Modeling and Proving in Computational Type Theory Using the Coq Proof Assistant

Textbook under Construction
Version of April 22, 2024

Gert Smolka
Saarland University

Contents

Preface xi
I Basics 1
1 Getting Started 3
1.1 Booleans 3
1.2 Numbers 5
1.3 Notational Conventions 7
1.4 Structural Induction 8
1.5 Quantified Inductive Hypotheses 10
1.6 Preview of Proof Rules 12
1.7 Procedural Specifications 13
1.8 Pairs and Polymorphic Functions 15
1.9 Implicit Arguments 17
1.10 Iteration 18
1.11 Ackermann Function 20
1.12 Unfolding Functions 22
1.13 Concluding Remarks 23
2 Basic Computational Type Theory 25
2.1 Inductive Type Definitions 25
2.2 Inductive Function Definitions 26
2.3 Reduction 28
2.4 Plain Definitions 29
2.5 Lambda Abstractions 30
2.6 Typing Rules 31
2.7 Let Expressions 32
2.8 Computational Equality 32
2.9 Values and Canonical Terms 33
2.10 Matches 34
2.11 Recursive Abstractions in Coq 36
2.12 Choices Made by Coq 37
2.13 Summary 38
2.14 Notes 39
3 Propositions as Types 41
3.1 Implication and Universal Quantification 42
3.2 Falsity and Negation 43
3.3 Conjunction and Disjunction 45
3.4 Propositional Equivalence 47
3.5 Notational Issues 49
3.6 Impredicative Characterizations 49
3.7 Proof Term Construction using Proof Tables 50
3.8 Law of Excluded Middle 54
3.9 Discussion 54
4 Leibniz Equality and Conversion Rule 57
4.1 Conversion Rule 58
4.2 Abstract Propositional Equality 59
4.3 Basic Equational Facts 62
4.4 Definition of Leibniz Equality 65
4.5 Abstract Constants and Theorems 65
4.6 Theorems in this Text 66
4.7 Abstract Presentation of Propositional Connectives 67
4.8 Notes 69
5 Inductive Eliminators 71
5.1 Boolean Eliminator 71
5.2 Example: Boolean Case Analysis Using the Eliminator 72
5.3 Kaminski's Equation 74
5.4 Eliminator for Numbers 74
5.5 A Formal Inductive Proof 76
5.6 Equality of Numbers is Logically Decidable 77
5.7 Eliminator for Pairs 80
5.8 Basic Typing Rules 80
5.9 Universe Levels 81
5.10 Propositional Discrimination Restriction 83
5.11 Void and Unit 83
5.12 Disequality of Types 84
5.13 Notes 85
6 Arithmetic Pairing 87
6.1 Definitions 87
6.2 Proofs 88
6.3 Discussion 89
7 Abstract Syntax 91
7.1 Lists 91
7.2 Expressions and Evaluation 93
7.3 Code and Execution 94
7.4 Compilation 95
7.5 Decompilation 96
7.6 Notes 97
8 Existential Quantification 99
8.1 Inductive Definition and Basic Facts 99
8.2 Barber Theorem 102
8.3 Lawvere’s Fixed Point Theorem 103
$9 \quad$ Certifying Functions and Sum Types 105
9.1 Sum Types 105
9.2 Proving at Type Level 107
9.3 Decision Types 108
9.4 Certifying Functions 109
9.5 Certifying Equality Deciders 111
9.6 Computational Decidability 112
10 Certifying Functions and Sigma Types 113
10.1 Dependent Pair Types 113
10.2 Certifying Division 115
10.3 Translation Theorems 117
10.4 Projections 118
10.5 Truncations 120
10.6 Notes 122
11 Linear Arithmetic 125
11.1 Inductive Definition of Numbers 125
11.2 Addition 126
11.3 Subtraction 127
11.4 Comparisons 127
11.5 Arithmetic Testers and Deciders 129
11.6 Linear Arithmetic Prover 130
11.7 Multiplication 131
11.8 Notes 131
12 More Types 133
12.1 Injections and Bijections 133
12.2 Option Types 136

Contents

12.3 Numeral Types 138
12.4 Vector Types 139
12.4.1 Position Element Maps 141
12.4.2 Concatenation 142
13 Indexed Inductives 143
13.1 Inductive Equality 143
13.2 Reflexive Transitive Closure 144
13.3 Inductive Comparisons 147
13.4 Inductive Numeral Types 148
13.5 Inductive Vector Types 150
13.6 Post Correspondence Problem 151
13.7 Notes 152
14 Extensionality 153
14.1 Extensionality Assumptions 153
14.2 Set Extensionality 154
14.3 Proof Irrelevance 155
14.4 Notes 156
15 Excluded Middle and Double Negation 157
15.1 Characterizations of Excluded Middle 157
15.2 Double Negation 160
15.3 Definite Propositions 162
15.4 Stable Propositions 163
15.5 Variants of Excluded Middle 164
15.6 Notes 165
16 Provability 167
16.1 Provability Predicates 167
16.2 Consistency 169
17 Summary Basics 171
II More Basics 177
18 Least Witness Operators 179
18.1 Least Witness Predicate 179
18.2 Certifying Least Witness Operators 180
18.3 Decidability Results 181
18.4 Reducible LWOs 182
18.5 Least Witness Existence and Excluded Middle 185
19 Arithmetic Recursion 187
19.1 Complete Induction 187
19.2 Size Induction 189
19.3 Euclidean Quotient 190
19.4 Step-Indexed Function Construction 192
19.5 Greatest Common Divisor 193
19.6 Course-of-values Recursion 194
20 Euclidean Division 197
20.1 Existence of Quotient and Remainder 197
20.2 Uniqueness of Quotient and Remainder 199
20.3 Quotient and Remainder with Repeated Subtraction 200
20.4 Divisibility 201
20.5 Greatest Common Divisors 202
20.6 Inductive GCD Predicate 204
20.7 Reducible Quotient and Remainder Functions 205
20.8 Notes 206
21 Lists 207
21.1 Inductive Definition 207
21.2 Basic Operations 209
21.3 Membership 209
21.4 Inclusion and Equivalence 211
21.5 Nonrepeating Lists 213
21.6 Lists of Numbers 216
21.7 Position-Element Mappings 217
21.8 Constructive Discrimination Lemma 219
21.9 Element Removal 220
21.10 Cardinality 221
21.11 Setoid Rewriting 222
22 EWOs 225
22.1 Linear Search Types 225
22.2 EWO for Numbers 226
22.3 General EWOs 228
22.4 EWO Applications 230
22.5 Notes 231
23 Finite Types 233
23.1 Coverings and Listings 233
23.2 Basics of Finite Types 234
23.3 Finiteness by Injection 236
23.4 Existence of Injections 237
23.5 Upgrade Theorem 238
23.6 Listless Development 239
23.7 Notes 242
24 Countable Types 243
24.1 Enumerable Types 243
24.2 Countable Types 244
24.3 Injection into N via List Enumeration 246
24.4 More Countable Types 247
24.5 Alignments 249
24.6 Alignment Construction 250
24.7 Bijection Theorem 251
24.8 Alignments of Finite Types 252
24.9 Finite or Infinite 253
24.10 Discussion 253
III Case Studies 255
25 Propositional Deduction 257
25.1 ND Systems 257
25.2 Intuitionistic ND System 258
25.3 Formalisation with Indexed Inductive Type Family 260
25.4 The Eliminator 263
25.5 Induction on Derivations 263
25.6 Classical ND System 266
25.7 Glivenko's Theorem 268
25.8 Intuitionistic Hilbert System 269
25.9 Heyting Evaluation 272
25.10 Boolean Evaluation 275
25.11 Boolean Formula Decomposition 275
25.12 Certifying Boolean Solvers 279
25.13 Boolean Entailment 281
25.14 Cumulative Refutation System 282
25.15 Substitution 284
25.16 Entailment Relations 285
25.17 Notes 287
26 Boolean Satisfiability 289
26.1 Boolean Operations 289
26.2 Boolean Formulas 290
26.3 Clausal DNFs 292
26.4 DNF Solver 293
26.5 DNF Recursion 295
26.6 Tableau Refutations 297
26.7 Abstract Refutation Systems 299
27 Regular Expression Matching 303
27.1 Basics 303
27.2 Decidability of Regular Expression Matching 306
28 Abstract Reduction Systems 309
28.1 Paths Types 309
28.2 Reflexive Transitive Closure 312
IV Foundational Studies 315
29 Axiom CT and Semidecidability 317
29.1 Tests and Basic Predicates 318
29.2 UT and Undecidability 319
29.3 Diophantine Expressions 320
29.4 Axiom CT 322
29.5 Recusant Relations 324
29.6 Inconsistent Strengthening of UT 324
29.7 Post Hierarchy 325
29.8 Semidecidable Predicates 328
29.9 More Semidecidability 329
29.10 Markov's Principle 331
29.11 Promises 333
29.12 Promising Functions 334
29.13 Recusant Partial Deciders 336
29.14 Universal Partial Deciders 337
29.15 Notes 339
30 Inductive Equality 341
30.1 Basic Definitions 341
30.2 Uniqueness of Identity Proofs 343
30.3 Hedberg's Theorem 345
30.4 Inversion with Casts 346
30.5 Constructor Injectivity with DPI 347
30.6 Inductive Equality at Type 349
30.7 Notes 350
31 Well-Founded Recursion 351
31.1 Recursion Types 351
31.2 Well-founded Relations 353
31.3 Unfolding Equation 355
31.4 Example: GCDs 357
31.5 Unfolding Equation without FE 358
31.6 Witness Operator 359
31.7 Equations Package and Extraction 360
31.8 Padding and Simplification 361
31.9 Classical Well-foundedness 362
31.10 Transitive Closure 364
31.11 Notes 365
32 Aczel Trees and Hierarchy Theorems 367
32.1 Inductive Types for Aczel Trees 367
32.2 Propositional Aczel Trees 369
32.3 Subtree Predicate and Wellfoundedness 370
32.4 Propositional Hierarchy Theorem 371
32.5 Excluded Middle Implies Proof Irrelevance 372
32.6 Hierarchy Theorem for Computational Universes 372
V Appendices 375
Appendix: Typing Rules 377
Appendix: Inductive Definitions 379
Appendix: Basic Definitions 383
Appendix: Exercise Sheets 385
Appendix: Glossary 409
Appendix: Author's Notes 411
Bibliography 414

Preface

This text teaches topics in computational logic computer scientists should know when discussing correctness of software and hardware. We acquaint the reader with a foundational theory and a programming language for interactively constructing computational models with machine-checked proofs. As common with programming languages, we teach foundations, case studies, and practical programming in an interleaved fashion.

The foundational theory we are using is a computational type theory extending Martin-Löf type theory with inductive definitions and impredicative propositions. All functions definable in the theory are computable. The proof rules of the theory are intuitionistic while assuming the law of excluded middle is possible. As it will become apparent through case studies in this text, computational type theory is a congenial foundation for computational models and correctness arguments, improving much on the set-theoretic language coming with mainstream mathematics.

We will use the Coq proof assistant, an implementation of the computational type theory we are using. The interactive proof assistant assists the user with the construction of theories and checks all definitions and proofs for correctness. Learning computational logic with an interactive proof assistant makes a dramatic difference to learning logic offline. The immediate feedback from the proof assistant provides for rapid experimentation and effectively teaches the rules of the underlying type theory. While the proof assistant enforces the rules of type theory, it provides much automation as it comes to routine verifications.

We will use mathematical notation throughout this text and confine all Coq code to Coq files accompanying the chapters. We assume a reader unfamiliar with type theory and the case studies we consider. So there is a lot of material to be explained and understood at mathematical levels abstracting from the Coq programming language. In any case, theories and proofs need informal explanations to be appreciated by humans, and informal explanations are needed to understand formalisations in Coq.

The abstraction level coming with mathematical notation gives us freedom in explaining the type theory and helps with separating type-theoretic design principles from engineering aspects coming with the Coq language. For instance, we will have equational inductive function definitions at the mathematical level and realize them with Coq's primitives at the coding level. This way we get mathematically satisfying function definitions and a fine explanation of Coq's pattern matching construct.

Preface

Acknowledgements

This text has been written for the course Introduction to Computational Logic I teach every summer semester at Saarland University (since 2003). In 2010, we switched to computational type theory and the proof assistant Coq. From 2010-2014 I taught the course together with Chad E. Brown and we produced lecture notes discussing Coq developments (in the style of Benjamin Pierce’s Software Foundations at the time). It was great fun to explore with Chad intuitionistic reasoning and the propositions as types paradigm. It was then I learned about impredicative characterizations, Leibniz equality, and natural deduction. Expert advice on Coq often came from Christian Doczkal.

By Summer 2017 I was dissatisfied with the programming-centered approach we had followed so far and started writing lectures notes using mathematical language. There were also plenty of exciting things about type theory I still had to learn. My chief teaching assistants during this time were Yannick Forster (2017), Dominik Kirst (2018-2020), and Andrej Dudenhefner (2021), all of them contributing exercises and ideas to the text.

My thanks goes to the undergraduate and graduate students who took the course and who worked on related topics with me, and to the persons who helped me teach the course. You provided the challenge and motivation needed for the project. And the human touch making it fun and worthwhile.

Part I

Basics

1 Getting Started

We start with basic ideas from computational type theory and Coq. The main issues we discuss are inductive types, structural recursion, and equational reasoning with structural induction. We will see inductive types for booleans, natural numbers, and pairs. Based on inductive types, we will define inductive functions using equations and structural case analysis. This will involve functions that are cascaded, recursive, higher-order (i.e., take functions as arguments), and polymorphic (i.e., take types as leading arguments). Recursion will be limited to structural recursion so that functional computation always terminates.

Our main interest is in proving equations involving recursive functions (e.g., commutativity of addition, $x+y=y+x$). This will involve proof steps known as simplification, rewriting, structural case analysis, and structural induction. Equality will appear in a general form called propositional equality, and in a specialized form called computational equality. Computational equality is a prominent design aspect of type theory that is important for mechanized proofs.

We will follow the equational paradigm and define functions with equations. We will mostly define cascaded functions and use the accompanying notation known from functional programming.

Type theory is a foundational theory starting from computational intuitions. Its approach to mathematical foundations is very different from set theory. We may say that type theory explains things computationally while set theory explains things at a level of abstraction where computation is not an issue. When working with computational type theory, set-theoretic explanations (e.g., of functions) are often not helpful, so free your mind for a foundational restart.

1.1 Booleans

In Coq, even basic types like the type of booleans are defined as inductive types. The type definition for the booleans
B ::= true | false
introduces three typed constants called constructors:

$$
\begin{array}{r}
\text { B: } \mathbb{T} \\
\text { true : } B \\
\text { false: }
\end{array}
$$

The constructors represent the type B and its two values true and false. Note that the constructor B also has a type, which is the universe \mathbb{T} (a special type whose elements are types).

Inductive types provide for the definition of inductive functions, where a defining equation is given for each value constructor. Our first example for an inductive function is a boolean negation function:

$$
\begin{aligned}
& !: B \rightarrow B \\
& \text { ! true }:=\text { false } \\
& \text { !false }:=\text { true }
\end{aligned}
$$

There is a defining equation for each of the two value constructors of B. We say that an inductive function is defined by discrimination on an inductive argument (an argument that has an inductive type). There must be exactly one defining equation for every value constructor of the type of the inductive argument the function discriminates on. In the literature, discrimination is known as structural case analysis.

The defining equations of an inductive function serve as computation rules. For computation, the equations are applied as left-to-right rewrite rules. For instance, we have

$$
!!\text { true }=\text { ! ! false }=\text { ! true }=\text { false }
$$

by rewriting with the first, the second, and again with the first defining equation of !. Note that !!!true is to be read as !(!(! true)), and that the first rewrite step replaces the subterm ! true with false. Computation in Coq is logical and is used in proofs. For instance, the equation
!!!true = ! true
follows by computation:

$$
\begin{aligned}
& !!!\text { true } \quad \text { ! true } \\
= & !!\text { false } \\
= & \text { !true } \\
= & \text { false }
\end{aligned}
$$

We speak of a proof by computational equality.
Proving the equation

$$
!!x=x
$$

involving a boolean variable x takes more than computation since none of the defining equations applies. What is needed is discrimination (i.e., case analysis) on the boolean variable x, which reduces the claim !! $x=x$ to the equations !! true $=$ true and !!false $=$ false, which both hold by computational equality.

Next we define inductive functions for boolean conjunction and boolean disjunction:

$$
\begin{array}{ll}
\&: \mathrm{B} \rightarrow \mathrm{~B} \rightarrow \mathrm{~B} & \mid: \mathrm{B} \rightarrow \mathrm{~B} \rightarrow \mathrm{~B} \\
\text { true } \& y:=y & \text { true } \mid y:=\text { true } \\
\text { false \& } y:=\text { false } & \text { false } \mid y:=y
\end{array}
$$

Both functions discriminate on their first argument. Alternatively, one could define the functions by discrimination on the second argument, resulting in different computation rules. There is the general principle that computation rules must be disjoint (at most one computation rule applies to a given term).

The left hand sides of defining equations are called patterns. Often, patterns bind variables that can be used in the right hand side of the equation. The patterns of the defining equations for $\&$ and \mid each bind the variable y.

Given the definitions of the basic boolean connectives, we can prove the usual boolean indenties with discrimination and computational equality. For instance, the distributivity law

$$
x \&(y \mid z)=(x \& y) \mid(x \& z)
$$

follows by discrimination on x and computation, reducing the law to the trivial equations $y|z=y| z$ and false $=$ false. Note that the commutativity law

$$
x \& y=y \& x
$$

needs case analysis on both x and y to reduce to computationally valid equations.

1.2 Numbers

The inductive type for the numbers $0,1,2, \ldots$

$$
\mathrm{N}::=0 \mid \mathrm{S}(\mathrm{~N})
$$

introduces three constructors

$$
\begin{aligned}
& N: \mathbb{T} \\
& 0: N \\
& S: N \rightarrow N
\end{aligned}
$$

The value constructors provide 0 and the successor function S. A number n can be represented by the term that applies the constructor $S n$-times to the constructor 0 . For instance, the term $\mathrm{S}(\mathrm{S}(\mathrm{S} 0)$) represents the number 3 . The constructor representation of numbers dates back to the Dedekind-Peano axioms.

We will use the familiar notations $0,1,2, \ldots$ for the terms $0, \mathrm{~S} 0, \mathrm{~S}(\mathrm{~S} 0), \ldots$. Moreover, we will take the freedom to write terms like $S(S(S x))$ without parentheses as $\operatorname{SSS} x$.

We define an inductive addition function discriminating on the first argument:

$$
\begin{aligned}
&+: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& 0+y:=y \\
& \mathrm{~S} x+y:=\mathrm{S}(x+y)
\end{aligned}
$$

The second equation is recursive since it uses the function ' + ' being defined at the right hand side.

Computational type theory does not admit partial functions. To fulfill this design principle, recursion must always terminate. To ensure termination, recursion is restricted to inductive functions and must act on a single discriminating argument. One speaks of structural recursion. Recursive applications must be on variables introduced by the constructor of the pattern of the discriminating argument. In the above definitions of ' + ', only the variable x in the second defining equation qualifies for recursion. Intuitively, structural recursion terminates since every recursion step skips a constructor of the recursive argument. The condition for structural recursion can be checked automatically by a proof assistant.

We define truncating subtraction for numbers:

$$
\begin{aligned}
-: \mathrm{N} \rightarrow \mathrm{~N} & \rightarrow \mathrm{~N} \\
0-y & :=0 \\
\mathrm{~S} x-0 & :=\mathrm{S} x \\
\mathrm{~S} x-\mathrm{S} y & :=x-y
\end{aligned}
$$

This time we have two discriminating arguments (we speak of a cascaded discrimination). The primary discrimination is on the first argument, followed by a secondary discrimination on the second argument in the successor case. The recursion is on the first argument. We require that a structural recursion is always on the first discriminating argument.

Truncating subtraction gives us a test for comparisons $x \leq y$ of numbers. We have $x \leq y$ if and only if $x-y=0$.

Following the scheme we have seen for addition, functions for multiplication and exponentiation can be defined as follows:

$$
\begin{array}{lr}
: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} & \wedge \mathrm{~N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
0 \cdot y:=0 & x^{0}:=1 \\
\mathrm{~S} x \cdot y:=y+x \cdot y & x^{\mathrm{Sn}}:=x \cdot x^{n}
\end{array}
$$

Exercise 1.2.1 Define functions as follows:
a) A function $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ yielding the minimum of two numbers.
b) A function $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{B}$ testing whether two numbers are equal.
c) A function $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{B}$ testing whether a number is smaller than another number.

Exercise 1.2.2 (Symmetric boolean conjunction and disjunction) Using cascaded discrimination, we can define an inductive function for boolean conjunction with symmetric defining equations:

$$
\begin{aligned}
& \&: B \rightarrow B \rightarrow B \\
& \text { true \& true }:=\text { true } \\
& \text { true \& false }:=\text { false } \\
& \text { false \& true }:=\text { false } \\
& \text { false \& false }:=\text { false }
\end{aligned}
$$

a) Prove that the symmetric function satisfies the defining equations for the standard boolean conjunction function (true $\& y=y$ and false $\& y=$ false).
b) Prove that the symmetric function agrees with the standard boolean conjunction function.
c) Define a symmetric boolean disjunction function and show that it agrees with the standard boolean disjunction function.

1.3 Notational Conventions

We are using notational conventions common in type theory and functional programming. In particular, we omit parentheses in types and applications relying on the following rules:

$$
\begin{array}{rll}
s \rightarrow t \rightarrow u & \leadsto & s \rightarrow(t \rightarrow u) \\
s t u & \leadsto & (s t) u
\end{array}
$$

	$x+0=x$	induction x
1	$0+0=0$	computational equality
$2 \mathrm{IH}: x+0=x$	$\begin{aligned} \mathrm{S} x+0 & =\mathrm{S} x \\ \mathrm{~S}(x+0) & =\mathrm{S} x \\ \mathrm{~S} x & =\mathrm{S} x \end{aligned}$	simplification rewrite IH computational equality

Figure 1.1: Proof table for Equation 1.1

For the arithmetic operations we assume the usual precedences, so multiplication '.' binds before addition '+' and subtraction '-', and all three of them are left associative. For instance:

$$
x+2 \cdot y-5 \cdot x+z \quad \leadsto \quad((x+(2 \cdot y))-(5 \cdot x))+z
$$

1.4 Structural Induction

We will now discuss proofs of the equations

$$
\begin{align*}
x+0 & =x \tag{1.1}\\
x+\mathrm{S} y & =\mathrm{S}(x+y) \tag{1.2}\\
x+y & =y+x \tag{1.3}\\
(x+y)-y & =x \tag{1.4}
\end{align*}
$$

None of the equations can be shown with structural case analysis and computation alone. In each case structural induction on numbers is needed. Structural induction strengthens structural case analysis by providing an inductive hypothesis in the successor case. Figure 1.1 shows a proof table for Equation 1.1. The induction rule reduces the initial proof goal to two subgoals appearing in the lines numbered 1 and 2 . The two subgoals are obtained by discrimination on x and by adding the inductive hypothesis (IH) in the successor case. The inductive hypothesis makes it possible to close the proof of the successor case by simplification and by rewriting with the inductive hypothesis. A simplification step simplifies a claim by applying defining equations from left to right. A rewriting step rewrites with an equation that is either assumed or has been established as a lemma. In the example above, rewriting takes place with the inductive hypothesis, an assumption introduced by the induction rule.

We will explain later why structural induction is a valid proof principle. For now we can say that inductive proofs are recursive proofs.

We remark that rewriting can apply an equation in either direction. The above proof of Equation 1.1 can in fact be shortened by one line if the inductive hypothesis is applied from right to left as first step in the second proof goal.
$\left.\begin{array}{lrl} & x+y-y=x & \text { induction } y \\ \hline 1 & x+0-0=x & \text { rewrite Equation } 1.1 \\ & x-0=x & \text { case analysis } x \\ \hline 1.1 & 0-0=0 & \text { comp. eq. } \\ \hline 1.2 & \mathrm{~S} x-0=\mathrm{S} x & \text { comp. eq. } \\ \hline 2 & \mathrm{IH}: x+y-y=x & x+\mathrm{S} y-\mathrm{S} y=x\end{array}\right)$ rewrite Equation 1.2

Figure 1.2: Proof table for Equation 1.4

Note that Equations 1.1 and 1.2 are symmetric variants of the defining equations of the addition function ' + '. Once these equations have been shown, they can be used for rewriting in proofs.

Figure 1.2 shows a proof table giving an inductive proof of Equation 1.4. Note that the proof of the base case involves a structural case analysis on x so that the defining equations for subtraction apply. Also note that the proof rewrites with Equation 1.1 and Equation 1.2, assuming that the equations have been proved before. The successor case closes with an application of the inductive hypothesis (i.e., the remaining claim agrees with the inductive hypothesis).

We remark that a structural case analysis in a proof (as in Figure 1.2) may also be called a discrimination or a destructuring.

The proof of Equation 1.3 is similar to the proof of Equation 1.4 (induction on x and rewriting with 1.1 and 1.2). We leave the proof as exercise.

One reason for showing inductive proofs as proof tables is that proof tables explain how one construct proofs in interaction with Coq. With Coq one states the initial proof goal and then enters commands called tactics performing the proof actions given in the rightmost column of the proof tables. The induction tactic displays the subgoals and automatically provides the inductive hypothesis. Except for the initial claim, all the equations appearing in the proof tables are displayed automatically by Coq, saving a lot of tedious writing. Replay all proof tables shown in this chapter with Coq to understand what is going on.

A proof goal consists of a claim and a list of assumptions called context. The proof rules for structural case analysis and structural induction reduce a proof goal to several subgoals. A proof is complete once all subgoals have been closed.

A proof table comes with three columns listing assumptions, claims, and proof actions. ${ }^{1}$ Subgoals are marked by hierarchical numbers and horizontal lines. Our

[^0]proof tables may be called have-want digrams since they come with separate columns for assumptions we have, claims we want to prove, and actions we perform to advance the proof.

Exercise 1.4.1 Give a proof table for Equation 1.2. Follow the layout of Figure 1.2.

Exercise 1.4.2 Prove that addition is commutative (1.3). Use equations (1.1) and (1.2) as lemmas.

Exercise 1.4.3 Shorten the given proofs for Equations 1.1 and 1.4 by applying the inductive hypothesis from right to left thus avoiding the simplification step.

Exercise 1.4.4 Prove that addition is associative: $(x+y)+z=x+(y+z)$. Give a proof table.

Exercise 1.4.5 Prove the distributivity law $(x+y) \cdot z=x \cdot z+y \cdot z$. You will need associativity of addition.

Exercise 1.4.6 Prove that multiplication is commutative. You will need lemmas.

Exercise 1.4.7 (Truncating subtraction) Truncating subtraction is different from the familiar subtraction in that it yields 0 where standard subtraction yields a negative number. Truncating subtraction has the nice property that $x \leq y$ if and only if $x-y=0$. Prove the following equations:
a) $x-0=x$
b) $x-(x+y)=0$
c) $x-x=0$
d) $(x+y)-x=y$

Hint: (d) follows with equations shown before.

1.5 Quantified Inductive Hypotheses

Sometimes it is necessary to do an inductive proof using a quantified inductive hypothesis. As an example we consider a variant of the subtraction function returning the distance between two numbers:

$$
\begin{aligned}
& D: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& D 0 y:=y \\
& D(\mathrm{~S} x) 0:=\mathrm{S} x \\
& D(\mathrm{~S} x)(\mathrm{S} y):=D x y
\end{aligned}
$$

	$\forall y . D x y=(x-y)+(y-x)$	induction x
1	$\forall y . D 0 y=(0-y)+(y-0)$	disc. y
1.1	$D 00=(0-0)+(0-0)$	comp. eq.
1.2	$D 0(\mathrm{~S} y)=(0-\mathrm{S} y)+(\mathrm{S} y-0)$	comp. eq.
2	$\mathrm{IH}: \forall y . \cdots$	$\forall y . D(\mathrm{~S} x) y=(\mathrm{S} x-y)+(y-\mathrm{S} x)$
2.1	$D(\mathrm{~S} x) 0=(\mathrm{S} x-0)+(0-\mathrm{S} x)$	disc. y
	$\mathrm{~S} x=\mathrm{S} x+0$	simpl.
2.2	$D(\mathrm{~S} x)(\mathrm{S} y)=(\mathrm{S} x-\mathrm{S} y)+(\mathrm{S} y-\mathrm{S} x)$	apply (1.1)
	$D x y=(x-y)+(y-x)$	apply IH

Figure 1.3: Proof table for a proof with a quantified inductive hypothesis

The defining equations discriminate on the first argument and in the successor case also on the second argument. The recursion occurs in the third equation and is structural in the first argument.

We now want to prove

$$
D x y=(x-y)+(y-x)
$$

We do the proof by induction on x followed by discrimination on y. The base cases with either $x=0$ or $y=0$ are easy. The interesting case is

$$
D(\mathrm{~S} x)(\mathrm{S} y)=(\mathrm{S} x-\mathrm{S} y)+(\mathrm{S} y-\mathrm{S} x)
$$

After simplification (i.e., application of defining equations) we have

$$
D x y=(x-y)+(y-x)
$$

If this was the inductive hypothesis, closing the proof is trivial. However, the actual inductive hypothesis is

$$
D x(\mathrm{~S} y)=(x-\mathrm{S} y)+(\mathrm{S} y-x)
$$

since it was instantiated by the discrimination on y. The problem can be solved by starting with a quantified claim

$$
\forall y . D x y=(x-y)+(y-x)
$$

where induction on x gives us a quantified inductive hypothesis that is not affected by a discrimination on y. Figure 1.3 shows a complete proof table for the quantified claim.

You may have questions about the precise rules for quantification and induction. Given that this is a teaser chapter, you will have to wait a little bit. It will take until Chapter 5 that quantification and induction are explained in depth.

Exercise 1.5.1 Prove $D x y=D y x$ by induction on x. No lemma is needed.

Exercise 1.5.2 (Maximum)

Define an inductive maximum function $M: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ and prove the following:
a) $M x y=M y x \quad$ (commutativity)
b) $M(x+y) x=x+y \quad$ (dominance)

Hint: Commutativity needs a quantified inductive hypothesis.
Extra: Do the exercise for a minimum function. Find a suitable reformulation for (b).
Exercise 1.5.3 (Symmetric addition) Using cascaded discrimination, we can define an inductive addition function with symmetric defining equations:

$$
\begin{aligned}
+: \mathrm{N} \rightarrow \mathrm{~N} & \rightarrow \mathrm{~N} \\
0+0 & :=0 \\
0+\mathrm{S} y & :=\mathrm{S} y \\
\mathrm{~S} x+0 & :=\mathrm{S} x \\
\mathrm{~S} x+\mathrm{S} y & :=\mathrm{S}(\mathrm{~S}(x+y))
\end{aligned}
$$

a) Prove that the symmetric addition function is commutative: $x+y=y+x$.
b) Prove that the symmetric addition function satisfies the defining equations for the standard addition function $(0+y=y$ and $\mathrm{S} x+y=\mathrm{S}(x+y))$.
c) Prove that the symmetric addition function agrees with the standard addition function.

1.6 Preview of Proof Rules

We have seen a number of proofs using structural case analysis and structural induction on numbers. Our presentation is informal and leaves important issues unexplained, in particular as it comes to structural induction on numbers. Latter in this text, we will derive formal proof rules for structural case analysis and induction from first principle in type theory. We now give a preview of the formal proof rules explaining their meaning informally.

The rule for structural case analysis on booleans takes the form

$$
\mathrm{E}_{\mathrm{B}}: \forall p^{\mathrm{B} \rightarrow \mathbb{P}} \cdot p \text { true } \rightarrow p \text { false } \rightarrow \forall x \cdot p x
$$

The rule says that we can prove a proposition $p x$ for all booleans x by proving it for true and false. Type-theoretically, we see E_{B} as a function that given proofs of the propositions p true and p false yields a proof of the proposition $p x$ for every boolean x.

The rule for structural case analysis on numbers takes the form

$$
\mathrm{M}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{P}} \cdot p 0 \rightarrow(\forall n \cdot p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

The rule says that we can prove a proposition $p n$ for all numbers n by giving proofs for 0 and all successors $S n$. Type-theoretically, we see M_{N} as a function that given proofs of the propositions $p 0$ and $\forall n$. $p(\mathrm{~S} n)$ yields a proof of the proposition $\forall n . p n$.

The rule for structural induction on numbers takes the form

$$
\mathrm{E}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{P}} \cdot p 0 \rightarrow(\forall n \cdot p n \rightarrow p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

It says that a proposition $p n$ can be proved for all numbers n by giving proofs for the zero case $p 0$ and the successor case $\forall n$. $p n \rightarrow p(\mathrm{~S} n)$. A proof of the successor case $\forall n . p n \rightarrow p(S n)$ is a function that given a number n and a proof of $p n$ yields a proof of the proposition $p(\mathrm{~S} n)$. In the context of the rule E_{N} the proposition $p n$ acts as an assumption which is usually referred to as inductive hypothesis.

We may see the proof of the successor case of the induction rule as a method that for every n upgrades a proof of $p n$ to a proof of $p(S n)$. By iterating this method n-times on a proof of $p 0$

$$
p 0, p 1, p 2, \ldots, p n
$$

we can obviously get a proof of $p n$ for every n.
We remark that in practice inductive proofs are obtained backwards: One first announces that the claim is shown by induction and then works on the proof obligations for the zero and the successor case.

1.7 Procedural Specifications

The rules we have given for defining inductive functions are very restrictive as it comes to termination. There are many cases where a function can be specified with a system of equations that are exhaustive, disjoint, and terminating. We then speak of a procedural specification and its specifying equations. It turns out that in practice using strict structural recursion one can construct inductive functions satisfying procedural specifications relying on more permissive termination arguments.

Our first example for a procedural specification specifies a function $E: N \rightarrow B$ that checks whether a number is even:

$$
\begin{aligned}
E(0) & =\text { true } \\
E(\mathrm{~S} 0) & =\text { false } \\
E(\mathrm{~S}(\mathrm{~S} n)) & =E(n)
\end{aligned}
$$

The equations are exhaustive, disjoint, and terminating (two constructors are skipped). However, the equations cannot serve as defining equations for an inductive function since the recursion skips two constructors (rather that just one).

We can define an inductive function satisfying the specifying equations using the defining equations

$$
\begin{aligned}
E(0) & :=\text { true } \\
E(\mathrm{~S} n) & :=!E(n)
\end{aligned}
$$

(recall that '!' is boolean negation). The first and the second equation specifying E hold by computational equality. The third specifying equation holds by simplification and by rewriting with the lemma $!!b=b$.

Our second example specifies the Fibonacci function $F: \mathrm{N} \rightarrow \mathrm{N}$ with the equations

$$
\begin{aligned}
F 0 & =0 \\
F 1 & =1 \\
F(\mathrm{~S}(\mathrm{~S} n)) & =F n+F(\mathrm{~S} n)
\end{aligned}
$$

The equations do not qualify as defining equations for the same reasons we explained for E . It is however possible to define a Fibonacci function using strict structural recursion. One possibility is to obtain F with a helper function F^{\prime} taking an extra boolean argument such that, informally, $F^{\prime} n b$ yields $F(n+b)$:

$$
\begin{aligned}
& F^{\prime}: \mathrm{N} \rightarrow \mathrm{~B} \rightarrow \mathrm{~N} \\
& F^{\prime} 0 \text { false }:=0 \\
& F^{\prime} 0 \text { true }:=1 \\
& F^{\prime}(\mathrm{S} n) \text { false }:=F^{\prime} n \text { true } \\
& F^{\prime}(\mathrm{S} n) \text { true }:=F^{\prime} n \text { false }+F^{\prime} n \text { true }
\end{aligned}
$$

Note that F^{\prime} is defined by a cascaded discrimination on both arguments. We now define

$$
\begin{aligned}
& F: \mathrm{N} \rightarrow \mathrm{~N} \\
& F n:=F^{\prime} n \text { false }
\end{aligned}
$$

That F satisfies the specifying equations for the Fibonacci function follows by computational equality.

Note that F is defined with a single defining equation without a discrimination. We speak of a plain function and a plain function definition. Since there is no discrimination, the defining equation of a plain function can be applied as soon
as the function is applied to enough arguments. The defining equation of a plain function must not be recursive.

There are other possibilities for defining a Fibonacci function. Exercise 1.10.8 will obtain a Fibonacci function by iteration on pairs, and Exercise 1.12 .5 will obtain a Fibonacci function with a tail recursive helper function taking two extra arguments. Both alternatives employ linear recursion, while the definition shown above uses binary recursion, following the scheme of the third specifying equation.

We remark that Coq supports a more permissive scheme for inductive functions, providing for a straightforward definition of a Fibonacci function essentially following the specifying equations. In this text we will stick to the restrictive format explained so far. It will turn out that every function specified with a terminating system of equations can be defined in the restrictive format we are using here (see Chapter 31).

Exercise 1.7.1 Prove $E(n \cdot 2)=$ true.
Exercise 1.7.2 Verify that $F n:=F^{\prime} n$ false satisfies the specifying equations for the Fibonacci function.

Exercise 1.7.3 Define a function $H: \mathrm{N} \rightarrow \mathrm{N}$ satisfying the equations

$$
\begin{aligned}
H 0 & =0 \\
H 1 & =0 \\
H(\mathrm{~S}(\mathrm{~S} n)) & =\mathrm{S}(H n)
\end{aligned}
$$

using strict structural recursion. Hint: Use a helper function with an extra boolean argument.

1.8 Pairs and Polymorphic Functions

We have seen that booleans and numbers can be accommodated as inductive types. We will now see that pairs (x, y) can also be accommodated with an inductive type definition.

A pair (x, y) combines two values x and y into a single value such that the components x and y can be recovered from the pair. Moreover, two pairs are equal if and only if they have the same components. For instance, we have $(3,2+3)=$ $(1+2,5)$ and $(1,2) \neq(2,1)$.

Pairs whose components are numbers can be accommodated with the inductive definition

$$
\text { Pair }::=\operatorname{pair}(N, N)
$$

which introduces two constructors

$$
\begin{aligned}
& \text { Pair : } \mathbb{T} \\
& \text { pair : } N \rightarrow N \rightarrow \text { Pair }
\end{aligned}
$$

A function swapping the components of a pair can be defined with a single equation:

$$
\begin{aligned}
& \text { swap : Pair } \rightarrow \text { Pair } \\
& \text { swap }(\text { pair } x y):=\text { pair } y x
\end{aligned}
$$

Using discrimination for pairs, we can prove the equation

$$
\operatorname{swap}(\operatorname{swap} p)=p
$$

for all pairs p (that is, for a variable p of type Pair). Note that discrimination for pairs involves only a single case for the single value constructor for pairs.

Above we have defined pairs where both components are numbers. Given two types X and Y, we can repeat the definition to obtain pairs whose first component has type X and whose second component has type Y. We can do much better, however, by defining pair types for all component types in one go:

$$
\operatorname{Pair}(X: \mathbb{T}, Y: \mathbb{T})::=\operatorname{pair}(X, Y)
$$

This inductive type definition gives us two constructors:

$$
\begin{aligned}
& \text { Pair: } \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{T} \\
& \text { pair : } \forall X Y . X \rightarrow Y \rightarrow \text { Pair } X Y
\end{aligned}
$$

The polymorphic value constructor pair comes with a polymorphic function type saying that pair takes four arguments, where the first argument X and the second argument Y fix the types of the third and the fourth argument. Put differently, the types X and Y taken as first and second argument are the types for the components of the pair constructed. We say that the first and second argument of the value constructor pair are parametric and the third and fourth are proper.

We shall use the familiar notation $X \times Y$ for product types Pair $X Y$.
We can write partial applications of the value constructor pair:

$$
\begin{aligned}
\text { pair } \mathrm{N} & : \forall Y . \mathrm{N} \rightarrow Y \rightarrow \mathrm{~N} \times Y \\
\text { pair } \mathrm{BB} & : \mathrm{N} \rightarrow \mathrm{~B} \rightarrow \mathrm{~N} \times \mathrm{B} \\
\text { pair } \mathrm{NB} 0 & : \mathrm{B} \rightarrow \mathrm{~N} \times \mathrm{B} \\
\text { pair } \mathrm{NB} 0 \text { true } & : \mathrm{N} \times \mathrm{B}
\end{aligned}
$$

We can also define a polymorphic swap function working for all pair types:

```
swap: }\forallXY.X\timesY->Y\times
swap XY(pair x y) := pair YX y x
```

Note that the parametric arguments of pair are omitted in the pattern of the defining equation (i.e, the left hand side of the defining equation). The reason for the omission is that the parametric arguments of pair don't contribute relevant information in the pattern of a defining equation.

1.9 Implicit Arguments

If we look at the type of the polymorphic pair constructor

$$
\text { pair : } \forall X Y . X \rightarrow Y \rightarrow X \times Y
$$

we see that the first and second argument of pair provide the types of the third and fourth argument. This means that the first and second argument can be derived from the third and fourth argument. This fact can be exploited in Coq by declaring the first and second argument of pair as implicit arguments. Implicit arguments are not written explicitly but are derived and inserted automatically. This way we can write pair 0 true for pair N B 0 true. If in addition we declare the type arguments of

$$
\text { swap : } \forall X Y . X \times Y \rightarrow Y \times X
$$

as implicit arguments, we can write

```
swap (swap (pair x y)) = pair x y
```

for the otherwise bloated equation

```
swap YX(swap XY(pair XY x y)) = pair XY x y
```

We will routinely use implicit arguments for polymorphic constructors and functions.

With implicit arguments, we go one step further and use the standard notations for pairs:

$$
(x, y):=\text { pair } x y
$$

With this final step we can write the definition of swap as follows:

$$
\begin{aligned}
& \text { swap }: \forall X Y . X \times Y \rightarrow Y \times X \\
& \operatorname{swap}(x, y):=(y, x)
\end{aligned}
$$

1 Getting Started

Note that it takes considerable effort to recover the usual mathematical notation for pairs in the typed setting of computational type theory. There were three successive steps:

1. Polymorphic function types and functions taking types as arguments. We remark that types are first-class objects in computational type theory.
2. Implicit arguments so that type arguments can be derived automatically from other arguments.
3. The usual notation for pairs.

Finally, we define two functions providing the first and the second projection for pairs:

$$
\begin{array}{ll}
\pi_{1}: \forall X Y . X \times Y \rightarrow X & \pi_{2}: \forall X Y . X \times Y \rightarrow Y \\
\pi_{1}(x, y):=x & \pi_{2}(x, y):=y
\end{array}
$$

We can now prove the η-law for pairs

$$
\left(\pi_{1} a, \pi_{2} a\right)=a
$$

by destructuring of a (i.e., replacing a with (x, y)) and computational equality. Recall that a destructuring step is a discrimination step.

Exercise 1.9.1 Write the η-law and the definitions of the projections without using the notation (x, y) and without implicit arguments.

Exercise 1.9.2 Let a be a variable of type $X \times Y$. Write proof tables for the equations $\operatorname{swap}(\operatorname{swap} a)=a$ and $\left(\pi_{1} a, \pi_{2} a\right)=a$.

1.10 Iteration

If we look at the equations (all following by computational equality)

$$
\begin{aligned}
3+x & =\mathrm{S}(\mathrm{~S}(\mathrm{~S} x)) \\
3 \cdot x & =x+(x+(x+0)) \\
x^{3} & =x \cdot(x \cdot(x \cdot 1))
\end{aligned}
$$

we see a common scheme we call iteration. In general, iteration takes the form $f^{n} x$ where a step function f is applied n-times to an initial value x. With the notation $f^{n} x$ the equations from above generalize as follows:

$$
\begin{aligned}
n+x & =\mathrm{S}^{n} x \\
n \cdot x & =(+x)^{n} 0 \\
x^{n} & =(\cdot x)^{n} 1
\end{aligned}
$$

		$n \cdot x=i \operatorname{ter}(+x) n 0$	induction n
1		$0 \cdot x=\operatorname{iter}(+x) 00$	comp. eq.
2	$\mathrm{IH}: n \cdot x=\operatorname{iter}(+x) n 0$	$\mathrm{S} n \cdot x=\operatorname{iter}(+x)(\mathrm{S} n) 0$ $n \cdot x=x+\operatorname{iter}(+x) n 0$ $n 0=x+\operatorname{iter}(+x) n 0$	simpl. rewrite IH comp. eq.

Figure 1.4: Correctness of multiplication with iter

The partial applications $(+x)$ and $(\cdot x)$ supply only the first argument to the functions for addition and multiplication. They yield functions $N \rightarrow N$, as suggested by the cascaded function type $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ of addition and multiplication.

We formalize the notation $f^{n} x$ with a polymorphic function:

$$
\begin{aligned}
& \text { iter: } \forall X .(X \rightarrow X) \rightarrow \mathrm{N} \rightarrow X \rightarrow X \\
& \quad \text { iter } X f 0 x:=x \\
& \text { iter } X f(\mathrm{~S} n) x:=f(\text { iter } X f n x)
\end{aligned}
$$

We will treat X as implicit argument of iter. The equations

$$
\begin{aligned}
3+x & =\operatorname{iter} \mathrm{S} 3 x \\
3 \cdot x & =\text { iter }(+x) 30 \\
x^{3} & =\operatorname{iter}(\cdot x) 31
\end{aligned}
$$

now hold by computational equality. More generally, we can prove the following equations by induction on n :

$$
\begin{aligned}
n+x & =\operatorname{iter} \operatorname{S} n x \\
n \cdot x & =\operatorname{iter}(+x) n 0 \\
x^{n} & =\operatorname{iter}(\cdot x) n 1
\end{aligned}
$$

Figure 1.4 gives a proof table for the equation for multiplication.
Exercise 1.10.1 Check that iter $\mathrm{S} 2=\lambda x$. $\mathrm{S}(\mathrm{S} x)$ holds by computational equality.
Exercise 1.10.2 Prove $n+x=\operatorname{iter} \operatorname{Six}$ and $x^{n}=\operatorname{iter}(\cdot x) n 1$ by induction.
Exercise 1.10.3 Check that the plain function

$$
\begin{aligned}
& \operatorname{add}: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \operatorname{add} x y:=\operatorname{iter} \mathrm{S} x y
\end{aligned}
$$

satisfies the defining equations for inductive addition

$$
\begin{aligned}
\operatorname{add} 0 y & =y \\
\operatorname{add}(\mathrm{~S} x) y & =\mathrm{S}(\operatorname{add} x y)
\end{aligned}
$$

by computational equality.
Exercise 1.10.4 (Shift) Prove iter $f(\mathrm{Sn}) x=\operatorname{iter} f n(f x)$.
Exercise 1.10.5 (Tail recursive iteration) Define a tail recursive version of iter and verify that it agrees with iter.

Exercise 1.10.6 (Even) The term $!^{n}$ true tests whether a number n is even ('!' is boolean negation). Prove iter $!(n \cdot 2) b=b$ and iter ! $(\mathrm{S}(n \cdot 2)) b=!b$.

Exercise 1.10.7 (Factorials with iteration) Factorials n ! can be computed by iteration on pairs $(k, k!)$. Find a function f such that $(n, n!)=f^{n}(0,1)$. Define a factorial function with the equations $0!=1$ and $(S n)!=S n \cdot n!$ and prove $(n, n!)=f^{n}(0,1)$ by induction on n.

Exercise 1.10.8 (Fibonacci with iteration) Fibonacci numbers (§1.7) can be computed by iteration on pairs. Find a function f such that $F n:=\pi_{1}\left(f^{n}(0,1)\right)$ satisfies the specifying equations for the Fibonacci function:

$$
\begin{aligned}
F 0 & =0 \\
F 1 & =1 \\
F(\mathrm{~S}(\mathrm{~S} n)) & =F n+F(\mathrm{~S} n)
\end{aligned}
$$

Hint: If you formulate the step function with π_{1} and π_{2}, the third specifying equation should follow by computational equality, otherwise discrimination on a subterm obtained with iter may be needed.

1.11 Ackermann Function

The following equations specify a function $A: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ known as Ackermann function:

$$
\begin{aligned}
A 0 y & =\mathrm{S} y \\
A(\mathrm{~S} x) 0 & =A x 1 \\
A(\mathrm{~S} x)(\mathrm{S} y) & =A x(A(\mathrm{~S} x) y)
\end{aligned}
$$

The equations cannot serve as a defining equations since the recursion is not structural. The problem is with the nested recursive application $A(\mathrm{~S} x) y$ in the third equation.

However, we can define a structurally recursive function satisfying the given equations. The trick is to use a higher-order helper function: ${ }^{2}$

$$
\begin{aligned}
& A: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& A 0:=\mathrm{S} \\
& A(\mathrm{~S} x):=A^{\prime}(A x)
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime}:(\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \\
& A^{\prime} h 0:=h 1 \\
& A^{\prime} h(\mathrm{~S} y):=h\left(A^{\prime} h y\right)
\end{aligned}
$$

Verifying that A satisfies the three specifying equations is straightforward. Here is a verification of the third equation:

$$
\begin{aligned}
& A(\mathrm{~S} x)(\mathrm{S} y) \\
= & A^{\prime}(A x)(\mathrm{S} y) \\
= & A x\left(A^{\prime}(A x) y\right)
\end{aligned} \quad \begin{aligned}
& A x(A(\mathrm{~S} x) y) \\
&= A x\left(A^{\prime}(A x) y\right)
\end{aligned}
$$

Note that the three specifying equations hold by computational equality (i.e., both sides of the equations reduce to the same term). Thus verifying the equations with a proof assistant is trivial.

We remark that the three equations specifying A are exhaustive and disjoint. They are also terminating, which can be seen with a lexical argument: Either the first argument is decreased, or the first argument stays unchanged and the second argument is decreased.

Exercise 1.11.1 (Truncating subtraction without cascaded discrimination)

Define a truncating subtraction function that discriminates on the first argument and delegates discrimination on the second argument to a helper function. Prove that your function agrees with the standard subtraction function sub from §1.2. Arrange your definitions such that your function satisfies the defining equations of sub by computational equality.

Exercise 1.11.2 (Ackermann with iteration)

There is an elegant iterative definition of the Ackermann function

$$
A n:=B^{n} S
$$

using a higher-order helper function B defined with iteration. Define B and verify that A satisfies the specifying equations for the Ackermann function by computational equality. Consult Wikipedia to learn more about the Ackermann function.

[^1]```
Fib: \((N \rightarrow N) \rightarrow N \rightarrow N\)
 Fib \(f 0:=0\)
 Fib \(f 1:=1\)
\(\operatorname{Fib} f(\mathrm{SS} n):=f n+f(\mathrm{Sn})\)
```

Ack: $(\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}) \rightarrow \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$
Ack $f 0 y:=\mathrm{S} y$
Ack $f(\mathrm{~S} x) 0:=f x 1$
Ack $f(\mathrm{~S} x)(\mathrm{S} y):=f x(f(\mathrm{~S} x) y)$

Figure 1.5: Unfolding functions for the Fibonacci and Ackermann functions

### 1.12 Unfolding Functions

Procedural specifications can be faithfully represented as non-recursive inductive functions taking a continuation function as first argument. We speak of unfolding functions. Figure 1.5 shows the unfolding functions for the procedural specifications of the Fibonacci and Ackermann functions we have discussed in §1.7 and §1.11.

An unfolding function is a higher-order function specifying a recursive function without recursion. It does so by abstracting out the recursion by means of a continuation function taken as argument.

Intuitively, it is clear that a function $f$ satisfies the specifying equations for the Fibonacci function if and only if it satisfies the unfolding equation

$$
f n=\operatorname{Fib} f n
$$

for the unfolding function Fib. Formally, this follows from the fact that the specifying equations for the Fibonacci function are computationally equal to the respective instances of the unfolding equation:

$$
\begin{aligned}
f 0 & =\operatorname{Fib} f 0 \\
f 1 & =\operatorname{Fib} f 1 \\
f(\mathrm{SS} n) & =\operatorname{Fib} f(\mathrm{SS} n)
\end{aligned}
$$

The same is true for the Ackermann function.
Exercise 1.12.1 Verify with the proof assistant that the realizations of the Fibonacci function defined in $\S 1.7$ and Exercise 1.10 .8 satisfy the unfolding equation for the specifying unfolding function.

Exercise 1.12.2 Verify with the proof assistant that the realizations of the Ackermann function defined in $\S 1.11$ satisfies the unfolding equation for the specifying unfolding function.

Exercise 1.12.3 Give unfolding functions for addition and truncating subtraction and show that the unfolding equations are satisfied by the inductive functions we defined for addition and subtraction.

Exercise 1.12.4 The unfolding function Fib is defined with a nested pattern SSn in the third defining equation. Show how the nested pattern can be removed by formulating the third equation with a helper function.

Exercise 1.12.5 (Iterative definition of a Fibonacci function) There is a different definition of a Fibonacci function using the helper function

$$
\begin{aligned}
g: \mathrm{N} \rightarrow \mathrm{~N} & \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
g a b 0 & :=a \\
g a b(\mathrm{~S} n) & :=g b(a+b) n
\end{aligned}
$$

The underlying idea is to start with the first two Fibonacci numbers and then iterate $n$-times to obtain the $n$-th Fibonacci number. For instance,

$$
g 015=g 114=g 123=g 232=g 351=g 580=5
$$

a) Prove $g a b(\mathrm{SS} n)=g a b n+g a b(\mathrm{~S} n)$ by induction on n .
b) Prove that $g 01$ satisfies the unfolding equation for Fib.
c) Compare the iterative computation of Fibonacci numbers considered here with the computation using iter in Exercise 1.10.8.

### 1.13 Concluding Remarks

The equational language we have seen in this chapter is a sweet spot in the typetheoretic landscape. With a minimum of luggage we can define interesting functions, explore equational computation, and prove equational properties using structural induction. Higher-order functions and polymorphic functions are natural features of this equational language. The power of the language comes from the fact that functions and types can be passed as arguments and results of functions.

We have seen how booleans, numbers, and pairs can be accommodated as inductive types using constructors, and how inductive functions discriminating on inductives types can be defined using equations. Functional recursion is restricted to structural recursion so that termination of computation is ensured.

As usual, we use the word function with two meanings. Usually, when we talk about a function, we refer to its concrete definition in type theory. This way, we can distinguish between inductive and plain functions, or recursive and non-recursive functions. Sometimes, however, we refer to a function as an abstract object that

## 1 Getting Started

relates inputs to outputs but hides how this is done. The abstract view makes it possible to speak of a uniquely determined Fibonacci function or of a uniquely determined Ackermann function.

Here is a list of important technical terms introduced in this chapter:

- Inductive type definitions, type and value constructors
- Inductive functions, plain functions
- Booleans, numbers, and pairs obtained with inductive types
- Defining equations, patterns, computation rules
- Disjoint, exhaustive, termining systems of equations
- Cascaded function types, partial applications
- Polymorphic function types, implicit arguments
- Structural recursion, structural case analysis, discrimination
- Structural induction, (quantified) inductive hypotheses
- Proof digrams, proof goals, subgoals, proof actions (tactics)
- Simplification steps, rewriting steps , computational equality
- Truncated subtraction, Fibonacci function, Ackermann function
- Iteration
- Procedural specifications, specifying equations
- Unfolding functions, unfolding equations, continuation functions


## 2 Basic Computational Type Theory

This chapter introduces key ideas of computational type theory in a nutshell. We start with inductive type definitions and inductive function definitions and continue with reduction rules and computational equality. We discuss termination, type preservation, and canonicity, three key properties of computational type theory. We then continue with lambda abstractions, beta reduction, and eta equivalence. Finally, we introduce matches and recursive abstractions, the Coq-specific constructs for expressing inductive function definitions.

In this chapter, computational type theory appears as a purely computational system. That computational type theory can express logical propositions and proofs will be shown in the next chapter. In Chapter 4 we will boost the expressivity of computational type theory by enhancing type checking so that it operates modulo computational equality of types. The resulting type theory covers equational and inductive proofs.

### 2.1 Inductive Type Definitions

Our explanation of computational type theory starts with inductive type definitions. Here are the already discussed definitions for a type of numbers and a family of pair types:

$$
\begin{aligned}
\mathrm{N} & ::=0 \mid \mathrm{S}(\mathrm{~N}) \\
\operatorname{Pair}(X: \mathbb{T}, Y: \mathbb{T}) & ::=\operatorname{pair}(X, Y)
\end{aligned}
$$

Each of the definitions introduces a system of typed constants consisting of a type constructor and a list of value constructors:

$$
\begin{aligned}
& \mathrm{N}: \mathbb{T} \\
& 0: \mathrm{N} \\
& \mathrm{~S}: \mathrm{N} \rightarrow \mathrm{~N} \\
& \text { Pair }: \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{\mathbb { T }} \\
& \text { pair : } \forall X^{\mathbb{T}} . \forall Y^{\mathbb{U}} . X \rightarrow Y \rightarrow \text { Pair } X Y
\end{aligned}
$$

Note that the constructors S, Pair, and pair have types classifying them as functions. From the types of 0 and $S$ and the information that there are no other value constructors for N it is clear that the values of N are obtained as the terms $0, \mathrm{~S} 0, \mathrm{~S}(\mathrm{~S} 0)$, $S(S(S 0))$ and so forth. Analogously, given two types $s$ and $t$, the values of the type Pair st are described by terms pair stuv where $u$ has type $s$ and $v$ has type $t$.

A distinguishing feature of computational type theory are dependent function types

$$
\forall x: s . t
$$

which we often write as $\forall x^{s}$. $t$. An example for a dependent function type is the type of the value constructor pair

$$
\forall X^{\mathbb{T}} \cdot \forall Y^{\mathbb{T}} \cdot X \rightarrow Y \rightarrow \text { Pair } X Y
$$

which uses the primitive for dependent function types twice. This way Pair can take two types $s$ and $t$ as arguments and then behave as a simply typed function $s \rightarrow t \rightarrow$ Pair st.

Computational type theory sees a simple function type $s \rightarrow t$ as a dependent function type $\forall x$ : s.t where the target type $t$ does not depend on the argument $x$. In other words, $s \rightarrow t$ is notation for $\forall x: s . t$, provided the variable $x$ does not occur in $t$. For instance, $\mathrm{N} \rightarrow \mathrm{N}$ is notation for $\forall x: \mathrm{N} . \mathrm{N}$.

As usual, the names for bound variables do not matter. For instance, the terms $\forall X . X \rightarrow X$ and $\forall Y . Y \rightarrow Y$ are identified.

There is also the primitive type $\mathbb{T}$, which may be understood as the type of all types. For now, it is fine to assume $\mathbb{T}: \mathbb{T}$ (i.e., the type of $\mathbb{T}$ is $\mathbb{T}$ ). Later, we will remove the cycle and work with an infinite hierarchy of type universes $\mathbb{T}_{1} \subset \mathbb{T}_{2} \subset \cdots$.

A key feature of computational type theory is the fact that types and functions are values like all other values. We say that types and functions are first-class objects. Note that Pair and pair are functions taking types as arguments.

Type theory only admits well-typed terms. Examples for ill-typed terms are STI and pair 0 N . In the basic type theory we are considering here, every well-typed term has a unique type.

Exercise 2.1.1 Convince yourself that the following terms are all well-typed. In each case give the type of the term.

$$
S, \quad \text { Pair } N, \quad \text { Pair }(\operatorname{Pair} N(N \rightarrow N)), \quad \text { Pair } N \mathbb{T}, \quad \text { pair }(N \rightarrow N) \mathbb{T} N
$$

### 2.2 Inductive Function Definitions

Inductive function definitions define functions by case analysis on one or more inductive arguments called discriminating arguments. We shall look at the examples appearing in Figure 2.2. Each of the three definitions first declares the name

```
add: \(\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}\)
 add \(0 y:=y\)
 \(\operatorname{add}(\mathrm{S} x) y:=\mathrm{S}(\operatorname{add} x y)\)
sub: \(N \rightarrow N \rightarrow N\)
 sub \(0 y:=0\)
 sub (Sx) \(0:=S x\)
 \(\operatorname{sub}(\mathrm{S} x)(\mathrm{S} y):=\operatorname{sub} x y\)
swap : \(\forall X^{\mathbb{\top}} . \forall Y^{\mathbb{T}}\). Pair \(X Y \rightarrow\) Pair \(Y X\)
 \(\operatorname{swap} X Y(\) pair \(x y):=\) pair \(Y X y x\)
```

Figure 2.1: Inductive function definitions
(a constant) and the type of the defined function. Then defining equations are given realizing a disjoint and exhaustive case analysis. Note that add and swap have exactly one discriminating argument, while sub has two discriminating arguments. Since there is only one value constructor for pairs, there is only one defining equation for swap.

The left hand sides of defining equations are called patterns. The variables occurring in a pattern are local to the equation and can be used in the right hand side of the equation. We say that a pattern binds the variables occurring in it. An important requirement for patterns is linearity, that is, none of the variables bound by a pattern can occur more that once in the pattern. Also for this reason the parametric arguments of the constructor pair in the pattern for swap are omitted. The defining equations for a function must be exhaustive. That is, there must be a defining equation for every value constructor of the type of the first discriminating argument. If there are further discriminating arguments, as in the case of sub, the conditions apply recursively.

Every defining equation must be well-typed. Using the type declared for the function, every variable bound by the pattern of a defining equation receives a unique type. Give the types for the bound variables, type checking of the right-hand side of a defining equation works as usual.

As long as there is exactly one discriminating argument, the patterns of the defining equations are uniquely determined by the value constructors of the type of the discriminating argument.

If an inductive function recurses, the recursion must be on the first discriminating argument and the variables introduced by the pattern for this argument. In the
examples in Figure 2.2, only the variable $x$ in the defining equations for add and sub qualify for recursion. We refer to this severely restricted form of recursion as structural recursion.

### 2.3 Reduction

The defining equations of an inductive function serve as reduction rules that rewrite applications of the defined function. For instance, the application sub ( $\mathrm{S} s$ ) ( St ) can be reduced to subst using the third defining equation of sub. Things are arranged such that at most one defining equation applies to an application (disjointness), and such that every application where all discriminating arguments start with a constructor can be reduced (exhaustiveness). Thus a closed term (no free variables) can be reduced as long as it contains an application of a defined function. We refer to the process of applying reductions rules as reduction, and we see reduction as computation. We refer to reduction rules also as computation rules.

Things are arranged such that reduction always terminates. Without a restriction on recursion, non-terminating inductive functions are possible. The structural recursion requirement is a sufficient condition for termination that can be checked algorithmically.

Since reduction always terminates, we can compute a normal form for every term. There is no restriction on the application of reduction rules: Reduction rules can be applied to any subterm of a term and in any order. Since the reduction rules obtained from the defining equations do not overlap, terms nevertheless have unique normal forms. We say that a term evaluates to its normal form and refer to irreducible terms as normal terms. Terms that are closed and normal are called canonical terms.

We can now formulate four key properties of computational type theory:

- Termination Reduction always terminates.
- Unique normal forms Terms reduce to at most one normal form.
- Type preservation Reduction preserves types: If a term of type $t$ is reduced, the obtained term is again of type $t$.
- Canonicity Closed normal terms of an inductive type start with a value constructor of the type.
Canonicity gives an important integrity guarantee for inductive types saying that the elements of an inductive type do not change when inductive functions returning values of the type are added. Canonicity ensures that the canonical terms of an inductive type are exactly the terms that one can build with the value constructors of the type.

The definition format for inductive functions is carefully designed such that the key properties are preserved when a definition is added. Exhaustiveness of the defining equations is needed for canonicity, disjointness of the defining equations is needed for uniqueness, and the structural recursion requirement ensures termination. Moreover, the type checking conditions for equations are needed for type preservation.

Exercise 2.3.1 Give all reduction chains that reduce the term
sub (S0) (add (S(S0)) 0)
to its normal form. Note that there are chains of different length. Here is an example for a unique reduction chain to normal form: sub (S0) (Sy) $\succ_{\delta}$ sub $0 y \succ_{\delta} 0$. We use the notation $s \succ_{\delta} t$ for a single reduction step rewriting with a defining equation.

### 2.4 Plain Definitions

Besides inductive function definitions, there are plain definitions with a single defining equation

$$
c x_{1} \ldots x_{n}:=s
$$

where the pattern $c x_{1} \ldots x_{n}$ must not contain a constructor. Only the variables $x_{1}, \ldots, x_{n}$ may appear in $s$. We speak of a plain constant definition if $n=0$ and a plain function definition if $n>0$. Similar to inductive function definitions, plain definitions must declare the type of the defined constant $c$.

The reduction rule for plain definitions is known as delta reduction ( $\delta$-reduction). It takes the form

$$
c x_{1} \ldots x_{n} \succ s
$$

where $s$ is the term appearing as the right hand side of the definition of $c$.
Plain definitions must not be recursive. This ensures that the key properties of computational type theory are preserved when plain definitions are added.

Exercise 2.4.1 Recall the definition of iter (§1.10). Explain the difference between the following plain definitions:

$$
\begin{aligned}
A & :=\text { iter } S \\
B x y & :=\text { iter } S x y
\end{aligned}
$$

Note that the terms $A x y$ and $B x y$ both reduce to the normal term iter $S x y$. Moreover, note that the terms $A$ and $A x$ are reducible, while the terms $B$ and $B x$ are not reducible.

Exercise 2.4.2 Type checking is crucial for termination of $\delta$-reduction. Consider the ill-typed plain function definition $c x:=x x$ and the ill-typed term $c c$, which by $\delta$-reduction reduces to itself: $c c \succ c c$. Convince yourself that there cannot be type for $c$ such that the self application $c c$ type-checks.

### 2.5 Lambda Abstractions

A key ingredient of computational type theory are lambda abstractions

$$
\lambda x^{t} \cdot s
$$

describing functions with a single argument. Lambda abstractions come with an argument variable $x$ and an argument type $t$. The argument variable $x$ may be used in the body $s$. A lambda abstraction does not give a name to the function it describes. A nice example is the nested lambda abstraction

$$
\lambda X^{\mathbb{T}} \cdot \lambda x^{X} \cdot x
$$

having the type $\forall X^{\mathbb{T}} . X \rightarrow X$, which describes a polymorphic identity function. The reduction rule for lambda abstractions

$$
\left(\lambda x^{t} . s\right) u \succ_{\beta} s_{u}^{x}
$$

is called $\beta$-reduction and replaces an application $\left(\lambda x^{t} . s\right) u$ with the term $s_{u}^{x}$ obtained from the term $s$ by replacing every free occurence of the argument variable $x$ with the term $u$. Applications of the form $\left(\lambda x^{t} . s\right) u$ are called $\beta$-redexes. Here is an example for two $\beta$-reductions:

$$
\left(\lambda X^{\mathbb{T}} \cdot \lambda x^{X} \cdot x\right) \mathrm{N} 7 \succ_{\beta}\left(\lambda x^{\mathrm{N}} \cdot x\right) 7 \succ_{\beta} 7
$$

As with dependent function types, the particular name of an argument variable does not matter. For instance, $\lambda X^{\mathbb{T}} \cdot \lambda x^{X} . x$ and $\lambda Y^{\mathbb{T}} . \lambda y^{Y} . y$ are understood as equal terms.

For notational convenience, we usually omit the type of the argument variable of a lambda abstraction (assuming that it is determined by the context). We also omit parentheses and lambdas relying on two basic notational rules:

$$
\begin{array}{rll}
\lambda x . s t & \leadsto & \lambda x .(s t) \\
\lambda x y . s & \leadsto & \lambda x . \lambda y \cdot s
\end{array}
$$

To specify the type of an argument variable, we use either the notation $x^{t}$ or the notation $x: t$, depending on what we think is more readable.

Adding lambda abstractions and $\beta$-reduction to a computational type theory preserves its key properties: termination, type preservation, and canonicity.

Exercise 2.5.1 Type checking is crucial for termination of $\beta$-reduction. Convince yourself that $\beta$-reduction of the ill-typed term $(\lambda x . x x)(\lambda x . x x)$ does not terminate, and that no typing of the argument variables makes the term well-typed.

### 2.6 Typing Rules

Type checking is an algorithm that determines whether a term or a defining equation or an entire definition is well-typed. In case a term is well-typed, the type of the term is determined. In case a defining equation is well-typed, the types of the variables bound by the pattern are determined. We will not say much about type checking but rather rely on the reader's intuition and the implementation of type checking in the proof assistant. In case of doubt you may always ask the proof assistant.

Type checking is based on typing rules. The typing rules for applications and lambda abstractions may be written as

$$
\frac{\vdash s: \forall x^{u} \cdot v \quad \vdash t: u}{\vdash s t: v_{t}^{x}} \quad \frac{\vdash u: \mathbb{T} \quad x: u \vdash s: v}{\vdash \lambda x^{u} \cdot s: \forall x^{u} \cdot v}
$$

and may be read as follows:

- An application st has type $v_{t}^{x}$ if $s$ has type $\forall x^{u} . v$ and $t$ has type $u$.
- An abstraction $\lambda x^{u}$. $s$ has type $\forall x^{u} . v$ if $u$ has type $\mathbb{T}$ and $s$ has type $v$ under the assumption that the argument variable has type $u$.
The rule for applications makes precise how dependent function types are instantiated with the argument term of an application.

Note that the rules admit any type $u: \mathbb{T}$ as argument type of a dependent function type $\forall x: u . v$. So far we have only seen examples of dependent function types where $u$ is $\mathbb{T}$. Dependent function types $\forall x: u . v$ where $u$ is not the universe $\mathbb{T}$ will turn out to be important.

Recall that simple function types $u \rightarrow v$ are dependent function types $\forall x: u . v$ where the argument variable $x$ does not occur in the result type $v$. If we specialize the typing rules to simple function types, we obtain rules that will look familiar to functional programmers:

$$
\frac{\vdash s: u \rightarrow v \quad \vdash t: u}{\vdash s t: v} \quad \frac{\vdash u: \mathbb{T} \quad x: u \vdash s: v}{\vdash \lambda x^{u} . s: u \rightarrow v}
$$

### 2.7 Let Expressions

We will also use let expressions

$$
\operatorname{LET} x^{t}=s \operatorname{IN} u
$$

providing for local definitions. The reduction rule for let expressions

$$
\operatorname{LET} x^{t}=s \operatorname{IN} u \succ u_{s}^{x}
$$

is called zeta rule (弓-rule).
Let expressions can usually be expressed as $\beta$-redexes. There will be a feature of computational type theory (the conversion rule in $\S 4.1$ ) that distinguishes let expressions from $\beta$-redexes in that let expressions introduce local reduction rules.

Exercise 2.7.1 Express LET $x^{t}=s$ IN $u$ with a $\beta$-redex. Reduction of the $\beta$-redex should give the same term as reduction of the let expression.

### 2.8 Computational Equality

Computational equality is an algorithmically decidable equivalence relation on welltyped terms. Two terms are computationally equal if and only if their normal forms are identical up to $\alpha$-equivalence and $\eta$-equivalence. The notions of $\alpha$-equivalence and $\eta$-equivalence will be defined in the following.

Two terms are $\alpha$-equivalent if they are equal up to renaming of bound variables. We have introduced several constructs involving bound variables, including dependent function types $\forall x^{t} . s$, patterns of defining equations, lambda abstractions $\lambda x^{t}$.s, and let expressions. Alpha equivalence abstracts away from the particular names of bound variables but preserves the reference structure described by bound variables. For instance, $\lambda X^{\mathbb{T}} . \lambda x^{X} . x$ and $\lambda Y^{\mathbb{T}} . \lambda y^{Y} . y$ are $\alpha$-equivalent abstractions having the $\alpha$-equivalent types $\forall X^{\mathbb{T}} . X \rightarrow X$ and $\forall Y^{\mathbb{T}} . Y \rightarrow Y$. For all technical purposes $\alpha$-equivalent terms are considered equal, so we can write the type of $\lambda X^{\mathbb{T}} . \lambda x^{X} . x$ as either $\forall X^{\mathbb{T}} . X \rightarrow X$ or $\forall Y^{\mathbb{T}} . Y \rightarrow Y$. We mention that alpha equivalence is ubiquitous in mathematical language. For instance, the terms $\left\{x \in \mathrm{~N} \mid x^{2}>100 \cdot x\right\}$ and $\left\{n \in \mathrm{~N} \mid n^{2}>100 \cdot n\right\}$ are $\alpha$-equivalent and thus describe the same set.

The notion of $\eta$-equivalence is obtained with the $\eta$-equivalence law

$$
(\lambda x \cdot s x) \approx_{\eta} s \quad \text { if } x \text { does not occur free in } s
$$

which equates a well-typed lambda abstraction $\lambda x . s x$ with the term $s$, provided $x$ does not occur free in $t$. Eta equivalence realizes the commitment to not distinguish
between the function described by a term $s$ and the lambda abstraction $\lambda x . s x$. A concrete example is the $\eta$-equivalence between the constructor $S$ and the lambda abstraction $\lambda n^{\mathrm{N}}$. $\mathrm{S} n$.

Computational equality is compatible with the term structure. That is, if we replace a subterm of a term $s$ with a term that has the same type and is computationally equal, we obtain a term that is computationally equal to $s$.

Computational equality is also known as definitional equality. Moreover, we say that two terms are convertible if they are computationally equal, and call conversion the process of replacing a term with a convertible term. A simplification is a conversion where the final term is obtained from the initial term by reduction. Examples for conversions that are not simplifications are applications of the $\eta$-equivalence law, or expansions, which are reductions in reverse order (e.g., proceeding from $x$ to $0+x$ ). Figure 4.2 in Chapter 4 contains several proof tables with expansion steps.

A complex operation the reduction rules build on is substitution $s_{t}^{x}$. Substitution must be performed such that local binders do not capture free variables. To make this possible, substitution must be allowed to rename local variables. For instance, $(\lambda x . \lambda y . f x y) y$ must not reduce to $\lambda y . f y y$ but to a term $\lambda z . f y z$ where the new bound variable $z$ avoids capture of the variable $y$. We speak of capture-free substitution.

Exercise 2.8.1 (Currying) Assume types $X, Y, Z$ and define functions

$$
\begin{aligned}
& C:(X \times Y \rightarrow Z) \rightarrow(X \rightarrow Y \rightarrow Z) \\
& U:(X \rightarrow Y \rightarrow Z) \rightarrow(X \times Y \rightarrow Z)
\end{aligned}
$$

such that the equations $C(U f)=f$ and $U(C g)(x, y)=g(x, y)$ hold by computational equality. Find out where $\eta$-equivalence is used.

### 2.9 Values and Canonical Terms

We see terms as syntactic descriptions of informal semantic objects called values. Example for values are numbers, functions, and types. Reduction of a term preserves the value of the term, and also the type of the term. We often talk about values ignoring their syntactic representation as terms. In a proof assistant, however, values will always be represented through syntactic descriptions. The same is true for formalizations on paper, where we formalize syntactic descriptions, not values. We may see values as objects of our mathematical imagination.

The values of a type are also referred to as elements, members, or inhabitants of the type. We call a type inhabited if it has at least one inhabitant, and uninhabited or empty or void if it has no inhabitant. Values of functional types are referred to as functions.

## 2 Basic Computational Type Theory

As syntactic objects, terms may not be well-typed. Ill-typed terms are semantically meaningless and must not be used for computation and reasoning. Ill-typed terms are always rejected by a proof assistant. Working with a proof assistant is the best way to develop a reliable intuition for what goes through as well-typed. When we say term in this text, we always mean a well-typed term.

Recall that a term is closed if it has no free variables (bound variables are fine), and canonical if it is closed and irreducible. Computational type theory is designed such that every canonical term is either a constant, or a constant applied to canonical terms, or an abstraction (obtained with $\lambda$ ), or a function type (obtained with $\forall$ ), or a universe (so far we have $\mathbb{T}$ ). A constant is either a constructor or a defined constant.

Moreover, computational type theory is designed such that every closed term reduces to a canonical term of the same type. More generally, every term reduces to an irreducible term of the same type.

Different canonical terms may describe the same value, in particular when it comes to functions. Canonical terms that are equal up to $\alpha$ - and $\eta$-equivalence always describe the same value.

For simple inductive types such as N , the canonical terms of the type are in one-to-one correspondence with the values of the type. In this case we may see the values of the type as the canonical terms of the type. For function types the situation is more complicated since semantically we may want to consider two functions as equal if they agree on all arguments.

### 2.10 Matches

Matches are a defined notation for applicative expressions providing structural case analysis for inductive types. A match has a clause for every constructor of the underlying inductive type.

Matches for numbers take the form

$$
\text { MATCH } s[0 \Rightarrow u \mid \mathrm{S} x \Rightarrow v]
$$

and reduce with the derived reduction rules

$$
\begin{aligned}
\text { MATCH } 0[0 \Rightarrow u \mid \mathrm{S} x \Rightarrow v] & \succ u \\
\text { MATCH } S s[0 \Rightarrow u \mid \mathrm{S} x \Rightarrow v] & \Rightarrow(\lambda x . v) s
\end{aligned}
$$

Matches for booleans take the form

$$
\text { MATCH } s[\text { true } \Rightarrow u \mid \text { false } \Rightarrow v]
$$

and reduce with the derived reduction rules

$$
\begin{array}{r}
\text { MATCH true }[\text { true } \Rightarrow u \mid \text { false } \Rightarrow v] \succ u \\
\text { MATCH false }[\text { true } \Rightarrow u \mid \text { false } \Rightarrow v] \succ v
\end{array}
$$

Matches for pairs take the form

$$
\text { MATCH } s[(x, y) \Rightarrow u]
$$

and reduce with the derived reduction rule

$$
\operatorname{MATCH}(s, t)[(x, y) \Rightarrow u] \succ(\lambda x y . u) s t
$$

Matches are accommodated as applications of match functions:

$$
\begin{array}{rlll}
\text { MATCH } s[0 \Rightarrow u \mid \mathrm{S} x \Rightarrow v] & \leadsto & \mathrm{M}_{\mathrm{N}-} s u(\lambda x . v) \\
\text { MATCH } s[\text { true } \Rightarrow u \mid \text { false } \Rightarrow v] & \leadsto & \left.\mathrm{M}_{\mathrm{B}-} s u v\right) \\
\text { MATCH } s[(x, y) \Rightarrow u] & \leadsto & \mathrm{M}_{\times---} s(\lambda x y . u)
\end{array}
$$

Match functions are inductive functions defined as one would expect form the derived reduction rules:

$$
\begin{array}{rlrl}
\mathrm{M}_{\mathrm{N}}: \forall Z^{\mathbb{T}} \cdot \mathrm{N} \rightarrow Z \rightarrow(\mathrm{~N} \rightarrow Z) \rightarrow Z & \mathrm{M}_{\mathrm{B}}: \forall Z^{\mathbb{T}} \cdot \mathrm{B} \rightarrow Z \rightarrow Z \rightarrow Z \\
\mathrm{M} Z 0 e_{1} e_{2}:=e_{1} & \mathrm{M} Z \text { true } e_{1} e_{2}: & =e_{1} \\
\mathrm{M} Z(\mathrm{~S} x) e_{1} e_{2}: & :=e_{2} x & \mathrm{M} Z \text { false } e_{1} e_{2}: & =e_{2}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{M}_{\times}: \forall X Y Z^{\mathbb{T}} \cdot X \times Y \rightarrow(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
& \mathrm{M}_{\times} X Y Z(x, y) e:=\text { exy }
\end{aligned}
$$

Note that the definition of the match notation as applications of match function provides both for type checking and reduction. Informally, we may summarize the typing of matches as follows: A term match $s[\cdots]$ has type $u$ if $s$ is has an inductive type $v$, the match has a clause for every constructor of $v$, and every clause of the match yields a result of type $u$.

We may write boolean matches with the familiar if-then-else notation:

$$
\text { IF } s \text { THEN } t_{1} \text { ELSE } t_{2} \quad \text { ns } \quad \text { MATCH } s\left[\text { true } \Rightarrow t_{1} \mid \text { false } \Rightarrow t_{2}\right]
$$

More generally, we may use the if-then-else notation for all inductive types with exactly two value constructors, exploiting the order of the constructors. For numbers we have

$$
\text { IF } s \text { THEN } t_{1} \text { ELSE } t_{2} \quad \leadsto \quad \text { MATCH } s\left[0 \Rightarrow t_{1} \mid \mathrm{S}_{-} \Rightarrow t_{2}\right]
$$

Recall that $x-y=0$ iff $x \leq y$. Thus IF $s_{1}-s_{2}$ THEN $t_{1}$ ELSE $t_{2}$ is a conditional testing $s_{1} \leq s_{2}$. We shall use the notation

$$
\text { IF } s_{1} \leq s_{2} \text { THEN } t_{1} \text { ELSE } t_{2} \quad \leadsto \quad \operatorname{MATCH}\left(s_{1}-s_{2}\right)\left[0 \Rightarrow t_{1} \mid S_{-} \Rightarrow t_{2}\right]
$$

Another notational device we take from Coq writes matches with exactly one clause as let expressions. For instance:

$$
\operatorname{LET}(x, y)=s \text { IN } t \quad \leadsto \quad \text { MATCH } s[(x, y) \Rightarrow t]
$$

Exercise 2.10.1 (Boolean negation) Consider the inductive type definition

$$
\mathrm{B}: \mathbb{T}::=\text { true | false }
$$

for booleans and the plain definition

$$
!:=\lambda x^{\mathrm{B}} . \text { MATCH } x[\text { true } \Rightarrow \text { false } \mid \text { false } \Rightarrow \text { true }]
$$

of a boolean negation function. Give a complete reduction chain for !(! true). Distinguishing between $\delta$ - and $\beta$-steps.

## Exercise 2.10.2 (Swap function for pairs)

a) Define a function swap swapping the components of a pair using a plain definition, lambda abstractions, and a match.
b) Give a complete reduction chain for swap $N B(S 0)$ true.

### 2.11 Recursive Abstractions in Coq

Coq provides neither inductive function definitions nor plain function definitions. Plain function definition can be expressed with plain constant definitions and lambda abstractions. To express inductive function definitions, Coq has native matches and recursive abstractions. Coq comes with syntactic sugar facilitating the translation of function definitions (inductive or plain) into Coq's kernel language.

Recursive abstractions take the form

$$
\text { FIX } f^{s \rightarrow t} x^{s} \cdot u
$$

and represent recursive functions as unfolding functions. There are two local variables $f$ and $x$, where $f$ acts as continuation function and $x$ as argument. The type of $u$ must be $t$, and the type of the recursive abstraction itself is $s \rightarrow t$.

Using a recursive abstraction and a match, we can define a constant $D$ describing a recursive function doubling the number given as argument:

$$
D^{\mathrm{N} \rightarrow \mathrm{~N}}:=\operatorname{FIX} f^{\mathrm{N} \rightarrow \mathrm{~N}} x^{\mathrm{N}} \text {. MATCH } x\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(f x^{\prime}\right)\right)\right]
$$

The reduction rule for recursive abstractions looks as follows:

$$
(\operatorname{FIX} f x . s) t \succ(\lambda f . \lambda x . s)(\operatorname{FIX} f x . s) t
$$

Without limitations on recursive abstractions, one can easily write recursive abstractions whose reduction does not terminate. Coq imposes two limitations:

- An application of a recursive abstraction can only be reduced if the argument term $t$ starts with a constructor.
- A recursive abstraction is only admissible if its recursion goes through a match and is structural.
In this text we will not use recursive abstractions at all since we prefer inductive function definitions as means for describing recursive functions. Using an inductive function definition, a function $D$ doubling its argument can be defined as follows:

$$
\begin{aligned}
& D: \mathrm{N} \rightarrow \mathrm{~N} \\
& D 0:=0 \\
& D(\mathrm{~S} x):=\mathrm{S}(\mathrm{~S}(D x))
\end{aligned}
$$

Exercise 2.11.1 Figure 2.2 gives a complete reduction chain for $D(\mathrm{~S} 0)$ where $D$ is defined with a recursive abstraction as shown above. Verify every single reduction step and convince yourself that there is no other reduction chain.

### 2.12 Choices Made by Coq

Coq has native matches and recursive abstractions but does not have plain or inductive function definitions. Function definitions are expressed with plain constant definitions, lambda abstractions, matches, and recursive abstractions.

Not having function definitions makes reduction more fine-grained and introduces intermediate normal forms one doesn't want to see from the application perspective. To mitigate the problem, Coq refines the basic reduction rules with simplification rules simulating the reductions one would have with function definitions. Sometimes the simulation is not perfect and the user is confronted with unpleasant intermediate terms.

$$
\begin{array}{rlr}
D(\mathrm{~S} 0) & \succ\left(\text { FIX } f x . \text { MATCH } x\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(f x^{\prime}\right)\right)\right]\right)(\mathrm{S} 0) & \delta \\
& =\hat{D}(\mathrm{~S} 0) \\
& \succ\left(\lambda f x . \text { MATCH } x\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(f x^{\prime}\right)\right)\right]\right) \hat{D}(\mathrm{~S} 0) & \text { FIX } \\
& \succ\left(\lambda x . \text { MATCH } x\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(\hat{D} x^{\prime}\right)\right)\right]\right)(\mathrm{S} 0) & \beta \\
& \succ \operatorname{MATCH}(\mathrm{S} 0)\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(\hat{D} x^{\prime}\right)\right)\right] & \beta \\
& \succ\left(\lambda x^{\prime} . \mathrm{S}\left(\mathrm{~S}\left(\hat{D} x^{\prime}\right)\right)\right) 0 & \text { MATCH } \\
& \succ \mathrm{S}(\mathrm{~S}(\hat{D} 0)) & \beta \\
& \succ \mathrm{S}\left(\mathrm{~S}\left(\left(\lambda x . \text { MATCH } x\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(\hat{D} x^{\prime}\right)\right)\right]\right) 0\right)\right) & \text { FIX, } \beta \\
& \succ \mathrm{S}\left(\mathrm{~S}\left(\text { MATCH } 0\left[0 \Rightarrow 0 \mid \mathrm{S} x^{\prime} \Rightarrow \mathrm{S}\left(\mathrm{~S}\left(\hat{D} x^{\prime}\right)\right)\right]\right)\right) & \beta \\
& \succ \mathrm{S}(\mathrm{~S} 0) & \text { MATCH } \\
& &
\end{array}
$$

Figure 2.2: Reduction chain for $D(\mathrm{SO})$ defined with a recursive abstraction

Figure 2.2 shows a complete reduction chain for an application $D$ (S0) where $D$ is defined in Coq style with recursive abstractions. The example shows the tediousness coming with Coq's fine-grained reduction style.

In this text we will work with inductive function definitions and do not use recursive abstractions at all. The accompanying demo files show how our high-level style can be simulated with Coq's primitives.

Having recursive abstractions and native matches is a design decision from Coq's early days (around 1990) when inductive types where added to a language designed without having inductive types in mind (around 1985). Agda is a modern implementation of computational type theory that comes with inductive function definitions and does not offer matches and recursive abstractions.

### 2.13 Summary

We have outlined a typed and terminating functional language where functions and types are first-class values that may appear as arguments and results of functions. Termination is ensured by restricting recursion to structural recursion on inductive types. Termination buys two important properties: decidability of computational equality and integrity of inductive types (canonicity).

A key feature of modern type theories are dependent function types generalizing simple function types. One speaks of dependent type theories to acknowledge the presence of dependent function types.

In the system presented so far type checking and reduction are separated: Type checking does not involve reduction, and reduction does not involve type checking. Soon we will boost the expressivity of the system by extending it such that type checking operates modulo computational equality of types. Type checking modulo computational equality is needed so that the proof rules for equational rewriting and induction on numbers can be obtained within computational type theory.

The computational type theory we are considering in this text is based on plain and inductive function definitions with dependent function types and function application. In addition there are lambda abstractions and let expressions. The type theory of the proof assistant Coq we are using differs in that it has native matches and recursive abstractions but comes without native function definition.

Last but not least we mention that every function expressible with a closed term in computational type theory is algorithmically computable. This claim rests on the fact that there is an algorithm that evaluates every closed term to a canonical term. The evaluation algorithm performs reduction steps as long as reduction steps are possible. The order in which reduction steps are chosen matters neither for termination nor for the canonical term finally obtained.

### 2.14 Notes

Our presentation of computational type theory is informal. We took some motivation from the previous chapter but it may take time until you fully understand what is said in the current chapter. Previous familiarity with functional programming will help. The next few chapters will explore the expressivity of the system and provide you with examples and case studies. For details concerning type checking and reduction, the Coq proof assistant and the accompanying demo files will prove helpful.

Formalizing the system presented in this chapter and proving the claimed properties is a substantial project we will not attack in this text. Instead we will explore the expressivity of the system and study numerous formalizations based on the system.

A comprehensive discussion of the historical development of computational type theories can be found in Constable's survey paper [8]. We recommend the book on homotopy type theory [29] for a complementary presentation of computational type theory. The reader may also be interested in learning more about lambda calculus [4, 16], a minimal computational system arranged around lambda abstractions and beta reduction.

## 3 Propositions as Types

A great idea coming with computational type theory is the propositions as types principle. The principle says that propositions (i.e., logical statements) can be represented as types, and that the elements of the representing types can serve as proofs of the propositions. This simple approach to logic works incredibly well in practice and theory: It reduces proof checking to type checking, accommodates proofs as first-call values, and provides a basic form of logical reasoning known as intuitionistic reasoning.

The propositions as types principle is just perfect for implications $s \rightarrow t$ and universal quantifications $\forall x^{s}$.t. Both kind of propositions are accommodated as function types ${ }^{1}$ and hence receive proofs as follows:

- A proof of an implication $s \rightarrow t$ is a function mapping every proof of the premise $s$ to a proof of the conclusion $t$.
- A proof of an universal quantification $\forall x^{s} . t$ is a function mapping every element of the type of $s$ to a proof of the proposition $t$.
The types for conjunctions $s \wedge t$ and disjunctions $s \vee t$ will be obtained with inductive type constructors such that a proof of $s \wedge t$ consists of a proof of $s$ and a proof of $t$, and a proof of $s \vee t$ is either a proof of $s$ or a proof of $t$. The proposition falsity having no proof will be expressed as an empty inductive type $\perp$. With falsity we will express negations $\neg s$ as implications $s \rightarrow \perp$. The types for equations $s=t$ and existential quantifications $\exists x^{s} . t$ will be discussed in later chapters once we have extended the type theory with the conversion rule.

In this chapter you will see many terms describing proofs with lambda abstractions and matches. The construction of such proof terms is an incremental process that can be carried out efficiently in interaction with a proof assistant. On paper we will facilitate the construction of proof terms with proof tables.

[^2]
### 3.1 Implication and Universal Quantification

We extend our type theory with a second universe $\mathbb{P}: \mathbb{T}$ of propositional types. The universe $\mathbb{P}$ contains all function types $\forall x^{u} . v$ where $v$ is a propositional type:

$$
\frac{\vdash u: \mathbb{T} \quad x: u \vdash v: \mathbb{P}}{\vdash \forall x^{u} \cdot v: \mathbb{P}}
$$

We also accommodate $\mathbb{P}$ as a subuniverse of $\mathbb{T}$ :

$$
\frac{\vdash u: \mathbb{P}}{\vdash u: \mathbb{T}}
$$

The subuniverse rule ensures that a function type $s \rightarrow t$ expressing an implication is both a proposition and a type. We use the suggestive notation $\mathbb{P} \subseteq \mathbb{T}$ to say that $\mathbb{P}$ is a subuniverse of $\mathbb{T}$.

We can now write propositions using implications and universal quantifications (i.e., function types), and proofs using lambda abstractions and applications. For instance,

$$
\forall X^{\mathbb{P}} . X \rightarrow X
$$

is a proposition that has the proof $\lambda X^{\mathbb{P}} x^{X} . x$, and

$$
\forall X Y Z^{\mathbb{P}} \cdot(X \rightarrow Y) \rightarrow(Y \rightarrow Z) \rightarrow X \rightarrow Z
$$

is a proposition that has the proof

$$
\lambda X^{\mathbb{P}} Y^{\mathbb{P}} Z^{\mathbb{P}} f^{X \rightarrow Y} g^{Y \rightarrow Z} x^{X} \cdot g(f x)
$$

Interestingly,

$$
\forall X^{\mathbb{P}} . X
$$

is a proposition that has no proof (see Exercise 3.2.1).
Here are more examples of propositions and their proofs assuming that $X, Y$, and $Z$ are propositional variables (i.e., variables of type $\mathbb{P}$ ):

$$
\begin{array}{ll}
X \rightarrow X & \lambda x \cdot x \\
X \rightarrow Y \rightarrow X & \lambda x y \cdot x \\
X \rightarrow Y \rightarrow Y & \lambda x y \cdot y \\
(X \rightarrow Y \rightarrow Z) \rightarrow Y \rightarrow X \rightarrow Z & \lambda f y x \cdot f x y
\end{array}
$$

We have omitted the types of the argument variables appearing in the lambda abstractions on the right since they can be derived from the propositions appearing on the left.

Our final examples express mobility laws for universal quantifiers:

$$
\begin{array}{ll}
\forall X^{\mathbb{U}} P^{\mathbb{P}} p^{X \rightarrow \mathbb{P}} \cdot(\forall x . P \rightarrow p x) \rightarrow(P \rightarrow \forall x \cdot p x) & \lambda X P p f a x . f x a \\
\forall X^{\mathbb{T}} P^{\mathbb{P}} p^{X \rightarrow \mathbb{P}} \cdot(P \rightarrow \forall x \cdot p x) \rightarrow(\forall x \cdot P \rightarrow p x) & \lambda X P p f x a \cdot f a x
\end{array}
$$

Functions that yield propositions once all arguments are supplied are called predicates. In the above examples $p$ is a unary predicate on the type $X$. In general, a predicate has a type ending with $\mathbb{P}$.

## Exercise 3.1.1 (Exchange law)

Give a proof for the proposition $\forall X Y^{\mathbb{T}} \forall p^{X \rightarrow Y \rightarrow \mathbb{P}} .(\forall x y \cdot p x y) \rightarrow(\forall y x \cdot p x y)$.
Exercise 3.1.2 Give proofs of the following propositions:
a) $\forall X Y^{\mathbb{P}} .(X \rightarrow Y) \rightarrow((X \rightarrow Y) \rightarrow X) \rightarrow Y$
b) $\forall X Y^{\mathbb{P}} .(X \rightarrow X \rightarrow Y) \rightarrow((X \rightarrow Y) \rightarrow X) \rightarrow Y$

### 3.2 Falsity and Negation

A propositional constant $\perp$ having no proof will be helpful since together with implication it can express negations. The official name for $\perp$ is falsity. The natural idea for obtaining falsity is using an inductive type definition not declaring a value constructor:

$$
\perp: \mathbb{P}::=[]
$$

Since $\perp$ has no value constructor, the design of computational type theory ensures that $\perp$ has no element. ${ }^{2}$ We define an inductive function

$$
\mathrm{E}_{\perp}: \forall Z^{\mathbb{\pi}} . \perp \rightarrow Z
$$

discriminating on its second argument of type $\perp$. Since $\perp$ has no value constructor, we need no defining equation for $\mathrm{E}_{\perp}$. The function $\mathrm{E}_{\perp}$ realizes an important logical principle known as explosion rule or ex falso quodlibet: Given a hypothetical proof of falsity, we can get a proof of everything. More generally, given a hypothetical proof of falsity, $\mathrm{E}_{\perp}$ gives us an element of every type. Following common language we explain later, we call $E_{\perp}$ the eliminator for $\perp$.

We now define negation $\neg s$ as notation for an implication $s \rightarrow \perp$ :

$$
\neg S \quad \sim \quad S \rightarrow \perp
$$

[^3]\[

$$
\begin{array}{ll}
X \rightarrow \neg X \rightarrow \perp & \lambda x f . f x \\
X \rightarrow \neg X \rightarrow Y & \lambda x f . \mathrm{E}_{\perp} Y(f x) \\
(X \rightarrow Y) \rightarrow \neg Y \rightarrow \neg X & \lambda f g x . g(f x) \\
X \rightarrow \neg \neg X & \lambda x f . f x \\
\neg X \rightarrow \neg \neg \neg X & \lambda f g . g f \\
\neg \neg \neg X \rightarrow \neg X & \lambda f x . f(\lambda g \cdot g x) \\
\neg \neg X \rightarrow(X \rightarrow \neg X) \rightarrow \perp & \lambda f g . f(\lambda x . g x x) \\
(X \rightarrow \neg X) \rightarrow(\neg X \rightarrow X) \rightarrow \perp & \lambda f g . \text { LET } x=g(\lambda x . f x x) \text { IN } f x x \\
& \\
& \text { Variable } X \text { ranges over propositions. }
\end{array}
$$
\]

Figure 3.1: Proofs of propositions involving negations

With this definition we have a proof of $\perp$ if we have a proof of $s$ and $\neg s$. Thus, given a proof of $\neg s$, we can be sure that there is no proof of $s$. We say that we can disprove a proposition $s$ if we can give a proof of $\neg s$. The situation that we have some proposition $s$ and hypothetical proofs of both $s$ and $\neg s$ is called a contradiction in mathematical language. A hypothetical proof is a proof based on unproven assumptions (called hypotheses in this situation).

Figure 3.1 shows proofs of propositions involving negations. To understand the proofs, it is essential to see a negation $\neg s$ as an implication $s \rightarrow \perp$. Only the proof involving the eliminator $E_{\perp}$ makes use of the special properties of falsity. Note the use of the let expression in the proof in the last line. It introduces a local name $x$ for the term $g(\lambda x . f x x)$ so that we don't have to write it twice. Except for the proof with let all proofs in Figure 3.1 are normal terms.

Coming from boolean logic, you may ask for a proof of $\neg \neg X \rightarrow X$. Such a proof does not exist in general in an intuitionistic proof system like the type-theoretic system we are exploring. However, such a proof exists if we assume the law of excluded middle familiar from ordinary mathematical reasoning. We will discuss this issue later.

Occasionally, it will be useful to have a propositional constant $T$ having exactly one proof. The official name for $T$ is truth. The natural idea for obtaining truth is using an inductive type definition declaring a single primitive value constructor:

$$
\text { T : } \mathbb{P}::=1
$$

We speak of consistency if a type theory can express empty types. Consistency is needed for a type theory so that it can express negative propositions.

Exercise 3.2.1 Show that $\forall X^{\mathbb{P}} . X$ has no proof. That is, disprove $\forall X^{\mathbb{P}} . X$. That is, prove $\neg \forall X^{\mathbb{P}}$. $X$.

### 3.3 Conjunction and Disjunction

Most people are familiar with the boolean interpretation of conjunctions $s \wedge t$ and disjunctions $s \vee t$. In the type-theoretic interpretation, a conjunction $s \wedge t$ is a proposition whose proofs consist of a proof of $s$ and a proof of $t$, and a disjunction $s \vee t$ is a proposition whose proofs consist of either a proof of $s$ or a proof of $t$. We make this design explicit with two inductive type definitions:

$$
\wedge(X: \mathbb{P}, Y: \mathbb{P}): \mathbb{P}::=\mathrm{C}(X, Y) \quad \vee(X: \mathbb{P}, Y: \mathbb{P}): \mathbb{P}::=\mathrm{L}(X) \mid \mathrm{R}(Y)
$$

The definitions introduce the following constructors:

$$
\begin{array}{ll}
\wedge: \mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P} & \vee: \mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P} \\
\mathrm{C}: \forall X^{\mathbb{P}} Y^{\mathbb{P}} \cdot X \rightarrow Y \rightarrow X \wedge Y & \mathrm{~L}: \forall X^{\mathbb{P}} Y^{\mathbb{P}} \cdot X \rightarrow X \vee Y \\
& \mathrm{R}: \forall X^{\mathbb{P}} Y^{\mathbb{P}} . Y \rightarrow X \vee Y
\end{array}
$$

With the type constructors ' $\wedge$ ' and ' $\vee$ ' we can form conjunctions $s \wedge t$ and disjunctions $s \vee t$ from given propositions $s$ and $t$. With the value constructors $\mathrm{C}, \mathrm{L}$, and R we can construct proofs of conjunctions and disjunctions:

- If $u$ is a proof of $s$ and $v$ is a proof of $t$, then the term $\mathrm{C} u v$ is a proof of the conjunction $s \wedge t$.
- If $u$ is a proof of $s$, then the term $\mathrm{L} u$ is a proof of the disjunction $s \vee t$.
- If $v$ is a proof of $t$, then the term $\mathrm{R} v$ is a proof of the disjunction $s \vee t$.

Note that we treat the propositional arguments of the value constructors as implicit arguments, something we have seen before with the value constructor for pairs. Since the explicit arguments of the proof constructors for disjunctions determine only one of the two implicit arguments, the other implicit argument must be derived from the surrounding context. This works well in practice.

The type constructors ' $\wedge$ ' and ' $\vee$ ' have the type $\mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P}$, which qualifies them as predicates. We will call type constructors inductive predicates if their type qualifies them as predicates. Moreover, we will call value constructors obtaining values of propositions proof constructors. Using this language, we may say that disjunctions are accommodated with an inductive predicate coming with two proof constructors.

Proofs involving conjunctions and disjunctions will often make use of matches. Recall that matches are notation for applications of match functions obtained with inductive function definitions. For conjunctions and disjunctions, we will use the definitions appearing in Figure 3.2.

$$
\begin{aligned}
& \mathrm{M}_{\wedge}: \forall X Y Z^{\mathbb{P}} . X \wedge Y \rightarrow(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
& \mathrm{M}_{\wedge} X Y Z(\mathrm{C} x y) e:=e x y \\
& \mathrm{M}_{\vee}: \forall X Y Z^{\mathbb{P}} . X \vee Y \rightarrow(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z \\
& \mathrm{M}_{\vee} X Y Z(\mathrm{~L} x) e_{1} e_{2}:=e_{1} x \\
& \mathrm{M}_{\vee} X Y Z(\mathrm{R} y) e_{1} e_{2}:=e_{2} y \\
& \quad \text { MATCH } s[\mathrm{C} x y \Rightarrow t] \quad \text { us } \mathrm{M}_{\wedge---} s(\lambda x y \cdot t) \\
& \text { MATCH } s\left[\mathrm{~L} x \Rightarrow t_{1} \mid \mathrm{R} y \Rightarrow t_{2}\right]
\end{aligned} \quad \sim \mathrm{M}_{\vee---} s\left(\lambda x . t_{1}\right)\left(\lambda y . t_{2}\right) .
$$

Figure 3.2: Matches for conjunctions and disjunctions

$$
\begin{array}{ll}
X \rightarrow Y \rightarrow X \wedge Y & \mathrm{C}_{X Y} \\
X \rightarrow X \vee Y & \mathrm{~L}_{X Y} \\
Y \rightarrow X \vee Y & \mathrm{R}_{X Y} \\
X \wedge Y \rightarrow X & \lambda a . \text { MATCH } a[\mathrm{C} x y \Rightarrow x] \\
X \wedge Y \rightarrow Y & \lambda a . \text { MATCH } a[\mathrm{C} x y \Rightarrow y] \\
X \wedge Y \rightarrow Y \wedge X & \lambda a . \text { MATCH } a[\mathrm{C} x y \Rightarrow \mathrm{C} y x] \\
X \vee Y \rightarrow Y \vee X & \lambda a . \text { MATCH } a\left[\mathrm{~L} x \Rightarrow \mathrm{R}_{Y X} x \mid \mathrm{R} y \Rightarrow \mathrm{~L}_{Y X} y\right]
\end{array}
$$

The variables $X, Y, Z$ range over propositions.
Figure 3.3: Proofs for propositions involving conjunctions and disjunctions

We note that $\mathrm{E}_{\perp}$ (§3.2) is the match function for the inductive type $\perp$. We define the notation

$$
\text { MATCH } s[] \quad u \quad \mathrm{E}_{\perp_{-}} s
$$

Figure 3.3 shows proofs of propositions involving conjunctions and disjunctions. The propositions formulate familiar logical laws. Note that we supply the implicit arguments of the proof constructors $C, L$, and $R$ as subscripts when we think it is helpful.

Figure 3.4 shows proofs involving matches with nested patterns. Matches with nested patterns are a notational convenience for nested plain matches. For instance, the match

$$
\text { MATCH } a[\mathrm{C}(\mathrm{C} x y) z \Rightarrow \mathrm{C} x(\mathrm{C} y z)]
$$

