∈ A
ρ(A)

(s → t) ∈ A ρ(¬s :: A) ρ(t :: A)
ρ(A)

¬(s → t) ∈ A ρ(s :: ¬t :: A)
ρ(A)

(s ∧ t) ∈ A ρ(s :: t :: A)
ρ(A)

¬(s ∧ t) ∈ A ρ(¬s :: A) ρ(¬t :: A)
ρ(A)

(s ∨ t) ∈ A ρ(s :: A) ρ(t :: A)
ρ(A)

¬(s ∨ t) ∈ A ρ(¬s :: ¬t :: A)
ρ(A)

a) Show ρ(¬(((s → t)→ s)→ s)).

b) Show ρ(A)→ ∃s. s ∈ A∧Eαs = false.

c) Show the weakening property: ρ(A)→ A ⊆ B → ρ(B).

d) Show ρ is a refutation predicate.
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Appendix: Glossary

Here is a list of technical terms used in the text but not used (much) in the literature.

The technical terms are given in the order they appear first in the text.

• Discrimination

• Inductive function

• Target type function

• Propositional discrimination restriction

• Computational falsity elimination

• Index condition and index variables
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Appendix: Author’s Notes

Rocq Wishlist

• Have equational function definitions with fixed arity and iterated and nested

discrimination. This is realized in Agda already.

• Change type inference so that the universe Set is not derived as default. Set is

not needed and smuggling it in as default is confusing.

• Have standard notations for sum and sigma types.

• An inductive predicate definition should say explicitly if it wants to lift the

propositional discrimination restriction, and have the assistant check whether

this can be granted. Conjunction can then be defined without granting compu-

tational discrimination.

Clarify

• Named functions come as constructors, reducible functions, or abstract func-

tions.

– Constructors have a fixed arity.

– Reducible functions have a declared arity but may take additional arguments.

– Reducible functions are defined with equations respecting their arity.

– Reducible functions may be inductive or plain.

– Certifying functions and theorems are abstract functions.

– Abstract functions matter; reducible functions are overrated, often don’t want

to know their defining equations.

• Term construction is incremental and type driven.

• Term construction is programmed with scripts.

• Term construction can be top down (backwards), bottom up (forward), and mid-

dle out (let).

• Rocq’s tactic mode is term construction mode, not limited to propositional types.

• Proof tables to support term construction on paper.

• Propositions as types is foundation of mathematical reasoning, explains formu-

lation, application, and proofs of theorems.
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Appendix: Author’s Notes

Editorial decisions

• Refer to all kinds of theorems as facts

• Assert certifying functions as facts when no name is given

• Define certifying functions in Rocq with Fact/Qed

Maybe

• refinement types; numeral types as refinement type of N could be nice; but do we

have applications? target types of certifying functions may be seen as refinement

types and occur frequently

Work to do

• summary Part Basics

• chapter Introduction

• Rocq development of certifying boolean solver (§24.12) needs update

Changelog

2024

• plain definitions explained with inductive function definitions

• η-equivalence and computational equality moved to Chapter 4

• new chapter Axiom CT and Semidecidability

2023

• chapters on certifying functions

• abstract syntax

• finite types, countable types, EWOs

• arithmetic recursion and Euclidean division

• vectors recursive and inductive, bijection

(prompted by Lean’s course by values recursion, via Yannick)

• numerals recursive and inductive, bijection

• chapter on indexed inductives with inductive equality, reflexive transitive clo-

sure, comparisons, numerals, vectors, PCP and bijections with recursive vari-

ants

• inductive GCD relation

• Revised structure, now 4 parts named Basics, More Basics, Case Studies, and

Foundational Studies
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2021

• MPCTT started

• switch to inductive and plain functions in Chapter 2

• unfolding functions and procedural specifications

• computational falsity elimination

• Andrej Dudenhefner was lead TA

2020

• x ≤ y as x −y = 0, game changer

• chapters on finite types and data types appeared

2019

• semi-decidability

Done

• introduce injections and bijections early

• introduce finite types based on lists early

• countable types.

• linear arithmetic as abstraction level

• abstract constants; equality and Euclidean division as simply typed examples

• construct certifying deciders in tactic mode and provide with abstract constants

• introduce indexed inductives in Part Basics

• constructor patterns always omit arguments of type constructor

• upgrade regular expressions

• harmonize recursive and inductive numeral types
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