```
\((X \wedge Y) \wedge Z \rightarrow X \wedge(Y \wedge Z)\)
\(\lambda a\). MATCH \(a[\mathrm{C}(\mathrm{C} x y) z \Rightarrow \mathrm{C} x(\mathrm{C} y z)]\)
\((X \vee Y) \vee Z \rightarrow X \vee(Y \vee Z)\)
\(\lambda a\). MATCH \(a[\mathrm{~L}(\mathrm{~L} x) \Rightarrow \mathrm{L} x|\mathrm{~L}(\mathrm{R} y) \Rightarrow \mathrm{R}(\mathrm{L} y)| \mathrm{R} z \Rightarrow \mathrm{R}(\mathrm{R} z)]\)
\(X \wedge(Y \vee Z) \rightarrow(X \wedge Y) \vee(X \wedge Z)\)
\(\lambda a\). MATCH \(a[\mathrm{C} x(\mathrm{~L} y) \Rightarrow \mathrm{L}(\mathrm{C} x y) \mid \mathrm{C} x(\mathrm{Rz}) \Rightarrow \mathrm{R}(\mathrm{C} x z)]\)
```

Figure 3.4: Proofs with nested patterns
with the nested pattern $\mathrm{C}(\mathrm{C} x y) z$ translates into the plain match

$$
\text { MATCH } a[\mathrm{Cbz} \Rightarrow \text { MATCH } b[\mathrm{C} x y \Rightarrow \mathrm{C} x(\mathrm{C} y z)]]
$$

nesting a second plain match.
Exercise 3.3.1 Elaborate the proofs in Figure 3.4 such that they use nested plain matches. Moreover, annote the implicite arguments of the constructors C, L and R provided the application does not appear as part of a pattern.

### 3.4 Propositional Equivalence

We define propositional equivalence $s \longleftrightarrow t$ as notation for the conjunction of two implications:

$$
s \longleftrightarrow t \quad \sim \quad(s \rightarrow t) \wedge(t \rightarrow s)
$$

Thus a propositional equivalence is a conjunction of two implications, and a proof of an equivalence is a pair of two proof-transforming functions. Given a proof of an equivalence $s \longleftrightarrow t$, we can translate every proof of $s$ into a proof of $t$, and every proof of $t$ into a proof of $s$. Thus we know that $s$ is provable if and only if $t$ is provable.

Exercise 3.4.1 Give proofs for the equivalences shown in Figure 3.5. The equivalences formulate well-known properties of conjunction and disjunction.

| $X \wedge Y$ | $\longleftrightarrow Y \wedge X$ |  | commutativity |
| ---: | :--- | ---: | :--- |
| $X \vee Y$ | $\longleftrightarrow Y \vee X$ |  |  |
| $X \wedge(Y \wedge Z)$ | $\longleftrightarrow(X \wedge Y) \wedge Z$ |  |  |
| $X \vee(Y \vee Z)$ | $\longleftrightarrow(X \vee Y) \vee Z$ | distributivity |  |
| $X \wedge(Y \vee Z)$ | $\longleftrightarrow X \wedge Y \vee X \wedge Z$ |  |  |
| $X \vee(Y \wedge Z)$ | $\longleftrightarrow(X \vee Y) \wedge(X \vee Z)$ | absorption |  |
| $X \wedge(X \vee Y)$ | $\longleftrightarrow X$ |  |  |
| $X \vee(X \wedge Y)$ | $\longleftrightarrow X$ |  |  |

Figure 3.5: Equivalence laws for conjunctions and disjunctions

Exercise 3.4.2 Give proofs for the following propositions:
a) $\neg \neg \perp \longleftrightarrow \perp$
b) $\neg \neg \top \longleftrightarrow \top$
c) $\neg \neg \neg X \longleftrightarrow \neg X$
d) $\neg(X \vee Y) \longleftrightarrow \neg X \wedge \neg Y$
e) $(X \rightarrow \neg \neg Y) \longleftrightarrow(\neg Y \rightarrow \neg X)$
f) $\neg(X \longleftrightarrow \neg X)$

Equivalence (d) is known as de Morgan law for disjunctions. We don't ask for a proof of the de Morgan law for conjunctions $\neg(X \wedge Y) \longleftrightarrow \neg X \vee \neg Y$ since it requires the law of excluded middle (§3.8). We call proposition (f) Russell's law. Russell's law will be used in a couple of prominent proofs.

Exercise 3.4.3 Propositional equivalences yield an equivalence relation on propositions that is compatible with conjunction, disjunction, and implication. This highlevel speak can be validated by giving proofs for the following propositions:

| $X \longleftrightarrow X$ | reflexivity |
| :--- | :--- |
| $(X \longleftrightarrow Y) \rightarrow(Y \longleftrightarrow X)$ | symmetry |
| $(X \longleftrightarrow Y) \rightarrow(Y \longleftrightarrow Z) \rightarrow(X \longleftrightarrow Z)$ | transitivity |
| $\left(X \longleftrightarrow X^{\prime}\right) \rightarrow\left(Y \longleftrightarrow Y^{\prime}\right) \rightarrow\left(X \wedge Y \longleftrightarrow X^{\prime} \wedge Y^{\prime}\right)$ | compatibility with $\wedge$ |
| $\left(X \longleftrightarrow X^{\prime}\right) \rightarrow(Y \longleftrightarrow Y)^{\prime} \rightarrow\left(X \vee Y \longleftrightarrow X^{\prime} \vee Y^{\prime}\right)$ | compatibility with $\vee$ |
| $\left(X \longleftrightarrow X^{\prime}\right) \rightarrow\left(Y \longleftrightarrow Y^{\prime}\right) \rightarrow\left((X \rightarrow Y) \longleftrightarrow\left(X^{\prime} \rightarrow Y^{\prime}\right)\right)$ | compatibility with $\rightarrow$ |

### 3.5 Notational Issues

Following Coq, we use the precedence order
for the logical connectives. Thus we may omit parentheses as in the following example:

$$
\neg \neg X \wedge Y \vee Z \longleftrightarrow Z \rightarrow Y \quad \sim \sim \quad(((\neg(\neg X) \wedge Y) \vee Z) \longleftrightarrow Z) \rightarrow Y
$$

The connectives $\neg$, $\wedge$, and $\vee$ are right-associative. That is, parentheses may be omitted as follows:

$$
\begin{array}{rll}
\neg \neg X & \text { ns } & \neg(\neg X) \\
X \wedge Y \wedge Z & \text { ns } & X \wedge(Y \wedge Z) \\
X \vee Y \vee Z & \text { ns } & X \vee(Y \vee Z)
\end{array}
$$

### 3.6 Impredicative Characterizations

Quantification over propositions has amazing expressivity. Given two propositional variables $X$ and $Y$, we can prove the equivalences

$$
\begin{aligned}
\perp & \forall Z^{\mathbb{P}} \cdot Z \\
X \wedge Y & \forall Z^{\mathbb{P}} \cdot(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
X \vee Y & \bullet \forall Z^{\mathbb{P}} \cdot(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z
\end{aligned}
$$

which say that $\perp, X \wedge Y$, and $X \vee Y$ can be characterized with just function types. The equivalences are known as impredicative characterizations of falsity, conjunction, and disjunction. Figure 3.6 gives proof terms for the equivalences. One speaks of an impredicative proposition if the proposition contains a quantification over all propositions.

Note that the impredicative characterizations are related to the types of the match functions for $\perp, X \wedge Y$, and $X \vee Y$.

Exercise 3.6.1 Find an impredicative characterization for T .

## Exercise 3.6.2 (Exclusive disjunction)

Consider exclusive disjunction $X \oplus Y \hookrightarrow(X \wedge \neg Y) \vee(\neg X \wedge Y)$.
a) Define exclusive disjunction with an inductive type definition. Use two proof constructors and prove the specifying equivalence.
b) Find and verify an impredicative characterization of exclusive disjunction.

$$
\begin{aligned}
& \perp \hookleftarrow \forall Z^{\mathbb{P}} \cdot Z \\
& \mathrm{C}\left(\mathrm{E}_{\perp}\left(\forall Z^{\mathbb{P}} \cdot Z\right)\right)(\lambda f \cdot f \perp) \\
& X \wedge Y \hookleftarrow \forall Z^{\mathbb{P}} \cdot(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
& \mathrm{C}(\lambda a Z f . \text { MATCH } a[\mathrm{C} x y \Rightarrow f x y])\left(\lambda f \cdot f(X \wedge Y) \mathrm{C}_{X Y}\right) \\
& X \vee Y \leftrightarrows \forall Z^{\mathbb{P}} \cdot(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z \\
& \mathrm{C}(\lambda a Z f g \cdot \mathrm{MATCH} a[\mathrm{~L} x \Rightarrow f x \mid \mathrm{R} y \Rightarrow g y])\left(\lambda f \cdot f(X \vee Y) \mathrm{L}_{X Y} \mathrm{R}_{X Y}\right)
\end{aligned}
$$

The subscripts give the implicit arguments of $C, L$, and $R$.
Figure 3.6: Impredicative characterizations with proof terms

### 3.7 Proof Term Construction using Proof Tables

The natural direction for proof term construction is top down, in particular as it comes to lambda abstractions and matches. When we construct a proof term top down, we need an information structure keeping track of the types we still have to construct proof terms for and recording the typed variables introduced by surrounding lambda abstractions and patterns of matches. It turns out that the proof tables we have introduced in Chapter 1 provide a convenient information structure for constructing proof terms.

Here is a proof table showing the construction of a proof term for a proposition we call Russell's law:

|  |  | $\neg(X \hookrightarrow \neg X)$ | intro |
| :--- | ---: | :--- | :--- |
|  | $f: X \rightarrow \neg X$ |  |  |
|  |  |  |  |
| $g: \neg X \rightarrow X$ |  |  |  |
| 1 |  | $X$ | assert $X$ |
|  | $x: X$ | $\neg X$ | apply $g$ |
|  |  |  | intro |
| 2 | $x: X$ | $\perp$ | exact $f x x$ |

The table is written top-down beginning with the initial claim. It records the construction of the proof term

$$
\lambda a^{X \hookrightarrow \neg X} . \text { MATCH } a[\mathrm{C} f g \Rightarrow \text { LET } x=g(\lambda x . f x x) \text { IN } f x x]
$$

for the proposition $\neg(X \hookrightarrow \neg X)$.
Recall that proof tables are have-want tables that record on the left what we have and on the right what we want. When we start, the proof table is partial and just
consists of the first line. As the proof term construction proceeds, we add further lines and further proof goals until we arrive at a complete proof table.

The rightmost column of a proof table records the actions developing the table and the corresponding proof term.

- The action intro introduces $\lambda$-abstractions and matches.
- The action assert creates subgoals for an intermediate claim and the current claim with the intermediate claim assumed. An assert action is realised with a let expression in the proof term.
- The action apply applies a function and creates subgoals for the arguments.
- The action exact proves the claim with a complete proof term. We will not write the word "exact" in future proof tables since that an exact action is performed will be clear from the context.
With Coq we can construct proof terms interactively following the structure of proof tables. We start with the initial claim and have Coq perform the proof actions with commands called tactics. Coq then maintains the proof goals and displays the assumptions and claims. Once all proof goals are closed, a proof term for the initial claim has been constructed.

Technically, a proof goal consists of a list of assumptions called context and a claim. The claim is a type, and the assumptions are typed variables. There may be more than one proof goal open at a point in time and one may navigate freely between open goals.

Interactive proof term construction with Coq is fun since writing, bookkeeping, and verification are done by Coq. Here is a further example of a proof table:

|  | $\neg \neg X \rightarrow(X \rightarrow \neg$ ) $\rightarrow \perp$ | intro |
| :---: | :---: | :---: |
| $f: \neg \neg x$ |  |  |
| $g: X \rightarrow \neg$, | $\perp$ | apply $f$ |
|  | $\neg x$ | intro |
| $x: X$ | $\perp$ | $g x x$ |

The proof term constructed is $\lambda f g \cdot f(\lambda x \cdot g x x)$. As announced before, we write the proof action "exact $g x x$ " without the word "exact".

Figure 3.7 shows a proof table for a double negation law for universal quantification. Since universal quantifications are function types like implications, no new proof actions are needed.

Figure 3.8 shows a proof table using a destructuring action contributing a match in the proof term. The reason we did not see a destructuring action before is that so far the necessary matches could be inserted by the intro action.

Figure 3.9 gives a proof table for a distributivity law involving 6 subgoals. Note the symmetry in the proof digram and the proof term constructed.

$$
\begin{array}{lrl} 
& \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \cdot \neg \neg(\forall x \cdot p x) \rightarrow \forall x \cdot \neg \neg p x & \text { intro } \\
X: \mathbb{T}, p: X \rightarrow \mathbb{P} & & \\
f: \neg \neg(\forall x \cdot p x) & & \\
x: X, g: \neg p x & \perp & \text { apply } f \\
& \neg(\forall x \cdot p x) & \text { intro } \\
f^{\prime}: \forall x \cdot p x & \perp & g\left(f^{\prime} x\right)
\end{array}
$$

Proof term constructed: $\quad \lambda X p f x g \cdot f\left(\lambda f^{\prime} \cdot g\left(f^{\prime} x\right)\right)$
Figure 3.7: Proof table for a double negation law for universal quantification

$$
\begin{aligned}
& \forall X^{\mathbb{V}} \forall p^{X \rightarrow \mathbb{P}} \forall q^{X \rightarrow \mathbb{P}} . \\
& (\forall x \cdot p x \longleftrightarrow q x) \rightarrow(\forall x \cdot q x) \rightarrow \forall x \cdot p x \quad \text { intro } \\
& X: \mathbb{T}, p: X \rightarrow \mathbb{P}, q: X \rightarrow \mathbb{P} \\
& f: \forall x \cdot p x \longleftrightarrow q x \\
& g: \forall x . q x \\
& x: X \quad p x \text { destruct } f x \\
& h: q x \rightarrow p x \quad h(g x)
\end{aligned}
$$

Proof term constructed: $\lambda X p q f g x$. мATCH $f x\left[C_{-} h \Rightarrow h(g x)\right]$
Figure 3.8: Proof table using a destructuring action

|  |  | $X \wedge(Y \vee Z) \longleftrightarrow(X \wedge Y) \vee(X \wedge Z)$ | apply C |
| :--- | ---: | ---: | :--- |
| 1 | $X \wedge(Y \vee Z) \rightarrow(X \wedge Y) \vee(X \wedge Z)$ | intro |  |
|  | $x: X$ | $(X \wedge Y) \vee(X \wedge Z)$ | $\mathrm{L}(\mathrm{C} x y)$ |
| 1.1 | $y: Y$ | $(X \wedge Y) \vee(X \wedge Z)$ | $\mathrm{R}(\mathrm{C} x z)$ |
| 1.2 | $z: Z$ | $(X \wedge Y) \vee(X \wedge Z) \rightarrow X \wedge(Y \vee Z)$ | intro |
| 2 |  | $X \wedge(Y \vee Z)$ | $\mathrm{C} x(\mathrm{~L} y)$ |
| 2.1 | $x: X, y: Y$ | $X \wedge(Y \vee Z)$ | $\mathrm{C} x(\mathrm{Rz})$ |

Proof term constructed:
$\mathrm{C}(\lambda a$. mATCH $a[\mathrm{C} x(\mathrm{~L} y) \Rightarrow \mathrm{L}(\mathrm{C} x y) \mid \mathrm{C} x(\mathrm{Rz}) \Rightarrow \mathrm{R}(\mathrm{C} x z)])$
$(\lambda a$. MATCH $a[\mathrm{~L}(\mathrm{C} x y) \Rightarrow \mathrm{C} x(\mathrm{~L} y) \mid \mathrm{R}(\mathrm{C} x z) \Rightarrow \mathrm{C} x(\mathrm{Rz})])$
Figure 3.9: Proof table for a distributivity law

|  | $\neg \neg(X \rightarrow Y) \longleftrightarrow(\neg \neg X \rightarrow \neg \neg Y)$ | apply C, intro |
| :---: | :---: | :---: |
| $\overline{1} \quad f: \neg \neg(X \rightarrow Y)$ |  |  |
| $g: \neg \neg X$ |  |  |
| $h: \neg Y$ | $\perp$ | apply $f$, intro |
| $f^{\prime}: X \rightarrow Y$ | $\perp$ | apply $\mathcal{g}$, intro |
| $x: X$ | $\perp$ | $h\left(f^{\prime} x\right)$ |
| $\overline{2} \quad f: \neg \neg X \rightarrow \neg \neg Y$ |  |  |
| $g: \neg(X \rightarrow Y)$ | $\perp$ | apply $\mathcal{g}$, intro |
| $x: X$ | $Y$ | exfalso |
|  | $\perp$ | apply $f$ |
| 2.1 | $\neg \neg$, | intro |
| $h: \neg X$ | $\perp$ | $h x$ |
| 2.2 | $\neg Y$ | intro |
| $y: Y$ | $\perp$ | $g(\lambda x . y)$ |

Proof term constructed:

C $\left(\lambda f g h \cdot f\left(\lambda f^{\prime} \cdot g\left(\lambda x \cdot h\left(f^{\prime} x\right)\right)\right)\right)$
$\left(\lambda f g \cdot g\left(\lambda x . \mathrm{E}_{\perp} Y(f(\lambda h \cdot h x)(\lambda y \cdot g(\lambda x \cdot y)))\right)\right)$
Figure 3.10: Proof table for a double negation law for implication

Figure 3.10 gives a proof table for a double negation law for implication. Note the use of the exfalso action applying the explosion rule as realized by $\mathrm{E}_{\perp}$.

Exercise 3.7.1 Give proof tables and proof terms for the following propositions:
a) $\neg \neg(X \vee \neg X)$
b) $\neg \neg(\neg \neg X \rightarrow X)$
c) $\neg \neg(((X \rightarrow Y) \rightarrow X) \rightarrow X)$
d) $\neg \neg((\neg Y \rightarrow \neg X) \rightarrow X \rightarrow Y)$
e) $\neg \neg(X \vee \neg X)$
f) $\neg(X \vee Y) \longleftrightarrow \neg X \wedge \neg Y$
g) $\neg \neg \neg X \longleftrightarrow \neg X$
h) $\neg \neg(X \wedge Y) \longleftrightarrow \neg \neg X \wedge \neg \neg Y$
i) $\neg \neg(X \rightarrow Y) \longleftrightarrow(\neg \neg X \rightarrow \neg \neg Y)$
j) $\neg \neg(X \rightarrow Y) \longleftrightarrow \neg(X \wedge \neg Y)$

Exercise 3.7.2 Give a proof table and a proof term for the distribution law $\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall q^{X \rightarrow \mathbb{P}} .(\forall x . p x \wedge q x) \longleftrightarrow(\forall x . p x) \wedge(\forall x . q x)$.

Exercise 3.7.3 Find out why one direction of the equivalence $\forall X^{\mathbb{T}} \forall Z^{\mathbb{P}} .\left(\forall x^{X} . Z\right) \longleftrightarrow Z$ cannot be proved.

Exercise 3.7.4 Prove $\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall Z^{\mathbb{P}} .(\forall x . p x) \rightarrow Z \rightarrow \forall x . p x \wedge Z$.

### 3.8 Law of Excluded Middle

The propositions as types approach presented here yields a rich form of logical reasoning known as intuitionistic reasoning. Intuitionistic reasoning refines reasoning in mathematics in that it does not build in the law of excluded middle. This way intuitionistic reasoning makes finer differences than the so-called classical reasoning used in mathematics. Since type-theoretic logic can quantify over propositions, the law of excluded middle can be expressed as the proposition $\forall P^{\mathbb{P}} . P \vee \neg P$. Once we assume excluded middle, we can prove all the propositions we can prove in boolean logic.

Exercise 3.8.1 Let XM be the proposition $\forall P^{\mathbb{P}} . P \vee \neg P$ formalizing the law of excluded middle. Construct proof terms for the following propositions:
a) $\mathrm{XM} \rightarrow \forall P^{\mathbb{P}}$. $\neg \neg P \rightarrow P$
b) $\mathrm{XM} \rightarrow \forall P Q^{\mathbb{P}} . \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$
double negation law
c) $\mathrm{XM} \rightarrow \forall P Q^{\mathbb{P}} \cdot(\neg Q \rightarrow \neg P) \rightarrow P \rightarrow Q$ de Morgan law
d) $\mathrm{XM} \rightarrow \forall P Q^{\mathbb{P}}$. $((P \rightarrow Q) \rightarrow P) \rightarrow P$

It turns out that the reverse directions of the above implications can also be shown intuitionistically, except in one case. Exercise 15.5 .5 will tell you more.

### 3.9 Discussion

In this chapter we have seen that computational type theory can express propositions and their proofs in an elegant way. Implications are expressed as function types $s \rightarrow t$, and the functions $s \rightarrow t$ are taken as proofs of the implication $s \rightarrow t$. More generally, universal quantifications $\forall x^{u} . t$ are expressed as dependent function types $\forall x^{u}$.t. One speaks of the propositions as types approach. In contrast to conventional mathematical reasoning, the propositions as types approach accommodates propositions and proofs as first-class values that can be passed around with functions.

We have expressed falsity $\perp$, conjunction $s \wedge t$, and disjunction $s \vee t$ with inductive types providing their canonical proofs. Negation $\neg s$ is obtained as implication $s \rightarrow \perp$ and thus is modeled as a derived logical construct. We saw that $\perp, s \wedge t$, and $s \vee t$ can be characterized without inductive types just using function types.

The logical reasoning coming with the propositions as types approach is known as intuitionistic reasoning. Intuitionistic reasoning is more basic than conventional mathematical reasoning in that it does not encompass the law of excluded middle. Conventional mathematical reasoning is then recovered by having the law of excluded middle as an explicit assumption when needed. The law of excluded middle can be expressed with the proposition $\forall X^{\mathbb{P}} . X \vee \neg X$. Having a dedicated subuniverse $\mathbb{P} \subseteq \mathbb{T}$ for propositional types is essential so that assumptions such as excluded middle can be limited to propositional types and do not concern computational types such as $B$ and $N$.

In later chapters, we will see that the propositions as types approach extends to equations and existential quantifications.

The propositions as types approach uses the typing rules of the underlying type theory as proofs rules. This reduces proof checking to type checking and much simplifies the implementation of proof assistants.

In the propositions as types approach, formal proofs are obtained as terms built with constants, variables, function application, and lambda abstraction. Constants appear as proof constructors for $s \wedge t$, and $s \vee t$ and with the inductive match functions for $\perp, s \wedge t$, and $s \vee t$. The construction of (proof) terms is best done in a type-driven top-down fashion recorded with a proof table. The main operation is the function application, where the function applied yields the needed type and subgoals are issued for the arguments of the function. The resulting proof language is amazingly elegant and compact and easily yields familiar proof patterns: making assumptions (lambda abstraction), destructuring of assumptions (application of a match function), applying implicational assumptions (function application).

For the beginner, this chapter is the place where you will get fluent with lambda abstractions, matches (i.e. applications of match functions), and dependent function types. We offer dozens of examples for exploration on paper and in interaction with a proof assistant. For proving on paper, we use proof tables recording incremental top-down constructions of proof terms. When we construct proof terms in interaction with a proof assistant, we issue proof actions that incrementally build the proof term and display the information recorded in the proof table.

In the system presented so far, proofs are verified with the typing rules and no use is made of the reduction rules. This will change in the next chapter where we extend the typing discipline with a conversion rule identifying computationally equal types.

The details of the typing rules matter. What prevents a proof of falsity are the typing rules and the rules restricting the form of inductive definitions. In this text, we explain the details of the typing rules mostly informally, exploiting that compliance with the typing rules is verified automatically by the proof assistant. To be sure that something is well-typed or has a certain type, it is always a good idea to have it

## 3 Propositions as Types

checked by the proof assistant. We expect that you deepen your understanding of the typing rules using the proof assistant.

We have already pointed out that we have a subuniverse $\mathbb{P}$ of propositional types so that assumptions like the law of excluded middle do not affect computational types. If we were not interested in computational types, we could work with a single universe $\mathbb{T}$ and consider all types as propositions.

## 4 Leibniz Equality and Conversion Rule

This chapter introduces a new typing rule called conversion rule strengthening our basic computational type theory to a type theory that can define propositional equality, existential quantification, and induction lemmas. The conversion rule relaxes the type discipline so that typing operates modulo computational equality of types.

We will define propositional equality $s=t$ following a scheme known as Leibniz equality. Three typed constants suffice: One constant accommodating equations $s=t$ as propositions, one constant providing proofs of trivial equations $s=s$, and one constant providing for rewriting. For equational reasoning it suffices to have the three constants, the actual definitions of the constants are not needed, just their types.

The conversion rule of the type theory gives the constants for trivial equations and for rewriting the necessary proof power. In particular, the conversion rule makes propositional equality subsume computational equality. Moreover, the conversion rule and target type functions make it possible that a single rewriting constant captures all equational rewriting situations.

We also extend the type discipline with plain constant definitions introducing irreducible abstract constants. It turns out that equality as well as the propositional connectives can be accommodated with abstract constants. Another important use of abstract constants is the representation of theorems in type theory.

While abstract constants don't strengthen the type theory as it comes to what can be defined and to what can be proven, they provide a means of enforcing abstraction layers. A system of abstract constants constitutes an interface between the uses and the implementations (i.e., definitions) of the constants.

In this chapter we start proving theorems in type theory. Theorems are represented as abstract constants with propositional types. On paper, we will transition from formal proofs (proof terms) to informal proofs comparable with informal proofs in mathematical presentations. Our informal proofs will always be formulated such that they can be elaborated into formal proofs, and the scripts constructing the formal proofs in the proof assistant will be given in the accompanying Coq files.

There is much elegance and surprise in this chapter. There are plenty of new subjects, including typing modulo computational equality, propositional equality, abstract constants, and theorems in type theory. Take the time you need to fully understand the beautiful constructions.

### 4.1 Conversion Rule

Recall the typing rules for applications and lambda abstractions from §2.6.

$$
\frac{\vdash s: \forall x^{u} \cdot v \quad \vdash t: u}{\vdash s t: v_{t}^{x}} \quad \frac{\vdash u: \mathbb{T} \quad x: u \vdash s: v}{\vdash \lambda x^{u} \cdot s: \forall x^{u} \cdot v}
$$

The conversion rule is an additional typing rule relaxing typing by making it operate modulo computational equality of types:

$$
\frac{\vdash s: u^{\prime} \quad u \approx u^{\prime} \quad \vdash u: \mathbb{T}}{\vdash s: u}
$$

The rule says that a term $s$ has type $u$ if $s$ has type $u^{\prime}$ and $u$ and $u^{\prime}$ are computationally equal (§2.8). We use the notation $u \approx u^{\prime}$ to say that two terms $u$ and $u^{\prime}$ are computationally equal. Note that the conversion rule has a premise $\vdash u: \mathbb{T}$, which ensures that the term $u$ describes a type.

Adding the conversion rule preserves the key properties of computational type theory (§2.3). As before, there is an algorithm that given a term decides whether the term is well-typed and if so derives a type of the term. The derived type is unique up to computational equality of types and minimal with respect to universe subtyping (i.e., $\mathbb{P} \subset \mathbb{\mathbb { C }}$ ).

For a first example of the use of the application rule consider the proposition

$$
\forall p^{N \rightarrow \mathbb{P}} \cdot p(4) \rightarrow p(2+2)
$$

Without the conversion rule the proposition has no proof. To see this, consider the term

$$
\lambda p^{N \rightarrow \mathbb{P}} \cdot \lambda a^{p(4)} \cdot a
$$

Not using the conversion rule the term has the type

$$
\forall p^{N \rightarrow \mathbb{P}} \cdot p(4) \rightarrow p(4)
$$

which is equal to the given proposition up to computational equality. Thus using the conversion rule the term is a proof of the proposition. There is also the possibility to use the conversion rule early as shown in the proof table

$$
\begin{array}{lrl} 
& \forall p^{\mathrm{N} \rightarrow \mathbb{P}} \cdot p(4) \rightarrow p(2+2) & \text { intro } \\
p: \mathrm{N} \rightarrow \mathbb{P} & \mathrm{p}(2+2) & \text { conversion } p(2+2) \approx p(4) \\
a: p(4) &
\end{array}
$$

The proof table gives us exactly the proof term shown above. So we learn that a term leaves open where type checking uses the conversion rule. On the other hand, we can use proof tables to say where the conversion rule is used with type checking.

## Negation and propositional equivalence as plain functions

Exploiting the presence of the conversion rule, we can accommodate negation and propositional equivalence as plain functions:

$$
\begin{array}{ll}
\neg: \mathbb{P} \rightarrow \mathbb{P} & \longleftrightarrow: \mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P} \\
\neg X:=X \rightarrow \perp & X \longleftrightarrow Y:=(X \rightarrow Y) \wedge(Y \rightarrow X)
\end{array}
$$

The plain definitions provide us with the constants $\neg$ and $\longleftrightarrow$ for functions constructing negations and propositional equivalences. Delta reduction replaces applications $\neg s$ with propositions $s \rightarrow \perp$, and applications $s \longleftrightarrow t$ with propositions $(s \rightarrow t) \wedge(t \rightarrow s)$. The conversion rules ensures that proofs of $s \rightarrow \perp$ are proofs of $\neg s$ (and vice versa), and that proofs of $(s \rightarrow t) \wedge(t \rightarrow s)$ are proofs of $s \longleftrightarrow t$ (and vice versa).

A proof term for the proposition $\neg X \rightarrow X \rightarrow \perp$ is $\lambda f \neg X$. $f$ The conversion facilitating the type checking is $X \rightarrow \perp \approx \neg X$, or alternatively, $\neg X \rightarrow X \rightarrow \perp \approx \neg X \rightarrow \neg X$.

## Type ascription and polymorphic identity function

Type ascription is the ability to annotate a term with the type we want it to have. Type ascriptions can be expressed with the polymorphic identity function:

$$
\begin{aligned}
& \text { id }: \forall X^{\mathbb{T}} \cdot X \rightarrow X \\
& \text { id } X x:=x
\end{aligned}
$$

If we write id $t s$, we force a conversion of the type of $s$ to the type $t$. If the two types are not computationally equal, id $t s$ will not type check. Note that the terms id $t s$ and $s$ are computationally equal.

Exercise 4.1.1 Prove $\forall p^{N \rightarrow \mathbb{P}} \cdot p(2) \rightarrow p(7-5) \vee p(3)$ with a proof table and give the constructed proof term.

Exercise 4.1.2 (Leibniz symmetry)
Prove $\forall X^{\mathbb{T}} \forall x y^{X} .\left(\forall p^{X \rightarrow \mathbb{P}} \cdot p x \rightarrow p y\right) \rightarrow\left(\forall p^{X \rightarrow \mathbb{P}} \cdot p y \rightarrow p x\right)$ with a proof table and give the constructed proof term. Hint: Instantiate the predicate $p$ in the premise with $\lambda y . p y \rightarrow p x$ where $p$ is the predicate from the conclusion.

### 4.2 Abstract Propositional Equality

With dependent function types and the conversion rule at our disposal, we can now show how the propositions as types approach can accommodate propositional equality. It turns out that all we need are three typed constants:

$$
\begin{aligned}
\text { eq } & : \forall X^{\mathbb{T}} . X \rightarrow X \rightarrow \mathbb{P} \\
\mathrm{Q} & : \forall X^{\mathbb{T}} \forall x^{X} . \text { eq } X x x \\
\mathrm{R} & : \forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . \text { eq } X x y \rightarrow p x \rightarrow p y
\end{aligned}
$$

## 4 Leibniz Equality and Conversion Rule

For now we keep the constants abstract. It turns out that we can do equational reasoning without knowing the definitions of the constants. All we need are the constants and their types.

The constant eq allows us to write equations as propositions. We treat $X$ as implicit argument and use the notations

$$
\begin{array}{lll}
s=t & \leadsto & \text { eq } s t \\
s \neq t & \leadsto & \neg \text { eq } s t
\end{array}
$$

The constants $Q$ and $R$ provide the basic proof rules for equations. For applications of $Q$ and $R$ the conversion rule of the type theory is essential.

## Q provides computational equality

The constant Q provides for proofs by computational equality. Obviously, Q can prove trivial equations $s=s$. Given the conversion rule, Q can also proof every equation $s=t$ where $s$ and $t$ are computationally equal. This is the case since computational equality is compatible with the term structure. For instance, $s \approx s^{\prime}$ and $t \approx t^{\prime}$ implies $(s=t) \approx\left(s^{\prime}=t^{\prime}\right)$.

For instance, Q proves $2+3=9-4$ using the conversion rule. This is the case since $2+3 \approx 5$ and $9-4 \approx 5$ imply $(2+3=9-4) \approx(5=5)$. This justifies the proof term QN 5. Other possible proof terms for $2+3=9-4$ are $\mathrm{QN}(9-4)$ and QN (4+1).

## R provides equational rewriting

The constant R provides for equational rewriting. Given a proof of an equation $s=t$, we can replace a claim $p t$ with the claim $p s$ using R . Moreover, we can get from an assumption $p s$ an additional assumption $p t$ by asserting $p t$ and proving $p t$ with R and $p s$.

We refer to R as rewriting law, and to the argument $p$ of R as rewriting predicate. Moreover, we refer to the predicate eq as propositional equality or just equality. We will treat $X, x$ and $y$ as implicit arguments of R , and $X$ as implicit argument of eq and Q .

The conversion rule is essential for working with the rewriting law. Suppose we want to prove $x=y \rightarrow y=z \rightarrow x=z$. Then we assume $e: x=y$ and prove $y=z \rightarrow x=z$. With the conversion rule we rewrite the claim to

$$
(\lambda y \cdot y=z \rightarrow x=z) y
$$

Now rewriting with R and $e: x=y$ reduces the claim to $(\lambda y \cdot y=z \rightarrow x=z) x$, which simplifies to the trivial implication $x=z \rightarrow x=z$ using the conversion rule. This reasoning is best represented with a proof table:

$$
\begin{array}{rrl} 
& x=y \rightarrow y=z \rightarrow x=z & \\
y=y=x \rightarrow x=z & & \text { intro } \\
y & y=z v e r s i o n \\
& (\lambda y . y=z \rightarrow x=z) y & \\
& \text { apply } \mathrm{R}_{-} e \\
(\lambda y . y=z \rightarrow x=z) x & & \text { conversion } \\
& x=z \rightarrow x=z & \\
\text { גe.e }
\end{array}
$$

The table constructs the proof term

$$
\lambda e^{x=y} \cdot \mathrm{R}_{(\lambda y \cdot y=z-x=z)} e\left(\lambda e^{x=z} \cdot e\right)
$$

While the uses of the conversion rule appear prominently in the proof table, they don't show up explicitly in the proof term. While the first conversion is forced by the rewriting predicate in the application of $R$, the second conversion will only appear if the context imposes the type $x=y \rightarrow y=z \rightarrow x=z$ for the proof term.

## Target type functions

The type of the rewrite law is our first use of a target type function:

$$
\mathrm{R}: \forall X^{\mathbb{V}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . \text { eq } X x y \rightarrow p x \rightarrow p y
$$

Here the predicate $p$ taken as argument determines the target type $p y$ of the rewriting constant R. Target type functions work because of the conversion rule. We will see nonpropositional target type functions in Chapter 5.

Exercise 4.2.1 Give a proof term for the equation ! true = false. Explain why the term is also a proof term for the equation false $=$ !!false.

Exercise 4.2.2 Give a proof term for the converse rewriting law $\forall X^{\mathbb{T}} \forall x y \forall p^{x \rightarrow \mathbb{P}}$. eq $X x y \rightarrow p y \rightarrow p x$.

Exercise 4.2.3 Suppose we want to rewrite a subterm $u$ in a proposition $t$ using the rewriting law R . Then we need a rewrite predicate $\lambda x . s$ such that $t$ and ( $\lambda x . s) u$ are convertible and $s$ is obtained from $t$ by replacing the occurrence of $u$ with the variable $x$. Let $t$ be the proposition $x+y+x=y$.
a) Give a predicate for rewriting the first occurrence of $x$ in $t$.
b) Give a predicate for rewriting the second occurrence of $y$ in $t$.
c) Give a predicate for rewriting all occurrences of $y$ in $t$.
d) Give a predicate for rewriting the term $x+y$ in $t$.
e) Explain why the term $y+x$ cannot be rewritten in $t$.

Exercise 4.2.4 Give a term applying R to 7 arguments (including implicit arguments). In fact, for every number $n$ there is a term that applies R to exactly $n$ arguments.

$$
\begin{aligned}
& \top \neq \perp \quad \text { propositional disjointness } \\
& \text { true } \neq \text { false constructor disjointness for } B \\
& \forall x^{\mathrm{N}} .0 \neq \mathrm{S} x \quad \text { constructor disjointness for } \mathrm{N} \\
& \forall x^{\mathrm{N}} y^{\mathrm{N}} . \mathrm{S} x=\mathrm{S} y \rightarrow x=y \\
& \forall X^{\top} x^{X} y^{X} . x=y \rightarrow y=x \\
& \forall X^{\mathbb{\top}} x^{X} y^{X} z^{X} . x=y \rightarrow y=z \rightarrow x=z \\
& \text { symmetry } \\
& \text { transitivity }
\end{aligned}
$$

Figure 4.1: Basic equational facts

### 4.3 Basic Equational Facts

The constants Q and R give us straightforward proofs for many equational facts. To say it once more, Q together with the conversion rule provides proofs by computational equality, and R together with the conversion rule provides equational rewriting. Figure 4.1 shows a collection of basic equational facts, and Figure 4.2 gives proof tables and the resulting proof terms for most of them. The remaining proofs are left as exercise. It is important that you understand each of the proofs in detail.

Note that the proof tables in Figure 4.2 all follow the same scheme: First comes a step introducing assumptions, then a conversion step making the rewriting predicate explicit, then the rewriting step as application of R , then a conversion step simplifying the claim, and then the final step proving the simplified claim.

We now understand how the basic proof steps "rewriting" and "proof by computational equality" used in the tables in Chapter 1 are realized in the propositions as types approach.

If we look at the facts in Figure 4.2, we see that three of them

$$
\begin{array}{rr}
\text { true } \neq \text { false } & \text { constructor disjointness for } \mathrm{B} \\
\forall x^{\mathrm{N}} .0 \neq \mathrm{S} x & \text { constructor disjointness for } \mathrm{N} \\
\forall x^{\mathrm{N}} y^{\mathrm{N}} . \mathrm{S} x=\mathrm{S} y \rightarrow x=y & \text { injectivity of successor }
\end{array}
$$

concern inductive types while the others are not specifically concerned with inductive types. We speak of constructor laws for inductive types. Note that the proofs of the constructor laws all involve a match on the underlying inductive type, and recall that matches are obtained as inductive functions. So to prove a constructor law, one needs to discriminate on the underlying inductive type at some point.

Interestingly, the proof of the transitivity law

$$
\forall X^{\mathbb{T}} x^{X} y^{X} z^{X} . x=y \rightarrow y=z \rightarrow x=z
$$

Fact: $\perp \neq T$
Proof term: $\lambda e . \mathrm{R}_{\left(\lambda X^{\mathbb{P}} . X\right)} e l$

$$
e: \top=\perp
$$

$\top \neq \perp$
$\perp$
intro
$\perp$ conversion $\left(\lambda X^{\mathbb{P}} . X\right) \perp \quad$ apply $\mathrm{R}_{-} e$ $\left(\lambda X^{\mathbb{P}} . X\right) \top \quad$ conversion

Fact: $\perp \neq T$
Proof term: $\lambda e . \mathrm{R}_{\left(\lambda x^{\text {B }} . \text { матсн }\right.} x[$ true $\Rightarrow$ T|false $\left.\Rightarrow \perp]\right)$ l

|  | true $=$ false | intro |
| :---: | :---: | :---: |
| $e:$ true $=$ false | $\perp$ | conversion |
|  | ( $\lambda x^{\text {B }}$. MATCH $x$ [ true $\Rightarrow$ T $\left.{ }^{\text {false }} \Rightarrow \perp\right]$ ) false | apply R_e |
|  | $\left(\lambda x^{\text {B }}\right.$. MATCH $x[$ true $\Rightarrow \mathrm{T} \mid$ false $\left.\Rightarrow \perp]\right)$ true | conversion |
|  | T | I |

Fact: $\forall x y^{\mathrm{N}} . \mathrm{S} x=\mathrm{S} y \rightarrow x=y$
Proof term: $\lambda x y e . \mathrm{R}_{\left(\lambda z . x=\text { MATCH } z\left[0 \Rightarrow 0 \mid S z^{\prime} \Rightarrow z^{\prime}\right]\right)} e(\mathrm{Q} x)$

$$
\begin{array}{lrl}
x: \mathrm{N}, y: \mathrm{N} & \mathrm{~S} x=\mathrm{S} y \rightarrow x=y & \text { intro } \\
e: \mathrm{S} x=\mathrm{S} y & x=y & \text { conversion } \\
& \left(\lambda z . x=\text { MATCH } z\left[0 \Rightarrow 0 \mid \mathrm{S} z^{\prime} \Rightarrow z^{\prime}\right]\right)(\mathrm{S} y) & \text { apply R_e } \\
& \left(\lambda z . x=\text { MATCH } z\left[0 \Rightarrow 0 \mid \mathrm{S} z^{\prime} \Rightarrow z^{\prime}\right]\right)(\mathrm{S} x) & \text { conversion } \\
& x=x & \mathrm{Q} x
\end{array}
$$

Fact: $\quad \forall X^{\mathbb{T}} \forall x y z^{X} . x=y \rightarrow y=z \rightarrow x=z$
Proof term: $\left.\lambda X x y z e . \mathrm{R}_{(\lambda y .} y=z \rightarrow x=z\right)$ e ( $\left.\lambda e . e\right)$

$$
\begin{array}{lrl}
X: \mathbb{T}, x: X, y: X, z: X, & x=y \rightarrow y=z \rightarrow x=z & \text { intro } \\
e: x=y & y=z \rightarrow x=z & \text { conversion } \\
& (\lambda y . y=z \rightarrow x=z) y & \text { apply R_e } \\
& (\lambda y . y=z \rightarrow x=z) x & \text { conversion } \\
& x=z \rightarrow x=z & \text { גe.e }
\end{array}
$$

Figure 4.2: Proofs of some equational facts
can be simplified so that the conversion rule is not used. The simplified proof term

$$
\lambda X x y z e_{1} e_{2} . \mathrm{R}_{(\text {eq } x)} e_{2} e_{1}
$$

exploits the fact that the equation $x=z$ is the application (eq $x) z$ up to notation.
Exercise 4.3.1 Study the two proof terms given for transitivity in detail using Coq. Give the proof table for the simplified proof term. Convince yourself that there is no proof term for symmetry that can be type-checked without the conversion rule.

Exercise 4.3.2 Give proof tables and proof terms for the following propositions:
a) $\forall x^{\mathrm{N}} \cdot 0 \neq \mathrm{S} x$
b) $\forall X^{\mathbb{T}} x^{X} y^{X} . x=y \rightarrow y=x$
c) $\forall X^{\mathbb{T}} Y^{\mathbb{T}} f^{X \rightarrow y} x y . x=y \rightarrow f x=f y$
d) $\forall X^{\mathbb{T}} Y^{\mathbb{T}} f^{X \rightarrow Y} g^{X \rightarrow Y} x . f=g \rightarrow f x=g x$

Exercise 4.3.3 (Constructor law for pairs)
Prove that the pair constructor is injective: pair $x y=$ pair $x^{\prime} y^{\prime} \rightarrow x=x^{\prime} \wedge y=y^{\prime}$.

Exercise 4.3.4 (Leibniz characterization of equality)
Verify the following characterization of equality:

$$
x=y \longleftrightarrow \forall p^{x \rightarrow \mathbb{P}} \cdot p x \rightarrow p y
$$

The equivalence is known as Leibniz characterization or as impredicative characterization of equality. Also verify the symmetric Leibniz characterization

$$
x=y \longleftrightarrow \forall p^{X \rightarrow \mathbb{P}} \cdot p x \longleftrightarrow p y
$$

which may be phrased as saying that two objects are equal if and only if they satisfy the same properties.

Note that each of the two equivalences suggests a possible definition of the constant eq. We will choose the first equivalence.

Exercise 4.3.5 (Disequality) From the Leibniz characterization of equality it follows that $x \neq y$ if there is a predicate that holds for $x$ but does not hold for $y$. Prove the proposition $\forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . p x \rightarrow \neg p y \rightarrow x \neq y$ expressing this insight.

### 4.4 Definition of Leibniz Equality

Here are plain function definitions defining the constants for abstract propositional equality:

$$
\begin{aligned}
& \text { eq }: \forall X^{\mathbb{T}} \cdot X \rightarrow X \rightarrow \mathbb{P} \\
& \text { eq } X x y:=\forall p^{X \rightarrow \mathbb{P}} \cdot p x \rightarrow p y \\
& \mathrm{Q}: \forall X^{\mathbb{T}} \forall x \cdot \text { eq } X x x \\
& \mathrm{Q} X x:=\lambda p a \cdot a \\
& \mathrm{R}: \forall X^{\mathbb{T}} \forall x y \forall p^{X \rightarrow \mathbb{P}} \cdot \text { eq } X x y \rightarrow p x \rightarrow p y \\
& \mathrm{R} X x y p f:=f p
\end{aligned}
$$

The definitions are amazingly simple. Note that the conversion rule is needed to make use of the defining equation of eq. The definition of eq follows the Leibniz characterization of equality established in Exercise 4.3.4.

The above definition of propositional equality is known as Leibniz equality and appears in Whitehead and Russell's Principia Mathematica (1910-1913). Computational type theory also provides for the definition of a richer form of propositional equality using an indexed inductive type family. We will study the definition of inductive equality in Chapter 30. Until then the concrete definition of propositional equality does not matter since all we will be using are the three abstract constants provided by both definitions.

## Arithmetic Comparisons as defined functions

Now that we have equality, we define arithmetic comparisons as plain functions:

$$
\begin{aligned}
& \leq: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathbb{P} \\
& x \leq y:=(x-y=0)
\end{aligned}
$$

In addition, we will use three notational variants:

$$
x \geq y:=y \leq x \quad x<y:=\mathrm{s} x \leq y \quad x>y:=y<x
$$

### 4.5 Abstract Constants and Theorems

We now extend the definitional facilities of our type theory with abstract constant definitions. An abstract constant definition is like a plain constant definition but comes with the proviso that delta reduction is not provided for the constant. Thus when we use an abstract constant we cannot make use of its definition. We may say that the definition of an abstract constant is hidden.

## 4 Leibniz Equality and Conversion Rule

We may use abstract constants to represent the constants for equality, conjunction, disjunction, and falsity. For using these constructs the definitions of the constants are not needed, all we need are the constants with their types.

In the examples considered so far always a group of constants is defined and the formation constants can only be made abstract after the accompanying introduction and elimination constants have been defined.

A mathematical development is a carefully arranged collection of definitions and theorems that build on each other. Theorems are results that have been proven. In type theory, we model theorems as abstract constants with propositional types. The use of an abstract constant for a theorem models the fact that theorems can be used without knowing their proofs. It suffices to know that there is a proof. Sometimes theorems have involved proofs appearing in the literature the user has never worked through.

Theorems come with several different names including facts, lemmas, and corollaries. The different names are a matter of presentation and do not have technical significance. In type theory all we have are abstract constants with propositional types. We often use the term lemma to refer to abstract constants with propositional types.

### 4.6 Theorems in this Text

All theorems stated in this text are theorems in type theory. They are given informal proofs in the text and formal proofs in the accompanying Coq files, where they appear as abstract constants with propositional types. The informal proofs we give in the text are designed such that they can be elaborated into the formal proofs appearing in the accompanying Coq files.

In this text, we mostly use the heading "Fact" to state theorems obtained in type theory. Here is a first example.

Fact 4.6.1 (Applicative closure)
$\forall X Y^{\mathbb{T}} \forall f^{X \rightarrow Y} \forall x x^{\prime X} . x=x^{\prime} \rightarrow f x=f x^{\prime}$.
Proof Rewriting.
Following the usual mathematical conventions we use a numbering scheme to name facts in this text. In addition we may give a fact a more telling name, such as "applicative closure" in the above example.

We will mostly give informal proofs for the theorems we state in this text. The informal proofs will carry enough information so that they can be elaborated into formal proofs (i.e., proof terms) using a proof assistant. Typically, we will delegate the elaboration to the accompanying Coq files. For the purpose of illustration, we give a complete proof table for the proof of Fact 4.6.1:

$$
\forall X Y^{\mathbb{T}} \forall f^{X \rightarrow Y} \forall x x^{\prime X} . \quad x=x^{\prime} \rightarrow f x=f x^{\prime} \quad \text { intro }
$$

$$
\begin{aligned}
& X, Y: \mathbb{T} \\
& f: X \rightarrow Y \\
& x, x^{\prime}: X
\end{aligned}
$$

$$
e: x=x^{\prime} \quad f x=f x^{\prime} \quad \text { conversion }
$$

$$
\left(\lambda x^{\prime} . f x=f x^{\prime}\right) x^{\prime} \quad \text { apply } \mathrm{R}_{-} e
$$

$$
\left(\lambda x^{\prime} . f x=f x^{\prime}\right) x \quad \text { conversion }
$$

$$
f x=f x \quad \mathrm{Q}(f x)
$$

To demonstrate the use of Fact 4.6.1, we will prove the constructor laws for numbers using inductive functions for predecessors and not-zero tests:

```
pred:N
 pred 0:= 0
pred (Sx) := x
```

```
notzero:N }->\mathbb{P
 notzero 0 := \perp
notzero(S_) := \top
```

Fact 4.6.2 (Injectivity of successor function) $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$.
Proof We assume $\mathrm{S} x=S y$ and prove $x=y$. By conversion it suffices to prove pred $(\mathrm{S} x)=\operatorname{pred}(\mathrm{S} y)$. Follows by rewriting.

Fact 4.6.3 (Disjointness of successor and zero) $\quad \mathrm{S} x \neq 0$.
Proof We assume $\mathrm{S} x=0$ and prove $\perp$.
By conversion it suffices to prove notzero 0 . Follows by rewriting.
Exercise 4.6.4 Give proof terms for Facts 4.6.1, 4.6.2, and 4.6.3.
Exercise 4.6.5 Prove $\forall X Y^{\mathbb{T}} \forall f g^{X \rightarrow Y} \forall x^{X} . f=g \rightarrow f x=g x$. We shall often tacitly use this applicative closure law.

### 4.7 Abstract Presentation of Propositional Connectives

Like propositional equality, falsity, conjunction, and disjunction can be accommodated with systems of abstract constants, as shown in Figure 4.3. This demonstrates a general abstractness property of logical reasoning. Among the constants in Figure 4.3, we distinguish between constructors and eliminators. The inductive definitions of falsity, conjunction, and disjunction in Chapter 3 provide the constructors directly as constructors. The eliminators may then be obtained as inductive functions. We have seen the eliminators before in Chapter 3 as explosion rule and match functions (Figure 3.2). If we look at the abstract constants for equality, we can identify eq and Q as constructors and R as eliminator.

There is great beauty to the abstract presentation of the propositional connectives with typed constants. Each constant serves a particular purpose:

$$
\begin{aligned}
\perp & : \mathbb{P} \\
\mathrm{E}_{\perp} & : \forall Z^{\mathbb{P}} \cdot \perp \rightarrow Z \\
\wedge & : \mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P} \\
\mathrm{C} & : \forall X^{\mathbb{P}} Y^{\mathbb{P}} \cdot X \rightarrow Y \rightarrow X \wedge Y \\
\mathrm{E}_{\wedge} & : \forall X^{\mathbb{P}} Y^{\mathbb{P}} Z^{\mathbb{P}} \cdot X \wedge Y \rightarrow(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
\vee & : \mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P} \\
\mathrm{L} & : \forall X^{\mathbb{P}} Y^{\mathbb{P}} \cdot X \rightarrow X \vee Y \\
\mathrm{R} & : \forall X^{\mathbb{P}} Y^{\mathbb{P}} \cdot Y \rightarrow X \vee Y \\
\mathrm{E}_{\vee} & : \forall X^{\mathbb{P}} Y^{\mathbb{P}} Z^{\mathbb{P}} \cdot X \vee Y \rightarrow(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z
\end{aligned}
$$

Figure 4.3: Abstract constants for falsity, conjunctions, and disjunctions

- The formation constants $(\perp, \wedge, \vee)$ provide the abstract syntax for the respective connectives.
- The introduction constants ( $C, L, R$ ) provide the basic proof rules for the connectives.
- The elimination constants $\left(E_{\perp}, E_{\wedge}, E_{\vee}\right)$ provide proof rules that for the proof of an arbitrary proposition $Z$ make use of the proof of the respective connective.
We emphasize that the definitions of the constants do not matter for the use of the constants as proof rules. In other words, the definitions of the constants do not contribute to the essence of the propositional connectives, which is fully covered by the types of the constants. The constants can be defined either inductively or impredicatively. The impredicative definitions are purely functional and do not involve inductive definitions. Note that the impredicative characterizations can be read of the types of the elimination constants.

As we have seen, propositional equality can be obtained with typed constants following the formation-introduction-elimination scheme:

$$
\begin{aligned}
\text { eq } & : \forall X^{\mathbb{T}} . X \rightarrow X \rightarrow \mathbb{P} \\
\mathrm{Q} & : \forall X^{\mathbb{T}} \forall x^{X} . \text { eq } X x x \\
\mathrm{R} & : \forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . \text { eq } X x y \rightarrow p x \rightarrow p y
\end{aligned}
$$

Note that the impredicative characterization

$$
\mathrm{eq} X x y \longleftrightarrow \forall p^{X \rightarrow \mathbb{P}} \cdot p x \rightarrow p y
$$

and hence the impredicative definition can be read of the type of the elimination constant R.

We will see later that existential quantification can also be incorporated with a systems of typed constants following the formation-introduction-elimination scheme, and that the constants can be defined either inductively or impredicatively.

Exercise 4.7.1 (Impredicative definitions) Define the constructors and eliminators for falsity, conjunction, and disjunction assuming that the logical constants are defined using their impredicative characterizations. Do not use the inductive definitions. Note that we have typed $Z$ in the eliminator for falsity in Figure 4.3 with $\mathbb{P}$ rather than $\mathbb{T}$ to enable an impredicative definition.

Exercise 4.7.2 Prove commutativity of conjunction and disjunction just using the abstract constructors and eliminators.

Exercise 4.7.3 Assume two sets $\wedge, C, E_{\wedge}$ and $\wedge^{\prime}, \mathrm{C}^{\prime}, \mathrm{E}_{\wedge^{\prime}}$ of constants for conjunctions. Prove $X \wedge Y \longleftrightarrow X \wedge^{\prime} Y$. Do the same for disjunction and propositional equality. We may say that the constructors and eliminators for a propositional construct characterize the propositional construct up to propositional equivalence.

### 4.8 Notes

There are plenty of new ideas in this chapter playing a major role from now on:

- Type checking modulo computational equality of types.
- Target type functions.
- Abstract constants.
- Representation of equality with abstract constants.
- Representation of theorems with abstract constants.
- Informal proofs rather than formal proofs in the text.
- Elaboration of informal proofs in the text into formal proofs in the Coq files.


## 5 Inductive Eliminators

For inductive types we can define general inductive functions called eliminators taking as arguments a target type function and continuations providing the right hand sides of the defining equations. It so happens that the types of eliminators describe general proofs rules for structural case analysis and structural induction. The informal proofs we have seen in Chapter 1 can now all be formalized in the type theory we have arrived at.

We will study the eliminators for booleans, numbers, and pairs using examples. This will include formal proofs of the disequation $\mathrm{N} \neq \mathrm{B}$ and the eta law for pairs. We will also look at the eliminators for void ( $\perp$ ) and unit ( $T$ ).

Moreover, it is time for a careful look at the typing rules for terms, including the universes $\mathbb{T}$ and $\mathbb{P}$, and the subtyping $\mathbb{P} \subset \mathbb{T}$. We will introduce universe level as a means of restricting the self-containment $\mathbb{T}: \mathbb{T}$. We will also impose a discrimination restriction for inductive propositions. The restrictions on universe levels and propositional discrimination are needed to obtain a consistent type theory (i.e., a type theory that cannot prove falsity).

With this chapter we arrive at a consistent computational type theory which can formalize a large variety of theorems, including all theorems in Chapter 1.

### 5.1 Boolean Eliminator

Recall the definition of the inductive type of booleans from §1.1:

$$
\text { B: } \mathbb{I}::=\text { true | false }
$$

An inductive function $f$ discriminating on a boolean argument has two defining equations:

$$
\begin{aligned}
& f \text { true }:=s_{1} \\
& f \text { true }:=s_{2}
\end{aligned}
$$

We generalize the format by taking the terms $s_{1}$ and $s_{2}$ as arguments:

$$
\begin{aligned}
& f e_{1} e_{2} \text { true }:=e_{1} \\
& f e_{1} e_{2} \text { true }:=e_{2}
\end{aligned}
$$

## 5 Inductive Eliminators

A possible type for this format is

$$
f: \forall Z^{\mathbb{T}} . Z \rightarrow Z \rightarrow \mathrm{~B} \rightarrow Z
$$

A more general type for this format uses a target type function: ${ }^{1}$

$$
f: \forall p^{\mathrm{B} \rightarrow \mathbb{T}} \cdot p \text { true } \rightarrow p \text { false } \rightarrow \forall x \cdot p x
$$

It turns out that the general format with the target type function is necessary when we use $f$ to do a boolean case analysis. We fix the definition

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{B}}: \forall p^{\mathrm{B} \rightarrow \mathbb{T}} \cdot p \text { true } \rightarrow p \text { false } \rightarrow \forall x \cdot p x \\
& \mathrm{E}_{\mathrm{B}} p e_{1} e_{2} \text { true }:=e_{1} \\
& \mathrm{E}_{\mathrm{B}} p e_{1} e_{2} \text { false }:=e_{2} \\
& : p \text { true } \\
& : p \text { false }
\end{aligned}
$$

and call the function $\mathrm{E}_{\mathrm{B}}$ the boolean eliminator. We refer to the arguments $e_{1}$ and $e_{2}$ of $E_{B}$ as continuations.

The type of $E_{B}$ says that we obtain a proof of $\forall x^{B} . p x$ if we provide proofs of $p$ true and $p$ false. This provides us with a general means to do boolean case analysis. To do a boolean case analysis, the defining equations of $E_{B}$ are not needed.

Note that the type of the target type function $p$ for $E_{B}$ is $B \rightarrow \mathbb{T}$. Since $\mathbb{P} \subset \mathbb{T}$, we have $B \rightarrow \mathbb{P} \subset B \rightarrow \mathbb{T}$. Thus we can use the boolean eliminator for proofs where $p$ is a predicate $\mathrm{B} \rightarrow \mathbb{P}$ (details appear in §5.8).

Consider the defining equations of $E_{B}$. They are well-typed since the patterns $\mathrm{E}_{\mathrm{B}} p a b$ true and $\mathrm{E}_{\mathrm{B}} p a b$ false on the left instantiate the target type to $p$ true and $p$ false, which are the types of the variables $e_{1}$ and $e_{2}$, respectively.

Recall that in type theory a boolean conditional is an abbreviation for an application of an inductive function discriminating on $B$. We shall use the boolean eliminator for this purpose:

$$
\text { IF } s_{1} \text { THEN } s_{2} \text { ELSE } s_{3} \quad \leadsto \quad \mathrm{E}_{\mathrm{B}} t s_{2} s_{3} s_{1}
$$

Note that the term $t$ describing the target type function must be derived from the context of the boolean conditional.

Exercise 5.1.1 Define boolean negation and boolean conjunction with the boolean eliminator.

### 5.2 Example: Boolean Case Analysis Using the Eliminator

Informally, the proposition

$$
\forall x^{\mathrm{B}} . x=\text { true } \vee x=\text { false }
$$

[^4]|  | $\forall x \cdot x=\operatorname{true} \vee x=$ false  <br>  $\forall x \cdot(\lambda x \cdot x=\operatorname{true} \vee x=\mathrm{false}) x$ | conversion <br> apply $\mathrm{E}_{\mathrm{B}}$ |
| ---: | ---: | :--- |
| 1 | $(\lambda x \cdot x=$ true $\vee x=$ false $)$ true | conversion |
|  | true $=$ true $\vee$ true $=$ false | trivial |
| 2 | $(\lambda x \cdot x=$ true $\vee x=$ false $)$ false | conversion |
|  | false $=$ true $\vee$ false $=$ false | trivial |

Proof term constructed: $\mathrm{E}_{\mathrm{B}}(\lambda x . x=$ true $\vee x=$ false $)(\mathrm{L}(\mathrm{Q}$ true $))(\mathrm{R}(\mathrm{Q}$ false $))$
Figure 5.1: Proof table for a boolean elimination
can be proved with a boolean case analysis reducing it to the trivial subgoals false $=$ true $\vee$ false $=$ false and false $=$ true $\vee$ false $=$ false. Formally, we obtain a proof term for the proposition using the boolean eliminator:
$\mathrm{E}_{\mathrm{B}}(\lambda x . x=\operatorname{true} \vee x=$ false $)$ 「true $=$ true $\vee$ true $=$ false ${ }^{\text {「 }}$ false $=$ true $\vee$ false $=$ false ${ }^{`}$
The types enclosed in the upper corners are placeholders for terms having the given types. We refer to the placeholders as subgoals. Note that the types of the subgoals are obtained with the conversion rule. We may now use the proof terms $\mathrm{L}(\mathrm{Q}$ true) and $R(Q$ false) for the subgoals and obtain the complete proof term

$$
\mathrm{E}_{\mathrm{B}}(\lambda x . x=\text { true } \vee x=\text { false })(\mathrm{L}(\mathrm{Q} \text { true }))(\mathrm{R}(\mathrm{Q} \text { false }))
$$

Figure 5.1 shows a proof table constructing the proof term. The table makes explicit the conversions handling the applications of the target type functions.

We remark that a simply typed boolean eliminator $\forall Z^{\mathbb{T}} . Z \rightarrow Z \rightarrow B \rightarrow Z$ cannot express the boolean case analysis needed for $\forall x^{\mathrm{B}} . x=$ true $\vee x=$ false.

Note that the fact that all boolean case analysis can be obtained with a single eliminator crucially depends on the use of a target type function and the conversion rule.

Exercise 5.2.1 For each of the following propositions give a proof term applying the boolean eliminator.
a) $\forall p^{\mathrm{B} \rightarrow \mathbb{P}} \forall x .(x=$ true $\rightarrow p$ true $) \rightarrow(x=$ false $\rightarrow p$ false $) \rightarrow p x$.
b) $x \& y=$ true $\longleftrightarrow x=$ true $\wedge y=$ true.
c) $x \mid y=$ false $\longleftrightarrow x=$ false $\wedge y=$ false.
d) $\forall p^{\mathrm{B} \rightarrow \mathbb{P}} \cdot(\forall x y \cdot y=x \rightarrow p x) \rightarrow \forall x \cdot p x$.

### 5.3 Kaminski's Equation

Here is a somewhat challenging fact known as Kaminski's equation ${ }^{2}$ that can be shown with boolean elimination:

$$
\forall f^{\mathrm{B} \rightarrow \mathrm{~B}} \forall x . f(f(f x))=f x
$$

Obviously, a boolean case analysis on just $x$ does not suffice for a proof. What we need in addition is boolean case analysis on the terms $f$ true and $f$ false. To make this possible, we prove the equivalent claim

$$
\forall x y z . f \text { true }=y \rightarrow f \text { false }=z \rightarrow f(f(f x))=f x
$$

by boolean case analysis on $x, y$, and $z$. This gives us 8 subgoals, all of which have straightforward equational proofs. Here is the subgoal for $x=$ false, $y=$ false, and $z=$ true :

$$
f \text { true }=\text { false } \rightarrow f \text { false }=\text { true }=\rightarrow f(f(f \text { false }))=f \text { false }
$$

This is the first time we see a proof discriminating on a term rather than a variable. Speaking informally, the proof of Kaminski's equation proceeds by cascaded discrimination on $x, f$ true, and $f$ false, where the equations recording the discriminations on the terms $f$ true, and $f$ false are made available as assumptions. While this proof pattern is not primitive in type theory, it can be expressed as shown above. A proof assistant may support this and other proof patterns with specialized tactics. ${ }^{3}$

## Exercise 5.3.1 (Boolean pigeonhole principle)

a) Prove the boolean pigeonhole principle: $\forall x y z^{\mathrm{B}} . x=y \vee x=z \vee y=z$.
b) Prove Kaminski's equation based on the instance of the boolean pigeonhole principle for $f(f x), f x$, and $x$.

Exercise 5.3.2 (Boolean enumeration) Prove $\forall x^{\mathrm{B}} . x=$ true $\vee x=$ false and use it to prove Kaminski's equation by enumerating $x, f x$, and $f(f x)$ and solving the resulting $2^{3}$ cases with Coq's congruence tactic.

### 5.4 Eliminator for Numbers

Recall the definition of the inductive type of numbers from $\S 1.2$ :

$$
N: \mathbb{T}::=0 \mid S(N)
$$

[^5]An inductive function $f$ discriminating on a numeric argument has two defining equations:

$$
\begin{aligned}
f 0 & :=s_{1} \\
f(\mathrm{Sn}) & :=s_{2}
\end{aligned}
$$

We generalize the format by taking the terms $s_{1}$ and $s_{2}$ as arguments:

$$
\begin{aligned}
f e_{1} e_{2} 0 & :=e_{1} \\
f e_{1} e_{2}(S n) & :=e_{2} n(f n)
\end{aligned}
$$

Note that the argument $e_{2}$ is a function taking the predecessor $n$ and the result of the recursive application $f n$ as arguments. ${ }^{4}$

We now come to the typing of the eliminator function. To obtain enough flexibility, we shall employ a target type function $p^{\mathrm{N} \rightarrow \mathbb{T}}$. Given the equations for $f$, this design decision forces the type

$$
\forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall n \cdot p n \rightarrow p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

We now fix the definition

$$
\begin{aligned}
\mathrm{E}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall n \cdot p n \rightarrow p(\mathrm{~S} n)) & \rightarrow \forall n \cdot p n \\
\mathrm{E}_{\mathrm{N}} p e_{1} e_{2} 0:=e_{1} & : p 0 \\
\mathrm{E}_{\mathrm{N}} p e_{1} e_{2}(\mathrm{~S} n):=e_{2} n\left(\mathrm{E}_{\mathrm{N}} p e_{1} e_{2} n\right) & : p(\mathrm{~S} n)
\end{aligned}
$$

of the arithmetic eliminator $\mathrm{E}_{\mathrm{N}}$. We refer to the arguments $e_{1}$ and $e_{2}$ of $\mathrm{E}_{\mathrm{N}}$ as continuations. We say that the arithmetic eliminator takes continuations for the zero case and the successor case.

Next we look at the type of $E_{N}$ as a proof rule:

$$
\mathrm{E}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall n \cdot p n \rightarrow p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

It says that we can obtain a proof of $\forall n$. $p n$ by supplying proofs for $p 0$ and $\forall n$. $p n \rightarrow p(\mathrm{~S} n)$. For the second proof obligation we have to supply a function that for every $n$ yields a proof of $p(\mathrm{~S} n)$ given a proof of $p n$. Thus $\mathrm{E}_{\mathrm{N}}$ gives us a proof rule for structural induction on numbers. Note that the so-called inductive hypothesis appears as $p n$ in the type $\forall n . p n \rightarrow p(\mathrm{~S} n)$ of the continuation function for the successor case.

We have just seen one of the most elegant and novel aspects of computational type theory: Induction on numbers is obtained through (the type of) the arithmetic eliminator, which is obtained as a recursive inductive function on numbers.

[^6]The type of $\mathrm{E}_{\mathrm{N}}$ clarifies many aspects of informal inductive proofs. For instance, the type of $\mathrm{E}_{\mathrm{N}}$ makes clear that the variable $n$ in the final claim $\forall n$. pn is different from the variable $n$ in the successor case $\forall n$. $p n \rightarrow p(\mathrm{~S} n)$. Nevertheless, it makes sense to use the same name for both variables since this makes the inductive hypothesis $p n$ agree with the final claim.

We shall use the notations

$$
\begin{array}{rll}
\text { MATCH } s\left[0 \Rightarrow s_{1} \mid \mathrm{S} x \Rightarrow s_{2}\right] & \leadsto & \mathrm{E}_{\mathrm{N}} t s_{1}\left(\lambda x_{-} . s_{2}\right) s \\
\text { IF } s \text { THEN } s_{1} \text { ELSE } s_{2} & \leadsto & \mathrm{E}_{\mathrm{N}} t s_{1}\left(\lambda_{-\ldots} . s_{2}\right) s
\end{array}
$$

for arithmetic case analysis. The terms $t$ describing the target type function must be inferred from the context.

## Exercise 5.4.1 (Match function for numbers)

A match function for numbers has the type

$$
\forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall n \cdot p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

a) Explain how a match function for numbers provides for case analysis.
b) Define a match function for numbers as an inductive function.
c) Define a match function for numbers using the arithmetic eliminator $E_{N}$.

### 5.5 A Formal Inductive Proof

We can now do inductive proofs completely formally. As our first example we consider a proof of the fact

$$
\forall x . x+0=x
$$

We do the proof by induction on $x$, which amounts to an application of the eliminator $\mathrm{E}_{\mathrm{N}}$ :

$$
\mathrm{E}_{\mathrm{N}}(\lambda x . x+0=x)^{\ulcorner } 0+0=0^{\urcorner}\left\ulcorner\forall x . x+0=x \rightarrow \mathrm{~S} x+0=\mathrm{S} x^{\urcorner}\right.
$$

The application yields two subgoals known as base case and successor case. Both subgoals have straightforward proofs. Note how the inductive hypothesis appears as an implicational premise in the successor case. Figure 5.2 shows a proof table for a proof term completing the partial proof term.

We will see many inductive proofs in this text. We shall write inductive proofs in an informal style making sure that the informal proof can be easily elaborated into a formal proof with the proof assistant. A (detailed) informal proof for our example may look as follows.


Proof term constructed:

$$
\mathrm{E}_{\mathrm{N}}(\lambda x \cdot x+0=x)(\mathrm{Q} 0)\left(\lambda x h \cdot \mathrm{R}^{\prime}(\lambda z \cdot \mathrm{~S} z=\mathrm{S} x) h(\mathrm{Q}(\mathrm{~S} x))\right) x
$$

Figure 5.2: Proof table for $x+0=x$

Fact 5.5.1 $x+0=x$.
Proof By induction on $x$. If $x=0$, the claim follows by computational equality. In the successor case we have the claim $\mathbf{S} x+0=\boldsymbol{S} x$ and the inductive hypothesis $x+0=x$. By conversion is suffices to show $\mathrm{S}(x+0)=\mathrm{S} x$, which follows by rewriting with the inductive hypothesis.

Exercise 5.5.2 Consider the following facts about numbers.
a) $\mathrm{S} n \neq n$
b) $n+S k \neq n$
c) $x+y=x+z \rightarrow y=z \quad$ (addition is injective in its 2nd argument)

In each case an inductive proof is required. Use the proof assistant to obtain informal and formal proofs of the facts. Remark: The Coq file accompanying Chapter 1 contains many examples of inductive proofs.

Exercise 5.5.3 Prove the following equations stating the correctness of addition functions obtained with the arithmetic eliminator. Both equations require inductive proofs.
a) $x+y=\mathrm{E}_{\mathrm{N}}\left(\lambda_{-} . \mathrm{N}\right) y\left(\lambda_{-} . \mathrm{S}\right) x$
b) $x+y=\mathrm{E}_{\mathrm{N}}\left(\lambda_{-} \cdot \mathrm{N} \rightarrow \mathrm{N}\right)(\lambda y . y)\left(\lambda_{-} a y . \mathrm{S}(a y)\right) x y$

### 5.6 Equality of Numbers is Logically Decidable

We now show that equality of numbers is logically decidable.

|  |  | $\forall x^{\mathrm{N}} y^{\mathrm{N}} . x=y \vee x \neq y$ | apply $\mathrm{E}_{\mathrm{N}}$, intro $y$ |
| :---: | :---: | :---: | :---: |
| 1 |  | $0=y \vee 0 \neq y$ | destruct $y$ |
| 1.1 |  | $0=0 \vee 0 \neq 0$ | trivial |
| 1.2 |  | $0=\mathrm{S} y \vee 0 \neq \mathrm{S} y$ | constructor law |
| 2 | IH: $\forall y^{\text {N }} . x=y \vee x \neq y$ | $\mathrm{S} x=y \vee \mathrm{~S} x=y$ | destruct $y$ |
| 2.1 |  | $\mathrm{S} x=0 \vee \mathrm{~S} x \neq 0$ | constructor law |
| 2.2 |  | $\mathrm{S} x=\mathrm{S} y \vee \mathrm{~S} x \neq \mathrm{S} y$ | destruct IH $y$ |
| 2.2.1 | $\mathrm{H}: x=y$ | $\mathrm{S} x=\mathrm{S} y$ | rewrite $H$, trivial |
| 2.2.2 | H: $x \neq y$ | $\mathrm{S} x \neq \mathrm{S} y$ | intro, apply H |
|  | $\mathrm{H}_{1}: \mathrm{S} x=\mathrm{S} y$ | $x=y$ | injectivity S |

Figure 5.3: Proof table with a quantified inductive hypothesis
Fact 5.6.1 $\forall x^{\mathrm{N}} y^{\mathrm{N}} . x=y \vee x \neq y$.
Proof By induction on $x$ with $y$ quantified followed by case analysis on $y$.

1. $x=0$ and $y=0$. Then $x=y$.
2. $x=0$ and $y=\mathrm{S}_{-}$. Then $x \neq y$ by constructor law.
3. $x=\mathrm{S}_{-}$and $y=0$. Then $x \neq y$ by constructor law.
4. $x=\mathrm{S} x^{\prime}$ and $y=\mathrm{S} y^{\prime}$. The induction hypothesis gives us two cases:
a) $x^{\prime}=y^{\prime}$. Then $x=y$.
b) $x^{\prime} \neq y^{\prime}$. We assume $\mathrm{S} x^{\prime}=\mathrm{S} y^{\prime}$ and prove $\perp$. Injectivity of S gives us $x^{\prime}=y^{\prime}$, which contradicts the assumption $x^{\prime}=y^{\prime}$.

The informal proof is burdened with many cases and much detail. Constructing a formal proof with a proof assistant will organize the cases and the details in a pleasant and more manageable way.

If you are not experienced with inductive proofs, the remark that $y$ be quantified in the inductive hypothesis may be confusing. The confusion will go away with the formal proof.

A proof table constructing a proof term following the informal proof appears in Figure 5.3.

Following the table, we begin the construction of the formal proof with the partial proof term

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{N}}(\lambda x . \forall y . x=y \vee x \neq y) \\
& \left\ulcorner\forall y .0=y \vee 0 \neq y^{\urcorner}\right. \\
& \left\ulcorner\forall x .(\forall y . x=y \vee x \neq y) \rightarrow \forall y . \mathrm{S} x=y \vee \mathrm{~S} x \neq y^{\urcorner}\right.
\end{aligned}
$$

This first step makes explicit the quantified inductive hypothesis. Both subgoals are shown by case analyis on the quantfied target. This can be done with the eliminator $\mathrm{E}_{\mathrm{N}}$. To keep things manageable we will work with a match function

$$
\mathrm{M}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall n \cdot p(\mathrm{~S} n)) \rightarrow \forall n \cdot p n
$$

omitting the inductive hypothesis.
In the zero case ${ }^{\ulcorner } \forall y .0=y \vee 0 \neq y^{\urcorner}$we proceed with

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{N}}(\lambda y .0=y \vee 0 \neq y) \\
& \ulcorner 0=0 \vee 0 \neq 0\urcorner \\
& \left\ulcorner\forall y .0=\mathrm{S} y \vee 0 \neq \mathrm{S} y^{\urcorner}\right.
\end{aligned}
$$

The first subgoal is trivial, and the second subgoal follows with constructor disjointness.

In the successor case ${ }^{\ulcorner } \forall x .(\forall y . x=y \vee x \neq y) \rightarrow \forall y . \mathrm{S} x=y \vee \mathrm{~S} x \neq y^{\urcorner}$we proceed with

$$
\begin{aligned}
\lambda x h^{\forall y \cdot x=y \vee x \neq y} . & \mathrm{M}_{\mathrm{N}}(\lambda y . \mathrm{S} x=y \vee \mathrm{~S} x \neq y) \\
& { }^{\mathrm{S}} x=0 \vee \mathrm{~S} x \neq 0^{\top} \\
& { }^{\ulcorner } \forall y . \mathrm{S} x=\mathrm{S} y \vee \mathrm{~S} x \neq \mathrm{S} y^{\urcorner}
\end{aligned}
$$

The first subgoal follows with constructor disjointness. The second subgoal follows with the instantiated inductive hypothesis $h y$ and injectivity of S .

This completes our explanation of a (formal) proof of Fact 5.6.1. If we do the proof with a proof assistant, a fully formal proof is constructed but most of the details are taken care of by the assistant. To document the proof informally for a human reader, it's probably best to write something like the following:

The claim follows by induction on $x$ and case analysis on $y$, where $y$ is quantified in the inductive hypothesis and disjointness and injectivity of the constructors 0 and $S$ are used.

## Exercise 5.6.2 (Boolean equality decider for numbers)

Write a function eqb : $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{B}$ such that $\forall x y . x=y \leftrightarrows$ eqb $x y=$ true. Prove the correctness of your function.

## Exercise 5.6.3 (Antisymmetry)

Prove $x \leq y \rightarrow y \leq x \rightarrow x=y$.
Hint: Induction on $x$ with $y$ quantified using the constructor laws.

### 5.7 Eliminator for Pairs

Recall the inductive type definition for pairs from $\S 1.8$ :

$$
\operatorname{Pair}(X: \mathbb{T}, Y: \mathbb{T}): \mathbb{T}::=\operatorname{pair}(X, Y)
$$

As before we use use the notations

$$
\begin{array}{lll}
s \times t & \leadsto & \text { Pairst } \\
(s, t) & \leadsto & \text { pair }
\end{array}
$$

Following the scheme we have seen for booleans and numbers, we define an eliminator for pairs as follows:

$$
\begin{aligned}
& \mathrm{E}_{\times}: \forall X^{\mathbb{T}} Y^{\mathbb{T}} \forall p^{X \times Y \rightarrow \mathbb{T}} \cdot(\forall x y \cdot p(x, y)) \rightarrow \forall a \cdot p a \\
& \mathrm{E}_{\times} X Y p e(x, y):=\text { exy } \quad: p(x, y)
\end{aligned}
$$

We shall use the notation

$$
\operatorname{LET}\left(x_{1}, x_{2}\right)=s \text { IN } s_{1} \quad \leadsto \quad \mathrm{E}_{\times} t_{1} t_{2} t_{3}\left(\lambda x y . s_{1}\right) s
$$

for cartesian destructuring. The terms $t_{1}, t_{2}$, and $t_{1}$ describing the component types and the target type function must be inferred from the context.

Exercise 5.7.1 Prove the following facts for pairs $a: X \times Y$ using the eliminator $\mathrm{E}_{\times}$:
a) $\left(\pi_{1} a, \pi_{2} a\right)=a$
$\eta$-law
b) $\operatorname{swap}(\operatorname{swap} a)$
involution law
See $\S 1.8$ for the definitions of the projections $\pi_{1}$ and $\pi_{2}$ and the function swap.
Exercise 5.7.2 Use $E_{\times}$to write functions that agree with $\pi_{1}, \pi_{2}$, and swap.
Exercise 5.7.3 By now you know enough to formalize all proofs of Chapter 1 in type theory. Do some of the proofs in Coq without using the tactics for destructuring and induction. Apply the eliminators you have seen in this chapter instead.

### 5.8 Basic Typing Rules

It is time we look at the rules that specify how terms are type checked. For now we look at the basic rules for terms, a refinement concerning universe levels will follow in the next section.

We have two universes $\mathbb{P}$ and $\mathbb{T}$ that both have type $\mathbb{T}$ :

$$
\overline{\vdash \mathbb{P}: \mathbb{T}} \quad \overline{\vdash \mathbb{T}: \mathbb{T}}
$$

Recall that types residing in $\mathbb{P}$ are called propositions. We also speak of propositional types. The universe $\mathbb{T}$ acts as type of all types. To this purpose, we have three rules establishing $\mathbb{P}$ as a subuniverse of $\mathbb{T}$ :

$$
\frac{\vdash s: u \quad \vdash u \subset u^{\prime}}{\vdash \mathbb{P} \subset \mathbb{T}} \quad \frac{\vdash s: u^{\prime}}{\vdash \forall x^{u} \cdot v \subset \forall x^{u} \cdot v^{\prime}}
$$

The rule for subtyping of function types has the effect that functions targeting $\mathbb{P}$ (i.e., predicates) can be seen as functions targeting $\mathbb{T}$. For instance, $\vdash s: N \rightarrow N \rightarrow \mathbb{P}$ entails $\vdash s: N \rightarrow N \rightarrow \mathbb{T}$. We say that $u$ is a subtype of $v$ if $\vdash u \subset v$ and $\vdash u: \mathbb{T}$.

The two universes are closed under function types:

$$
\frac{\vdash u: \mathbb{T} \quad x: u \vdash v: \mathbb{P}}{\vdash \forall x^{u} \cdot v: \mathbb{P}} \quad \frac{\vdash u: \mathbb{T} \quad x: u \vdash v: \mathbb{\mathbb { }}}{\vdash \forall x^{u} \cdot v: \mathbb{T}}
$$

Note that the rule for propositional function types closes $\mathbb{P}$ under all function types whose target is in $\mathbb{P}$. In other words, propositions are closed under all quantifications.

We have discussed the rules for function application and lambda abstraction before in §2.6:

$$
\frac{\vdash s: \forall x^{u} \cdot v \quad \vdash t: u}{\vdash s t: v_{t}^{x}} \quad \frac{\vdash u: \mathbb{T} \quad x: u \vdash s: v}{\vdash \lambda x^{u} \cdot s: \forall x^{u} \cdot v}
$$

Finally, we have the conversion rule from §4.1, which relaxes type checking so that it operates modulo computational equality of types:

$$
\frac{\vdash s: u^{\prime} \quad u \approx u^{\prime} \quad \vdash u: \mathbb{T}}{\vdash s: u}
$$

### 5.9 Universe Levels

The typing rules in $\S 5.8$ need to be refined with universe levels in order that a consistent type theory is obtained. The problem is with the self-containment $\mathbb{T}: \mathbb{T}$, which permits vicious cycles if not restricted. ${ }^{5}$ To fix the problem, every occurrence of the universe $\mathbb{T}$ is assigned a positive integer called a universe level during type checking. The typing rules containing more than one occurrence of $\mathbb{T}$ are augmented so that they exclude cycles $\mathbb{T}_{i}: \mathbb{T}_{i}$.

$$
\frac{i<j}{\vdash \mathbb{T}_{i}: \mathbb{T}_{j}} \quad \frac{s: \mathbb{T}_{i} \quad i<j}{s: \mathbb{T}_{j}} \quad \frac{\vdash u: \mathbb{T}_{i} x: u \vdash v: \mathbb{T}_{i}}{\vdash \forall x^{u} \cdot v: \mathbb{T}_{i}}
$$

[^7]
## 5 Inductive Eliminators

So we have $\mathbb{T}_{i}: \mathbb{T}_{i+1}$ but not $\mathbb{T}_{i}: \mathbb{T}_{i}$.
Higher universe levels can be forced with function types taking types as arguments. For instance, consider the function type

$$
u:=\forall X^{\mathbb{T}_{i}} \cdot t
$$

where $t: \mathbb{T}_{j}$ but $t$ is not propositional. Then $u$ can only be typed with some $\mathbb{T}_{k}$ where $k>i$ and $k \geq j$. The situation completely changes if $t$ is propositional. Then $u$ can be typed with $\mathbb{P}$ no matter how large the level $i$ is.

One may think of graded universes $\mathbb{T}_{i}$ as an infinite cumulative hierarchy of universes:

$$
\begin{aligned}
& \mathbb{P} \subset \mathbb{T}_{1} \subset \mathbb{T}_{2} \subset \mathbb{T}_{3} \subset \cdots \\
& \mathbb{P}: \mathbb{T}_{1}: \mathbb{T}_{2}: \mathbb{T}_{3}: \cdots
\end{aligned}
$$

The lowest universe $\mathbb{P}$ is distinguished from the higher universes in that it is closed under function types taking types as arguments. Speaking propositionally, propositions are closed under all quantifications, including big quantifications over universes. This feature of $\mathbb{P}$ is known as impredicativity. The impredicative characterizations we have seen for falsity, conjunction, disjunction, and equality exploit the impredicativity of $\mathbb{P}$.

In practice, there is no need to worry about universe levels since the proof assistant will verify that they can be assigned consistently. It requires agressive constructions to force a universe level inconsistency. In Chapter 32 we will present a construction where universe levels become crucial and ignoring them would lead to a proof of falsity.

Exercise 5.9.1 Consider the following terms describing functions:

$$
\begin{aligned}
\lambda a^{\mathbb{T}_{1}} \cdot 0 & : \mathbb{T}_{1} \rightarrow \mathrm{~N}: \mathbb{T}_{2} \\
\lambda a^{\mathbb{T}_{1} \rightarrow N} .0 & :\left(\mathbb{T}_{1} \rightarrow \mathrm{~N}\right) \rightarrow \mathrm{N}: \mathbb{T}_{3} \\
\lambda a^{\left(\mathbb{T}_{1}-N\right) \rightarrow N} .0 & :\left(\left(\mathbb{T}_{1} \rightarrow \mathrm{~N}\right) \rightarrow \mathrm{N}\right) \rightarrow \mathrm{N}: \mathbb{T}_{4}
\end{aligned}
$$

a) Check the consistency of the given universe level assignments.
b) Explain why the application $\left(\lambda a^{\mathbb{T}_{1}} .0\right)(\mathbb{T})$ has no consistent universe level assignment and hence cannot be typed.
c) Explain why the application $\left(\lambda a^{\mathbb{T}} .0\right)(\mathbb{P})$ has a consistent universe level assignment and hence can be typed.
d) Give the least types of the terms $\lambda a^{\mathbb{T}_{1}}$. T and $\lambda a^{\mathbb{T}_{1} \rightarrow N}$. T.

### 5.10 Propositional Discrimination Restriction

There is an important restriction on inductive functions that discriminate on an argument with an inductive propositional type. The restriction says that in such a case the target type of the function must be propositional. We speak of the propositional discrimination restriction. The propositional discrimination restriction is needed so that excluded middle $\forall X^{\mathbb{P}} . X \vee \neg X$ can be assumed for all propositions. Without the discrimination restriction we would have a proof of $\left(\forall X^{\mathbb{P}} . X \vee \neg X\right) \rightarrow \perp$ (see Chapter 32).

There are two exceptions to the discrimination restriction that both matter in practice. The first exception says that discrimination on $\perp$ and more generally on inductive propositions with no proof constructors is fine. Thus the definition of the elimination function

$$
\mathrm{E}_{\perp}: \forall Z^{\mathbb{T}} \cdot \perp \rightarrow Z
$$

in $\S 5.11$ typing $Z$ with $\mathbb{T}$ rather that $\mathbb{P}$ is fine. We speak of computational falsity elimination when we apply $\mathrm{E}_{\perp}$ with a nonpropositional target type. It turns out that computational falsity elimination is essential for the definition of many functions. Examples can be found in $\S 12.1$, § 12.2, and §19.1.

The second exception concerns inductive propositions with a single proof constructor where the nonparametric arguments of the proof constructor all have propositional types. Thus the inductive proposition $T$ is exempted from the discrimination restriction.

We call inductive predicates that are exempted from the discrimination restriction computational predicates. We will see important computational predicates providing for linear search (§22.1) and well-founded recursion (Chapter 31). The inductive predicate $\wedge^{\mathbb{P} \rightarrow \mathbb{P} \rightarrow \mathbb{P}}$ for conjunctions also comes out as computational, but there are no useful applications of this feature for conjunctions.

When we define an inductive predicate, we will always say whether we want to use computational discrimination for this predicate. For now this is only the case for $\perp$ and $T$.

### 5.11 Void and Unit

The propositional types $\perp$ and $\top$ are meaningful as propositions and as computational types: $\perp$ is the canonical type with no elements, and $T$ is the canonical type with a single element. When we use $\perp$ and $T$ as computational types, we will refer to them as void and unit rather than as falsity and truth. We may also use the notations $\mathbb{0}$ and $\mathbb{1}$ for $\perp$ and $T$.

The inductive propositions

$$
\begin{aligned}
& \perp: \mathbb{P}::=\quad[] \\
& \mathbb{1}: \mathbb{P}::=1
\end{aligned}
$$

are both exempted from the discrimination restriction. Thus we can define the computational eliminators

$$
\mathrm{E}_{\perp}: \forall Z^{\mathbb{T}} \cdot \perp \rightarrow Z
$$

and

$$
\begin{aligned}
& \mathrm{E}_{\mathbb{1}}: \forall p^{\mathbb{1} \rightarrow \mathbb{T}} \cdot p \mathrm{I} \rightarrow \forall x \cdot p x \\
& \mathrm{E}_{\mathbb{1}} p a \mathrm{l}:=a
\end{aligned}
$$

There is no defining equation for $E_{\perp}$ since $\perp$ is defined without a proof constructor.
The eliminator $\mathrm{E}_{\perp}$ makes it possible to obtain a value for every type in a propositionally contradictory situation. The eliminator $\mathrm{E}_{\mathbb{1}}$ makes it possible to prove that I is the only value of $\mathbb{1}$.

Exercise 5.11.1 Prove $\forall x^{\mathbb{1}} . x=1$.
Exercise 5.11.2 It turns out that one can obtain an empty inductive proposition using a recursive proof constructor:

$$
F: \mathbb{P}::=C(F)
$$

The discrimination restriction does not apply to the inductive proposition $F$ since the argument of the single proof constructor $C$ has a propositional type.
a) Define an inductive function $E: \forall Z^{\mathbb{T}} . F \rightarrow Z$ using structural recursion.
b) Prove $F \longleftrightarrow \perp$.

### 5.12 Disequality of Types

Informally, the types $N$ and $B$ of booleans and numbers are different since they have different cardinality: While there are infinitely many numbers, there are only two booleans. But can we show in the logical system we have arrived at that the types N and $B$ are not equal?

Since $B$ and $N$ both have type $\mathbb{T}$, we can write the propositions $N=B$ and $N \neq B$. So the question is whether we can prove $N \neq B$. We can do this with a property distinguishing the two types (Exercise 4.3.5). We choose the predicate

$$
p\left(X^{\mathbb{T}}\right):=\forall x^{X} y^{X} z^{X} . x=y \vee x=z \vee y=z
$$

saying that a type has at most two elements. I now suffices to prove $p \mathrm{~B}$ and $\neg p \mathrm{~N}$. With boolean case analysis on the variables $x, y, z$ we can show that $p$ holds for B. Moreover, we can disprove $p \mathrm{~N}$ by choosing $x=0, y=1$, and $z=2$ and proving

$$
(0=1 \vee 0=2 \vee 1=2) \rightarrow \perp
$$

by disjunctive case analysis and the constructor laws for 0 and S .
Fact 5 .12.1 $N \neq B$.
On paper, it doesn't make sense to work out the proof in more detail since this involves a lot of writing and routine verification. With Coq, however, doing the complete proof is quite rewarding since the writing and the tedious details are taken care of by the proof assistant. When we do the proof with Coq, we can see that the techniques introduced so far smoothly scale to more involved proofs.

Exercise 5.12.2 Prove the following inequations between types.
a) $B \neq B \times B$
b) $\perp \neq T$
c) $\perp \neq B$
d) $B \neq T$
e) $\mathbb{P} \neq T$
f) $B \neq T$

Exercise 5.12.3 Note that one cannot prove $B \neq B \times T$ since one cannot give a predicate that distinguishes the two types. Neither can one prove $B=B \times T$.

### 5.13 Notes

We may accommodate the eliminators in this chapter as abstract constants (§4.5) hiding their defining equations. The abstract eliminators will be fine when we use them as proof rules. However, there are two uses of the eliminators where the reductions provided by the defining equations matter:

- Reducible matches contributing to type checking through the conversion rule. See the proofs of the constructor laws for B and $N(\S 4.3)$.
- Local definitions of reducible inductive functions contributing to type checking. No examples yet.
We remark that the eliminators for conjunction and disjunction

$$
\begin{aligned}
& \mathrm{m}_{\wedge}: \forall X Y Z^{\mathbb{P}} . X \wedge Y \rightarrow(X \rightarrow Y \rightarrow Z) \rightarrow Z \\
& \mathrm{~m}_{\vee}: \forall X Y Z^{\mathbb{P}} . X \vee Y \rightarrow(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z
\end{aligned}
$$

used in Chapter 3 (Figure 3.2) don't use target type functions. The reason is that in ordinary mathematical reasoning propositions don't talk about their proofs. Thus there is no need to account for a dependency on proofs with a type function.

## 5 Inductive Eliminators

Functions typed with target type functions are polymorphic in the number of their arguments. For instance:

$$
\begin{aligned}
E_{\perp} N: & \perp \rightarrow N \\
E_{\perp}(N \rightarrow N): & \perp \rightarrow N \rightarrow N \\
E_{\perp}(N \rightarrow N \rightarrow N): & \perp \rightarrow N \rightarrow N \rightarrow N
\end{aligned}
$$

We remark that the proof assistant Coq automatically derives eliminators for every inductive type definition it processes. For the inductive types discussed in this chapter Coq derives the eliminators we have presented (except for $T$ ).

## 6 Arithmetic Pairing

Cantor discovered that numbers are in bijection with pairs of numbers. Cantor's proof rests on a counting scheme where pairs appear as points in the plane. Based on Cantors scheme, we realize the bijection between numbers and pairs with two functions inverting each other. We obtain an elegant formal development using only a few basic facts about numbers.

### 6.1 Definitions

We will construct and verify two functions

| $E: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ | encode |
| :--- | :--- |
| $D: \mathrm{N} \rightarrow \mathrm{N} \times \mathrm{N}$ | decode |

that invert each other: $D(E(x, y))=(x, y)$ and $E(D n))=n$. The functions are based on the counting scheme for pairs shown in Figure 6.1. The pairs appear as points in the plane following the usual coordinate representation. Counting starts at the origin $(0,0)$ and follows the diagonals from right to left:

$$
\begin{array}{lll}
(0,0) & \text { 1st diagonal } & 0 \\
(1,0),(0,1) & \text { 2nd diagonal } & 1,2 \\
(2,0),(1,1),(0,2) & \text { 3rd diagonal } & 3,4,5
\end{array}
$$

Assuming a function

$$
\eta: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}
$$

that for every pair yields its successor on the diagonal walk described by the counting scheme, we define the decoding function $D$ as follows:

$$
D(n):=\eta^{n}(0,0)
$$

The definition of the successor function $\eta$ for pairs is straightforward:

$$
\begin{aligned}
\eta(0, y) & :=(\mathrm{S} y, 0) \\
\eta(\mathrm{S} x, y) & :=(x, \mathrm{~S} y)
\end{aligned}
$$

| $y$ | $\vdots$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 20 |  |  |  |  |  |  |
| 4 | 14 | 19 |  |  |  |  |  |
| 3 | 9 | 13 | 18 |  |  |  |  |
| 2 | 5 | 8 | 12 | 17 |  |  |  |
| 1 | 2 | 4 | 7 | 11 | 16 |  |  |
| 0 | 0 | 1 | 3 | 6 | 10 | 15 | $\cdots$ |
|  | 0 | 1 | 2 | 3 | 4 | 5 | $x$ |

Figure 6.1: Counting scheme for pairs of numbers

We now come to the definition of the encoding function $E$. We first observe that all pairs $(x, y)$ on a diagonal have the same sum $x+y$, and that the length of the $n$th diagonal is $n$. We start with the equation

$$
E(x, y):=\sigma(x+y)+y
$$

where $\sigma(x+y)$ is the first number on the diagonal $x+y$. We now observe that

$$
\sigma n=0+1+2+\cdots+n
$$

Thus we define $\sigma$ recursively as follows:

$$
\begin{aligned}
\sigma(0) & :=0 \\
\sigma(\mathrm{~S} n) & :=\mathrm{S} n+\sigma n
\end{aligned}
$$

We remark that $\sigma n$ is known as Gaussian sum.

### 6.2 Proofs

We start with a useful equation saying that under the encoding function successors of pairs agree with successors of numbers.

Fact 6.2.1 (Successor equation) $E(\eta c)=S(E c)$ for all pairs $c$.
Proof Case analysis on $c=(0, y),(\mathrm{S} x, y)$ and straightforward arithmetic.

Fact 6.2.2 $E(D n)=n$ for all numbers $n$.
Proof By induction on $n$ using Fact 6.2.1 for the successor case.

Fact 6.2.3 $D(E c)=c$ for all pairs $c$.
Proof Given the recursive definition of $D$ and $E$, we need to do an inductive proof. The idea is to do induction on the number $E c$. Formally, we prove the proposition

$$
\forall n \forall c . E c=n \rightarrow D n=c
$$

by induction on $n$.
For $n=0$ the premise gives us $c=(0,0)$ making the conclusion trivial.
For the successor case we prove

$$
E c=\mathrm{S} n \rightarrow D(\mathrm{~S} n)=c
$$

We consider three cases: $c=(0,0),(\mathrm{S} x, 0),(x, \mathrm{~S} y)$. The case $c=(0,0)$ is trivial since the premise is contradictory. The second and third case are similar. We show the third case

$$
E(x, \mathrm{~S} y)=\mathrm{S} n \rightarrow D(\mathrm{~S} n)=(x, \mathrm{~S} y)
$$

We have $\eta(\mathrm{S} x, y)=(x, \mathrm{~S} y)$, hence using Fact 6.2.1 and the definition of $D$ it suffices to show

$$
\mathrm{S}(E(\mathrm{~S} x, y))=\mathrm{S} n \rightarrow \eta(D n)=\eta(\mathrm{S} x, y)
$$

The premise yields $E(\mathrm{~S} x, y)=n$, thus $D n=(\mathrm{S} x, y)$ by the inductive hypothesis.
Exercise 6.2.4 A bijection between two types $X$ and $Y$ consists of two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $\forall x . g(f x)=x$ and $\forall y . f(g y)=y$.
a) Give and verify a bijection between N and $(\mathrm{N} \times \mathrm{N}) \times \mathrm{N}$.
b) Prove that there is no bijection between $B$ and $T$.

## Exercise 6.2.5 (Internal Arithmetic pairing)

Arithmetic pairing establishes N as a universal type that can represent pairs internally. To make this insight explicit, define functions

$$
\pi: N \rightarrow N \rightarrow N \quad \pi_{1}: N \rightarrow N \quad \pi_{2}: N \rightarrow N
$$

such that you can verify the equations

$$
\pi_{1}(\pi n k)=n \quad \pi_{2}(\pi n k)=k \quad \pi\left(\pi_{1} n\right)\left(\pi_{2} n\right)=n
$$

for all $n$ and $k$.

### 6.3 Discussion

Technically, the most intriguing point of the development is the implicational inductive lemma used in the proof of Fact 6.2.3 and the accompanying insertion of

## 6 Arithmetic Pairing

$\eta$-applications (idea due to Andrej Dudenhefner, March 2020). Realizing the development with Coq is pleasant, with the exception of the proof of the successor equation (Fact 6.2.1), where Coq's otherwise powerful tactic for linear arithmetic fails since it cannot look into the recursive definition of $\sigma$.

What I like about the development of the pairing function is the interesting interplay between geometric speak (e.g., diagonals) and formal definitions and proofs. Their is much elegance at all levels. Cantor's pairing function is a great example for an educated Programming 1 course addressing functional programming and program verification.

It is interesting to look up Cantor's pairing function in the mathematical literature and in Wikipedia, where the computational aspects of the construction are ignored as much as possible. There one typically starts with the encoding function and uses the Gaussian sum formula to avoid the recursion. Then injectivity and surjectivity of the encoding function are shown, which non-constructively yields the existence of the decoding function. The simple recursive definition of the decoding function does not appear.

## 7 Abstract Syntax

Inductive types provide for an elegant tree-structured representation of syntactic objects. One speaks of abstract syntax if syntactic objects are represented as treestructured objects, and of concrete syntax if syntactic objects are represented as character strings.

As example we consider arithmetic expressions and verify a compiler translating arithmetic expressions into code for a stack machine. We use a reversible compilation scheme and verify a decompiler reconstructing expressions from their codes. The example hits a sweet spot of computational type theory: Inductive types provide a perfect representation for abstract syntax, and structural recursion on the abstract syntax provides for the definitions of the necessary functions (evaluation, compiler, decompiler). The correctness conditions for the functions can be expressed with equations, and generalized versions of the equations can be verified with structural induction.

This is the first time we see an inductive type with binary recursion and two inductive hypotheses. Moreover, we see a notational convenience for function definitions known as catch-all equations.

This chapter is also our first encounter with lists. Lists are obtained with a recursive inductive type definition refining the definition of numbers. To be selfcontained, we give a quick introduction to lists. A comprehensive study of lists appears in Chapter 21.

### 7.1 Lists

Lists represent finite sequences $\left[x_{1}, \ldots, x_{n}\right]$ with two constructors nil and cons:

$$
\begin{aligned}
{[] } & \mapsto \text { nil } \\
{[x] } & \mapsto \operatorname{cons} x \text { nil } \\
{[x, y] } & \mapsto \operatorname{cons} x(\text { cons } y \text { nil }) \\
{[x, y, z] } & \mapsto \operatorname{cons} x(\text { cons } y \text { (cons } z \text { nil) })
\end{aligned}
$$

The constructor nil provides the empty list. The constructor cons yields for a value $x$ and a list representing the sequence $\left[x_{1}, \ldots, x_{n}\right]$ a list representing the sequence $\left[x, x_{1}, \ldots, x_{n}\right]$. Given a list cons $\times \mathrm{A}$, we call $x$ the head and $A$ the tail of the list. We say that lists provide a nested pair representation of sequences.

Formally, we obtain lists with an inductive type definition

$$
\mathcal{L}(X: \mathbb{T}): \mathbb{T}::=\text { nil } \mid \operatorname{cons}(X, \mathcal{L}(X))
$$

The type constructor $\mathcal{L}: \mathbb{T} \rightarrow \mathbb{\mathbb { T }}$ gives us a list type $\mathcal{L}(X)$ for every base type $X$. The value constructor nil : $\forall X^{\mathbb{T}} . \mathcal{L}(X)$ gives us an empty list for every base type. Finally, the value constructor cons : $\forall X^{\mathbb{T}} . X \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ provides for the construction of nonempty lists by adding an element in front of a given list. Note that all elements of a list of type $\mathcal{L}(X)$ must have type $X$.

For nil and cons, we don't write the first argument $X$. We use the notations

$$
\begin{aligned}
\square & :=\text { nil } \\
x:: A & :=\operatorname{cons} x A
\end{aligned}
$$

and omit parentheses as follows:

$$
x:: y:: A \quad \leadsto \quad x::(y:: A)
$$

When convenient, we shall use the sequence notation $\left[x_{1}, \ldots, x_{n}\right.$ ] for lists.
The inductive definition of lists provides for case analysis, recursion, and induction on lists, in a way that is quite similar to what we have seen for numbers. We may see the constructors nil and cons as refinements of the constructors 0 and S .

Concatenation of sequences

$$
\left[x_{1}, \ldots, x_{m}\right]+\left[y_{1}, \ldots, y_{n}\right]=\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]
$$

appends two sequences. You may be familiar with concatenation of strings, which are sequences of characters.

We provide concatenation of lists with an inductive function

$$
\begin{gathered}
\#: \forall X^{\mathbb{T}} \cdot \mathcal{L}(X) \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(X) \\
\square+B:=B \\
(x:: A)+B:=x::(A+B)
\end{gathered}
$$

Concatenation of lists is similar to addition of numbers. Two basic laws for addition are $x+0$ and $(x+y)+z=x+(y+z)$. We prove the list versions $A+[]=A$ and $A+(B+C)=(A+B)+C$ of the laws. The proofs are very similar to the arithmetic proofs with induction on lists replacing induction on numbers.

Fact 7.1.1 (Concatenation with nil) $A+[]=A$.
Proof By induction on $A$, which yields the proof obligations

$$
\begin{aligned}
{[]+[] } & =[] \\
(x:: A)+[] & =x:: A
\end{aligned}
$$

The first obligations holds by computational equality. The second obligation simplifies to $x::(A+[])=x:: A$ and follows with the induction hypothesis.

Fact 7.1.2 (Associativity) $A+(B+C)=(A+B)+C$.
Proof By induction on $A$. Check the details with the proof assistant.
Both proofs are by induction on lists. As with numbers, the induction is formalized with an eliminator function

$$
\mathrm{E}_{\mathcal{L}}: \forall X^{\mathbb{T}} \forall p^{\mathcal{L}(X) \rightarrow \mathbb{T}} \cdot p[] \rightarrow(\forall x A \cdot p A \rightarrow p(x:: A)) \rightarrow \forall A \cdot p A
$$

which is obtained with a scheme generalizing the scheme we saw for numbers. Proof assistants will generate the eliminator function automatically when the encounter the underlying inductive type definition.

Exercise 7.1.3 (Eliminator for lists) Define the eliminator function for lists with the type stated above. Verify that the inductive proofs of Facts 7.1 .2 and 7.1 .1 can be formalized with the inductive eliminator function.

Exercise 7.1 .4 (Length) Define a length function len : $\forall X . \mathcal{L}(X) \rightarrow \mathrm{N}$ for lists and prove len $(A+B)=\operatorname{len} A+\operatorname{len} B$.

### 7.2 Expressions and Evaluation

We will consider arithmetic expressions obtained with constants, addition, and subtraction. Informally, we describe the abstract syntax of expressions with a scheme known as BNF:

$$
e: \exp ::=x\left|e_{1}+e_{2}\right| e_{1}-e_{2} \quad(x: \mathrm{N})
$$

Following the BNF, we represent expressions with the inductive type

$$
\exp : \mathbb{T}::=\operatorname{con}(N)|\operatorname{add}(\exp , \exp )| \operatorname{sub}(\exp , \exp )
$$

To ease our presentation, we will write the formal expressions provided by the inductive type exp using the notation suggested by the BNF. For instance:

$$
e_{1}+e_{2}-e_{3} \quad \leadsto \quad \operatorname{sub}\left(\operatorname{add} e_{1} e_{2}\right) e_{3}
$$

We can now define an evaluation function computing the values of expressions:

$$
\begin{aligned}
& E: \exp \rightarrow \mathrm{N} \\
& E x:=x \\
& E\left(e_{1}+e_{2}\right):=E e_{1}+E e_{2} \\
& E\left(e_{1}-e_{2}\right):=E e_{1}-E e_{2}
\end{aligned}
$$

Note that $E$ is defined with binary structural recursion. Moreover, $E$ is executable. For instance, $E(3+5-2)$ reduces to 6 , and the equation $E(3+5-2)=E(2+3+1)$ holds by computational equality.

Exercise 7.2.1 Do the reduction $E(3+5-2) \succ^{*} 6$ step by step (at the equational level).

Exercise 7.2.2 (Constructor Laws for expressions) Prove some of the constructor laws for expressions. For instance, show that con is injective and that add and sub are disjoint.

Exercise 7.2.3 (Eliminator for expressions) Define an eliminator for expressions providing for structural induction on expressions. As usual the eliminator has a clause for each of the three constructors for expression. Since additions and subtractions have two subexpressions, the respective clauses of the eliminator have two inductive hypotheses. Following this design, the type of the eliminator is

$$
\begin{aligned}
& \forall p^{\exp \rightarrow \mathbb{T}} . \\
& (\forall x \cdot p(\operatorname{con} x) \rightarrow \\
& \left(\forall e_{1} e_{2} \cdot p e_{1} \rightarrow p e_{2} \rightarrow p\left(\operatorname{add} e_{1} e_{2}\right) \rightarrow\right. \\
& \left(\forall e_{1} e_{2} \cdot p e_{1} \rightarrow p e_{2} \rightarrow p\left(\operatorname{sub} e_{1} e_{2}\right) \rightarrow\right. \\
& \forall e . p e
\end{aligned}
$$

### 7.3 Code and Execution

We will compile expressions into lists of numbers. We refer to the list obtained for an expression as the code of the expression. The compilation will be such that an expression can be reconstructed from its code, and that execution of the code yields the same value as evaluation of the expression.

Code is executed on a stack and yields a stack, where stacks are list of numbers. We define an execution function $R C A$ executing a code $C$ on a stack $A$ as follows:

$$
\begin{aligned}
& R: \mathcal{L}(\mathrm{N}) \rightarrow \mathcal{L}(\mathrm{N}) \rightarrow \mathcal{L}(\mathrm{N}) \\
& R[\square A:=A \\
& R(0:: C)\left(x_{1}:: x_{2}:: A\right):=R C\left(x_{1}+x_{2}:: A\right) \\
& R(1:: C)\left(x_{1}:: x_{2}:: A\right):=R C\left(x_{1}-x_{2}:: A\right) \\
& R(\mathrm{SS} x:: C) A:=R C(x:: A) \\
& R \__{-}:=\square
\end{aligned}
$$

Note that the function $R$ is defined by recursion on the first argument (the code) and by case analysis on the second argument (the stack). From the equations defining $R$ you can see that the first number of the code determines what is done:

- 0: take two numbers from the stack and put their sum on the stack.


### 7.4 Compilation

- 1: take two numbers from the stack and put their difference on the stack.
- SS $x$ : put $x$ on the stack.

The first equation defining $R$ returns the stack obtained so far if the code is exhausted. The last equation defining $R$ is a so-called catch-all equation: It applies whenever none of the preceding equations applies. Catch-all equations are a notational convenience that can be replaced by several equations providing the full case analysis.

Note that the execution function is defined with tail recursion, which can be realized with a loop at the machine level. This is in contrast to the evaluation function, which is defined with binary recursion. Binary recursion needs a procedure stack when implemented with loops at the machine level.

Exercise 7.3.1 Do the reduction $R[5,7,1]\left[\succ^{*}[2]\right.$ step by step (at the equational level).

### 7.4 Compilation

We will define a compilation function $\gamma: \exp \rightarrow \mathcal{L}(N)$ such that $\forall e . R(\gamma e)[]=[E e]$. That is, expressions are compiled to code that will yield the same value as evaluation when executed on the empty stack.

We define the compilation function by structural recursion on expressions:

$$
\begin{aligned}
& \gamma: \exp \rightarrow \mathcal{L}(\mathrm{N}) \\
& \gamma x:=[\mathrm{SS} x] \\
& \gamma\left(e_{1}+e_{2}\right):=\gamma e_{2}+\gamma e_{1}+[0] \\
& \gamma\left(e_{1}-e_{2}\right):=\gamma e_{2}+\gamma e_{1}+[1]
\end{aligned}
$$

We now would like to show the correctness of the compiler:

$$
R(\gamma e)[]=[E e]
$$

The first idea is to show the equation by induction on $e$. This, however, will fail since the recursive calls of $R$ leave us with nonempty stacks and partial codes not obtainable by compilation. So we have to generalize both the possible stacks and the possible codes. The generalization of codes can be expressed with concatenation. Altogether we obtain an elegant correctness theorem telling us much more about code execution than the correctness equation we started with. Formulated in words, the correctness theorem says that executing the code $\gamma e+C$ on a stack $A$ gives the same result as executing the code $C$ on the stack $E e$ :: $A$.

Theorem 7.4.1 (Correctness) $R(\gamma e+C) A=R C(E e:: A)$.
Proof By induction on $e$. The case for addition proceeds as follows:

$$
\begin{aligned}
& R\left(\gamma\left(e_{1}+e_{2}\right)+C\right) A \\
= & R\left(\gamma e_{2}+\gamma e_{1}+[0]+C\right) A \\
= & R\left(\gamma e_{1}+[0]+C\right)\left(E e_{2}:: A\right) \\
= & R([0]+C)\left(E e_{1}:: E e_{2}:: A\right) \\
= & R C\left(\left(E e_{1}+E e_{2}\right):: A\right) \\
= & R C\left(E\left(e_{1}+e_{2}\right):: A\right)
\end{aligned}
$$

$$
\text { definition } \gamma
$$

inductive hypothesis
inductive hypothesis

$$
\text { definition } R
$$

definition $E$

The equational reasoning shown tacitly employs conversion and associativity of concatenation (Fact 7.1.2). The details can be explored with the proof assistant.

Corollary 7.4.2 $R(y e)[]=[E e]$.
Proof Theorem 7.4.1 with $C=A=[]$ and Fact 7.1.1.

Exercise 7.4.3 Do the reduction $\gamma(5-2) \succ^{*}[4,7,1]$ step by step (at the equational level).

Exercise 7.4.4 Explore the proof of the correctness theorem starting with the proof script in the accompanying Coq development.

### 7.5 Decompilation

We now define a decompilation function that for all expressions recovers the expression from its code. This is possible since the compiler uses a reversible compilation scheme, or saying it abstractly, the compilation function is injective. The decompilation function closely follows the scheme used for code execution, where this time a stack of expressions is employed:

$$
\begin{aligned}
& \delta: \mathcal{L}(\mathrm{N}) \rightarrow \mathcal{L}(\exp ) \rightarrow \mathcal{L}(\exp ) \\
& \delta \square A:=A \\
& \delta(0:: C)\left(e_{1}:: e_{2}:: A\right):=\delta C\left(e_{1}+e_{2}:: A\right) \\
& \delta(1:: C)\left(e_{1}:: e_{2}:: A\right):=\delta C\left(e_{1}-e_{2}:: A\right) \\
& \delta(\mathrm{SS} x:: C) A:=\delta C(x:: A) \\
& \delta \__{-}:=\square
\end{aligned}
$$

The correctness theorem for decompilation closely follows the correctness theorem for compilation.

Theorem 7.5.1 (Correctness) $\delta(\gamma e+C) B=\delta C(e:: B)$.

Proof By induction on $e$. The case for addition proceeds as follows:

$$
\begin{array}{rlr} 
& \delta\left(\gamma\left(e_{1}+e_{2}\right)+C\right) B & \\
= & \delta\left(\gamma e_{2}+\gamma e_{1}+[0]+C\right) B & \text { definition } \gamma \\
= & \delta\left(\gamma e_{1}+[0]+C\right)\left(e_{2}:: B\right) & \text { inductive hypothesis } \\
= & \delta([0]+C)\left(e_{1}:: e_{2}:: B\right) & \text { inductive hypothesis } \\
= & \delta C\left(\left(e_{1}+e_{2}\right):: B\right) & \text { definition } \delta
\end{array}
$$

The equational reasoning tacitly employs conversion and associativity for concatenation + .

Corollary 7.5.2 $\delta(\gamma e)[]=[e]$.

### 7.6 Notes

The semantics of the expressions and codes considered here is particularly simple since evaluation of expressions and execution of codes can be accounted for by structural recursion.

Expressions are represented as abstract syntactic objects using an inductive type. Inductive types are the canonical representation of abstract syntactic objects. A concrete syntax for expressions would represent expressions as strings. While concrete syntax is important for the practical realisation of programming systems, it has no semantic relevance.

Early papers (late 1960's) on verifying compilation of expressions are McCarthy and Painter [24] and Burstall [6]. Burstall's paper is remarkable because it seems to be the first exposition of structural recursion and structural induction. Compilation of expressions appears as first example in Chlipala's textbook [7], where it is used to get the reader acquainted with Coq.

The type of expressions is the first inductive type in this text featuring binary recursion. This has the consequence that the respective clauses in the induction principle have two inductive hypotheses. We find it remarkable that the generalization from linear recursion (induction) to binary recursion (induction) comes without intellectual cost.

## 8 Existential Quantification

An existential quantification $\exists x^{t}$. s says that the predicate $\lambda x^{t}$.s is satisfiable, that is, that there is some $u$ such that the proposition $\left(\lambda x^{t} . s\right) u$ is provable. Following this idea, a basic proof of $\exists x^{t} . s$ is a pair ( $u, v$ ) consisting of a witness $u: t$ and a certificate $v:\left(\lambda x^{t} . s\right) u$. This design may be realized with an inductive type definition.

We will prove two prominent logical facts involving existential quantification: Russell's Barber theorem (a non-existence theorem) and Lawvere's fixed point theorem (an existence theorem). From Lawvere's theorem we will obtain a type-theoretic variant of Cantor's power set theorem (there is no surjection from a set to its power set).

### 8.1 Inductive Definition and Basic Facts

We first assume a formation constant

$$
\text { ex: } \forall X^{\mathbb{T}} \cdot(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P}
$$

so that we can write an existential quantifications as function applications (as usual, $X$ is treated as implicit argument):

$$
\exists x^{t} . s \quad u \operatorname{ex}\left(\lambda x^{t} . s\right)
$$

Next we assume an introduction constant

$$
\mathrm{E}: \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall x^{X} . p x \rightarrow \operatorname{ex} X p
$$

so that we can prove an existential quantification $\exists x^{t}$.s by providing a witness $u: t$ and a certificate $v:\left(\lambda x^{t} . s\right) u$. Finally, we assume an elimination constant

$$
\mathrm{M}_{\exists}: \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall Z^{\mathbb{P}} . \operatorname{ex} p \rightarrow(\forall x . p x \rightarrow Z) \rightarrow Z
$$

so that given a proof of an existential quantification we can prove an arbitrary proposition $Z$ by assuming that there is a witness and certificate as asserted by the existential quantification.

We will see that the constants $E$ and $M_{\exists}$ provide us with all the proof rules we need for existential quantification. As usual, the definitions of the constants are not needed for proving with existential quantifications.

The constants ex and E can be defined with an inductive type definition:

$$
\operatorname{ex}(X: \mathbb{T}, p: X \rightarrow \mathbb{P}): \mathbb{P}::=\mathrm{E}(x: X, p x)
$$

The inductive type definition for ex and E has two parameters where the type of the second parameter $p$ depends on the first parameter $X$. This is the first time we see such a parameter dependence. The inductive definitions for pair types and conjunctions also have two parameters, but there is no dependency. Also, the definition for existential quantification is the first time we see a parameter ( $p$ ) that is not a type. Moreover, the proof constructor E comes with an additional dependency between its first proper argument $x$ and the type $p x$ of its second proper argument. Again, this is the first time we see such a dependency. Inductive type definitions with dependencies between parameters and proper arguments of constructors are standard in computational type theory.

The elimination constant $\mathrm{M}_{\exists}$ can now be defined as an inductive function:

$$
\begin{aligned}
& \mathrm{M}_{\exists}: \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall Z^{\mathbb{P}} . \exp \rightarrow(\forall x \cdot p x \rightarrow Z) \rightarrow Z \\
& \mathrm{M}_{\exists} X p Z\left(\mathrm{E}_{-} x a\right) f:=f x a
\end{aligned}
$$

We now recognize $M_{\exists}$ as the simply typed match function for existential types. When convenient, we will use the match notation

$$
\text { MATCH } s[\mathrm{E} x a \Rightarrow t] \quad \leadsto \quad \mathrm{M}_{\exists--\_} s(\lambda x a . t)
$$

for applications of $\mathrm{M}_{\exists}$. Note that the propositional discrimination restriction applies to all inductive propositions ex $X p$.

Figure 8.1 shows a proof table and the constructed proof term for a de Morgan law for existential quantification. The proof table makes all conversions explicit so that you can see where they are needed. Each of the two conversions can be justified with either the $\eta$ - or the $\beta$-law for $\lambda$-abstractions. We also have

$$
(\exists x \cdot p x)=\mathrm{ex}(\lambda x \cdot p x)=\mathrm{ex}(p)
$$

where the first equation is just a notational change and the second equation is by application of the $\eta$-law.

In practice, it is not a good idea to make explicit inessential conversions like the ones in Figure 8.1. Instead, it is preferable to think modulo conversion. Figure 8.2 shows a proof table with implicit conversions constructing the same proof term. This is certainly a better presentation of the proof. The second table gives a fair representation of the interaction you will have with Coq. In fact, Coq will immediately reduce the first two $\beta$-redexes you see in Figure 8.1 as part of the proof actions introducing them. This way there will be no need for explicit conversion steps.


$$
\text { Proof term: C }\left(\lambda f x a \cdot f\left(\mathrm{E}_{p} x a\right)\right)(\lambda f b . \text { MATCH } b[\mathrm{E} x a \Rightarrow f x a])
$$

Figure 8.1: Proof of existential de Morgan law with explicit conversions

|  | $X: \mathbb{T}, p: X \rightarrow \mathbb{P}$ | $\neg(\exists x \cdot p x) \longmapsto \forall x \cdot \neg p x$ | apply C |
| :--- | ---: | ---: | :--- |
| 1 |  | $\neg(\exists x \cdot p x) \rightarrow \forall x \cdot \neg p x$ | intro |
|  | $f: \neg(\exists x \cdot p x), x: X, a: p x$ | $\perp$ | apply $f$ |
|  |  | $\exists x \cdot p x$ | Exa |
| 2 |  | $(\forall x \cdot \neg p x) \rightarrow \neg(\exists x \cdot p x)$ | intro with $M_{\exists}$ |
|  | $f: \forall x . \neg p x, x: X, a: p x$ | $\perp$ | $f x a$ |

Proof term: C $\left(\lambda f x a \cdot f\left(\mathrm{E}_{p} x a\right)\right)(\lambda f b$. MATCH $b[\mathrm{E} x a \Rightarrow f x a])$
Figure 8.2: Proof of existential de Morgan law with implicit conversions

Exercise 8.1.1 Prove the following propositions with proof tables and give the resulting proof terms. Mark the proof actions involving implicit conversions.
a) $(\exists x \exists y . p x y) \rightarrow \exists y \exists x . p x y$
b) $(\exists x . p x) \rightarrow \neg \forall x . \neg p x$
c) $((\exists x \cdot p x) \rightarrow Z) \hookrightarrow \forall x \cdot p x \rightarrow Z$
d) $(\exists x . p x) \wedge Z \longleftrightarrow \exists x \cdot p x \wedge Z$
e) $(\exists x \cdot p x \vee q x) \hookrightarrow(\exists x \cdot p x) \vee(\exists x \cdot q x)$
f) $\neg \neg(\exists x . p x) \longleftrightarrow \neg \forall x . \neg p x$
g) $(\exists x . \neg \neg p x) \rightarrow \neg \neg \exists x . p x$
h) $\forall X^{\mathbb{P}} \cdot X \hookrightarrow \exists x^{X} . \top$

Exercise 8.1.2 Give a proof term for $(\exists x . p x) \rightarrow \neg \forall x$. $\neg p x$ using the constants ex, $E$, and $M_{\exists}$. Do not use matches.

Exercise 8.1.3 Verify the following existential characterization of disequality:

$$
x \neq y \hookrightarrow \exists p \cdot p x \wedge \neg p y
$$

Exercise 8.1.4 Verify the impredicative characterization of existential quantification:

$$
(\exists x \cdot p x) \longleftrightarrow \forall Z^{\mathbb{P}} \cdot(\forall x \cdot p x \rightarrow Z) \rightarrow Z
$$

Exercise 8.1.5 Universal and existential quantification are compatible with propositional equivalence. Prove the following compatibility laws:

$$
\begin{aligned}
& (\forall x \cdot p x \longleftrightarrow q x) \rightarrow(\forall x \cdot p x) \longleftrightarrow(\forall x \cdot q x) \\
& (\forall x \cdot p x \longleftrightarrow q x) \rightarrow(\exists x \cdot p x) \longleftrightarrow(\exists x \cdot q x)
\end{aligned}
$$

Exercise 8.1.6 (Abstract presentation) We have seen that conjunction, disjunction, and propositional equality can be modeled with abstract constants (§4.7). For existential quantification, we may use the constants

$$
\begin{aligned}
\mathrm{Ex} & : \forall X^{\mathbb{T}} \cdot(X \rightarrow \mathbb{P}) \rightarrow \mathbb{P} \\
\mathrm{E} & : \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall x^{X} \cdot p x \rightarrow \operatorname{Ex} X p \\
\mathrm{M} & : \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \forall Z^{\mathbb{P}} . \operatorname{ex} p \rightarrow(\forall x \cdot p x \rightarrow Z) \rightarrow Z
\end{aligned}
$$

we have obtained above with inductive definitions.
a) Assuming the constants, prove that the impredicative characterization holds: $\mathrm{Ex} X p \longleftrightarrow \forall Z^{\mathbb{P}} .(\forall x . p x \rightarrow Z) \rightarrow Z$.
b) Define the constants impredicatively (i.e., not using inductive types).

Exercise 8.1.7 (Intuitionistic drinker) Using excluded middle, one can argue that in a bar populated with at least one person one can always find a person such that if this person drinks milk everyone in the bar drinks milk:

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .\left(\exists x^{X} \cdot \top\right) \rightarrow \exists x \cdot p x \rightarrow \forall y \cdot p y
$$

The fact follows intuitionistically once two double negations are inserted:

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .\left(\exists x^{X} . \top\right) \rightarrow \neg \neg \exists x . p x \rightarrow \forall y . \neg \neg p y
$$

Prove the intuitionistic version.

### 8.2 Barber Theorem

Nonexistence results often get a lot of attention. Here are two famous examples:

1. Russell: There is no set containing exactly those sets that do not contain themselves: $\neg \exists x \forall y . y \in x \longleftrightarrow y \notin y$.
2. Turing: There is no Turing machine that halts exactly on the codes of those Turing machines that don't halt on their own code: $\neg \exists x \forall y . H x y \longleftrightarrow \neg H y y$. Here $H$ is a predicate that applies to codes of Turing machines such that $H x y$ says that Turing machine $x$ halts on Turing machine $y$.
It turns out that both results are trivial consequences of a straightforward logical fact known as barber theorem.

## Fact 8.2.1 (Barber Theorem)

$\forall X^{\mathbb{V}} \forall p^{X \rightarrow X \rightarrow \mathbb{P}} . \neg \exists x \forall y . p x y \longleftrightarrow \neg p y y$.
Proof Suppose there is an $x$ such that $\forall y . p x y \longleftrightarrow \neg p y y$. Then $p x x \longleftrightarrow \neg p x x$. Contradiction by Russell's law $\neg(X \longleftrightarrow \neg X)$ as shown in §3.7.

The barber theorem is related to a logical puzzle known as barber paradox. Search the web to find out more.

Exercise 8.2.2 Give a proof table and a proof term for the barber theorem. Construct a detailed proof with Coq.

Exercise 8.2.3 Consider the following predicate on types:

$$
p\left(X^{\mathbb{T}}\right):=\exists f g^{X \rightarrow X} \forall x y . f x=y \vee g y=x
$$

Prove $p(\mathrm{~B})$ and $\neg p(\mathrm{~N})$.
Hint: It suffices to consider the numbers $0,1,2$.

### 8.3 Lawvere's Fixed Point Theorem

Another famous non-existence theorem is Cantor's theorem. Cantor's theorem says that there is no surjection from a set into its power set. If we analyse the situation in type theory, we find a proof that for no type $X$ there is a surjective function $X \rightarrow(X \rightarrow \mathrm{~B})$. If for $X$ we take the type of numbers, the result says that the function type $\mathrm{N} \rightarrow \mathrm{B}$ is uncountable. It turns out that in type theory facts like these are best obtained as consequences of a general logical fact known as Lawvere's fixed point theorem.

A fixed point of a function $f^{X \rightarrow X}$ is an $x$ such that $f x=x$.
Fact 8.3.1 Boolean negation has no fixed point.
Proof Consider $!x=x$ and derive a contradiction with boolean case analysis on $x$. $\square$
Fact 8.3.2 Propositional negation $\lambda P . \neg P$ has no fixed point.

Proof Suppose $\neg P=P$. Then $\neg P \longleftrightarrow P$. Contradiction with Russell's law.
A function $f^{X \rightarrow Y}$ is surjective if $\forall y \exists x . f x=y$.
Theorem 8.3.3 (Lawvere) Suppose there exists a surjective function $X \rightarrow(X \rightarrow Y)$. Then every function $Y \rightarrow Y$ has a fixed point.

Proof Let $f^{X \rightarrow(X \rightarrow Y)}$ be surjective and $g^{Y \rightarrow Y}$. Then $f a=\lambda x \cdot g(f x x)$ for some $a$. We have $f a a=g(f a a)$ by rewriting and conversion.

Corollary 8.3.4 There is no surjective function $X \rightarrow(X \rightarrow \mathrm{~B})$.

Proof Boolean negation doesn't have a fixed point.

Corollary 8.3.5 There is no surjective function $X \rightarrow(X \rightarrow \mathbb{P})$.

Proof Propositional negation doesn't have a fixed point.

We remark that Corollaries 8.3.4 and 8.3.5 may be seen as variants of Cantor's theorem.

Exercise 8.3.6 Construct with Coq detailed proofs of the results in this section.

## Exercise 8.3.7

a) Prove that all functions $T \rightarrow T$ have fixed points.
b) Prove that the successor function $\mathrm{S}: \mathrm{N} \rightarrow \mathrm{N}$ has no fixed point.
c) For each type $Y=\perp, \mathrm{B}, \mathrm{B} \times \mathrm{B}, \mathrm{N}, \mathbb{P}, \mathbb{T}$ give a function $Y \rightarrow Y$ that has no fixed point.

Exercise 8.3.8 With Lawvere's theorem we can give another proof of Fact 8.3.2 (propositional negation has no fixed point). In contrast to the proof given with Fact 8.3.2, the proof with Lawvere's theorem uses mostly equational reasoning.

The argument goes as follows. Suppose $(\neg X)=X$. Since the identity is a surjection $X \rightarrow X$, the assumption gives us a surjection $X \rightarrow(X \rightarrow \perp)$. Lawvere's theorem now gives us a fixed point of the identity on $\perp \rightarrow \perp$. Contradiction since the type of the fixed point is falsity.

Do the proof with Coq.

## 9 Certifying Functions and Sum Types

In type theory one can write function types that completely specify the input-output relation of their functions. We speak of informative types and of certifying functions. When proving properties of a certifying function, one completely ignores its definition and just relies on its type. In fact, we will accommodate certifying functions with abstract constants. In type-theoretic practice, most defined functions are certifying functions.

The notions of informative types and certifying functions are at the very heart of type theory and will play a main role from now on. As it turns out, language used for mathematical proofs generalizes to language for constructing certifying functions.

Certifying functions are the computational analogue of propositional lemmas. Like lemmas, they come as abstract constants whose definition does not matter for their use. Also like lemmas, certifying functions are constructed in proof mode abstracting from the formal details of the final terms describing them.

The types of certifying functions are usually obtained with sum types and sigma types, which may be seen as computational variants of disjunctions and existential quantifications. To keep the amount of new ideas digestible, we postpone the discussion of sigma types to the next chapter.

One important application of sum type are certifying equality deciders. We refer to types having a certifying equality decider as discrete types. We will see that the class of discrete types is closed under taking product types and sum types. Moreover, discrete types are closed under injective preimages.

### 9.1 Sum Types

Sum types are a basic type construction and it is about time we introduce them. Like product types $X \times Y$ sum types $X+Y$ combine two types $X$ and $Y$. However, sum types are dual to product types in that their elements carry a value of one of the types rather than values of both types. Sum types may be seen as disjoint type unions. The propositional versions of sum types and product types are conjunctions and disjunctions.

We define the family of sum types inductively as follows: ${ }^{1}$

$$
+(X: \mathbb{T}, Y: \mathbb{T}): \mathbb{T}::=\mathrm{L}(X) \mid \mathrm{R}(Y)
$$

The definition gives us 3 constructors:

$$
\begin{aligned}
& +: \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{T} \\
& \mathrm{L}: \forall X Y^{\mathbb{T}} \cdot X \rightarrow X+Y \\
& \mathrm{R}: \forall X Y^{\mathbb{T}} . Y \rightarrow X+Y
\end{aligned}
$$

A value of a sum type $X+Y$ carries a value of $X$ or a value of $Y$, where the information which alternative is present can be used computationally. The elements of sum types are called variants.

Sum types are computational variants of disjunctions. In contrast to disjunctions, sum types are not restricted to propositions and are not subject to the elimination restriction.

A simply typed eliminator for sum types has the type

$$
\forall X Y Z^{\mathbb{T}} . X+Y \rightarrow(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z
$$

We will see destructurings where a simply typed eliminator doesn't suffice. We define a dependently typed eliminator for sum types as follows:

$$
\begin{aligned}
& \mathrm{E}_{+}: \forall X Y^{\mathbb{T}} \forall p^{X+Y \rightarrow \mathbb{T}} \cdot(\forall x \cdot p(\mathrm{~L} x)) \rightarrow(\forall y \cdot p(\mathrm{R} y)) \rightarrow \forall a \cdot p a \\
& \mathrm{E}_{+} X Y p e_{1} e_{2}(\mathrm{~L} x):=e_{1} x \\
& \mathrm{E}_{+} X Y p e_{1} e_{2}(\mathrm{R} y):=e_{2} y
\end{aligned}
$$

We can use sum types to construct finite types of any cardinality:

| $\perp$ | no element |
| ---: | :--- |
| $\perp+\mathrm{T}$ | 1 element |
| $(\perp+\mathrm{T})+\mathrm{T}$ | 2 elements |
| $((\perp+\mathrm{T})+\mathrm{T})+\mathrm{T}$ | 3 elements |

We will refer to the types $\perp$ and $T$ as void and unit if we are in a context where the fact they are propositions does not matter.

Exercise 9.1.1 Give all elements of the type $((\perp+T)+T)+T$ and prove that your enumeration is complete: $\forall a^{((\perp+T)+T)+T} . a=\mathrm{RI} \vee \cdots$.

[^8]
## Exercise 9.1.2 (Constructor laws for sum types)

Prove the constructor laws for sum types:
a) $\mathrm{L} x \neq \mathrm{R} y$.
b) $\mathrm{L} x=\mathrm{L} x^{\prime} \rightarrow x=x^{\prime}$.
c) $\mathrm{R} y=\mathrm{R} y^{\prime} \rightarrow y=y^{\prime}$.

Hint: The techniques used for numbers (Figure 4.2) also work for sums.
Exercise 9.1.3 Define a truncation function $T: \forall X Y . X+Y \rightarrow \mathrm{~B}$ such that $\forall a$. IF $T a$ THEN $(\exists x . a=\mathrm{L} x) \operatorname{ELSE}(\exists y \cdot a=\mathrm{R} y)$.

### 9.2 Proving at Type Level

It will be handy to have equivalence types:

$$
\mathrm{X} \Leftrightarrow \mathrm{Y}:=(X \rightarrow Y) \times(Y \rightarrow X)
$$

A value of an equivalence type $X \Leftrightarrow Y$ is a pair of two functions translating between the types $X$ and $Y$. For instance, the equivalence types

$$
\begin{aligned}
(X \times Y \rightarrow Z) & \Leftrightarrow(X \rightarrow Y \rightarrow Z) \\
(X+Y \rightarrow Z) & \Leftrightarrow(X \rightarrow Z) \times(Y \rightarrow Z) \\
(X \rightarrow Y+Z) & \Leftrightarrow(X \rightarrow Z) \times(X \rightarrow Z)
\end{aligned}
$$

are inhabited for all types $X, Y, Z$.
Equivalence types $X \Leftrightarrow Y$ are similar to equivalence propositions $P \longleftrightarrow Q$. Equivalence types $X \Leftrightarrow Y$ are more general than equivalence propositions $P \longleftrightarrow Q$ in that they can take all types as arguments and not just propositions.

It is often advantageous to approach the construction of a value of a type $X$ as a proof of $X$. For instance, the construction of a value of the type equivalence

$$
\forall X Y Z^{\mathbb{T}} .(X \times Y \rightarrow Z) \Leftrightarrow(X \rightarrow Y \rightarrow Z)
$$

is at a certain abstraction level identical with a proof of the propositional equivalence

$$
\forall X Y Z^{\mathbb{P}} .(X \wedge Y \rightarrow Z) \longleftrightarrow(X \rightarrow Y \rightarrow Z)
$$

The advantage of taking the proof view for types is that the construction of a value can be done at the proof level rather than at the term level. As we know from propositions, writing an informal proof that can be elaborated into a formal proof is much easier than writing a formal proof. Moreover, the elaboration of informal proofs into formal proofs is greatly assisted by the tactic interpreter of a proof
assistant. It is now time to acknowledge that the tactic interpreter of Coq works for types in general, not just propositions. The only significant difference between the propositional and the general level is the propositional discrimination restriction, which imposes extra conditions on propositional destructuring.

Exercise 9.2.1 Prove the following type equivalences:
a) $\forall X Y Z^{\mathbb{T}}$. $(X \times Y \rightarrow Z) \Leftrightarrow(X \rightarrow Y \rightarrow Z)$
b) $\forall X Y Z^{\mathbb{T}} .(X+Y \rightarrow Z) \Leftrightarrow(X \rightarrow Z) \times(Y \rightarrow Z)$
c) $\forall X Y Z^{\mathbb{T}}$. $(X \rightarrow Y+Z) \Leftrightarrow(X \rightarrow Z) \times(X \rightarrow Z)$

Exercise 9.2.2 Prove the following types:
a) $\forall b^{\mathrm{B}} .(b=$ true $)+(b=$ false $)$.
b) $\forall x y^{\mathrm{B}} . x \& y=$ false $\Leftrightarrow(x=$ false $)+(y=\mathrm{false})$.
c) $\forall x y^{\text {B }} . x \mid y=$ true $\Leftrightarrow(x=$ true $)+(y=$ true $)$.

The above types can all be shown by boolean case analysis. To see the dramatic reduction of formal detail obtained by using proof-oriented language construct the functions asked for at the term level.

Exercise 9.2.3 Prove that double negated disjunction agrees with double negated sum: $\neg \neg(P \vee Q) \longleftrightarrow \neg(P+Q \rightarrow \perp)$.

## Exercise 9.2.4 (Functional characterization)

Prove $X+Y \Leftrightarrow \forall Z^{\mathbb{T}} .(X \rightarrow Z) \rightarrow(Y \rightarrow Z) \rightarrow Z$.
Note that the equivalences is analogous to the impredicative characterization of disjunctions.

Exercise 9.2.5 Construct a truncation function $\forall P Q^{\mathbb{P}} \cdot P+Q \rightarrow P \vee Q$ for sum types. Note that a converse function $\forall P Q^{\mathbb{P}} . P \vee Q \rightarrow P+Q$ cannot be obtained because of the propositional discrimination restriction.

### 9.3 Decision Types

An important application of sum types are so-called decision types:

$$
\mathcal{D}\left(X^{\mathbb{V}}\right): \mathbb{T}:=X+(X \rightarrow \perp)
$$

A value of type $\mathcal{D}(X)$ is a decision carrying either an element of $X$ or a proof $X \rightarrow \perp$ verifying that $X$ is void. In particular, if $X$ is a proposition, a decision of type $\mathcal{D}(X)$ carries either a proof of $X$ or a proof of $\neg X$.

If we have a decision $\mathcal{D}(X)$, we call $X$ a decided type. It turns out that $\perp$ and $\top$ are decided types, and that decided types are closed under taking function types,
product types and sum types. Moreover, decided types are closed under type equivalence. Finally, decided propositions are closed under the propositional connectives and propositional equivalence.

## Fact 9.3.1 (Closure laws for decided types)

1. $\mathcal{D}(T)$ and $\mathcal{D}(\perp)$.
2. $\forall X Y^{\mathbb{T}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X \rightarrow Y)$.
3. $\forall X^{\mathbb{T}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(X \rightarrow \perp)$.
4. $\forall X Y^{\mathbb{T}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X \times Y)$.
5. $\forall X Y^{\mathbb{T}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X+Y)$.
6. $\forall X Y^{\mathbb{T}}$. $(X \Leftrightarrow Y) \rightarrow \mathcal{D}(X) \rightarrow \mathcal{D}(Y)$.
7. $\forall X Y^{\mathbb{P}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X \wedge Y)$.
8. $\forall X Y^{\mathbb{P}} . \mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X \vee Y)$.

Proof The proofs are identical with the propositional proofs where + and $\Leftrightarrow$ are replaced with $\vee$ and $\Leftrightarrow$.

Exercise 9.3.2 Prove Fact 9.3.1 with the proof assistant.
Exercise 9.3.3 Prove $\forall X Y^{\mathbb{T}} .(X \Leftrightarrow Y) \rightarrow(\mathcal{D}(X) \Leftrightarrow \mathcal{D}(Y))$.
Exercise 9.3.4 Prove $\forall X^{\mathbb{T}} f^{X \rightarrow \mathrm{~B}} x^{X} . \mathcal{D}(f x=$ true $)$.
Exercise 9.3.5 Prove $\forall X^{\mathbb{T}} .(\mathcal{D}(X) \rightarrow \perp) \rightarrow \perp$.

### 9.4 Certifying Functions

Our lead example for certifying functions are certifying equality deciders for numbers:

$$
\forall x y^{\mathrm{N}} .(x=y)+(x \neq y)
$$

Functions of this type take two numbers and decide whether they are equal. The decision is returned with a proof asserting the correctness of the decision. When convenient, we will refer to such proofs as certificates.

Constructing a certifying equality decider for numbers in proof mode is routine. In fact, we have carried out the construction before (Fact 5.6.1) for the proposition $\forall x y^{\mathrm{N}} .(x=y) \vee(x \neq y)$.

Fact 9.4.1 $\forall x^{\mathrm{N}} y^{\mathrm{N}} .(x=y)+(x \neq y)$.
Proof By induction on $x$ and case analysis on $y$ with $y$ quantified in the inductive hypothesis. There are four cases which follow with the constructor laws for numbers. The most interesting case is the successor-successor case, where we need to show $(\mathrm{S} x=\mathrm{S} y)+(\mathrm{S} x \neq \mathrm{S} y)$ given the inductive hypothesis $(x=y)+(x \neq y)$. If we have $x=y$, we also have $\mathrm{S} x=\mathrm{S} y$. If we have $x \neq y, S x \neq \mathrm{S} y$ follows with the injectivity of S .

Suppose we have a function $F: \forall x y^{\mathrm{N}} .(x=y)+(x \neq y)$. Then we know exactly what $F$ gives us without knowing how $F$ is defined. So we can use $F$ in proofs without knowing its definition. The situation is the same as with a propositional lemma $L: \forall x y^{\mathrm{N}} .(x=y) \vee(x \neq y)$ that we use without knowing its proof. Recall that we call defined constants with a propositional type lemmas if their definition is blocked for reduction. We now generalize the notion of a lemma such that it can have any type. We will use the term certifying functions for lemmas with a non-propositional functional type.

Recall that the type of a lemma serves as in interface between the uses of a lemma and possible proofs of the lemma. As with a software interface, the type of a lemma decouples uses of the lemma from proofs of the lemma.

In practice, most functions we construct in computational type theory are accommodated as certifying functions or propositional lemmas. Accommodating a function as a lemma is perfect whenever we have a relational specification of the function. Nevertheless, there are important cases where a function is best specified with defining equations. Example are the basic operations on numbers (e.g., addition) and booleans (e.g., boolean negation).

An interesting kind of functions are eliminators. They are always defined with as inductive functions with defining equations. However, when we destructure assumptions and do case analysis and induction in proofs, we apply the eliminators without using their defining equations. So we could restrict the use of eliminators in proofs to irreducible versions hiding their definitions. There remains one important use of reducible eliminators in that they facilitate local definitions of inductive functions.

To summarize, we will see many certifying functions from now on, and we will always construct them in proof mode.

## Exercise 9.4.2

a) Construct a certifying equality decider $F: \forall x y^{\mathrm{B}} .(x=y)+(x \neq y)$.
b) Prove $\forall x y$. IF $F x y$ THEN $x=y$ ELSE $x \neq y$.
c) Define a boolean equality decider $f^{\mathrm{B} \rightarrow \mathrm{B} \rightarrow \mathrm{B}}$ and prove $\forall x y$. IF $f x y$ THEN $x=y$ ELSE $x \neq y$.
d) Prove $\forall x y . f x y=$ IF $F x y$ THEN true ELSE false.

### 9.5 Certifying Equality Deciders

A certifying equality decider for a type $X$ is a function

$$
\forall x y^{X} \cdot \mathcal{D}(x=y)
$$

Given two values of type $X$, a certifying equality deciders decides whether the values are equal and returns its decision together with a certificate (a proof that the decision is correct).

We say that a type is discrete if it has a certifying equality decider. It will be convenient to have a notation for the type of certifying equality deciders for a type $X$ :

$$
\mathcal{E}(X):=\left(\forall x y^{X} \cdot \mathcal{D}(x=y)\right)
$$

Formally, $\mathcal{E}$ is a plain function $\mathbb{T} \rightarrow \mathbb{T}$.
It turns out that $\perp, T, B$, and $N$ are discrete types, and that discrete types are closed under taking product types and sum types.

Fact 9.5.1 (Transport of equality deciders)

1. $\mathcal{E}(\perp), \mathcal{E}(T), \mathcal{E}(B), \mathcal{E}(N)$.
2. $\forall X Y^{\mathbb{T}}$. $\mathcal{E}(X) \rightarrow \mathcal{E}(Y) \rightarrow \mathcal{E}(X \times Y)$.
3. $\forall X Y^{\mathbb{T}}$. $\mathcal{E}(X) \rightarrow \mathcal{E}(Y) \rightarrow \mathcal{E}(X+Y)$.
4. $\forall X Y^{\mathbb{T}}$. $\mathcal{E}(X+Y) \rightarrow \mathcal{E}(X)$.
5. $\forall X Y^{\mathbb{T}}$. $\mathcal{E}(X \times Y) \rightarrow Y \rightarrow \mathcal{E}(X)$.
6. $\forall X Y^{\mathbb{\top}}$. $\mathcal{E}(X \times Y) \rightarrow \mathcal{E}(Y \times X)$.
7. $\forall X Y^{\mathbb{\top}}$. $\mathcal{E}(X+Y) \rightarrow \mathcal{E}(Y+X)$.

Proof $\mathcal{E}(N)$ is Fact 9.4.1. The remaining claims are left as exercises.
Discrete types are also closed under injective preimages.

## Fact 9.5.2 (Transport)

Injective functions transport equality deciders backwards:
$\forall X Y^{\mathbb{T}} \forall f^{X \rightarrow Y}$. injective $\mathrm{f} \rightarrow \mathcal{E}(Y) \rightarrow \mathcal{E}(X)$.
Exercise 9.5.3 Proof Facts 9.5.1 and 9.5.2.
Exercise 9.5.4 Prove $\mathcal{E}(T \rightarrow \perp)$.
Exercise 9.5.5 (Boolean equality)
Define an inductive function $f^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{B}}$ testing equality of numbers and prove $\forall x y$. IF $f x y$ THEN $x=y$ ELSE $x \neq y$.

### 9.6 Computational Decidability

Computational type theory is designed such that every definable function is algorithmically computable. Thus we can prove that predicates are computationally decidable within computational type theory by constructing (certifying) deciders for them. Decidability proofs in computational type theory are formal computability proofs that avoid the unmanageable formal details coming with explicit models of computation (e.g., Turing machines).

We call a predicate decidable if it has a certifying decision function:

$$
\operatorname{dec}\left(p^{X \rightarrow \mathbb{T}}\right):=\forall x \cdot \mathcal{D}(p x)
$$

Decidable predicates are algorithmically decidable. Moreover, every decidable predicate $p$ is logically decidable in that it satisfies the law of excluded middle $\forall x . p x \vee \neg p x$.

The above definition of $\operatorname{dec}(p)$ is for unary predicates. It can be extended to predicates with two arguments:

$$
\operatorname{dec}_{2}\left(p^{X \rightarrow Y \rightarrow \mathbb{T}}\right):=\forall x y \cdot \mathcal{D}(p x y)
$$

We can also define $\operatorname{dec}_{0}(X):=\mathcal{D}(X)$. We remark that type theory cannot express a uniform and readable definition of a type family $\operatorname{dec}_{n}$ for $n \geq 0$.

So far we have focussed on deciders for the equality predicate. We have seen that the data types $\perp, \top, B$, and $N$ have equality deciders, and that this extends to their closure under product and sum types and injective preimages.

We remark that type theory can easily express undecidable predicates. We will formalize Post correspondence problem with an inductive predicate in §13.6.

## 10 Certifying Functions and Sigma Types

Sigma types are dependent pair types. Sigma types are obtained with a type function $p^{X \rightarrow \mathbb{T}}$ and take as values pairs $(x, y)$ with $x: X$ and $y: p x$. Sigma types are the computational version of the propositional types for existential quantification.

Sigma types are used in the types of certifying functions. Given a relation $p^{X \rightarrow Y \rightarrow \mathbb{P}}$, we can write the function type $\forall x . \Sigma y . p x y$ whose functions take $x^{X}$ and yield $y^{Y}$ such that $p x y$. More precisely, functions of type $\forall x . \Sigma y . p x y$ yield for every $x$ a pair $(y, a)$ where $a: p x y$. A concrete example we will consider is a type

$$
\forall x^{\mathrm{N}} . \Sigma n .(x=2 \cdot n)+(x=2 \cdot n+1)
$$

for certifying division functions. Functions of this type take a number $x$ and yield the Euclidean quotient of $x$ and 2. Moreover, functions of this type decide whether there is a remainder and yield a proof for the correctness of the result (a certificate).

We can translate a certifying function into a simply typed function and a correctness proof. The translation from simply typed to certified is also possible. For certifying deciders, we can state the presence of the translations with the computational equivalence

$$
(\forall x \cdot \mathcal{D}(p x)) \Leftrightarrow\left(\Sigma f^{X \rightarrow \mathrm{~B}} \cdot \forall x \cdot p x \longleftrightarrow f x=\text { true }\right)
$$

We will also define a truncation operator $\square X$ that for a type $X$ yields a proposition $\square X$ that is provable if and only if $X$ is inhabited. The correspondence between disjunctions and sum types and existential quantifications and sigma types can then be expressed with the propositional equivalences

$$
\begin{gathered}
(P \vee Q) \longleftrightarrow \square(P+Q) \\
(\exists x \cdot p x) \longleftrightarrow \square(\Sigma x \cdot p x)
\end{gathered}
$$

### 10.1 Dependent Pair Types

We have seen pair types (better known a product types)

$$
(x, y): X \times Y
$$

fixing the types $X$ and $Y$ of their components a priori. Dependent pair types

$$
(x, y): \operatorname{sig} p
$$

employ a type function $p^{X \rightarrow \mathbb{T}}$ and admit all pairs $(x, y)$ such that $x: X$ and $y: p x$. Thus a dependent pair type doesn't fix the type of the second component a priory but instead determines it for each pair depending on the first component.

Dependent pair types sig $p$ are usually written as

$$
\Sigma x^{X} \cdot p x
$$

using a quantifier-style notation emphasizing the relationship with existential quantifications $\exists x^{X} . p x$ and dependent function types $\forall x^{X} . p x$. All three type families accommodate a type dependency with a type function $p$ and generalize their simply typed versions $X \times Y, X \wedge Y$, and $X \rightarrow Y$. Note that function types are native to the type theory while pair types, conjunctions, and existential quantifications are obtained as inductive types.

The inductive definition of dependent pair types is now routine:

$$
\operatorname{sig}(X: \mathbb{T}, p: X \rightarrow \mathbb{T}): \mathbb{T}::=\mathrm{E}(x: X, p x)
$$

The definition yields a type constructor and a value constructor as follows:

$$
\begin{aligned}
\text { sig }: & \forall X^{\mathbb{T}} \cdot(X \rightarrow \mathbb{T}) \rightarrow \mathbb{T} \\
\mathrm{E}: & \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{T}} \forall x^{X} \cdot p x \rightarrow \operatorname{sig}_{X} p
\end{aligned}
$$

We will write $(x, a)$ or $(x, a)_{p}$ for a dependent pair EXpxa and call $x$ and $a$ the first and second component of the pair. When $p$ is a predicate, we may refer to $x$ as the witness and to $a$ as the certificate, as we did for existential quantification. We often write $\Sigma x^{X}$. $p x$ for $\operatorname{sig}_{X} p$. Following common speak, we will often refer to dependent pair types as sigma types.

We define the universal eliminator for sigma types:

$$
\begin{aligned}
& \mathrm{E}_{\Sigma}: \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{T}} \forall q^{\operatorname{sig} p \rightarrow \mathbb{T}} \cdot(\forall x y \cdot q(x, y)) \rightarrow \forall a \cdot q a \\
& \mathrm{E}_{\Sigma} X p q e(x, y):=e x y
\end{aligned}
$$

There is considerable typing bureaucracy but the basic idea is familiar from product types $X \times Y$ and existential quantifications $\exists x^{X} . p x$ : If we have a pair $s: \operatorname{sig}_{X} p$, we can assume $x$ and $y$ and replace $s$ with $(x, y)$. This idea becomes apparent with the simple type

$$
\left(\forall x^{X} \cdot p x \rightarrow Z\right) \rightarrow\left(\operatorname{sig}_{X} p \rightarrow Z\right)
$$

Using the eliminator with the simple type suffices whenever $s: \operatorname{sig}_{X} p$ occurs only once in the context we are working in.

We extend the correspondence table between propositional type constructors and computational type constructors with $\forall, \exists$, and $\Sigma$ :

$$
\begin{array}{cccccc}
\forall & \rightarrow & + & \times & \Sigma & \Leftrightarrow \\
\hline \forall & \rightarrow & \vee & \wedge & \exists & \longleftrightarrow
\end{array}
$$

computational types in $\mathbb{T}$ propositional types in $\mathbb{P}$

### 10.2 Certifying Division

We discuss certifying division as our lead example for certifying functions whose target type is a sigma type:

$$
\forall x^{\mathrm{N}} . \Sigma n \cdot(x=2 \cdot n)+(x=2 \cdot n+1)
$$

A function of this type takes a number $x$ and returns the Euclidean quotient $n$ of $x$ and 2 together with a decision of whether $x$ is even or odd. In each case a certificate (i.e., correctness proof) is provided.

Proving that there is a certifying division function of the given type is straightforward. As it comes to the informal proof, there is no difference to proving the propositional version obtained by replacing $\Sigma$ with $\exists$ and + with $\vee$.

Fact 10.2.1 $\forall x^{\mathrm{N}} . \Sigma n .(x=2 \cdot n)+(x=2 \cdot n+1)$.
Proof By induction on $x$. For the zero case $x=0$, we choose $n=0$ and prove $x=2 \cdot 0$. For the successor case $x=\mathrm{S} x^{\prime}$, the inductive hypothesis gives us $n$ such that $\left(x^{\prime}=2 \cdot n\right)+\left(x^{\prime}=2 \cdot n+1\right)$. If $x^{\prime}=2 \cdot n$, we have $x=2 \cdot n+1$. If $x^{\prime}=2 \cdot n+1$, we have $x=2 \cdot$ Sn.

We remark that the proof uses simply typed applications of the eliminators for sigma and sum types for destructuring the inductive hypothesis. As usual we do not mention these type-theoretic details.
Fact 10.2.2 Let $F: \forall x^{N} . \Sigma n .(x=2 \cdot n)+(x=2 \cdot n+1)$ and $D$ and $M$ be functions $\mathrm{N} \rightarrow \mathrm{N}$ defined as follows:

$$
\begin{aligned}
D x & :=\operatorname{LET}\left(n,{ }_{-}\right)=F x \text { IN } n \\
M x:=\operatorname{LET}\left({ }_{-}, a\right) & =F x \text { IN IF } a \text { THEN } 0 \text { ELSE } 1
\end{aligned}
$$

Then $\forall x . x=2 \cdot D x+M x$ and $\forall x . M x \leq 1$.
Proof The let expressions used in the definitions of $D$ and $M$ are notation for simply typed applications of the eliminator for sigma types. The conditional in the definition of $M$ is notation for a simply typed application of the eliminator for sum types.

We fix $x$ and prove $x=2 \cdot D x+M x$ and $D x \leq 1$. Let $F x=(n, a)$.
If $a=\mathrm{L}_{-}$, we have $x=2 \cdot n, D x=n$, and $M x=0$. Thus $x=2 \cdot D x+M x$ and $M x \leq 1$.

If $a=\mathrm{R}_{-}$, we have $x=2 \cdot n+1, D x=n$, and $M x=1$. Thus $x=2 \cdot D x+M x$ and $M x \leq 1$.

The type-theoretic details of the proof can be elaborated and verified with a proof assistant. On paper, one follows mathematical intuition and ignores type-theoretic details as done above. In case of doubt, one elaborates the informal proof with a proof assistant.

We provide a few remarks on the type-theoretic details of the above proof. The equation $x=2 \cdot D x+M x$ is shown after unfolding of $D$ and $M$ (conversion rule) by destructuring $F x$ into $(n, a)$ (dependently typed application of eliminator for sigma types) and destructuring $a$ (simply typed application of the eliminator for sum types). If interested, elaborate the proof with the proof assistant so that all destructuring is done by explicitly applying the eliminators for sigma and sum types.

Note that Fact 10.2.2 makes explicit that a definition of the assumed certifying division function $F$ is not available for the proof.

We remark that in proof mode eliminators are typically used as certifying functions whose definition is not needed (here the eliminators for numbers in Fact 10.2.1, and the eliminators for sum types and sigma types in Fact 10.2.2). The exception are the applications of the eliminators in the local definitions of $D$ and $M$ in Fact 10.2.2, where the defining equations of the eliminators are needed for the proof.

Exercise 10.2.3 (Certifying distance function)
Prove $\forall x y^{\mathrm{N}} \Sigma z^{\mathrm{N}} .(x+z=y) \vee(y+z=x)$.
Hint: Induction on $x$ with $y$ quantified.

## Exercise 10.2.4 (Equational match function for numbers)

Construct a certifying function $\forall x^{\mathrm{N}} .(x=0)+(\Sigma k . x=S k)$.
Exercise 10.2.5 (Equational match function for sum types)
Construct a certifying function $\forall a^{X+Y} .(\Sigma x . a=\mathrm{L} x)+(\Sigma y \cdot a=\mathrm{R} y)$.

## Exercise 10.2.6 (Certifying division by 2)

Assume a function $F: \forall x^{\mathrm{N}} \Sigma n .(x=2 n)+(x=2 n+1)$.
a) Use $F$ to define a function that for a number $x$ yields a pair $(n, k)$ such that $x=2 n+k$ and $k$ is either 0 or 1 . Prove the correctness of your function.
b) Use $F$ to define a function $N \rightarrow B$ that tests whether a number is even. Prove the correctness of your function.

## Exercise 10.2.7 (Certifying division by 2)

Define a recursive function $N \rightarrow N \times B$ such that

$$
\forall x . \operatorname{LET}(n, b)=f x \text { IN } x=2 \cdot n+\text { IF } b \text { THEN } 0 \text { ELSE } 1
$$

Verify the correctness statement.

## Exercise 10.2.8 (Functional characterization)

Prove $\operatorname{sig} p \Leftrightarrow \forall Z^{\mathbb{T}} .(\forall x . p x \rightarrow Z) \rightarrow Z$. Note that the equivalence is analogous to the impredicative characterization of existential quantification.

Exercise 10.2.9 Prove that double negated existential quantification agrees with double negated sigma quantification: $\neg \neg \operatorname{ex} p \longleftrightarrow \neg(\operatorname{sig} p \rightarrow \perp)$.

Exercise 10.2.10 Define a function $\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} . \operatorname{sig} p \rightarrow \operatorname{ex} p$. Note that a converse function exp $\rightarrow \operatorname{sig} p$ cannot be defined because of the propositional discrimination restriction.

### 10.3 Translation Theorems

We can translate between certifying and boolean deciders for types and equality. Using sigma types, we can state this fact formally.

Recall the notation for certifying deciders for type functions:

$$
\operatorname{dec}\left(p^{X \rightarrow \mathbb{T}}\right):=\forall x \cdot \mathcal{D}(p x)
$$

A function of type $\operatorname{dec}\left(p^{X \rightarrow \mathbb{T}}\right)$ decides for every $x$ whether the type $p x$ is inhabited. In case $p x$ is inhabited, a witness is returned, and otherwise a proof $p x \rightarrow \perp$.

## Fact 10.3.1 (Decider translations)

1. $\forall X^{\mathbb{T}} . \mathcal{E}(X) \Leftrightarrow \Sigma f^{X \rightarrow X \rightarrow \mathrm{~B}} . \forall x y . x=y \longleftrightarrow f x y=$ true
2. $\forall X \forall p^{X \rightarrow \mathbb{T}} . \operatorname{dec} p \Leftrightarrow \Sigma f^{X \rightarrow \mathrm{~B}} . \forall x . p x \Leftrightarrow f x=$ true

Proof We argue (1), claim (2) is similar.
Suppose we have certifying equality decider $d$ for $X$. Then

$$
f x y:=\mathrm{IF} d x y \text { THEN true ELSE false }
$$

satisfies the equivalence.
Suppose we have a boolean function $f$ deciding equality on $x$. Then we have $p x$ if $f x y=$ true, and $p x \rightarrow \perp$ if $f x y=$ false.

Often it is convenient to specify a function $f^{X \rightarrow Y}$ with a type function $p^{X \rightarrow Y \rightarrow \mathbb{T}}$ such that $\forall x \cdot p x(f x)$. Given the specification, we may construct either a simply typed function $f$ as specified, or a certifying function $F: \forall x . \Sigma y . p x y$ giving us both $f$ and its correctness proof. In most cases it turns out that constructing a certifying function $F: \forall x . \Sigma y . p x y$ first is the way to go. For a concrete example consider the type function $\lambda x n .(x=2 \cdot n)+(x=2 \cdot n+1)$ specifying a certifying division function as discussed in $\S 10.2$

## Fact 10.3.2 (Skolem translations)

$\forall X Y^{\mathbb{T}} \forall p^{X \rightarrow Y \rightarrow \mathbb{T}} .(\forall x \Sigma y . p x y) \Leftrightarrow(\Sigma f . \forall x . p x(f x))$.
Proof Suppose we have a certifying function $F: \forall x \Sigma y . p x y$. Then

$$
f x:=\operatorname{LET}\left(y,,_{-}\right)=F x \operatorname{IN} y
$$

satisfies $p x(f x)$ for all $x$. The other direction is obvious since $p x(f x)$.
We speak of Skolem translations since there is a ressemblance with Skolem functions in first-order logic.

You may have noticed that in the proofs of the translation theorems we omitted all type-theoretical details. Discussing them on paper would just be too boring. As always, we recommend stepping through the accompanying Coq scripts. The scripts in turn hide considerable type-theoretic detail since they rely on Coq's destructuring facilities. If you want to see more, do the proofs following the scripts but do all destructuring with explicit eliminator applications.

### 10.4 Projections

We assume a type function $p: X \rightarrow \mathbb{\mathbb { }}$ and define projections yielding the first and the second component of a dependent pair $a^{\operatorname{sig} p}$ :

$$
\begin{array}{ll}
\pi_{1}: \operatorname{sig} p \rightarrow X & \pi_{2}: \forall a^{\operatorname{sig} p} \cdot p\left(\pi_{1} a\right) \\
\pi_{1}(x, y):=x & \pi_{2}(x, y):=y
\end{array}
$$

Note that the type of $\pi_{2}$ is given using the projection $\pi_{1}$. The use of $\pi_{1}$ is necessary since the type of the second component of $a$ depends on the first component of $a$. Type checking the defining equation of $\pi_{2}$ requires a conversion step applying the defining equation of $\pi_{1}$.
Fact 10.4.1 (Eta Law) $\forall a^{\operatorname{sig} p} . a=\left(\pi_{1} a, \pi_{2} a\right)$.
Proof By computational equality after destructuring of $a$.
Using the projections we can describe the Skolem translations from Fact 10.3.2 concisely as terms.

$$
\begin{aligned}
\lambda F \cdot\left(\lambda x \cdot \pi_{1}(F x), \lambda x . \pi_{2}(F x)\right) & :(\forall x \Sigma y \cdot p x y) \rightarrow(\Sigma f . \forall x \cdot p x(f x)) \\
\lambda a x .\left(\pi_{1} a x, \pi_{2} a x\right) & :(\Sigma f \cdot \forall x \cdot p x(f x)) \rightarrow(\forall x \Sigma y \cdot p x y)
\end{aligned}
$$

We emphasize that in practice one would establish the Skolem translations in proof mode (see Fact 10.3.2). Still writing the term descriptions using a proof assistant is fun and demonstrates the smooth working of implicit argument inference and type conversion.

Exercise 10.4.2 Define a simply typed match function

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{T}} \forall Z^{\mathbb{T}} \cdot \operatorname{sig} p \rightarrow(\forall x \cdot p x \rightarrow Z) \rightarrow Z
$$

using the projections $\pi_{1}$ and $\pi_{2}$.
Exercise 10.4.3 Construct the eliminator for sigma types as a certifying function using the projections and the eta law (Fact 10.4.1).

Exercise 10.4.4 Express the projections $\pi_{1}$ and $\pi_{2}$ for sigma types with terms $t_{1}$ and $t_{2}$ using the eliminator $\mathrm{E}_{\Sigma}$ such that $\pi_{1} \approx t_{1}$ and $\pi_{2} \approx t_{2}$.

## Exercise 10.4.5 (Certifying Distance)

Assume a function $D: \forall x y^{\mathrm{N}} \Sigma z .(x+z=y)+(y+z=x)$ and prove the following:
a) $\pi_{1}(D x y)=(x-y)+(y-x)$.
b) $\pi_{1}($ D 37$)=4$.
c) $x-y=\operatorname{IF} \pi_{2}(D x y)$ THEN 0 ELSE $\pi_{1}(D x y)$.

Note that a definition of $D$ is not needed for the proofs since all information needed about $D$ is in its type. Hint: For (a) and (c) discriminate on $D x y$ and simplify. What remains are equations involving truncating subtraction only.

Exercise 10.4.6 (Propositional Skolem) Due to the propositional discrimination restriction for existential quantification, the direction $\rightarrow$ of the Skolem correspondence cannot be shown for all types $X$ and $Y$ if $\Sigma$-quantification is replaced with existential quantification. (The unprovability persists if excluded middle is assumed.) There are two noteworthy exceptions. Prove the following:
a) $\forall Y^{\mathbb{T}} \forall p^{\mathrm{B} \rightarrow Y \rightarrow \mathbb{P}} .(\forall x \exists y \cdot p x y) \rightarrow \exists f \forall x \cdot p x(f x)$.
b) $\forall X^{\mathbb{T}} \forall Y^{\mathbb{P}} \forall p^{X \rightarrow Y \rightarrow \mathbb{P}}$. $(\forall x \exists y \cdot p x y) \rightarrow \exists f \forall x \cdot p x(f x)$.

Remarks: (1) The boolean version (a) generalizes to all finite types $X$ presented with a covering list. (2) The unprovability of the propositional Skolem correspondence persists if the law of excluded is assumed. The difficulty is in proving the existence of the function $f$ since functions must be constructed with computational principles. (3) In the literature, $f$ is often called a choice function and the direction $\rightarrow$ of the Skolem correspondence is called a choice principle.

Exercise 10.4.7 (Existential quantification) Existential quantifications ex $X p$ are subject to the propositional discrimination restriction if and only if $X$ is not a propositional types. Thus a function extracting the witness can only be defined if $X$ is a proposition.
a) Define projections $\pi_{1}$ and $\pi_{2}$ for quantifications ex $X p$ where $X$ is a proposition.
b) Prove $a=\mathrm{E}\left(\pi_{1} a\right)\left(\pi_{2} a\right)$ for all $a$ : ex $X p$ where $X$ is a proposition.

## Exercise 10.4.8 (Injectivity laws)

One would think that the injectivity laws for dependent pairs

$$
\begin{aligned}
& \mathrm{E} x y=\mathrm{E} x^{\prime} y^{\prime} \rightarrow x=x^{\prime} \\
& \mathrm{E} x y=\mathrm{E} x y^{\prime} \rightarrow y=y^{\prime}
\end{aligned}
$$

are both provable. While the first law is easy to prove, the second law cannot be shown in general in computational type theory. This certainly conflicts with intuitions that worked well so far. The problem is with subtleties of dependent type checking and conversion. In Chapter 30, we will show that the second injectivity law holds if we assume proof irrelevance, or if the type of the first component discrete.
a) Prove the first injectivity law.
b) Try to prove the second injectivity law. If you think you have found a proof on paper, check it with Coq to find out where it breaks. The obvious proof idea that rewrites $\pi_{2}$ (Exy) to $\pi_{2}\left(\mathrm{E} x y^{\prime}\right)$ does not work since there is no well-typed rewrite predicate validating the rewrite.

### 10.5 Truncations

We define a type constructor $\square: \mathbb{T} \rightarrow \mathbb{P}$ mapping a type $X$ to a proposition $\square X$ such that $\square X$ is provable if and only if $X$ is inhabited:

$$
\square(X: \mathbb{T}): \mathbb{P}::=\mathrm{T}(X)
$$

We call $\square$ truncation operator and $\square X$ the truncation of $X$. Moreover, we may read a proposition $\square X$ as $X$ is inhabited. Truncation deletes computational information but keeps propositional information. The propositional discrimination restriction applies to truncations $\square X$ except if $X$ is a proposition. It turns out that conjunction, disjunction, and existential quantification can be characterized by the truncations of their computational counterparts (pair types, sum types, and sigma types).

Fact 10.5.1 (Logical truncations)

1. $(P \wedge Q) \longleftrightarrow \square(P \times Q)$.
2. $(P \vee Q) \longleftrightarrow \square(P+Q)$.
3. $(\exists x \cdot p x) \longleftrightarrow \square(\Sigma x \cdot p x)$.

Fact 10.5.2 (Characterizations of truncations)

1. $\forall X^{\mathbb{T}}$. $\square X \longleftrightarrow \forall P^{\mathbb{P}} .(X \rightarrow P) \rightarrow P$.
2. $\forall X^{\mathbb{T}} . \square X \longleftrightarrow \exists x^{X}$.Т.
3. $\forall P^{\mathbb{P}}, ~ \square(P) \longleftrightarrow P$.

Exercise 10.5.3 Define a simply typed match function for inhabitation types and prove the facts stated above.

Exercise 10.5.4 Prove the following truncation laws:
a) $X \rightarrow \square X$
b) $\square X \rightarrow(X \rightarrow \square Y) \rightarrow \square Y$
c) $\square X \rightarrow(X \rightarrow \perp) \rightarrow \perp$
d) $\mathrm{XM} \rightarrow \square X \vee(X \rightarrow \perp)$

Exercise 10.5.5 Think of $\square(\operatorname{sig} p)$ as existential quantification and prove the following:
a) $\forall x^{X} . p x \rightarrow \square(\operatorname{sig} p)$.
b) $\forall Z^{\mathbb{P}} . \square(\operatorname{sig} p) \rightarrow(\forall x \cdot p x \rightarrow Z) \rightarrow Z$.

Exercise 10.5.6 (Advanced material) We define the type functions

$$
\begin{aligned}
\text { choice } X Y & :=\forall p^{X \rightarrow Y \rightarrow \mathbb{P}} \cdot(\forall x \exists y \cdot p x y) \rightarrow \exists f \forall x \cdot p x(f x) \\
\text { witness } X & :=\forall p^{X \rightarrow \mathbb{P}} \cdot \operatorname{ex} p \rightarrow \operatorname{sig} p
\end{aligned}
$$

You will show that there are translations between $\forall X Y^{\mathbb{T}}$. choice $X Y$ and $\square\left(\forall X^{\mathbb{T}}\right.$. witness $\left.X\right)$. The translation from choice to witness needs to navigate cleverly around the propositional discrimination restriction. The presence of the inhabitation operator is essential for this direction.
a) Prove $\square\left(\forall X^{\mathbb{T}}\right.$. witness $\left.X\right) \rightarrow\left(\forall X Y^{\mathbb{T}}\right.$. choice $\left.X Y\right)$.
b) Prove $\left(\forall X Y^{\mathbb{T}}\right.$. choice $\left.X Y\right) \rightarrow \square\left(\forall X^{\mathbb{T}}\right.$. witness $\left.X\right)$.
c) Convince yourself that the equivalence

$$
\left(\forall X Y^{\mathbb{T}} \text {. choice } X Y\right) \longleftrightarrow \square\left(\forall X^{\mathbb{T}} \text {. witness } X\right)
$$

is not provable since the two directions require different universe levels for $X$ and $Y$.

Hints. For (a) use $f:=\lambda x \cdot \pi_{1}(W Y(p x)(F x))$ where $W$ is the witness operator and $F$ is the assumption from the choice operator. For (b) use the choice operator with the predicate $\lambda a^{\Sigma(X, p) \cdot \operatorname{ex} p} \cdot \lambda b^{\Sigma(X, p) \cdot \operatorname{sig} p} . \pi_{1} a=\pi_{1} b$ where $p^{X \rightarrow \mathbb{P}}$. Keeping the arguments of the predicate abstract makes it possible to obtain the choice function $f$ before the inhabitation operator is removed. The proof idea is taken from the Coq library ChoiceFacts.

### 10.6 Notes

Sum and sigma types may be seen as computational variants of disjunctions and existential quantifications. While sum types provide disjoint unions of types, sigma types are dependent pair types where the type of the second component depends on the first component (similar to a dependent function type where the type of the result depends on the argument). With sum and sigma types we can write function types specifying an input-output relation. Using such informative function types, we can construct functions together with their correctness proofs, which often is superior to a separate construction of the function and the correctness proof. We speak of certifying functions if the type of the function includes the relational specification of the function. It turns out that the abstract techniques for proof construction (e.g., induction) apply to the construction of certifying functions starting from their types, thus eliminating the need to start with defining equations. Certifying functions are an essential feature of constructive type theories having no equivalent in set-theoretic mathematics. With informative types we can describe computational situations often lacking adequate descriptions in set-theoretic language.

Mathematics comes with a rich language for describing proofs. Using this language, we can write informal proofs for human readers that can be elaborated into formal proofs when needed. The tactic level of the Coq proof assistant provides an abstraction layer for the elaboration of informal proofs making it possible to delegate to the proof assistant the type-theoretic details coming with formal proofs.

It turns out that the idea of informal proof extends to the construction of certifying functions, which are functions whose type encompasses an input-output relation. The proof-style construction of certifying functions turns out to be beneficial in practice. It comes for free in a proof assistant since the tactic level addresses types in general, not just propositional types. The proof-style construction of certifying functions is guided by the specifying type and uses high-level building blocks like induction. Often, one shows a for-all-exists lemma $\forall x^{X} \Sigma y^{Y} . p x y$ and then extracts a function $f^{X \rightarrow Y}$ and a correctness lemma $\forall x . p x(f x)$.

Most propositions have functional readings. Once we describe propositions as computational types using sum and sigma types, their proofs become certifying functions that may be used in computational contexts. Certifying functions carry their specifications in their types and may be seen as computational lemmas. Like propositional lemmas, certifying functions are best described with high-level proof outlines, which may be translated into formal proof terms using the tactic interpreter of a proof assistant.

Product, sum, and sigma types are obtained as inductive types. In contrast to the propositional variants, where simply typed eliminators suffice, constructions involving product, sum, and sigma types often require dependently typed elimina-
tors. Existential quantifications and sigma types are distinguished from the other inductive types we have encountered so far in that their value constructors model a dependency between witness and certificate using a type function.

Computational type theory originated with Martin-Löf type theory [22]. In contrast to the type theory we are working in, Martin-Löf type theory does not have a special universe for propositions but accommodates propositions as ordinary types. So there is no propositional discrimination restriction and there are no propositional variants of product, sum and sigma types. This simplicity comes at the price that assumptions like excluded middle can only be formulated for all types, which is not meaningful (but consistant). Having an impredicative universe of propositions is a key feature of the computational type theory underlying the Coq proof assistant [9].

## 11 Linear Arithmetic

Numbers $0,1,2, \ldots$ are the basic recursive data structure. Starting from the inductive definition of numbers, we study the algebraic properties of addition and truncating subtraction. Comparisons $x \leq y$ will be obtained as equations $x-y=0$.

The system obtained with addition and subtraction of numbers is called linear arithmetic. Proof assistants come with automatic provers for linear arithmetic freeing users from knowing the basic lemmas for numbers. Linear arithmetic provers realize an abstraction level that is commonly used in informal proofs.

We also define multiplication and prove its basic algebraic properties.
Studying linear arithmetic in computational type theory starting from first principles is fun. As always, the thrill is in finding the right definitions and the right theorems in the right order. There is beauty and elegance in the development presented here.

### 11.1 Inductive Definition of Numbers

The type of numbers $0,1,2 \ldots$ is obtained with an inductive definition

$$
\mathrm{N}::=0 \mid \mathrm{S}(\mathrm{~N})
$$

introducing three constructors:

$$
N: \mathbb{T}, \quad 0: N, \quad S: N \rightarrow N
$$

Based on the inductive type definition, we can define inductive functions. A basic inductive function is the eliminator providing for matches and inductive proofs:

```
\(\mathrm{E}_{\mathrm{N}}: \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall x \cdot p x \rightarrow p(\mathrm{~S} x)) \rightarrow \forall x \cdot p x\)
 \(\mathrm{E}_{\mathrm{N}} p e_{1} e_{2} 0:=e_{1}\)
\(\mathrm{E}_{\mathrm{N}} p e_{1} e_{2}(\mathrm{~S} x):=e_{2} x\left(\mathrm{E}_{\mathrm{N}} p a f x\right)\)
```

A discussion of the eliminator appears in §5.4. Matches for numbers can be obtained as applications of the eliminator where no use of the inductive hypothesis is made. Or more directly, a specialized elimination function for matches omitting the inductive hypothesis can be defined.

We shall often use the if-then-else notation for zero testing:

$$
\text { IF } s \text { THEN } s_{1} \text { ELSE } s_{2} \quad \leadsto \quad \text { MATCH } s\left[0 \Rightarrow s_{1} \mid S_{-} \Rightarrow s_{2}\right]
$$

Fact 11.1.1 (Constructor laws)

1. $\mathrm{S} x \neq 0$
2. $\mathrm{S} x=\mathrm{S} y \rightarrow x=y$
(injectivity)
Proof The results follow with matches, rewriting, and conversion. The proofs are discussed in §4.3.

Exercise 11.1.2 Prove $\mathrm{S} x \neq x$.

### 11.2 Addition

We accommodate addition of numbers with an inductive function:

$$
\begin{aligned}
&+: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& 0+y:=y \\
& \mathrm{~S} x+y:=\mathrm{S}(x+y)
\end{aligned}
$$

Fact 11.2.1 (Commutativity) $x+y=y+x$.
Proof By induction on $y$ using the lemmas $x+0=x$ and $x+\mathrm{S} y=\mathrm{S} x+y$. Both lemmas follow by induction on $x$.

We remark that addition is not symmetric at the level of computational equality although it is commutative at the level of propositional equality. This unpleasant situation cannot be avoided in the type theory we work in.
Fact 11.2.2 (Associativity) $(x+y)+z=x+(y+z)$.
Proof By induction on $x$.
Associativity and commutativity of addition are used tacitly in informal proofs. If we omit parentheses for convenience, they are inserted from the left: $x+y+z \leadsto$ $(x+y)+z$. Quite often the symmetric versions $x+0=x$ and $x+\mathrm{S} y=\mathrm{S}(x+y)$ of the defining equations will be used.

Fact 11.2.3 (Zero propagation) $x+y=0 \longleftrightarrow x=0 \wedge y=0$.
Proof By discrimination on $x$ and constructor disjointness.
Fact 11.2.4 (Injectivity) $x+y=x+y^{\prime} \rightarrow y=y^{\prime}$
Proof By induction on $x$.
Corollary 11.2.5 (Injectivity) $x+y=x \rightarrow y=0$.
Proof Follows with injectivity since $x=x+0$.
Corollary 11.2.6 (Contradiction) $x+\mathrm{S} y \neq x$.
Proof Follows with injectivity since $x=x+0$.

### 11.3 Subtraction

We define (truncating) subtraction of numbers as an inductive function that yields 0 whenever the standard subtraction operation for integers yields a negative number:

$$
\begin{aligned}
&-: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& 0-y:=0 \\
& \mathrm{~S} x-0:=\mathrm{S} x \\
& \mathrm{~S} x-\mathrm{S} y:=x-y
\end{aligned}
$$

The recursion is on the first argument. The successor case is realized with a secondary discrimination on the second argument.

Fact 11.3.1 $x-0=x$.
Proof Discrimination of $x$ and computational equality.
Fact 11.3.2

1. $x+y-x=y$
2. $x-(y+z)=x-y-z$

Proof Both claims follow by induction on $x$. For the first claim, discrimination on $y$ is needed in the zero case. For the second claim, discrimination on $y$ is needed in the successor case, and $y$ the inductive hypothesis must quantify $y$.

## Corollary 11.3.3

1. $x-x=0$
2. $x-(x+y)=0$

### 11.4 Comparisons

We define comparisons using truncating subtraction:

$$
x \leq y:=(x-y=0)
$$

We define the usual notational variants for comparisons:

$$
\begin{aligned}
& x<y:=\mathrm{S} x \leq y \\
& x \geq y:=y \leq x \\
& x>y:=y<x
\end{aligned}
$$

We refer to the predicate $(\leq): N \rightarrow N \rightarrow \mathbb{P}$ as order relation.

## 11 Linear Arithmetic

Fact 11.4.1 The following equations hold by computational equality:

1. $(\mathrm{S} x \leq \mathrm{S} y)=(x \leq y)$
2. $0 \leq x$
3. $0<\mathrm{S} x$

Fact 11.4.2

1. $x \leq x+y$
2. $x \leq x$
3. $x \leq \mathrm{S} x$
4. $x-y \leq x$

Proof (1) follows with Fact 11.3.3(2). (2) and (3) follow from (1). (4) follows with Fact 11.3.2(2) and (1).

Fact 11.4.3 (Additive characterization) $x \leq y \longleftrightarrow x+(y-x)=y$.
Proof By induction on $x$ with $y$ quantified followed by discrimination on $y$.
Fact 11.4.4 (Antisymmetry) $x \leq y \rightarrow y \leq x \rightarrow x=y$.
Proof Follows by equational reasoning after $x \leq y$ is replaced with the additive characterization.

## Fact 11.4.5 (Transitivity)

1. $x \leq y \rightarrow y \leq z \rightarrow x \leq z$
2. $x<y \rightarrow y \leq z \rightarrow x<z$
3. $x \leq y \rightarrow y<z \rightarrow x<z$

Proof For (1), replace $z$ and then $y$ in the claim with the additive characterization for the assumptions. The reduced claim follows with Fact 11.4.2(1).
(2) is an instance of (1), and (3) is an instance of (1) modulo conversion.

Fact 11.4.6 $x-y=S z \rightarrow y<x$.
Proof By induction on $x$ with $y$ quantified followed by discrimination on $y$ in the successor case.

## Fact 11.4.7 (Contradictions)

1. $(x<0) \rightarrow \perp$
2. $(x+y<x) \rightarrow \perp$
3. $(x<x) \rightarrow \perp$

Proof (1) follows by the disjointness constructor law. (2) follows by Fact 11.3.2(1). (3) follows from (2).

Fact 11.4.8 (Negative Characterizations)

1. $x \leq y \longleftrightarrow(y<x \rightarrow \perp)$
2. $x<y \longleftrightarrow(y \leq x \rightarrow \perp)$

Proof (2) is a conversion instance of (1). (1) follows by induction on $y$ followed by discrimination on $y$ with $y$ quantified in the inductive hypothesis.

Exercise 11.4.9 (Equality by contradiction)
Prove $(x<y \rightarrow \perp) \rightarrow(y<x \rightarrow \perp) \rightarrow x=y$.
Exercise 11.4.10 Prove the following:
a) $x \leq y \rightarrow x \leq \mathrm{S} y$
b) $x<y \rightarrow x \leq y$
c) $x+y \leq z \rightarrow x \leq z$
d) $x \leq y \rightarrow x \leq y+z$
e) $x+y \leq x+z \longleftrightarrow y \leq z$.
f) $y>0 \rightarrow y-\mathrm{S} x<y$.

### 11.5 Arithmetic Testers and Deciders

We say that a function $f: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ is reducible if $f s t$ reduces to a canonical term whenever $s$ and $t$ are canonical terms. Addition and subtraction are reducible functions.

We say that a reducible function $f: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ is an arithmetic tester for a predicate $p: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathbb{P}$ if the proposition IF $f x y$ THEN $p x$ ELSE $\neg p x$ is provable.

Fact 11.5.1 Predicates that have an arithmetic tester have a certifying decider.
Proof Trivial.

## Fact 11.5.2 (Arithmetic testers)

The predicates $x \leq y, x<y$, and $x=y$ have arithmetic testers:

$$
\begin{aligned}
& \text { IF } x-y \text { THEN } x \leq y \text { ELSE } \neg(x \leq y) \\
& \text { IF } S x-y \text { THEN } x<y \text { ELSE } \neg(x<y) \\
& \text { IF }(x-y)+(y-x) \text { THEN } x=y \text { ELSE } x \neq y
\end{aligned}
$$

Proof All three propositions follow by discrimination on the guard of the propositional. For the third proposition we need memorizing discrimination. In the zero case, zero propagation (Fact 11.2.3) gives us $x \leq y$ and $y \leq x$, so the claim follows with antisymmetry. In the successor case, we assume $x=y$ and obtain a contradiction with constructor disjointness since $(x-x)+(x-x)=0$ with Fact 11.3.3(1).

## 11 Linear Arithmetic

## Corollary 11.5.3 (Certifying deciders)

The predicates $x \leq y, x<y$, and $x=y$ have certifying deciders.
Based on Fact 11.5 .2 we shall use the notations

```
IF s}\leqt\mathrm{ THEN u ELSE v u IF s-t THEN u ELSE v
IF }s<t\mathrm{ THEN }u\mathrm{ ELSE v m IF S s-t THEN u ELSE v
IF s=t THEN u ELSE v m IF (s-t)+(t-s) THEN u ELSE v
```


## Definition 11.5.4 (Certifying Deciders)

a) $\forall x y \cdot(x \leq y)+(y<x)$
b) $\forall x y \cdot(x \leq y) \rightarrow(x<y)+(x=y)$
c) $\forall x y .(x \leq y) \rightarrow(y \leq \mathrm{S} x) \rightarrow(x=y)+(y=\mathrm{S} x)$

Proof Claim (a) can be obtained with the decider for $\leq$ and the negative characterizations for $<$.

Claim (b) can be obtained with the decider for $=$ the negative characterizations for $<$, and antisymmetry.

Claim (c) can be obtained by applying (a) to both assumptions, which yields 3 easy cases and a contradictory case $x<y<\mathrm{S} x$, which yields $x<x$ with conversion and transitivity.

Exercise 11.5.5 Define a boolean decider for $x \leq y$ and prove its correctness.

### 11.6 Linear Arithmetic Prover

Proof assistants come with terminating provers that for linear arithmetic propositions construct a proof whenever the proposition is provable. Linear arithmetic propositions are obtained with $=, \leq, \perp, \rightarrow$, $\wedge$, and $\vee$ from linear arithmetic expressions obtained with + , - , and S from numbers and variables. In Coq a linear arithmetic prover is available through the automation tactic lia (linear integer arithmetic). A linear arithmetic prover frees the user from knowing the lemmas for linear arithmetic, a service making a dramatic difference with more involved proofs where the details of linear arithmetic would be overwhelming. A linear arithmetic prover will for instance find a proof for $\neg(x>y) \longleftrightarrow \neg(x \geq y) \vee \neg(x \neq y)$.

From now on we will write proofs involving numbers assuming the abstraction level provided by linear arithmetic.

Coq defines comparisons $x \leq y$ with an inductive type constructor, which is quite different from our definition. The difference doesn't matter if comparisons are handled with lia, and we will do this from now on.

Coq's automation tactic lia cannot do type sums. Still, a certifying decider like $\forall x y .(x \leq y)+(y<x)$ can be constructed with a single memorizing arithmetic discrimination and linear arithmetic. The trick is matching on the number $x-y$, which determines the result decision. The certificates are then obtained with the linear arithmetic prover. Similar ideas work for the other deciders in §11.5.

Exercise 11.6.1 Define the certifying deciders in §11.5 in Coq using in each case a single memorizing arithmetic discrimination and the linear arithmetic prover lia.

### 11.7 Multiplication

We accommodate addition of numbers with a recursively defined function:

$$
\begin{aligned}
& \cdot \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& 0 \cdot y:=0 \\
& \mathrm{~S} x \cdot y:=y+x \cdot y
\end{aligned}
$$

With this definition the equations

$$
0 \cdot y=0 \quad 1 \cdot y=y+0 \quad 2 \cdot y=y+(y+0)
$$

hold by computational equality.

## Fact 11.7.1 (Distributivity)

a) $(x+y) \cdot z=x \cdot z+y \cdot z$
b) $(x-y) \cdot z=x \cdot z-y \cdot z$

Proof Both equations follow by induction on $x$ and linear arithmetic. For the equation with subtraction discrimination on $y$ is needed in the successor case. Hence $y$ must be quantified in the inductive hypothesis.

Fact 11.7.2 (Associativity) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
Proof By induction on $x$. The successor case follows with distributivity over "+". ■
Fact 11.7.3 (Commutativity) $x \cdot y=y \cdot x$.
Proof By induction on $y$ using $x \cdot 0=0$ in the zero case and $x \cdot \mathrm{~S} y=x+x \cdot y$ in the successor case. Both lemmas follow by induction on $x$. The successor case of the successor lemma needs linear arithmetic.

### 11.8 Notes

The inclined reader may compare the computational development of linear arithmetic given here with Landau's [21] classical set-theoretic development from 1929.

## 12 More Types

The main tool for relating types are injections and bijections. We consider injections and bijections that come with inverse functions. For the types of injections and bijections dependent tuple types are needed. We shall use customised inductive types for injection and bijection types. We show Cantor's theorem for injections. We also show that sigma types can represent sum types and product types up to bijection.

We discuss option types $\mathcal{O}(X)$, which extend a type $X$ with an extra element. Option types $\mathcal{O}(X)$ may be defined as sum types $X+\mathbb{1}$, but we shall use a dedicated inductive type constructor. For option types, we construct a function that from a bijection between $\mathcal{O}(X)$ and $\mathcal{O}(Y)$ obtains a bijection between $X$ and $Y$. For the construction a cleverly designed certifying function is essential.

We then discuss two prominent type families $\mathrm{N}_{n}$ and $\mathrm{V}_{n} X$ known as numeral types and vector types. We obtain both families by structural recursion on the index $n$ using option types and product types. Numeral types are finite types $\mathcal{O}^{n} \perp$ obtained by applying the option type constructor to void. Vector types are sequence types $(\lambda Y \cdot X \times Y)^{n} \mathbb{1}$ obtained by nesting pair types starting with unit. Both constructions make full use of type conversion.

We remark that the basic notions discussed in this chapter (injections, bijections, numerals, vectors) are computational refinements of notions that have been studied in set theory for a long time.

### 12.1 Injections and Bijections

Given a function $f^{X \rightarrow Y}$, we say that a function $g^{Y \rightarrow X}$ inverts $f$ if $\forall x . g(f x)=x$. We also say that $g$ is an inverse function for $f$. We may picture the inversion property as a roundtrip property allowing us to go with $f$ from $X$ to $Y$ and to return with $g$ from $Y$ to $X$ to exactly the $x$ we started from. It will be convenient to have the inversion predicate

$$
\begin{aligned}
& \text { inv: } \forall X Y^{\mathbb{T}} \cdot(X \rightarrow Y) \rightarrow(Y \rightarrow X) \rightarrow \mathbb{P} \\
& \operatorname{inv}_{X Y} g f:=\forall x \cdot g(f x)=x
\end{aligned}
$$

## Fact 12.1.1 (Inverse functions)

1. $\operatorname{inv} g f \rightarrow$ injective $f \wedge$ surjective $g$.
2. inv $g f \rightarrow$ surjective $f \vee$ injective $g \rightarrow \operatorname{inv} f g$.
3. All inverse functions of a surjective function agree:
surjective $f \rightarrow \operatorname{inv} g f \rightarrow \operatorname{inv} g^{\prime} f \rightarrow \forall y . g y=g^{\prime} y$.
Proof The proofs are straightforward but interesting. Exercise.
We define injection types

$$
\mathcal{I}(X: \mathbb{T}, Y: \mathbb{T}): \mathbb{T}::=\mathbb{I}(f: X \rightarrow Y, g: Y \rightarrow X, \operatorname{inv} g f)
$$

and call their inhabitants injections. An injection $\mathcal{I X Y}$ is an embedding of the type $X$ into the type $Y$ where different elements of $X$ are mapped to different elements of $Y$. We say that $X$ embeds into $Y$ or that $X$ is a retract of $Y$ if there is an injection $\mathcal{I X Y}$.

Technically, injection types are specialized dependent tuple types. An injection type $\mathcal{I} X Y$ can be expressed as a nested sigma type $\Sigma f^{X \rightarrow Y} \Sigma g^{Y \rightarrow X}$. inv $g f$.

Fact 12.1.2 (Reflexivity and Transitivity)
$\mathcal{I} X X$ and $\mathcal{I} X Y \rightarrow I Y Z \rightarrow \mathcal{I} X Z$.
Proof Exercise.
Fact 12.1.3 (Transport)
$\mathcal{I X Y} \rightarrow \mathcal{E}(Y) \rightarrow \mathcal{E}(X)$.
Proof By Fact 9.5 .2 it suffices to have an injective function $X \rightarrow Y$, which exists by Fact 12.1.1.

Fact 12.1.4 (Cantor) $\mathcal{I}(X \rightarrow \mathrm{~B}) X \rightarrow \perp$. That is, $X \rightarrow \mathrm{~B}$ does not embed into $X$.
Proof Follows from Fact 8.3.4 since the inverse function of the embedding function is surjective.

A bijection is a symmetric injection where the two functions invert each other in either direction. We define bijection types

$$
\mathcal{B}(X: \mathbb{T}, Y: \mathbb{T}): \mathbb{T}::=\mathrm{B}(f: X \rightarrow Y, g: Y \rightarrow X, \operatorname{inv} g f, \operatorname{inv} f g)
$$

and call their inhabitants bijections.
We say that two types $X$ and $Y$ are in bijection if there is a bijection $\mathcal{B} X Y$. Bijectivity is a basic notion in mathematics. A bijection between $X$ and $Y$ establishes a one-to-one correspondence between the elements of $X$ and the elements of $Y$.

Speaking informally, a bijection between $X$ and $Y$ says that $X$ and $Y$ are renamed versions of each other. This is not necessarily the case for an injection $\mathcal{I X Y}$ where the target type $Y$ may have elements not appearing as images of elements of the source type $X$.

Fact 12.1.5 $\mathcal{B} X Y \rightarrow \mathcal{I} X Y \times \mathcal{I} Y X$.
Fact 12.1.6 (Reflexivity, Symmetry, Transitivity)
Bijectivity is a computational equivalence relation on types:
$\mathcal{B} X X, \mathcal{B} X Y \rightarrow \mathcal{B} Y X$, and $\mathcal{B} X Y \rightarrow \mathcal{B} Y Z \rightarrow \mathcal{B} X Z$.
Fact 12.1.7 All empty types are in bijection: $(X \rightarrow \perp) \rightarrow(Y \rightarrow \perp) \rightarrow \mathcal{B} X Y$.
Proof We have functions $X \rightarrow \perp$ and $Y \rightarrow \perp$. Computational falsity elimination gives us functions $X \rightarrow Y$ and $Y \rightarrow X$. The inversion properties hold vacuously with the assumptions.

Note that computational falsity elimination is essential in this proof.
We have already established a prominent bijection.
Fact 12.1.8 $\mathrm{N} \times \mathrm{N}$ and N are in bijection.
Proof Arithmetic pairing as developed in Chapter 6.
Fact 12.1.9 (Sigma types can express product and sum types)
Sigma types can express product types $X \times Y$ and sum types $X+Y$ up to bijection.

1. $X \times Y$ and $\operatorname{sig}\left(\lambda x^{X}\right.$. $\left.Y\right)$ are in bijection.
2. $X+Y$ and $\operatorname{sig}\left(\lambda b^{\text {B }}\right.$. IF $b$ THEN $X$ ELSE $\left.Y\right)$ are in bijection.

Proof The functions for the bijections can be defined with the simply typed match function for sigma types. The proofs of the roundtrip equations, however, require the dependently typed eliminator (with one exception).

Exercise 12.1.10 Prove the claims of all facts stated without proofs.
Exercise 12.1.11 Give a function $f^{\mathrm{N} \rightarrow \mathrm{N}}$ that has two non-agreeing inverse functions.
Exercise 12.1.12 (Boolean functions) Prove the following:
a) A function $B \rightarrow B$ is injective if and only if it is surjective.
b) Every injective function $B \rightarrow B$ agrees with either the identity or boolean negation.
c) Every injective function $B \rightarrow B$ has itself as unique inverse function: $\forall f^{\mathrm{B} \rightarrow \mathrm{B}} . \operatorname{inv} f f \wedge(\forall g . \operatorname{inv} g f \rightarrow$ agree $g f)$.
Hint: A proof assistant helps to manage the necessary case analysis.

Exercise 12.1.13 Show that $\mathrm{N} \rightarrow \mathrm{N} \rightarrow X$ and $\mathrm{N} \rightarrow X$ are in bijection.
Exercise 12.1.14 Show that the following types are in bijection using bijection types.
a) $B$ and $T+T$.
b) $X \times Y$ and $Y \times X$.
c) $X+Y$ and $Y+X$.
d) $X$ and $X \times$.

## Exercise 12.1.15

Show that $\mathcal{B} X Y$ and $\Sigma f^{X \rightarrow Y} \Sigma g^{Y \rightarrow X}$. inv $g f \wedge \operatorname{inv} f g$ are in bijection:
a) $\mathcal{B} X Y \Leftrightarrow \Sigma f^{X \rightarrow Y} \Sigma g^{Y \rightarrow X}$. inv $g f \wedge \operatorname{inv} f g$.
b) $\mathcal{B}(\mathcal{B} X Y)\left(\sum g^{Y \rightarrow X} . \operatorname{inv} g f \wedge \operatorname{inv} f g\right)$.

Exercise 12.1.16 Prove $\mathcal{B} N B \rightarrow \perp$.
Exercise 12.1.17
Prove that bijections transport equality deciders: $\mathcal{B} X Y \rightarrow \mathcal{E}(X) \rightarrow \mathcal{E}(Y)$.

### 12.2 Option Types

Given a type $X$, we may see the sum type $X+\mathbb{1}$ as a type extending $X$ with an additional element. Such one-element extensions are often useful and can be accommodated with dedicated inductive types called option types:

$$
\mathcal{O}(X: \mathbb{T}): \mathbb{T}::={ }^{\circ} X \mid \emptyset
$$

The inductive type definition introduces the constructors

$$
\begin{aligned}
\mathcal{O} & : \mathbb{T} \rightarrow \mathbb{T} \\
\circ & : \forall X^{\mathbb{T}} \cdot X \rightarrow \mathcal{O}(X) \\
\emptyset: & \forall X^{\mathbb{T}} \cdot \mathcal{O}(X)
\end{aligned}
$$

We treat the argument $X$ of the value constructors as implicit argument. Following language from functional programming, we pronounce the constructors ${ }^{\circ}$ and $\emptyset$ as some and none. We offer the intuition that $\emptyset$ is the new element and that ${ }^{\circ}$ injects the elements of $X$ into $\mathcal{O}(X)$.

## Fact 12.2.1 (Equality deciders)

Option types transport equality deciders in both directions:
$\forall X^{\mathbb{T}} . \mathcal{E}(X) \Leftrightarrow \mathcal{E}(\mathcal{O}(X))$.
Proof Direction $\rightarrow$ follows by discrimination on options and both constructor laws for options. Direction $\leftarrow$ follows with the injectivity of the some constructor.

## Bijection Theorem for Option Types

Given a bijection between $\mathcal{O}(X)$ and $\mathcal{O}(Y)$, we can construct a bijection between $X$ and $Y$. This intuitively clear result needs a technically involved proof using a certifying function.

Suppose $f$ and $g$ provide a bijection between $\mathcal{O}(X)$ and $\mathcal{O}(Y)$. We first define a bijective function $X \rightarrow Y$. To map $x$, we look at $f\left({ }^{\circ} x\right)$. If $f\left({ }^{\circ} x\right)={ }^{\circ} y$, we map $x$ to $y$. If $f\left({ }^{\circ} x\right)=\emptyset$, we have $f \emptyset={ }^{\circ} y$ for some $y$ and map $x$ to $y$. The other direction is symmetric.

Defining a function $X \rightarrow Y$ as described above involves a computational falsity elimination. For this reason we work with a cleverly designed certifying function so that the definition of the function is not needed for proving the required properties.

Lemma 12.2.2 Let $g$ invert $f^{\mathcal{O}(X) \rightarrow \mathcal{O}(Y)}$. Then
$\forall x \Sigma y$. MATCH $f\left({ }^{\circ} x\right)\left[{ }^{\circ} y^{\prime} \Rightarrow y=y^{\prime} \mid \emptyset \Rightarrow f \emptyset={ }^{\circ} y\right]$.
Proof Case analysis of $f\left({ }^{\circ} x\right)$. If $f\left({ }^{\circ} x\right)={ }^{\circ} y$, we return $y$. If $f\left({ }^{\circ} x\right)=\emptyset$, we do case analysis on $f \emptyset$. If $f \emptyset={ }^{\circ} y$, we return $y$. Otherwise, we have a contradiction since $g$ inverts $f$. We finish with computational falsity elimination.

Theorem 12.2.3 (Bijection) $\forall X Y . \mathcal{B}(\mathcal{O}(X))(\mathcal{O}(Y)) \rightarrow \mathcal{B} X Y$.
Proof Let $f$ and $g$ provide a bijection $\mathcal{B}(\mathcal{O}(X))(\mathcal{O}(Y))$. By Lemma 12.2.2 we obtain functions $f^{\prime}: X \rightarrow Y$ and $g^{\prime}: Y \rightarrow X$ such that

$$
\begin{aligned}
& \forall x . \text { MATCH } f\left({ }^{\circ} x\right)\left[{ }^{\circ} y \Rightarrow f^{\prime} x=y \mid \emptyset \Rightarrow f \emptyset={ }^{\circ} f^{\prime} x\right] \\
& \forall y . \text { MATCH } g\left({ }^{\circ} y\right)\left[{ }^{\circ} x \Rightarrow g^{\prime} y=x \mid \emptyset \Rightarrow g \emptyset={ }^{\circ} g^{\prime} y\right]
\end{aligned}
$$

We show $g^{\prime}\left(f^{\prime} x\right)=x$, the other inversion follows analogously. We discriminate on $f^{\circ} x$. If $f^{\circ} x={ }^{\circ} y$, we have $g^{\circ} y={ }^{\circ} x$ and $g^{\prime}\left(f^{\prime} x\right)=x$ follows. If $f^{\circ} x=\emptyset$, we have $f \emptyset={ }^{\circ} y$ for some $y$ and $g^{\prime}\left(f^{\prime} x\right)=x$ follows.

## Exercise 12.2.4 (Eliminator and constructor laws)

Define an eliminator for option types and use it to prove the constructor laws. Follow the techniques used for numbers in §4.3.

Exercise 12.2.5 Prove $\forall a^{\mathcal{O}(X)} . a \neq \emptyset \Leftrightarrow \Sigma x . a={ }^{\circ} x$.
The direction $\rightarrow$ needs computational falsity elimination.
Exercise 12.2.6 Prove $\forall f^{X \rightarrow \mathcal{O}(Y)} .(\forall x . f x \neq \emptyset) \rightarrow \forall x \Sigma y . f x={ }^{\circ} y$.
Note the need for computational falsity elimination. Show that assuming the above claim yields computational falsity elimination in the form $\forall X^{\mathbb{T}} . \perp \rightarrow X$ (instantiate with $X:=\perp, Y:=X$, and $f=\lambda_{-} . \emptyset$ ).

Exercise 12.2.7 Prove $\forall x^{\mathcal{O}^{3} \perp} . x=\emptyset \vee x={ }^{\circ} \emptyset \vee x={ }^{\circ} \emptyset$.
Exercise 12.2.8 (Bijectivity) Show that the following types are in bijection:
a) $\top$ and $\mathcal{O} \perp$.
c) $\mathcal{O}(X)$ and $X+\mathrm{T}$.
b) B and $\mathcal{O}^{2} \perp$.
d) N and $\mathcal{O}(\mathrm{N})$.

Exercise 12.2.9 Prove $\mathcal{B} X Y \rightarrow \mathcal{B}(\mathcal{O} X)(\mathcal{O} Y)$.
Exercise 12.2.10 Prove the bijection theorem with the proof assistant not looking at the code we provide. Formulate a lemma providing for the two symmetric cases in the proof of Theorem 12.2.3.

Exercise 12.2.11 (Counterexample) Find a type $X$ and functions $f: X \rightarrow \mathcal{O}(X)$ and $g: \mathcal{O}(X) \rightarrow X$ such that you can prove inv $g f$ and disprove inv $f g$.

## Exercise 12.2.12 (Truncating subtraction with flag)

Define a recursive function $f: \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathcal{O}(\mathrm{N})$ that yields ${ }^{\circ}(x-y)$ if the subtraction $x-y$ doesn't truncate, and $\emptyset$ if the subtraction $x-y$ truncates. Prove the equation $f x y=\operatorname{IF} y-x$ THEN $^{\circ}(x-y) \operatorname{ELSE} \emptyset$.

Exercise 12.2.13 (Kaminski reloaded)
Prove $\forall f^{\mathcal{O}^{3} \perp \rightarrow \mathcal{O}^{3} \perp} \forall x . f^{8}(x)=f^{2}(x)$.
Hint: Prove $\forall x^{\mathcal{O}^{3} \perp} . x=\emptyset \vee x={ }^{\circ} \emptyset \vee x={ }^{\circ} \emptyset$ and use it to enumerate $x, f x, f^{2} x$, and $f^{3} x$. This yields $3^{4}$ cases, all of which are solved by Coq's congruence tactic.

### 12.3 Numeral Types

We define numeral types recursively:

$$
\begin{aligned}
\mathrm{N}_{0} & :=\perp \\
\mathrm{N}_{\mathrm{S} n} & :=\mathcal{O}\left(\mathrm{N}_{n}\right)
\end{aligned}
$$

By construction, $\mathrm{N}_{n}$ is a finite type with $n$ elements. For instance, the elements of $N_{3}$ are $\emptyset,{ }^{\circ} \emptyset,{ }^{\circ} \emptyset$. We may think of the elements of $N_{S n}$ as the numbers $0, \ldots, n$. Formally, numeral types are obtained with an inductive function $\mathrm{N} \rightarrow \mathbb{T}$.

Fact 12.3.1 (Equality Deciders) $\mathcal{E}\left(\mathrm{N}_{n}\right)$.

Proof By induction on $n$ using Facts 9.5.1(1) and 12.2.1.
We can now give a formal definition of what it means that a type has $n$ elements.
Definition 12.3.2 A type $X$ has cardinality $n$ if it is in bijection with $\mathrm{N}_{n}$. Moreover, a type $X$ is finite if it is in bijection with some numeral type $\mathrm{N}_{n}$.

We would like to prove that a type $X$ has at most one cardinality. Suppose $X$ is in bijection with $\mathrm{N}_{m}$ and $\mathrm{N}_{n}$. Then $\mathrm{N}_{m}$ and $\mathrm{N}_{n}$ are in bijection.

Fact 12.3.3 (Cardinality) $\mathcal{B} \mathrm{N}_{m} \mathrm{~N}_{n} \rightarrow m=n$.

Proof By induction on $m$ and discrimination on $n$ with $n$ quantified in the inductive hypothesis. There are three nontrivial cases, two of which follows by contradiction since $\mathrm{N}_{0}$ and $\mathrm{N}_{S k}$ cannot be in bijection. The remaining case $\mathcal{B} \mathrm{N}_{\mathrm{Sm}} \mathrm{N}_{\mathrm{S} n} \rightarrow \mathrm{Sm}=$ $\mathrm{S} n$ follows with the bijection theorem 12.2.3 for option types and the inductive hypothesis.

## Exercise 12.3.4 (Decidable quantification)

Let $d$ be a certifying decider for $p: \mathrm{N}_{n} \rightarrow \mathbb{T}$. Prove the following:
a) $(\Sigma x \cdot p x)+(\forall x \cdot p x \rightarrow \perp)$
b) $\mathcal{D}(\forall x \cdot p x)$
c) $\mathcal{D}(\Sigma x \cdot p x)$

Hint: Use induction on the cardinality $n$.

### 12.4 Vector Types

Vectors are sequences $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of values from a common base type. We define vector types $\mathrm{V}_{n} X$ recursively:

$$
\begin{aligned}
\mathrm{V}_{0} X & :=\mathbb{1} \\
\mathrm{V}_{\mathrm{S} n} X & :=X \times \mathrm{V}_{n} X
\end{aligned}
$$

Formally, vector types are obtained with an inductive function $\mathrm{V}: \mathrm{N} \rightarrow \mathbb{\mathbb { T }} \rightarrow \mathbb{\mathbb { T }}$ recursing on numbers and representing vectors as nested pairs. ${ }^{1}$ As an example, we offer

$$
(1,(2,(3, I))): V_{3} N \approx N \times(N \times(N \times \mathbb{1}))
$$

The single element of $\mathrm{V}_{0} X \approx \mathbb{1}$ is I , and the elements of $\mathrm{V}_{\mathrm{S}_{n}} X \approx X \times \mathrm{V}_{n} X$ are pairs $(x, v)$ where $x: X$ and $v: \mathrm{V}_{n} X$.

Fact 12.4.1 (Equality deciders) $\mathcal{E}(X) \rightarrow \mathcal{E}\left(\vee_{n} X\right)$.
Proof By induction on $n$. We have a decider $\mathcal{E}\left(\mathrm{V}_{0} X\right)$ since $\mathrm{V}_{0} X \approx \perp$. Moreover, we have a decider $\mathcal{E}\left(\mathrm{V}_{\mathrm{S}_{n}} X\right)$ since $\mathrm{V}_{\mathrm{S} n} X \approx X \times \mathrm{V}_{n} X$, we have a decider $\mathcal{E}(X)$, and the inductive hypothesis gives us a decider $\mathcal{E}\left(\mathrm{V}_{n} X\right)$.

[^9]
## 12 More Types

Vector types can be seen as refinement of list types where in addition to the element type the length is prescribed. We define a dedicated constant nil for the empty vector and list-style operations cons, hd, and tl:

```
nil: }\forallX., \mp@subsup{V}{0}{}
nil := |
```



```
consXn xv := (x,v)
```




```
hd Xn (x,v):= x
```

```
hd Xn (x,v):= x
```




```
tl Xn (x,v) := v
```

```
tl Xn (x,v) := v
```

Note that we have defined hd and tl as inductive functions and that conversion is needed for type checking the patterns of the defining equations. We remark that for list types hd cannot be defined as a total function since we don't have a default value for the empty list. We will treat $X$ and $n$ as implicit arguments.

Fact 12.4.2 (Eta law) cons $(\operatorname{hd} a)(\mathrm{tl} a)=a$.
Proof Discrimination on $a: \mathrm{V}_{S_{n}} X$ and computational equality.
We define a function returning arithmetic vectors:

```
enum : \(\mathrm{N} \rightarrow \forall n . \mathrm{V}_{n} \mathrm{~N}\)
 enum \(k 0:=\) nil
enum \(k(S n):=\operatorname{cons} k(\operatorname{enum}(S k) n)\)
```

For instance, we have enum $13 \approx$ cons 1 (cons 2 (cons 3 nil)).
Exercise 12.4.3 (Tuple types) Tuple types generalize vector types in that they determine their component types with a type function $N \rightarrow \mathbb{T}$ :

```
tup:(N->\mathbb{T})->N->\mathbb{T}
 tup p 0:= I
tup p(Sn):= pn\times\operatorname{tup}pn
```

Construct functions as follows:
a) $\forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot(\forall n$. tup $p n \rightarrow p n) \rightarrow \forall n$. tup $p n$
b) $\forall p^{N \rightarrow \mathbb{T}} \cdot(\forall n \cdot \operatorname{tup} p n \rightarrow p n) \rightarrow \forall n \cdot p n$

### 12.4.1 Position Element Maps

We may number the positions of a vector from left to right starting with 0 . We define a function that given a vector and a position returns the element at the position:

$$
\begin{aligned}
\text { sub: } \forall X n . \mathrm{V}_{\mathrm{S} n} X & \rightarrow \mathrm{~N} \rightarrow X \\
\operatorname{sub} X 0 v k & :=\operatorname{hd} v \\
\operatorname{sub} X(\mathrm{Sn}) v 0 & :=\operatorname{hd} v \\
\operatorname{sub} X(\mathrm{Sn}) v(\mathrm{Sk}) & :=\operatorname{sub} X n(\mathrm{t} \mid v) k
\end{aligned}
$$

Note that the primary discrimination is on $n$. Also note that the type of sub ensures that in case the given position $k$ is too large the last element of the vector can be returned.

Note that the numeral type $\mathrm{N} n$ has exactly as many elements as the vectors of type $\mathrm{V}_{n}$ have positions. Using numerals, we can define a safe position element map always returning the element at the given position:

$$
\begin{aligned}
& \text { sub' }^{\prime}: \forall X n . \mathrm{V}_{n} X \rightarrow \mathrm{~N}_{n} \rightarrow X \\
& \operatorname{sub}^{\prime} X 0 v a:=\mathrm{E}_{\perp} X a \\
& \operatorname{sub}^{\prime} X(\mathrm{Sn}) v{ }^{\circ} a:=\operatorname{sub}^{\prime} X n(\mathrm{tl} v) a \\
& \operatorname{sub}^{\prime} X(\mathrm{~S} n) v \emptyset:=\mathrm{hd} v
\end{aligned}
$$

Note the use of the eliminator for void in the contradictory case handled by the first defining equation.

Exercise 12.4.4 We treat $X$ and $n$ as implicit arguments of sub and sub'. Prove the following equations. For each equation, first determine the most general type for $v$.

$$
\begin{array}{lrl}
\operatorname{sub} v 0 & =\mathrm{hd} v & \operatorname{sub}^{\prime} v \emptyset
\end{array}=\text { hd } v .
$$

## Exercise 12.4.5

a) Define a function last : $\forall X n . \vee_{S_{n} X} \rightarrow X$ returning the element at the last position of a vector.
b) Prove $\forall v^{\mathrm{V}_{\mathrm{sn}} X}$. sub $v n=$ last $v$.
c) Define a function snoc: $\forall X n . \mathrm{V}_{n} \rightarrow X \rightarrow \mathrm{~V}_{\mathrm{S} n}$ appending an element at the end of a vector.
d) Prove last $(\operatorname{snoc} v x)=x$.
e) Define a function rev: $\forall X n . \mathrm{V}_{n} X \rightarrow \mathrm{~V}_{n} X$ reversing a vector.
f) Prove $\operatorname{rev}(\operatorname{rev} v)=v$.

### 12.4.2 Concatenation

We define a concatenation operation for vectors.

```
con: }\forallXmn.\mp@subsup{V}{m}{}X->\mp@subsup{\textrm{V}}{n}{}X->\mp@subsup{\textrm{V}}{m+n}{}
 conX0nvw := w
con X(Sm)nvw := cons(hdv)(con Xmn(tlv)w)
```

We treat $X, m, n$ as implicit arguments and write $v+w$ for con $v w$.
Now suppose we have three vectors $u: \mathrm{V}_{m} X, v: \mathrm{V}_{n} X, w: \mathrm{V}_{k} X$. Then the two concatenations

$$
\begin{aligned}
(u+v)+w & : \mathrm{V}_{(n+m)+k} X \\
u+(v+w) & : \mathrm{V}_{n+(m+k)} X
\end{aligned}
$$

have incompatible types (that is, nonconvertible types) although they yield the same value. Thus the associativity law for vector concatenation cannot be expressed directly. The problem goes away if $m, n$, and $k$ are concrete numbers rather than variables.

The type checking problem can be bypassed with a dedicated cast function:

$$
\begin{aligned}
\text { cast : } \forall X m n k . & \mathrm{V}_{(m+n)+k} X \rightarrow \mathrm{~V}_{m+(n+k)} X \\
\operatorname{con} X 0 n k v & :=v \\
\operatorname{con} X(\mathrm{Sm}) n k v & :=\operatorname{cons}(\mathrm{hd} v)(\text { cast } X m n k(\mathrm{t} \mid v))
\end{aligned}
$$

We treat $X, m, n, k$ as implicit arguments.
Fact 12.4.6 (Associativity)
$\forall u^{\mathrm{V}_{m} X} \forall v^{\mathrm{V}_{n} X} \forall w^{\mathrm{V}_{k} X}$. cast $((u+v)+w)=u+(v+w)$.
Proof By induction on $m$ with $u$ quantified. Straightforward.
The formulation and proof of the associativity law for vector concatenation come with massive type conversion and with massive elaboration of implicit arguments. This is quite feasible with a proof assistant but too tedious to be done with pen and paper.

Exercise 12.4.7 Prove $\mathrm{V}_{(n+m)+k} X=\mathrm{V}_{n+(m+k)} X$.
Exercise 12.4.8 Convince yourself that the equation

$$
\text { (enum } 03+\text { enum } 33)+ \text { enum } 63=\text { enum } 03+(\text { enum } 33+\text { enum } 63)
$$

type checks and holds by computational equality.

## 13 Indexed Inductives

Indexed inductive type definitions are generalized inductive type definitions where the target types of value constructors may instantiate nonparametric arguments (called indices) of their type constructors. Indexed inductive type definitions provide for the formalization of derivation systems as they appear in the study of proof systems, computational systems, and programming languages.

We discuss indexed inductives at the example of two derivation systems, one for the reflexive transitive closure of relations, and one for arithmetic comparisons. We also model numeral types and vector types as indexed inductive types and show that the inductive formalizations are in bijection with non-inductive formalizations employing arithmetic recursion.

It turns out that the constants for equality can be defined as indexed inductives, and that the inductive definition adds properties to the Leibniz characterization of equality that are of foundational interest.

### 13.1 Inductive Equality

We start with inductive equality since its indexed inductive definition is particularly simple. Recall that we have accommodated equality with three constants (§4.2):

$$
\begin{aligned}
\text { eq } & : \forall X^{\mathbb{T}} . X \rightarrow X \rightarrow \mathbb{P} \\
\mathrm{Q} & : \forall X^{\mathbb{T}} \forall x^{X} . \text { eq } X x x \\
\mathrm{R} & : \forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . \text { eq } X x y \rightarrow p x \rightarrow p y
\end{aligned}
$$

We can obtain eq and Q with an indexed inductive definition:

$$
\begin{aligned}
& \text { eq }(X: \mathbb{T}, x: X): X \rightarrow \mathbb{P}::= \\
& \text { । } \mathbb{Q}: \text { eq } X x x
\end{aligned}
$$

Note that the target type of the constructor Q is eq $X x x$ and not eq $X x y$. This means that only $X$ and $x$ are parametric arguments of eq $X x y$, and that $y$ is a nonparametric argument. Following common speak we will refer to nonparametric arguments of type constructors as indices. The extra freedom coming with indexical arguments of type constructors is that they can be freely instantiated in the target types of value constructors.

## 13 Indexed Inductives

We can now obtain the rewriting constant R with an inductive function definition:

$$
\begin{aligned}
& \mathrm{R}: \forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{T}} . \text { eq } X x y \rightarrow p x \rightarrow p y \\
& \mathrm{R} X x_{-} p_{-} \mathrm{Q} a:=a
\end{aligned}
$$

The definition discriminates on the inductive argument of type eq $X x y$. Note that the value constructor Q equates the variables $x$ and $y$ in the defining equation. Also note that the pattern of the defining equation of R gives the argument $y$ with an underline. The accounts for the fact that the argument $y$ of R is determined by the discrimination with Q .

We have defined R with a general type function $p^{X \rightarrow \mathbb{T}}$ rather than just a predicate $p^{X \rightarrow \mathbb{P}}$. This is possible since the inductive predicate eq is computational since the value Q has no proper argument.

There is a single but important restriction on the types of inductive functions discriminating on arguments of indexed inductive types: The indexed argument type must be given with variables in the index positions that don't occur otherwise in the argument type. We speak of the index condition. The index condition disallows an inductive function discriminating on an argument of type eq $X x x$, for instance.

Inductive equality has a number of properties Leibniz equality doesn't have, an issue we will study in Chapter 30.

### 13.2 Reflexive Transitive Closure

We may see a relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$ as a description of a graph with vertices in $X$ and edges $R x y$. We will write $R^{*} x y$ if there is a path $x \rightarrow \cdots \rightarrow y$ from $x$ to $y$ in the graph described by $R$. We may characterize $R^{*} x y$ with two derivation rules:

$$
\overline{R^{*} x x} \quad \frac{R x y \quad R^{*} y z}{R^{*} x z}
$$

The first rule says that for every $x: X$ there is a path $R^{*} x x$. The second rule says that there is a path $R^{*} x z$ if there is an edge $R x y$ and a path $R^{*} y z$.

We formalize the notation $R^{*} x y$ and the two derivation rules with an indexed inductive predicate star defined as follows:

$$
\begin{aligned}
& \operatorname{star}(X: \mathbb{T})(R: X \rightarrow X \rightarrow \mathbb{P})(x: X): X \rightarrow \mathbb{P}::= \\
& \text { | Nil }: \operatorname{star} X R x x \\
& \text { | Cons: } \forall y z . R x y \rightarrow \operatorname{star} X R y z \rightarrow \operatorname{star} X R x z
\end{aligned}
$$

We now write $R^{*}$ for the relation $\operatorname{star} X R$. Note that a proof of $R^{*} x y$ with the constructors Nil and Cons describes a path from $x$ to $y$. We may see an inductive
proposition $R^{*} x y$ as the type of all paths from $x$ to $y$. We remark that the inductive formalization of $R^{*}$ is minimal in that it doesn't presuppose numbers or lists.

Considering the inductive predicate star $X R x y$ from a formal point of view, the arguments $X$ and $R$ are uniform parameters, $x$ is a nonuniform parameter, and $y$ is an index. That $y$ is an index is forced by the type of the constructor Nil.

Let $p$ and $p^{\prime}$ be predicates $X \rightarrow X \rightarrow \mathbb{P}$. We define inclusion of predicates as one would expect:

$$
p \subseteq p^{\prime}:=\forall x y . p x y \rightarrow p^{\prime} x y
$$

The relation $R^{*}$ is known as the reflexive transitive closure of the relation $R$. This speak is justified since every reflexive and transitive relation that contains $R$ also contains $R^{*}$. We are going to prove this fact.

Fact 13.2.1 (Inclusion) $R \subseteq R^{*}$.
Proof Let $R x y$. We show $R^{*} x y$. We have $R^{*} y y$ with Nil. Thus $R^{*} x y$ with Cons.
We would like to prove that the relation $R^{*}$ is transitive; that is, if there are paths $R^{*} x y$ and $R^{*} y z$, then there is a path $R^{*} x z$. We prove this fact by induction on the first path $R^{*} x y$.

Fact 13.2.2 (Transitivity) $R^{*} x y \rightarrow R^{*} y z \rightarrow R^{*} x z$.
Proof By induction on the path $R^{*} x y$. If $R^{*} x y$ is obtained with Nil, we have $x=y$ and the claim is trivial. If $R^{*} x y$ is obtained with Cons, we have an edge $R x x^{\prime}$ and a shorter path $R^{*} x^{\prime} y$. The inductive hypothesis gives us a path $R^{*} x^{\prime} z$. Now we obtain a path $R^{*} x z$ with Cons.

To formalize the path induction in the transitivity proof, we need an eliminator function for the inductive predicate star. An eliminator function with the type

$$
\begin{aligned}
\mathrm{E}: & \forall X \forall R \forall p^{X \rightarrow X \rightarrow \mathbb{P}} . \\
& (\forall x \cdot p x x) \rightarrow \\
& (\forall x y z \cdot R x y \rightarrow p y z \rightarrow p x z) \rightarrow \\
& \forall x y \cdot R^{*} x y \rightarrow p x y
\end{aligned}
$$

will suffice. For the transitivity proof E can be used with the target predicate

$$
p x y:=R^{*} y z \rightarrow R^{*} x z
$$

assuming that $z$ is introduced outside. The formalization of the proof is now straightforward. While checking the details with paper and pencil is tedious, constructing the formal proof with the proof assistant is pleasant. See the accompanying Coq file.

We define the eliminator function E following its type

$$
\begin{aligned}
\mathrm{E}: & \forall X \forall R \forall p^{X \rightarrow X \rightarrow \mathbb{P}} . \\
& (\forall x \cdot p x x) \rightarrow \\
& (\forall x y z \cdot R x y \rightarrow p y z \rightarrow p x z) \rightarrow \\
& \forall x y \cdot R^{*} x y \rightarrow p x y
\end{aligned}
$$

as an inductive function discriminating on paths $R^{*} x y$ :

$$
\begin{aligned}
\mathrm{E} X R p e_{1} e_{2} x_{-} \mathrm{Nil} & :=e_{1} \\
\mathrm{E} X R p e_{1} e_{2} x_{-}\left(\text {Cons } x^{\prime} z r a\right) & :=e_{2} x x^{\prime} z r\left(\mathrm{E} X R p e_{1} e_{2} x^{\prime} z a\right)
\end{aligned}
$$

The equation for Cons may look complicated but it is just a routine construction following the types of E and Cons.

## Fact 13.2.3 (Reflexive transitive closure)

Let $p^{X \rightarrow X \rightarrow \mathbb{P}}$ be a reflexive and transitive relation. Then $R \subseteq p \rightarrow R^{*} \subseteq p$.
Proof We prove $\forall x y . R^{*} x y \rightarrow p x y$ by induction on the path $R^{*} x y$. If $R^{*} x y$ is obtained with Nil, we have $x=y$ and the claim holds since $p$ is reflexive. If $R^{*} x y$ is obtained with Cons, we have an edge $R x x^{\prime}$ and a shorter path $R^{*} x^{\prime} y$. Now $p x x^{\prime}$ since $R \subseteq p$ and $p x^{\prime} y$ by the inductive hypothesis. Hence $p x y$ since $p$ is transitive.

Exercise 13.2.4 Prove $R^{*}\left(R^{*}\right) \subseteq R^{*}$.

## Exercise 13.2.5 (Definition with arithmetic recursion)

There is an elegant definition of the relation $R^{*}$ as a recursive predicate:

$$
\begin{aligned}
& \text { path : } \forall X .(X \rightarrow X \rightarrow \mathbb{P}) \rightarrow \mathrm{N} \rightarrow X \rightarrow X \rightarrow \mathbb{P} \\
& \text { path } X R 0 x y:=x=y \\
& \text { path } X R(\mathrm{~S} n) x y:=\left(\exists x^{\prime} . R x x^{\prime} \wedge \text { path } X R n x y\right.
\end{aligned}
$$

Prove $\operatorname{star} X R x y \hookrightarrow \exists n$. path $X R n x y$.
Exercise 13.2.6 Here is another inductive definition of reflexive transitive closure:

```
\(\operatorname{star}^{\prime}(X: \mathbb{T})(R: X \rightarrow X \rightarrow \mathbb{P})(x: X): X \rightarrow \mathbb{P}::=\)
| Incl: \(\forall x y . R x y \rightarrow \operatorname{star}^{\prime} X R x y\)
| Refl: star \({ }^{\prime}\) XRxx
\(\mid\) Trans: \(\forall x y z . \rightarrow \operatorname{star}^{\prime} X R x y \rightarrow \operatorname{star}^{\prime} X R y z \rightarrow \operatorname{star}^{\prime} X R x z\)
```

Prove star $X R x y \longleftrightarrow \operatorname{star}^{\prime} X R x y$.

### 13.3 Inductive Comparisons

Two derivation rules for arithmetic comparisons $x \leq y$ are

$$
\overline{x \leq x} \quad \frac{x \leq y}{x \leq \mathrm{S} y}
$$

The rules are obviously correct. We will show that they are also complete in the sense that they can derive every valid comparison.

We formalize the derivation system comprised by the two rules with an inductive type definition:

$$
\begin{aligned}
& \text { le }(x: N): N \rightarrow \mathbb{P}::= \\
& \text { | leE: le } x x \\
& \text { | leS: } \forall y . \text { le } x y \rightarrow \text { le } x(\mathrm{~S} y)
\end{aligned}
$$

Note that in le $x y$ the argument $x$ is a uniform parameter and the argument $y$ is an index.

Completeness of the derivation system le can now be shown with induction on numbers.

Fact 13.3.1 (Completeness) $x \leq y \rightarrow$ le $x y$.
Proof By induction on $y$.
Let $y=0$. The $x=0$ and hence le $x y$ with leE.
In the successor case we assume $x \leq \mathrm{S} y$ and show le $x$ (Sy). If $x=\mathrm{S} y$, the claim follows with leE. If $x \leq y$, the inductive hypothesis gives us le $x y$. The claim follows with leS.

The other direction is intuitively obvious since both derivation rules represent valid facts about arithmetic comparisons. To do the proof formally, we need induction on derivations of comparisons le $x y$, which can be provided with an inductive function

$$
\begin{aligned}
& \mathrm{E}: \forall x \forall p^{\mathrm{N} \rightarrow \mathbb{P}} . \\
& p x x \rightarrow \\
&(\forall y \cdot p y \rightarrow p(\mathrm{~S} y)) \rightarrow \\
& \forall y \cdot x \leq y \rightarrow p y \\
& \mathrm{E} x p e_{1} e_{2}-\mathrm{leE}:=e_{1} \\
& \mathrm{E} x p e_{1} e_{2}-(\mathrm{leS} y a):=e_{2} y\left(\mathrm{E} x p e_{1} e_{2} y a\right)
\end{aligned}
$$

Fact 13.3.2 (Soundness) le $x y \rightarrow x \leq y$.
Proof By induction on the derivation of le $x y$. If le $x y$ is obtained with leE, we have $x=y$ and hence $x \leq y$. If le $x y$ is obtained with leS, we have a smaller derivation le $x y^{\prime}$ and $y=S y^{\prime}$. The inductive hypothesis gives us $x \leq y^{\prime}$, which give us the claim $x \leq \mathrm{S} y^{\prime}$.

Exercise 13.3.3 Give two derivation rules for comparisons $x<y$ and show their soundness and completeness.

### 13.4 Inductive Numeral Types

Numeral types are a family of finite types providing a canonical finite type for every cardinality. In §12.3, we obtained numeral types recursively as $\mathcal{O}^{n} \perp$. Numeral types may also be obtained as indexed inductive types:

$$
\begin{aligned}
& \text { fin: } \mathrm{N} \rightarrow \mathbb{T}::= \\
& \text { | Old : } \forall n . \text { fin } n \rightarrow \text { fin }(\mathrm{S} n) \\
& \text { | New: } \forall n . \text { fin }(\mathrm{S} n)
\end{aligned}
$$

the constructors Old and New are in correspondence with the option type constructor some and none. The definition suggests that fin $n_{0}$ is empty and that fin ${ }_{s n}$ has one more element than fin $_{n}$. We prove this fact by establishing a bijection between fin $_{n}$ and $\mathrm{N}_{n}$ :

$$
\begin{aligned}
f: \forall n . \mathrm{fin}_{n} & \rightarrow \mathrm{~N}_{n} \\
f_{-}(\text {Old } n a) & :={ }^{\circ} f n a \\
f_{-}(\text {New } n) & :=\emptyset
\end{aligned}
$$

$$
\begin{aligned}
g: \forall n . \mathrm{N}_{n} & \rightarrow \operatorname{fin}_{n} \\
g 0 a & :=\mathrm{E}_{\perp} \mathrm{fin}_{0} a \\
g(\mathrm{~S} n)^{\circ} a & :=\text { Old } n(g n a) \\
g(\mathrm{~S} n) \emptyset & :=\text { New } n
\end{aligned}
$$

The definitions of the inductive functions $f$ and $g$ clarify how the numeral types $\mathrm{fin}_{n}$ and $\mathrm{N}_{n}$ relate to each other. While the definition of $f$ is straightforward, the definition of $g$ is quite involved. In the zero case void elimination $E_{\perp}$ is needed. In the successor case a secondary discrimination on options is needed. Note that in the patterns of the equations defining $f$ the first argument $n$ is given as an underline, as is required by the fact that $n$ provides the index argument of $\mathrm{fin}_{n}$ in the type of $f$.

Fact 13.4.1 $g n(f n a)=a$.
Proof By induction on $a:$ fin $_{n}$. For the constructor Old we have the proof obligation $g(\mathrm{~S} n)(f(\mathrm{~S} n)($ Old $n a))=$ Old $n a$, which simplifies to Old $n(g n(f n a))=$ Old $n a$, which holds by the inductive hypothesis $g n(f n a)=a$. For the constructor New we have the proof obligation $g(\mathrm{~S} n)(f(\mathrm{~S} n)($ New $n))=$ New $n$, which simplifies to New $n=$ New $n$.

The proof does an induction on values of the inductive type fin $n_{n}$. The induction can be formalized with an eliminator function defined as follows:

$$
\begin{aligned}
& \mathrm{E}: \forall p^{\forall n . \mathrm{fin}_{n} \rightarrow \mathbb{T}} \\
&(\forall n a \cdot p n a \rightarrow p(\mathrm{~S} n)(\mathrm{Old} n a)) \rightarrow \\
&(\forall n \cdot p(\mathrm{~S} n)(\mathrm{New} n)) \rightarrow \\
& \forall n a \cdot p n a \\
& \mathrm{E} p e_{1} e_{2}-(\mathrm{Old} n a):=e_{1} n a\left(\mathrm{E} p e_{1} e_{2} n a\right) \\
& \mathrm{E} p e_{1} e_{2}-(\text { New } n):=e_{2} n
\end{aligned}
$$

Fact 13.4.2 $f n(g n a)=a$.
Proof By induction on $n^{N}$ and discrimination on $a^{\mathrm{N}_{n}}$. The proof obligation $f 0(g 0 a)=a$ is trivial since $a: \perp$. The proof obligation $f(\mathrm{Sn})\left(g(\mathrm{Sn})\left({ }^{\circ} a\right)\right)={ }^{\circ} a$ reduces to ${ }^{\circ} f n(g n a)={ }^{\circ} a$ and follows with the inductive hypothesis. The proof obligation $f(\mathrm{~S} n)(g(\mathrm{~S} n) \emptyset)=\emptyset$ reduces to $\emptyset=\emptyset$.

Corollary 13.4.3 The types fin $_{n}$ and $\mathrm{N}_{n}$ and are in bijection.
Exercise 13.4.4 Use the bijection between inductive and recursive numeral types to show that the inductive numeral types fin $_{n}$ have equality deciders and EWOs.

Exercise 13.4.5 We want to prove that the inductive numeral type fin ${ }_{0}$ is empty. Formally, we represent this statement with the proposition fin ${ }_{0} \rightarrow \perp$.
a) Prove $\mathrm{fin}_{0} \rightarrow \perp$ using the eliminator for inductive numeral types.
b) Prove fin $_{0} \rightarrow \perp$ using the bijection between inductive and recursive numeral types.
Hint: For (a) prove the equivalent proposition $\forall n$. fin ${ }_{n} \rightarrow n \neq 0$.

### 13.5 Inductive Vector Types

Vector types as introduced in §12.4 have an elegant definition as indexed inductive types:

```
vec (X:\mathbb{T}):N->\mathbb{T}::=
| Nil: vec X0
| Cons: }\foralln.X->\operatorname{vec}Xn->\operatorname{vec}X(\textrm{S}n
```

The constructors Nil and Cons give us the functions nil and cons we defined for the recursive representation with products and unit.

We define a bijection between inductive and recursive vector types. For simplicity we don't write the base type $X$.

```
\(f: \forall n . \operatorname{vec}_{n} \rightarrow \mathrm{~V}_{n}\)
 \(f_{-}\)Nil \(:=1\)
\(f_{-}\)(Cons nxa) := (x,fna)
```

$$
\begin{aligned}
g: \forall n . \mathrm{V}_{n} & \rightarrow \mathrm{vec}_{n} \\
g 0 a & :=\mathrm{Nil} \\
g(\mathrm{~S} n)(x, a) & :=\text { Cons } n x(g n a)
\end{aligned}
$$

The definitions demonstrate that the structure of inductive and recursive vector types is in full agreement.
Fact 13.5.1 $g n(f n a)=a$.
Proof By induction on $a: \operatorname{vec}_{n}$.
The proof obligation $g 0(f 0 \mathrm{Nil})=$ Nil simplifies to Nil $=$ Nil.
The proof obligation $g(S n)(f(S n)($ Cons $n x a))=$ Cons $n x a$ simplifies to the equation Cons $n x(g n(f n a))=$ Cons $n x a$, which follows with the inductive hypothesis.

The proof does an induction on values of inductive vector types vec ${ }_{n}$. The induction can be formalized with an eliminator function defined as follows:

```
E: \(\forall p^{\forall n . \operatorname{vec}_{n} \rightarrow \mathbb{T}}\)
 \(p 0 \mathrm{Nil} \rightarrow\)
 (\(\forall n x a . p n a \rightarrow p(\mathrm{~S} n)(\) Cons \(n x a)) \rightarrow\)
 \(\forall\) na.pna
 Epe \(e_{1} e_{2}\) Nil \(:=e_{1}\)
\(\mathrm{E} p e_{1} e_{2}\) (Cons \(\left.n x a\right):=e_{2} n x a\left(\mathrm{E} p e_{1} e_{2} n a\right)\)
```

Fact 13.5.2 $\mathrm{fn}(\mathrm{gna})=a$.
Proof By induction on $n^{\mathrm{N}}$ and discrimination on $a^{\mathrm{V}_{n}}$. The proof obligation $f 0(g 0 I)=I$ reduces to $\mathrm{I}=\mathrm{I}$. The proof obligation $f(\mathrm{~S} n)(g(\mathrm{~S} n)(x, a))=(x, a)$ reduces to $(x, f n(g n a))=(x, a)$ and follows with the inductive hypothesis.

Corollary 13.5.3 The types vec $_{n} X$ and $\mathrm{V}_{n} X$ are in bijection.
Exercise 13.5.4 Use the bijection between inductive and recursive vector types to show that inductive vector types have equality deciders and EWOs.

### 13.6 Post Correspondence Problem

Many problems in computer science have elegant specifications using inductive relations. As an example we consider the Post correspondence problem (PCP), a prominent undecidable problem providing a base for undecidability proofs. The problem involves cards with an upper and a lower string. Given a list $C$ of cards, one has to decide whether there is a nonempty list $D$ of cards in $C$ (possibly containing duplicates) such that the concatenation of all upper strings equals the concatenation of all lower strings. For instance, assuming the binary alphabet $\{a, b\}$, the list

$$
C=[a / \epsilon, b / a, \epsilon / b b]
$$

has the solution

$$
D=[\epsilon / b b, b / a, b / a, a / \epsilon, a / \epsilon]
$$

On the other hand,

$$
C^{\prime}=[a / \epsilon, b / a]
$$

has no solution.
We formalize PCP over the binary alphabet B with an inductive predicate

$$
\text { post: } \mathcal{L}(\mathcal{L}(B) \times \mathcal{L}(B)) \rightarrow \mathcal{L}(B) \rightarrow \mathcal{L}(B) \rightarrow \mathbb{P}
$$

defined with the rules

$$
\frac{(A, B) \in C}{\operatorname{post} C A B} \quad \frac{(A, B) \in C \quad \text { post } C A^{\prime} B^{\prime}}{\text { post } C\left(A+A^{\prime}\right)\left(B+B^{\prime}\right)}
$$

Note that post $C A B$ is derivable if there is a nonempty list $D \subseteq C$ of cards such that the concatenation of the upper strings of $D$ is $A$ and the concatenation of the lower strings of $D$ is $B$. Undecidability of PCP over a binary alphabet now means that there is no computable function

$$
\begin{equation*}
\forall C . \mathcal{D}(\exists A . \text { post } C A A) \tag{13.1}
\end{equation*}
$$

Since Coq's type theory can only define computable functions, we can conclude that no function of type (13.1) is definable.

As it comes to the arguments of the inductive predicate post $C A B$, the defining rules establish $C$ as a uniform parameter and $A$ and $B$ as indices.

### 13.7 Notes

The index condition is a restriction on the types of inductive function discriminating on values of indexed inductive types. It simply says that the index positions of an discriminating argument type must be given with variables not appearing otherwise in the argument type.

Recall that the proof assistant Coq simulates inductive functions as plain functions discriminating with built-in matches. There are situations called inversions in the literature where a match for an indexed inductive type does not type check although intuition says it should. An example appears as Exercise 13.4.5. The reason for the mismatch with intuition is that the the type of the inductive function explaining the match would violate the index condition.

As it comes to expressivity added by indexed inductives, inductive equality gives us something we didn't have before (see Chapter 30). Numeral types and vector types can be obtained elegantly with type functions recursing on numbers not involving indexed inductives. There is a noninductive definition of a reflexive transitive closure predicate using recursion on the path length (Exercise 13.2.5), but the representation with indexed inductives is simpler and doesn't involve numbers, which need to be erased anyway (with existential quantification) to state the transitivity law (see the discussion for vectors in §12.4.2).

Indexed inductives really pay when it comes to derivation systems as they are common in proof theory and programming languages. Examples appear in Chapters 25 (propositional deduction systems) and Chapter 27 (regular expression matching).

Section § 20.6 gives an indexed inductive predicate characterizing greatest comon divisors with three computation rules.

## 14 Extensionality

Computational type theory does not fully determine equality of functions, propositions, and proofs. The missing commitment can be added through extensionality assumptions.

### 14.1 Extensionality Assumptions

Computational type theory fails to fully determine equality between functions, propositions, and proofs:

- Given two functions of the same type that agree on all elements, computational type theory does not prove that the functions are equal.
- Given two equivalent propositions, computational type theory does not prove that the propositions are equal.
- Given two proofs of the same proposition, computational type theory does not prove that the proofs are equal.
From a modeling perspective, it would be desirable to add the missing proof power for functions, propositions, and proofs. This can be done with three assumptions expressible as propositions:
- Function extensionality
$\mathrm{FE}:=\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{T}} . \forall f g^{\forall x . p x} .(\forall x . f x=g x) \rightarrow f=g$
- Propositional extensionality
$\mathrm{PE}:=\forall P Q^{\mathbb{P}} .(P \hookrightarrow Q) \rightarrow P=Q$
- Proof irrelevance
$\mathrm{PI}:=\forall Q^{\mathbb{P}} . \forall a b^{Q} . a=b$
Function extensionality gives us the equality for functions we are used to from set-theoretic foundations. Together, function and propositional extensionality turn predicates $X \rightarrow \mathbb{P}$ into sets: Two predicates (i.e., sets) are equal if and only if they have the same witnesses (i.e., elements). Proof irrelevance ensures that functions taking proofs as arguments don't depend on the particular proofs given. This way propositional arguments can play the role of preconditions. Moreover, dependent pair types sig $p$ taken over predicates $p^{X \rightarrow \mathbb{P}}$ can model subtypes of $X$. Proof irrelevance also gives us dependent pair injectivity in the second component (§30.2).

We can represent boolean functions $f^{\mathrm{B} \rightarrow \mathrm{B}}$ as boolean pairs ( $f$ true, $f$ false). Under FE, the boolean function can be fully recovered from the pair.

Fact 14.1.1 $\mathrm{FE} \rightarrow \forall f^{\mathrm{B} \rightarrow \mathrm{B}} . \quad f=\left(\lambda a b\right.$. IF $b$ THEN $\pi_{1} a$ ELSE $\left.\pi_{2} a\right)(f$ true, $f$ false $)$.
Exercise 14.1.2 Prove the following:
a) $\mathrm{FE} \rightarrow \forall f g^{\mathrm{B} \rightarrow \mathrm{B}} . f$ true $=g$ true $\rightarrow f$ false $=g$ false $\rightarrow f=g$.
b) $\mathrm{FE} \rightarrow \forall f^{\mathrm{B} \rightarrow \mathrm{B}} .(f=\lambda b . b) \vee(f=\lambda b .!b) \vee(f=\lambda b$. true $) \vee(f=\lambda b$. false $)$.

Exercise 14.1.3 Prove the following:
a) $\mathrm{FE} \rightarrow \forall f^{\top \rightarrow \top} \cdot f=\lambda a^{\top} \cdot a$.
b) $\mathrm{FE} \rightarrow \mathcal{B}(\mathrm{T} \rightarrow \mathrm{T}) \mathrm{T}$.
c) $\mathrm{FE} \rightarrow \mathrm{B} \neq(\mathrm{T} \rightarrow \mathrm{T})$.
d) $\mathrm{FE} \rightarrow \mathcal{B}(\mathrm{B} \rightarrow \mathrm{B})(\mathrm{B} \times \mathrm{B})$.
e) $\mathrm{FE} \rightarrow \mathcal{E}(\mathrm{B} \rightarrow \mathrm{B})$.

### 14.2 Set Extensionality

Given FE and PE, predicates over a type $X$ correspond exactly to sets whose elements are taken from $X$. We may define membership as $x \in p:=p x$. In particular, we obtain that two sets (represented as predicates) are equal if they have the same elements (set extensionality). Moreover, we can define the usual set operations:

$$
\begin{array}{rlr}
\emptyset & :=\lambda x^{X} \cdot \perp & \text { empty set } \\
p \cap q & :=\lambda x^{X} \cdot p x \wedge q x & \text { intersection } \\
p \cup q & :=\lambda x^{X} \cdot p x \vee q x & \text { union } \\
p-q & :=\lambda x^{X} . p x \wedge \neg q x & \text { difference }
\end{array}
$$

Exercise 14.2.1 Prove $x \in(p-q) \longleftrightarrow x \in p \wedge x \notin q$. Check that the equation $(x \in(p-q))=(x \in p \wedge x \notin q)$ holds by computational equality.

Exercise 14.2.2 We define set extensionality as

$$
\mathrm{SE}:=\forall X^{\mathbb{T}} \forall p q^{X \rightarrow \mathbb{P}} .(\forall x \cdot p x \longleftrightarrow q x) \rightarrow p=q
$$

Prove the following:
a) $\mathrm{FE} \rightarrow \mathrm{PE} \rightarrow \mathrm{SE}$.
b) $\mathrm{SE} \rightarrow \mathrm{PE}$.
c) $\mathrm{SE} \rightarrow(\forall x . x \in p \longleftrightarrow x \in q) \rightarrow p=q$.
d) $\mathrm{SE} \rightarrow p-(q \cup r)=(p-q) \cap(p-r)$.

### 14.3 Proof Irrelevance

We call a type unique if it has at most one element:

$$
\text { unique }\left(X^{\mathbb{T}}\right):=\forall x y^{X} \cdot x=y
$$

Note that PI says that all propositions are unique.
Fact $14.3 .1 \perp$ and $T$ are unique.
Proof Follows with the eliminators for $\perp$ and $T$.
It turns out that PI is a straightforward consequence of PE .
Fact 14.3.2 PE $\rightarrow \mathrm{PI}$.
Proof Assume PE and let $a$ and $b$ be two proofs of a proposition $X$. We show $a=b$. Since $X \longleftrightarrow \mathrm{~T}$, we have $X=\mathrm{T}$ by PE. Hence $X$ is unique since $\top$ is unique. The claim follows.

Exercise 14.3.3 Prove $\mathcal{D}$ (unique $(T+\perp)$ ) and $\mathcal{D}$ (unique $(T+\top)$ ).
Exercise 14.3.4 Prove the following for all types $X$ :
a) unique $(X) \rightarrow \mathcal{E}(X)$.
b) $X \rightarrow$ unique $(X) \rightarrow \mathcal{B} X\rceil$.

Exercise 14.3.5 Prove the following:
a) Uniqueness propagates forward through surjective functions: $\forall X Y^{\mathbb{T}} \forall f^{X \rightarrow Y}$. surjective $\mathrm{f} \rightarrow$ unique $(X) \rightarrow$ unique $(Y)$.
b) Uniqueness propagates backwards through injective functions: $\forall X Y^{\mathbb{T}} \forall f^{X \rightarrow Y}$. injective $\mathrm{f} \rightarrow$ unique $(Y) \rightarrow$ unique $(X)$.

Exercise 14.3.6 Prove $\mathrm{FE} \rightarrow$ unique $(T \rightarrow T)$.
Exercise 14.3.7 Assume PI and $p^{X \rightarrow \mathbb{P}}$. Prove $\forall x y \forall a b . x=y \rightarrow(x, a)_{p}=(y, b)_{p}$.
Exercise 14.3.8 Suppose there is a function $f:(T \vee \top) \rightarrow$ B such that $f(\mathrm{LI})=$ true and $f(\mathrm{RI})=$ false. Prove $\neg \mathrm{PI}$. Convince yourself that without the propositional discrimination restriction you could define a function $f$ as assumed.

Exercise 14.3.9 Suppose there is a function $f:\left(\exists x^{\mathrm{B}} \cdot \top\right) \rightarrow \mathrm{B}$ such that $f(\mathrm{E} x \mathrm{I})=x$ for all $x$. Prove $\neg$ PI. Convince yourself that without the propositional discrimination restriction you could define a function $f$ as assumed.

Exercise 14.3.10 Assume functions $E: \mathbb{P} \rightarrow A$ and $D: A \rightarrow \mathbb{P}$ embedding $\mathbb{P}$ into a proposition $A$. That is, we assume $\forall P^{\mathbb{P}} . D(E P) \longleftrightarrow P$. Prove that $A$ is not unique. Remark: Later we will show Coquand's theorem (32.4.1), which says that $\mathbb{P}$ embeds into no proposition.

### 14.4 Notes

There is general agreement that a computational type theory should be extensional, that is, prove FE and PE. In our case, we may assume FE and PE as constants. There are general results saying that adding the extensionality assumptions is consistent, that is, does not enable a proof of falsity. There is research underway aiming at a computational type theory integrating extensionality assumptions in such a way that canonicity of the type theory is preserved. This is not the case in our setting since reduction of a term build with assumed constants may get stuck on one of the constants before a canonical term is reached.

Coq offers a facility that determines the assumed constants a constant depends on. Terms not depending on assumed constants are guaranteed to reduce to canonical terms.

We will always make explicit when we use extensionality assumptions. It turns out that most of the theory in this text does not require extensionality assumptions.

## 15 Excluded Middle and Double Negation

One of the first laws of logic one learns in an introductory course on mathematics is excluded middle saying that a proposition is either true or false. On the other hand, computational type theory does not prove $P \vee \neg P$ for every proposition $P$. It turns out that most results in computational mathematics can be formulated such that they can be proved without assuming a law of excluded middle, and that such a constructive account gives more insight than a naive account using excluded middle. On the other hand, the law of excluded middle can be formulated with the proposition

$$
\forall P^{\mathbb{P}} . P \vee \neg P
$$

and assuming it in computational type theory is consistent and meaningful.
In this chapter, we study several characterizations of excluded middle and the special reasoning patterns provided by excluded middle. We show that these reasoning patterns are locally available for double negated claims without assuming excluded middle.

### 15.1 Characterizations of Excluded Middle

We formulate the law of excluded middle with the proposition

$$
\mathrm{XM}:=\forall P^{\mathbb{P}} \cdot P \vee \neg P
$$

Computational type theory neither proves nor disproves XM . Thus it is interesting to assume XM and study its consequences. This study becomes most revealing if we assume $X M$ only locally using implication.

There are several propositionally equivalent characterizations of excluded middle. Most amazing is may be Peirce's law that formulates excluded middle with just implication.

Fact 15.1.1 The following propositions are equivalent. That is, if we can prove one of them, we can prove all of them.

1. $\forall P^{\mathbb{P}}, P \vee \neg P$ excluded middle
2. $\forall P \mathbb{P}$. $\neg \neg P \rightarrow P$ double negation
3. $\forall P^{\mathbb{P}} Q^{\mathbb{P}}$. $(\neg P \rightarrow \neg Q) \rightarrow Q \rightarrow P \quad$ contraposition
4. $\forall P^{\mathbb{P}} Q^{\mathbb{P}}$. $((P \rightarrow Q) \rightarrow P) \rightarrow P$

Peirce's law

## 15 Excluded Middle and Double Negation

Proof We prove the implications $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$.
$1 \rightarrow 2$. Assume $\neg \neg P$ and show $P$. By (1) we have either $P$ or $\neg P$. Both cases are easy.
$2 \rightarrow 3$. Assume $\neg P \rightarrow \neg Q$ and $Q$ and show $P$. By (2) it suffices to show $\neg \neg P$. We assume $\neg P$ and show $\perp$. Follows from the assumptions.
$3 \rightarrow 4$. By (3) it suffices to show $\neg P \rightarrow \neg((P \rightarrow Q) \rightarrow P))$. Straightforward.
$4 \rightarrow 1$. By (4) with $P \mapsto(P \vee \neg P)$ and $Q \mapsto \perp$ we can assume $\neg(P \vee \neg P)$ and prove $P \vee \neg P$. We assume $P$ and prove $\perp$. Straightforward since we have $\neg(P \vee \neg P)$.

A common use of XM in mathematics is proof by contradiction: To prove $s$, we assume $\neg s$ and derive a contradiction. The lemma justifying proof by contradiction is double negation:

$$
\mathrm{XM} \rightarrow(\neg P \rightarrow \perp) \rightarrow P
$$

There is another characterization of excluded middle asserting existence of counterexamples, often used as tacit assumption in mathematical arguments.

Fact 15.1.2 (Counterexample) $X M \longleftrightarrow \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .(\forall x . p x) \vee \exists x . \neg p x$.
Proof Assume XM and $p^{X \rightarrow \mathbb{P}}$. By XM we assume $\neg \exists x . \neg p x$ and prove $\forall x . p x$. By the de Morgan law for existential quantification we have $\forall x . \neg \neg p x$. The claim follows since XM implies the double negation law.

Now assume the right hand side and let $P$ be a proposition. We prove $P \vee \neg P$. We choose $p:=\lambda a^{\top} . P$. By the right hand side and conversion we have either $\forall a^{\top} . P$ or $\exists a^{\top} . \neg P$. In each case the claim follows. Note that choosing an inhabited type for $X$ is essential.

Figure 15.1 shows prominent equivalences whose left-to-right directions are only provable with XM. Note the de Morgan laws for conjunction and universal quantification. Recall that the de Morgan laws for disjunction and existential quantification

$$
\begin{aligned}
& \neg(P \vee Q) \longleftrightarrow \neg P \wedge \neg Q \text { de Morgan } \\
& \neg(\exists x \cdot p x) \longleftrightarrow \forall x \cdot \neg p x \\
& \text { de Morgan }
\end{aligned}
$$

have constructive proofs.

## Exercise 15.1.3

a) Prove the right-to-left directions of the equivalences in Figure 15.1.
b) Prove the left-to-right directions of the equivalences in Figure 15.1 using XM.

$$
\begin{aligned}
\neg(P \wedge Q) & \longleftrightarrow \neg P \vee \neg Q & & \text { de Morgan } \\
\neg(\forall x \cdot p x) & \longleftrightarrow \exists x \cdot \neg p x & & \text { de Morgan } \\
(\neg P \rightarrow \neg Q) & \longleftrightarrow(Q \rightarrow P) & & \text { contraposition } \\
(P \rightarrow Q) & \longleftrightarrow \neg P \vee Q & & \text { classical implication }
\end{aligned}
$$

Figure 15.1: Prominent equivalences only provable with XM

Exercise 15.1.4 Prove the following equivalences possibly using XM. In each case find out which direction needs XM.

$$
\begin{aligned}
& \neg(\exists x \cdot \neg p x) \longleftrightarrow \forall x \cdot p x \\
& \neg(\exists x \cdot \neg p x) \longleftrightarrow \neg \neg \forall x \cdot p x \\
& \neg(\exists x \cdot \neg p x) \longleftrightarrow \neg \neg \forall x \cdot \neg \neg p x \\
& \neg \neg(\exists x \cdot p x) \longleftrightarrow \neg \forall x . \neg p x
\end{aligned}
$$

Exercise 15.1.5 Make sure you can prove the de Morgan laws for disjunction and existential quantification (not using XM).

Exercise 15.1.6 Prove that $\forall P Q R^{\mathbb{P}} .(P \rightarrow Q) \vee(Q \rightarrow R)$ is equivalent to XM.
Exercise 15.1.7 Explain why Peirce's law and the double negation law are independent in Coq's type theory.

## Exercise 15.1.8 (De Morgan for universal quantification)

Prove XM $\longleftrightarrow \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} . \neg(\forall x \cdot p x) \rightarrow(\exists x . \neg p x)$.
Hint: For direction $\leftarrow$ prove $P \vee \neg P$ with $X:=P \vee \neg P$ and $\lambda_{-} . \perp$, and exploit that $\neg \neg(P \vee \neg P)$ is provable.

Exercise 15.1.9 (Drinker Paradox) Consider a bar populated by at least one person. Using excluded middle, one can argue that one can pick some person in the bar such that everyone in the bar drinks Wodka if this person drinks Wodka.

We assume an inhabited type $X$ representing the persons in the bar and a predicate $p^{X \rightarrow \mathbb{P}}$ identifying the persons who drink Wodka. The job is now to prove the proposition $\exists x . p x \rightarrow \forall y . p y$. Do the proof in detail and point out where XM and inhabitation of $X$ are needed. A nice proof can be done with the counterexample law Fact 15.1.2.

An informal proof may proceed as follows. Either everyone in the bar is drinking Whisky. Then we can pick any person for $x$. Otherwise, we pick a person for $x$ not drinking Whisky, making the implication vacuously true.

Exercise 15.1.10 (Drinker implies excluded middle)
When formulated in full generality

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \cdot X \rightarrow \exists x \cdot p x \rightarrow \forall y \cdot p y
$$

the drinker proposition implies excluded middle. The proof was found by Dominik Kirst in March 2023 and goes as follows. We show $P \vee \neg P$ for some proposition $P$. To do so, we instantiate the drinker proposition with the type $X:=\mathcal{O}(P \vee \neg P)$ and the predicate defined by $p\left({ }_{-}\right):=\neg P$ and $p(\emptyset):=\tau$. We now obtain some $a$ such that $p a \rightarrow \forall y . p y$. If $a$ is obtained with some, $a$ gives us a proof of the claim $P \vee \neg P$. Otherwise, we have $\forall y . p y$ and prove $\neg P$. We assume $P$ and obtain a contradiction with the some case of $p$.

Kirst's proof exploits that we are in a logical framework where proofs are values. There is a paper [30] discussing the drinker paradox and suggesting it does not imply excluded middle in a more conventional logical framework.

## Exercise 15.1.11 (Dual drinker)

Prove that the so-called dual drinker proposition

$$
\forall X \forall p^{X \rightarrow \mathbb{P}} \cdot X \rightarrow \exists x \cdot(\exists y \cdot p y) \rightarrow p x
$$

is equivalent to excluded middle.

### 15.2 Double Negation

Given a proposition $P$, we call $\neg \neg P$ the double negation of $P$. It turns out that the double negation of a quantifier-free proposition is provable even if the proposition by itself is only provable with XM. For instance,

$$
\forall P^{\mathbb{P}} . \neg \neg(P \vee \neg P)
$$

is provable. This metaproperty cannot be proved in Coq. However, for every instance a proof can be given in Coq. Moreover, for concrete propositional proof systems the translation of classical proofs into constructive proofs of the double negated claim can be formalized and verified (Glivenko's theorem 25.7.2).

There is a useful proof technique for working with double negation: If we have a double negated assumption and need to derive a proof of falsity, we can drop the double negation. The lemma behind this is an instance of the polymorphic identity function:

$$
\neg \neg P \rightarrow(P \rightarrow \perp) \rightarrow \perp
$$

With excluded middle, double negation distributes over all connectives and quantifiers. Without excluded middle, we can still prove that double negation distributes over implication and conjunction.

Fact 15.2.1 The following distribution laws for double negation are provable:

$$
\begin{aligned}
& \neg \neg(P \rightarrow Q)\longleftrightarrow \neg \neg P \rightarrow \neg \neg Q) \\
& \neg \neg(P\wedge Q) \\
& \neg \neg \top \longleftrightarrow \neg P \wedge \neg \neg Q \\
& \neg \neg \perp \longleftrightarrow \perp
\end{aligned}
$$

Exercise 15.2.2 Prove the equivalences of Fact 15.2.1.
Exercise 15.2.3 Prove the following propositions:

$$
\begin{aligned}
\neg(P \wedge Q) & \longleftrightarrow \neg \neg(\neg P \vee \neg Q) \\
(\neg P \rightarrow \neg Q) & \longleftrightarrow \neg \neg(Q \rightarrow P) \\
(\neg P \rightarrow \neg Q) & \longleftrightarrow(Q \rightarrow \neg \neg P) \\
(P \rightarrow Q) & \rightarrow \neg \neg(\neg P \vee Q)
\end{aligned}
$$

Exercise 15.2.4 Prove $\neg(\forall x . \neg p x) \longleftrightarrow \neg \neg \exists x . p x$.
Exercise 15.2.5 Prove the following implications:

$$
\begin{aligned}
& \neg \neg P \vee \neg \neg Q \rightarrow \neg \neg(P \vee Q) \\
& (\exists x \cdot \neg \neg p x) \rightarrow \neg \neg \exists x \cdot p x \\
& \neg \neg(\forall x \cdot p x) \rightarrow \forall x \cdot \neg \neg p x
\end{aligned}
$$

Also prove the converse directions using excluded middle.
Exercise 15.2.6 Make sure you can prove the double negations of the following propositions:

$$
\begin{gathered}
P \vee \neg P \\
\neg \neg P \rightarrow P \\
\neg(P \wedge Q) \rightarrow \neg P \vee \neg Q \\
(\neg P \rightarrow \neg Q) \rightarrow Q \rightarrow P \\
((P \rightarrow Q) \rightarrow P) \rightarrow P \\
(P \rightarrow Q) \rightarrow \neg P \vee Q \\
(P \rightarrow Q) \vee(Q \rightarrow P)
\end{gathered}
$$

## Exercise 15.2.7 (Double negation shift)

An prominent logical law is double negation shift:

$$
\text { DNS }:=\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .(\forall x . \neg \neg p x) \rightarrow \neg \neg \forall x . p x
$$

DNS is provable for finite types but unprovable in general. Prove the following:
a) $\forall p^{\mathrm{B} \rightarrow \mathbb{P}} \cdot(\forall x \cdot \neg \neg p x) \rightarrow \neg \neg \forall x \cdot p x$
b) $\neg \neg \mathrm{XM} \longleftrightarrow \mathrm{DNS}$
c) $\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \cdot \neg \neg(\forall x \cdot p x) \rightarrow(\forall x \cdot \neg \neg p x)$

Hint: Direction $\leftarrow$ of (b) follows with $\lambda P . P \vee \neg P$.

## Exercise 15.2.8 (Double negation shift for existential quantification)

Prove $\mathrm{XM} \longleftrightarrow \forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .(\neg \neg \exists x . p x) \rightarrow \exists x . \neg \neg p x$.
Hint: For direction $\leftarrow$ prove $P \vee \neg P$ with $X:=P \vee \neg P$ and $p:=\lambda_{-} . \tau$, and exploit that $\neg \neg(P \vee \neg P)$ is provable.

### 15.3 Definite Propositions

We define definite propositions as propositions for which excluded middle holds:

$$
\text { definite } P^{\mathbb{P}}:=P \vee \neg P
$$

Fact 15.3.1 XM $\longleftrightarrow \forall P^{\mathbb{P}}$. definite $P$.

We may see definite propositions as propositionally decided propositions. Computationally decided propositions are always propositionally decided, but not necessarily vice versa.

Fact 15.3.2

1. Decidable propositions are definite: $\forall P^{\mathbb{P}} . \mathcal{D}(P) \rightarrow$ definite $P$.
2. $T$ and $\perp$ are definite.
3. Extensionality: Definiteness is invariant under propositional equivalence: $(P \longleftrightarrow Q) \rightarrow$ definite $P \rightarrow$ definite $Q$.

## Fact 15.3.3 (Closure Rules)

Implication, conjunction, disjunction, and negation preserve definiteness:

1. definite $P \rightarrow$ definite $Q \rightarrow$ definite $(P \rightarrow Q)$.
2. definite $P \rightarrow$ definite $Q \rightarrow$ definite $(P \wedge Q)$.
3. definite $P \rightarrow$ definite $Q \rightarrow$ definite $(P \vee Q)$.
4. definite $P \rightarrow$ definite $(\neg P)$.

Fact 15.3.4 (Definite de Morgan) definite $P \vee$ definite $Q \rightarrow \neg(P \wedge Q) \longleftrightarrow \neg P \vee \neg Q$.
Exercise 15.3.5 Prove the above facts.

### 15.4 Stable Propositions

We define stable propositions as propositions where double negation elimination is possible:

$$
\text { stable } P^{\mathbb{P}}:=\neg \neg P \rightarrow P
$$

Stable propositions matter since there are proof rules providing classical reasoning for stable claims.

Fact 15.4.1 $\mathrm{XM} \longleftrightarrow \forall P^{\mathbb{P}}$. stable $P$.
Definite propositions are stable, but not necessarily vice versa.
Fact 15.4.2 Definite propositions are stable: $\forall P^{\mathbb{P}}$. definite $P \rightarrow$ stable $P$.
A negated proposition $\neg P$ where $P$ is a variable is stable but not definite.
Fact 15.4.3 (Characterization) stable $P \longleftrightarrow \exists Q^{\mathbb{P}} . P \longleftrightarrow \neg Q$.
Corollary 15.4.4 Negated propositions are stable: $\forall P^{\mathbb{P}}$. stable $(\neg P)$.

Fact 15.4.5 $\top$ and $\perp$ are stable.

## Fact 15.4.6 (Closure Rules)

Implication, conjunction, and universal quantification preserve stability:

1. stable $Q \rightarrow$ stable $(P \rightarrow Q)$.
2. stable $P \rightarrow$ stable $Q \rightarrow$ stable $(P \wedge Q)$.
3. $(\forall x$. stable $(p x)) \rightarrow$ stable $(\forall x . p x)$.

Fact 15.4.7 (Extensionality) Stability is invariant under propositional equivalence: $(P \longleftrightarrow Q) \rightarrow$ stable $P \rightarrow$ stable $Q$.

Fact 15.4.8 (Classical reasoning rules for stable claims)

1. stable $Q \rightarrow$ (definite $P \rightarrow Q) \rightarrow Q$.
2. stable $Q \rightarrow($ stable $P \rightarrow Q) \rightarrow Q$.

The rules say that when we prove a stable claim, we can assume for every proposition $P$ that it is definite or stable. Note that the second rule follows from the first rule since definiteness implies stability.

Exercise 15.4.9 Prove the above facts.

Exercise 15.4.10 Prove the following classical reasoning rules for stable claims:
a) stable $Q \rightarrow(P \rightarrow Q) \rightarrow(\neg P \rightarrow Q) \rightarrow Q$.
b) stable $Q \rightarrow \neg\left(P_{1} \wedge P_{2}\right) \rightarrow\left(\neg P_{1} \vee \neg P_{2} \rightarrow Q\right) \rightarrow Q$.
c) stable $Q \rightarrow\left(\neg P_{1} \rightarrow \neg P_{2}\right) \rightarrow\left(\left(P_{2} \rightarrow P_{1}\right) \rightarrow Q\right) \rightarrow Q$.

Exercise 15.4.11 Prove $(\forall x$. stable $(p x)) \rightarrow \neg(\forall x . p x) \longleftrightarrow \neg \neg \exists x . \neg p x$.
Exercise 15.4.12 Prove $\mathrm{FE} \rightarrow \forall f g^{\mathrm{N} \rightarrow \mathrm{B}}$. stable $(f=g)$.
Exercise 15.4.13 Prove $\mathrm{XM} \longleftrightarrow \forall P^{\mathbb{P}} \exists Q^{\mathbb{P}} . P \longleftrightarrow \neg Q$.
Exercise 15.4.14 We define classical variants of conjunction, disjunction, and existential quantification:

$$
\begin{array}{rlrl}
P \wedge_{c} Q & :=(P \rightarrow Q \rightarrow \perp) \rightarrow \perp & \neg(P \rightarrow \neg Q) \\
P \vee_{c} Q & :=(P \rightarrow \perp) \rightarrow(Q \rightarrow \perp) \rightarrow \perp & & \neg P \rightarrow \neg \neg Q \\
\exists_{c} x \cdot p x & :=(\forall x \cdot p x \rightarrow \perp) \rightarrow \perp & & \neg(\forall x . \neg p x)
\end{array}
$$

The definitions are obtained from the impredicative characterizations of $\wedge, \vee$, and $\exists$ by replacing the quantified target proposition $Z$ with $\perp$. At the right we give computationally equal variants using negation. The classical variants are implied by the originals and are equivalent to the double negations of the originals. Under excluded middle, the classical variants thus agree with the originals. Prove the following propositions.
a) $P \wedge Q \rightarrow P \wedge_{c} Q \quad$ and $P \wedge_{c} Q \longleftrightarrow \neg \neg(P \wedge Q)$.
b) $P \vee Q \rightarrow P \vee_{c} Q$ and $P \vee_{c} Q \longleftrightarrow \neg \neg(P \vee Q)$.
c) $(\exists x \cdot p x) \rightarrow \exists_{c} x \cdot p x \quad$ and $\quad\left(\exists_{c} x \cdot p x\right) \longleftrightarrow \neg \neg(\exists x \cdot p x)$.
d) $P \vee_{c} \neg P$.
e) $\neg\left(P \wedge_{c} Q\right) \longleftrightarrow \neg P \vee_{c} \neg Q$.
f) $(\forall x$. stable $(p x)) \rightarrow \neg(\forall x . p x) \longleftrightarrow \exists_{c} x . \neg p x$.
g) $P \wedge_{c} Q, P \vee_{c} Q$, and $\exists_{c} x . p x$ are stable.

### 15.5 Variants of Excluded Middle

A stronger formulation of excluded middle is truth value semantics:

$$
\text { TVS }:=\forall P^{\mathbb{P}} . P=\top \vee P=\perp
$$

TVS is equivalent to the conjunction of $X M$ and $P E$.
Fact 15.5.1 TVS $\longleftrightarrow \mathrm{XM} \wedge \mathrm{PE}$.

Proof We show TVS $\rightarrow$ PE. Let $P \longleftrightarrow Q$. We apply TVS to $P$ and $Q$. If they are both assigned $\perp$ or $T$, we have $P=Q$. Otherwise we have $\top \longleftrightarrow \perp$, which is contradictory. The remaining implications TVS $\rightarrow \mathrm{XM}$ and $\mathrm{XM} \wedge \mathrm{PE} \rightarrow$ TVS are also straightforward.■

There are interesting weaker formulations of excluded middle. We consider two of them in exercises appearing below:

$$
\begin{aligned}
\text { WXM } & :=\forall P^{\mathbb{P}} \cdot \neg P \vee \neg \neg P \\
\text { IXM } & :=\forall P^{\mathbb{P}} Q^{\mathbb{P}} \cdot(P \rightarrow Q) \vee(Q \rightarrow P) \quad \text { weak excluded middle }
\end{aligned}
$$

Altogether we have the following hierarchy: $T V S \Rightarrow X M \Rightarrow I X M \Rightarrow$ WXM.
Exercise 15.5.2 Prove TVS $\longleftrightarrow \forall X Y Z: \mathbb{P} . X=Y \vee X=Z \vee Y=Z$. Note that the equivalence characterizes TVS without using $\top$ and $\perp$.

Exercise 15.5.3 Prove TVS $\longleftrightarrow \forall p^{\mathbb{P} \rightarrow \mathbb{P}} . p \top \rightarrow p \perp \rightarrow \forall X . p X$. Note that the equivalence characterizes TVS without using propositional equality.

Exercise 15.5.4 Prove $\left(\forall X^{\mathbb{T}} . X=\top \vee X=\perp\right) \rightarrow \perp$.
Exercise 15.5.5 (Weak excluded middle)
a) Prove $X M \rightarrow W X M$.
b) Prove WXM $\longleftrightarrow \forall P^{\mathbb{P}} . \neg \neg P \vee \neg \neg \neg P$.
c) Prove WXM $\longleftrightarrow \forall P^{\mathbb{P}} Q^{\mathbb{P}} . \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$.

Note that (c) says that WXM is equivalent to the de Morgan law for conjunction. We remark that computational type theory proves neither WXM nor WXM $\rightarrow$ XM.

Exercise 15.5.6 (Implicational excluded middle)
a) Prove $X M \rightarrow I X M$.
b) Prove $I X M \rightarrow W X M$.
c) Assuming that computational type theory does not prove WXM, argue that computational type theory proves neither IXM nor XM nor TVS.
We remark that computational type theory does not prove WXM. Neither does computational type theory prove any of the implications WXM $\rightarrow$ IXM, IXM $\rightarrow$ XM, and $X M \rightarrow$ TVS.

### 15.6 Notes

Proof systems not building in excluded middle are called intuitionistic proof systems, and proof systems building in excluded middle are called classical proof systems. The proof system coming with computational type theory is clearly an intuitionistic
system. What we have seen in this chapter is that an intuitionistic proof system provides for a fine grained analysis of excluded middle. This is in contrast to a classical proof system that by construction does not support the study of excluded middle. It should be very clear from this chapter that an intuitionistic system provides for classical reasoning (i.e., reasoning with excluded middle) while a classical system does not provide for intuitionistic reasoning (i.e., reasoning without excluded middle).

Classical and intuitionistic proof systems have been studied for more than a century. That intuitionistic reasoning is not made explicit in current introductory teaching of mathematics may have social reasons tracing back to early advocates of intuitionistic reasoning who argued against the use of excluded middle.

## 16 Provability

A central notion of computational type theory and related systems is provability. A type (or more specifically a proposition) is provable if there is a term that type checks as a member of this type. Importantly, type checking is a decidable relation between terms that can be machine checked. We say that provability is a verifiable relation. Given the explanations in this text and the realization provided by the proof assistant Coq, we are on solid ground when we construct proofs.

In contrast to provability, unprovability is not a verifiable relation. Thus the proof assistant will, in general, not be able to certify that types are unprovable.

As it comes to unprovability, this text makes some strong assumptions that cannot be verified with the methods the text develops. The most prominent such assumption says that falsity is unprovable.

Recall that we call a type $X$ disprovable if the type $X \rightarrow \perp$ is provable. If we trust in the assumption that falsity is unprovable, every disprovable type is unprovable. Thus disprovable types give us a class of types for which unprovability is verifiable up to the assumption that falsity is unprovable.

Types that are neither provable nor disprovable are called independent types. There are many independent types. In fact, the extensionality assumptions from Chapter 14 and the different variants of excluded middle from Chapter 15 are all claimed independent. These claims are backed up by model-theoretic studies in the literature.

### 16.1 Provability Predicates

It will be helpful to assume an abstract provability predicate

```
provable: \mathbb{P}->\mathbb{P}
```

With this trick provable $(P)$ and $\neg$ provable $(P)$ are both propositions in computational type theory we can reason about. We define three standard notions for propositions and the assumed provability predicate:

```
disprovable \((P):=\) provable \((\neg P)\)
 consistent \((P):=\neg\) provable \((\neg P)\)
independent \((P):=\neg\) provable \((P) \wedge \neg\) provable \((\neg P)\)
```

With these definitions we can easily prove the following implications:

$$
\begin{aligned}
\text { independent }(P) & \rightarrow \text { consistent }(P) \\
\text { consistent }(P) & \rightarrow \neg \text { disprovable }(P) \\
\text { provable }(P) & \rightarrow \neg \text { independent }(P)
\end{aligned}
$$

To show more, we make the following assumptions about the assumed provability predicate:

$$
\begin{aligned}
& \text { PMP: } \forall P Q \text {. provable }(P \rightarrow Q) \rightarrow \text { provable }(P) \rightarrow \text { provable }(Q) \\
& \text { PI: } \forall P \text {. provable }(P \rightarrow P) \\
& \text { PK: } \forall P Q \text {. provable }(Q) \rightarrow \text { provable }(P \rightarrow Q) \\
& \text { PC: } \forall P Q Z \text {. provable }(P \rightarrow Q) \rightarrow \text { provable }((Q \rightarrow Z) \rightarrow P \rightarrow Z)
\end{aligned}
$$

Since the provability predicate coming with computational type theory satisfies these properties, we can expect that properties we can show for the assumed provability predicate also hold for the provability predicate coming with computational type theory.

## Fact 16.1.1 (Transport)

1. provable $(P \rightarrow Q) \rightarrow \neg$ provable $Q \rightarrow \neg$ provable $(P)$.
2. provable $(P \rightarrow Q) \rightarrow$ consistent $(P) \rightarrow$ consistent $(Q)$.

Proof Claim 1 follows with PMP. Claim 2 follows with PC and (1).
From the transport properties it follows that a proposition is independent if it can be sandwiched between a consistent and an unprovable proposition.

Fact 16.1.2 (Sandwich) A proposition $Z$ is independent if there exists a consistent proposition $P$ and an unprovable proposition $Q$ such that $P \rightarrow Z$ and $Z \rightarrow Q$ are provable: consistent $(P) \rightarrow \neg$ provable $Q \rightarrow(P \rightarrow Z) \rightarrow(Z \rightarrow Q) \rightarrow$ independent $(Z)$.

Proof Follows with Fact 16.1.1.
Exercise 16.1.3 Show that the functions $\lambda P^{\mathbb{P}} . P$ and $\lambda P^{\mathbb{P}} . T$ are provability predicates satisfying PMP, PI, PK, and PC.

Exercise 16.1.4 Let $P \rightarrow Q$ be provable. Show that $P$ and $Q$ are both independent if $P$ is consistent and $Q$ is unprovable.

Exercise 16.1.5 Assume that the provability predicate satisfies

$$
\mathrm{PE}: \forall P^{\mathbb{P}} \text {. provable }(\perp) \rightarrow \text { provable }(P)
$$

in addition to PMP, PI, PK, and PC. Prove $\neg$ provable $(\perp) \longleftrightarrow \neg \forall P^{\mathbb{P}}$. provable $(P)$.

### 16.2 Consistency

Fact 16.2.1 (Consistency) The following propositions are equivalent:

1. $\neg$ provable ( $\perp$ ).
2. consistent $(\neg \perp)$.
3. $\exists P$. consistent $(P)$.
4. $\forall P$. provable $(P) \rightarrow$ consistent $(P)$.
5. $\forall P$. disprovable $(P) \rightarrow \neg$ provable $(P)$.

Proof $1 \rightarrow 2$. We assume provable ( $\neg \neg \perp$ ) and show provable ( $\perp$ ). By PMP it suffices to show provable $\neg \perp$ ), which holds by PI.
$2 \rightarrow 3$. Trivial.
$3 \rightarrow 1$. Suppose $P$ is consistent. We assume provable $\perp$ and show provable $(\neg P)$. Follows by PK.
$1 \rightarrow 4$. We assume that $\perp$ is unprovable, $P$ is provable, and $\neg P$ is provable. By PMP we have provable $\perp$. Contradiction.
$4 \rightarrow 1$. We assume that $\perp$ is provable and derive a contradiction. By the primary assumption it follows that $\neg \perp$ is unprovable. Contradiction since $\neg \perp$ is provable by PI.
$1 \rightarrow 5$. Follows with PMP.
$5 \rightarrow 1$. Assume disprovable $(\perp) \rightarrow \neg$ provable ( $\perp$ ). It suffices to show disprovable $(\neg \perp)$, which follows with PI.

Exercise 16.2.2 We may consider more abstract provability predicates

```
provable: prop }->\mathbb{P
```

where prop is an assumed type of propositions with an assumed constant

$$
\text { impl : prop } \rightarrow \text { prop } \rightarrow \text { prop }
$$

Show that all results of this chapter hold for such abstract proof systems.
Exercise 16.2.3 (Hilbert style assumptions) The assumptions PI, PK, and PC can be obtained from the simpler assumptions

$$
\begin{aligned}
& \mathrm{PK}^{\prime}: \forall P Q . \text { provable }(P \rightarrow Q \rightarrow P) \\
& \text { PS: } \forall P Q Z \text {. provable }((P \rightarrow Q \rightarrow Z) \rightarrow(P \rightarrow Q) \rightarrow P \rightarrow Z)
\end{aligned}
$$

that will look familiar to people acquainted with propositional Hilbert systems. Prove $\mathrm{PK}, \mathrm{PI}$, and PC from the two assumptions above. PK and PI are easy. PC is difficult if you don't know the technique. You may follow the proof tree $S(S(K S)(S(K K) I))(K H)$. Hint: Pl follows with the proof tree $S K K$.

The exercise was prompted by ideas of Jianlin Li in July 2020.

## 17 Summary Basics

This chapter is currently under revision.
Computational type theory (CTT) is a foundational language designed to be implemented with a proof assistant. The key feature of CTT are dependently typed total functions. Functions are defined with directed equations providing for type preserving evaluation. CTT is designed such that evaluation always terminates, and such that all functions definable in CTT are computable. There are also lambda abstractions with $\beta$-reduction and $\eta$-equivalence.

Functions and types are first-class values in CTT. There is a universe $\mathbb{T}$ serving as the type of all types. To maintain consistency, the self-containment $\mathbb{T}: \mathbb{T}$ is restricted with universe levels. There is a subuniverse $\mathbb{P} \subseteq \mathbb{T}$ of so-called propositional types. We have $\mathbb{P}: \mathbb{T}$.

## Inductive Definitions

CTT comes with inductive type definitions and inductive function definitions. Inductive types introduce typed constants called constructors and support the equational definition of inductive functions discriminating on the value constructors of an inductive type.

Types such as void, unit, bool, product types, and sum types can be defined as inductive types. Product types can be obtained as dependent types where a function determines the type of the second component from the first component.

Types for numbers and lists can be defined as recursive inductive types. Inductive functions on recursive inductive types may employ structural recursion on an inductive type they are discriminating on. In fact, structural recursion on inductive types is the only functional recursion CTT provides. CTT is designed such that structural recursion always terminates and that compliance with structural recursion can be checked.

Numeral types and vector types can be obtained with type functions recursing on numbers.

Syntactic objects and derivation systems as they appear in the study of proof systems, type theories, and programming languages can elegantly be formalized with inductive types. For derivation systems, inductive types with index arguments are used.

## 17 Summary Basics

## Computational equality

CTT is designed such that expressions evaluate to normal forms that are unique up to $\alpha \eta$-conversion. Moreover, closed normal forms whose type is inductive are guaranteed to be formed with a constructor of the inductive type, a property known as canonicity.

Two terms are computationally equal if their normal forms are equal up to $\alpha \eta$ conversion. CTT is designed such that computational equality is decidable.

## Type checking

To come

## Propositions as Types

Propositions are accommodated as the types inhabiting the universe $\mathbb{P}$. This yields propositions that can quantify over functions, types, propositions, and proofs (proofs appear as elements of propositional types). Propositional equality can be modeled elegantly as Leibniz equality making use of target type functions, the conversion rule, and the impredicativity of $\mathbb{P}$. Powerful lemmas, including induction principles, can be formulated as propositions and can be defined as functions.

Logical reasoning as obtained with the propositions as types approach is intuitionistic reasoning not building in the law of excluded middle. When desired, the law of excluded middle can be assumed.

The propositions as types approach is both natural and powerful. Modeling lemmas as functions and proofs as combination of functions is in perfect correspondence with mathematical practice. Describing functions and combination of functions with terms is an obvious elaboration coming with the benefit that proof checking is obtained as type checking. The propositions as types approach turns out to be a powerful explanation and formalization of what we do with propositions and proofs in mathematical practice. It opens new mathematical possibilities by turning propositions and types into first-class objects. The type-theoretic explanation of the proof rule for induction on numbers is of spectacular elegance. As generations of students have witnessed, informal mathematics just doesn't succeed in giving a clear explanation of what is happening when we do an inductive proof.

Computational type theory gives us an expressive and uniform language for propositions and proofs serving all levels of mathematical reasoning. On the one hand, we can do proofs at a low level based on first principles. On the other hand, we can do proofs at a high level using abstractions and lemmas.

Logical constructs like falsity, conjunction, disjunction, existential quantification and equality can be incorporated with typed constants whose definition does not matter for their use. Remarkably, the constants come with functional types providing the proof rules for the logical constructs. The constants may be defined either inductively or impredicatively, where the concrete definitions do not matter for the
use of the constructs. ${ }^{1}$ The impredicative definitions are purely functional and do not involve inductive definitions.

## Abstract and certifying functions

We have arrived at a computational type theory where typing is modulo computational equality. There are dependent function types $\forall x^{u} \cdot v$, applications $s t$, plain definitions, inductive type definitions, and inductive functions definitions. The definitions introduce typed constants, where the constants introduced by plain definitions and inductive function definitions come with equational reduction rules. The resulting reduction system has four essential properties: termination, unique normal forms, type preservation, and canonicity. Types are accommodated as first class values inhabiting two universes $\mathbb{P} \subset \mathbb{T}$. There are also lambda expressions with $\beta$-reduction and $\eta$-equivalence.

In computational type theory, all definable functions are computational. This makes a key difference to set-theoretic mathematics, where functions are merely sets of input-output pairs. Inductive function definitions can be recursive. To ensure termination, recursion must follow the recursion pattern of an inductive type.

Theories are developed as sequences of type-theoretic definitions building on each other. At the lowest level we have definitions accommodating particular propositions. Lemmas and theorems for particular theories (e.g., numbers, lists) are accommodated with abstract constants hiding their definition. Theories will build on each other, but in the end all theories are derived from a small set of type-theoretic principles.

## Proof Assistants

Computational type theories are designed to be implemented as programming languages. We can implement a verifier reading a sequence of definitions and checking that everything is well-formed according to the rules of the type theory, a process known as type checking. Computational type theories are designed such that type checking can be done algorithmically, and that proof checking is obtained as type checking.

We may assume that a verifier sees a sequence of definitions in fully elaborated form; that is, all implicit arguments have been derived and all notational conveniences (i.e., infix operators) have been removed. This way, the complexity of elaboration can be handled separately by an elaborator, and the verifier can be realized with a relatively small program.

At a higher level one has an interactive proof assistant, which is a tool supporting users in developing theories (i.e., sequences of definitions). The user sees the interactive proof assistant as a command interpreter. The proof assistant integrates an incremental elaborator and an incremental verifier building a type-checked theory

[^10]
## 17 Summary Basics

definition by definition. There is also an embedded tactic interpreter for incremental type-driven term construction. The tactic interpreter executes commands called tactics contributing to a term construction initiated by the command interpreter. Besides simple tactics, there are automation tactics building complete proofs in one go. Powerful automation tactics exist for propositional equational, and arithmetic reasoning.

The top level of an interactive proof assistant provides commands for constructing terms using the tactic interpreter, type checking, simplifying, and evaluating terms, defining and assuming constants, hiding definitions of constants, querying existing definitions, establishing notations and implicit arguments, setting the details of printing, and loading libraries.

For the engineering of a proof assistant, the separation of verification, elaboration, and incremental term construction is essential. Concerning the software effort needed, verification ranks lowest, elaboration ranks in the middle, and tactics rank highest. By design, everything produced by tactics and elaboration is checked by the kernel, the software component responsible for verification. This way the trusted base of an interactive proof assistant can be kept small.

Recursion in inductive function definitions is tuned down by a guard condition. A guard condition must be decidable and must ensure termination. We are assuming a simple and well-understood guard condition in this text. More permissive guard conditions are being used in practice.

The computational type theory presented in this text is compatible with what is implemented by the proof assistant Coq. We take the freedom to assume features not directly available in Coq. Most notably, we use inductive and plain function definitions where Coq only provides plain constant definitions. We make no effort to cover all features of Coq. Every chapter of the text comes with a Coq file realizing the development of the chapter in Coq.

## Further Remarks

1. In computational type theory, all definable functions are computational. This makes a key difference to set-theoretic mathematics, where functions are merely sets of input-output pairs.
2. It much simplifies the realization of a proof assistant (and a verifier in particular) that propositions and proofs are derived notions and that proof checking is obtained as type checking.
3. It is fascinating to see how the mathematical notions of propositions, proofs, and theorems are reduced to the computational principles of a type theory.
4. An important aspect of mathematical reasoning is subgoal and assumption management. In the propositions as types approach subgoal management boils down to type-driven construction of terms, and assumption management is obtained
as nesting of lambda abstractions and let expressions.
5. We have $\mathbb{P}: \mathbb{T}, \mathbb{P} \subseteq \mathbb{T}$, and $\mathbb{T}: \mathbb{T}$ The cycle $\mathbb{T}: \mathbb{T}$ needs to be restricted to maintain canonicity and consistency of the system. The problem is solved with universe levels such that $\mathbb{T}_{i}: \mathbb{T}_{j}$ requires $i<j$. For most developments, we can ignore universe levels and have the elaborator check that universe levels can be consistently assigned.
6. We will eventually see methods providing for the construction of functions specified with general terminating recursion.

## Part II

More Basics

## 18 Least Witness Operators

A least witness operator (LWO) decides for a decidable predicate $p^{\mathbb{N} \rightarrow \mathbb{P}}$ and a bound $n$ whether $p$ is satisfied by some $k \leq n$. In this is the case, the operator returns the least such $k$ called the least witness of $p$.

The most principled way to obtain an LWO is, as usual, to construct it as a certifying function in proof mode. Based on the certifying LWO, we construct certifying deciders for finite quantifications $\forall k<n . p k$ and $\exists k<n$. $p k$.

We also present and verify a number of simply typed reducible least witness functions. The correctness proofs for these functions provide us the with opportunity to demonstrate basic program verification techniques in the context of computational type theory.

We define divisibility and primality of numbers with finite quantification and obtain deciders for the corresponding predicates with the general deciders for finite quantification.

On the foundational side, and related to LWOs, we prove that satisfiable predicates on numbers have least witnesses if and only if the law of excluded middle holds.

### 18.1 Least Witness Predicate

In this chapter, $p$ will denote a predicate $\mathbf{N} \rightarrow \mathbb{P}$ and $n$ and $k$ will denote numbers. We will use the notations (with $\leq$ )

$$
\begin{aligned}
\forall k<n . p k & :=\forall k \cdot k<n \rightarrow p k \\
\exists k<n \cdot p k & :=\exists k \cdot k<n \wedge p k \\
\Sigma k<n \cdot p k & :=\Sigma k \cdot k<n \wedge p k
\end{aligned}
$$

and speak of finite quantifications. We say that $n$ is a witness of $p$ if $p n$ is provable, and that $p$ is satisfiable if $\exists n . p n$ is provable. We define a least witness predicate as follows:

$$
\begin{aligned}
& \text { safe } p n:=\forall k<n . \neg p k \\
& \text { least } p n:=p n \wedge \text { safe } p n
\end{aligned}
$$

Note that safe $p n$ says that no number below $n$ is a witness.

## 18 Least Witness Operators

## Fact 18.1.1 (Uniqueness)

Least witnesses are unique: least $p n \rightarrow$ least $p n^{\prime} \rightarrow n=n^{\prime}$.

Proof Follows with antisymmetry.

Fact 18.1.2 (Safety propagation)

1. safe $p 0$
2. safe $p n \rightarrow \neg p n \rightarrow$ safe $p$ (Sn)
(upgrade)

Proof (1) follows with linear arithmetic. For (2), we have the assumption $k<\operatorname{Sn}$. Thus $k<n$ or $k=n$. Both cases are straightforward.

Exercise 18.1.3 Prove the following:
a) safe $p n \longleftrightarrow \forall k . p k \rightarrow k \geq n$
b) safe $p(\mathrm{Sn}) \longleftrightarrow$ safe $p n \wedge \neg p n$
c) safe $p n \rightarrow k \leq n \rightarrow p k \rightarrow k=n$

Exercise 18.1.4 (Subtraction) Prove $x-y=z \longleftrightarrow$ least $(\lambda z . x \leq y+z) z$.
Exercise 18.1.5 (Extensionality)
Prove $\left(\forall n . p n \longleftrightarrow p^{\prime} n\right) \rightarrow\left(\forall n\right.$. least $p n \longleftrightarrow$ least $\left.p^{\prime} n\right)$.

### 18.2 Certifying Least Witness Operators

A least witness operator (LWO) decides for a decidable predicate $p^{N \rightarrow \mathbb{P}}$ and a bound $n$ whether $p$ is satisfied by some $k<n$. In the positive case the operator yields the least such $k$ (that is, the least witness of $p$ ). In the negative case the operator yields a certificate that there is no witness below $n$.

## Fact 18.2.1 (Certifying LWO)

There is a function $\operatorname{dec} p \rightarrow \forall n .(\Sigma k<n$. least $p k)+$ safe $p n$.
Proof By induction on $n$ using the propagation rules for safety (Fact 18.1.2). The zero case is trivial since we have safe $p 0$. In the successor case we have $\left(\sum k<n\right.$. least $\left.p k\right)+$ safe $p n$ and need

$$
(\Sigma k<\text { Sn. least } p k)+\text { safe } p(\mathrm{~S} n)
$$

The case $\Sigma k<n$. least $p k$ is straightforward. Otherwise, we have safe $p n$. If $p n$, we have least $p k$ and the claim follows. Otherwise, we have $\neg p n$ and hence safe $p(\mathrm{~S} n)$ by the safety upgrade rule (Fact 18.1.2(2)).

## Corollary 18.2.2 (Certifying LWO)

There is a function $\operatorname{dec} p \rightarrow \forall n .(\Sigma k \leq n$. least $p k)+$ safe $p(S n)$.
Proof Instantiate the LWO from Fact 18.2.1 with Sn.
Given a witness, we can obtain a least witness.
Corollary 18.2.3 (Informed LWO)
There is a function $\operatorname{dec} p \rightarrow \operatorname{sig} p \rightarrow \operatorname{sig}($ least $p)$.
Proof Straightforward with the LWO from Fact 18.2.1.
Corollary 18.2.4 There is a function $\operatorname{dec} p \rightarrow \exp \rightarrow \mathrm{ex}$ (least $p$ ).
Proof Straightforward with the LWO from Fact 18.2.1.

## Fact 18.2.5 (Existential least witness operator)

There is a function $\operatorname{dec} p \rightarrow \exp \rightarrow \operatorname{sig}$ (least $p$ ).
Proof Immediate with Corollary 18.2.3 and Fact 22.2.3.
The existential least witness operator is obviously extensional; that is, the witness computed does not depend on the decider and does not change if we switch to an equivalent predicate.

Fact 18.2.6 (Extensional EWO) Assume $W: \forall p^{N \rightarrow \mathbb{P}}$. dec $p \rightarrow \exp \rightarrow \operatorname{sig}$ (least $p$ ) and two predicates $p, p^{\prime}: \mathrm{N} \rightarrow \mathbb{P}$ with deciders $d$ and $d^{\prime}$ and satisfiability proofs $h$ : ex $p$ and $h^{\prime}: \operatorname{ex} p^{\prime}$. Then $\pi_{1}(W p d h)=\pi_{1}\left(W p^{\prime} d^{\prime} h^{\prime}\right)$ whenever $\forall n$. $p n \longleftrightarrow p^{\prime} n$.

Proof Straightforward. Exercise.
Exercise 18.2.7 (Greatest witness operator)
Let greatest $p n k:=p k \wedge(k<n) \wedge(\forall i . k<i<n \rightarrow \neg p i)$. Construct a certifying function $\forall n$. sig(greatest $p n)+(\forall k<n$. $\neg p k)$ computing the greatest witness below $n$ of $p$ if there is one.

### 18.3 Decidability Results

Fact 18.3.1 (Decidability)

1. $\operatorname{dec} p \rightarrow \operatorname{dec}($ safe $p)$
2. $\operatorname{dec} p \rightarrow \operatorname{dec}($ least $p)$

Proof The construction of the decider (1) is straightforward with the LWO from Fact 18.2.1. The construction of (2) is straightforward with the decider (1)

Finite quantifications over decidable predicates satisfy both de Morgan laws.

## Fact 18.3.2 (De Morgan laws for finite quantifications)

1. $\neg(\exists k<n . p k) \longleftrightarrow(\forall k<n . p k)$
2. $\operatorname{dec} p \rightarrow \neg(\forall k<n . p k) \longleftrightarrow(\exists k<n . p k)$

Proof (1) is straightforward and holds for all quantifications. This is also true for the direction " $\leftarrow$ " of (2). In contrast, the direction " $\rightarrow$ " of (2) depends on the decidability of $p$. If follows with the certifying LWO from Fact 18.2.1 instantiated with $\lambda k . \neg p k$ and exploits the double negation law for $p$.

Finite quantifications over decidable predicates are decided.
Fact 18.3.3 (Deciders for finite quantifications)

1. $\operatorname{dec} p \rightarrow \operatorname{dec}(\lambda n . \forall k<n . p k)$
2. $\operatorname{dec} p \rightarrow \operatorname{dec}(\lambda n . \exists k<n . p k)$

Proof (1) follows with the decider for the safeness predicate (Fact 18.3.1) instantiated with $\lambda k . \neg p k$ exploiting the double negation law for $p$.
(2) follows with the certifying LWO from Fact 18.2.1 and the de Morgan law for negated finite existential quantification (Fact 18.3.2(1)).

Exercise 18.3.4 Obtain deciders for finite quantification with " $\leq$ " using the deciders for " $<$ " instantiated with Sn.

## Exercise 18.3.5 (Decidability of Primality)

We define divisibility and primality using finite quantification:

$$
\begin{aligned}
n \mid x & :=x \neq 0 \rightarrow n \neq 1 \rightarrow n \neq x \rightarrow \exists k<x . x=k \cdot n \\
\text { prime } x & :=x \geq 2 \wedge \forall k<x . k \mid x \rightarrow k=1
\end{aligned}
$$

a) Prove that both predicates are decidable.
b) Prove $n \mid x \longleftrightarrow \exists k . x=k \cdot n$.

Remark. In Coq we can define a reducible certifying decider for primality computing proofs for prime 101 and $\neg$ prime 117, for instance. This approach requires that the underlying proof scripts carefully separate the computational level from the propositional level where automation tactics will insert abstract proof functions. See the accompanying Coq file to learn more.

### 18.4 Reducible LWOs

The deciders and LWOs obtained so far are not reducible since they are derived from the abstract certifying LWO provided by Fact 18.2.1. We can obtain a reducible

LWO by defining a simply typed recursive function following the construction of the certifying LWO.

We assume a predicate $p^{\mathrm{N} \rightarrow \mathbb{P}}$ with a boolean decider $\hat{p}^{\mathrm{N} \rightarrow \mathrm{B}}$ such that

$$
\forall n \text {. IF } \hat{p} n \text { THEN } p n \text { ELSE } \neg p n
$$

and define an inductive function

$$
\begin{aligned}
& G: \mathrm{N} \rightarrow \mathcal{O}(\mathrm{~N}) \\
& G 0:=\emptyset \\
& G(\mathrm{~S} n):=\mathrm{MATCH} G n\left[{ }^{\circ} k \Rightarrow{ }^{\circ} k \mid \emptyset \Rightarrow \text { IF } \hat{p} n \text { THEN }{ }^{\circ} n \text { ELSE S } n\right]
\end{aligned}
$$

We also define an inductive predicate

$$
\begin{aligned}
& \varphi: \mathrm{N} \rightarrow \mathcal{O}(\mathrm{~N}) \rightarrow \mathbb{P} \\
& \varphi n \emptyset:=\text { safe } p n \\
& \varphi n^{\circ} k:=\text { least } p k \wedge k<n
\end{aligned}
$$

## Fact 18.4.1 (Correctness)

$\forall n$. $\varphi n(G n)$.
Proof By induction on $n$. In the zero case, the claim reduces to safe $p 0$, which holds by Fact 18.1.2(1). In the successor case, we have the inductive hypothesis $\varphi n(G n)$ and the claim $\varphi(\mathrm{S} n)(G(\mathrm{Sn}))$. We discriminate on $G n$. If $G n={ }^{\circ} k$, the inductive hypothesis simplifies to $k<n \wedge$ least $p k$ and the claim to $k<\operatorname{Sn} \wedge$ least $p k$. The claim follows.
If $G n=\emptyset$, the inductive hypothesis is safe $p n$. We discriminate on $\hat{p} n$ in the claim. If $p n$, the claim reduces to $n<\operatorname{S} n \wedge$ least $p n$ and follows. If $\neg p n$, the claim reduces to safe $p(\mathrm{~S} n)$ and follows with Fact 18.1.2(2).

## Step-indexed linear search

The canonical algorithm for computing least witnesses is linear search: Test $p$ on a counter $m=0,1,2, \ldots$ until the first $m$ satisfying $p$ is found. Linear search terminates if and only if $p$ is satisfiable. Realizing linear search with a terminating function in computational type theory requires a modification. The trick is to switch to a step-indexed linear search function Lnm testing $p$ starting from $m$ for at most $n$ steps:

$$
\begin{aligned}
L: \mathrm{N} \rightarrow \mathrm{~N} & \rightarrow \mathcal{O}(\mathrm{~N}) \\
L 0 m & :=\emptyset \\
L(\mathrm{~S} n) m & :=\text { IF } \hat{p} m \text { THEN }{ }^{\circ} m \text { ELSE } L n(\mathrm{~S} m)
\end{aligned}
$$

## 18 Least Witness Operators

Note that $L$ tail-recurses on the step index $n$.
We would like to prove $\operatorname{Ln} 0=G n$. To do so, we need to understand the linear search function Lnm for all $n$ and $m$.

Fact 18.4.2 (Correctness) $\quad \forall n m$. safe $p m \rightarrow \varphi(n+m)(L n m)$.
Proof By induction on $n$ with $m$ quantified. The zero case is trivial. In the successor case we discriminate on $\hat{p} m$. If $p m$, we have the trivial proof obligation

$$
p m \rightarrow \text { safe } p m \rightarrow m<\mathrm{S}(n+m) \wedge \text { least } p m
$$

If $\neg p m$, we have the proof obligation

$$
\neg p m \rightarrow \text { safe } p m \rightarrow \varphi(\mathrm{~S} n+m)(\operatorname{Ln}(\mathrm{S} m))
$$

which reduces to an instance of Fact 18.1.2(2) using the inductive hypothesis for Sm and rewriting with $\mathrm{S} n+m=n+\mathrm{S} m$.

Fact 18.4.3 (Correctness) $\quad \forall n . \varphi n(\operatorname{Ln0} 0)$.
Proof Fact 18.4.2 instantiated with $m=0$.
Fact 18.4.4 (Agreement) $L n 0=G n$.
Proof Given the correctness theorems for $G$ and $L$ (Facts 18.4.1 and 18.4.3), the claim follows with the uniqueness of $\varphi n$ which follows with the uniqueness of least $p$ after discrimination on the option arguments.

The proofs we have just seen for $L$ are typical for program verifications. While the underlying ideas are clear, the detailed execution of the proofs is tedious and calls for the help of a proof assistant.

Exercise 18.4.5 (Invariant Puzzle) We have one more reducible LWO in the offer. Consider the function

$$
\begin{aligned}
& W: \mathrm{N} \rightarrow \mathrm{~N} \\
& W 0:=0 \\
& W(\mathrm{~S} n):=\text { LET } k=W n \text { IN IF } \hat{p} k \text { THEN } k \text { ELSE S } n
\end{aligned}
$$

Verify that $F n:=$ IF $n \leq W n$ THEN $\emptyset$ ELSE ${ }^{\circ} W n$ agrees with $G$.
Hint: The worker function $W$ computes the largest $k \leq n$ that is safe for $p$.
Hint: You need a specification $\delta$ for $W$ such that $\forall n$. $\delta n(W n)$. For the correctness proof to go through, $\delta$ must be an invariant for $W$ 's recursion, which imposes the proof obligation $\forall n k . \delta n k \rightarrow$ IF $\hat{p} n$ THEN $\delta(\mathrm{S} n) k$ ELSE $\delta(\mathrm{S} n)(\mathrm{S} n)$.

## Exercise 18.4.6 (Reducible deciders for finite quantifications)

a) Obtain the deciders for finite quantifications as reducible functions using $G$ or $L$.
b) Verify the correctness of your deciders.
c) Prove prime 101 in the proof assistant using a boolean decider for primality.

### 18.5 Least Witness Existence and Excluded Middle

It turns out that the existence of least witnesses for satisfiable predicates on numbers is equivalent to the law of excluded middle:

$$
\begin{aligned}
\mathrm{ELW} & :=\forall p^{\mathrm{N} \rightarrow \mathbb{P}} \cdot \operatorname{ex} p \rightarrow \operatorname{ex}(\text { least } p) \\
\mathrm{XM} & :=\forall P^{\mathbb{P}} \cdot P \vee \neg P
\end{aligned}
$$

The direction $\mathrm{XM} \rightarrow$ ELW is unsurprising since XM gives us decidability of predicates at the propositional level, which means that we can use the construction for LWOs if we lower them to the propositional level.

Fact 18.5.1 XM $\rightarrow$ ELW.

Proof Assume XM. Then every predicate is logically decidable: $\forall n$. $p n \vee \neg p n$. Hence we can carry out the constructions of Facts 18.2 .1 and 18.2.4 at the propositional level:

$$
\begin{aligned}
& \forall p^{\mathrm{N} \rightarrow \mathbb{P}} \forall n .(\exists k<n . \text { least } p k) \vee \text { safe } p n \\
& \forall p^{\mathrm{N} \rightarrow \mathbb{P}} \cdot \operatorname{ex} p \rightarrow \operatorname{ex}(\text { least } p)
\end{aligned}
$$

The other direction ELW $\rightarrow$ XM is very easy to prove.
Fact 18.5.2 ELW $\rightarrow X M$.

Proof We pick a proposition $P$ and prove $P \vee \neg P$. Using the assumption, we discriminate on the least witness $n$ of the satisfiable predicate $p n:=\mathrm{IF} n$ THEN $P$ ELSE T. We have $p 0 \longleftrightarrow P$. Thus if the least witness is 0 , we have $P$, and otherwise $\neg P$.

## Exercise 18.5.3 (Boolean least witness existence)

Prove $\mathrm{XM} \longleftrightarrow \forall p^{\mathrm{N} \rightarrow \mathrm{B}}$. ex $p \rightarrow \exists x . p x \wedge(p$ true $\rightarrow x=$ true $)$.
Exercise 18.5.4 Prove that the following propositions are equivalent.

1. XM
2. $\forall p n$. ex (least $p) \vee$ safe $p n$
3. $\forall p . \exp \rightarrow \mathrm{ex}($ least $p)$.

## 19 Arithmetic Recursion

This chapter is about functions recursing on numeric arguments in a non-structural manner. The examples we consider are Euclidean division, greatest common divisors, and the Fibonacci numbers. We describe the functions with procedural specifications and construct satisfying reducible functions using structural recursion on a step index formalizing the arithmetic termination argument. We show uniqueness of the procedural specifications using complete induction and size induction, two induction operators obtained by structural induction on a step index.

We also define course-of-values recursion as structural recursion on the length of vectors. With course-of-values recursion we obtain a Fibonacci function from the step function generating the Fibonacci sequence.

### 19.1 Complete Induction

Complete induction is a well-known proof rule saying that to prove $p x$ it is ok to assume $p y$ holds for all $y<x$ :

$$
\forall p^{N \rightarrow \mathbb{T}} \cdot(\forall x \cdot(\forall y \cdot y<x \rightarrow p y) \rightarrow p x) \rightarrow \forall x \cdot p x
$$

We will establish complete induction as a certifying function with the above type.
Complete induction can be used to construct functions since $p$ may be a type function.

When we use complete induction to construct a proof, we will refer to the hypothesis

$$
\forall y . y<x \rightarrow p y
$$

as the inductive hypothesis. When we use complete induction to construct a function, we will refer to the function of the type

$$
\forall x .(\forall y . y<x \rightarrow p y) \rightarrow p x
$$

as the step function. Moreover, we will refer to the certifying function for complete induction as the complete induction operator.

Compared to structural induction

$$
\forall p^{N \rightarrow \mathbb{T}} \cdot p 0 \rightarrow(\forall x \cdot p x \rightarrow p(\mathrm{~S} x)) \rightarrow \forall x \cdot p x
$$

complete induction introduces only one proof obligation. Moreover, the inductive hypothesis of complete induction is stronger than the inductive hypothesis of structural induction in that it provide $p y$ for all $y<x$, not just the predecessor.

Computationally, complete induction says that when we compute a function $f$ for a number $x$, we can obtain $f y$ for all $y<x$ by recursion.

Constructing a complete induction operator with a structural induction operator is straightforward. The trick is to replace the claim $\forall x . p x$ with the equivalent claim $\forall n x . x<n \rightarrow p x$ and do structural induction on the introduced upper bound $n$.
Definition 19.1.1 (Complete induction operator)
$\forall p^{\mathrm{N} \rightarrow \mathbb{T}} .(\forall x .(\forall y . y<x \rightarrow p y) \rightarrow p x) \rightarrow \forall x . p x$.
Proof We assume $p$ and the step function

$$
F: \forall x .(\forall y . y<x \rightarrow p y) \rightarrow p x
$$

and show $\forall x . p x$. The trick is to prove the equivalent claim

$$
\forall n x . x<n \rightarrow p x
$$

by structural induction on the upper bound $n$. For $n=0$, the claim follows withe computational falsity elimination since we have the hypothesis $x<0$. In the successor case, we assume $x<\mathrm{S} n$ and prove $p x$. We apply the step function $F$, which gives us the assumption $y<x$ and the claim $p y$. By the inductive hypothesis it suffices to show $y<n$, which follows by linear arithmetic

## Exercise 19.1.2 (Uniqueness of procedural specification)

We call a procedural specification unique if all functions satisfying the specification agree. Prove with complete induction that the procedural specification (of the Fibonacci function)

$$
\begin{aligned}
& \text { Fib }:(\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \\
& \text { Fib } f n:=\mathrm{IF} n \leq 1 \text { THEN } n \text { ELSE } f(n-2)+f(n-1)
\end{aligned}
$$

is unique: $\forall f f^{\prime} .(\forall n . f n=\operatorname{Fib} f n) \rightarrow\left(\forall n . f^{\prime} n=\operatorname{Fib} f^{\prime} n\right) \rightarrow\left(\forall n . f n=f^{\prime} n\right)$.

## Exercise 19.1.3 (Uniqueness of procedural specification)

Prove that the procedural specification (of the Ackermann function)

$$
\begin{aligned}
& \text { Ack }:(\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \text { Ack } f 0 y:=\mathrm{S} y \\
& \text { Ack } f(\mathrm{~S} x) 0:=f x 1 \\
& \text { Ack } f(\mathrm{~S} x)(\mathrm{S} y):=f x(f(\mathrm{~S} x) y)
\end{aligned}
$$

is unique.

Exercise 19.1.4 (Double induction) Prove the following double induction principle for numbers (from Smullyan and Fitting [26]):

$$
\begin{aligned}
& \forall p^{\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~T}} . \\
& (\forall x \cdot p x 0) \rightarrow \\
& (\forall x y \cdot p x y \rightarrow p y x \rightarrow p x(\mathrm{~S} y)) \rightarrow \\
& \forall x y \cdot p x y
\end{aligned}
$$

There is a nice geometric intuition for the truth of the principle: See a pair $(x, y)$ as a point in the discrete plane spanned by N and convince yourself that the two rules are enough to reach every point of the plane.

Hint: First do induction on $y$ with $x$ quantified. In the successor case, first apply the second rule and then prove $p x y$ by induction on $x$.

### 19.2 Size Induction

Size induction is a generalization of complete induction working for all types that have a numeric size function:

$$
\begin{aligned}
& \forall X^{\mathbb{T}} \forall \sigma^{X \rightarrow \mathrm{~N}} \forall p^{x \rightarrow \mathbb{T}} . \\
& (\forall x \cdot(\forall y \cdot \sigma y<\sigma x \rightarrow p y) \rightarrow p x) \rightarrow \\
& \forall x \cdot p x
\end{aligned}
$$

With size induction, when we prove $p x$, we can assume $p y$ for all $y$ whose size is smaller than the size of $x$. The construction of the size induction operator is a straightforward adaption of the construction of the complete induction operator.

## Definition 19.2.1 (Size induction operator)

$$
\begin{aligned}
& \forall X^{\mathbb{T}} \forall \sigma^{X \rightarrow N} \forall p^{X \rightarrow \mathbb{T}} . \\
& (\forall x \cdot(\forall y \cdot \sigma y<\sigma x \rightarrow p y) \rightarrow p x) \rightarrow \\
& \forall x \cdot p x
\end{aligned}
$$

Proof We assume $X, \sigma, p$ and the step function $F: \forall x .(\forall y . y<x \rightarrow p y) \rightarrow p x$ and show $\forall x$. $p x$. We prove the equivalent claim

$$
\forall n x . \sigma x<n \rightarrow p x
$$

by structural induction on the upper bound $n$. For $n=0$, the claim follows withe computational falsity elimination since we have the hypothesis $x<0$. In the successor case, we assume $\sigma x<\mathrm{S} n$ and prove $p x$. We apply the step function $F$, which gives us the assumption $\sigma y<\sigma x$ and the claim $p y$. By the inductive hypothesis it suffices to show $\sigma y<\sigma n$, which follows by linear arithmetic

There will be applications of size induction where the size function has two arguments. We establish a binary size induction operator adapted to this situation.

## Definition 19.2.2 (Binary size induction operator)

$$
\begin{aligned}
& \forall X Y^{\mathbb{T}} \forall \sigma^{X \rightarrow Y \rightarrow \mathrm{~N}} \forall p^{X \rightarrow Y \rightarrow \mathbb{T}} . \\
& \left(\forall x y \cdot\left(\forall x^{\prime} y^{\prime} \cdot \sigma x^{\prime} y^{\prime}<\sigma x y \rightarrow p x^{\prime} y^{\prime}\right) \rightarrow p x y\right) \rightarrow \\
& \forall x y \cdot p x y
\end{aligned}
$$

Proof Straightforward adaption of the construction of the unary size induction operator (Fact 19.2.1).

Exercise 19.2.3 Assume a size induction operator and construct a binary size induction operator and a structural induction operator not using structural induction.

### 19.3 Euclidean Quotient

The Euclidean quotient of two numbers $x$ and $\mathrm{S} y$ is the number of times $\mathrm{S} y$ can be subtracted from $x$ without truncation. This computational characterization of the Euclidean quotient can be formalized with a procedural specification

$$
D x y=\operatorname{IF} x \leq y \text { THEN } 0 \text { ELSE } S(D(x-\mathrm{S} y) y)
$$

The computation captured by the equation terminates since the first argument is decreased upon recursion. Thus if $D$ is a function satisfying the equation, $D x y$ is the Euclidean quotient of $x$ and Sy for all numbers $x$ and $y$. There are obvious questions about the procedural specification of Euclidean division:

- Existence: Is there a function satisfying the specification?
- Uniqueness: Do all functions satisfying the specification agree?
- Formalization: How can the specification be expressed in type theory?

We will answer the first two questions positively. Existence will be shown with a general technique called step indexing that applies to all procedural specifications whose recursion is guarded by an arithmetic size function. Uniqueness will follow with complete induction on the first argument $x$.

First we take care of the formalization of the procedural specification. We express the procedural specification with an unfolding function (§1.12)

$$
\begin{aligned}
& \Delta:(\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \Delta f x y:=\mathrm{IF} x \leq y \text { THEN } 0 \text { ELSE } \mathrm{S}(f(x-\mathrm{S} y) y)
\end{aligned}
$$

We prepare the uniqueness statement with a notation for function agreement:

$$
f \equiv f^{\prime} \quad \leadsto \quad \forall x y . f x y=f^{\prime} x y
$$

Fact 19.3.1 (Uniqueness)
All functions satisfying $\Delta$ agree:
$\forall f f^{\prime} . f \equiv \Delta f \rightarrow f^{\prime} \equiv \Delta f^{\prime} \rightarrow f \equiv f^{\prime}$.
Proof We assume $H_{1}: f \equiv \Delta f$ and $H_{2}: f^{\prime} \equiv \Delta f^{\prime}$ and prove $f x y=f^{\prime} x y$ by complete induction on $x$. By rewriting with $H_{1}$ and $H_{2}$ the claim reduces to

$$
\begin{aligned}
& (\operatorname{IF} x \leq y \text { THEN } 0 \operatorname{ELSE} \mathrm{~S}(f(x-\mathrm{S} y) y)) \\
= & \left(\operatorname{IF} x \leq y \text { THEN } 0 \operatorname{ELSE} \mathrm{~S}\left(f^{\prime}(x-\mathrm{S} y) y\right)\right)
\end{aligned}
$$

We now discriminate on $x-y$. If $x \leq y$, the claim reduces to $0=0$. If $x>y$, the claim reduces to

$$
\mathrm{S}(f(x-\mathrm{S} y) y)=\mathrm{S}\left(f^{\prime}(x-\mathrm{S} y) y\right)
$$

which follows with the inductive hypothesis instantiated with $x-\mathrm{S} y<x$.
Exercise 19.3.2 Let $D$ be a function satisfying the procedural specification for the Euclidean quotients: $D \equiv \Delta D$. Prove $D x y \cdot \mathrm{~S} y \leq x<D x y \cdot \mathrm{~S} y+\mathrm{S} y$.

Exercise 19.3.3 (Euclidean remainder) The Euclidean remainder of $x$ and Sy is the number that remains if S $y$ is subtracted from $x$ as long as this is possible without truncation.
a) Give a procedural specification $\Gamma$ formalizing the specification of the remainder.
b) Show that $\Gamma$ is unique.
c) Show that every function $M$ satisfying $\Gamma$ satisfies $M x y \leq y$.
d) Let $D$ be a function satisfying $\delta$ and $M$ be a function satisfying $\Gamma$.

Show $x=D x y \cdot \mathrm{~S} y+M x y$.
Exercise 19.3.4 We have shown some results about the procedural specification $\Delta$ using complete induction. It turns out that the results can also be shown using structural induction on an upper bound for the variable used for complete induction. For instance, if $D$ satisfies $\Gamma$, one may prove

$$
\forall n x . x<n \rightarrow D x y \cdot \mathrm{~S} y \leq x<D x y \cdot \mathrm{~S} y+\mathrm{S} y
$$

by structural induction on $n$ to obtain $\forall x . D x y \cdot \mathrm{~S} y \leq x<D x y \cdot \mathrm{~S} y+\mathrm{S} y$.
Exercise 19.3.5 Construct an induction operator

$$
\begin{aligned}
& \forall y^{\mathrm{N}} \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \\
& (\forall x \leq y \cdot p x) \rightarrow \\
& (\forall x>y \cdot p(x-\mathrm{S} y) \rightarrow p x) \rightarrow \\
& \forall x \cdot p x
\end{aligned}
$$

### 19.4 Step-Indexed Function Construction

We now introduce a technique called step indexing providing for the direct construction of functions satisfying procedural specifications. Step indexing works whenever the termination of the procedural specification can be argued with an arithmetic size function.

Suppose we have a procedural specification whose termination can be argued with an arithmetic size function. Then we can define an helper function taking the size (a number) as an additional argument called step index and arrange things such that the recursion is structural recursion on the step index. We obtain the specified function by using the helper function with a sufficiently large step index.

We demonstrate the technique with the procedural specification $\delta$ of Euclidean quotients. The step-indexed helper function comes out as follows:

$$
\begin{aligned}
\operatorname{Div} 0 x y & :=0 \\
\operatorname{Div}(\operatorname{Sn}) x y & :=\Delta(\operatorname{Div} n) x y
\end{aligned}
$$

The essential result about Div is index independence: $\operatorname{Div} n x y=\operatorname{Div}^{\prime} x y$ whenever the step indices are large enough.

## Lemma 19.4.1 (Index independence)

$\forall n n^{\prime} x y . n>x \rightarrow n^{\prime}>x \rightarrow \operatorname{Div} n x y=\operatorname{Div} n^{\prime} x y$.

Proof By induction on $n$ with $n^{\prime}$ and $x$ quantified. The base case has a contradictory assumption. In the successor case, we destructure $n^{\prime}$. The case $n^{\prime}=0$ has a contradictory assumption. If $n=\mathrm{S} n_{1}$ and $n^{\prime}=\mathrm{S} n_{1}^{\prime}$, the claim reduces to

$$
\begin{aligned}
& \text { IF } x \leq y \text { THEN } 0 \text { ELSE } S\left(\operatorname{Div} n_{1}(x-\mathrm{S} y) y\right) \\
= & \text { IF } x \leq y \text { THEN } 0 \operatorname{ELSE} \mathrm{~S}\left(\operatorname{Div} n_{2}(x-\mathrm{S} y) y\right)
\end{aligned}
$$

The claim now follows by discrimination on $x-y$ using the inductive hypothesis for $n_{1}>x-$ S $y$ and $n_{2}>x-\mathrm{S} y$.

Fact 19.4.2 (Existence) Let $D x:=\operatorname{Div}(\mathrm{S} x) x$. Then $D \equiv \Delta D$.

Proof The claim simplifies to

$$
\begin{aligned}
& \text { IF } x \leq y \text { THEN } 0 \text { ELSE } \operatorname{S}(\operatorname{Div} x(x-\mathrm{S} y) y) \\
= & \mathrm{IF} x \leq y \text { THEN } 0 \operatorname{ELSE} \mathrm{~S}(\operatorname{Div}(\mathrm{~S}(x-\mathrm{S} y))(x-\mathrm{S} y) y)
\end{aligned}
$$

The reduced claim follows by discrimination on $x-y$ using index independence (Lemma 19.4.1) for $x>x-\mathrm{S} y$ and $\mathrm{S}(x-\mathrm{S} y)>x-\mathrm{S} y$.

### 19.5 Greatest Common Divisor

The techniques we have seen for Euclidean quotients also work for GCDs (greatest common divisors(. Recall that the GCD of two numbers can be computed by repeated non-truncating subtraction. We formalize the algorithm with the procedural specification

$$
\begin{aligned}
& \Gamma:(\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \Gamma f x y:=\text { IF } x \text { THEN } y \text { ELSE IF } x \leq y \text { THEN } f x(y-x) \text { ELSE } f y x
\end{aligned}
$$

The recursion of the specification terminates since it decreases the binary size function $\sigma x y:=2 \cdot x+y$.

## Fact 19.5.1 (Uniqueness)

All functions satisfying $\Gamma$ agree:
$\forall f f^{\prime} . f \equiv \Gamma f \rightarrow f^{\prime} \equiv \Gamma f^{\prime} \rightarrow f \equiv f^{\prime}$.
Proof We assume $H_{1}: f \equiv \Gamma f$ and $H_{2}: f^{\prime} \equiv \Gamma f^{\prime}$ and prove $f x y=f^{\prime} x y$ by binary size induction on $\sigma x y$. Following $\Gamma$, we consider three cases: (1) $x=0$, (2) $0<x \leq y$, and (3) $y>x>0$. The base case follows by computational equality, and the recursive cases follow with the inductive hypothesis.

To construct a function satisfying $\Gamma$, we define a step-indexed helper function:

$$
\begin{aligned}
\operatorname{Gcd} 0 x y & :=0 \\
\operatorname{Gcd}(\operatorname{Sn}) x y & :=\Gamma(\operatorname{Gcd} n) x y
\end{aligned}
$$

## Lemma 19.5.2 (Index independence)

$\forall n n^{\prime} x y . n>\sigma x y \rightarrow n^{\prime}>\sigma x y \rightarrow \operatorname{Gcd} n x y=\operatorname{Gcd} n^{\prime} x y$.
Proof By induction on $n$ with $n^{\prime}, x$, and $y$ quantified. The base case has a contradictory assumption. In the successor case, we destructure $n^{\prime}$. The case $n^{\prime}=0$ has a contradictory assumption. Let $n=S n_{1}$ and $n^{\prime}=S n_{1}^{\prime}$. Following $\Gamma$, we consider three cases: (1) $x=0$, (2) $0<x \leq y$, and (3) $y>x>0$. The base case follows by computational equality, and the recursive cases follow with the inductive hypothesis.

Fact 19.5.3 (Existence) Let $G x y:=\operatorname{Gcd}(S(\sigma x y)) x y$. Then $G \equiv \Gamma G$.
Proof Following $\Gamma$, we consider three cases: (1) $x=0$, (2) $0<x \leq y$, and (3) $y>x>0$. The base case follows by computational equality, and the recursive cases follow with index independence (Lemma 19.5.2).

Exercise 19.5.4 Construct a GCD induction operator

$$
\begin{aligned}
& \forall p^{\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathbb{T}} . \\
& (\forall y \cdot p 0 y) \rightarrow \\
& (\forall x y \cdot x \leq y \rightarrow p x(y-x) \rightarrow p x y) \rightarrow \\
& (\forall x y \cdot p x y \rightarrow p y x) \rightarrow \\
& \forall x y \cdot p x y
\end{aligned}
$$

### 19.6 Course-of-values Recursion

Recall the definition of vector types in $\S 12.4$ with a type function recursing on numbers:

$$
\begin{aligned}
\mathrm{V}: \mathbb{T} \rightarrow \mathrm{N} & \rightarrow \mathbb{T} \\
\mathrm{~V} X 0 & :=\mathbb{1} \\
\mathrm{V} X(\mathrm{~S} n) & :=X \times \mathrm{V} X n
\end{aligned}
$$

Also recall that we are using the notation $\mathrm{V}_{n} X$ for $\mathrm{V} X n$. The values of a vector type $\vee_{n} X$ represent sequences $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ whose elements are of type $X$. For instance, we have

$$
(1,(2,(3, I))): V_{3} N \approx N \times(N \times(N \times \mathbb{1}))
$$

Given a step function $f: \forall n . \mathrm{V}_{n} X \rightarrow X$, we can start from the empty vector and recursively compute vectors $(f n v, v): \mathrm{V}_{\mathrm{Sn}} X$. We speak of vector recursion and formalize the computation scheme with a function

```
vecrec \(: \forall X^{\mathbb{T}} .\left(\forall n . \vee_{n} X \rightarrow X\right) \rightarrow \forall n . \vee_{n} X\)
 vecrec \(X f 0:=1\)
vecrec \(X f(\mathrm{~S} n):=\) LET \(v=\operatorname{vecrec} X f n\) IN \((f n v, v)\)
```

Building on vector recursion, we define course-of-values recursion as follows:

$$
\begin{aligned}
& \text { covrec : } \forall X^{\mathbb{T}} .\left(\forall n . \vee_{n} X \rightarrow X\right) \rightarrow \mathrm{N} \rightarrow X \\
& \text { covrec } X f n:=\pi_{1}(\text { vecrec } X f(\mathrm{~S} n))
\end{aligned}
$$

An untyped form of course by value recursion appeared with the study of primitive recursive functions in the 1920s.

Course-of-values recursion can be used to construct the functions representing sequences like those of the square numbers, factorials, and Fibonacci numbers:

$$
\begin{aligned}
& 1,4,9,16,25,36, \ldots \\
& 1,1,2,6,24,120, \ldots \\
& 0,1,1,2,3,5, \ldots
\end{aligned}
$$

The function for the square number sequence is

$$
\operatorname{covrec} N\left(\lambda n_{-} \cdot n^{2}\right)
$$

The function for the factorial sequence is obtained with the step function

```
facstep: }\foralln.\mp@subsup{V}{n}{}\textrm{N}->\textrm{N
 facstep 0_ := 1
facstep (Sn) v := Sn
```

Note that type checking of the second defining equation requires conversion to validate the application of the projection $\pi_{1}$. Finally the function for the Fibonacci sequence is obtained with the step function.

```
fibstep : \(\forall n . \mathrm{V}_{n} \mathrm{~N} \rightarrow \mathrm{~N}\)
 fibstep 0 _ := 0
 fibstep 1 _ := 1
fibstep (SSn) \(v:=\pi_{1}\left(\pi_{2} v\right)+\pi_{1} v\)
```

Informally, the step function says that the first two Fibonacci numbers are 0 and 1 , and that higher Fibonacci numbers are obtained as the sum of the two preceding Fibonacci numbers.

We prove that the Fibonacci function obtained with course-of-values recursion satisfies the standard specification of the Fibonacci sequence.

Fact 19.6.1 (Correctness) Let fib := covrec N fibstep.
Then $\forall n$. fib $n=\operatorname{IF} n \leq 1$ THEN $n$ ELSE fib $(n-2)+\operatorname{fib}(n-1)$.
Proof The claim follows by case analysis on $n$. If $n=0$ or $n=1$, the claim follows by computational equality. If $n=S S n^{\prime}$, the claim follows by computational equality after $S S n^{\prime}-2$ is replaced with $n^{\prime}$.

## 20 Euclidean Division

We study functions for Euclidean division. We start with a relational specification and show with a certifying function that Euclidean quotients and remainders uniquely exist. The certifying function gives us abstract quotient and remainder functions satisfying a defining property. We show that the abstract functions can be computed with repeated subtraction.

Following the ideas used for quotient and remainder, we construct an abstract GCD function satisfying a relational specification of greatest common divisors. We show that the abstract GCD function can be computed by taking remainders. We also give an inductive characterization of greatest common divisors.

### 20.1 Existence of Quotient and Remainder

Suppose you have a chocolate bar of length $x$ and you want to cut it in pieces of length $\mathrm{S} y$. Then the number of pieces you can obtain is the Euclidean quotient of $x$ and $\mathrm{S} y$ and the short piece possibly remaining is the Euclidean remainder of $x$ and $\mathrm{S} y$.

Mathematically speaking, the Euclidean quotient of $x$ and $\mathrm{S} y$ is the maximal number $a$ such that $a \cdot \mathrm{~S} y \leq x$. Following this characterization, we define a relational specification

$$
\delta x y a b:=x=a \cdot \mathrm{~S} y+b \wedge b \leq y
$$

Given $\delta x y a b$, we say that $a$ is the quotient and $b$ is the remainder of $x$ and $\mathrm{S} y$. For instance, we have $8=2 \cdot 3+2$ saying that 2 is the quotient and the remainder of 8 and 3 .

Note that we consider Euclidean division for $x$ and $\mathrm{S} y$ to avoid the division-byzero problem.

We will construct functions that for $x$ and $y$ compute $a$ and $b$ such that $\delta x y a b$. This tells us that Euclidean quotients and remainders always exist. We will also show that quotients and remainders uniquely exist.

Given $x$ and $y$, we compute $a$ and $b$ such that $\delta x y a b$ by structural recursion on $x$. The zero case is trivial:

$$
0=0 \cdot \mathrm{~S} y+0
$$

## 20 Euclidean Division

In the successor case, we obtain

$$
x=a \cdot \mathrm{~S} y+b \quad \text { and } \quad b \leq y
$$

by recursion. If $b<y$, then

$$
\mathrm{S} x=a \cdot \mathrm{~S} y+\mathrm{S} b \quad \text { and } \quad \mathrm{S} b \leq y
$$

Otherwise, $b=y$ and we have

$$
\mathrm{S} x=\mathrm{S} a \cdot \mathrm{~S} y+0
$$

Fact 20.1.1 (Certifying division function) $\forall x y . \Sigma a b . \delta x y a b$.
Proof By induction on $x$ with $y$ fixed following the arguments given above.
Definition 20.1.2 ( $D$ and $M$ )
We fix two function $D^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}}$ and $M^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}}$ such that $\forall x y . \delta x y(D x y)(M x y)$.
Proof Let $F$ be a function $\forall x y . \Sigma a b . \delta x y a b$ as provided by Fact 20.1.1. We define the functions $D$ and $M$ as $D x y:=\pi_{1}(F x y)$ and $M x y:=\pi_{1}\left(\pi_{2}(F x y)\right)$. Now $\pi_{2}\left(\pi_{2}(F x y)\right)$ is a proof of $\delta x y(D x y)(M x y)$ (up to conversion).

Note that Definition 20.1.2 provides $D$ and $M$ as abstract constants. The only thing we know about the functions $D$ and $M$ is that they yield quotients and remainders as asserted by the defining property $\forall x y$. $\delta x y(D x y)(M x y)$. We know have examples for simply typed abstract functions that are specified with a defining property.

Corollary 20.1.3 $M x y<\mathrm{S} y$.

Corollary 20.1.4 $M x y=0 \longleftrightarrow x=D x y \cdot \mathrm{~S} y$.

## Exercise 20.1.5

Convince yourself that the following statements follow by linear arithmetic:
a) $\delta x y a b \rightarrow b=x-a \cdot \mathrm{~S} y$
b) $M x y=x-D x y \cdot \mathrm{~S} y$

Exercise 20.1.6 Prove least $(\lambda k . x \leq \mathrm{Sk} \cdot \mathrm{S} y)(D x y)$.

### 20.2 Uniqueness of Quotient and Remainder

We now show that quotients and remainders are unique.

## Fact 20.2.1 (Uniqueness of $\boldsymbol{\delta}$ )

$\delta x y a b \rightarrow \delta x y a^{\prime} b^{\prime} \rightarrow a=a^{\prime} \wedge b=b^{\prime}$.
Proof Using linear arithmetic, it suffices to prove

$$
(b \leq y) \rightarrow\left(b^{\prime} \leq y\right) \rightarrow\left(a \cdot \mathrm{~S} y+b=a^{\prime} \cdot \mathrm{S} y+b^{\prime}\right) \rightarrow a=a^{\prime}
$$

We prove the claim by induction on $a$ with $a^{\prime}$ quantified, followed by discrimination on $a^{\prime}$.
The three cases where $a=0$ or $a^{\prime}=0$ follow by linear arithmetic.
Suppose $a=\mathrm{S} a_{1}$ and $a^{\prime}=\mathrm{S} a_{2}$. Then the inductive hypothesis reduces the claim to $a_{1} \cdot \mathrm{~S} y+b=a_{2} \cdot \mathrm{~S} y+b^{\prime}$, which follows by linear arithmetic (injectivity of S and injectivity of + (Fact 11.2.4)).

To obtain a solid proof, the above outline needs elaboration and verification. This is best done with a proof assistant, where the reasoner for linear arithmetic takes care of all arithmetic details.

The uniqueness of $\delta$ has important applications.
Fact 20.2.2 $x=a \cdot \mathrm{~S} y \hookrightarrow D x y=a \wedge M x y=0$.
Proof Follows with linear arithmetic from uniqueness of $\delta$ (20.2.1) and the defining property of $D$ and $M$ 20.1.2.

Example 20.2.3 To show the ground equations D $1003=25$ and $M 1003=0$, it suffices to show $\delta 1003250$ (because of uniqueness of $\delta$ and the defining property of $D$ and $M$ ). The reduced claim $\delta 1003250$ follows with computational equality.

Exercise 20.2.4 Let $b \leq y$. Prove $D(a \cdot \mathrm{~S} y+b) y=a$ and $M(a \cdot \mathrm{~S} y+b) y=b$.
Exercise 20.2.5 Prove the following:
a) $D x y=a \hookrightarrow \exists b . \delta x y a b$
b) $M x y=b \longleftrightarrow \exists a . \delta x y a b$

Exercise 20.2.6 There is a specification ofthe Euclidean quotient not mentioning the remainder: $\gamma x y a:=a \cdot \mathrm{~S} y \leq x<a \cdot \mathrm{~S} y+\mathrm{S} y$. Prove the following:
a) $\gamma x y a \hookrightarrow \exists b$. $\delta x y a b$
b) $D x y=a \longleftrightarrow \gamma x y a$
c) $\gamma x y(D x y)$

Exercise 20.2.7 Prove $x \cdot \mathrm{SS} z+1 \neq y \cdot \mathrm{SS} z+0$.
Hint: Use uniqueness of $\delta$.
Exercise 20.2.8 Let even $n:=\exists k . n=k \cdot 2$. Prove the following:
a) $\mathcal{D}($ even $n)$
b) even $n \rightarrow \neg$ even (Sn)
c) $\neg$ even $n \rightarrow$ even (Sn)

Hint: Characterize even with the remainder function $M$.

### 20.3 Quotient and Remainder with Repeated Subtraction

Euclidean quotient and reminder can be computed by repeated subtraction. The geometric intuition tells us that the Euclidean quotient of $x$ and $\mathrm{S} y$ is the number of times $\mathrm{S} y$ can be subtracted from $x$ without truncation, and that the remainder of $x$ and Sy is the number that remains.

How can we formalize this insight in computational type theory? We face the difficulty that repeated subtraction is a recursive process whose recursion is not structurally recursive. What we can do in this situation is to verify that the functions $D$ and $M$ satisfy the equations for repeated subtraction. Moreover, we can formulate and verify the subtraction rules for the relational specification $\delta$.

Fact 20.3.1 (Repeated subtraction, relational version)
The following rules hold for all numbers $x, y, a, b$ :

1. $x \leq y \rightarrow \delta x y 0 x$
2. $x>y \rightarrow \delta(x-\mathrm{S} y) y a b \rightarrow \delta x y(\mathrm{~S} a) b$

Proof Both rules follow by linear arithmetic.
The rules justify an algorithm taking $x$ and $y$ as input and computing $a$ and $b$ such that $\delta x y a b$ by repeated subtraction. The relational algorithm can be factorized into two functional algorithms computing quotient and remainder separately. The functional algorithms can be formalized with unfolding functions as follows:

$$
\begin{aligned}
& \text { DIV }:(\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \text { DIV } f x y:=\mathrm{IF} x \leq y \text { THEN } 0 \text { ELSE } \mathrm{S}(f(x-\mathrm{S} y) y) \\
& \text { MOD }:(\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \text { MOD } f x y:=\operatorname{IF} x \leq y \text { THEN } 0 \text { ELSE } S(f(x-\mathrm{S} y) y)
\end{aligned}
$$

Fact 20.3.2 (Repeated subtraction, functional version)
The following equations hold for all numbers $x, y$ :
$D x y=\operatorname{DIV} D x y$ and $M x y=$ MOD $M x y$.

Proof By the uniqueness of $\delta$ (Fact 20.2.1) and the definition of $D$ and $M$ (Definition 20.1.2) it suffices to show

$$
\begin{gathered}
\delta x y(\text { IF } x \leq y \text { THEN } 0 \text { ELSE } \mathrm{S}(D(x-\mathrm{S} y) y)) \\
(\text { IF } x \leq y \text { THEN } x \operatorname{ELSE} M(x-\mathrm{S} y) y)
\end{gathered}
$$

We discriminate on $x-y$. If $x \leq y$, the claim reduces to $\delta x y 0 x$, which follows with Fact 20.3.1(1). If $x>y$, the claim reduces to

$$
\delta x y(\mathrm{~S}(D(x-\mathrm{S} y) y))(M(x-\mathrm{S} y) y)
$$

which with Fact 20.3.1(2) reduces to

$$
\delta(x-\mathrm{S} y) y(D(x-\mathrm{S} y) y)(M(x-\mathrm{S} y) y)
$$

which is an instance of the defining property of $D$ and $M$.
Fact 20.3.2 is remarkable, both as it comes to the result and to the proof. It states that the abstract functions $D$ and $M$ satisfy procedural specifications employing repeated subtraction. The proof of the result hinges on the uniqueness of the relational specifications $\delta$, the correctness of repeated subtraction for $\delta$ (Fact 20.3.1), and the definition of $D$ and $M$.

Recall that we studied the procedural specifications DIV and Mod in §19.3. In particular we showed that both specifications are unique (Fact 19.3.1 and Exercise 19.3.3). Thus we now know that all functions satisfying the specifications agree with $D$ and $M$.

Corollary 20.3.3 All functions satisfying DIV agree with $D$, and all functions satisfying MOD agree with $M$.

Exercise 20.3.4 Let $F: \forall x y . \Sigma a b . \delta x y a b$ and $f x y:=\left(\pi_{1}(F x y), \pi_{1}\left(\pi_{2}(F x y)\right)\right.$.
a) Prove that $f$ satisfies $\delta x y\left(\pi_{1}(f x y)\right)\left(\pi_{2}(f x y)\right)$.
b) Prove that $f$ satisfies the equation
$f x y=\operatorname{IF} x \leq y$ THEN $(0, x) \operatorname{ELSELET}(a, b)=f(x-\mathrm{S} y) y \operatorname{IN}(\mathrm{~S} a, b)$.
Remark: Both proof are straightforward when done with a proof assistant. Checking the details rigorously is annoyingly tedious if done by hand. The second proof best follows the proof of Fact 20.3.2 using uniqueness (Fact 20.2.1) and the rules for repeated subtraction (Fact 20.3.1). No induction is needed.

### 20.4 Divisibility

We define a divisibility predicate as follows:

$$
n \mid x:=\exists k . x=k \cdot n
$$

We read $n \mid x$ as either $n$ divides $x$, or $n$ is a divisor of $x$, or $n$ is a factor of $x$.

## 20 Euclidean Division

Fact 20.4.1 $\operatorname{Sn} \mid x \longleftrightarrow M x n=0$.
Proof Follows with Facts 20.2.2 and 20.1.4.

Corollary 20.4.2 (Decidability) $\forall n x . \mathcal{D}(n \mid x)$

## Fact 20.4.3 (Divisibility)

1. $n \mid 0$ and $x \mid x$.
2. $x \leq y \rightarrow n \mid x \rightarrow(n|y \longleftrightarrow n| y-x)$.
3. $x>0 \rightarrow n \mid x \rightarrow n \leq x$.
4. $n>x \rightarrow n \mid x \rightarrow x=0$.
5. $(\forall n . n|x \longleftrightarrow n| y) \rightarrow x \leq y$.
6. $(\forall n . n|x \longleftrightarrow n| y) \rightarrow x=y$.

Proof Claims 1-4 have straightforward proofs unfolding the definition of divisibility. Claim 6 follows from claim 5.

For claim 5, we consider $y=0$ and $y>0$. For $y=0$, we obtain $x=0$ by (4) with $n:=S x$ and (1). For $y>0$, we obtain $x \leq y$ by (3) and (1).

### 20.5 Greatest Common Divisors

The greatest common divisor of two numbers $x$ and $y$ is a number $z$ such that the divisors of $z$ are exactly the common divisors of $x$ and $y$. Following this characterization, we define a GCD predicate:

$$
\gamma x y z:=\forall n . n|z \longleftrightarrow n| x \wedge n \mid y
$$

We say $z$ is the GCD of $x$ and $y$ if $\gamma x y z$.
Fact 20.5.1 (Uniqueness) $\gamma x y z \rightarrow \gamma x y z^{\prime} \rightarrow z=z^{\prime}$.
Proof Straightforward with Fact 20.4.3(6).
Similar to Euclidean quotients, GCDs can be computed with repeated subtraction. This follows from the fact that non-truncating subtraction leaves the common divisors of two numbers unchanged.

Fact 20.5.2 $x \leq y \rightarrow n \mid x \rightarrow(n|y \longleftrightarrow n| y-x)$.
Proof Straightforward using distribution $a \cdot n+b \cdot n=(a+b) \cdot n$.

Corollary 20.5.3 (Subtraction rule) $x \leq y \rightarrow \gamma x(y-x) z \rightarrow \gamma x y z$.

Recall that $M x y$ subtracts $\mathrm{S} y$ from $x$ as long as the subtraction doesn't truncate. Thus we may use the remainder function to compute GCDs.

Fact 20.5.4 (Remainder rule) $\gamma(\mathrm{S} x)(M y x) z \rightarrow \gamma(\mathrm{~S} x) y z$.
Proof By complete induction on $y$ using Facts 20.3.2 and 20.5.3.
To compute GCDs, we need two further rules for $\gamma$. The correctness of both rules is obvious from the definition of $\delta$.

Fact 20.5.5 (Symmetry rule) $\gamma y x z \rightarrow \gamma x y z$.
Fact 20.5.6 (Zero rule) $\gamma 0 y y$.
We formulate a GCD algorithm using remainders with a procedural specification:

$$
\begin{aligned}
& \Gamma:(\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N}) \rightarrow \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& \Gamma f 0 y:=y \\
& \Gamma f(\mathrm{~S} x) y:=f(M y x)(\mathrm{S} x)
\end{aligned}
$$

The recursion terminates since the first argument is decreased. We use the algorithm to show that GCDs exist.

Fact 20.5.7 (Existence) $\forall x y . \Sigma z . \gamma x y z$.
Proof We prove the claim by complete induction on $x$. If $x=0$, the claim follows with the zero rule. Otherwise we prove $\Sigma z . \gamma(\mathrm{S} x) y z$. The inductive hypothesis gives us $\gamma(M y x)(\mathrm{S} x) z$ since $M y x<\mathrm{S} x$ (Fact 20.1.3). The claim follows with the symmetry and the remainder rule.

## Definition 20.5.8 (GCD function)

We fix a function $\operatorname{gcd}$ such that $\forall x y . \gamma x y(\operatorname{gcd} x y)$.
Proof Immediate with Fact 20.5.7
It remains to show that gcd satisfies the procedural specification.
Fact 20.5.9 gcd $\equiv \Gamma \mathrm{gcd}$.
Proof By uniqueness of $\gamma$ and the defining property of gcd it suffices to show $\gamma x y(\Gamma \operatorname{gcd} x y)$. If $x=0$, the claim follows with the zero rule. Otherwise the claim reduces to $\gamma(\mathrm{S} x) y(\operatorname{gcd}(M y x)(\mathrm{S} x))$, which in turn reduces with the remainder and symmetry rule to an instance of the defining property of gcd.

## Exercise 20.5.10

Show that every function satisfying the procedural specification $\Gamma$ agrees with gcd.
Exercise 20.5.11
Show gcd $x y=\operatorname{IF} x$ THEN $y$ ELSE IF $x \leq y$ THEN gcd $x(y-x)$ ELSE gcd $y x$.

### 20.6 Inductive GCD Predicate

The three computation rules for GCDs

$$
\mathrm{G}_{1} \frac{\mathrm{G}_{2}}{\mathrm{G} 0 y y} \frac{\mathrm{G} x y z}{\mathrm{Gyxz}} \quad \mathrm{G}_{3} \frac{x \leq y \mathrm{G} x(y-x) z}{\mathrm{G} x y z}
$$

yield an inductive predicate $G: N \rightarrow N \rightarrow N \rightarrow \mathbb{P}$. We accommodate all three arguments of G as non-parametric. We will show that G agrees with the GCD predicate $\gamma$. This establishes G as an inductive characterization of GCDs.

We will cary out the equivalence proof for abstract predicates $p^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathbb{P}}$ satisfying the computation rules for GCDs:

1. poyy zero rule
2. $p x y z \rightarrow p y x z \quad$ symmetry rule
3. $x \leq y \rightarrow p x(y-x) z \rightarrow p x y z \quad$ subtraction rule

We call such predicates gcd relations.
Fact 20.6.1 (Soundness) For every gcd relation: Gxyz $\rightarrow p x y z$.

Proof By induction on the derivation of Gxyz. Straightforward since the defining rules of $G$ agree with the properties required for gcd relations.

We may phrase soundness as saying that G is the least gcd relation. The other direction of the equivalence is more demanding.

Fact 20.6.2 (Totality) $\forall x y . \Sigma z . G x y z$.
Proof By size induction of $x+y$. If $x=0$ or $y=0$, the claim follows with the zero and possibly the symmetry rule. Otherwise we have either $1 \leq x \leq y$ or $1 \leq y \leq x$. Using the symmetry rule the case $1 \leq x \leq y$ remains. The inductive hypothesis gives us $\mathrm{G} x(y-x) z$. The claim follows with the subtraction rule.

For the completeness direction we need a functional gcd relation:

$$
\forall x y z z^{\prime} . p x y z \rightarrow p x y z^{\prime} \rightarrow z=z^{\prime}
$$

Fact 20.6.3 (Completeness) For every functional gcd relation: $p x y z \rightarrow \mathrm{G} x y z$.
Proof Let $p x y z$. By totality and soundness we have Gxyz' and $p x y z^{\prime}$. Now $z=z^{\prime}$ by functionality of $p$. Thus Gxyz'.

Corollary 20.6.4 G agrees with every functional gcd relation.

Theorem 20.6.5 G agrees with the GCD predicate $\gamma$.
Proof We have shown in $\S 20.5$ that $\gamma$ is a functional gcd relation.
Assuming extensionality (PE and FE), our results say that $G=\gamma$ and that $\gamma$ is the only functional gcd relation.

Exercise 20.6.6 Give and verify an inductive characterization of the Euclidian division predicate $\lambda x y z . z \cdot \mathrm{~S} y \leq x<\mathrm{S} z \cdot \mathrm{~S} y$.

Exercise 20.6.7 Give and verify an inductive characterization of the Euclidian remainder predicate.

Exercise 20.6.8 Define an eliminator for G justifying induction on derivations as used in the proof of the soundness result (Fact 20.6.1).

### 20.7 Reducible Quotient and Remainder Functions

We now define reducible functions $\operatorname{Div} x c y$ and $\operatorname{Mod} x c y$ for quotient and remainder by structural recursion on $x$. The auxiliary argument $c$ will be decremented upon recursion. We will have $D x y=\operatorname{Div} x y y$ and $M x y=\operatorname{Mod} x y y$.

Definition 20.7.1

```
Div: \(N \rightarrow N \rightarrow N \rightarrow N\)
 Div 0 c \(y:=0\)
Div \(\mathrm{S} x 0 y:=\mathrm{S}(\operatorname{Div} x y y)\)
\(\operatorname{Div} \mathrm{S} x \operatorname{Sc} y:=\operatorname{Div} x c y\)
```

```
Mod: \(\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}\)
 Mod 0 с \(y:=y-c\)
 Mod \(\mathrm{S} x 0 y:=\operatorname{Mod} x y y\)
\(\operatorname{Mod} \mathrm{S} x \operatorname{Sc} y:=\operatorname{Mod} x c y\)
```

The design of Div and Mod is explained with a correctness lemma relating the functions with the specification $\delta$.

Lemma 20.7.2 (Correctness of Div and Mod)
$c \leq y \rightarrow \delta(x+y-c) y(\operatorname{Div} x c y)(\operatorname{Mod} x c y)$.
Proof By induction on $x$ with $c$ quantified.
Let $x=0$ and $c \leq y$. We show $\delta(y-c) y 0(y-c)$. Follows by linear arithmetic.
For the successor case we assume $c \leq y$ and show $\delta(\mathrm{S} x+y-c) y(\operatorname{Div}(\mathrm{~S} x) c y)(\operatorname{Mod}(\mathrm{S} x) c y)$. We discriminate on $c$.

Let $c=0$. Then the claim simplifies to $\delta(x+\mathrm{S} y) y(\mathrm{~S}(\operatorname{Div} x y y))(\operatorname{Mod} x y y)$. The inductive hypothesis instantiated with y gives us $\delta x y(\operatorname{Div} x y y)(\operatorname{Mod} x y y)$. The claim follows with linear arithmetic.

Let $c=\mathrm{S} c^{\prime}$. Then the claim simplifies to $\delta(x+y-c) y(\operatorname{Div} x c y)(\operatorname{Mod} x c y)$, which is the inductive hypothesis instantiated with $c$.

## 20 Euclidean Division

Fact 20.7.3 (Correctness of Div and Mod)
$D x y=\operatorname{Div} x y y$ and $M x y=\operatorname{Mod} x y y$.

Proof Follows with the uniqueness of $\delta$, the defining property of $D$ and $M$, and Lemma 20.7.2 instantiated with $c=y$.

Exercise 20.7.4 (Remainder without subtraction) The first equation of Mod uses subtraction. The use of subtraction can be eliminated with an additional argument $d$ acting as a counter initialized with 0 and being incremented such that $c+d=y$. Verify the correctness of such a remainder function.

### 20.8 Notes

Informally, one may start a development of Euclidean division with separate recursive functions for quotient and remainder applying subtraction. However, this is not an option in a computational type theory where recursion is restricted to structural recursion. Thus our development started with a certifying division function obtaining quotient and remainder with structural recursion. The certifying function gives us abstract functions for quotient and remainder. Using the uniqueness of the specification of Euclidean division, we showed that the abstract functions satisfy the equations for repeated subtraction and agree with reducible functions employing an auxiliary argument.

The proofs in this section often involve considerable formal detail, which is typical for program verification. They are examples of proofs whose construction and analysis profits much from working with a proof assistant, where a prover for linear arithmetic takes care of tedious arithmetic details. When done by hand, the details of the proofs can be overwhelming and their verification is error-prone.

## 21 Lists

Finite sequences $\left[x_{1}, \ldots, x_{n}\right]$ are omnipresent in mathematics and computer science, appearing with different interpretations and notations, for instance, as vectors, strings, or states of stacks and queues. In this chapter, we study inductive list types providing a recursive representation for finite sequences whose elements are taken from a base type. Besides numbers, lists are the most important recursive data type in computational type theory. Lists have much in common with numbers, given that recursion and induction are linear for both data structures. Lists also have much in common with finite sets, given that both have a notion of membership. In fact, our focus will be on the membership relation for lists.

We will see recursive predicates for membership and disjointness of lists, and also for repeating and nonrepeating lists. We will study nonrepeating lists and relate non-repetition to cardinality of lists.

### 21.1 Inductive Definition

Lists represent finite sequences $\left[x_{1}, \ldots, x_{n}\right]$ with two constructors nil and cons:

$$
\begin{aligned}
{[] } & \mapsto \text { nil } \\
{[x] } & \mapsto \text { cons } x \text { nil } \\
{[x, y] } & \mapsto \operatorname{cons} x(\text { cons } y \text { nil }) \\
{[x, y, z] } & \mapsto \operatorname{cons} x(\operatorname{cons} y \text { (cons } z \text { nil) })
\end{aligned}
$$

The constructor nil provides the empty list. The constructor cons yields for a value $x$ and a list representing the sequence $\left[x_{1}, \ldots, x_{n}\right]$ a list representing the sequence $\left[x, x_{1}, \ldots, x_{n}\right]$. Given a list cons x A , we call $x$ the head and $A$ the tail of the list. We say that lists provide a nested pair representation of sequences.

Formally, we obtain lists with an inductive type definition

$$
\mathcal{L}(X: \mathbb{T}): \mathbb{T}::=\text { nil } \mid \operatorname{cons}(X, \mathcal{L}(X))
$$

The type constructor $\mathcal{L}: \mathbb{T} \rightarrow \mathbb{\mathbb { L }}$ gives us a list type $\mathcal{L}(X)$ for every base type $X$. The value constructor nil : $\forall X^{\mathbb{T}}$. $\mathcal{L}(X)$ gives us an empty list for every base type. Finally, the value constructor cons : $\forall X^{\mathbb{T}} . X \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ provides for the construction of nonempty lists by adding an element in front of a given list. Lists of type $\mathcal{L}(X)$ are called lists over $X$. Note that all elements of a list over $X$ must have type $X$.

For nil and cons, we don't write the first argument $X$. We use the notations

$$
\begin{aligned}
\square & :=\text { nil } \\
x:: A & :=\operatorname{cons} x A
\end{aligned}
$$

and omit parentheses as follows:

$$
x:: y:: A \quad \leadsto \quad x::(y:: A)
$$

When convenient, we shall use the sequence notation [ $x_{1}, \ldots, x_{n}$ ] for lists.
Given a list $\left[x_{1}, \ldots, x_{n}\right.$ ], we call $n$ the length of the list, $x_{1}, \ldots, x_{n}$ the elements of the list, and the numbers $0, \ldots, n-1$ the positions of the list. An element may appear at more than one position in a list. For instance, [2,2,3] is a list of length 3 that has 2 elements, where the element 2 appears at positions 0 and 1.

The inductive definition of lists provides for case analysis, recursion, and induction on lists, in a way that is similar to what we have seen for numbers. We define the eliminator for lists as follows:

$$
\begin{aligned}
& \mathrm{E}_{\mathcal{L}}: \forall X^{\mathbb{U}} \forall p^{\mathcal{L}(X) \rightarrow \mathbb{T}} \cdot p[] \rightarrow(\forall x A \cdot p A \rightarrow p(x:: A)) \rightarrow \forall A \cdot p A \\
& \mathrm{E}_{\mathcal{L}} X p e_{1} e_{2}[]:=e_{1} \\
& \mathrm{E}_{\mathcal{L}} X p e_{1} e_{2}(x:: A):=e_{2} x A\left(\mathrm{E}_{\mathcal{L}} X p e_{1} e_{2} A\right)
\end{aligned}
$$

The eliminator provides for inductive proofs, recursive function definitions, and structural case analysis.

## Fact 21.1.1 (Constructor laws)

1. []$\neq x:: A$
2. $x:: A=y:: B \rightarrow x=y$
3. $x:: A=y:: B \rightarrow A=B$
(injectivity)
4. $x:: A \neq A$
(progress)
Proof The proofs are similar to the proofs for numbers in $\S 4.3$. Claim (4) corresponds to $\mathrm{S} n \neq n$ and follows by induction on $A$ with $x$ quantified.

Fact 21.1.2 (Decidable Equality) If $X$ is a discrete type, then $\mathcal{L}(X)$ is a discrete type: $\mathcal{E}(X) \rightarrow \mathcal{E}(\mathcal{L}(X))$.

Proof Let $X$ be discrete and $A, B$ be lists over $X$. We show $\mathcal{D}(A=B)$ by induction over $A$ with $B$ quantified followed by destructuring of $B$ using disjointness and injectivity from Fact 21.1.1. In case both lists are nonempty with heads $x$ and $y$, an additional case analysis on $x=y$ is needed.
Exercise 21.1.3 Prove $\forall X^{\mathbb{T}} A^{\mathcal{L}(X)} . \mathcal{D}(A=[])$.
Exercise 21.1.4 Prove $\forall X^{\mathbb{T}} A^{\mathcal{L}(X)} .(A=[])+\sum x B . A=x:: B$.

### 21.2 Basic Operations

We introduce three basic operations on lists, which yield the length of a list, concatenate two lists, and apply a function to every position of a list:

$$
\begin{aligned}
\text { len }\left[x_{1}, \ldots, x_{n}\right] & =n & & \text { length } \\
{\left[x_{1}, \ldots, x_{m}\right]+\left[y_{1}, \ldots, y_{n}\right] } & =\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] & & \text { concatenation } \\
f @\left[x_{1}, \ldots, x_{n}\right] & =\left[f x_{1}, \ldots, f x_{n}\right] & & \text { map }
\end{aligned}
$$

Formally, we define the operations as recursive functions:

$$
\begin{aligned}
& \text { len }: \forall X^{\mathbb{T}} . \mathcal{L}(X) \rightarrow \mathrm{N} \\
&\text { len }]:=0 \\
& \text { len }(x:: A):=S(\operatorname{len} A) \\
&+: \forall X^{\mathbb{T}} \cdot \mathcal{L}(X) \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(X) \\
& {[]+B:=B } \\
&(x:: A)+B:=x::(A+B) \\
& @: \forall X Y^{\mathbb{T}} .(X\rightarrow Y) \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(Y) \\
& f @[]:=[] \\
& f @(x:: A):=f x::(f @ A)
\end{aligned}
$$

We treat $X$ and $Y$ as implicit arguments.

## Fact 21.2.1

1. $A+(B+C)=(A+B)+C$
2. $A+[]=A$
3. Ien $(A+B)=\operatorname{len} A+\operatorname{len} B$
4. len $(f @ A)=\operatorname{len} A$
5. len $A=0 \longleftrightarrow A=[$

Proof The equations follow by induction on $A$. The equivalence follows by case analysis on $A$.

### 21.3 Membership

Informally, we may characterize membership in lists with the equivalence

$$
x \in\left[x_{1}, \ldots, x_{n}\right] \longleftrightarrow x=x_{1} \vee \cdots \vee x=x_{n} \vee \perp
$$

Formally, we define the membership predicate by structural recursion on lists:

$$
\begin{aligned}
(\in): & \forall X^{\mathbb{T}} \cdot X \rightarrow \mathcal{L}(X) \rightarrow \mathbb{P} \\
(x \in[) & :=\perp \\
(x \in y:: A) & :=(x=y \vee x \in A)
\end{aligned}
$$

We treat the type argument $X$ of the membership predicate as implicit argument. If $x \in A$, we say that $x$ is an element of $A$.

Fact 21.3.1 (Existential Characterization) $x \in A \longleftrightarrow \exists A_{1} A_{2} . A=A_{1}+x:: A_{2}$.
Proof Direction $\rightarrow$ follows by induction on $A$. The nil case is contradictory. In the cons case a case analysis on $x \in a:: A^{\prime}$ closes the proof with the inductive hypothesis.

Direction $\leftarrow$ follows by induction on $A_{1}$.
Fact 21.3.2 $\forall x a^{X} \forall A^{\mathcal{L}(X)} . \mathcal{E}(X) \rightarrow x \in a:: A \rightarrow(x=a)+(x \in A)$.
Proof Straightforward.
Fact 21.3.3 (Factorization) $\forall x^{X} A^{\mathcal{L}(X)} . \mathcal{E}(X) \rightarrow x \in A \rightarrow \Sigma A_{1} A_{2} . A=A_{1}+x:: A_{2}$.
Proof By induction on $A$. The nil case is contradictory. In the cons case a case analysis using Fact 21.3 .2 closes the proof.

Fact 21.3.4 (Decidable Membership) $\forall x^{X} \forall A^{\mathcal{L}(X)} . \mathcal{E}(X) \rightarrow \mathcal{D}(x \in A)$.
Proof By induction on $A$.

## Fact 21.3.5 (Membership laws)

1. $x \in A+B \longleftrightarrow x \in A \vee x \in B$.
2. $x \in f @ A \longleftrightarrow \exists a \cdot a \in A \wedge x=f a$.

Proof By induction on $A$.
Fact 21.3.6 (Injective map)
injective $f \rightarrow f x \in f @ A \rightarrow x \in A$.
Proof Follows with 21.3.5(2).

Recall that finite quantification over numbers preserves decidability (Fact 18.3.3). Similarly, quantification over the elements of a list preserves decidability. In fact, quantification over the elements of a list is a form of finite quantification.

We will use the notations

$$
\begin{aligned}
\forall x \in A \cdot p x & :=\forall x \cdot x \in A \rightarrow p x \\
\exists x \in A \cdot p x & :=\exists x \cdot x \in A \wedge p x \\
\Sigma x \in A . p x & :=\Sigma x \cdot x \in A \times p x
\end{aligned}
$$

for quantifications over the elements of a list.
Fact 21.3.7 (Bounded Quantification) Let $p^{X \rightarrow \mathbb{T}}$ be a decidable type function. Then there are decision functions as follows:

1. $\forall A .\left(\sum x \in A . p x\right)+(\forall x \in A . \neg p x)$
2. $\forall A \cdot \mathcal{D}(\forall x \in A . p x)$
3. $\forall A \cdot \mathcal{D}(\Sigma x \in A . p x)$

Proof By induction on $A$.
Exercise 21.3.8
Define a function $\delta: \mathcal{L}(\mathcal{O}(X)) \rightarrow \mathcal{L}(X)$ such that $x \in \delta A \longleftrightarrow{ }^{\circ} x \in A$.
Exercise 21.3.9 (EWO) Let $p$ be a decidable predicate on a type $X$.
Construct a function $\forall A .(\exists x \in A . p x) \rightarrow(\Sigma x \in A . p x)$.

### 21.4 Inclusion and Equivalence

We may see a list as a representation of a finite set. List membership then corresponds to set membership. The list representation of sets is not unique since the same set may have different list representations. For instance, [1, 2], [2, 1], and $[1,1,2]$ are different lists all representing the set $\{1,2\}$. In contrast to sets, lists are ordered structures providing for multiple occurrences of elements.

From the type-theoretic perspective, sets are informal objects that may or may not have representations in type theory. This is in sharp contrast to set-based mathematics where sets are taken as basic formal objects. The reason sets don't appear natively in computational type theory is that sets in general are noncomputational objects.

We will take lists over $X$ as type-theoretic representations of finite sets over $X$. With this interpretation of lists in mind, we define list inclusion and list equivalence as follows:

$$
\begin{aligned}
& A \subseteq B:=\forall x . x \in A \rightarrow x \in B \\
& A \equiv B:=A \subseteq B \wedge B \subseteq A
\end{aligned}
$$

Note that two lists are equivalent if and only if they represent the same set.
Fact 21.4.1 List inclusion $A \subseteq B$ is reflexive and transitive. List equivalence $A \equiv B$ is reflexive, symmetric, and transitive.

Fact 21.4.2 We have the following properties for membership, inclusion, and equivalence of lists.

$$
\begin{array}{ll}
x \notin[] & x \in[y] \leftrightarrows x=y \\
{[] \subseteq A} & A \subseteq[] \rightarrow A=[] \\
x \in y:: A \rightarrow x \neq y \rightarrow x \in A & x \notin y:: A \rightarrow x \neq y \wedge x \notin A \\
A \subseteq B \rightarrow x \in A \rightarrow x \in B & A \equiv B \rightarrow x \in A \longleftrightarrow x \in B \\
A \subseteq B \rightarrow x:: A \subseteq x:: B & A \equiv B \rightarrow x:: A \equiv x:: B \\
A \subseteq B \rightarrow A \subseteq x:: B & x:: A \subseteq B \longleftrightarrow x \in B \wedge A \subseteq B \\
x:: A \subseteq x:: B \rightarrow x \notin A \rightarrow A \subseteq B & x:: A \subseteq[y] \longleftrightarrow x=y \wedge A \subseteq[y] \\
x:: A \equiv x:: x:: A & x:: y:: A \equiv y:: x:: A \\
x \in A \rightarrow A \equiv x:: A & \\
x \in A+B \leftrightarrows x \in A \vee x \in B & A+B \subseteq C \leftrightarrows A \subseteq C \wedge B \subseteq C
\end{array}
$$

Proof Except for the membership fact for concatenation, which already appeared as Fact 21.3.5, all claims have straightforward proofs not using induction.

## Fact 21.4.3 (Rearrangement)

$x \in A \rightarrow \exists B . A \equiv x:: B \wedge \operatorname{len} A=\operatorname{len}(x:: B)$.
Proof Follows with Fact 21.3.1. There is also a direct proof by induction on $A$.
Fact 21.4.4 (Rearrangement)
$\mathcal{E}(X) \rightarrow \forall x^{X} . x \in A \rightarrow \Sigma B . A \equiv x:: B \wedge \operatorname{len} A=\operatorname{len}(x:: B)$.
Proof Follows with Fact 21.3.3. There is also a direct proof by induction on $A$ using Fact 21.3.2.

Fact 21.4.5 Let $A$ and $B$ be lists over a discrete type. Then $\mathcal{D}(A \subseteq B)$ and $\mathcal{D}(A \equiv B)$.
Proof Holds since membership is decidable (Fact 21.3.4) and bounded quantification preserves decidability (Fact 21.3.7).

### 21.5 Nonrepeating Lists

A list is repeating if it contains some element more than once. For instance, [1, 2, 1] is repeating and $[1,2,3]$ is nonrepeating. Formally, we define repeating lists over a base type $X$ with a recursive predicate:

$$
\begin{aligned}
& \text { rep }: \mathcal{L}(X) \rightarrow \mathbb{P} \\
&\operatorname{rep}]:=\perp \\
& \operatorname{rep}(x:: A):=x \in A \vee \operatorname{rep} A
\end{aligned}
$$

Fact 21.5.1 (Characterization)
For every list $A$ over a discrete type we have:
$\operatorname{rep} A \hookrightarrow \exists x A_{1} A_{2} . A=A_{1}+x:: A_{2} \wedge x \in A_{2}$.
Proof By induction on rep $A$ using Fact 21.3.1.
We also define a recursive predicate for nonrepeating lists over a base type $X$ :

```
nrep : \(\mathcal{L}(X) \rightarrow \mathbb{P}\)
 nrep [] := T
 \(\operatorname{nrep}(x:: A):=x \notin A \wedge \operatorname{nrep} A\)
```

Theorem 21.5.2 (Partition) Let $A$ be a list over a discrete type. Then:

1. rep $A \rightarrow \operatorname{nrep} A \rightarrow \perp$
(disjointness)
2. rep $A+\operatorname{nrep} A$
(exhaustiveness)
Proof Both claims follow by induction on $A$. Discreteness is only needed for the second claim, which needs decidability of membership (Fact 21.3.4) for the cons case.

Corollary 21.5.3 Let $A$ be a list over a discrete type. Then:

1. $\mathcal{D}($ rep $A)$ and $\mathcal{D}(\operatorname{nrep} A)$.
2. rep $A \hookrightarrow \neg \operatorname{nrep} A$ and $\operatorname{nrep} A \hookrightarrow \neg \operatorname{rep} A$.

## Fact 21.5.4 (Equivalent nonrepeating list)

For every list $A$ over a discrete type one can obtain an equivalent nonrepeating list $B$ such that len $B \leq \operatorname{len} A: \forall A . \Sigma B . B \equiv A \wedge \operatorname{nrep} B \wedge \operatorname{len} B \leq \operatorname{len} A$.

Proof By induction on $A$. For $x:: A$, let $B$ be the list obtained for $A$ with the inductive hypothesis. If $x \in A, B$ has the required properties for $x:: A$. If $x \notin A$, $x:: B$ has the required properties for $x:: A$.

The next fact formulates a key property concerning the cardinality of lists (number of different elements). It is carefully chosen so that it provides a building block for further results (Corollary 21.5.6). Finding this fact took experimentation. To get the taste of it, try to prove that equivalent nonrepeating lists have equal length without looking at our development.

Fact 21.5.5 (Discriminating element)
Every nonrepeating list over a discrete type contains for every shorter list an element not in the shorter list: $\forall A B$. nrep $A \rightarrow$ len $B<\operatorname{len} A \rightarrow \Sigma x . x \in A \wedge x \notin B$.

Proof By induction on $A$ with $B$ quantified. The base case follows by computational falsity elimination. For $A=a:: A^{\prime}$ we do case analysis on $(a \in B)+(a \notin B)$. The case $a \notin B$ is trivial. For $a \in B$, Fact 21.4.4 yields some $B^{\prime}$ shorter than $B$ such that $B \equiv a:: B^{\prime}$. The inductive hypothesis now yields some $x \in A^{\prime}$ such that $x \notin B^{\prime}$. It now suffices to show $x \notin B$. We assume $x \in B \equiv a:: B^{\prime}$ and derive a contradiction. Since $x \notin B^{\prime}$, we have $x=a$, which is in contradiction with nrep ( $a:: A^{\prime}$ ).

Corollary 21.5.6 Let $A$ and $B$ be lists over a discrete type $X$. Then:

1. $\operatorname{nrep} A \rightarrow A \subseteq B \rightarrow$ len $A \leq$ len $B$.
2. $\operatorname{nrep} A \rightarrow \operatorname{nrep} B \rightarrow A \equiv B \rightarrow \operatorname{len} A=\operatorname{len} B$.
3. $A \subseteq B \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \operatorname{rep} A$.
4. $\operatorname{nrep} A \rightarrow A \subseteq B \rightarrow \operatorname{len} B \leq \operatorname{len} A \rightarrow \operatorname{nrep} B$.
5. $\operatorname{nrep} A \rightarrow A \subseteq B \rightarrow$ len $B \leq \operatorname{len} A \rightarrow B \equiv A$.

Proof Interestingly, all claims follow without induction from Facts 21.5.5, 21.5.1, and 21.5.3.

For (1), assume len $A>$ len $B$ and derive a contradiction with Fact 21.5.5.
Claims (2) and (3) follow from Claim (1), where for (3) we assume nrep $A$ and derive a contradiction (justified by Corollary 21.5.3).

For (4), we assume rep $B$ and derive a contradiction (justified by Corollary 21.5.3). By Fact 21.5.1, we obtain a list $B^{\prime}$ such that $A \subseteq B^{\prime}$ and len $B^{\prime}<$ len $A$. Contradiction with (1).

For (5), it suffices to show $B \subseteq A$. We assume $x \in B$ and show $x \in A$. Exploiting the decidability of membership we assume $x \notin A$ and derive a contradiction. Using Fact 21.5.5 for $x:: A$ and $B$, we obtain $z \in x:: A$ and $z \notin B$, which is contradictory.

We remark that Corollary 21.5.6 (3) may be understood as a pigeonhole lemma.
Exercise 21.5.7 Prove the following facts about map and nonrepeating lists:
a) injective $f \rightarrow \operatorname{nrep} A \rightarrow \operatorname{nrep}(f @ A)$.
b) $\operatorname{nrep}(f @ A) \rightarrow x \in A \rightarrow x^{\prime} \in A \rightarrow f x=f x^{\prime} \rightarrow x=x^{\prime}$.
c) $\operatorname{nrep}(f @ A) \rightarrow \operatorname{nrep} A$.

Exercise 21.5.8 (Injectivity-surjectivity agreement) Let $X$ be a discrete type and $A$ be a list containing all elements of $X$. Prove that a function $X \rightarrow X$ is injective if and only if it is surjective.

This is an interesting exercise. It can be stated as soon as membership in lists is defined. To solve it, however, one needs properties of length, map, element removal, and nonrepeating lists. If one doesn't know these notions, the exercise makes an interesting project since one has to invent these notions. Our solution uses Corollary 21.5.6 and Exercise 21.5.7.

We can sharpen the problem of the exercise by asking for a proof that a function $\mathcal{O}^{n}(X) \rightarrow \mathcal{O}^{n}(X)$ is injective if and only if it is surjective. There should be a proof not using lists. See §23.6.

Exercise 21.5.9 (Factorization) Let $A$ be a list over a discrete type.
Prove $\operatorname{rep} A \rightarrow \sum x A_{1} A_{2} A_{3} . A=A_{1}+x:: A_{2}+x:: A_{3}$.
Exercise 21.5.10 (Partition) The proof of Corollary 21.5.3 is straightforward and follows a general scheme. Let $P$ and $Q$ be propositions such that $P \rightarrow Q \rightarrow \perp$ and $P+Q$. Prove $\operatorname{dec} P$ and $P \longleftrightarrow \neg Q$. Note that $\operatorname{dec} Q$ and $Q \longleftrightarrow \neg P$ follow by symmetry.

## Exercise 21.5.11 (List reversal)

Define a list reversal function rev: $\mathcal{L}(X) \rightarrow \mathcal{L}(X)$ and prove the following:
a) $\operatorname{rev}(A+B)=\operatorname{rev} B+\operatorname{rev} A$
b) $\operatorname{rev}(\operatorname{rev} A)=A$
c) $x \in A \longleftrightarrow x \in \operatorname{rev} A$
d) $\operatorname{nrep} A \rightarrow x \notin A \rightarrow \operatorname{nrep}(A+[x])$
e) $\operatorname{nrep} A \rightarrow \operatorname{nrep}(\operatorname{rev} A)$
f) Reverse list induction: $\forall p^{X \rightarrow \mathbb{T}} . p[] \rightarrow(\forall x A . p(A) \rightarrow p(A+[x])) \rightarrow \forall A$. $p A$. Hint: By (a) it suffices to prove $\forall A . p(\operatorname{rev} A)$, which follows by induction on $A$.

Exercise 21.5.12 (Equivalent nonrepeating lists) Show that equivalent nonrepeating lists have equal length without assuming discreteness of the base type. Hint: Show nrep $A \rightarrow A \subseteq B \rightarrow$ len $A \leq$ len $B$ by induction on $A$ with $B$ quantified using the rearrangement lemma 21.4.3.

Exercise 21.5.13 (Even and Odd) Define recursive predicates even and odd on numbers and show that they partition the numbers: even $n \rightarrow$ odd $n \rightarrow \perp$ and even $n+$ odd $n$.

### 21.6 Lists of Numbers

We now come to some facts about lists of numbers whose truth is intuitively clear but whose proofs are surprisingly tricky. The facts about nonrepeating lists turn out to be essential.

A segment is a list containing all numbers smaller than its length:

$$
\text { segment } A:=\forall k . k \in A \hookrightarrow k<\operatorname{len} A
$$

A list of numbers is serial if for every element it contains all smaller numbers:

$$
\text { serial } A:=\forall n \in A . \forall k \leq n . k \in A
$$

We will show that a list is a segment if and only if it is nonrepeating and serial.
Fact 21.6.1 The empty list is a segment.
Fact 21.6.2 Segments of equal length are equivalent.
Fact 21.6.3 Segments are serial.
Fact 21.6.4 (Segment existence)
$\forall n . \Sigma A$. segment $A \wedge$ len $A=n \wedge$ nrep $A$.
Proof By induction on $A$.
Fact 21.6.5 Segments are nonrepeating.
Proof Let $A$ be a segment. By Facts 21.6.4 and 21.6.2 we have an equivalent nonrepeating segment $B$ of the same length. Hence $A$ is nonrepeating by Fact 21.5.6(4).

## Fact 21.6.6 (Large element)

Every nonrepeating list of numbers of length $S n$ contains a number $k \geq n$ :
$\forall A$. nrep $A \rightarrow \operatorname{len} A=\operatorname{Sn} \rightarrow \Sigma k \in A . k \geq n$.
Proof Let $A$ be a nonrepeating list of numbers of length $\operatorname{Sn}$. By Fact 21.3.7(1) we can assume $\forall k \in A . k<n$ and derive a contradiction. Fact 21.6.4 gives us a nonrepeating list $B$ of length $n$ such that $\forall k . k \in B \hookrightarrow k<n$. Now $A \subseteq B$ and len $B<\operatorname{len} A$. Contradiction by Fact 21.5.6(1).

Fact 21.6.7 A nonrepeating serial list is a segment.
Proof Let $A$ be a nonrepeating serial list. If $A=[$, the claim is trivial. Otherwise, len $A=\operatorname{Sn}$. Fact 21.6.6 gives us $x \in A$ such that $x \geq n$. Fact 21.6.4 gives us a nonrepeating segment $B$ of length $\mathrm{S} n$. We now see that $A$ is a segment if $A \equiv B$. We have $B \subseteq A$ since $A$ is serial and hence contains all $k \leq n \leq x$. Now $A \subseteq B$ follows with Fact 21.5.6(5).

Fact 21.6 .8 (Next number) There is function that for every list of numbers yields a number that is not in the list: $\forall A^{\mathcal{L}(\mathrm{N})} . \Sigma n . \forall k \in A . k<n$.

Proof By induction on $A$.
Fact 21.6 .8 says that there are infinitely many numbers. More generally, if we have an injection $\mathcal{I N} X$, we can obtain a new element generator for $X$ and thus know that $X$ is infinite.

## Fact 21.6.9 (New element generator)

Given an injection $\mathcal{I N} X$, there is function that for every list over $X$ yields a number that is not in the list: $\forall A^{\mathcal{L}(X)} . \Sigma x . \forall a \in A . a \neq x$.

Proof Let $\operatorname{inv}_{\mathrm{N} X} f g$ and $A^{\mathcal{L X}}$. Then Fact 21.6 .8 gives us a number $n \notin g @ A$. To show $f n \notin A$, assume $f n \in A$. Then $n=g(f n) \in g @ A$ contradicting an above assumption.

Exercise 21.6.10 (Pigeonhole) Prove that a list of numbers whose sum is greater than the length of the list must contain a number that is at least 2 :

$$
\operatorname{sum} A>\operatorname{len} A \rightarrow \Sigma x . x \in A \wedge x \geq 2
$$

First define the function sum.
Exercise 21.6.11 (Andrej's Puzzle) Assume an increasing function $f^{\mathrm{N} \rightarrow \mathrm{N}}$ (that is, $\forall x . x<f x)$ and a list $A$ of numbers satisfying $\forall x . x \in A \longleftrightarrow x \in f @ A$. Show that $A$ is empty.

Hint: First verify that $A$ contains for every element a smaller element. It then follows by complete induction that $A$ cannot contain an element.

Exercise 21.6.12 Define a function seq: $N \rightarrow N \rightarrow \mathcal{L}(N)$ for which you can prove the following:
a) $\operatorname{seq} 25=[2,3,4,5,6]$
b) $\operatorname{seq} n(S k)=n:: \operatorname{seq}(S n) k$
c) len $(\operatorname{seq} n k)=k$
d) $x \in \operatorname{seq} n k \longleftrightarrow n \leq x<n+k$
e) $\operatorname{nrep}(\operatorname{seq} n k)$

### 21.7 Position-Element Mappings

The positions of a list $\left[x_{1}, \ldots, x_{n}\right]$ are the numbers $0, \ldots, n-1$. More formally, a number $n$ is a position of a list $A$ if $n<$ len $A$. If a list is nonrepeating, we have a
bijective relation between the positions and the elements of the list. For instance, the list $[7,8,5]$ gives us the bijective relation

$$
0 \leadsto 7,1 \leadsto 8, \quad 2 \leadsto 5
$$

It turns out that for a discrete type $X$ we can define two functions

$$
\begin{aligned}
& \text { pos: } \mathcal{L}(X) \rightarrow X \rightarrow \mathrm{~N} \\
& \text { sub: } X \rightarrow \mathcal{L}(X) \rightarrow \mathrm{N} \rightarrow X
\end{aligned}
$$

realizing the position-element bijection:

$$
\begin{aligned}
x \in A & \rightarrow \operatorname{sub} y A(\operatorname{pos} A x)=x \\
\operatorname{nrep} A \rightarrow n<\operatorname{len} A & \rightarrow \operatorname{pos} A(\operatorname{sub} y A n)=n
\end{aligned}
$$

The function pos uses 0 as escape value for positions, and the function sub uses a given $y^{X}$ as escape value for elements of $X$. The name sub stands for subscript. The functions pos and sub will be used in Chapter 23 for constructing injections and bijections between finite types and in Chapter 24 for constructing injections into N .

Here are the definitions of pos and sub we will use:

```
pos: \(\mathcal{L}(X) \rightarrow X \rightarrow \mathrm{~N}\)
 \(\operatorname{pos}[] x:=0\)
 \(\operatorname{pos}(a:: A) x:=\operatorname{IF}{ }^{「} a=x^{\urcorner}\)THEN 0 ELSE \(S(\operatorname{pos} A x)\)
sub: \(X \rightarrow \mathcal{L}(X) \rightarrow \mathrm{N} \rightarrow X\)
 \(\operatorname{sub} y[] n:=y\)
 \(\operatorname{sub} y(a:: A) 0:=a\)
 \(\operatorname{sub} y(a:: A)(\mathrm{S} n):=\operatorname{sub} y A n\)
```

Fact 21.7.1 Let $A$ be a list over a discrete type. Then:

1. $x \in A \rightarrow \operatorname{sub} a A(\operatorname{pos} A x)=x$
2. $x \in A \rightarrow \operatorname{pos} A x<\operatorname{len} A$
3. $n<\operatorname{len} A \rightarrow \operatorname{sub} a A n \in A$
4. $\operatorname{nrep} A \rightarrow n<\operatorname{len} A \rightarrow \operatorname{pos} A(\operatorname{sub} a A n)=n$

Proof All claims follow by induction on $A$. For (3), the inductive hypothesis must quantify $n$ and the cons case needs case analysis on $n$.

Exercise 21.7.2 Prove $\left(\forall X^{\mathbb{T}} . \mathcal{L}(X) \rightarrow \mathrm{N} \rightarrow X\right) \rightarrow \perp$.

Exercise 21.7.3 Let $A$ and $B$ be lists over a discrete type $X$. Prove the following:
a) $x \in A \rightarrow \operatorname{pos} A x=\operatorname{pos}(A+B) x$
b) $k<\operatorname{len} A \rightarrow \operatorname{sub} A k=\operatorname{sub}(A+B) k$
c) $x \in A \rightarrow y \in A \rightarrow \operatorname{pos} A x=\operatorname{pos} A y \rightarrow x=y$

Note that (a) relies on the fact that pos $A x$ yields the first position of $x$ in $A$, which matters if $x$ occurs more than once in $A$.

Exercise 21.7.4 One can realize pos and sub with option types

$$
\begin{aligned}
& \text { pos : } \mathcal{L}(X) \rightarrow X \rightarrow \mathcal{O}(\mathrm{~N}) \\
& \text { sub }: \mathcal{L}(X) \rightarrow \mathrm{N} \rightarrow \mathcal{O}(X)
\end{aligned}
$$

and this way avoid the use of escape values. Define pos and sub with option types for a discrete base type $X$ and verify the following properties:
a) $x \in A \rightarrow \Sigma n \cdot \operatorname{pos} A x={ }^{\circ} n$
b) $n<\operatorname{len} A \rightarrow \Sigma x \cdot \operatorname{sub} A n={ }^{\circ} x$
c) $\operatorname{pos} A x={ }^{\circ} n \rightarrow \operatorname{sub} A n={ }^{\circ} x$
d) $\operatorname{nrep} A \rightarrow \operatorname{sub} A n={ }^{\circ} x \rightarrow \operatorname{pos} A x={ }^{\circ} n$
e) $\operatorname{sub} A n={ }^{\circ} x \rightarrow x \in A$
f) $\operatorname{pos} A x={ }^{\circ} n \rightarrow n<\operatorname{len} A$

### 21.8 Constructive Discrimination Lemma

Using XM , we can prove that every non-repeating list contains for every shorter list an element that is not in the shorter list:

$$
\mathrm{XM} \rightarrow \forall X \forall A B^{\mathcal{L}(X)} . \operatorname{nrep} A \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \exists x . x \in A \wedge x \notin B
$$

We speak of the classical discrimination lemma. We have already shown a computational version of the lemma (Fact 21.5.5)

$$
\forall X \forall A B^{\mathcal{L}(X)} . \mathcal{E}(X) \rightarrow \operatorname{nrep} A \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \exists x . x \in A \wedge x \notin B
$$

replacing XM with an equality decider for the base type $X$. In this section our main interest is in proving the constructive discrimination lemma

$$
\forall X \forall A B^{\mathcal{L}(X)} . \operatorname{nrep} A \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \neg \neg \exists x . x \in A \wedge x \notin B
$$

which assumes neither XM nor an equality decider. Note that the classical discrimination lemma is a trivial consequence of the constructive discrimination lemma. We may say that the constructive discrimination lemma is obtained from the classical discrimination lemma by eliminating the use of XM by weakening the existential
claim with a double negation. Elimination techniques for XM have useful applications.

We first prove the classical discrimination lemma following the proof of Fact 21.5.5.

## Lemma 21.8.1 (Classical discrimination)

$\mathrm{XM} \rightarrow \forall A B^{\mathcal{L}(X)} . \operatorname{nrep} A \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \exists x . x \in A \wedge x \notin B$.

Proof By induction on $A$ with $B$ quantified. The base case follows by computational falsity elimination. For $A=a:: A^{\prime}$, we do case analysis on $(a \in B) \vee(a \notin B)$ exploiting XM. The case $a \notin B$ is trivial. For $a \in B$, Fact 21.4.3 yields some $B^{\prime}$ shorter than $B$ such that $B \equiv a:: B^{\prime}$. The inductive hypothesis now yields some $x \in A^{\prime}$ such that $x \notin B^{\prime}$. It now suffices to show $x \notin B$. We assume $x \in B \equiv a:: B^{\prime}$ and derive a contradiction. Since $x \notin B^{\prime}$, we have $x=a$, which contradicts nrep ( $a:: A^{\prime}$ ).

We observe that there is only a single use of $X M$. When we prove the constructive version with the double negated claim, we will exploit that XM is available for stable claims (Fact 15.4.8(1)). Moreover, we will use the rule formulated by Fact 15.4.8(2) to erase the double negation from the inductive hypothesis so that we can harvest the witness.

## Lemma 21.8.2 (Constructive discrimination)

$\forall A B^{\mathcal{L}(X)}$. $\operatorname{nrep} A \rightarrow$ len $B<\operatorname{len} A \rightarrow \neg \neg \exists x . x \in A \wedge x \notin B$.
Proof By induction on $A$ with $B$ quantified. The base case follows by computational falsity elimination. Otherwise, we have $A=a:: A^{\prime}$. Since the claim is stable, we can do case analysis on $a \in B \vee a \notin B$ (Fact 15.4.8(1)). If $a \notin B$, we have found a discriminating element and finish the proof with $\forall P . P \rightarrow \neg \neg P$. Otherwise, we have $a \in B$. Fact 21.4 .3 yields some $B^{\prime}$ shorter than $B$ such that $B \equiv a:: B^{\prime}$. Using Fact 15.4.8(2), the inductive hypothesis now gives us $x \in A^{\prime}$ such that $x \notin B^{\prime}$. By $\forall P . P \rightarrow \neg \neg P$ it now suffices to show $x \notin B$, which follows as in the proof of Fact 21.8.1.

Exercise 21.8.3 Prove that the double negation of $\exists$ agrees with the double negation of $\Sigma: \neg \neg \operatorname{ex} p \longleftrightarrow((\operatorname{sig} p \rightarrow \perp) \rightarrow \perp)$.

### 21.9 Element Removal

We assume a discrete type $X$ and define a function $A \backslash x$ for element removal as follows:

$$
\begin{aligned}
\backslash: \mathcal{L}(X) \rightarrow X & \rightarrow \mathcal{L}(X) \\
{[] \backslash-} & := \\
(x:: A) \backslash y & :=\mathrm{IF}^{\ulcorner } x=y^{\urcorner} \text {THEN } A \backslash y \text { ELSE } x::(A \backslash y)
\end{aligned}
$$

Fact 21.9.1

1. $x \in A \backslash y \longleftrightarrow x \in A \wedge x \neq y$
2. Ien $(A \backslash x) \leq \operatorname{len} A$
3. $x \in A \rightarrow \operatorname{len}(A \backslash x)<\operatorname{len} A$.
4. $x \notin A \rightarrow A \backslash x=A$

Proof By induction on $A$.
Exercise 21.9.2 Prove $x \in A \rightarrow A \equiv x::(A \backslash x)$.

Exercise 21.9.3 Prove the following equations, which are useful in proofs:

1. $(x:: A) \backslash x=A \backslash x$
2. $x \neq y \rightarrow(y:: A) \backslash x=y::(A \backslash x)$

### 21.10 Cardinality

The cardinality of a list is the number of different elements in the list. For instance, $[1,1,1]$ has cardinality 1 and $[1,2,3,2]$ has cardinality 3 . Formally, we may say that the cardinality of a list is the length of an equivalent nonrepeating list. This characterization is justified since equivalent nonrepeating lists have equal length (Corollary 21.5.6(3)), and every list is equivalent to a non-repeating list (Fact 21.5.4).

We assume that lists are taken over a discrete type $X$ and define a cardinality function as follows:

```
card : \(\mathcal{L}(X) \rightarrow \mathrm{N}\)
 card [] \(:=0\)
\(\operatorname{card}(x:: A):=\mathrm{IF}^{\ulcorner } x \in A^{\top}\) THEN \(\operatorname{card} A \operatorname{ELSE} \mathrm{~S}(\operatorname{card} A)\)
```

Note that we write ${ }^{\ulcorner } x \in A^{\top}$ for the application of the membership decider provided by Fact 21.3.4. We prove that the cardinality function agrees with the cardinalities provided by equivalent nonrepeating lists.

Fact 21.10.1 (Cardinality)

1. $\forall A \Sigma B . B \equiv A \wedge \operatorname{nrep} B \wedge \operatorname{len} B=\operatorname{card} A$.
2. $\operatorname{card} A=n \longleftrightarrow \exists B . B \equiv A \wedge \operatorname{nrep} B \wedge \operatorname{len} B=n$.

Proof Claim 1 follows by induction on $A$. Claim 2 follows with Claim 1 and Corollary 21.5.6(2).

Corollary 21.10.2

1. card $A \leq \operatorname{len} A$
2. $A \subseteq B \rightarrow \operatorname{card} A \leq \operatorname{card} B$
3. $A \equiv B \rightarrow \operatorname{card} A=\operatorname{card} B$.
4. $\operatorname{rep} A \longleftrightarrow \operatorname{card} A<\operatorname{len} A \quad$ (pigeonhole)
5. $\operatorname{nrep} A \longleftrightarrow \operatorname{card} A=\operatorname{len} A$
6. $x \in A \longleftrightarrow \operatorname{card} A=\mathrm{S}(\operatorname{card}(A \backslash x))$

Proof All facts follow without induction from Fact 21.10.1, Corollary 21.5.6, and Corollary 21.5.3.

Exercise 21.10.3 Given direct proofs of (1), (4) and (5) of Corollary 21.10 .2 by induction on $A$. Use (1) for (4) and (5).

Exercise 21.10.4 (Cardinality predicate) We define a recursive cardinality predicate:

```
Card: \(\mathcal{L}(X) \rightarrow X \rightarrow \mathbb{P}\)
 Card [] \(0:=\) T
 Card[](Sn) := \(\perp\)
 Card (x :: A) \(0:=\perp\)
\(\operatorname{Card}(x:: A)(\mathrm{S} n):=\mathrm{IF}^{「} x \in A^{\top}\) THEN Card \(A(\mathrm{~S} n)\) ELSE Card \(A n\)
```

Prove that the cardinality predicate agrees with the cardinality function: $\forall A n$. Card $A n \longleftrightarrow \operatorname{card} A=n$.

Exercise 21.10.5 (Disjointness predicate) We define disjointness of lists as follows:

$$
\operatorname{disjoint} A B:=\neg \exists x, x \in A \wedge x \in B
$$

Define a recursive predicate Disjoint: $\mathcal{L}(X) \rightarrow \mathcal{L}(X) \rightarrow \mathbb{P}$ in the style of the cardinality predicate and verify that it agrees with the above predicate disjoint.

### 21.11 Setoid Rewriting

It is possible to rewrite a claim or an assumption in a proof goal with a propositional equivalence $P \longleftrightarrow P^{\prime}$ or a list equivalence $A \equiv A^{\prime}$, provided the subterm $P$ or $A$ to be rewritten occurs in a compatible position. This form of rewriting is known as setoid rewriting. The following facts identify compatible positions by means of compatibility laws.

Fact 21.11.1 (Compatibility laws for propositional equivalence)
Let $P \longleftrightarrow P^{\prime}$ and $Q \longleftrightarrow Q^{\prime}$. Then:

$$
\begin{array}{rlrl}
P \wedge Q & \hookrightarrow P^{\prime} \wedge Q^{\prime} & P \vee Q \hookrightarrow P^{\prime} \vee Q^{\prime} & (P \rightarrow Q) \\
\quad \neg P \hookrightarrow\left(P^{\prime} \rightarrow Q^{\prime}\right) \\
& & \left(P \hookrightarrow P^{\prime}\right. & \\
\hline & \hookrightarrow\left(P^{\prime} \hookrightarrow Q^{\prime}\right)
\end{array}
$$

Fact 21.11.2 (Compatibility laws for list equivalence)
Let $A \equiv A^{\prime}$ and $B \equiv B^{\prime}$. Then:

$$
\begin{array}{clc}
x \in A \hookrightarrow x \in A^{\prime} & A \subseteq B \hookrightarrow A^{\prime} \subseteq B^{\prime} & A \equiv B \hookrightarrow A^{\prime} \equiv B^{\prime} \\
x:: A \equiv x:: A^{\prime} & A+B \equiv A^{\prime}+B^{\prime} & f @ A \equiv f @ A^{\prime}
\end{array}
$$

Coq's setoid rewriting facility makes it possible to use the rewriting tactic for rewriting with equivalences, provided the necessary compatibility laws and equivalence relations have been registered with the facility. The compatibility laws for propositional equivalence are preregistered.

Exercise 21.11.3 Which of the compatibility laws are needed to justify rewriting the claim $\neg(x \in y::(f @ A)+B)$ with the equivalence $A \equiv A^{\prime}$ ?

## 22 EWOs

In computational type theory, functional recursion comes as structural recursion provided by some recursive inductive type. The canonical recursive type is the type of numbers. In this chapter we will consider a recursive type constructor

$$
T(p: \mathrm{N} \rightarrow \mathbb{P})(n: \mathrm{N}): \mathbb{P}::=C(\neg p n \rightarrow T p(\mathrm{~S} n))
$$

featuring a higher-order structural recursion through the right-hand side of a function type serving as argument type of single proof constructor $C$. We will see that with the computational predicate $T$ we can construct an existential witness operator

$$
\forall p^{N \rightarrow \mathbb{P}} \cdot \operatorname{dec} p \rightarrow \operatorname{ex} p \rightarrow \operatorname{sig} p
$$

testing $p$ on $n=0,1,2, \ldots$ until a number satisfying $p$ is found. For this construction both the higher-order recursion of $T$ and the fact that $T$ is a computational predicate are essential. We remind the reader that a naive witness operator just unpacking the given existential witness is not possible since it would violate the propositional elimination restriction.

EWOs (existential witness operators) exist for many computational types, not just the type of numbers. In particular, finite types and types embedding into the numbers do have EWOs. Moreover, EWOs transport through option types. With EWOs we can construct inverses for bijective functions and co-inverses for surjective functions.

### 22.1 Linear Search Types

We start with the definition of an inductive predicate ${ }^{1}$

$$
T(p: \mathrm{N} \rightarrow \mathbb{P})(n: \mathrm{N}): \mathbb{P}::=C(\neg p n \rightarrow T p(\mathrm{~S} n))
$$

The first point to notice about the definition of $T$ is that there is recursion through the right-hand side of the function type serving as argument type of the single proof constructor $C$. Such higher-order structural recursions are legal in computational

[^11]type theory. The second point to notice about the definition of $T$ is that $T$ is a computational predicate ( $\S 5.10$ ) since the type $\neg p n \rightarrow T p(\mathrm{Sn})$ of the proper argument of the proof constructor $C$ is propositional. This means that inductive propositions obtained with $T$ are exempted from the discrimination restriction (§5.10).

There is a third aspect of the inductive type definition of $T$ deserving discussion: The parameter $n$ of Tpn is nonuniform in that it is changed to $S n$ in the recursive application of $T$. We remark that nonuniform parameters are fine in computational type theory, and in fact are needed for meaningful higher-order structural recursion.

Recall that proofs of computational propositions can be decomposed at the computational level although they have been constructed at the propositional level. Recursive computational propositions thus provide for computational recursion.

The next essential step is the definition of an eliminator for $T$ making use of the higher-order recursion provided by $T$ :

$$
\begin{aligned}
& E: \forall p^{N \rightarrow \mathbb{P}} \forall q^{N \rightarrow \mathbb{T}} \cdot(\forall n .(\neg p n \rightarrow q(\mathrm{~S} n)) \rightarrow q n) \rightarrow \forall n . \text { Tpn } \rightarrow q n \\
& \text { Epqe } n(C \varphi):=\text { en }(\lambda a . \text { Epqe }(\mathrm{S} n)(\varphi a))
\end{aligned}
$$

Except for the guard condition for termination type checking of the defining equation of $E$ is routine. As it comes to the guard condition for termination, the argument is that every application of the continuation function $\varphi$ appearing as proper argument of the constructor $C$ in the pattern of the defining equation qualifies for (higher-order) structural recursion.

Why does this liberal guard condition for higher-order structural recursion preserve termination of reduction in computational type theory? We can offer two answers to this question:

1. Computational type theory is designed such that reduction terminates in the presence of higher-order recursion.
2. Before we can construct a value $C \varphi$, we need to construct the function $\varphi$. Hence all values $\varphi a$ are in some sense smaller than $C \varphi$.

We remark that the eliminator $E$ is the only inductive function we will consider for $T$. So, all the magic of higher-order structural recursion is in the definitions of $T$ and $E$.

We will refer to the propositions Tpn as linear search types.

### 22.2 EWO for Numbers

It turns out that we can define three abstract functions for $T$ abstracting from the native constructor $C$ and the eliminator $E$.

Definition 22.2.1 There are abstract functions

$$
\begin{aligned}
& I: \forall n \cdot p n \rightarrow T p n \\
& D: \forall n \cdot T p(\mathrm{~S} n) \rightarrow T p n \\
& F: \forall q^{N \rightarrow \mathbb{T}} \cdot \mathcal{D}(p) \rightarrow(\forall n \cdot p n \rightarrow q n) \rightarrow(\forall n \cdot q(\mathrm{~S} n) \rightarrow q n) \rightarrow(\forall n \cdot T p n \rightarrow q n)
\end{aligned}
$$

We refer to $I$ and $D$ as abstract constructors and to $F$ as abstract eliminator for $T$.
Proof The construction of $I$ and $D$ is straightforward using the constructor $C$. The construction of $F$ is straightforward with the eliminator $E$ and a certifying decider for $p$.

Note that the abstract constructors $I$ and $D$ and the abstract eliminator $F$ make the computational predicate $T$ appear as an inductive predicate obtained with two first-order constructors. If you wish, the definition of $T$ with the higher-order constructor $C$ is a trick so that $T$ can be obtained as a computational predicate.

We now construct an existential witness operator (EWO) for numbers using the functions $T, I, D$, and $F$.

Fact 22.2.2 $\forall n . T p n \rightarrow T p 0$.
Proof By induction on $n$ using $D$.

## Fact 22.2.3 (EWO for numbers)

There is a function $\forall p^{\mathbb{N} \rightarrow \mathbb{P}}$. $\operatorname{dec} p \rightarrow \exp \rightarrow \operatorname{sig} p$.
Proof Assume $d: \operatorname{dec} p$ and $H: \exp$. We obtain $\operatorname{sig} p$ with $F$ instantiated with $q n:=\operatorname{sig} p, d$, and $n:=0$. This results in three proof obligations:

1. $\forall n . p n \rightarrow \operatorname{sig} p$
2. $\forall n$. $\neg p n \rightarrow \operatorname{sig} p \rightarrow \operatorname{sig} p$
3. $T 0$.

Obligations (1) and (2) are trivial. For (3) we note that $T 0$ is a proposition. Thus we can unpack H and obtain $p \eta$. Now the claim $T 0$ follows with $I$ and Fact 22.2.2.

Exercise 22.2.4 (Computational characterization of linear search predicate)
Assume a predicate $p^{N \rightarrow \mathbb{P}}$ and prove the following:
a) $m \leq n \rightarrow T p n \rightarrow T p m$
b) $\operatorname{dec} p \rightarrow T p n \rightarrow \Sigma m . m \geq n \wedge p m$
c) $\operatorname{dec} p \rightarrow(T p n \Leftrightarrow \Sigma m . m \geq n \wedge p m)$

Exercise 22.2.5 (Empty search type) With linear search types we can express an empty propositional type allowing for computational elimination:

$$
V: \mathbb{P}:=T(\lambda n \cdot \perp) 0
$$

Define a function $V \rightarrow \forall X^{\mathbb{T}} . X$.

Exercise 22.2.6 With higher-order recursion we can define an empty propositional type allowing for computational elimination as follows:

$$
V: \mathbb{P}::=C(T \rightarrow V)
$$

Define an elimination function $V \rightarrow \forall X^{\mathbb{T}}$. $X$.

Exercise 22.2.7 Let $p$ be a decidable predicate on numbers. Construct a function $\forall n$. Tpn $\rightarrow \Sigma k . k \geq n \wedge p k$.

## Exercise 22.2.8 (Strict positivity condition)

We remark that computational type theory admits recursion only through the righthand side of function types, a restriction known as strict positivity condition.

Assume that the inductive type definition $B: \mathbb{T}::=C(B \rightarrow \perp)$ is admitted although it violates the strict positivity condition. Give a proof of falsity assuming that the illegal definition of $B$ provides constants as follows:

$$
\begin{aligned}
& B: \mathbb{T} \\
& C:(B \rightarrow \perp) \rightarrow B \\
& E: \forall Z . B \rightarrow((B \rightarrow \perp) \rightarrow Z) \rightarrow B \rightarrow Z
\end{aligned}
$$

First define a function $f: B \rightarrow \perp$ using the constant $E$.

### 22.3 General EWOs

We define the type of EWOs for a type $X$ as follows:

$$
\operatorname{EWO} X^{\mathbb{T}}:=\forall p^{X \rightarrow \mathbb{P}} \cdot \operatorname{dec} p \rightarrow \operatorname{ex} p \rightarrow \operatorname{sig} p
$$

Fact 22.3.1 The types $\perp, \mathbb{1}, \mathrm{B}$, and N have EWOs.
Proof The EWO for N was obtained with Fact 22.2.3. For the other three types computational falsity elimination is essential. For $\perp$ an EWO is trivial since it is given an element of $\perp$. For $T$ and $B$ we can check $p$ for all elements and obtain a contradiction if $p$ holds for no element.

Fact 22.3.2 (Disjunctive EWOs)
Let $p$ and $q$ be decidable predicates on a type with an EWO.
Then there is a function $(\exp \vee \operatorname{exq}) \rightarrow(\operatorname{sig} p+\operatorname{sig} q)$.

Proof Use the EWO for $X$ with the predicate $\lambda x . p x \vee q x$.
Next we show that all numeral types $\mathcal{O}^{n} \perp$ have EWOs. The key insight for this result is that EWOs transport from $X$ to $\mathcal{O}(X)$. It turns out that EWOs also transport backwards from $\mathcal{O}(X)$ to $X$.

Fact 22.3.3 (Option types transport EWOs)
EWO $(\mathcal{O}(X)) \Leftrightarrow$ EWO $X$.

Proof Suppose $p$ is a decidable and satisfiable predicate on $X$. Then

$$
\lambda a . \text { MATCH } a\left[{ }^{\circ} x \Rightarrow p x \mid \emptyset \Rightarrow \perp\right]
$$

is a decidable and satisfiable predicate on $\mathcal{O}(X)$. The EWO for $\mathcal{O}(X)$ gives us ${ }^{\circ} X$ such that $p x$.

For the other direction, suppose $p$ is a decidable and satisfiable predicate on $\mathcal{O}(X)$. Then $\lambda x \cdot p\left({ }^{\circ} x\right)$ is a decidable and satisfiable predicate on $X$. The EWO for $X$ gives $x$ with $p\left({ }^{\circ} x\right)$.

## Corollary 22.3.4 (Numeral types have EWOs)

The numeral types $\mathcal{O}^{n} \perp$ have EWOs.
Proof By induction on $n$ using Facts 22.3.1 and 22.3.3.
It turns out that injections transport EWOs backwards.

## Fact 22.3.5 (Injections transport EWOs)

$\mathcal{I} X Y \rightarrow$ EWO $Y \rightarrow$ EWO $X$.

Proof Let $\operatorname{inv}_{X Y} f g$. To show that there is an EWO for $X$, we assume a decidable and satisfiable predicate $p^{X \rightarrow \mathbb{P}}$. Then $\lambda y \cdot p(g y)$ is a decidable and satisfiable predicate on $Y$. The EWO for $Y$ now gives us a $y$ such that $p(g y)$.

Fact 22.3.6 Every type that embeds into N has an EWO: $\mathcal{I} X \mathrm{~N} \rightarrow$ EWO $X$.
Proof Facts 22.3.5 and 22.2.3.

Fact 22.3.7 $\mathrm{N} \times \mathrm{N}$ has an EWO.

Proof Follows with Fact 22.3.6 since $\mathrm{N} \times \mathrm{N}$ and N are in bijection (Fact 12.1.8).

## Fact 22.3.8 (Binary EWO)

There is a function $\forall p^{N \rightarrow N \rightarrow \mathbb{P}} .(\forall x y \cdot \mathcal{D}(p x y)) \rightarrow(\exists x y . p x y) \rightarrow(\Sigma x y . p x y)$.
Proof Follows with the EWO for $\mathrm{N} \times \mathrm{N}$ and the predicate $\lambda a$. $p\left(\pi_{1} a\right)\left(\pi_{2} a\right)$.

## Exercise 22.3.9 (EWO for boolean deciders)

We will consider EWOs for boolean deciders on numers:

$$
\forall f^{\mathrm{N} \rightarrow \mathrm{~B}} .(\exists n . f n=\text { true }) \rightarrow(\Sigma n . f n=\text { true })
$$

a) Define an EWO for boolean deciders (i) using the EWO for numbers, and (ii) from scratch using customized linear search types.
b) Using an EWO for boolean deciders, define an EWO for decidable predicates on numbers.
c) Using an EWO for boolean deciders, define an EWO

$$
\forall X^{\mathbb{V}} \forall p^{X \rightarrow \mathbb{P}} \cdot \operatorname{sig}(\operatorname{enum} p) \rightarrow \operatorname{ex} p \rightarrow \operatorname{sig} p
$$

for enumerable predicates

$$
\text { enum } p^{X \rightarrow \mathbb{P}} f^{\mathrm{N} \rightarrow \mathcal{O}(X)}:=\forall x . p x \longleftrightarrow \exists n . f n={ }^{\circ} x
$$

### 22.4 EWO Applications

Fact 22.4.1 (Co-inverse for surjective functions)
Let $f^{X \rightarrow Y}$ be a surjective function. Then there is a function
EWO $X \rightarrow \mathcal{E} Y \rightarrow \Sigma g$. inv $f g$ yielding a co-inverse function for $f$.
Proof It suffices to construct a function $\forall y . \Sigma x . f x=y$. We fix $y$ and use the EWO for $X$ to obtain $x$ with $f x=y$. This works since $f$ is surjective and equality on $Y$ is decidable.

Fact 22.4.2 (Inverse for bijective functions)
Let $f^{X \rightarrow Y}$ be a bijective function. Then there is a function
EWO $X \rightarrow \mathcal{E} Y \rightarrow \Sigma g$. $\operatorname{inv} g f \wedge \operatorname{inv} f g$ yielding an inverse function for $f$.
Proof Fact 22.4 . 1 gives us $g$ with $\operatorname{inv} f g$. Now $\operatorname{inv} g f$ follows since $f$ is injective (Fact 12.1.1).

The following fact was discovered by Andrej Dudenhefner in March 2020.
Fact 22.4.3 (Discreteness via step-indexed boolean equality decider) Let $f^{X \rightarrow X \rightarrow N \rightarrow \mathrm{~B}}$ be a function such that $\forall x y . x=y \longleftrightarrow \exists n . f x y n=$ true . Then $X$ has an equality decider.

Proof We prove $\mathcal{D}(x=y)$ for fixed $x, y: X$. Using the EWO for numbers we obtain $n$ such that $f x x n=$ true. If $f x y n=$ true, we have $x=y$. If $f x y n=$ false, we have $x \neq y$.

## Exercise 22.4.4 (Infinite path)

Let $p^{N \rightarrow N \rightarrow \mathbb{P}}$ be a decidable predicate that is total: $\forall x \exists y . p x y$.
a) Define a function $f^{\mathrm{N} \rightarrow \mathrm{N}}$ such that $\forall x . p x(f x)$.
b) Given $x$, define a function $f^{\mathrm{N} \rightarrow \mathrm{N}}$ such that $f 0=x$ and $\forall n$. $p(f n)(f(\mathrm{~S} n))$. We may say that $f$ describes an infinite path starting from $x$ in the graph described by the edge predicate $p$.

Exercise 22.4.5 Let $f: \mathrm{N} \rightarrow \mathrm{B}$. Prove the following:
a) $(\exists n . f n=$ true $) \Leftrightarrow(\Sigma n . f n=$ true $)$.
b) $(\exists n . f n=\mathrm{false}) \Leftrightarrow(\Sigma n . f n=\mathrm{false})$.

### 22.5 Notes

With linear search types we have seen computational propositions that go beyond of the inductive definitions we have seen so far. The proof constructor of linear search types employs higher-order structural recursion through the right-hand side of a function type. Higher-order structural recursion greatly extends the power of structural recursion. Higher-order structural recursion means that an argument of a recursive constructor is a function that yields a structurally smaller value for every argument. That higher-order structural recursion terminates is a basic design feature of computational type theories.

## 23 Finite Types

We may call a type finite if we can provide a list containing all its elements. With this characterization we capture the informal notion of finitely many elements with covering lists. If the list covering the elements of a type is nonrepeating, the length of the list gives us the cardinality of the type (the number of its elements). This leads us to defining a finite type as a tuple consisting of a type, a list covering the type, and an equality decider for elements of the type. The equality decider ensures that the finite type is sufficiently concrete so that we can compute a covering nonrepeating list yielding the cardinality of the type.

With this definition the numeral types $\mathrm{N}_{n}$ are in fact finite types of cardinality $n$. We will show that finite types are closed under retracts and that two finite types of equal cardinality are always in bijection. It then follows that finite types have EWOs, and that the class of finite types is generated from the empty type by taking option types and including types that are in bijection with a member of the class. We also show that a function between finite types of the same cardinality

- is injective if and only if it is surjective.
- has an inverse function if it is surjective or injective.
- yields a bijection with every inverse function.


### 23.1 Coverings and Listings

We prepare the definition of finite types by looking at lists covering all elements of their base type.

A covering of a type is a list that contains every member of the type:

$$
\text { covering }_{X} A:=\forall x^{X} . x \in A
$$

A listing of a type is a nonrepeating covering of the type:

$$
\operatorname{listing}_{X} A:=\text { covering } A \wedge \operatorname{nrep} A
$$

We need a couple of results for coverings and listings of discrete types. First note that all coverings of a type are equivalent lists.

Fact 23.1.1 Given a covering of a discrete type, one can obtain a listing of the type: $\mathcal{E} X \rightarrow$ covering $_{X} A \rightarrow \sum B$. listing ${ }_{X} B \wedge$ len $B \leq \operatorname{len} A$.

Proof Follows with Facts 21.5.4.
Fact 23.1.2 All listings of a discrete type have the same length.
Proof Immediate with Fact 21.5.6(2).
Fact 23.1.3 Let $A$ and $B$ be lists over a discrete type $X$. Then:
listing $A \rightarrow$ len $B=$ len $A \rightarrow(\operatorname{nrep} B \longleftrightarrow$ covering $B)$.
Proof Follows with Fact 21.5.6 $(4,5)$.
Exercise 23.1.4 Prove $\mathcal{I} X Y \rightarrow$ covering $_{Y} B \rightarrow \Sigma A$. covering $X_{X} A$.
Exercise 23.1.5 Let $A$ and $B$ be lists over a discrete type $X$. Prove:
a) covering $A \rightarrow \operatorname{nrep} B \rightarrow$ len $A \leq \operatorname{len} B \rightarrow$ listing $B$.
b) listing $A \rightarrow$ covering $B \rightarrow$ len $B \leq$ len $A \rightarrow$ listing $B$.

### 23.2 Basics of Finite Types

We define finite types as discrete types that come with a covering list:

$$
\text { fin } X^{\mathbb{T}}:=\mathcal{E}(X) \times \Sigma A . \text { covering }_{X} A
$$

We may see the values of fin $X$ as handlers providing an equality decider for $X$ and a listing of $X$. A handler fin $X$ turns a type $X$ into a computational type where we can iterate over all elements and decide equality of elements. Given a handler fin $X$, we can compute a listing of $X$ and thus determine the cardinality of $X$ (i.e., the number of elements). It will be convenient to have a second type of handlers

$$
\operatorname{fin}_{n} X^{\mathbb{T}}:=\mathcal{E}(X) \times \Sigma A . \text { listing }_{X} A \wedge \text { len } A=n
$$

declaring the cardinality of the type and providing a listing rather than a covering of the type.

Fact 23.2.1 For every type $X$ :

1. $\operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} X \rightarrow m=n$
(uniqueness of cardinality)
2. fin $X \Leftrightarrow \Sigma n$. fin $n_{n} X \quad$ (existence of cardinality)

Proof Facts 23.1.2 and 23.1.1.

## Fact 23.2.2 (Empty types)

Finite types with cardinality 0 are the empty types: fin $_{0} X \Leftrightarrow(X \rightarrow \perp)$.

## Proof Exercise.

## Fact 23.2.3 (Closure under $\mathcal{O}$ )

Finite types are closed under $\mathcal{O}: \operatorname{fin}_{n} X \rightarrow \operatorname{fin}_{S_{n}}(\mathcal{O} X)$.
Proof Fact 12.2.1 gives us an equality decider for $\mathcal{O} X$. Moreover, $\emptyset::\left({ }^{\circ} @ A\right)$ is a listing of $\mathcal{O} X$ if $A$ is a listing of $X$.

Recall the recursive definition of numeral types $\mathrm{N}_{n}$ in §12.3.
Fact 23.2.4 (Numeral types) $\quad \operatorname{fin}_{n} \mathrm{~N}_{n}$.
Proof Induction on $n$ using Facts 23.2.2 and 23.2.3.
Finite types are also closed under sums and products.
Fact 23.2.5 If $X$ and $Y$ are finite types, then so are $X+Y$ and $X \times Y$ :

1. $\mathrm{fin}_{m} X \rightarrow \mathrm{fin}_{n} Y \rightarrow \mathrm{fin}_{m+n}(X+Y)$.
2. $\operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} Y \rightarrow \operatorname{fin}_{m \cdot n}(X \times Y)$.

Proof Discreteness follows with Fact 9.5.1. We leave the construction of the listing as exercise.

Quantification over finite types preserves decidability. This fact can be obtained from the fact that quantification over lists preserves decidability.

## Fact 23.2.6 (Decidability)

Let $p$ be a decidable predicate on a finite type $X$. Then:

1. $\mathcal{D}(\forall x . p x)$
2. $\mathcal{D}(\exists x . p x)$
3. $(\Sigma x \cdot p x)+(\forall x \cdot \neg p x)$

Proof Follows with Fact 21.3.7.
Fact 23.2.7 (Type of numbers is not finite)
The type N of numbers is not finite: fin $\mathrm{N} \rightarrow \perp$.
Proof Suppose N is finite. Then we have a list $A$ containing all numbers. Contradiction with Fact 21.6.8.

Exercise 23.2.8 Prove fin $_{0} \perp$, fin ${ }_{1} \top$, and fin $_{2} B$.
Exercise 23.2.9 (Double negation shift)
Prove $\forall n \forall p^{\mathrm{N}_{n} \rightarrow \mathbb{P}} .(\forall x . \neg \neg p x) \rightarrow \neg \neg \forall x . p x$.
Exercise 23.2.10 (EWO) Give an EWO for finite types.
Hint: Use an EWO for lists as in Exercise 21.3.9.

## Exercise 23.2.11 (Pigeonhole)

Prove $\operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} Y \rightarrow m>n \rightarrow \forall f^{X \rightarrow Y} . \Sigma x x^{\prime} . x \neq x^{\prime} \wedge f x=f x^{\prime}$.
Intuition: If we have $m$ pigeons sitting in $n<m$ holes, there must be two pigeons sitting in the same hole.

### 23.3 Finiteness by Injection

We can establish the finiteness of a nonempty type by embedding it into a finite type with large enough cardinality. More precisely, a type is finite with cardinality $m \geq 1$ if it can be embedded into a finite type with cardinality $n \geq m$.
Fact 23.3.1 (Finiteness by embedding)
$\mathcal{I} X Y \rightarrow \operatorname{fin}_{n} Y \rightarrow \Sigma m \leq n . \operatorname{fin}_{m} X$.
Proof Let $\operatorname{inv}_{X Y} g f$ and $B$ be a listing of $Y$ such that len $B=n$. Fact 9.5 .2 gives us an equality decider for $X$. Moreover, $g @ B$ is a covering of $X$ because of the inversion property. By Fact 23.1 .1 we obtain a listing $A$ of $X$ such that len $A \leq \operatorname{len}(g @ B)=$ len $B=n$. The claim follows.

Corollary 23.3.2 (Alignment)
$\mathcal{I} X Y \rightarrow \operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} Y \rightarrow m \leq n$.
Proof Facts 23.3 .1 and 23.2.1 (1).
Corollary 23.3.3 (Transport)
$\mathcal{I} X Y \rightarrow \mathcal{I} Y X \rightarrow \operatorname{fin}_{n} X \rightarrow \operatorname{fin}_{n} Y$.
Proof Follows with Facts 23.3.1 and 23.3.2.
Corollary 23.3.4 (Closure under bijection)
$\mathcal{B} X Y \rightarrow \operatorname{fin}_{n} X \rightarrow \operatorname{fin}_{n} Y$.
Proof Follows with Facts 23.3.3 and 12.1.5.
Corollary 23.3.5 The type $N$ of numbers does not embed into finite types:
$\mathcal{I} N X \rightarrow$ fin $X \rightarrow \perp$.

Proof Facts 23.3.1 and 23.2.7.

### 23.4 Existence of Injections

Given two finite types, the smaller one can always be embedded into the larger one. There is the caveat that the smaller type must not be empty so that the embedding function can have an inverse.

## Fact 23.4.1 (Existence)

$\operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} Y \rightarrow 1 \leq m \leq n \rightarrow \mathcal{I} X Y$.
Proof Let $A$ and $B$ be listings of $X$ and $Y$. Then $A$ has length $m$ and $B$ has length $n$. Since $1 \leq m \leq n$, we can map the elements of $A$ to elements of $B$ preserving the position in the lists. We realize the resulting bijection between $X$ and $Y$ using the list operations sub and pos with escape values $a \in A$ and $b \in B$ (§21.7):

$$
\begin{aligned}
& f x:=\operatorname{sub} b B(\operatorname{pos} A x) \\
& g y:=\operatorname{sub} a A(\operatorname{pos} B y)
\end{aligned}
$$

Recall that pos yields the position of a value in a list, and that sub yields the value at a position of a list.

An embedding of a finite type into a finite type of the same cardinality is in fact a bijection since in this case the second roundtrip property does hold.

Fact 23.4.2 $\mathrm{fin}_{n} X \rightarrow \operatorname{fin}_{n} Y \rightarrow \operatorname{inv}_{X Y} g f \rightarrow \operatorname{inv} f g$.
Proof We show $f(g y)=y$ for arbitrary $y$. We choose a covering $A$ of $X$ and know by Fact 23.1.3 that $f @ A$ is a covering of $Y$. Hence $f x=y$ for some $x$. We now have $f(g y)=f(g(f x))=f x=y$.

Next we show that all finite types of the same size are in bijection.
Corollary 23.4.3 (Existence) $\operatorname{fin}_{n} X \rightarrow \operatorname{fin}_{n} Y \rightarrow \mathcal{B} X Y$.
Proof For $n=0$ the claim follows with Facts 23.2.2 and 12.1.7. For $n>0$ the claim follows with Facts 23.4.1 and 23.4.2.

Corollary 23.4.4 (Existence) $\mathcal{I X Y} \rightarrow \mathcal{I Y X} \rightarrow$ fin $X \rightarrow \mathcal{B} X Y$.
Proof Facts 23.2.1 (2), 23.3.3, and 23.4.3
Corollary 23.4.5 (Listless Characterization) fin $_{n} X \Leftrightarrow \mathcal{B} X \mathrm{~N}_{n}$.
Proof Direction $\rightarrow$ follows with Facts 23.2.4 and 23.4.3. Direction $\leftarrow$ follows with Facts 23.2.4 and 23.3.4.

Corollary 23.4.6 fin $X \rightarrow \Sigma n . \mathcal{B} X \mathrm{~N}_{n}$
Proof Facts 23.2.1 and 23.4.5.
Corollary 23.4.7 (EWOs) Finite types have EWOs.
Proof Follows with Fact 23.4 .5 since numeral types have EWOs (Fact 22.3.4) and injections transport EWOs (Fact 22.3.5).

Fact 23.4.8 (Existence) Every nonempty finite type can be embedded into N :
fin $_{\text {Sn }} X \rightarrow \mathcal{I} X$ N.
Proof Let $A$ be a listing of $X$. We realize the injection of $X$ into N using the list operations pos and sub with an escape values $a \in A$ (§21.7):

$$
\begin{aligned}
& f x:=\operatorname{pos} A x \\
& g n:=\operatorname{sub} a A n
\end{aligned}
$$

Exercise 23.4.9 Show the following facts:
a) $\mathrm{fin}_{m} \mathrm{~N}_{n} \rightarrow m=n$.
b) $\mathcal{B} \mathrm{N}_{m} \mathrm{~N}_{n} \rightarrow m=n$.

### 23.5 Upgrade Theorem

Fact 23.5.1 (Injectivity-surjectivity agreement)
Functions between finite types of the same cardinality are injective if and only if they are surjective: $\operatorname{fin}_{n} X \rightarrow \operatorname{fin}_{n} Y \rightarrow$ (injective $X Y f \longleftrightarrow$ surjective $X Y f$ ).

Proof Let $A$ and $B$ be listings for $X$ and $Y$, respectively, with len $A=$ len $B$. We fix $f^{X \rightarrow Y}$ and have covering $(f @ A) \longleftrightarrow \operatorname{nrep}(f @ A)$ by Fact 23.1.3.

Let $f$ be injective. Then $f @ A$ is nonrepeating by Exercise 21.5.7 (a). Thus $f @ A$ is covering. Hence $f$ is surjective.

Let $f$ be surjective. Then $f @ A$ is covering and thus nonrepeating. Thus $f$ is injective by Exercise 21.5.7 (b).

Fact 23.5.2 (Upgrade) Let $f^{X \rightarrow Y}$ be a surjective or injective function between finite types of the same cardinality. Then one can obtain a function $g$ such that $f$ and $g$ constitute a bijection between $X$ and $Y$.

Proof Let fin $_{n} X$ and $\operatorname{fin}_{n} Y$. The both types have equality deciders and EWOs (Fact 23.4.7). By Fact 23.5.1 we can assume a surjective function $f^{X \rightarrow Y}$. Fact 22.4.1 gives us a function $g$ such that inv $f g$. Fact 23.4.2 gives us inv $g f$ as claimed.

## Exercise 23.5.3

Prove $\operatorname{fin}_{m} X \rightarrow \operatorname{fin}_{n} Y \rightarrow m>0 \rightarrow\left(\forall f^{X \rightarrow Y}\right.$. injective $f \longleftrightarrow$ surjective $\left.f\right) \rightarrow m=n$.
Exercise 23.5.4 Show that all inverse functions of an injective function between finite types of the same cardinality agree.

### 23.6 Listless Development

Fact 23.4.5 characterizes finite types with numeral types and bijections not using lists. In fact, in set theory finite sets are usually obtained as sets that are in bijection with canonical finite sets. Moreover, a number $n$ is represented as a particular set with exactly $n$ elements. Following the development in set theory, one may study finite types in type theory not using lists. Important results of such a development would be the following theorems:

1. $\mathcal{B} \mathrm{N}_{m} \mathrm{~N}_{n} \rightarrow m=n$
2. $\forall f g^{\mathrm{N}_{n} \rightarrow \mathrm{~N}_{n}} . \operatorname{inv} g f \rightarrow \operatorname{inv} f g$
3. $\mathcal{I} \mathrm{N}_{n} \mathrm{~N}$
4. $\mathcal{L} \mathrm{NN}_{n} \rightarrow \perp$

In the proofs of these results induction over numbers (i.e., the cardinality $n$ ) will replace induction over lists.

We will give a few list-free proofs for numeral types since they are interesting from a technical perspective. They require a different mindset and sometimes require tricky techniques for option types.

The main tool for proving properties of numeral types $\mathrm{N}_{n}$ is induction on the cardinality $n$. An important insight we will use is that we can lower an embedding of $\mathcal{O}^{2}(X)$ into $\mathcal{O}^{2}(Y)$ into an embedding of $\mathcal{O}(X)$ into $\mathcal{O}(Y)$. We realize the idea with a lowering operator as follows:

$$
\begin{aligned}
& L: \forall X Y .\left(\mathcal{O}(X) \rightarrow \mathcal{O}^{2}(Y)\right) \rightarrow X \rightarrow \mathcal{O}(Y) \\
& L X Y f x:=\text { MATCH } f\left({ }^{\circ} x\right)\left[{ }^{\circ} b \Rightarrow b \mid \emptyset \Rightarrow \operatorname{MATCH} f \emptyset\left[{ }^{\circ} b \Rightarrow b \mid \emptyset \Rightarrow \emptyset\right]\right]
\end{aligned}
$$

The idea behind $L$ is simple: Given $x, L f$ checks whether $f$ maps ${ }^{\circ} x$ to ${ }^{\circ} b$. If so, $L f$ maps $x$ to $b$. Otherwise, $L f$ checks whether $f$ maps $\emptyset$ to ${ }^{\circ} b$. If so, $L f$ maps $x$ to $b$. If not, $L f$ maps $x$ to $\emptyset$.

Lemma 23.6.1 (Lowering) Let $f: \mathcal{O}^{2}(X) \rightarrow \mathcal{O}^{2}(Y)$ and $g: \mathcal{O}^{2}(Y) \rightarrow \mathcal{O}^{2}(X)$. Then $\operatorname{inv} g f \rightarrow \operatorname{inv}(L g)(L f)$.

Proof Let inv $g f$. We show $(L g)(L f a)=a$ by brute force case analysis following the matches of $L f$ and $L g$. There are $2^{4}$ cases that all follow with equational reasoning as provided by the ongruence tactic.

We can now show that a self-injection of a numeral type is always a bijection.

## Theorem 23.6.2 (Self-injection)

Let $f$ and $g$ be functions $\mathrm{N}_{n} \rightarrow \mathrm{~N}_{n}$. Then $\operatorname{inv} g f \rightarrow \operatorname{inv} f g$.
Proof We prove the claim by induction on $n$. For $n=0$ and $n=1$ the proofs are straightforward.

Let $f, g: \mathcal{O}^{\mathrm{SSn}}(\perp) \rightarrow \mathcal{O}^{\mathrm{SSn}}(\perp)$ and $\operatorname{inv} g f$. By Lemma 23.6.1 and the inductive hypothesis we have inv $(L f)(L g)$. We consider 2 cases:

1. $f(g \emptyset)=\emptyset$. We show $f\left(g^{\circ} b\right)={ }^{\circ} b$. We have $(L f)(L g b)=b$. The claim now follows by case analysis and linear equational reasoning following the definitions of $L f$ and $L g$ (7 cases are needed).
2. $f(g \emptyset)={ }^{\circ} b$. We derive a contradiction.
a) $f \emptyset={ }^{\circ} b^{\prime}$ We have $(L f)\left(L g b^{\prime}\right)=b^{\prime}$. A contradiction follows by case analysis and linear equational reasoning following the definitions of $L f$ and $L g$ (4 cases are needed).
b) $f \emptyset=\emptyset$. Contradictory since inv $g f$.

The above proof requires the verification of 12 cases by linear equational reasoning as realized by Coq's congruence tactic. The cascaded case analysis of the proof is cleverly chosen as to minimize the cases that need to be considered. The need for cascaded case analysis of function applications so that linear equational reasoning can finish the current branch of the proof appeared before with Kaminski's equation (§5.1).

We remark that the lowering operator is related to the certifying lowering operator established by Lemma 12.2.2. However, there are essential differences. The lowering operator uses a default value while Lemma 12.2.2 exploits an assumption and computational falsity elimination to avoid the need for a default value. In fact, the default value is not available in the setting of Lemma 12.2.2, and the assumption is not available in the setting of the lowering operator.

Theorem 23.6.2 stands out in that its proof requires the verification of more cases than one feels comfortable with on paper. Here the accompanying verification with a proof assistant gives confidence beyond intuition and common belief.

We now generalize self-injection to general finite types.
Corollary 23.6.3 $\mathcal{B} X \mathrm{~N}_{n} \rightarrow \mathcal{B} Y \mathrm{~N}_{n} \rightarrow \operatorname{inv}_{X Y} g f \rightarrow \operatorname{inv} f g$.
Proof Let $f_{1}, g_{1}$ form a bijection $\mathcal{B} X \mathrm{~N}_{n}$ and $f_{2}, g_{2}$ form a bijection $\mathcal{B} X \mathrm{~N}_{n}$. We have

$$
\operatorname{inv}\left(\lambda a \cdot f 1\left(g\left(g_{2} a\right)\right)\right)\left(\lambda a \cdot f 2\left(f\left(g_{1} a\right)\right)\right)
$$

by equational reasoning (congruence tactic in Coq). Theorem 23.6.2 gives us

$$
\operatorname{inv}\left(\lambda a \cdot f 2\left(f\left(g_{1} a\right)\right)\right)\left(\lambda a \cdot f 1\left(g\left(g_{2} a\right)\right)\right)
$$

This gives us inv $f g$ by equational reasoning (congruence tactic in Coq).

Using the lowering lemma, we can also prove a cardinality result for numeral types.

Theorem 23.6.4 (Cardinality)
$\mathcal{I}\left(\mathrm{N}_{m}\right) \mathrm{N}_{n} \rightarrow m \leq n$.
Proof Let $f: \mathrm{N}_{m} \rightarrow \mathrm{~N}_{n}$ and $\operatorname{inv} g f$. If $m=0$ or $n=0$ the claim is straightforward. Otherwise we have $f: \mathcal{O}^{\mathrm{Sm}}(\perp) \rightarrow \mathcal{O}^{\mathrm{Sn}}(\perp)$ and inv $g f$. We prove $m \leq n$ by induction on $m$ with $n, f$, and $g$ quantified. For $m=0$ the claim is trivial. In the successor case, we need to show $\mathrm{S} m \leq n$. If $n=0$, we have $f: \mathcal{O}^{\mathrm{SSm}}(\perp) \rightarrow \mathcal{O}(\perp)$ contradicting $\operatorname{inv} g f$. If $n>0$, the claim follows by Lemma 23.6.1 and the inductive hypothesis.

Exercise 23.6.5 Show $\mathcal{B} \mathrm{N}_{m} \mathrm{~N}_{n} \rightarrow m=n$ using induction and the bijection theorem for option types (12.2.3).

Exercise 23.6.6 Try to do the proof of Theorem 23.6.2 without looking at the details of the given proof. This will make you appreciate the cleverness of the case analysis of the given proof. It took a few iterations to arrive at this proof. Acknowledgements go to Andrej Dudenhefner.

Exercise 23.6.7 (Pigeonhole)
Prove $\forall f^{\mathrm{N}_{\mathrm{s}_{n} \rightarrow \mathrm{~N}_{n}} . \Sigma a b . a \neq b \wedge f a=f b \text { not using lists. }}$
Hint: A proof similar to the proof of Theorem 23.6.4 works, but the situation is simpler. The decision function from Fact 23.2.6 (c) is essential.

## Exercise 23.6.8 (Double negation shift)

Prove $\forall n \forall p^{\mathrm{N}_{n} \rightarrow \mathbb{P}} .(\forall x . \neg \neg p x) \rightarrow \neg \neg \forall x . p x$ not using lists.
Exercise 23.6.9 (Embedding numeral types into the type of numbers)
Numeral types can be embedded into the numbers by interpreting the constructor $\emptyset$ as 0 and the constructor ${ }^{\circ}$ as successor.
a) Define an encoding function $E: \forall n . \mathrm{N}_{n} \rightarrow \mathrm{~N}$.
b) Define a decoding function $D: \mathrm{N} \rightarrow \forall n$. $\mathrm{N}_{\mathrm{S} n}$.
c) Prove Ena $<n$.
d) Prove $D(E(\mathrm{~S} n) a) n=a$.
e) Prove $k \leq n \rightarrow E(S n)(D k n)=k$.

Hint: The definition of $E$ needs computational falsity elimination.

## Exercise 23.6.10 (Decidability)

Let $p$ be a decidable predicate on $\mathrm{N}_{n}$. Then:

1. $\mathcal{D}(\forall x . p x)$
2. $\mathcal{D}(\exists x \cdot p x)$
3. $(\Sigma x \cdot p x)+(\forall x \cdot \neg p x)$

## Exercise 23.6.11 (Finite Choice)

We define the choice property for two types $X$ and $Y$ as follows:

$$
\text { choice } X Y:=\forall p^{X \rightarrow Y \rightarrow \mathbb{P}} \cdot(\forall x \exists y \cdot p x y) \rightarrow \exists f \forall x \cdot p x(f x)
$$

The property says that every total relation from $X$ to $Y$ contains a function from $X$ to $Y$. Prove choice $X Y$ for all finite types $X$ :
a) choice $\perp Y$
b) choice $X Y \rightarrow$ choice $(\mathcal{O} X) Y$
c) choice $\mathrm{N}_{n} Y$
d) $\mathcal{B} X \mathrm{~N}_{n} \rightarrow$ choice $X Y$

The proposition choice $\mathrm{N} Y$ is known as countable choice for $Y$. The computational type theory we are considering cannot prove countable choice for $B$.

### 23.7 Notes

We have chosen to define finite types using lists. This is a natural and convenient definition given that lists are a basic computational data structure. On the other hand, we could define finite types more abstractly as types that are in bijection with numeral types obtained with option types and recursion. This definition is backed up by two bijection theorems (23.6.4 and 23.6.2).

## 24 Countable Types

Countable types include finite types and N , and are closed under retracts, sums, cartesian products, and list types. All countable types have equality deciders, enumerators, and EWOs. Infinite countable types are in bijection with N. Typical examples for infinite countable types are inductive types for syntactic objects (e.g., expressions and formulas). As it comes to characterizations of countable types, a type $X$ is countable iff $X$ has an enumerator and an equality decider, or iff $\mathcal{O X}$ is a retract of N , or iff $X$ is a retract of N and also inhabited.

### 24.1 Enumerable Types

An enumerator of a type $X$ is a function $f^{N \rightarrow \mathcal{O}(X)}$ that reaches all elements of $X$. Formally, we define the type of enumerators of a type $X$ as follows:

$$
\begin{aligned}
\text { enum }^{\prime} X f^{N \rightarrow \mathcal{O} X} & :=\forall x \exists n . f n={ }^{\circ} x \\
\text { enum } X & :=\Sigma f . \text { enum }^{\prime} X f
\end{aligned}
$$

We say that a type is enumerable if it has an enumerator.

## Fact 24.1.1 (Enumerable types)

1. $\perp$ and $N$ are enumerable types: enum $\perp$ and enum $N$.
2. Enumerable types are closed under retracts, $\mathcal{O},+$, and $\times$ :
a) $\mathcal{I} X Y \rightarrow$ enum $Y \rightarrow$ enum $X$
b) enum $X \Leftrightarrow \operatorname{enum}(\mathcal{O} X)$
c) enum $X \times$ enum $Y \Leftrightarrow \operatorname{enum}(X+Y)$
d) enum $X \rightarrow$ enum $Y \rightarrow$ enum $(X \times Y)$
3. Finite types are enumerable: fin $X \rightarrow$ enum $X$.

Proof Straightforward. Closure under + and $\times$ follows with $\mathcal{I}(\mathrm{N} \times \mathrm{N}) \mathrm{N}$ (Chapter 6).
(3) follows since fin $X \rightarrow \Sigma n$. IX ( $\mathcal{O}^{n} \perp$ ) (Fact 23.4.6).

Given a function $f^{N \rightarrow \mathcal{O X}}$, we call a function $g^{X \rightarrow N}$ such that $\forall x . f(g x)={ }^{\circ} x$ a co-enumerator for $f$.

## 24 Countable Types

Fact 24.1.2 (Co-enumerator) If $f^{\mathrm{N} \rightarrow \mathcal{O X}}$ has a co-enumerator $g$, then $f$ is an enumerator of $X, g$ is injective, and $X$ has an equality decider.

Fact 24.1.3 (Co-enumerator) Enumerators of discrete types have co-enumerators: $\mathcal{E} X \rightarrow$ enum $^{\prime} X f \rightarrow \Sigma g . \forall x . f(g x)={ }^{\circ} x$.

Proof It suffices to show $\forall x . \Sigma n . f n={ }^{\circ} x$. Follows with an EWO of N since $\mathcal{O} X$ is discrete.

### 24.2 Countable Types

A countable type is a type coming with an equality decider and an enumerator:

$$
\operatorname{cty} X:=\mathcal{E}(X) \times \text { enum } X
$$

## Fact 24.2.1 (Countable types)

1. $\perp$ and N are countable types: cty $\perp$ and cty N .
2. Countable types are closed under retracts, $\mathcal{O},+$, and $\times$ :
a) $\mathcal{I X Y} \rightarrow \operatorname{cty} Y \rightarrow \operatorname{cty} X$
b) $\operatorname{cty} X \Leftrightarrow \operatorname{cty}(\mathcal{O} X)$
c) $\operatorname{cty} X \times \operatorname{cty} Y \Leftrightarrow \operatorname{cty}(X+Y)$
d) $\operatorname{cty} X \rightarrow \operatorname{cty} Y \rightarrow \operatorname{cty}(X \times Y)$
3. Finite types are countable: fin $X \rightarrow \operatorname{cty} X$.

Proof Follows with Fact 24.1.1 and the concomitant closure facts for discrete types.

## Fact 24.2.2 (Co-enumerator characterization)

A type $X$ is countable if and only if there are functions $f^{N \rightarrow \mathcal{O X}}$ and $g^{X \rightarrow N}$ such that $g$ is a co-enumerator of $f$.

Proof Facts 24.1.3 and 24.1.2.
It turns out that a type $X$ is countable if and only if $\mathcal{O} X$ is a retract of N .

Fact 24.2.3 (Retract characterization) $\operatorname{cty} X \Leftrightarrow \mathcal{I}(\mathcal{O X}) \mathrm{N}$.
Proof Suppose cty $X$. Fact 24.2 .2 gives us $f$ and $g$ such that $\forall x . f(g x)={ }^{\circ} x$. We obtain an injection $\mathcal{I}(\mathcal{O} X) \mathrm{N}$ as follows:

$$
\begin{aligned}
g^{\prime} a & :=\text { MATCH } a\left[{ }^{\circ} x \Rightarrow \mathrm{~S}(g x) \mid \emptyset \Rightarrow 0\right] \\
f^{\prime} n & :=\text { MATCH } n[0 \Rightarrow \emptyset \mid \mathrm{S} n \Rightarrow f n]
\end{aligned}
$$

The other direction follows with the transport lemmas for equality deciders 12.1.3 and 12.2.1 and the observation that the inverse function of the injection is an enumerator of $X$.

Fact 24.2.4 (EWOs) Countable types have EWOs.
Proof Follows with an EWO for N (Fact 22.2.3) and Facts 24.2.3, 22.3.5, and 22.3.3.■
Fact 24.2.5 An injection $\mathcal{I X N}$ can be raised into an injection $\mathcal{I}(\mathcal{O X}) \mathrm{N}$.
Proof Let $f$ and $g$ be the functions of $\mathcal{I X N}$. Then

$$
\begin{aligned}
& f^{\prime} a:=\text { MATCH } a\left[{ }^{\circ} x \Rightarrow \mathrm{~S}(f x) \mid \emptyset \Rightarrow 0\right] \\
& g^{\prime} n:=\text { MATCH } n\left[0 \Rightarrow \emptyset \mid \mathrm{S} n \Rightarrow{ }^{\circ} \mathrm{g} n\right]
\end{aligned}
$$

yield an injection $\mathcal{I}(\mathcal{O X}) \mathrm{N}$.

## Fact 24.2.6

An injection $\mathcal{I}(\mathcal{O} X) Y$ with $X$ inhabited can be lowered into an injection $\mathcal{I} X Y$ : $\mathcal{I}(\mathcal{O X}) Y \rightarrow X \rightarrow \mathcal{I} X Y$.

Proof Let $f$ and $g$ be the functions of $\mathcal{I}(\mathcal{O X}) Y$ and $x_{0}$ an element of $X$. Then

$$
\begin{aligned}
& f^{\prime} x:=f\left({ }^{\circ} x\right) \\
& g^{\prime} y:=\text { MATCH } g y\left[{ }^{\circ} x \Rightarrow x \mid \emptyset \Rightarrow x_{0}\right]
\end{aligned}
$$

yield an injection $\mathcal{I X Y}$.
Fact 24.2.7 Nonempty countable types are exactly the retracts of N :
$X \rightarrow(\operatorname{cty} X \Leftrightarrow I X \mathrm{~N})$.
Proof Follows with Facts 24.2.3, 24.2.5, and 24.2.6.
Fact 24.2.8 (Uncountable type) The function type $\mathrm{N} \rightarrow \mathrm{B}$ is not countable.
Proof Suppose $\mathrm{N} \rightarrow \mathrm{B}$ is countable. Then Fact 24.2 .7 give us an injection $\mathcal{I}(N \rightarrow B) N$ and thus a surjective function $\mathrm{N} \rightarrow(\mathrm{N} \rightarrow \mathrm{B})$. Contradiction with Cantor's theorem (Fact 8.3.4).

### 24.3 Injection into N via List Enumeration

Infinite countable types appear frequently in computational settings. Typical examples are the syntactic types for expressions and for formulas appearing in Chapters 7 and 25 . For these types constructing equality deciders is routine, but so far we don't have a method for constructing enumerators. In fact, constructing an enumerating function $\mathrm{N} \rightarrow \mathcal{O}(X)$ directly is not feasible since we need recursion on N but don't have the necessary termination arguments. We are now providing a method obtaining enumerators by constructing injections $\mathcal{I} X \mathrm{~N}$.

The key idea is to have an infinite sequence $L_{1}, L_{2}, L_{3}, \ldots$ of lists over $X$ such that $L_{n}$ is a prefix of $L_{S n}$ and every $x$ appears eventually is some $L_{n}$. Because of the prefix property, the first position of $x$ in $L_{n}$ does not dependent on the $n$ as long as $x \in L_{n}$. For the retract, we now map $x$ to its first position in some list $L_{n}$ with $x \in L_{n}$, and $n$ to the element at position $n$ of a sufficiently long list $L_{m}$.

We define prefixes as follows: prefix $A B:=\exists C . A+C=B$.
Fact 24.3.1 prefix $A B \rightarrow k<\operatorname{len} A \rightarrow \operatorname{sub} A k=\operatorname{sub} B k$.
Proof $\forall k . k<\operatorname{len} A \rightarrow \operatorname{sub} A k=\operatorname{sub}(A+C) k$ follows by induction on $A$.
Theorem 24.3.2 (List enumeration)
An injection $\mathcal{I} X \mathrm{~N}$ can be obtained from an equality decider for $X$ and two functions $L^{\mathrm{N} \rightarrow \mathcal{L}(X)}$ and $\beta^{X \rightarrow \mathrm{~N}}$ such that:

1. $\forall n$. prefix $L_{n} L_{S n} \wedge \operatorname{len} L_{n}<\operatorname{len} L_{S n}$
2. $\forall x . x \in L_{\beta x}$

Proof Let $X$ be a discrete type and $L$ and $\beta$ be functions as specified. Since $L_{1}$ is not empty by (1), we have a default value $x_{0}: X$. We define functions $f^{X \rightarrow \mathrm{~N}}$ and $g^{\mathrm{N} \rightarrow X}$

$$
\begin{aligned}
& f x:=\operatorname{pos} L_{\beta x} x \\
& g n:=\operatorname{sub} L_{S n} n
\end{aligned}
$$

and show $\operatorname{inv} g f$. We prepare the proof with the following lemmas:
3. $m \leq n \rightarrow$ prefix $L_{m} L_{n}$
4. prefix $L_{m} L_{n} \vee \operatorname{prefix} L_{n} L_{m}$
5. $k<\operatorname{len} L_{m} \rightarrow k<\operatorname{len} L_{n} \rightarrow \operatorname{sub} L_{m} k=\operatorname{sub} L_{n} k$
6. $n \leq \operatorname{len} L_{n}$
(3) follows by induction on $n$. (4) is a straightforward consequence of (3). (5) follows with Fact 24.3.1 and (4). (6) follows by induction on $n$ and (1).

To show $\operatorname{inv} g f$, we fix $x$ and set $k:=\operatorname{pos} L_{\beta x} x$ and show $\operatorname{sub} L_{S k} k=x$. By Fact 21.7.1(1) it suffices to show sub $L_{s k} k=\operatorname{sub} L_{\beta x} k$, which follows by (5) since $k<\operatorname{len} L_{S k}$ by (6) and $k<\operatorname{len} L_{\beta x}$ by (2) and Fact 21.7.1(2).

Given a type $X$, we call functions $L$ and $\beta$ as specified by Theorem 24.3 .2 a list enumeration of $X$. Note that types are inhabited if they have a list enumeration.

### 24.4 More Countable Types

Using a list enumeration, we now show that the recursive inductive type

$$
\text { tree }::=\mathrm{A}(\mathrm{~N}) \mid \mathrm{T} \text { (tree, tree) }
$$

closing N under pairing is countable.
Fact 24.4.1 $\mathcal{E}$ (tree).
Proof Routine. By induction and case analysis on trees.
To define a list enumeration for tree, we need a function that given a list $A$ of trees returns a list containing all trees Tst with $s, t \in A$.

Lemma 24.4.2 (List product)
$\forall A B^{\mathcal{L}(\text { tree })} . \Sigma C . \forall u . u \in C \longleftrightarrow \exists s \in A \exists t \in B . u=\mathrm{T} s t$.
Proof We fix $B$ and prove the claim by induction on $A$ following the scheme

$$
\begin{aligned}
{[] \cdot B } & =[] \\
(s:: A) \cdot B & =(\mathrm{T} s) @ B+A \cdot B
\end{aligned}
$$

## Fact 24.4.3 I tree $N$.

Proof By Theorem 24.3.2 and Fact 24.4.1 it suffices to construct a list enumeration for tree. We define:

$$
\begin{aligned}
L(0) & :=[ \\
L(\mathrm{~S} n) & :=L(n)+\mathrm{A} n+\{\mathrm{T}(s, t) \mid s, t \in \mathrm{~L}(n)\} \\
\beta(\mathrm{A} n) & :=\mathrm{S} n \\
\beta(\mathrm{~T} s t) & :=\mathrm{S}(\beta s+\beta t)
\end{aligned}
$$

where $\{\mathrm{T}(s, t) \mid s, t \in \mathrm{~L}(n)\}$ is notation for the application of the list product function from Lemma 24.4 .2 to $\mathrm{L}(n)$ and $\mathrm{L}(n)$. We show $\forall t . t \in L(\beta t)$ by induction on $t$, the rest is obvious.

For A, we show A $n \in L(S n)$, which is straightforward.
For T , we show $\mathrm{T} s t \in L(\mathrm{~S}(\beta s+\beta t))$. By induction we have $s \in L(\beta s)$ and $t \in L(\beta t)$. It suffices to show $s, t \in L(\beta s+\beta t)$. Follows with the monotonicity property

$$
\forall m n . m \leq n \rightarrow L m \subseteq L n
$$

which in turn follows by induction on $n$.

## 24 Countable Types

Fact 24.4.4 cty tree.
Proof Follows with Facts 24.4.3, 24.2.1(2a), and 24.2.1(1).
We can now show countability of a type by embedding it into tree. This is in many cases straightforward.

Fact 24.4.5 cty $(\mathrm{N} \times \mathrm{N})$.

Proof By Facts 24.4.4 and 24.2.1(2a) it suffices to embed $N \times N$ into tree, which can be done as follows:

$$
\begin{aligned}
f(x, y) & :=\mathrm{T}(\mathrm{~A} x)(\mathrm{A} y) \\
g(\mathrm{~T}(\mathrm{~A} x)(\mathrm{A} y)) & :=(x, y) \\
g_{-} & :=(0,0)
\end{aligned}
$$

Now $g(f(x, y))=(x, y)$ holds by computational equality.
Note that Fact 24.4 .5 can also be obtained with Cantor pairing (Fact 12.1.8). The point is that Fact 24.4 .5 obtains countability of $N \times N$ with a routine method rather than the ingenuous Cantor pairing.
Fact 24.4.6 cty ( $\mathcal{L} N)$.
Proof By Facts 24.4 .4 and 24.2 .1(2a) it suffices to embed $\mathcal{L} N$ into tree, which can be done as follows:

$$
\begin{aligned}
f[] & :=\mathrm{A} 0 \\
f(x:: A) & :=\mathrm{T}(\mathrm{~A} x)(f A) \\
g(\mathrm{~T}(\mathrm{~A} x) t) & :=x:: g t \\
g_{-} & :=\square
\end{aligned}
$$

Now $g(f A)=A$ follows by induction on $A$.
Fact 24.4.7 Countable types are closed under taking list types: cty $X \rightarrow \operatorname{cty}(\mathcal{L} X)$.
Proof Let cty $X$. The retract characterization (Fact 24.2.3) gives us functions $F^{\mathcal{O} X \rightarrow \mathrm{~N}}$ and $G^{\mathrm{N} \rightarrow \mathcal{O X}}$ such that inv $G F$. By Facts 24.4 .6 and 24.2.1(2a) it suffices to embed $\mathcal{L} X$ into $\mathcal{L} \mathrm{N}$, which can be done as follows:

$$
\begin{aligned}
f A & :=\left(\lambda x \cdot F\left({ }^{\circ} x\right)\right) @ A \\
g[] & :=[] \\
g(n:: A) & :=\text { MATCH } G n\left[{ }^{\circ} x \Rightarrow x:: g A \mid \emptyset \Rightarrow[]\right]
\end{aligned}
$$

Now $\forall A \cdot g(f A)=A$ follows by induction on $A$.

Exercise 24.4.8 Prove $\mathcal{I} X \mathrm{~N} \rightarrow \mathcal{I}(\mathcal{L} X)(\mathcal{L N})$.
Exercise 24.4.9 Prove that the type of expressions (§7.2) and the type of formulas (§25.1) are countable by embedding them into tree. No recursion is needed for the embedding.

Exercise 24.4.10 (General list product) Assume a function $f^{X \rightarrow Y \rightarrow Z}$. Construct a function $\forall A B . \Sigma C . \forall z . z \in C \longleftrightarrow \exists x \in A \exists y \in B . z=f x y$.

### 24.5 Alignments

We start with an informal presentation of ideas we are going to formalize. An alignment of a type $X$ is a nonrepeating sequence $x_{0}, x_{1}, x_{2}, \ldots$ listing all values of $X$. The sequence may be finite or infinite depending on the cardinality of $X$. Countable types have alignments since they have enumerators. If a type has an infinite alignment, it is in bijection with N. Moreover, a type is finite if and only if it has a finite alignment.

Formally, we define alignments as follows:

$$
\begin{aligned}
\operatorname{hit}_{X} f^{X \rightarrow \mathrm{~N}} n & :=\exists x . f x=n \\
\text { serial }_{X} f^{X \rightarrow \mathrm{~N}} & :=\forall n k . \text { hit } f n \rightarrow k \leq n \rightarrow \text { hit } f k \\
\text { alignment }_{X} f^{X \rightarrow \mathrm{~N}} & :=\text { serial } f \wedge \text { injective } f
\end{aligned}
$$

We call an alignment infinite if it is surjective. We call an alignment finite if it it has a cutoff $n$ such that it hits exactly the numbers $k<n$. Formally, we define cutoffs as follows:

$$
\text { cutoff }_{X} f^{X \rightarrow \mathrm{~N}} n:=\forall k . \text { hit } f k \longleftrightarrow k<n
$$

Fact 24.5.1 Cutoffs are unique. That is, all cutoffs of a function $X \rightarrow \mathrm{~N}$ agree.
Fact 24.5.2 The surjective alignments are exactly the bijective functions $X \rightarrow \mathrm{~N}$.

## Fact 24.5.3 (Bijection)

Countable types with surjective alignments are in bijection with N :
cty $X \rightarrow$ alignment $_{X} f \rightarrow$ surjective $f \rightarrow \mathcal{B} X$ N.
Proof Follows with Fact 22.4 .2 since countable types have EWOs (Fact 24.2.4).
Fact 24.5.4 (Witnesses of Hits)
Witnesses of hits over countable types are computable:
$\operatorname{cty} X \rightarrow \operatorname{hit}_{X} f n \rightarrow \Sigma x . f x=n$.
Proof Immediate since countable types have EWOs and equality on N is decidable.■

## 24 Countable Types

## Lemma 24.5.5 (Segment)

Let $f$ be an alignment of a countable type. Then for every $n$ hit by $f$ one can obtain a nonrepeating list $A$ of length $\mathrm{S} n$ such that $f @ A$ is a segment.

Proof Let $f$ be an alignment of a countable type $X$. Let hit $f n$. By induction on $n$ we construct a non-repeating list $B$ of length Sn such that $f @ B$ is a segment.

Base case $n=0$. Since countable types have EWOs, we can obtain $x$ such that $f x=0$. Then $A=[x]$ satisfies the claim.

Successor case. We assume hit $f(\mathrm{~S} n)$ and construct a nonrepeating list $A$ of length SS $n$ such that $f @ A$ is a segment. Since $f$ is serial, we have hit $f n$. The inductive hypothesis gives us a nonrepeating list $A$ of length $\operatorname{Sn}$ such that $f @ A$ is a segment. Since countable types have EWOs, we can obtain $x$ such that $f x=\operatorname{Sn}$. Now $x:: A$ satisfies the claim. We show $x \notin A$, the rest is obvious. Suppose $x \in A$. Then $f x<\mathrm{S} n$ contradicting $f x=\mathrm{S} n$.

### 24.6 Alignment Construction

We will now show that countable types have alignments. The construction proceeds in two steps and starts from the enumerator of a countable type. The first step obtains a nonrepeating enumerator by removing repetitions.

An enumerator $f^{\mathcal{N} \rightarrow \mathcal{O X}}$ is nonrepeating if $\forall m n$. $f m=f n \neq \emptyset \rightarrow m=n$.

## Fact 24.6.1 (Nonrepeating enumerator)

Every countable type has a nonrepeating enumerator:
cty $X \rightarrow \Sigma f^{\mathrm{N} \rightarrow \mathcal{O} X}$. enum' $f \wedge$ nonrepeating $f$.
Proof Let $f$ be an enumerator of a countable type $X$. We obtain a nonrepeating enumerator of $X$ by keeping for all $x$ only the first $n$ such that $f n={ }^{\circ} x$ :

$$
f^{\prime} n:= \begin{cases}\emptyset & \text { if } f n=\emptyset \\ { }^{\circ} x & \text { if } f n={ }^{\circ} x \wedge \text { least }\left(\lambda n . f n={ }^{\circ} x\right) n \\ \emptyset & \text { if } f n={ }^{\circ} x \wedge \neg \text { least }\left(\lambda n . f n={ }^{\circ} x\right) n\end{cases}
$$

The definition of $f^{\prime}$ is admissible since $\mathcal{D}$ (least $\left(\lambda n . f n={ }^{\circ} \chi\right) n$ ) since $X$ is discrete and least preserves decidability (Fact 18.3.1). That $f^{\prime}$ enumerates $X$ and is nonrepeating follows with Facts 18.2.4 and 18.1.1 for least.

There is a second characterization of seriality that is useful for the second step of the alignment construction.
Fact 24.6.2 A function $f^{X \rightarrow N}$ is serial if and only if $\forall n$. hit $f(\mathrm{~S} n) \rightarrow$ hit $f n$.
Proof One direction is trivial. For the other direction we assume $\forall n$. hit $f(\mathrm{~S} n) \rightarrow$ hit $f n$ and prove $\forall n k$. hit $f n \rightarrow k \leq n \rightarrow$ hit $f k$ by induction on $n$.

## Theorem 24.6.3 (Alignment)

Every countable type has an alignment:
$\forall X$. cty $X \rightarrow \Sigma g^{X \rightarrow \mathrm{~N}}$. alignment $g$.
Proof Let $X$ be a countable type. By Facts 24.6 .1 and 24.1.3 $X$ has a nonrepeating enumerator $f^{\mathrm{N} \rightarrow \mathcal{O X}}$ with a co-enumerator $g^{X \rightarrow \mathrm{~N}}$. We define a function $h^{\mathrm{N} \rightarrow \mathrm{N}}$ such that $h n$ is the number of hits $f$ has for $k<n$ :

$$
\begin{aligned}
h(0) & :=0 \\
h(\mathrm{~S} n) & :=\operatorname{IF} f n \neq \emptyset \text { THEN S }(h n) \text { ELSE } h n
\end{aligned}
$$

By induction on $n$ we show two intuitively obvious facts about $h$ :

1. $\forall k n$. $h n=S k \rightarrow \Sigma m y . m<n \wedge f m={ }^{\circ} y \wedge h m=k$.
2. $\forall m x n$. $f m={ }^{\circ} x \rightarrow m<n \rightarrow h m<h n$.

We now show that $g^{\prime} x:=h(g x)$ is an alignment of $X$.
That $g^{\prime}$ is serial follows with (1) and Fact 24.6.2.
That $g^{\prime}$ is injective follows with
3. $\forall x y \cdot h(g x)=h(g y) \rightarrow g x=g y$
since the co-enumerator $g$ is injective. To see (3), assume $h(g x)=h(g y)$. Then $f$ hits both $g x$ and $g y$. By (2) we have that $g x<g y$ and $g y<g x$ are both contradictory. Hence $g x=g y$.

### 24.7 Bijection Theorem

We now show that two countable types are in bijection if they are retracts of each other: cty $X \rightarrow$ cty $Y \rightarrow \mathcal{I} X Y \rightarrow \mathcal{I} Y X \rightarrow \mathcal{B} X Y$.

## Lemma 24.7.1 (Transport)

Let $X$ and $Y$ be countable types with alignments $f$ and $g$ and $\mathcal{I X Y}$. Then:
$\forall x . \Sigma y . g y=f x$.
Proof Let $F^{X \rightarrow Y}$ and $G^{Y \rightarrow X}$ be such that $\forall x . G(F x)=x$. We fix $x$ and show $\Sigma y . g y=f x$. By Fact 24.5 .4 it suffices to show that $g$ hits $f x$. With the Segment Lemma 24.5 .5 we obtain a nonrepeating list $A: \mathcal{L}(X)$ of length $\mathrm{S}(f x)$. Now $g @(F @ A)$ has length $S(f x)$ and is nonrepeating since $g$ and $F$ are injective. The Large Element Lemma 21.6 .6 gives $k \in g @(F @ A)$ such that $k \geq f x$. Thus $g$ hits $k$. Since $g$ is serial and $f x \leq k, g$ hits $f x$.

## Theorem 24.7.2 (Bijection)

Countable types are in bijection if they are retracts of each other:
cty $X \rightarrow$ cty $Y \rightarrow \mathcal{I} X Y \rightarrow \mathcal{I} Y X \rightarrow \mathcal{B} X Y$.
Proof $X$ and $Y$ have alignments $f$ and $g$ by Fact 24.6.3. With the Transport Lemma 24.7.1 we obtain functions $F: \forall x . \Sigma y . g y=f x$ and $G: \forall y . \Sigma x . f x=g y$. Using the injectivity of $f$ and $g$ one verifies that $\lambda x \cdot \pi_{1}(F x)$ and $\lambda y . \pi_{1}(G y)$ form a bijection.

Corollary 24.7.3 Infinite countable types are in bijection with N : $\mathcal{I N} X \rightarrow$ cty $X \rightarrow \mathcal{B} X$.

Proof Let $\mathcal{I N X}$ and cty $X$. Then $X$ is inhabited and thus $\mathcal{I} X N$ by Fact 24.2.7. Now the bijection theorem 24.7 .2 gives us a bijection $\mathcal{B} X \mathrm{~N}$ since cty N .

### 24.8 Alignments of Finite Types

We will show that a countable type $X$ is finite with cardinality $n$ if and only if $n$ is the cutoff of some alignment of $X$.

Fact 24.8.1 Let $n$ be the cutoff of an alignment of a countable type $X$. Then fin $_{n} X$.
Proof Let $X$ be a countable type, $f$ be an alignment of $X$, and $n$ be the cutoff of $f$. It suffices to show that $X$ has a listing of length $n$.

If $n=0$, then $X$ is empty and [] is a listing as required.
Now assume $n>0$. Then $f$ hits $n-1$. The Segment Lemma 24.5.5 gives us a nonrepeating list $A$ of length $n$ such that $f @ A$ contains exactly the numbers $k<n$. We assume $x: X$ and show that $x \in A$. Since $n$ is a cutoff of $f$, we have $f x<n$. Hence $f x \in f @ A$. Since $f$ is injective, we have $x \in A$.

Fact 24.8.2 If $\operatorname{fin}_{n} X$, then $n$ is a cutoff of every alignment of $X$.
Proof Let fin $_{n} X$ and $f$ be an alignment of $X$. Let $A$ be a listing of $X$. Then $f @ A$ is a nonrepeating list of length $n$ containing exactly the numbers hit by $f$. Thus it suffices to show that $f @ A$ contains exactly the numbers $k<n$. Follows with Fact 21.6 .7 since $f @ A$ is serial and nonrepeating.

Corollary 24.8.3 Alignments of finite types are not surjective.

Proof Let $\operatorname{fin}_{n} X$ and $f$ be a alignment of $X$. It suffices to show that $f$ doesn't hit $n$. By Fact 24.8 .2 we have a cutoff $n$ of $f$. Thus $n<n$ if $f$ hits $n$.

### 24.9 Finite or Infinite

Assuming the law of excluded middle, we show that a serial function either has a cutoff or is surjective. Since there is no algorithm deciding this property, assuming excluded middle seems necessary.

Fact 24.9.1 $\mathrm{XM} \rightarrow$ serial $f \rightarrow \operatorname{ex}($ cutoff $f) \vee$ surjective $f$.
Proof Assume XM and let $f$ be serial. Using XM, we assume that $f$ is not surjective and show that $f$ has a cutoff. Using XM, we obtain a $k$ not hit by $f$. Using XM and Fact 18.5.2, we obtain the least $n$ not hit by $f$. Since $f$ is serial, $n$ is the cutoff of $f \cdot \square$

We now have that under XM a countable type is either finite or in bijection with N .
Fact 24.9.2 XM $\rightarrow$ cty $X \rightarrow \square($ fin $X+$ bijection $X \mathrm{~N})$.
Proof Follows with Facts 24.6.3, 24.9.1, 24.8.1, and 24.5.3.

The truncation $\square$ in Fact 24.9 .2 is needed so that the disjunctive assumption XM can be harvested. Truncations are introduced in §10.5.

Fact 24.9.3 XM $\rightarrow \operatorname{cty} X \rightarrow \square \mathcal{I} X \mathrm{~N} \vee(X \rightarrow \perp)$.
Proof Follows with Facts 24.9.2, 23.2.2 and 23.4.8.

### 24.10 Discussion

We have shown that a countable type is either a finite type or an infinite type that is in bijection with $N$. In fact, most results in this chapter generalize results we have already seen for finite types. The generalized results include the construction of alignments for countable types and the construction of bijections for countable types of the same cardinality.

Cantor pairing is an ingenuous construction establishing $N \times N$ as an infinite countable type. We gave a more general construction (list enumeration) that works for $\mathrm{N} \times \mathrm{N}$ and for syntactic types in general.

We did not give a formal definition of infinite types since there are several possibilities: We may call a type $X$ infinite if $X$ is not a finite type, if there is an injection $\mathcal{I N} X$, or if there is a new element generator, among other possibilities.

As it comes to cardinalities of countable types, we may say that the cardinality of a countable type is a value of $\mathcal{O}(\mathrm{N})$, where ${ }^{\circ} n$ represents the finite cardinality $n$ and $\emptyset$ represents the single infinite cardinality.

## Part III

## Case Studies

## 25 Propositional Deduction

In this chapter we study propositional deduction systems. Propositional deduction systems can be elegantly formalized with indexed inductive type families. The chapter is designed such that it can serve as an introduction to propositional deduction systems and to indexed inductive type definitions at the same time. No previous knowledge of indexed inductive type definitions is assumed.

We present ND systems and Hilbert systems for intuitionistic provability and for classical provability. We show the equivalence of the respective systems and that classical provability reduces to intuitionistic provability (Glivenko's theorem). We consider a three-valued Heyting interpretation and the two-valued boolean interpretation and show that certain formulas are unprovable in the systems (e.g., the double negation law in intuitionistic systems).

We characterize classical provability with a refutation system based on boolean formula decomposition. The refutation system provides the basis for a certifying solver, from wich we obtain that classical provability is decidable and agrees with boolean entailment. We construct the certifying solver using size induction.

The chapter can serve as an introduction to deduction systems in general, preparing the study of deduction systems for programming languages (e.g., type systems, operational semantics). More specifically, in this chapter we learn how inductive types elegantly represent abstract syntax, judgments, and derivation rules.

### 25.1 ND Systems

We start with an informal explanation of natural deduction systems. Natural deduction systems (ND systems) come with a class of formulas and a system of deduction rules for building derivations of judgments $A \vdash s$ consisting of a list of formulas $A$ serving as assumptions and a single formula $s$ serving as conclusion. That a judgment $A \vdash s$ is derivable with the rules of the system is understood as saying that $s$ is provable with the assumptions in $A$ and the rules of the system. Given a concrete class of formulas, we can have different sets of rules and compare their deductive power. Given a concrete deduction system, we may ask the following questions:

## 25 Propositional Deduction

- Consistency: Are there judgments we cannot derive?
- Weakening property: Given a derivation of $A \vdash s$ and a list $B$ containing $A$, can we always obtain a derivation of $B \vdash s$ ?
- Cut property: Given derivations of $A \vdash s$ and $s:: A \vdash t$, can we always obtain a derivation of $A \vdash t$ ?
- Decidability: Is it decidable whether a judgment $A \vdash s$ is derivable?

We will consider the following type of formulas:

$$
s, t, u, v: \text { For }:=x|\perp| s \rightarrow t|s \wedge t| s \vee t \quad(x: \mathrm{N})
$$

Formulas of the kind $x$ are called atomic formulas. Atomic formulas represent atomic propositions whose meaning is left open. For the other kinds of formulas the symbols used give away the intended meaning. Formally, the type For of formulas is accommodated as an inductive type that has a value constructor for each kind of formula ( 5 altogether). ${ }^{1}$ We will use the familiar notation

$$
\neg S:=s \rightarrow \perp
$$

to express negated formulas.

## Exercise 25.1.1 (Formulas)

a) Show some of the constructor laws for the type of formulas.
b) Define an eliminator providing for structural induction on formulas.
c) Define a certifying equality decider for formulas.

### 25.2 Intuitionistic ND System

The deduction rules of the intuitionistic ND system we will consider are given in Figure 25.1 using several notational gadgets:

- Comma notation $A, s$ for lists $s:: A$.
- Ruler notation for deduction rules. For instance,

$$
\frac{A \vdash s \rightarrow t \quad A \vdash s}{A \vdash t}
$$

describes a rule (known as modus ponens) that obtains a derivation of $A \vdash t$ from derivations of $A \vdash(s \rightarrow t)$ and $A \vdash s$. We say that the rule has two premises and one conclusion.

[^12]\[

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{A} \frac{s \in A}{A \vdash s} \\
\mathrm{E}_{\perp} \frac{A \vdash \perp}{A \vdash s}
\end{array} \quad \mathrm{~L} \frac{A, s \vdash t}{A \vdash s \rightarrow t} \quad \mathrm{E} \stackrel{A \vdash s \rightarrow t \quad A \vdash s}{A \vdash t} \\
& \mathrm{I} \wedge \frac{A \vdash s \quad A \vdash t}{A \vdash s \wedge t} \\
& \mathrm{E}_{\wedge} \frac{A \vdash s \wedge t \quad A, s, t \vdash u}{A \vdash u} \\
& \frac{A \vdash s}{A \vdash s \vee t} \quad \mathrm{I}_{\vee}^{2} \frac{A \vdash t}{A \vdash s \vee t}
\end{aligned}
$$ \quad \mathrm{E}_{\vee} \frac{A \vdash s \vee t \quad A, s \vdash u \quad A, t \vdash u}{A \vdash u},
\]

Figure 25.1: Deduction rules of the intuitinistic ND system

All rules in Figure 25.1 express proof rules you are familiar with from mathematical reasoning and the logical reasoning you have seen in this text. In fact, the system of rules in Figure 25.1 can derive exactly those judgments $A \vdash s$ that are known to be intuitionistically deducible (given the formulas we consider). Since reasoning in type theory is intuitionistic, Coq can prove a goal $(A, s)$ if and only if the rules in Figure 25.1 can derive the judgment $A \vdash s$ (where atomic formulas are accommodated as propositional variables in type theory). We will exploit this coincidence when we construct derivations using the rules in Figure 25.1.

The rules in Figure 25.1 with a logical constant (i.e., $\perp, \rightarrow, \wedge, \vee$ ) in the conclusion are called introduction rules, and the rules with a logical constant in the leftmost premise are called elimination rules. The first rule in Figure 25.1 is known as assumption rule. Note that every rule but the assumption rule is an introduction or an elimination rule for some logical constant. Also note that there is no introduction rule for $\perp$, and that there are two introduction rules for $\vee$. The elimination rule for $\perp$ is also known as explosion rule.

Note that no deduction rule contains more than one logical constant. This results in an important modularity property. If we want to omit a logical constant, for instance $\wedge$, we just omit all rules containing this constant. Note that every system with $\perp$ and $\rightarrow$ can express negation. When trying to understand the structural properties of the system, it is usually a good idea to just consider $\perp$ and $\rightarrow$. Note that the assumption rule cannot be omitted since it is the only rule not taking a derivation as premise.

Here are common conveniences for the turnstile notation we will use in the following:

$$
\begin{array}{rlll}
s \vdash u & \text { ns } & {[s] \vdash u} \\
s, t \vdash u & \sim & {[s, t] \vdash u} \\
\vdash u & \text { us } & \square \vdash u
\end{array}
$$

Example 25.2.1 Below is a derivation for $s \vdash \neg \neg s$ depicted as a derivation tree:

$$
\frac{\frac{s, \neg s \vdash \neg s}{s} \overline{s, \neg s \vdash s} \mathrm{~A}}{s, \neg s \vdash \perp} \mathrm{E}_{\rightarrow}
$$

The labels $A, E_{\rightarrow}$, and $I_{\rightarrow}$ at the right of the lines are the names for the rules used (assumption, elimination, and introduction).

## Constructing ND derivations

Generations of students have been trained to construct ND derivations. In fact, constructing derivations in the intuitionistic ND system is pleasant if one follows the following recipe:

1. Construct a proof table as if the formulas were propositions.
2. Translate the proof table into a derivation (using the proof assistant).

Step 1 is the more difficult one, but you already well-trained as it comes to constructing intuitionistic proof tables. Once the proof assistant is used, constructing derivations becomes fun. Using the proof assistant becomes possible once the relevant ND system is realized as an inductive type.

The proof assistant comes with a decision procedure for intuitionistically provable quantifier-free propositions. If in doubt whether a certain derivation can be constructed in the intuitionistic ND system, the decision procedure of the proof assistant can readily decide the question.

Exercise 25.2.2 Give derivation trees for $A \vdash(s \rightarrow s)$ and $\neg \neg \perp \vdash \perp$.
Exercise 25.2.3 If you are eager to construct more derivations, Exercise 25.3.3 will provide you with interesting examples.

### 25.3 Formalisation with Indexed Inductive Type Family

It turns out that propositional deduction systems like the one in Figure 25.2 can be formalized elegantly and directly with inductive type definitions accommodating deduction rules as value constructors of derivation types $A \vdash s$.

Let us explain this fundamental idea. We may see the deduction rules in Figure 25.1 as functions that given derivations for the judgments in the premises yield a derivation for the judgment appearing as conclusion. The introduction rule for conjunctions, for instance, may be seen as a function that given derivations for $A \vdash s$ and $A \vdash t$ yields a derivation for $A \vdash s \wedge t$. We now go one step further

$$
\begin{array}{rlrl}
s \in A & \rightarrow A \vdash s & & \mathrm{~A} \\
A \vdash \perp & \rightarrow A \vdash s & & \mathrm{E}_{\perp} \\
A, s \vdash t & \rightarrow A \vdash(s \rightarrow t) & & \mathrm{I}_{\rightarrow} \\
A \vdash(s \rightarrow t) \rightarrow A \vdash s & \rightarrow A \vdash t & & \mathrm{E}_{\rightarrow} \\
A \vdash s \rightarrow A \vdash t & \rightarrow A \vdash(s \wedge t) & & \mathrm{I}_{\wedge} \\
A \vdash(s \wedge t) \rightarrow A, s, t \vdash u & \rightarrow A \vdash u & & \mathrm{E}_{\wedge} \\
A \vdash s & \rightarrow A \vdash(s \vee t) & & \mathrm{I}_{\vee}^{1} \\
A \vdash(s \vee t) \rightarrow A, s \vdash u \rightarrow A, t \vdash u & \rightarrow A \vdash u & & \mathrm{I}_{\vee}^{2} \\
A \vdash A \vdash(s \vee t) & & \mathrm{E}_{\vee}
\end{array}
$$

Prefixes for $A, s, t, u$ omitted, constructor names given at the right
Figure 25.2: Value constructors for derivation types $A \vdash s$
and formalize the deduction rules as the value constructors of an inductive type constructor

$$
\vdash: \mathcal{L}(\text { For }) \rightarrow \text { For } \rightarrow \mathbb{T}
$$

This way the values of an inductive type $A \vdash s$ represent the derivations of the judgment $A \vdash s$ we can obtain with the deduction rules. To emphasize this point, we call the types $A \vdash s$ derivation types.

The value constructors for the derivation types $A \vdash s$ of the intuitionistic ND system appear in Figure 25.2. Note that the types of the constructors follow exactly the patterns of the deduction rules in Figure 25.1.

When we look at the target types of the constructors in Figure 25.2, it becomes clear that the argument $s$ of the type constructor $A \vdash s$ is not a parameter since it is instantiated by the constructors for the introduction rules ( $I_{-}, I_{\wedge}, I_{V}^{1}, I_{V}^{2}$ ). Such nonparametric arguments of type constructors are called indices. In contrast, the argument $A$ of the type constructor $A \vdash s$ is a parameter since it is not instantiated in the target types of the constructors. More precisely, the argument $A$ is a nonuniform parameter of the type constructor $A \vdash s$ since it is instantiated in some argument types of some of the constructors ( $\mathrm{I}_{\lrcorner}, \mathrm{E}_{\wedge}$, and $\mathrm{E}_{\mathrm{V}}$ ).

We call inductive type definitions where the type constructor has indices indexed inductive definitions. Indexed inductive definitions can also introduce indexed inductive predicates. In fact, we alternatively could introduce $\vdash$ as an indexed inductive predicate and this way demote derivations from computational objects to proofs.

The suggestive BNF-style notation we have used so far to write inductive type
definitions does not generalize to indexed inductive type definitions. So we will use an explicit format giving the type constructor together with the list its value constructors. Often, the format used in Figure 25.2 will be convenient.

## Fact 25.3.1 (Double negation)

1. $\neg \neg \perp \vdash \perp$
2. $s \vdash \neg \neg s$
3. $(A \vdash \neg \neg \perp) \Leftrightarrow(A \vdash \perp)$

Proof See Example 25.2.1 and the remarks there after.
In $\S 25.9$ we will show that $\neg \neg s \vdash s$ is not derivable for some formulas $s$. In particular, $\neg \neg s \vdash s$ is not derivable if $s$ is a variable. However, as the above proof shows, $\neg \neg s \vdash s$ is derivable for $s=\perp$. This fact will play an important role.

Fact 25.3.2 (Cut) $A \vdash s \rightarrow A, s \vdash t \rightarrow A \vdash t$.
Proof We assume $A \vdash s$ and $A, s \vdash t$ and derive $A \vdash t$. By I . we have $A \vdash(s \rightarrow t)$. Thus $A \vdash t$ by $\mathrm{E}_{\rightarrow}$.

The cut lemma gives us a function that given a derivation $A \vdash s$ and a derivation $A, s \vdash t$ yields a derivation $A \vdash t$. Informally, the cut lemma says that once we have derived $s$ from $A$, we can use $s$ like an assumption.

Exercise 25.3.3 Construct derivations as follows:
a) $A \vdash \neg \neg \perp \rightarrow \perp$
b) $A \vdash s \rightarrow \neg \neg s$
c) $A \vdash(\neg s \rightarrow \neg \neg \perp) \rightarrow \neg \neg s$
d) $A \vdash(s \rightarrow \neg \neg t) \rightarrow \neg \neg(s \rightarrow t)$
e) $A \vdash \neg \neg(s \rightarrow t) \rightarrow \neg \neg s \rightarrow \neg \neg t$
f) $A \vdash \neg \neg \neg s \rightarrow \neg s$
g) $A \vdash \neg s \rightarrow \neg \neg \neg s$

Exercise 25.3.4 Establish the following functions:
a) $A \vdash\left(s_{1} \rightarrow s_{2} \rightarrow t\right) \rightarrow A \vdash s_{1} \rightarrow A \vdash s_{2} \rightarrow A \vdash t$
b) $\neg \neg s \in A \rightarrow A, s \vdash \perp \rightarrow A \vdash \perp$
c) $A, s, \neg t \vdash \perp \rightarrow A \vdash \neg \neg(s \rightarrow t)$

Hint: (c) is routine if you first show $A \vdash(\neg t \rightarrow \neg s) \rightarrow \neg \neg(s \rightarrow t)$.
Exercise 25.3.5 Prove the implicative facts (1)-(6) appearing in Exercise 25.11.6.

### 25.4 The Eliminator

For more interesting proofs it will be necessary to do inductions on derivations. As it was the case for non-indexed inductive types, we can define an eliminator providing for the necessary inductions. The definition of the eliminator is shown in Figure 25.3. While the definition of the eliminator is frighteningly long, it is regular and modular: Every deduction rule (i.e., value constructor) is accounted for with a separate type clause and a separate defining equation. To understand the definition of the eliminator, it suffices that you pick one of the deduction rules and look at the type clause and the defining equation for the respective value constructor.

The eliminator formalizes the idea of induction on derivations, which informally is easy to master. With a proof assistant, the eliminator can be derived automatically from the inductive type definition, and its application can be supported such that the user is presented the proof obligations for the constructors once the induction is initiated.

As it comes to the patterns (i.e., the left-hand sides) of the defining equations, there is a new feature coming with indexed inductive types. Recall that patterns must be linear, that is, no variable must occur twice, and no constituent must be referred to by more than one variable. With parameters, this requirement was easily satisfied by not furnishing constructors in patterns with their parameter arguments. If the type constructor we do the case analysis on has indices, there is the additional complication that the value constructors for this type constructor may instantiate the index arguments. Thus there is a conflict with the preceding arguments of the defined function providing abstract arguments for the indices. Again, there is a simple general solution: The conflicting preceding arguments of the defined function are written with the underline symbol ',' and thus don't introduce variables, and the necessary instantiation of the function type is postponed until the instantiating constructor is reached. In the definition shown in Figure 25.3, the critical argument of $\mathrm{E}_{\vdash}$ that needs to be written as ',' in the defining equations is $s$ in the target type $\forall A s . A \vdash s \rightarrow p A s$ of $\mathrm{E}_{\vdash}$.

### 25.5 Induction on Derivations

We are now ready to prove interesting properties of the intuitionistic ND system using induction on derivations. We will carry out the inductions informally and leave it to reader to check (with Coq) that the informal proofs translate into formal proofs applying the eliminator $\mathrm{E}_{\vdash}$.

We start by defining a function translating derivations $A \vdash s$ into derivations $B \vdash s$ provided $B$ contains every formula in $A$.

```
\(\mathrm{E}_{\vdash}: \forall p^{\mathcal{L}(\text { For }) \rightarrow \mathrm{For} \rightarrow \mathbb{T}}\).
 \((\forall A s . s \in A \rightarrow p A s) \rightarrow\)
 \((\forall A s . p A \perp \rightarrow p A s) \rightarrow\)
 \((\forall\) Ast. \(p(s:: A) t \rightarrow p A(s \rightarrow t)) \rightarrow\)
 \((\forall\) Ast. \(p A(s \rightarrow t) \rightarrow p A s \rightarrow p A t) \rightarrow\)
 \((\forall A s t . p A s \rightarrow p A t \rightarrow p A(s \wedge t)) \rightarrow\)
 \((\forall\) Astu. \(p A(s \wedge t) \rightarrow p(s:: t:: A) u \rightarrow p A u) \rightarrow\)
 \((\forall\) Ast. \(p A s \rightarrow p A(s \vee t)) \rightarrow\)
 \((\forall\) Ast. \(p A t \rightarrow p A(s \vee t)) \rightarrow\)
 \((\forall A s t u . p A(s \vee t) \rightarrow p(s:: A) u \rightarrow p(t:: A) u \rightarrow p A u) \rightarrow\)
 \(\forall A s . A \vdash s \rightarrow p A s\)
\(\mathrm{E}_{\vdash} p e_{1} \ldots e_{9} A_{-}(\mathrm{A} s h):=e_{1} A s h\)
 \(\left(\mathrm{E}_{\perp} s d\right):=e_{2} A s\left(\mathrm{E}_{\vdash} \ldots A \perp d\right)\)
 \(\left(\mathrm{I}_{\rightarrow} s t d\right):=e_{3} \operatorname{Ast}\left(\mathrm{E}_{\vdash} \ldots(s:: A) t d\right)\)
 \(\left(\mathrm{E}_{\rightarrow} s t d_{1} d_{2}\right):=e_{4} \operatorname{Ast}\left(\mathrm{E}_{\vdash} \ldots A(s \rightarrow t) d_{1}\right)\left(\mathrm{E}_{\vdash} \ldots A s d_{2}\right)\)
 \(\left(\mathrm{I}_{\wedge} s t d_{1} d_{2}\right):=e_{5} \operatorname{Ast}\left(\mathrm{E}_{\vdash} \ldots \operatorname{Asd} d_{1}\right)\left(\mathrm{E}_{\vdash} \ldots \operatorname{Atd} d_{2}\right)\)
 \(\left(\mathrm{E}_{\wedge} s t u d_{1} d_{2}\right):=e_{6} A s t u\left(\mathrm{E}_{\vdash} \ldots A(s \wedge t) d_{1}\right)\left(\mathrm{E}_{\vdash} \ldots(s:: t:: A) u d_{2}\right)\)
 \(\left(\mathrm{I}_{\vee}^{1} s t d\right):=e_{7} \operatorname{Ast}\left(\mathrm{E}_{\vdash} \ldots\right.\) Asd \()\)
 \(\left(\mathrm{I}_{V}^{2} s t d\right):=e_{8} \operatorname{Ast}\left(\mathrm{E}_{\vdash} \ldots\right.\) Atd \()\)
 \(\left(\mathrm{E}_{\vee} \operatorname{stu} d_{1} d_{2} d_{3}\right):=e_{9} A s t u\left(\mathrm{E}_{\vdash} \ldots A(s \vee t) d_{1}\right)\)
 \(\left(\mathrm{E}_{\vdash} \ldots(s:: A) u d_{2}\right)\)
 \(\left(\mathrm{E}_{\vdash} \ldots(t:: A) u d_{3}\right)\)
```

Figure 25.3: Eliminator for $A \vdash s$

Fact 25.5.1 (Weakening) $A \vdash s \rightarrow A \subseteq B \rightarrow B \vdash s$.
Proof By induction on $A \vdash s$ with $B$ quantified. All proof obligations are straightforward. We consider the constructor $I_{\rightarrow}$. We have $A \subseteq B$ and a derivation $A, s \vdash t$, and we need a derivation $B \vdash(s \rightarrow t)$. Since $A, s \subseteq B, s$, the inductive hypothesis gives us a derivation $B, s \vdash t$. Thus $I_{\rightarrow}$ gives us a derivation $B \vdash(s \rightarrow t)$.

Next we show that premises of top level implications are interchangeable with assumptions.

Fact 25.5.2 (Implication) $A \vdash(s \rightarrow t) \Leftrightarrow A, s \vdash t$.
Proof Direction $\Leftarrow$ holds by $I_{\rightarrow}$. For direction $\Rightarrow$ we assume $A \vdash(s \rightarrow t)$ and obtain $A, s \vdash(s \rightarrow t)$ with weakening. Now A and $\mathrm{E}_{\rightarrow}$ yield $A, s \vdash t$.

As a consequence, we can represent all assumptions of a derivation $A \vdash s$ as premises of implications at the right-hand side. To this purpose, we define a reversion function $A \cdot s$ with [] $t:=t$ and $(s:: A) \cdot t:=A \cdot(s \rightarrow t)$. For instance, we have $\left[s_{1}, s_{2}, s_{3}\right] \cdot t=\left(s_{3} \rightarrow s_{2} \rightarrow s_{1} \rightarrow t\right)$. To ease our notation, we will write $\vdash s$ for $[\square \vdash$.

Fact 25.5.3 (Reversion) $A \vdash s \Leftrightarrow \vdash A \cdot s$.
Proof By induction on $A$ with $s$ quantified using the implication lemma.
A formula is ground if it contains no variable. We assume a recursively defined predicate ground $s$ for groundness.

Fact 25.5.4 (Ground Prover) $\forall s$. ground $s \rightarrow(\vdash s)+(\vdash \neg s)$.
Proof By induction on $s$ using weakening.
Exercise 25.5.5 Prove $\forall s$. ground $s \rightarrow \vdash(s \vee \neg s)$.
Exercise 25.5.6 Prove $\forall A s$. ground $s \rightarrow A, s \vdash t \rightarrow A, \neg s \vdash t \rightarrow A \vdash t$.
Exercise 25.5.7 Prove the deduction laws for conjunctions and disjunctions:
a) $A \vdash(s \wedge t) \Leftrightarrow A \vdash s \times A \vdash t$
b) $A \vdash(s \vee t) \Leftrightarrow \forall u$. $A, s \vdash u \rightarrow A, t \vdash u \rightarrow A \vdash u$

Exercise 25.5.8 Construct derivations for the following judgments:
a) $\vdash(t \rightarrow \neg s) \rightarrow \neg(s \wedge t)$
b) $\vdash \neg \neg s \rightarrow \neg \neg t \rightarrow \neg \neg(s \wedge t)$
c) $\vdash \neg s \rightarrow \neg t \rightarrow \neg(s \vee t)$
d) $\vdash(\neg t \rightarrow \neg \neg s) \rightarrow \neg \neg(s \vee t)$
e) $\vdash \neg \neg s \rightarrow \neg t \rightarrow \neg(s \rightarrow t)$
f) $\vdash(\neg t \rightarrow \neg s) \rightarrow \neg \neg(s \rightarrow t)$

Exercise 25.5.9 (Order-preserving reversion)
We define a reversion function $A \cdot s$ preserving the order of assumptions:

$$
\begin{gathered}
\square \cdot s:=s \\
(t:: A) \cdot s:=t \rightarrow(A \cdot s)
\end{gathered}
$$

Prove $A \vdash s \Leftrightarrow \vdash A \cdot s$.
Hint: Prove the generalization $\forall B . B+A \vdash s \Leftrightarrow B \vdash A \cdot s$ by induction on $A$.

### 25.6 Classical ND System

The classical ND system is obtained from the intuitionistic ND system by replacing the explosion rule

$$
\frac{A \vdash \perp}{A \vdash s}
$$

with the proof by contradiction rule:

$$
\frac{A, \neg s \vdash \perp}{A \vdash s}
$$

Formally, we accommodate the classical ND system with a separate derivation type constructor

$$
\vdash: \mathcal{L}(\text { For }) \rightarrow \text { For } \rightarrow \mathbb{T}
$$

with separate value constructors. Classical ND can prove the double negation law.
Fact 25.6.1 (Double Negation) $A \dot{\vdash}(\neg \neg s \rightarrow s)$.
Proof Straightforward using the contradiction rule.
Fact 25.6.2 (Cut) $A \dot{\vdash} s \rightarrow A, s \dot{\vdash} t \rightarrow A \vdash t$.
Proof Same as for the intuitionistic system.
Fact 25.6.3 (Weakening) $A \dot{\leftarrow} s \rightarrow A \subseteq B \rightarrow B \vdash s$.
Proof By induction on $A \dot{\vdash} s$ with $B$ quantified. Same proof as for intuitionistic ND, except that now the proof obligation ( $\forall B . A, \neg s \subseteq B \rightarrow B \vdash \perp$ ) $\rightarrow A \subseteq B \rightarrow B \dot{f} s$ for the contradiction rule must be checked. Straightforward with the contradiction rule.

The classical system can prove the explosion rule. Thus every intuitionistic derivation $A \vdash s$ can be translated into a classical derivation $A \vdash s$.

Fact 25.6.4 (Explosion) $A \dot{\vdash} \perp \rightarrow A \vdash s$.
Proof By contradiction and weakening.
Fact 25.6.5 (Translation) $A \vdash s \rightarrow A \vdash s$.
Proof By induction on $A \vdash s$ using the explosion lemma for the explosion rule.
Fact 25.6.6 (Implication) $A, s \dot{\vdash} t \Leftrightarrow A \dot{\vdash}(s \rightarrow t)$.
Proof Same proof as for the intuitionistic system.
Fact 25.6.7 (Reversion) $A \dot{\vdash} s \Leftrightarrow \vdash A \cdot s$.
Proof Same proof as for the intuitionistic system.
Because of the contradiction rule the classical system has the distinguished property that every proof problem can be turned into a refutation problem.

Fact 25.6.8 (Refutation) $A \dot{\vdash} S \Leftrightarrow A, \neg S \dot{\vdash} \perp$.
Proof Direction $\Rightarrow$ follows with weakening. Direction $\Leftarrow$ follows with the contradiction rule.

While the refutation lemma tells us that classical ND can represent all information in the context, the implication lemmas tell us that both intuitionistic and classical ND can represent all information in the claim.

Exercise 25.6.9 Show $(A \vdash s \rightarrow t \rightarrow u) \Longleftrightarrow(A \vdash t \rightarrow s \rightarrow u)$.
Exercise 25.6.10 Show $\dot{\vdash} s \vee \neg s$ and $\dot{\vdash}((s \rightarrow t) \rightarrow s) \rightarrow s$.
Exercise 25.6.11 Prove the deduction laws for conjunctions and disjunctions:
a) $A \dot{\vdash}(s \wedge t) \Leftrightarrow A \dot{\vdash} s \times A \dot{\vdash} t$
b) $A \dot{\vdash}(s \vee t) \Leftrightarrow \forall u$. $A, s \dot{\vdash} u \rightarrow A, t \dot{\vdash} u \rightarrow A \vdash \dot{\vdash} u$

Exercise 25.6.12 Show that classical ND can express conjunction and disjunction with implication and falsity. To do so, define a translation function $f s t$ not using conjunction and prove $\dot{\vdash}(s \wedge t \rightarrow f s t)$ and $\dot{\vdash}(f s t \rightarrow s \wedge t)$. Do the same for disjunction.

### 25.7 Glivenko's Theorem

It turns out that a formula is classically provable if and only if its double negation is intuitionistically provable. Thus a classical provability problem can be reduced to an intuitionistic provability problem.

Lemma 25.7.1 $A \dot{\vdash} s \rightarrow A \vdash \neg \neg s$.
Proof By induction on $A \vdash s$. This yields the following proof obligations (the obligations for conjunctions and disjunctions are omitted).

- $s \in A \rightarrow A \vdash \neg \neg s$
- $A, \neg s \vdash \neg \neg \perp \rightarrow A \vdash \neg \neg s$.
- $A, s \vdash \neg \neg t \rightarrow A \vdash \neg \neg(s \rightarrow t)$
- $A \vdash \neg \neg(s \rightarrow t) \rightarrow A \vdash \neg \neg s \rightarrow A \vdash \neg \neg t$

Using rule $\mathrm{E}_{\rightarrow}$ of the intuitionistic system, the obligations can be strengthened to:

- $\vdash s \rightarrow \neg \neg s$
- $\vdash(\neg s \rightarrow \neg \neg \perp) \rightarrow \neg \neg s$
- $\vdash(s \rightarrow \neg \neg t) \rightarrow \neg \neg(s \rightarrow t)$
- $\vdash \neg \neg(s \rightarrow t) \rightarrow \neg \neg s \rightarrow \neg \neg t$.

The proofs of the strengthened obligations are routine (Exercise 25.3.3).
Theorem 25.7.2 (Glivenko) $A \dot{\vdash} s \Leftrightarrow A \vdash \neg \neg s$.
Proof Direction $\Rightarrow$ follows with Lemma 25.7.1. Direction $\Leftarrow$ follows with translation (25.6.5) and double negation (25.6.1).

Corollary 25.7.3 (Agreement on negated formulas) $A \dot{\vdash} \neg s \Leftrightarrow A \vdash \neg s$.
Corollary 25.7.4 (Refutation agreement)
Intuitionistic and classical refutation agree: $A \vdash \perp \Leftrightarrow A \vdash \perp$.
Proof Glivenko's theorem and the bottom law 25.3.1.
Corollary 25.7.5 (Equiconsistency)
Intuitionistic ND is consistent if and only if classical ND is consistent:
$((\vdash \perp) \rightarrow \perp) \Longleftrightarrow((\stackrel{\vdash}{ }) \rightarrow \perp)$.
Proof Immediate consequence of Corollary 25.7.4.
Exercise 25.7.6 We call a formula $s$ stable if $\neg \neg s \vdash s$. Prove the following:
a) $\perp$ is stable.
b) If $t$ is stable, then $s \rightarrow t$ is stable.
c) If $s$ is stable, then $A \dot{\vdash} s \Leftrightarrow A \vdash s$.

### 25.8 Intuitionistic Hilbert System

Hilbert systems are deduction systems predating ND systems. ${ }^{2}$ They are simpler than ND systems in that they come without assumption management. While it is virtually impossible for humans to write proofs in Hilbert systems, one can construct compilers translating derivations in ND systems into derivations in Hilbert systems.

To ease our presentation, we restrict ourselves in this section to formulas not containing conjunctions and disjunctions. Since implications are the primary connective in Hilbert systems and conjunctions and disjunctions appear as extensions, adding conjunctions and disjunctions will be an easy exercise.

We consider an intuitionistic Hilbert system formalized with an inductive type constructor $\mathcal{H}:$ For $\rightarrow \mathbb{T}$ and the derivation rules

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{MP}} \frac{\mathcal{H}(s \rightarrow t) \quad \mathcal{H}(s)}{\mathcal{H}(t)}
\end{aligned} \mathrm{H}_{\mathrm{K}} \frac{\overline{\mathcal{H}(s \rightarrow t \rightarrow s)}}{} \mathrm{H}_{\mathrm{S}} \overline{\mathcal{H}((s \rightarrow t \rightarrow u) \rightarrow(s \rightarrow t) \rightarrow s \rightarrow u)} \quad \mathrm{H}_{\perp} \overline{\mathcal{H}(\perp \rightarrow s)}
$$

There are a single two-premise rule called modus ponens and three premise-free rules called axiomatic rules. So all the action comes with modus ponens, which puts implication into the primary position. Note that the single argument of the type constructor $\mathcal{H}$ comes out as an index.

A Hilbert system internalizes the assumption list of the ND system using implication. It keeps the elimination rule for implications (now called modus ponens) but reformulates all other rules as axiomatic rules using implication. Surprisingly, only two rules $\left(\mathrm{H}_{\mathrm{K}}\right.$ and $\left.\mathrm{H}_{\mathrm{S}}\right)$ suffice to simulate the assumption management and the introduction rule for implication. The axiomatic rules for conjunction and disjunction follow the ND rules and the translation scheme we see in the falsity elimination rule $\mathrm{H}_{\perp}$ and come with the following conclusions:

$$
\begin{gathered}
s \rightarrow t \rightarrow s \wedge t \\
s \wedge t \rightarrow(s \rightarrow t \rightarrow u) \rightarrow u \\
s \rightarrow s \vee t \\
t \rightarrow s \vee t \\
s \vee t \rightarrow(s \rightarrow u) \rightarrow(t \rightarrow u) \rightarrow u
\end{gathered}
$$

[^13]\[

$$
\begin{aligned}
\mathrm{H}_{\mathrm{A}}^{\Vdash} \frac{s \in A}{A \Vdash s} \quad \mathrm{H}_{\mathrm{MP}}^{\Vdash} \frac{A \Vdash s \rightarrow t \quad A \Vdash s}{A \Vdash t} & \mathrm{H}_{\mathrm{K}}^{\Vdash} \frac{A \Vdash s \rightarrow t \rightarrow s}{A \Vdash s} \\
\mathrm{H}_{\mathrm{S}}^{\Vdash} \frac{\mathrm{H}^{\Vdash}}{A \Vdash(s \rightarrow t \rightarrow u) \rightarrow(s \rightarrow t) \rightarrow s \rightarrow u} & \mathrm{H}_{\perp}^{\Perp} \overline{A \Vdash \perp \rightarrow s}
\end{aligned}
$$
\]

Figure 25.4: Generalized Hilbert system $\Vdash: \mathcal{L}($ For $) \rightarrow$ For $\rightarrow \mathbb{T}$

We will prove that $\mathcal{H}$ derives exactly the formulas intuitionistic ND derives in the empty context (that is, $\mathcal{H} s \Leftrightarrow \vdash s$ ). One direction of the proof is straightforward.

Fact 25.8.1 (Soundness for ND) $\mathcal{H}(s) \rightarrow([] \vdash s)$.

Proof By induction on the derivation of $\mathcal{H}(s)$. The modus ponens rule can be simulated with $E_{\rightarrow}$, and the conclusions of the axiomatic rules are all easily derivable in the intuitionistic system.

The other direction of the equivalence proof (completeness for ND ) is challenging since it has to internalize the assumption management of the ND system. We will see that this can be done with the axiomatic rules $H_{K}$ and $H_{s}$. We remark that the conclusions of $\mathrm{H}_{\mathrm{K}}$ and $\mathrm{H}_{\mathrm{S}}$ may be seen as types for the functions $\lambda x y . x$ and $\lambda f g x .(f x)(g x)$.

The completeness proof uses the generalized Hilbert system $\Vdash$ shown in Figure 25.4 as an intermediate system. Similar to the ND system, the generalized Hilbert system maintains a context, but this time no rule modifies the context. The assumption rule $\mathrm{H}_{\mathrm{A}}^{\vdash}$ is the only rule reading the context. The context can thus be accommodated as a uniform parameter of the type constructor $\Vdash$.

Fact 25.8.2 (Agreement) $\mathcal{H}(s) \longleftrightarrow[\Vdash s$.
Proof Both directions are straightforward inductions.
It remains to construct a function translating ND derivations $A \vdash s$ into Hilbert derivations $A \Vdash s$. For this we use a simulation function for every rule of the ND system (Figure 25.1). The simulation functions are obvious for all rules of the ND system but for $\mathrm{I}_{\rightarrow}$.

## Fact 25.8.3 (Basic simulation functions)

1. $\forall A s . s \in A \rightarrow A \Vdash s$.
2. $\forall$ Ast. $(A \Vdash s \rightarrow t) \rightarrow(A \Vdash s) \rightarrow(A \Vdash t)$.
3. $\forall$ As. $(A \Vdash \perp) \rightarrow(A \Vdash s)$.

Proof Functions (1) and (2) are exactly $\mathrm{H}_{\mathrm{A}}^{\Perp}$ and $\mathrm{H}_{\mathrm{MP}}^{\vdash}$. Function (3) can be obtained with $\mathrm{H}_{\perp}^{\Vdash}$ and $\mathrm{H}_{\mathrm{MP}}^{\Vdash}$.

The translation function for $I_{\rightarrow}$ needs several auxiliary functions.
Fact 25.8.4 (Operational versions of $K$ and $S$ )

1. $\forall$ Asu. $(A \Vdash u) \rightarrow(A \Vdash s \rightarrow u)$.
2. $\forall$ Astu. $(A \Vdash s \rightarrow t \rightarrow u) \rightarrow(A \Vdash s \rightarrow t) \rightarrow(A \Vdash s \rightarrow u)$.

Proof (1) follows with $\mathrm{H}_{\mathrm{K}}^{\Vdash}$ and $\mathrm{H}_{\mathrm{MP}}^{\Vdash-}$. (2) follows with $\mathrm{H}_{\mathrm{S}}^{\Vdash}$ and $\mathrm{H}_{\mathrm{MP}}^{\Vdash}$.
Fact 25.8.5 (Identity) $\forall A s . A \Vdash s \rightarrow s$.
Proof Follows with the operational version of S (with $s:=s, t:=s \rightarrow s$, and $u:=s$ ) using $\mathrm{H}_{\mathrm{K}}^{\Vdash}$ for both premises.

The next fact is the heart of the translation of ND derivations into Hilbert derivations. It is well-known in the literature under the name deduction theorem.
Fact 25.8.6 (Simulation function for $\left.\mathrm{I}_{\rightarrow}\right) \quad \forall$ Ast. $(A, s \Vdash t) \rightarrow(A \Vdash s \rightarrow t)$.
Proof By induction on the derivation $A, s \Vdash t$ (the context argument of $\Vdash$ is a uniform parameter).

- $\mathrm{H}_{\mathrm{A}}^{\Perp}$. If $s=t$, the claim follows with Fact 25.8.5. If $t \in A$, the claim follows with $\mathrm{H}_{\mathrm{A}}^{\Perp}$ and the operational version of $K$ (Fact 25.8.4(1)). The case distinction is possible since equality of formulas is decidable.
- $\mathrm{H}_{\mathrm{MP}}^{\vdash}$. Follows with the operational version of S (Fact 25.8.4(2)) and the inductive hypotheses.
- $H_{\mathrm{K}}^{\Vdash}, \mathrm{H}_{\mathrm{S}}^{\Vdash}, \mathrm{H}_{\perp}^{\Perp}$. The axiomatic cases follow with the operational version of K (Fact 25.8.4(1)) and $H_{K}^{\Vdash}, H_{S}^{\Vdash}, H_{\perp}^{\Perp}$, rspectively.

Fact 25.8.7 (Completeness for ND) $(A \vdash s) \rightarrow(A \Vdash s)$.
Proof By induction on the derivation of $A \vdash s$ using Facts 25.8.3 and 25.8.6.
Theorem 25.8.8 (Agreement) $\mathcal{H}(s) \Leftrightarrow \vdash s$.
Proof Follows with Facts 25.8.1, 25.8.7, and 25.8.2.
Exercise 25.8.9 Show $(A \Vdash s) \Leftrightarrow(A \vdash s)$.
Exercise 25.8.10 Extend the development of this section to formulas with conjunctions and disjunctions. Add the axiomatic rules shown at the beginning of $\S 25.8$.

Exercise 25.8.11 Define a classical Hilbert system and show its equivalence with the classical ND system. Do this by replacing the axiomatic rule for $\perp$ with an axiomatic rule providing the double negation law $\neg \neg s \rightarrow s$.

### 25.9 Heyting Evaluation

The proof techniques we have seen so far do not suffice to show negative results about the intuitionistic ND system. By a negative result we mean a proof saying that a certain derivation type is empty, for instance,

$$
\forall \perp \quad \forall x \quad \forall(\neg \neg x \rightarrow x)
$$

(we write $\nvdash s$ for the proposition $([] \vdash s) \rightarrow \perp$ ). Speaking informally, the above propositions say that falsity, atomic formulas, and the double negation law for atomic formulas are not intuitionistically derivable.

A powerful technique for showing negative results is evaluation of formulas into a finite and ordered domain of so-called truth values. Things are arranged such that all derivable formulas evaluate under all assignments to the largest truth value. ${ }^{3}$ A formula can then be established as underivable by presenting an assignment under which the formula evaluates to a different truth value.

Evaluation into the boolean domain $0<1$ is well-known and suffices to disprove $\vdash \perp$ and $\vdash x$. To disprove $\vdash(\neg \neg x \rightarrow x)$, we need to switch to a three-valued domain $0<1<2$. Using the order of the truth values, we interpret conjunction as minimum and disjunction as maximum. Falsity is interpreted as the least truth value (i.e., 0). Implication of truth values is interpreted as a comparison that in the positive case yields the greatest truth value 2 and in the negative case yields the second argument:

$$
\operatorname{imp} a b:=\operatorname{IF} a \leq b \text { THEN } 2 \text { ELSE } b
$$

Note that the given order-theoretic interpretations of the logical constants agree with the familiar boolean interpretations for the two-valued domain $0<1$. The order-theoretic evaluation of formulas originated around 1930 with the work of Arend Heyting.

We represent our domain of truth values $0<1<2$ with an inductive type V and the order of truth values with a boolean function $a \leq b$. As a matter of convenience, we write the numbers $0,1,2$ for the value constructors of V . An assignment is a function $\alpha: \mathrm{N} \rightarrow \mathrm{V}$. We define evaluation of formulas $\mathcal{E} \alpha s$ as follows:

$$
\begin{aligned}
\mathcal{E}:(\mathrm{N} \rightarrow \mathrm{~V}) & \rightarrow \text { For } \rightarrow \mathrm{V} \\
\mathcal{E} \alpha x & :=\alpha x \\
\mathcal{E} \alpha \perp & :=0 \\
\mathcal{E} \alpha(s \rightarrow t) & :=\operatorname{IF} \mathcal{E} \alpha s \leq \mathcal{E} \alpha t \text { THEN } 2 \text { ELSE } \mathcal{E} \alpha t \\
\mathcal{E} \alpha(s \wedge t) & :=\text { IF } \mathcal{E} \alpha s \leq \mathcal{E} \alpha t \text { THEN } \mathcal{E} \alpha s \text { ELSE } \mathcal{E} \alpha t \\
\mathcal{E} \alpha(s \vee t) & :=\operatorname{IF} \mathcal{E} \alpha s \leq \mathcal{E} \alpha t \text { THEN } \mathcal{E} \alpha t \text { ELSE } \mathcal{E} \alpha s
\end{aligned}
$$

[^14]Note that conjunction is interpreted as minimum, disjunction is interpreted as maximum, and implications is interpreted as described above.

We will show that all formulas derivable in the Hilbert system $\mathcal{H}$ defined in $\$ 25.8$ evaluate under all assignments to the largest truth value 2 :

$$
\forall \alpha s . \mathcal{H}(s) \rightarrow \mathcal{E} \alpha s=2
$$

For the proof we fix an assignment $\alpha$ and say that a formula $s$ is true if $\mathcal{E} \alpha s=2$. Next we verify that the conclusions of all axiomatic rules (see §25.8) are true, which follows by case analysis on the truth values $\mathcal{E} \alpha s, \mathcal{E} \alpha t$, and $\mathcal{E} \alpha u$. It remains to show that modus ponens derives true formulas from true formulas, which again follows by case analysis on the truth values $\mathcal{E} \alpha s$ and $\mathcal{E} \alpha t$.

Fact 25.9.1 (Soundness) $\forall \alpha s . \mathcal{H}(s) \rightarrow \mathcal{E} \alpha s=2$.
Proof By induction on the derivation $\mathcal{H}(s)$. The cases for the axiomatic rules follow by case analysis on the truth values $\mathcal{E} \alpha s, \mathfrak{E} \alpha t$, and $\mathcal{E} \alpha u$. The case for modus ponens follows by the inductive hypotheses and case analysis on the truth values $\mathcal{E} \alpha s$ and $\mathcal{E} \alpha t$.

Corollary 25.9.2 (Soundness) $\vdash s \rightarrow \mathcal{E} \alpha s=2$.
Proof Fact 25.9.1 and Theorem 25.8.8.
With our definitions we have the computational equalities

$$
\begin{aligned}
\mathcal{E}\left(\lambda_{-} .1\right) \perp & =0 \\
\mathcal{E}\left(\lambda_{.} .1\right) x & =1 \\
\mathcal{E}\left(\lambda_{-} .1\right)(\neg x) & =0 \\
\mathcal{E}\left(\lambda_{-} .1\right)(\neg \neg x) & =2 \\
\mathcal{E}\left(\lambda_{-.} 1\right)(\neg \neg x \rightarrow x) & =1
\end{aligned}
$$

Thus, with soundness, we can now disprove $\vdash \perp, \vdash x$, and $\vdash(\neg \neg x \rightarrow x)$.
A formula $s$ is independent in $\vdash$ if one can prove both $(\vdash s) \rightarrow \perp$ and $(\vdash \neg s) \rightarrow \perp$.

Corollary 25.9.3 (Independence) $x, \neg \neg x \rightarrow x$ and $x \vee \neg x$ are independent in $\vdash$.
Proof Follows with Corollary 25.9.2 and the assignment $\lambda_{-}$. 1 .
Corollary 25.9.4 (Consistency) $\vdash \perp$ and $\downarrow \perp$.
Proof Intuitionistic consistency follows with Corollary 25.9.2 and the assignment $\lambda_{\text {_ }}$. . Classic consistency follows with equiconsistency (Corollary 25.7.5).

Exercise 25.9.5 Show that $x, \neg x$, and $(x \rightarrow y) \rightarrow x) \rightarrow x$ are independent in $\vdash$.
Exercise 25.9.6 Show $\neg \forall s .((\vdash(\neg \neg s \rightarrow s)) \rightarrow \perp)$.
Exercise 25.9.7 Show that classical ND is not sound for the Heyting interpretation: $\neg(\forall \alpha s . \dot{\vdash} s \rightarrow \mathcal{E} \alpha s=2)$.

Exercise 25.9.8 Disprove $\dot{\vdash} x$ and $\vdash \neg x$.

Exercise 25.9.9 Disprove $\dot{\vdash}(s \vee t) \Leftrightarrow \dot{\vdash} s \vee A \vdash t$.
Exercise 25.9.10 (Heyting interpretation for ND system) One can define evaluation of contexts such that $(A \vdash s) \rightarrow \mathcal{E} \alpha A \leq \mathcal{E} \alpha s$ and $\mathcal{E} \alpha[]=2$.
a) Define evaluation of contexts as specified.
b) Show $\mathcal{E} \alpha A \leq \mathcal{E} \alpha s \rightarrow A=[] \rightarrow \mathcal{E} \alpha s=2$.
c) Prove $(A \vdash s) \rightarrow \mathcal{E} \alpha A \leq \mathcal{E} \alpha s$ by induction on $A \vdash s$.

Hint: Define evaluation of contexts such that contexts may be seen as conjunctions of formulas.

Exercise 25.9.11 (Diamond Heyting interpretation) The formulas

$$
\begin{gathered}
\neg x \vee \neg \neg x \\
(x \rightarrow y) \vee(y \rightarrow x)
\end{gathered}
$$

evaluate in our Heyting interpretation to 2 but are unprovable intuitionistically. They can be shown unprovable with a 4 -valued diamond-ordered

$$
\perp<a, b<\top
$$

Heyting interpretation as follows:

- $x \wedge y$ is the infimum of $x$ and $y$.
- $\quad x \vee y$ is the supremum of $x$ and $y$.
- $x \rightarrow y$ is the maximal $z$ such that $x \wedge z \leq y$.
a) Verify $(\neg a \vee \neg \neg a)=\perp$
b) Verify $((a \rightarrow b) \vee(b \rightarrow a))=\perp$.
c) Prove $\mathcal{H}(s) \rightarrow \mathcal{E} \alpha s=\mathrm{T}$.

To know more, google Heyting algebras.

### 25.10 Boolean Evaluation

We define boolean evaluation of formulas following familiar ideas:

$$
\begin{aligned}
\mathcal{E}:(\mathrm{N} \rightarrow \mathrm{~B}) & \rightarrow \text { For } \rightarrow \mathrm{B} \\
\mathcal{E} \alpha x & :=\alpha x \\
\mathcal{E} \alpha \perp & :=\text { false } \\
\mathcal{E} \alpha(s \rightarrow t) & :=\text { IF } \mathcal{E} \alpha s \text { THEN } \mathcal{E} \alpha t \text { ELSE true } \\
\mathcal{E} \alpha(s \wedge t) & :=\text { IF } \mathcal{E} \alpha s \text { THEN } \mathcal{E} \alpha t \text { ELSE false } \\
\mathcal{E} \alpha(s \vee t) & :=\text { IF } \mathcal{E} \alpha s \text { THEN true ELSE } \mathcal{E} \alpha t
\end{aligned}
$$

We call functions $\alpha: \mathrm{N} \rightarrow \mathrm{B}$ boolean assignments.
Boolean evaluation may be seen as a special Heyting evaluation with only two truth values false < true.

We define

| sat $\alpha s$ | $:=\mathcal{E} \alpha s$ |  | $\alpha$ satisfies $s$ |
| ---: | :--- | ---: | :--- |
| sat $\alpha A$ | $:=\forall s \in A$. sat $\alpha s$ |  | $\alpha$ satisfies $A$ |
| sat $A$ | $:=\Sigma \alpha$. sat $\alpha A$ |  | $A$ is satisfiable |

It will be convenient to use the word clause for lists of formulas. It is well known that boolean satisfiability of clauses is decidable. There exist various practical tools for deciding boolean satisfiability. We will develop a certifying decider $\forall A . \mathcal{D}$ (sat $A$ ) for satisfiability and refine it into a certifying decider $\forall A s . \mathcal{D}(A \dot{\vdash} s)$ for classical ND.

### 25.11 Boolean Formula Decomposition

Our decider $\forall A . \mathcal{D}$ (sat $A$ ) for boolean satisfiability will be based on boolean formula decomposition. We describe boolean formula decomposition with the decomposition table in Figure 25.5. One way to read the table is saying that a boolean assignment satisfies the formula on the left if and only if it satisfies both or one of

| $\neg \perp$ | nothing |
| ---: | :--- |
| $s \wedge t$ | $s$ and $t$ |
| $\neg(s \wedge t)$ | $\neg s$ or $\neg t$ |
| $s \vee t$ | $s$ or $t$ |
| $\neg(s \vee t)$ | $\neg s$ and $\neg t$ |
| $s \rightarrow t$ | $\neg s$ or $t$ |
| $\neg(s \rightarrow t)$ | $s$ and $\neg t$ |

Figure 25.5: Boolean decomposition table
the possibly negated subformulas on the right. Formally we have the equivalences

$$
\begin{aligned}
\mathcal{E} \alpha(s \wedge t) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(s)=\text { true } \wedge \mathcal{E} \alpha(t)=\text { true } \\
\mathcal{E} \alpha(\neg(s \wedge t)) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(\neg s)=\text { true } \vee \mathcal{E} \alpha(\neg t)=\text { true } \\
\mathcal{E} \alpha(s \vee t) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(s)=\text { true } \vee \mathcal{E} \alpha(t)=\text { true } \\
\mathcal{E} \alpha(\neg(s \vee t)) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(\neg s)=\text { true } \wedge \mathcal{E} \alpha(\neg t)=\text { true } \\
\mathcal{E} \alpha(s \rightarrow t) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(\neg s)=\text { true } \vee \mathcal{E} \alpha(t)=\text { true } \\
\mathcal{E} \alpha(\neg(s \rightarrow t)) & =\text { true } \longleftrightarrow \mathcal{E} \alpha(s)=\text { true } \wedge \mathcal{E} \alpha(\neg t)=\text { true } \\
\mathcal{E} \alpha(\neg \perp) & =\text { true } \longleftrightarrow \mathrm{T}
\end{aligned}
$$

for all boolean assignment $\alpha$. The equivalences follow with the de Morgan laws

$$
\begin{aligned}
& \mathcal{E} \alpha(\neg(s \wedge t))=\mathcal{E} \alpha(\neg s \vee \neg t) \\
& \mathcal{E} \alpha(\neg(s \vee t))=\mathcal{E} \alpha(\neg s \wedge \neg t)
\end{aligned}
$$

and the implication and double negation laws:

$$
\begin{aligned}
\mathcal{E} \alpha(s \rightarrow t) & =\mathcal{E} \alpha(\neg s \vee t) \\
\mathcal{E} \alpha(\neg \neg s) & =\mathcal{E} \alpha(s)
\end{aligned}
$$

The decomposition table suggests an algorithm that given a list of formulas replaces decomposable formulas with smaller formulas. This way we obtain from an initial list $A$ one or several decomposed lists $A_{1}, \ldots, A_{n}$ containing only formulas of the forms

$$
x, \neg x, \perp
$$

such that an assignment satisfies the initial list $A$ if and only if it satisfies one of the decomposed lists $A_{1}, \ldots, A_{n}$. We may get more than one decomposed list since the
decomposition rules for $\neg(s \wedge t), s \vee t$ and $s \rightarrow t$ are branching (see Figure 25.5). For a decomposed list, we can either construct an assignment satisfying all its formulas, or prove that no such satisfying assignment exists. Put together, this will give us a certifying decider $\forall A . \mathcal{D}$ (sat $A$ ).

We are now facing the challenge to give a formal account of boolean formula decomposition. We do this with two derivation systems $\sigma(A)$ and $\rho(A)$ for clauses shown in Figures 25.6 and 25.7. Like the derivation systems we have seen before, $\sigma(A)$ and $\rho(A)$ can be formalized as inductive type families $\mathcal{L}$ (For) $\rightarrow \mathbb{T}$. We will see that $\sigma$ derives all satisfiable clauses and $\rho$ derives all unsatisfiable clauses. We define the application conditions for the terminal rules as follows:

- solved $A:=\forall s \in A . \Sigma x .(s=x \wedge \neg x \notin A)+(s=(\neg x) \wedge x \notin A)$

Every formula in $A$ is either a variable or a negated variable and there is no clash $x \in A \wedge \neg x \in A$.

- clashed $A:=\perp \in A+\Sigma s . s \in A \wedge(\neg s) \in A$
$A$ contains either $\perp$ or a clash $s \in A \wedge \neg s \in A$.


## Fact 25.11.1 (Solved and clashed clauses)

Solved clauses are satisfiable, and clashed clauses are unsatisfiable and refutable:

1. solved $A \rightarrow$ sat $A$
2. clashed $A \rightarrow$ sat $A \rightarrow \perp$
3. clashed $A \rightarrow(A \dot{\vdash} \perp)$

Proof Straightforward. Exercise.
Except for the terminal rule and the second so-called rotation rule, the derivation rules of both systems correspond to the decomposition schemes in Figure 25.5. The relationship with the decomposition rules becomes clear if one reads the derivation rules backwards from the conclusion to the premises. If a scheme decomposes with an "or", this translates for $\sigma$ to two rules and for $\rho$ to one rule with two premises. The rotation rule (second rule in both systems) makes it possible to move a decomposable formula into head position, as required by the decomposition rules.

The informal design rational for the rules of $\rho$ is as follows: An assignment satisfies the conclusion of the rule if and only if it satisfies one premise of the rule.

## Fact 25.11.2 (Boolean soundness)

$\sigma A \rightarrow$ sat $A$.
Proof By induction on the derivation of $\sigma A$ exploiting that solved clauses are satisfiable, and that for every recursive rule assignments satisfying the premise satisfy the conclusion.

$$
\begin{array}{ccc}
\frac{\operatorname{solved} A}{\sigma(A)} & \frac{\sigma(A+[s])}{\sigma(s:: A)} & \frac{\sigma(A)}{\sigma(\neg \perp:: A)} \\
\frac{\sigma(s:: t:: A)}{\sigma(s \wedge t:: A)} & \frac{\sigma(\neg s:: A)}{\sigma(\neg(s \wedge t):: A)} & \frac{\sigma(\neg t:: A)}{\sigma(\neg(s \wedge t):: A)} \\
\frac{\sigma(s:: A)}{\sigma(s \vee t:: A)} & \frac{\sigma(t:: A)}{\sigma(s \vee t:: A)} & \frac{\sigma(\neg s:: \neg t:: A)}{\sigma(\neg(s \vee t):: A)} \\
\frac{\sigma(\neg s:: A)}{\sigma(s \rightarrow t:: A)} & \frac{\sigma(t:: A)}{\sigma(s \rightarrow t:: A)} & \frac{\sigma(s:: \neg t:: A)}{\sigma(\neg(s \rightarrow t):: A)}
\end{array}
$$

Figure 25.6: Corefutation system $\sigma(A)$

$$
\left.\begin{array}{cc}
\frac{\text { clashed } A}{\rho(A)} & \frac{\rho(A+[s])}{\rho(s:: A)}
\end{array}\right) \frac{\rho(A)}{\rho(\neg \perp:: A)}
$$

Figure 25.7: Refutation system $\rho(A)$

Fact 25.11.3 (Boolean soundness)
$\rho A \rightarrow$ sat $A \rightarrow \perp$.
Proof By induction on the derivation of $\rho A$. As a representative example, we consider the proof obligation for the positive implication rule:

$$
(\operatorname{sat}(\neg s:: A) \rightarrow \perp) \rightarrow(\operatorname{sat}(t:: A) \rightarrow \perp) \rightarrow \operatorname{sat}((s \rightarrow t):: A) \rightarrow \perp
$$

By assumption we have an assignment $\alpha$ satisfying $A$ and $s \rightarrow t$. Thus $\alpha$ satisfies either $\neg s$ or $t$. Hence $\alpha$ satisfies either $\neg s:: A$ or $t:: A$. Both cases are contradictory with the assumptions.

We now observe that $\rho$ is also sound for ND refutation.
Fact 25.11.4 (ND soundness)
$\rho A \rightarrow(A \dot{\vdash} \perp)$.
Proof By induction on the derivation of $\rho A$. As a representative example, we consider the proof obligation for the positive implication rule:

$$
(\neg s:: A \dot{\vdash} \perp) \rightarrow(t:: A \dot{\vdash} \perp) \rightarrow(s \rightarrow t:: A \dot{\vdash} \perp)
$$

By the implication lemma (Fact 25.5.2). it suffices to show $\dot{\vdash} \neg \neg s \rightarrow \neg t \rightarrow \neg(s \rightarrow t)$, which is routine.

Exercise 25.11.5 Define the derivation systems $\sigma$ and $\rho$ as inductive type families and say whether the arguments are parameters or an indices.

Exercise 25.11.6 Verify the proof of ND soundness (Lemma 25.11.4) in detail. The proof is modular in that there is a separate proof obligation for every rule of the refutation systems (Figure 25.7). The obligation for the rotation rule

$$
(A+[s] \vdash \perp) \rightarrow(s:: A \vdash \perp)
$$

follows with weakening, and the obligations for the terminal rules are obvious. The obligations for the decomposition rules follow with the implication lemma (Fact 25.5.2) and the derivability of the ND judgments from Exercise 25.5.8.

### 25.12 Certifying Boolean Solvers

We now construct a certifying solver $\forall A$. $\sigma(A)+\rho(A)$. Given the soundness theorems for $\sigma$ and $\rho$, this solver yields certifying solvers $\forall A . \mathcal{D}$ (sat $A$ ) and $\forall A$. sat $A+(A \dot{\vdash} \perp)$. The main issue in constructing the basic solver $\forall A$. $\sigma(A)+\rho(A)$ is finding a terminating strategy for formula decomposition.

We start with a presolver $\forall A$. decomposable $(A)+\operatorname{solved}(A)+\operatorname{clashed}(A)$ that given a clause $A$ either exhibits a decomposable formula in $A$ or established $A$ as solved or clashed. A formula is decomposable if it has the form $s \wedge t, \neg(s \wedge t)$, $s \vee t, \neg(s \vee t), s \rightarrow t$ with $t \neq \perp$, or $\neg(s \rightarrow t)$. A clause is decomposable if it contains a decomposable formula:

$$
\text { decomposable }(A):=\Sigma B s C . A=B+s:: C \wedge \text { decomposable }(s)
$$

## Lemma 25.12.1 (Presolver)

$\forall A$. decomposable $(A)+\operatorname{solved}(A)+\operatorname{clashed}(A)$.

Proof By induction on $A$. Straightforward.
To establish the termination of our decomposition strategy, we employ a size function

$$
\gamma: \mathcal{L}(\text { For }) \rightarrow \mathrm{N}
$$

counting the constructors in the formulas in the list but omitting top-level negations. For instance,

$$
\gamma[(x \rightarrow \neg x), \neg(\neg x \wedge x), \neg x]=11
$$

Note that $\neg x$ counts 1 if appearing at the top level, but 3 if not appearing at the top level (since $\neg x$ abbreviates $x \rightarrow \perp$ ). We observe that every scheme in the decomposition table (Figure 25.5) reduces the size of a clause as obtained with $\gamma$.

Next we obtain a certifying function rotating a given formula in a clause to the front of the clause such that derivability with $\sigma$ and $\tau$ is propagated and the size of the clause is preserved.

## Lemma 25.12.2 (Rotator)

$$
\begin{aligned}
\forall A s B . \Sigma C . & (\sigma(s:: C) \rightarrow \sigma(A+s:: B)) \times \\
& (\rho(s:: C) \rightarrow \rho(A+s:: B)) \times \\
& (\gamma(s:: C)=\gamma(A+s:: B)) .
\end{aligned}
$$

Proof By induction on $A$ using the rotation rules of $\sigma$ and $\rho$.
Lemma 25.12.3 (Basic certifying solver)
$\forall$ A. $\sigma(A)+\rho(A)$.
Proof By size induction on $A$. We first apply the presolver to $A$. If the presolver yields the claim using the terminal rules, we are done. Otherwise, we use the rotator to move the decomposable formula found by the presolver into head position. We now recurse following the unique decomposition scheme applying.

We now come to the theorem we were aiming at in this and the previous section.

Theorem 25.12.4 (ND solver) $\forall A$. sat $A+(A \vdash \dot{\vdash} \perp)$.
Proof Lemma 25.12.3 and soundness theorems.
Exercise 25.12.5 (Decidability of satisfiability)
Prove the following facts.
a) $\forall A \cdot \sigma(A) \Leftrightarrow \operatorname{sat}(A)$
b) $\forall A \cdot \rho(A) \Leftrightarrow(\operatorname{sat}(A) \rightarrow \perp)$
c) $\forall A \cdot \mathcal{D}(\sigma(A))$
d) $\forall A \cdot \mathcal{D}(\rho(A))$
e) $\forall A \cdot \mathcal{D}(\operatorname{sat}(A))$.

Exercise 25.12.6 From our development it is clear that a solver $\forall A$. sat $A+(A \dot{\vdash} \perp)$ can be constructed without making the derivation systems $\sigma$ and $\rho$ and the accompanying soundness lemmas explicit. Try to rewrite the existing Coq development accordingly. This will lead to a shorter (as it comes to lines of code) but less transparent proof.

### 25.13 Boolean Entailment

We define boolean entailment as follows:

$$
A \dot{=} s:=\forall \alpha \text {. sat } \alpha A \rightarrow \text { sat } \alpha s
$$

Boolean entailment describes the boolean consequence relation commonly used in mathematics. We will show that classical ND agrees with boolean entailment.

Fact 25.13.1 (ND soundness) $(A \dot{\vdash} s) \rightarrow(A \dot{\models} s)$.
Proof By induction on the derivation $A \dot{\vdash} s$.

Fact 25.13.2 (ND completeness) $(A \dot{\models} s) \rightarrow(A \vdash s)$.
Proof We assume $A \dot{\ominus} s$. Using the ND solver (Theorem 25.12.4), we have $\operatorname{sat}(\neg s:: A)+(\neg s:: A \vdash \perp)$. If $\neg s:: A \vdash \perp$, the claim follows with the contradiction rule. If sat $(\neg s:: A)$, we have a contradiction with $A \dot{\ominus}$.

Corollary 25.13.3 Boolean entailment $A \risingdotseq s$ and classical ND $A \dot{\vdash} s$ agree.

Note that the proofs of the two directions of the agreement $(A \dot{\vdash} s) \Leftrightarrow(A \dot{\models} s)$ are independent, and that only the completeness direction requires the ND solver.

Next we observe that boolean entailment reduces to unsatisfiability.

Fact 25.13.4 (Reduction to unsatisfiability)
$(A \dot{\ominus} s) \Leftrightarrow(\operatorname{sat}(\neg s:: A) \rightarrow \perp)$.
Proof Direction $\rightarrow$ is easy. For the other direction we assume sat $(\neg s:: A) \rightarrow \perp$ and sat $\alpha A$ and show $\mathcal{E} \alpha s=$ true. We now assume $\mathcal{E} \alpha s=$ false and obtain a contradiction from our assumptions since $\mathcal{E} \alpha(\neg s)=$ true.

Fact 25.13.5 (ND decidability) $\forall A s . \mathcal{D}(A \dot{\vdash} s)$.
Proof With the ND solver (Theorem 25.12.4) we obtain sat( $\neg s:: A)+(\neg s:: A \vdash \perp)$. If $\neg s:: A \vdash \perp$, we have $A \vdash s$ by the contradiction rule. Otherwise, we assume $\operatorname{sat}(\neg s:: A)$ and $A \vdash s$ and obtain a contradiction with soundness (Fact 25.13.1) and Fact 25.13.4.

Exercise 25.13.6 Note that the results in this section did not use results from the previous two sections except for the ND solver (Theorem 25.12.4). Prove the following facts using the results from this section and possibly the ND solver.
a) $\forall A s . \mathcal{D}(A \dot{=} s)$
b) $\forall A \cdot \mathcal{D}$ (sat $A)$
c) $\forall A$. sat $A \Leftrightarrow((A \dot{\vdash} \perp) \rightarrow \perp)$

Exercise 25.13.7 Give a consistency proof for classical ND that does not make use of intuitionistic ND.

Exercise 25.13.8 Show that $x$ and $\neg x$ are independent in $\dot{\vdash}$.
Exercise 25.13.9 Show that $\neg \neg \neg x$ is independent in $\dot{\vdash}$.
Exercise 25.13.10 Show $(\forall s t . \dot{\vdash}(s \vee t) \rightarrow(\dot{\vdash} s) \vee(\dot{\vdash} t)) \rightarrow \perp$.

### 25.14 Cumulative Refutation System

Refutation systems based on formula decomposition exist in many variations in the literature, where they often appear under the names tableaux systems and Gentzen systems. They also exist for intuitionistic provability and modal logic. See Troelstra's and Schwichtenberg's textbook [27] to know more.

Figure 25.8 shows a refutation system $\gamma$ modifying our refutation system $\rho$ so that the formula to be decomposed can be at any position of the list and is not deleted when it is decomposed. Hence no rotation rule is needed.

We speak of the cumulative refutation system. When realized with an inductive type family, the argument $A$ of the type constructor $\gamma$ comes out as a nonuniform

$$
\begin{aligned}
& \frac{\perp \in A}{\gamma(A)} \quad \frac{s \in A \quad \neg s \in A}{\gamma(A)} \\
& \frac{(s \wedge t) \in A \quad \gamma(s:: t:: A)}{\gamma(A)} \quad \frac{\neg(s \wedge t) \in A \quad \gamma(\neg s:: A)}{\gamma(A)} \\
& \frac{(s \vee t) \in A \quad \gamma(s:: A) \quad \gamma(t:: A)}{\gamma(A)} \quad \frac{\neg(s \vee t) \in A \quad \gamma(\neg s:: \neg t:: A)}{\gamma(A)} \\
& \frac{(s \rightarrow t) \in A \quad \gamma(\neg s:: A) \quad \gamma(t:: A)}{\gamma(A)} \quad \frac{\neg(s \rightarrow t) \in A \quad \gamma(s:: \neg t:: A)}{\gamma(A)}
\end{aligned}
$$

Figure 25.8: Cumulative refutation system
parameter. So, in contrast to the derivation systems we considered before, the inductive type family $\gamma(A)$ has no index argument and thus belongs to the BNF class of inductive types.

Fact 25.14.1 (Boolean soundness)
$\gamma(A) \rightarrow \exists s \in A . \mathcal{E} \alpha s=$ false.
Proof By induction on the derivation $\gamma(A)$. Similar to the proof of Fact 25.11.3.
Fact 25.14.2 (Weakening)
$\gamma(A) \rightarrow A \subseteq B \rightarrow \gamma(B)$.
Proof By induction on $\gamma(A)$ with $B$ quantified.
Fact 25.14.3 (Completeness)
$\rho(A) \rightarrow \gamma(A)$.
Proof Straightforward using weakening.
Fact 25.14.4 (Agreement)
$\rho(A) \Leftrightarrow \gamma(A)$.
Proof Completeness (Fact 25.14.3), certifying boolean solver for $\rho$ (Theorem 25.12.3), and boolean soundness (Fact 25.14.1).

The rules of the cumulative refutation system yield a method for refuting formulas working well with pen and paper. We demonstrate the method at the example of the unsatisfiable formula $\neg(((s \rightarrow t) \rightarrow s) \rightarrow s)$.

|  | $\neg(((s \rightarrow t) \rightarrow s) \rightarrow s)$ | negated implication |
| ---: | ---: | :--- |
|  | $(s \rightarrow t) \rightarrow s$ | positive implication |
|  | $\neg s$ |  |
| 1 | $\neg(s \rightarrow t)$ | negative implication |
|  | $s$ | clash with $\neg s$ |
| 2 | $\neg t$ |  |
|  | $s$ | clash with $\neg s$ |

Exercise 25.14.5 Refute the negations of the following formulas with the cumulative refutation system writing a table as in the example above.
a) $s \vee \neg s$
b) $s \rightarrow \neg \neg s$
c) $\vdash \neg \neg s \rightarrow \neg t \rightarrow \neg(s \rightarrow t)$
d) $\vdash(\neg t \rightarrow \neg s) \rightarrow \neg \neg(s \rightarrow t)$
e) $\vdash(t \rightarrow \neg s) \rightarrow \neg(s \wedge t)$
f) $\vdash \neg \neg s \rightarrow \neg \neg t \rightarrow \neg \neg(s \wedge t)$
g) $\vdash \neg s \rightarrow \neg t \rightarrow \neg(s \vee t)$
h) $\vdash(\neg t \rightarrow \neg \neg s) \rightarrow \neg \neg(s \vee t)$

Exercise 25.14.6 (Saturated lists) A list $A$ is saturated if the decomposition rules of the cumulative refutation system do not add new formulas:

1. If $(s \wedge t) \in A$, then $s \in A$ and $t \in A$.
2. If $\neg(s \wedge t) \in A$, then $\neg s \in A$ or $\neg t \in A$.
3. If $(s \vee t) \in A$, then $s \in A$ or $t \in A$.
4. If $\neg(s \vee t) \in A$, then $\neg s \in A$ and $\neg t \in A$.
5. If $(s \rightarrow t) \in A$, then $\neg s \in A$ or $t \in A$.
6. If $\neg(s \rightarrow t) \in A$, then $s \in A$ and $\neg t \in A$.

Prove that an assignment $\alpha$ satisfies a saturated list $A$ not containing $\perp$ if it satisfies all atomic formulas ( $x$ and $\neg x$ ) in $A$.
Hint: Prove

$$
\forall s .(s \in A \rightarrow \mathcal{E} \alpha s=\text { true }) \wedge(\neg s \in A \rightarrow \mathcal{E} \alpha(\neg s)=\text { true })
$$

by induction on $s$.

### 25.15 Substitution

In the deduction systems we consider in this chapter, atomic formulas act as variables for formulas. We will now show that derivability of formulas is preserved if one instantiates atomic formulas. To ease our language, we call atomic formulas propositional variables in this section.

A substitution is a function $\theta: \mathrm{N} \rightarrow$ For mapping every number to a formula. Recall that propositional variables are represented as numbers. We define application of substitutions to formulas and lists of formulas such that every variable is
replaced by the term provided by the substitution:

$$
\begin{aligned}
\theta \cdot x & :=\theta x \\
\theta \cdot \perp & :=\perp \\
\theta \cdot(s \rightarrow t) & :=\theta \cdot s \rightarrow \theta \cdot t \\
\theta \cdot(s \wedge t) & :=\theta \cdot s \wedge \theta \cdot t \\
\theta \cdot(s \vee t) & :=\theta \cdot s \vee \theta \cdot t \\
\theta \cdot \square & :=\square \\
\theta \cdot(s:: A) & :=\theta \cdot s:: \theta \cdot A
\end{aligned}
$$

We will write $\theta s$ and $\theta A$ for $\theta \cdot s$ and $\theta \cdot A$.
We show that intuitionistic and classical ND provability are preserved under application of substitutions. This says that atomic formulas may serve as variables for formulas.

Fact 25.15.1 $s \in A \rightarrow \theta s \in \theta A$.
Proof By induction on $A$.
Fact 25.15.2 (Substitutivity) $A \vdash s \rightarrow \theta A \vdash \theta s$ and $A \vdash s \rightarrow \theta A \vdash \theta s$.
Proof By induction on $A \vdash s$ and $A \vdash s$ using Fact 25.15.1 for the assumption rule.■
Exercise 25.15.3 Prove that substitution preserves derivability in the intuitionistic Hilbert system $\mathcal{H}$. Note that the proof obligation for the axiomatic rules all follow with the same technique. Now use the equivalence with the ND system and Glivenko to show substitutivity for the other three systems.

### 25.16 Entailment Relations

An entailment relation is a predicate ${ }^{4}$

$$
\|: \mathcal{L}(\text { For }) \rightarrow \text { For } \rightarrow \mathbb{P}
$$

satisfying the properties listed in Figure 25.9. Note that the first five requirements don't make any assumptions on formulas; they are called structural requirements. Each of the remaining requirements concerns a particular form of formulas: Variables, falsity, implication, conjunction, and disjunction.

[^15]
## 25 Propositional Deduction

1. Assumption: $s \in A \rightarrow A \Vdash s$.
2. Cut: $A \Vdash s \rightarrow A, s \Vdash t \rightarrow A \Vdash t$.
3. Weakening: $A \Vdash s \rightarrow A \subseteq B \rightarrow B \Vdash s$.
4. Consistency: $\exists s$. It $s$.
5. Substitutivity: $A \Vdash s \rightarrow \theta A \Vdash \theta s$.
6. Explosion: $A \Vdash \perp \rightarrow A \Vdash s$.
7. Implication: $A \Vdash(s \rightarrow t) \longleftrightarrow A, s \Vdash t$.
8. Conjunction: $A \Vdash(s \wedge t) \longleftrightarrow A \Vdash s \wedge A \Vdash t$.
9. Disjunction: $A \Vdash(s \vee t) \longleftrightarrow \forall u$. $A, s \Vdash u \rightarrow A, t \Vdash u \rightarrow A \Vdash u$.

Figure 25.9: Requirements for entailment relations

Fact 25.16.1 Intuitionistic provability $(A \vdash s)$ and classical provability $(A \vdash s)$ are entailment relations.

Proof Follows with the results shown so far.
Fact 25.16.2 Boolean entailment $A \dot{\models} s$ is an entailment relation.

Proof Follows with Fact 25.16 .1 since boolean entailment agrees with classical ND (Fact 25.13.3).

It turns out that every entailment relation is sandwiched between intuitionistic provability at the bottom and classic provability at the top. Let $\Vdash$ be an entailment relation in the following.

Fact 25.16.3 (Modus Ponens) $A \Vdash(s \rightarrow t) \rightarrow A \Vdash s \rightarrow A \Vdash t$.

Proof By implication and cut.
Fact 25.16.4 (Least entailment relation)
Intuitionistic provability is a least entailment relation: $A \vdash s \rightarrow A \Vdash s$.
Proof By induction on $A \vdash s$ using modus ponens.
Fact 25.16.5 $\Vdash s \rightarrow \Vdash \neg s \rightarrow \perp$.

Proof Let $\Vdash s$ and $\Vdash \neg s$. By Fact 25.16 .3 we have $\Vdash \perp$. By consistency and explosion we obtain a contradiction.

Fact 25.16.6 (Reversion) $A \Vdash s \longleftrightarrow \Vdash A \cdot s$.
Proof By induction on $A$ using implication.

We now come to the key lemma for showing that abstract entailment implies boolean entailment. The lemma was conceived by Tobias Tebbi in 2015. We define a conversion function that given a boolean assignment $\alpha: N \rightarrow B$ yields a substitution as follows: $\hat{\alpha} n:=$ IF $\alpha n$ THEN $\neg \perp$ ELSE $\perp$.

Lemma 25.16.7 (Tebbi) IF $\mathcal{E} \alpha s$ THEN $\Vdash \hat{\alpha} s$ ELSE $\Vdash \neg \hat{\alpha} s$.

Proof Induction on $s$ using Fact 25.16.3 and assumption, weakening, explosion, and implication.

Note that we have formulated the lemma with a conditional. While this style of formulation is uncommon in mathematics, it is compact and convenient in a type theory with computational equality.

Lemma 25.16.8 $\Vdash s \rightarrow \dot{\models} s$.

Proof Let $\Vdash s$. We assume $\mathcal{E} \alpha s=$ false and derive a contradiction. By Tebbi’s Lemma we have $\Vdash \neg \hat{\alpha} s$. By substitutivity we obtain $\Vdash \hat{\alpha} s$ from the primary assumption. Contradiction by Fact 25.16.5.

Fact 25.16.9 (Greatest entailment relation)
Boolean entailment is a greatest entailment relation: $A \Vdash s \rightarrow A \dot{\models} s$.

Proof Follows with reversion (Facts 25.16 .6 and 25.16.2) and Lemma 25.16.8.

Theorem 25.16.10 (Sandwich) Every entailment relation $\Vdash$ satisfies $\vdash \subseteq \Vdash \subseteq \vdash$.

Proof Facts 25.16.4, 25.16.9, and 25.13.3.
Exercise 25.16.11 Let $\Vdash$ be an entailment relation. Prove the following:
a) $\forall s$. ground $s \rightarrow(\Vdash s)+(\Vdash \neg s)$.
b) $\forall s$. ground $s \rightarrow \operatorname{dec}(\Vdash s)$.

Exercise 25.16.12 Tebbi's lemma provides for a particularly elegant proof of Lemma 25.16.8. Verify that Lemma 25.16.8 can also be obtained from the facts (1) $\vdash \hat{\alpha} s \vee \vdash \neg \hat{\alpha} s$ and (2) $\dot{\models} s \rightarrow \mathcal{E} \alpha s=$ true using Facts 25.16.4 and 25.16.5.

### 25.17 Notes

The study of natural deduction originated in the 1930's with the work of Gerhard Gentzen [13, 14] and Stanisław Jaśkowski [18]. The standard text on natural deduction and proof theory is Troelstra and Schwichtenberg [27].

Decidability of intuitionistic ND One can show that intuitionistic ND is decidable. This can be done with a formula decomposition method devised by Gentzen in the 1930s. First one shows that intuitionistic ND is equivalent to a proof system called sequent calculus that has the subformula property. Then one shows that sequent calculus is decidable, which is feasible since it has the subformula property.

Kripke structures and Heyting structures One can construct evaluation-based entailment relations that coincide with intuitionistic ND using either finite Heyting structures or finite Kripke structures. In contrast to classical ND, where a single twovalued boolean structure invalidates all classically unprovable formulas, one needs either infinitely many finite Heyting structures or infinitely many finite Kripke structures to invalidate all intuitionistically unprovable formulas. Heyting structures are usually presented as Heyting algebras and were invented by Arend Heyting around 1930. Kripke structures were invented by Saul Kripke in the late 1950’s.

Intuitionistic Independence of logical constants In the classical systems, falsity and implication can express conjunction and disjunction. On the other hand, one can prove using Heyting structures that in intuitionistic systems the logical constants are independent.

Certifying Functions The construction of the certifying solvers and their auxiliary functions in this chapter are convincing examples for the efficiency and power of certifying functions. Imagine you would have to carry out these constructions in a functional programming language with simply typed functions defined with equations based on informal specifications.

## 26 Boolean Satisfiability

We study satisfiability of boolean formulas by constructing and verifying a DNF solver and a tableau system. The solver translates boolean formulas to equivalent clausal DNFs and thereby decides satisfiability. The tableau system provides a proof system for unsatisfiability and bridges the gap between natural deduction and satisfiability. Based on the tableau system one can prove completeness and decidability of propositional natural deduction.

The development presented here works for any choice of boolean connectives. The independence from particular connectives is obtained by representing conjunctions and disjunctions with lists and negations with signs.

The (formal) proofs of the development are instructive in that they showcast the interplay between evaluation of boolean expressions, nontrivial functions, and indexed inductive type families (the tableau system).

### 26.1 Boolean Operations

We will work with the boolean operations conjunction, disjunction, and negation, which we obtain as inductive functions $\mathrm{B} \rightarrow \mathrm{B} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{B}$ :

$$
\begin{array}{rlrl}
\text { true } \& b:=b & \text { true } \mid b:=\text { true } & & \text { ! true }:=\text { false } \\
\text { false } \& b:=\text { false } & & \text { false } \mid b:=b & \\
\text { ! false }:=\text { true }
\end{array}
$$

With these definitions, boolean identities like

$$
a \& b=b \& a \quad a|b=b| a \quad!!b=b
$$

have straightforward proofs by boolean case analysis and computational equality. Recall that boolean conjunction and disjunction are commutative and associative.

An important notion for our development is disjunctive normal form (DNF). The idea behind DNF is that conjunctions are below disjunctions, and that negations are below conjunctions. Negations can be pushed downwards with the negation laws

$$
!(a \& b)=!a \mid!b \quad!(a \mid b)=!a \&!b \quad!!a=a
$$

and conjunctions can be pushed below disjunctions with the distribution law

$$
a \&(b \mid c)=(a \& b) \mid(a \& b)
$$

Besides the defining equations, we will also make use of the negation law

$$
b \wedge!b=\text { false }
$$

to eliminate conjunctions.
There are the reflection laws

$$
\begin{aligned}
a \& b & =\text { true } \longleftrightarrow a=\text { true } \wedge b=\text { true } \\
a \mid b & =\text { true } \longleftrightarrow a=\text { true } \vee b=\text { true } \\
!a & =\text { true } \longleftrightarrow \neg(a=\text { true })
\end{aligned}
$$

which offer the possibility to replace boolean operations with logical connectives. As it comes to proofs, this is usually not a good idea since the computation rules coming with the boolean operations are lost. The exception is the reflection rule for conjunctions, which offers the possibility to replace the argument terms of a conjunction with true.

### 26.2 Boolean Formulas

Our main interest will be in boolean formulas, which are syntactic representations of boolean terms. We will consider the boolean formulas

$$
s, t, u: \text { For }::=x|\perp| s \rightarrow t|s \wedge t| s \vee t \quad(x: \mathrm{N})
$$

realized with an inductive data type For representing each syntactic form with a value constructor. Variables $x$ are represented as numbers. We will refer to formulas also as boolean expressions.

Our development would work with any choice of boolean connectives for formulas. We have made the unusual design decision to have boolean implication as an explicit connective. On the other hand, we have omitted truth $T$ and negation $\neg$, which we accommodate at the meta level with the notations

$$
\top:=\perp \rightarrow \perp \quad \neg s:=s \rightarrow \perp
$$

Given an assignment $\alpha: N \rightarrow B$, we can evaluate every formula to a boolean value. We formalize evaluation of formulas with the evaluation function shown in Figure 26.1. Note that every function $\mathcal{E} \alpha$ translates boolean formulas (object level) to boolean terms (meta level). Also note that implications are expressed with negation and disjunction.

We define the notation

$$
\alpha \text { sats }:=\mathcal{E} \alpha s=\text { true }
$$

$$
\begin{aligned}
\mathcal{E} \alpha x & :=\alpha x \\
\mathcal{E} \alpha \perp & :=\text { false } \\
\mathcal{E} \alpha(s \rightarrow t) & :=!\mathcal{E} \alpha s \mid \mathcal{E} \alpha t \\
\mathcal{E} \alpha(s \wedge t) & :=\mathcal{E} \alpha s \& \mathcal{E} \alpha t \\
\mathcal{E} \alpha(s \vee t) & :=\mathcal{E} \alpha s \mid \mathcal{E} \alpha t
\end{aligned}
$$

Figure 26.1: Definition of the evaluation function $\mathcal{E}:(N \rightarrow B) \rightarrow$ For $\rightarrow B$
and say that $\alpha$ satisfies $s$, or that $\alpha$ solves $s$, or that $\alpha$ is a solution of $s$. We say that a formula $s$ is satisfiable and write sat $s$ if $s$ has a solution. Finally, we say that two formulas are equivalent if they have the same solutions.

As it comes to proofs, it will be important to keep in mind that the notation $\alpha$ sats abbreviates the boolean equation $\mathcal{E} \alpha s=$ true. Reasoning with boolean equations will be the main workhorse in our proofs.

Exercise 26.2.1 Prove that $s \rightarrow t$ and $\neg s \vee t$ are equivalent.
Exercise 26.2.2 Convince yourself that the predicate $\alpha$ sats is decidable.
Exercise 26.2.3 Verify the following reflection laws for formulas:

$$
\begin{aligned}
\alpha \operatorname{sat}(s \wedge t) & \longleftrightarrow \alpha \operatorname{sat} s \wedge \alpha \mathrm{sat} t \\
\alpha \operatorname{sat}(s \vee t) & \longleftrightarrow \alpha \operatorname{sat} s \vee \alpha \mathrm{sat} t \\
\alpha \mathrm{sat} \neg s & \longleftrightarrow \neg(\alpha \mathrm{sat})
\end{aligned}
$$

Exercise 26.2.4 (Compiler to implicative fragment) Write and verify a compiler For $\rightarrow$ For translating formulas into equivalent formulas not containing conjunctions and disjunctions.

Exercise 26.2.5 (Equation compiler) Write and verify a compiler

$$
\gamma: \mathcal{L}(\text { For } \times \text { For }) \rightarrow \text { For }
$$

translating lists of equations into equivalent formulas:

$$
\forall \alpha . \alpha \text { saty } A \longleftrightarrow \forall(s, t) \in A . \mathcal{E} \alpha s=\mathcal{E} \alpha t
$$

Exercise 26.2.6 (Valid formulas) We say that a formula is valid if it is satisfied by all assignments: val $s:=\forall \alpha$. $\alpha$ sats. Verify the following reductions.
a) $s$ is valid iff $\neg s$ is unsatisfiable: $\forall s$. val $s \longleftrightarrow \neg \operatorname{sat}(\neg s)$.
b) $\forall s$. stable $($ sat $s) \rightarrow($ sat $s \longleftrightarrow \neg \operatorname{val}(\neg s))$.

Exercise 26.2.7 Write an evaluator $f:(\mathrm{N} \rightarrow \mathrm{B}) \rightarrow$ For $\rightarrow \mathbb{P}$ such that $f \alpha s \longleftrightarrow \alpha$ sats and $f \alpha(s \vee t) \approx f \alpha s \vee f \alpha t$ for all formulas $s, t$. Hint: Recall the reflection laws from §26.1.

### 26.3 Clausal DNFs

We are working towards a decider for satisfiability of boolean formulas. The decider will compute a $D N F$ (disjunctive normal form) for the given formula and exploit that from the DNF it is clear whether the formula is decidable. Informally, a DNF is either the formula $\perp$ or a disjunction $s_{1} \vee \cdots \vee s_{n}$ of solved formulas $s_{i}$, where a solved formula is a conjunction of variables and negated variables such that no variable appears both negated and unnegated. One can show that every formula is equivalent to a DNF. Since every solved formula is satisfiable, a DNF is satisfiable if and only if it is different from $\perp$.

There may be many different DNFs for satisfiable formulas. For instance, the DNFs $x \vee \neg x$ and $y \vee \neg y$ are equivalent since they are satisfied by every assignment.

Formulas by themselves are not a good data structure for computing DNFs of formulas. We will work with lists of signed formulas we call clauses:

$$
\begin{array}{rlr}
S, T: \text { SFor }::=s^{+} \mid s^{-} & \text {signed formula } \\
C, D: \text { Cla } & :=\mathcal{L}(\text { SFor }) & \text { clause }
\end{array}
$$

Clauses represent conjunctions. We define evaluation of signed formulas and clauses as follows:

$$
\begin{array}{lrl}
\mathcal{E} \alpha\left(s^{+}\right) & :=\mathcal{E} \alpha s & \mathcal{E} \alpha[] \\
\mathcal{E} \alpha\left(s^{-}\right) & :=\text {true } \\
\mathcal{E} \alpha s & \mathcal{E} \alpha(S:: C) & :=\mathcal{E} \alpha S \& \mathcal{E} \alpha C
\end{array}
$$

Note that the empty clause represents the boolean true. We also consider lists of clauses

$$
\Delta: \mathcal{L}(\mathrm{Cla})
$$

and interpret them disjunctively:

$$
\begin{aligned}
\mathcal{E} \alpha[] & :=\text { false } \\
\mathcal{E} \alpha(C:: \Delta) & :=\mathcal{E} \alpha C \mid \mathcal{E} \alpha \Delta
\end{aligned}
$$

Satisfaction of signed formulas, clauses, and lists of clauses is defined analogously to formulas, and so are the notations $\alpha$ sat $S$, $\alpha$ sat $C, \alpha$ sat $\Delta$, and sat $C$. Since formulas, signed formulas, clauses, and lists of clauses all come with the notion of
satisfying assignments, we can speak about equivalence between these objects although they belong to different types. For instance, $s, s^{+},\left[s^{+}\right]$, and $\left[\left[s^{+}\right]\right]$, are all equivalent since they are satisfied by the same assignments.

A solved clause is a clause consisting of signed variables (i.e., $x^{+}$and $x^{-}$) such that no variable appears positively and negatively. Note that a solved clause $C$ is satisfied by every assignment that maps the positive variables in $C$ to true and the negative variables in $C$ to false.

Fact 26.3.1 Solved clauses are satisfiable. More specifically, a solved clause $C$ is satisfied by the assignment $\lambda x .{ }^{\ulcorner } x^{+} \in C^{\top}$.

A clausal DNF is a list of solved clauses.
Corollary 26.3.2 A clausal DNF is satisfiable if and only if it is nonempty.
Exercise 26.3.3 Prove $\mathcal{E} \alpha(C+D)=\mathcal{E} \alpha C \& \mathcal{E} \alpha D$ and $\mathcal{E} \alpha\left(\Delta \# \Delta^{\prime}\right)=\mathcal{E} \alpha \Delta \mid \mathcal{E} \alpha \Delta^{\prime}$.
Exercise 26.3.4 Write a function that maps lists of clauses to equivalent formulas.
Exercise 26.3.5 Our formal proof of Fact 26.3.1 is unexpectedly tedious in that it requires two inductive lemmas:

1. $\alpha$ sat $C \longleftrightarrow \forall S \in C$. $\alpha$ sat $S$.
2. solved $C \rightarrow S \in C \rightarrow \exists x .\left(S=x^{+} \wedge x^{-} \notin C\right) \vee\left(S=x^{-} \wedge x^{+} \notin C\right)$.

The formal development captures solved clauses with an inductive predicate. This is convenient for most purposes but doesn't provide for a convenient proof of Fact 26.3.1. Can you do better?

### 26.4 DNF Solver

We would like to construct a function computing clausal DNFs for formulas. Formally, we specify the function with the informative type

$$
\forall s \Sigma \Delta . \operatorname{DNF} \Delta \wedge s \equiv \Delta
$$

where

$$
\begin{aligned}
s \equiv \Delta & :=\forall \alpha . \alpha \text { sat } s \longleftrightarrow \alpha \text { sat } \Delta \\
\text { DNF } \Delta & :=\forall C \in \Delta \text {. solved } C
\end{aligned}
$$

To define the function, we will generalize the type to

$$
\forall C D \text {. solved } C \rightarrow \Sigma \Delta \text {. DNF } \Delta \wedge C+D \equiv \Delta
$$

```
 \(\operatorname{dnf} C[]=[C]\)
 \(\operatorname{dnf} C\left(x^{+}:: D\right)=\mathrm{IF}^{「} x^{-} \in C^{\top}\) THEN [] ELSE dnf \(\left(x^{+}:: C\right) D\)
 \(\operatorname{dnf} C\left(x^{-}:: D\right)=\operatorname{IF}^{\ulcorner } x^{+} \in C^{\top}\) THEN [] ELSE dnf \(\left(x^{-}:: C\right) D\)
 \(\operatorname{dnf} C\left(\perp^{+}:: D\right)=[]\)
 \(\operatorname{dnf} C\left(\perp^{-}:: D\right)=\operatorname{dnf} C D\)
\(\operatorname{dnf} C\left((s \rightarrow t)^{+}:: D\right)=\operatorname{dnf} C\left(s^{-}:: D\right)+\operatorname{dnf} C\left(t^{+}:: D\right)\)
\(\operatorname{dnf} C\left((s \rightarrow t)^{-}:: D\right)=\operatorname{dnf} C\left(s^{+}:: t^{-}:: D\right)\)
\(\operatorname{dnf} C\left((s \wedge t)^{+}:: D\right)=\operatorname{dnf} C\left(s^{+}:: t^{+}:: D\right)\)
\(\operatorname{dnf} C\left((s \wedge t)^{-}:: D\right)=\operatorname{dnf} C\left(s^{-}:: D\right)+\operatorname{dnf} C\left(t^{-}:: D\right)\)
\(\operatorname{dnf} C\left((s \vee t)^{+}:: D\right)=\operatorname{dnf} C\left(s^{+}:: D\right)+\operatorname{dnf} C\left(t^{+}:: D\right)\)
\(\operatorname{dnf} C\left((s \vee t)^{-}:: D\right)=\operatorname{dnf} C\left(s^{-}:: t^{-}:: D\right)\)
```

Figure 26.2: Specification of a procedure dnf : $\mathrm{Cla} \rightarrow \mathrm{Cla} \rightarrow \mathcal{L}$ (Cla)
where $C \equiv \Delta:=\forall \alpha$. $\alpha$ sat $C \longleftrightarrow \alpha$ sat $\Delta$. To compute a clausal DNF of a formula $s$, we will apply the function with $C=[]$ and $D=\left[s^{+}\right]$.

We base the definition of the function on a purely computational procedure

$$
\mathrm{dnf}: \mathrm{Cla} \rightarrow \mathrm{Cla} \rightarrow \mathcal{L}(\mathrm{Cla})
$$

specified with equations in Figure 26.2. We refer to the first argument $C$ of the procedure as accumulator, and to the second argument as agenda. The agenda holds the signed formulas still to be processed, and the accumulator collects signed variables taken from the agenda. The procedure processes the formulas on the agenda one by one decreasing the size of the agenda with every recursion step. We define the size of clauses and formulas as follows:

$$
\begin{aligned}
\sigma[] & :=0 & \sigma x & :=1 \\
\sigma\left(s^{+}:: C\right) & :=\sigma s+\sigma C & \sigma \perp & :=1 \\
\sigma\left(s^{-}:: C\right) & :=\sigma s+\sigma C & \sigma(s \circ t) & :=1+\sigma s+\sigma t
\end{aligned}
$$

Note that the equations specifying the procedure in Figure 26.2 are clear from the correctness properties stated for the procedure, the design that the first formula on the agenda controls the recursion, and the boolean identities given in §26.1.
Lemma 26.4.1 $\forall C D$. solved $C \rightarrow \Sigma \Delta$. DNF $\Delta \wedge C+D \equiv \Delta$.
Proof By size induction on $\sigma D$ with $C$ quantified in the inductive hypothesis augmenting the design of the procedure dnf with the necessary proofs. Each of the 13 cases is straightforward.

Theorem 26.4.2 (DNF solver) $\forall C \Sigma \Delta$. DNF $\Delta \wedge C \equiv \Delta$.
Proof Immediate from Lemma 26.4.1.
Corollary 26.4.3 $\forall s \Sigma \Delta$. DNF $\Delta \wedge s \equiv \Delta$.
Corollary 26.4.4 There is a solver $\forall C .(\Sigma \alpha . \alpha \operatorname{sat} C)+\neg$ sat $C$.
Corollary 26.4.5 There is a solver $\forall s .(\Sigma \alpha . \alpha$ sats $)+\neg$ sat $s$.
Corollary 26.4.6 Satisfiability of clauses and formulas is decidable.
Exercise 26.4.7 Convince yourself that the predicate $S \in C$ is decidable.
Exercise 26.4.8 Rewrite the equations specifying the DNF procedure so that you obtain a boolean decider $\mathcal{D}: \mathrm{Cla} \rightarrow \mathrm{Cla} \rightarrow \mathrm{B}$ for satisfiability of clauses. Give an informative type subsuming the procedure and specifying the correctness properties for a boolean decider for satisfiability of clauses.

Exercise 26.4.9 Recall the definition of valid formulas from Exercise 26.2.6. Prove the following:
a) Validity of formulas is decidable.
b) A formula is satisfiable if and only if its negation is not valid.
c) $\forall s$. val $s+(\Sigma \alpha . \mathcal{E} \alpha s=$ false $)$.

Exercise 26.4.10 If you are already familiar with well-founded recursion in computational type theory (Chapter 31), define a function $\mathrm{Cla} \rightarrow \mathrm{Cla} \rightarrow \mathcal{L}(\mathrm{Cla})$ satisfying the equations specifying the procedure dnf in Figure 26.2.

### 26.5 DNF Recursion

From the equations for the DNF procedure (Figure 26.2) and the construction of the basic DNF solver (Lemma 26.4.1) one can abstract out the recursion scheme shown in Figure 26.3. We refer to this recursion scheme as DNF recursion. DNF recursion has one clause for every equation of the DNF procedure in Figure 26.2 where the recursive calls appear as inductive hypotheses. DNF recursion simplifies the proof of Lemma 26.4.1. However, DNF recursion can also be used for other constructions (our main example is a completeness lemma (26.6.5) for a tableau system) given that it is formulated with an abstract type function $p$. Note that DNF recursion encapsulates the use of size induction on the agenda, the set-up and justification of the case analysis, and the propagation of the precondition solved $C$. We remark that all clauses can be equipped with the precondition, but for our applications the precondition is only needed in the clause for the empty agenda.

```
\(\forall p^{\mathrm{Cla} \rightarrow \mathrm{Cla} \rightarrow \mathbb{T}}\)
\((\forall C\). solved \(C \rightarrow p C[]) \rightarrow\)
\(\left(\forall C D . x^{-} \in C \rightarrow p C\left(x^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . x^{-} \notin C \rightarrow p\left(x^{+}:: C\right) D \rightarrow p C\left(x^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . x^{+} \in C \rightarrow p C\left(x^{-}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . x^{+} \notin C \rightarrow p\left(x^{-}:: C\right) D \rightarrow p C\left(x^{-}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(\perp^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C D \rightarrow p C\left(\perp^{-}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{-}:: D\right) \rightarrow p C\left(t^{+}:: D\right) \rightarrow p C\left((s \rightarrow t)^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{+}:: t^{-}:: D\right) \rightarrow p C\left((s \rightarrow t)^{-}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{+}:: t^{+}:: D\right) \rightarrow p C\left((s \wedge t)^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{-}:: D\right) \rightarrow p C\left(t^{-}:: D\right) \rightarrow p C\left((s \wedge t)^{-}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{+}:: D\right) \rightarrow p C\left(t^{+}:: D\right) \rightarrow p C\left((s \vee t)^{+}:: D\right)\right) \rightarrow\)
\(\left(\forall C D . p C\left(s^{-}:: t^{-}:: D\right) \rightarrow p C\left((s \vee t)^{-}:: D\right)\right) \rightarrow\)
\(\forall C D\). solved \(C \rightarrow p C D\)
```

Figure 26.3: DNF recursion scheme

## Lemma 26.5.1 (DNF recursion)

The DNF recursion scheme shown in Figure 26.3 is inhabited.
Proof By size induction on the $\sigma D$ with $C$ quantified using the decidability of membership in clauses. Straightforward.

DNF recursion provides the abstraction level one would use in an informal correctness proof of the DNF procedure. In particular, DNF recursion separates the termination argument from the partial correctness argument. We remark that DNF recursion generalizes the functional induction scheme one would derive for a DNF procedure.

Exercise 26.5.2 Use DNF recursion to construct a certifying boolean solver for clauses: $\forall C .(\Sigma \alpha . \alpha \operatorname{sat} C)+(\neg \operatorname{sat}(C))$.

$$
\begin{array}{cc}
\frac{\operatorname{tab}(S:: C+D)}{\operatorname{tab}(C+S:: D)} & \overline{\operatorname{tab}\left(x^{+}:: x^{-}:: C\right)} \\
\frac{\operatorname{tab}\left(s^{-}:: C\right) \quad \operatorname{tab}\left(t^{+}:: C\right)}{\operatorname{tab}\left((s \rightarrow t)^{+}:: C\right)} & \frac{\operatorname{tab}\left(s^{+}:: t^{-}:: C\right)}{\operatorname{tab}\left((s \rightarrow t)^{-}:: C\right)} \\
\frac{\operatorname{tab}\left(s^{+}:: t^{+}:: C\right)}{\operatorname{tab}\left((s \wedge t)^{+}:: C\right)} \\
\frac{\operatorname{tab}\left(s^{+}:: C\right) \quad \operatorname{tab}\left(t^{+}:: C\right)}{\operatorname{tab}\left((s \vee t)^{+}:: C\right)} & \frac{\operatorname{tab}\left(s^{-}:: C\right) \quad \operatorname{tab}\left(t^{-}:: C\right)}{\operatorname{tab}\left((s \wedge t)^{-}:: C\right)} \\
\frac{\operatorname{tab}\left(s^{-}:: t^{-}:: C\right)}{\operatorname{tab}\left((s \vee t)^{-}:: C\right)}
\end{array}
$$

Figure 26.4: Inductive type family tab: $\mathrm{Cla} \rightarrow \mathbb{\mathbb { T }}$

### 26.6 Tableau Refutations

Figure 26.4 defines an indexed inductive type family $\operatorname{tab}: \mathrm{Cla} \rightarrow \mathbb{T}$ for which we will prove

$$
\operatorname{tab}(C) \Leftrightarrow \neg \operatorname{sat}(C)
$$

We call the inhabitants of a type $\operatorname{tab}(C)$ tableau refutations for $C$. The above equivalence says that for every clause unsatisfiability proofs are inter-translatable with tableau refutations. Tableau refutations may be seen as explicit syntactic unsatisfiability proofs for clauses. Since we have $\neg$ sat $s \Leftrightarrow \neg$ sat $\left[s^{+}\right]$, tableau refutations may also serve as refutations for formulas.

We speak of tableau refutations since the type family tab formalizes a proof system that belongs to the family of tableau systems. We call the value constructors for the type constructor tab tableau rules and refer to type constructor tab as tableau system.

We may see the tableau rules in Figure 26.4 as a simplification of the equations specifying the DNF procedure in Figure 26.2. Because termination is no longer an issue, the accumulator argument is not needed anymore. Instead we have a tableau rule (the first rule) that rearranges the agenda.

We refer to the first rule of the tableau system as move rule and to the second rule as clash rule. Note the use of list concatenation in the move rule.

The tableau rules are best understood in backwards fashion (from the conclusion to the premises). All but the first rule are decomposition rules simplifying the clause to be derived. The second and third rule derive clauses that are obviously unsatisfiable. The move rule is needed so that non-variable formulas can be moved
to the front of a clause as it is required by most of the other rules.

## Fact 26.6.1 (Soundness)

Tableau refutable clauses are unsatisfiable: $\operatorname{tab}(C) \rightarrow \neg \operatorname{sat}(C)$.
Proof Follows by induction on tab.
For the completeness lemma we need a few lemmas providing derived rules for the tableau system.

## Fact 26.6.2 (Clash)

All clauses containing a conflicting pair of signed variables are tableau refutable: $x^{+} \in C \rightarrow x^{-} \in C \rightarrow \operatorname{tab}(C)$.

Proof Without loss of generality we have $C=C_{1}+x^{+}:: C_{2}+x^{-}:: C_{3}$. The primitive clash rule gives us $\operatorname{tab}\left(x^{+}:: x^{-}:: C_{1}+C_{2}+C_{3}\right)$. Using the move rule twice we obtain $\operatorname{tab}(C)$.

Fact 26.6.3 (Weakening)
Adding formulas preserves tableau refutability:
$\forall C S . \operatorname{tab}(C) \rightarrow \operatorname{tab}(S:: C)$.
Proof By induction on tab.
The move rule is strong enough to reorder clauses freely.
Fact 26.6.4 (Move Rules) The following rules hold for tab:

$$
\frac{\operatorname{tab}(\operatorname{rev} D+C+E)}{\operatorname{tab}(C+D+E)} \quad \frac{\operatorname{tab}(D+C+E)}{\operatorname{tab}(C+D+E)} \quad \frac{\operatorname{tab}(C+S:: D)}{\operatorname{tab}(S:: C+D)}
$$

We refer to the last rule as inverse move rule.
Proof The first rule follows by induction on $D$. The second rule follows from the first rule with $C=[]$ and $\operatorname{rev}(\operatorname{rev} D)=D$. The third rule follows from the second rule with $C=[S]$.

## Lemma 26.6.5 (Completeness)

$\forall D C$. solved $C \rightarrow \neg$ sat $(D+C) \rightarrow \operatorname{tab}(D+C)$.

Proof By DNF recursion. The case for the empty agenda is contradictory since solved clauses are satisfiable. The cases with conflicting signed variables follow with the clash lemma. The cases with nonconflicting signed variables follow with the inverse move rule. The case for $\perp^{-}$follows with the weakening lemma.

Theorem 26.6.6
A clause is tableau refutable if and only if it is unsatisfiable:
$\operatorname{tab}(C) \Leftrightarrow \neg \operatorname{sat}(C)$.
Proof Follows with Fact 26.6.1 and Lemma 26.6.5.
Corollary 26.6.7 $\quad \forall C . \operatorname{tab}(C)+(\operatorname{tab}(C) \rightarrow \perp)$.
We remark that the DNF solver and the tableau system adapt to any choice of boolean connectives. We just add or delete cases as needed. An extreme case would be to not have variables. That one can choose the boolean connectives freely is due to the use of clauses with signed formulas.

The tableau rules have the subformula property, that is, a derivation of a clause $C$ does only employ subformulas of formulas in $C$. That the tableau rules satisfies the subformula property can be verified rule by rule.

Exercise 26.6.8 Prove $\operatorname{tab}(C+S:: D+T:: E) \longleftrightarrow \operatorname{tab}(C+T:: D+S:: E)$.
Exercise 26.6.9 Give an inductive type family deriving exactly the satisfiable clauses. Start with an inductive family deriving exactly the solved clauses.

### 26.7 Abstract Refutation Systems

An unsigned clause is a list of formulas. We will now consider a tableau system for unsigned clauses that comes close to the refutation system associated with natural deduction. For the tableau system we will show decidability and agreement with unsatisfiability. Based on the results for the tableau system one can prove decidability and completeness of classical natural deduction (Chapter 25).

The switch to unsigned clauses requires negation and falsity, but as it comes to the other connectives we are still free to choose what we want. Negation could be accommodated as an additional connective, but formally we continue to represent negation with implication and falsity.

We can turn a signed clause $C$ into an unsigned clause by replacing positive formulas $s^{+}$with $s$ and negative formulas $s^{-}$with negations $\neg s$. We can also turn an unsigned clause into a signed clause by labeling every formula with the positive sign. The two conversions do not change the boolean value of a clause for a given assignment. Moreover, going from an unsigned clause to a signed clause and back yields the initial clause. From the above it is clear that satisfiability of unsigned clauses reduces to satisfiability of signed clauses and thus is decidable.

Formalizing the above ideas is straightforward. The letters $A$ and $B$ will range over unsigned clauses. We define $\alpha$ sat $A$ and satisfiability of unsigned clauses analogous to signed clauses. We use $\hat{C}$ to denote the unsigned version of a signed clause and $A^{+}$to denote the signed version of an unsigned clause.

$$
\begin{array}{cc}
\frac{\rho(s:: A+B)}{\rho(A+s:: B)} & \\
\frac{\rho(x:: \neg x:: A)}{\rho(\neg s:: A) \quad \rho(t:: A)} \\
\frac{\rho((s \rightarrow t):: A)}{\rho(s:: A)} & \frac{\rho(s:: \neg t:: A)}{\rho(\neg(s \rightarrow t):: A)} \\
\frac{\rho(s: t: A)}{\rho((s \wedge t):: A)} & \frac{\rho(\neg s:: A) \quad \rho(\neg t:: A)}{\rho(\neg(s \wedge t):: A)} \\
\frac{\rho(s:: A) \quad \rho(t:: A)}{\rho((s \vee t):: A)} & \frac{\rho(\neg s:: \neg t:: A)}{\rho(\neg(s \vee t):: A)}
\end{array}
$$

Figure 26.5: Rules for abstract refutation systems $\rho: \mathcal{L}($ For $) \rightarrow \mathbb{P}$

Fact 26.7.1 $\mathcal{E} \alpha \hat{C}=\mathcal{E} \alpha C, \mathcal{E} \alpha A^{+}=\mathcal{E} \alpha A$, and $\widehat{A^{+}}=A$.
Fact 26.7.2 (Decidability) Satisfiability of unsigned clauses is decidable.
Proof Follows with Corollary 26.4.6 and $\mathcal{E} \alpha A^{+}=\mathcal{E} \alpha A$.
We call a type family $\rho$ on unsigned clauses an abstract refutation system if it satisfies the rules in Figure 26.5. Note that the rules are obtained from the tableau rules for signed clauses by replacing positive formulas $s^{+}$with $s$ and negative formulas $s^{-}$with negations $\neg s$.

Lemma 26.7.3 Let $\rho$ be a refutation system. Then $\operatorname{tab} C \rightarrow \rho \hat{C}$.

Proof Straightforward by induction on tab $C$.

## Fact 26.7.4 (Completeness)

Every refutation system derives all unsatisfiable unsigned clauses.
Proof Follows with Theorem 26.6.6 and Lemma 26.7.3.

We call an abstract refutation system sound if it derives only unsatisfiable clauses (that is, $\forall A . \rho A \rightarrow \neg$ sat $A$ ).

Fact 26.7.5 A sound refutation system is decidable and derives exactly the unsatisfiable unsigned clauses.

Proof Facts 26.7.4 and 26.7.2.

Theorem 26.7.6 The minimal refutation system inductively defined with the rules for abstract refutation systems derives exactly the unsatisfiable unsigned clauses.

Proof Follows with Fact 26.7.4 and a soundness lemma similar to Fact 26.6.1.

Exercise 26.7.7 (Certifying Solver) Construct a function $\forall A .(\Sigma \alpha . \alpha \operatorname{sat} A)+\operatorname{tab} A$.

Exercise 26.7.8 Show that boolean entailment

$$
A \dot{\models} s:=\forall \alpha . \alpha \text { sat } A \rightarrow \alpha \text { sat } s
$$

is decidable.

Exercise 26.7.9 Let $A \dot{-}$ be the inductive type family for classical natural deduction. Prove that $A \dot{\vdash} s$ is decidable and agrees with boolean entailment. Hint: Exploit refutation completeness and show that $A \vdash \perp$ is a refutation system.

## 27 Regular Expression Matching

We consider regular expressions describing list of numbers. The expressions are formed with constructors for singleton lists, concatenation, star concatenation, and union, among others. Using derivatives, we show that regular expression matching is decidable.

### 27.1 Basics

Regular expressions are patterns for strings used in text search. There is a relation $A \vdash s$ saying that a string $A$ satisfies a regular expression $s$. One also speaks of a regular expression matching a string. We are considering regular expressions here since the satisfaction relation $A \vdash s$ has an elegant definition with derivation rules.

We represent strings as lists of numbers, and regular expressions with an inductive type realizing the BNF

$$
s, t: \exp ::=x|\mathbf{0}| \mathbf{1}|s+t| s \cdot t \mid s^{*} \quad(x: \mathbf{N})
$$

We model the satisfaction relation $A \vdash s$ with an indexed inductive type family

$$
\vdash: \mathcal{L}(\mathrm{N}) \rightarrow \exp \rightarrow \mathbb{T}
$$

providing value constructors for the following rules:

$$
\begin{array}{llll}
\overline{[x] \vdash x} & \overline{\square \vdash \mathbf{1}} & \frac{A \vdash s}{A \vdash s+t} & \frac{A \vdash t}{A \vdash s+t} \\
\frac{A \vdash s \quad B \vdash t}{A+B \vdash s \cdot t} & \overline{\square \vdash s^{*}} & \frac{A \vdash s}{A+B \vdash s^{*}}
\end{array}
$$

Note that both arguments of $\vdash$ are indices. Concrete instances of the satisfaction relation, for instance,

$$
[1,2,2] \vdash 1 \cdot 2^{*}
$$

can be shown with just constructor applications. Inclusion and equivalence of regular expressions are defined as follows:

$$
\begin{aligned}
& s \subseteq t:=\forall A . A \vdash s \rightarrow A \vdash t \\
& s \equiv t:=\forall A . A \vdash s \Leftrightarrow A \vdash t
\end{aligned}
$$

## 27 Regular Expression Matching

An easy to show inclusion is

$$
\begin{equation*}
s \subseteq s^{*} \tag{27.1}
\end{equation*}
$$

(only constructor applications and rewriting with $A+[]=A$ are needed). More challenging is the inclusion

$$
\begin{equation*}
s^{*} \cdot s^{*} \subseteq s^{*} \tag{27.2}
\end{equation*}
$$

We need an inversion function

$$
\begin{equation*}
A \vdash s \cdot t \rightarrow \sum A_{1} A_{2} \cdot\left(A=A_{1}+A_{2}\right) \times\left(A_{1} \vdash s\right) \times\left(A_{2} \vdash t\right) \tag{27.3}
\end{equation*}
$$

and a lemma

$$
\begin{equation*}
A \vdash s^{*} \rightarrow B \vdash s^{*} \rightarrow A+B \vdash s^{*} \tag{27.4}
\end{equation*}
$$

The inversion function can be obtained as an instance of a more general inversion operator
$\forall A s . A \vdash s \rightarrow$ MATCH $s$
[ $x \Rightarrow A=[x]$
| $0 \Rightarrow \perp$
| $1 \Rightarrow A=[]$
$\mid u+v \Rightarrow(A \vdash u)+(A \vdash v)$
$\mid u \cdot v \Rightarrow \sum A_{1} A_{2} .\left(A=A_{1}+A_{2}\right) \times\left(A_{1} \vdash u\right) \times\left(A_{2} \vdash v\right)$
$\mid u^{*} \Rightarrow(A=[])+\Sigma A_{1} A_{2} .\left(A=A_{1}+A_{2}\right) \times\left(A_{1} \vdash u\right) \times\left(A_{2} \vdash u^{*}\right)$
]
which can be defined by discrimination on $A \vdash s$. Note that the index $s$ determines a single rule except for $s^{*}$.

We now come to the proof of lemma (27.4). The proof is by induction on the derivation $A \vdash s^{*}$ with $B$ fixed. There are two cases. If $A=[]$, the claim is trivial. Otherwise $A=A_{1}+A_{2}, A_{1} \vdash s$, and $A_{2} \vdash s^{*}$. Since $A_{2} \vdash s^{*}$ is obtained by a subderivation, the inductive hypothesis gives us $A_{2}+B \vdash s^{*}$. Hence $A_{1}+A_{2}+B \vdash s^{*}$ by the second rule for $s^{*}$.

The above induction is informal. It can be made formal with an universal eliminator for $A \vdash s$ and a reformulation of the claim as follows:

$$
\forall A s . A \vdash s \rightarrow \operatorname{MATCH} s\left[s^{*} \Rightarrow B \vdash s^{*} \rightarrow A+\left.B \vdash s^{*}\right|_{-} \Rightarrow \mathrm{T}\right]
$$

The reformulation provides an unconstrained inductive premises $A \vdash s$ so that no information is lost by the application of the universal eliminator. Defining the universal eliminator with a type function $\forall A s . A \vdash s \rightarrow \mathbb{T}$ is routine. We remark that a weaker eliminator with a type function $\mathcal{L}(N) \rightarrow \exp \rightarrow \mathbb{T}$ suffices.

We now have (27.2). A straightforward consequence is

$$
s^{*} \cdot s^{*} \equiv s^{*}
$$

A less obvious consequence is the equivalence

$$
\begin{equation*}
\left(s^{*}\right)^{*} \equiv s^{*} \tag{27.5}
\end{equation*}
$$

saying that the star operation is idempotent. Given (27.1), it suffices to show

$$
\begin{equation*}
A \vdash\left(s^{*}\right)^{*} \rightarrow A \vdash s^{*} \tag{27.6}
\end{equation*}
$$

The proof is by induction on $A \vdash\left(s^{*}\right)^{*}$. If $A=[]$, the claim is obvious. Otherwise, we assume $A_{1} \vdash s^{*}$ and $A_{2} \vdash\left(s^{*}\right)^{*}$, and show $A_{1}+A_{2} \vdash s^{*}$. The inductive hypothesis gives us $A_{2} \vdash s^{*}$, which gives us the claim using (27.4).

The above proof is informal since the inductive premise $A \vdash\left(s^{*}\right)^{*}$ is index constrained. A formal proof succeeds with the reformulation

$$
\forall A s . A \vdash s \rightarrow \operatorname{MATCH} s\left[\left.\left(s^{*}\right)^{*} \Rightarrow A \vdash s^{*}\right|_{\_} \Rightarrow \top\right]
$$

## Exercise 27.1.1 (Certifying solver)

Define a certifying solver $\forall s .(\Sigma A . A \vdash s)+(\forall A . A \vdash s \rightarrow \perp)$.
Exercise 27.1.2 (Restrictive star rule) The second derivation rule for star expressions can be replaced with the more restrictive rule

$$
\frac{x:: A \vdash s \quad B \vdash s^{*}}{x:: A+B \vdash s^{*}}
$$

Define an inductive family $A \vdash s$ adopting the more restrictive rule and show that it is intertranslatable with $A \vdash s: \forall A s . A \vdash s \Leftrightarrow A \vdash s$.

Exercise 27.1.3 After reading this section, do the following with a proof assistant.
a) Define a universal eliminator for $A \vdash s$.
b) Define an inversion operator for $A \vdash s$.
c) Prove $s^{*} \cdot s^{*} \equiv s^{*}$.
d) Prove $\left(s^{*}\right)^{*} \equiv s^{*}$.

Exercise 27.1.4 (Denotational semantics) The informal semantics for regular expressions described in textbooks can be formalized as a recursive function on regular expressions that assigns languages to regular expressions. We represent languages as type functions $\mathcal{L}(N) \rightarrow \mathbb{T}$ and capture the semantics with a function

$$
\mathcal{R}: \exp \rightarrow \mathcal{L}(N) \rightarrow \mathbb{T}
$$

defined as follows:

$$
\begin{aligned}
\mathcal{R} x A & :=(A=[x]) \\
\mathcal{R} \mathbf{0} A & :=\perp \\
\mathcal{R} \mathbf{1} A & :=(A=[]) \\
\mathcal{R}(s+t) A & :=\mathcal{R} s A+\mathcal{R} t A \\
\mathcal{R}(s \cdot t) A & :=\sum A_{1} A_{2} \cdot\left(A=A_{1}+A_{2}\right) \times \mathcal{R} s A_{1} \times \mathcal{R} t A_{2} \\
\mathcal{R}\left(s^{*}\right) A & :=\sum n \cdot \mathcal{P}(\mathcal{R} s) n A \\
\mathcal{P} \varphi 0 A & :=(A=[]) \\
\mathcal{P} \varphi(\mathrm{S} n) A & :=\sum A_{1} A_{2} \cdot\left(A=A_{1}+A_{2}\right) \times \varphi A_{1} \times \mathcal{P} \varphi n A
\end{aligned}
$$

a) Prove $\mathcal{R} s A \Leftrightarrow A \vdash s$.
b) We have represented languages as type functions $\mathcal{L}(N) \rightarrow \mathbb{T}$. A representation as predicates $\mathcal{L}(N) \rightarrow \mathbb{P}$ would be more faithful to the literature. Rewrite the definitions of $\vdash$ and $\mathcal{R}$ accordingly and show their equivalence.

### 27.2 Decidability of Regular Expression Matching

We will now construct a decider for $A \vdash s$. The decidability of $A \vdash s$ is not obvious. We will formalize a decision procedure based on Brzozowski derivatives [5].

A function $D: N \rightarrow \exp \rightarrow \exp$ is a derivation function if

$$
\forall x A s . x:: A \vdash s \Leftrightarrow A \vdash D x s
$$

In words we may say that a string $x:: A$ satisfies a regular expression $s$ if and only if $A$ satisfies the derivative $D x s$. If we have a decider $\forall s . \mathcal{D}(\square \vdash s)$ and in addition a derivation function, we have a decider for $A \vdash s$.

Fact 27.2.1 $\forall s . \mathcal{D}([] \vdash s)$.
Proof By induction on $s$. For $\mathbf{1}$ and $s^{*}$ we have a positive answer, and for $x$ and $\mathbf{0}$ we have a negative answer using the inversion function. For $s+t$ and $s \cdot t$ we rely on the inductive hypotheses for the constituents.

Fact 27.2.2 $\forall A s . \mathcal{D}(A \vdash s)$ provided we have a derivation function.
Proof By recursion on $A$ using Fact 27.2.1 in the base case and the derivation function in the cons case.

We define a derivation function $D$ as follows:

$$
\begin{aligned}
D: \mathrm{N} \rightarrow \mathrm{exp} & \rightarrow \mathrm{exp} \\
D x y & :=\mathrm{IF}{ }^{\ulcorner } x=y^{\urcorner} \text {THEN } 1 \text { ELSE } \mathbf{0} \\
D x \mathbf{0} & :=\mathbf{0} \\
D x \mathbf{1} & :=\mathbf{0} \\
D x(s+t) & :=D x s+D x t \\
D x(s \cdot t) & :=\mathrm{IF}^{\ulcorner }[] \vdash s^{\urcorner} \text {THEN } D x s \cdot t+D x t \text { ELSE } D x s \cdot t \\
D x\left(s^{*}\right) & :=D x s \cdot s^{*}
\end{aligned}
$$

It remains to show that $D$ is a derivation function. For this proof we need a strengthened inversion lemma for star expressions.

## Lemma 27.2.3 (Eager star inversion)

$\forall x A s . x:: A \vdash s^{*} \rightarrow \Sigma A_{1} A_{2} . A=A_{1}+A_{2} \times x:: A_{1} \vdash s \times A_{2} \vdash s^{*}$.

Proof By induction on the derivation of $x:: A \vdash s^{*}$. Only the second rule for star expressions applies. Hence we have $x:: A=A_{1}+A_{2}$ and subderivations $A_{1} \vdash s$ and $A_{2} \vdash s^{*}$. If $A_{1}=[]$, we have $A_{2}=x:: A$ and the claim follows by the inductive hypothesis. Otherwise, we have $A_{1}:=x:: A_{1}^{\prime}$, which gives us the claim.

The formal proof follows this outline but works on a reformulation of the claim providing an unconstrained inductive premise.

Theorem 27.2.4 (Derivation) $\forall x A s . x:: A \vdash s \Leftrightarrow A \vdash D x s$.
Proof By induction on $s$. All cases but the direction $\Rightarrow$ for $s^{*}$ follow with the inversion operator and case analysis. The direction $\Rightarrow$ for $s^{*}$ follows with the eager star inversion lemma 27.2.3.

Corollary 27.2.5 $\forall A s . \mathcal{D}(A \vdash s)$.

Proof Follows with Fact 27.2.2 and Theorem 27.2.4.

## 28 Abstract Reduction Systems

Warning: This chapter is under construction.

### 28.1 Paths Types

We assume a relation $R: X \rightarrow X \rightarrow \mathbb{\pi}$. We see $R$ as a graph whose vertices are the elements of $X$ and whose edges are the pairs $(x, y)$ such that $R x y$. Informally, a path in $R$ is a walk

$$
x_{0} \xrightarrow{R} x_{1} \xrightarrow{R} \cdots \xrightarrow{R} x_{n}
$$

through the graph described by $R$ following the edges. We capture this design formally with an indexed inductive type

$$
\begin{aligned}
& \text { path }(x: X): X \rightarrow \mathbb{\mathbb { T }}::= \\
& \mid \mathrm{P}_{1}: \text { path } x x \\
& \mid \mathrm{P}_{2}: \forall x^{\prime} y \cdot R x x^{\prime} \rightarrow \text { path } x^{\prime} y \rightarrow \text { path } x y
\end{aligned}
$$

The constructors are chosen such that that the elements of a path type path $x y$ formalize the paths from $x$ to $y$. The first argument of the type constructor path is a nonuniform parameter and the second argument of path is an index. The second argument cannot be made a parameter because it is instantiated to $x$ by the value constructor $\mathrm{P}_{1}$. Here are the full types of the constructors:

$$
\begin{aligned}
\text { path } & : \forall X^{\mathbb{T}} .(X \rightarrow X \rightarrow \mathbb{T}) \rightarrow X \rightarrow X \rightarrow \mathbb{T} \\
\mathrm{P}_{1} & : \forall X^{\mathbb{U}} \forall R^{X \rightarrow X \rightarrow \mathbb{P}} \forall x^{X} . \text { path }_{X R} x x \\
\mathrm{P}_{2} & : \forall X^{\mathbb{U}} \forall R^{X \rightarrow X \rightarrow \mathbb{P}} \forall x x^{\prime} y^{X} . R x x^{\prime} \rightarrow \operatorname{path}_{X R} x^{\prime} y \rightarrow \operatorname{path}_{X R} x y
\end{aligned}
$$

Note that the type constructor path takes three parameters followed by a single index as arguments. There is the general rule that parameters must go before indices.

We shall use notation with implicit arguments in the following. It is helpful to see the value constructors in simplified form as inference rules:

$$
\mathrm{P}_{1} \frac{\mathrm{P}_{2} \frac{R x x^{\prime} \quad \operatorname{path}_{R} x^{\prime} y}{\operatorname{path}_{R} x x} \quad \operatorname{pat}_{R} x y}{}
$$

The second constructor is reminiscent of a cons for lists. The premise $R x x^{\prime}$ ensures that adjunctions are licensed by $R$. And, in contrast to plain lists, the endpoints of a path are recorded in the type of the path.

Fact 28.1.1 (Step function) $\forall x y . R x y \rightarrow \operatorname{path}_{R} x y$.
Proof The function claimed can be obtained with the value constructors $P_{1}$ and $P_{2}$ :

$$
\frac{R x y \quad \overline{\operatorname{path}}_{R} y y}{\mathrm{P}_{1}} \operatorname{path}_{R} x y \quad \mathrm{P}_{2}
$$

We now define an inductive function len that yields the length of a path (i.e., the number of edges the path runs trough).

$$
\begin{aligned}
\text { len }: \forall x y . \text { path } x y & \rightarrow \mathrm{~N} \\
\text { len } x_{-}\left(\mathrm{P}_{1_{-}}\right) & :=0 \\
\text { len } x_{-}\left(\mathrm{P}_{2} x^{\prime} y r a\right) & :=\mathrm{S}\left(\operatorname{len} x^{\prime} y a\right)
\end{aligned}
$$

Note the underlines in the patterns. The underlines after $P_{1}$ and $P_{2}$ are needed since the first arguments of the constructors are parameters (instantiated to $x$ by the pattern). The underlines before the applications of $P_{1}$ and $P_{2}$ are needed since the respective argument is an index argument. The index argument appears as variable $y$ in the type declared for len. We refer to $y$ (in the type of len) as index variable. What identifies $y$ as index variable is the fact that it appears as index argument in the type of the discriminating argument. The index argument must be written as underline in the patterns since the succeeding pattern for the discriminating argument determines the index argument. There is the general constraint that the index arguments in the type of the discriminating argument must be variables not occurring otherwise in the type of the discriminating argument (the so-called index condition). Moreover, the declared type must be such that all index arguments are taken immediately before the discriminating argument.

Type checking elaborates the defining equations into quantified propositional equations where the pattern variables are typed and the underlines are filled in. For the defining equations of len, elaboration yields the following equations:

$$
\begin{aligned}
\forall x^{\mathrm{N}} . \text { len } x x\left(\mathrm{P}_{1} x\right) & =0 \\
\forall x x^{\prime} y^{\mathrm{N}} \forall r^{R x x^{\prime}} \forall a^{\text {path } x^{\prime} y} . \text { len } x y\left(\mathrm{P}_{2} x x^{\prime} y r a\right) & =\mathrm{S}\left(\operatorname{len} x^{\prime} y a\right)
\end{aligned}
$$

We remark that the underlines for the parameters are determined by the declared type of the discriminating argument, and that the underlines for the index arguments are determined by the elaborated type for the discriminating argument.

We now define an append function for paths

$$
\text { app : } \forall z x y . \text { path } x y \rightarrow \text { path } y z \rightarrow \text { path } x z
$$

discriminating on the first path. The declared type and the choice of the discriminating argument (not explicit yet) identify $y$ as an index variable and fix an index argument for app. Note that the index condition is satisfied. The argument $z$ is taken first so that the index argument $y$ can be taken immediately before the discriminating argument. We can now write the defining equations:

$$
\begin{array}{cl}
\operatorname{app} z x_{-}\left(\mathrm{P}_{1_{-}}\right):=\lambda b \cdot b & : \text { path } x z \rightarrow \text { path } x z \\
\operatorname{app} z x_{-}\left(\mathrm{P}_{2_{-}} x^{\prime} y r a\right):=\lambda b \cdot \mathrm{P}_{2} x x^{\prime} z r\left(\operatorname{app} z x^{\prime} y a b\right) & : \text { path } y z \rightarrow \text { path } x z
\end{array}
$$

As always, the patterns are determined by the declared type and the choice of the discriminating argument. We have the types $r: R x x^{\prime}$ and $a$ : path $x^{\prime} y$ for the respective pattern variables of the second equation. Note that the index argument is instantiated to $x$ in the first equation and to $y$ in the second equation.

We would now like to verify the equation

$$
\forall x y z \forall a^{\text {path } x y} \forall b^{\text {path } y z} \text {. Ien }(\operatorname{app} a b)=\operatorname{len} a+\operatorname{len} b
$$

which is familiar from lists. As for lists, the proof is by induction on $a$. Doing the proof by hand, ignoring the type checking, is straightforward. After conversion, the case for $\mathrm{P}_{2}$ gives us the proof obligation

$$
\mathrm{S}(\operatorname{len}(\operatorname{app} a b))=\mathrm{S}(\operatorname{len} a+\operatorname{len} b)
$$

which follows by the inductive hypothesis, Formally, the induction can be validated with the universal eliminator for path:

$$
\begin{aligned}
& E: \forall p^{\forall x y . \operatorname{path} x y \rightarrow \mathbb{T}} . \\
&\left(\forall x \cdot p x x\left(\mathrm{P}_{1} x\right)\right) \rightarrow \\
&\left(\forall x y z \forall r^{R x y} \forall a^{\text {path } y z} \cdot p x z\left(\mathrm{P}_{2} x y z r a\right)\right) \rightarrow \\
& \forall x y a \cdot p x y a \\
& E p e_{1} e_{2} x_{-},\left(\mathrm{P}_{1}\right):=e_{1} x \\
& E p e_{1} e_{2} x_{-}\left(\mathrm{P}_{2}-x^{\prime} y r a\right):=e_{2} x x^{\prime} y r\left(E p e_{1} e_{2} x^{\prime} y a\right)
\end{aligned}
$$

Not that the type function $p$ takes the nonuniform parameter, the index, and the discriminating argument as arguments. The general rule to remember here is that all nonuniform parameters and all indices appear as arguments of the target type function of the universal eliminator. As always with universal eliminators, the defining
equations follow from the type of the eliminator, and the types of the continuation functions $e_{1}$ and $e_{2}$ follow from the types of the value constructors and the type of the target type function.

No doubt, type checking the above examples by hand is a tedious exercise, also for the author. In practice, one leaves the type checking to the proof assistant and designs the proofs assuming that the type checking works out. With trained intuitions, this works out well.

Exercise 28.1.2 Give the propositional equations obtained by elaborating the defining equations for len, app, and $E$. Hint: The propositional equations for len are explained above. Use the proof assistant to construct and verify the equations.

Exercise 28.1.3 Define the step function asserted by Fact 28.1.1 with a term.
Exercise 28.1.4 (Index eliminator) Define an index eliminator for path:

$$
\begin{aligned}
& \forall p^{X \rightarrow X \rightarrow \mathbb{T}} . \\
& (\forall x \cdot p x x) \rightarrow \\
& \left(\forall x x^{\prime} y \cdot R x x^{\prime} \rightarrow p x^{\prime} y \rightarrow p x y\right) \rightarrow \\
& (\forall x y . \text { path } x y \rightarrow p x y)
\end{aligned}
$$

Note that the type of the index eliminator is obtained from the type of the universal eliminator by deleting the dependencies on the paths.

Exercise 28.1.5 Use the index eliminator to prove that the relation path is transitive: $\forall x y z$. path $x y \rightarrow$ path $y z \rightarrow$ path $x z$.

Exercise 28.1.6 (Arithmetic graph) Let $R x y:=(\mathrm{S} x=y)$. We can see $R$ as the graph on numbers having the edges ( $x, \mathrm{~S} x$ ). Prove path ${ }_{R} x y \Leftrightarrow x \leq y$.
Hints. Direction $\Rightarrow$ follows with index induction (i.e., using the index eliminator from Exercise 28.1.4). Direction $\Leftarrow$ follows with $\forall k$. path ${ }_{R} x(k+x)$, which follows by induction on $k$ with $x$ quantified.

### 28.2 Reflexive Transitive Closure

We can see the type constructor path as a function that maps relations $X \rightarrow X \rightarrow \mathbb{T}$ to relations $X \rightarrow X \rightarrow \mathbb{T}$. We will write $R^{*}$ for path ${ }_{R}$ in the following and speak of the reflexive transitive closure of $R$. We will explain later why this speak is meaningful.

We first note that $R^{*}$ is reflexive. This fact is stated by the type of the value constructor $\mathrm{P}_{1}$.

We also note that $R^{*}$ is transitive. This fact is stated by the type of the inductive function app.

Moreover, we note that $R^{*}$ contains $R$ (i.e., $\forall x y . R x y \rightarrow R^{*} x y$ ). This fact is stated by Fact 28.1.1.

Fact 28.2.1 (Star recursion)
Every reflexive and transitive relation containing $R$ contains $R^{*}$ :
$\forall p^{X \rightarrow X \rightarrow \mathbb{T}}$. refl $p \rightarrow$ trans $p \rightarrow R \subseteq p \rightarrow R^{*} \subseteq p$.
Proof Let $p$ be a relation as required. We show $\forall x y . R^{*} x y \rightarrow p x y$ using the index eliminator for path (Exercise 28.1.4). Thus we have to show that $p$ is reflexive, which holds by assumption, and that $\forall x x^{\prime} y . R x x^{\prime} \rightarrow p x^{\prime} y \rightarrow p x y$. So we assume $R x x^{\prime}$ and $p x^{\prime} y$ and show $p x y$. Since $p$ contains $R$ we have $p x x^{\prime}$ and thus we have the claim since $p$ is transitive.

Star recursion as stated by Fact 28.2 .1 is a powerful tool. The function realized by star recursion is yet another eliminator for path. We can use star recursion to show that $R^{*}$ and $\left(R^{*}\right)^{*}$ agree.

Fact 28.2.2 $R^{*}$ and $\left(R^{*}\right)^{*}$ agree.
Proof We have $R^{*} \subseteq\left(R^{*}\right)^{*}$ by Fact 28.1.1. For the other direction $\left(R^{*}\right)^{*} \subseteq R^{*}$ we use star recursion (Fact 28.2.1). Thus we have to show that $R^{*}$ is reflexive, transitive, and contains $R^{*}$. We have argued reflexivity and transitivity before, and the containment is trivial.

Fact 28.2.3 $R^{*}$ is a least reflexive and transitive relation containing $R$.
Proof This fact is a reformulation of what we have just shown. On the one hand, it says that $R^{*}$ is a reflexive and transitive relation containing $R$. On the other hand, it says that every such relation contains $R^{*}$. This is asserted by star recursion.

If we assume function extensionality and propositional extensionality, Fact 28.2 .2 says $R^{*}=\left(R^{*}\right)^{*}$. With extensionality $R^{*}$ can be understood as a closure operator which for $R$ yields the unique least relation that is reflexive, transitive, and contains $R$. In an extensional setting, $R^{*}$ is commonly called the reflexive transitive closure of $R$.

We have modeled relations as general type functions $X \rightarrow X \rightarrow \mathbb{T}$ rather than as predicates $X \rightarrow X \rightarrow \mathbb{P}$. Modeling path types $R^{*} x y$ as computational types gives us paths as computational values and provides for computational recursion on paths as it is needed for the length function len. If we switch to propositional relations $X \rightarrow X \rightarrow \mathbb{P}$, everything we did carries over except for the length function.

## Exercise 28.2.4 (Functional characterization)

Prove $R^{*} x y \Leftrightarrow \forall p^{X \rightarrow X \rightarrow \mathbb{T}}$. refl $p \rightarrow \operatorname{trans} p \rightarrow R \subseteq p \rightarrow p x y$.

## Part IV

Foundational Studies

## 29 Axiom CT and Semidecidability

All functions definable in CTT without assumptions are computable. Nevertheless, there are noncomputational interpretations of CTT where the function type $N \rightarrow N$ contains uncomputable functions. Moreover, there are degenerate interpretations of CTT where all predicates $\mathrm{N} \rightarrow \mathbb{P}$ are decidable. Consequently, CTT can only prove undecidability if we have an assumption excluding degenerate interpretations. In this chapter, we study such an assumption called Axiom CT. Axiom CT is consistent with excluded middle and extensionality and provides for undecidability proofs within CTT.

We will base Axiom CT on the diophantine characterization of recursively enumerable sets since it has a straightforward formalization in CTT. Axiom CT will say that for every function $f^{\mathrm{N}-\mathrm{N} \rightarrow \mathrm{B}}$ there is a diophantine expression describing the predicate $\lambda n . \exists k . f n k=$ true.

We will give a self-contained development of type-theoretic computability not assuming knowledge of set-theoretic computability theory. The main notions in this enterprise are semidecidable predicates and promising functions. While semidecidable predicates model recursively enumerable sets, promising functions model computable set-theoretic functions as step-indexed type-theoretic functions. Assuming Axiom CT, we will construct undecidable semidecidable predicates and promising functions not having total extensions.

Remarkably, our primary development does not use excluded middle. If we assume excluded middle, we can characterize decidable predicates as semidecidable predicates that are cosemidecidable. As it turns out, this characterization is equivalent to a prominent instance of excluded middle known as Markov's principle.

We will make essential use of the extra-expressivity computational type theory has over set theory:

- Functions in CTT are computational. In contrast, set theory has no native notion of computability. Set-theoretic functions are merely notational sugar for functional relations.
- Computational availability ( $\Sigma$ ) can be used besides propositional existence ( $\exists$ ).
- Complex computational constructions can be carried out with certifying functions combining specification and verification using the Skolem translation.


### 29.1 Tests and Basic Predicates

Basic predicates are an abstract type-theoretic version of r.e. sets from set-theoretic computability theory. R.e. sets are sets of numbers that can be algorithmically enumerated. R.e. sets are also known recursively enumerable sets.

We define complement and equivalence of predicates $p^{X \rightarrow \mathbb{P}}$ and $q^{X \rightarrow \mathbb{P}}$ :

$$
\begin{array}{rlr}
\bar{p}:=\lambda x . \neg p x & \text { complement } \\
p \equiv q:=\forall x \cdot p x \longleftrightarrow q x & & \text { equivalence }
\end{array}
$$

We have $p \equiv q \rightarrow \bar{p} \equiv \bar{q}$. We define basic predicates as follows:

$$
\begin{array}{rlr}
\mathrm{T} & :=\mathrm{N} \rightarrow \mathrm{~B} & \text { unary tests } \\
\mathrm{T}_{2} & :=\mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~B} & \text { binary tests } \\
\mathrm{K} f^{\top} & :=\exists k \cdot f k=\mathrm{true} & \text { satisfiability } \\
\mathrm{D} f^{T_{2}} & :=\lambda n \cdot \mathrm{~K}(f n) & \text { domain } \\
\text { basic } p^{\mathrm{N} \rightarrow \mathbb{P}} & :=\exists f^{\mathrm{T}_{2}} \cdot p \equiv \mathrm{D} f & \text { basic predicates }
\end{array}
$$

We say that basic predicates are the domains of binary tests, and that basic predicates are generated by binary tests.

Fact 29.1.1 Decidable predicates on numbers are basic: $\forall p^{N \rightarrow \mathbb{P}}$. dec $p \rightarrow$ basic $p$.
Proof $p$ is equivalent to the domain of the test $\lambda n k$. IF $p n$ THEN true ELSE false.

Computational intuition tells us that K and $\overline{\mathrm{K}}$ are computationally undecidable. For K the situation is somewhat better than for $\overline{\mathrm{K}}$ since every $n$ such that $f n=$ true is a certificate for $\mathrm{K} f$. For $\overline{\mathrm{K}}$ no such certificate system exists.

Given a test $f$, we can perform a linear search $f 0, f 1, f 2, \ldots$ that halts with the first $n$ such that $f n=$ true. We refer to this $n$ is the least witness of $f$. Using an EWO, we can compute the least witness of a satisfiable test and use it as a certificate for sat $f$.

Fact 29.1.2 (Witness)
For a satisfiable test one can compute a satisfying number: sat $f \rightarrow \Sigma n . f n=$ true.

Proof Follows with an EWO for N (Fact 22.2.3) since boolean equality is decidable.
Exercise 29.1.3 Prove the following:
a) $\neg \mathrm{K} f \longleftrightarrow \forall k . f k=\mathrm{false}$
b) $\mathrm{D}(\lambda n \cdot f) \equiv \mathrm{D}(\lambda n \cdot g) \longleftrightarrow(\mathrm{K} f \longleftrightarrow \mathrm{~K} g)$
c) $\mathrm{D}(\lambda n . f) \equiv \mathrm{D}(\lambda n k$. false $) \longleftrightarrow \neg \mathrm{K} f$

Exercise 29.1.4 Construct certifying functions as follows:
a) $\forall P^{\mathbb{P}} . \mathcal{D P} \rightarrow \Sigma f . P \leftrightarrows \mathrm{~K} f$
b) $\forall p^{N \rightarrow \mathbb{P}} \cdot \operatorname{dec} p \rightarrow \Sigma f$. $\operatorname{ex} p \leftrightarrows \mathrm{~K} f$

Exercise 29.1.5 (Conjunction and disjunction of tests)
Construct certifying functions for unary tests as follows:
a) $\forall f g . \Sigma h . \mathrm{K} h \hookrightarrow \mathrm{~K} f \wedge \mathrm{~K} g$
b) $\forall f g . \Sigma h . \mathrm{K} h \longleftrightarrow \mathrm{~K} f \vee \mathrm{~K} g$

### 29.2 UT and Undecidability

Before we formulate Axiom CT, we look at a consequence of Axiom CT that suffices for almost all results in this chapter:

$$
\text { UT }:=\Sigma U^{N \rightarrow T_{2}} \forall f^{T_{2}} \exists c . \mathrm{D} f \equiv \mathrm{D}(U c)
$$

We refer to the function $U$ provided by UT as universal test, and to the number $c$ as the code for the test $f$. We see $U$ as a function enumerating the domains of binary tests via binary tests. That computational objects are computationally enumerable is a prominent insight in computability theory.

With UT we will show a number of undecidability results, including the existence of an undecidable basic set and the undecidability of the satisfaction predicate K for unary tests.

We now come to our first undecidability result. The key idea of the proof is to show that the complement of the domain of the diagonal test $\lambda n$.Unn of a universal test $U$ is not basic.

Fact 29.2.1 (Undecidability)
$\mathrm{UT} \rightarrow \Sigma f^{T_{2}} . \neg$ basic $\overline{\mathrm{D} f}$.
Proof We show that the complement of the domain of the diagonal binary test $\lambda n . U n n$ is not basic. Suppose $\mathrm{D} f \equiv(\lambda n . \neg \mathrm{K}(U n n))$ for some binary test $f$. By UT we have $\mathrm{D} f \equiv \mathrm{D}(U c)$ for some $c$. Hence $\neg \mathrm{K}(U c c) \longleftrightarrow \mathrm{D}(U c) c=\mathrm{K}(U c c)$, which is contradictory.

Fact 29.2.2 (Undecidability)

1. UT $\rightarrow \Sigma p$. basic $p \wedge \neg$ basic $\bar{p}$
2. UT $\rightarrow \Sigma p$. basic $p \wedge \neg \operatorname{dec} p$

Proof (1) follows from Fact 29.2 .1 with $p:=\mathrm{D} f$. (2) follows from (1) since complements of decidable predicates are decidable and hence basic.

## Fact 29.2.3 (Undecidability)

1. $\mathrm{UT} \rightarrow \neg \operatorname{dec} \overline{\mathrm{K}}$
2. UT $\rightarrow \neg \operatorname{dec} K$

Proof (2) follows from (1) since complements of decidable predicates are decidable. For (1), we assume a decider $d: \forall f . \neg \mathrm{K} f$ and derive a contradiction. We consider the binary test $f n:=\mathrm{IF} d(U n n)$ THEN $\lambda k$.true ELSE $\lambda k$.false with $\mathrm{D} f \equiv \mathrm{D}(U c)$. We have $\mathrm{K}(f c) \longleftrightarrow \mathrm{K}(U c c)$. We do a case analysis on $d(U c c)$. If $\neg \mathrm{K}(U c c), f c=$ $\lambda k$.true and we have a contradiction. If $\neg \neg \mathrm{K}(f c), f c=\lambda k$.false and we also have a contradiction.

Note that in the above proof the diagonal test plays a key role again. Later (Fact 29.8.5) we will see a different proof building on Fact 29.2.1 rather than UT.

## Fact 29.2.4 (Undecidability)

Domain membership and domain satisfiability are undecidable for binary tests:

1. $\mathrm{UT} \rightarrow \forall n$. $\neg \operatorname{dec}\left(\lambda f^{\mathrm{T}_{2}}\right.$. $\left.\mathrm{D} f n\right)$
2. $\mathrm{UT} \rightarrow \neg \operatorname{dec}\left(\lambda f^{\mathrm{T}_{2}}\right.$. ex $\left.(\mathrm{D} f)\right)$

Proof Straightforward consequences of the undecidability of K (Fact 29.2.3(2)).

Exercise 29.2.5 Assuming UT, prove that there is a basic predicate that cannot be expressed as a unary test: UT $\rightarrow \Sigma p$. basic $p \wedge\left(\neg \exists f^{\top} \forall n . n p n \longleftrightarrow f n=\right.$ true $)$.

Exercise 29.2.6 Assuming UT, prove that there is a binary test $f$ such that for every binary test $g$ whose domain is disjoint from the domain of $f$ there exists a number $n$ such that neither $f n$ nor $g n$ is satisfiable.

### 29.3 Diophantine Expressions

Axiom CT will say that every basic predicate can be described with a diophantine expression. CT implies that all basic predicates are generated by countably many arithmetic expressions.

In what follows arithmetic pairing will be essential.

Fact 29.3.1 (Arithmetic pairing) There are functions

$$
\pi: N \rightarrow N \rightarrow N \quad \pi_{1}: N \rightarrow N \quad \pi_{2}: N \rightarrow N
$$

satisfying the equations

$$
\pi_{1}\left(\pi n_{1} n_{2}\right)=n_{1} \quad \pi_{2}\left(\pi n_{1} n_{2}\right)=n_{2} \quad \pi\left(\pi_{1} n\right)\left(\pi_{2} n\right)=n
$$

for all $n_{1}, n_{2}$, and $n$.

## Proof Exercise 6.2.5.

Diophantine expressions are arithmetic expressions obtained with variables, the constants 0 and 1 , and addition, subtraction, and multiplication. We obtain diophantine expressions with an inductive type:

$$
e: \exp ::=x|0| 1|e+e| e-e \mid e \cdot e \quad(x: \mathrm{N})
$$

To evaluate an expression, we need values for the variables occurring in the expression. We assemble the values of variables into a single number using arithmetic pairing:

$$
\begin{aligned}
\text { cons } n_{1} n_{2} & :=S\left(\pi n_{1} n_{2}\right) \\
\text { get } 0- & :=0 \\
\text { get } S n 0 & :=\pi_{1} n \\
\text { get } S n S k & :=\operatorname{get}\left(\pi_{2} n\right) k
\end{aligned}
$$

Note that get $n k$ gets the value for variable $k$ from $n$. If $n$ doesn't provide an explicit value for a variable, get returns 0 as default value.

We evaluate expressions with a function eva ${ }^{N \rightarrow \exp \rightarrow N}$ defined follows:

```
 eva nx:= get nx
 eva n 0 := 0
 eva n 1 := 1
eva }n(\mp@subsup{e}{1}{}+\mp@subsup{e}{2}{}):= eva ne e evan ne 2
eva n(e}\mp@subsup{e}{1}{}-\mp@subsup{e}{2}{}):= evan ne (eva ne e
eva}n(\mp@subsup{e}{1}{}\cdot\mp@subsup{e}{2}{}):= eva=n\mp@subsup{e}{1}{}\cdot\operatorname{eva}n\mp@subsup{e}{2}{
```

We now define functions obtaining diophantine predicates and diophantine tests from diophantine expressions:

$$
\begin{aligned}
& \mathrm{Pe} e \mathrm{~N} \rightarrow \mathbb{P}:=\lambda n . \exists k . \text { eva }(\operatorname{cons} n k) e)=0 \\
& \tau e: \mathrm{T}_{2} \quad:=\lambda n k . \mathrm{IF} \text { eva }(\operatorname{cons} n k) e \text { THEN true ELSE false }
\end{aligned}
$$

Fact 29.3.2 (Diophantine predicates)
Diophantine predicates are basic:

1. pred $e \equiv \mathrm{D}(\tau e)$
2. basic (pred $e$ )

Proof Straightforward.
Diophantine predicates are a type-theoretic representation of recursively enumerable sets. Augmenting diophantine expressions with additional operations, for instance the arithmetic pairing functions $\pi, \pi_{1}$, and $\pi_{2}$, will not change the class of diophantine predicates. That addition, subtraction, and multiplication suffice to obtain all recursively enumerable sets is a famous result of Yuri Matiyasevich from 1970. The result implies that satisfiability of diophantine equations is undecidable, thus solving Hilbert's tenth problem from 1900. See Matiyasevich [23] for a fascinating first-hand discussion of the diophantine representation of recursively enumerable sets.

Fact 29.3.3 The type exp of expressions is in bijection with N .
Proof By Corollary 24.7.3 and Theorem 24.3.2, it suffices to construct an equality decider and a list enumeration for exp. We leave these routine constructions as exercises. It is also necessary to show that exp is an infinite type, which is straightforward.

### 29.4 Axiom CT

We now formulate Axiom CT:

$$
\mathrm{CT}:=\forall f^{\mathrm{T}_{2}} \exists e . \mathrm{D} f \equiv \mathrm{Pe}
$$

Axiom CT is consistent with excluded middle and extensionality. CT excludes degenerate interpretations of CTT where all predicates are interpreted as computationally decidable predicates. We may say that type theory becomes fully computational only once CT is assumed.

We mention that in informal constructive mathematics there is an assumption called Church's thesis saying that every total function is computable. CT as defined here may be seen as an adaption of Church's thesis to CTT and the diophantine representation of recursive enumerability.

Fact 29.4.1 CT $\rightarrow$ UT.
Proof Let $\delta^{N-\exp }$ the surjective function provided by Fact 29.3.3. We verify that $U:=\lambda c . \tau(\delta c)$ is a universal test. We assume $f^{\boldsymbol{T}_{2}}$ and prove $\exists c . \mathrm{D} f \equiv \mathrm{D}(U c)$. СТ
gives us an expression $e$ such that $\mathrm{D} f \equiv \mathrm{P} e$. Since $\delta$ is surjective, we have $\delta c=e$ for some $c$. It remains to show $\mathrm{D} f \equiv \mathrm{D}(U c)$, which holds by the assumptions and $\mathrm{P} e \equiv \mathrm{D}(\tau e)$ (Fact 29.3.2 (1)).

Fact 29.4.2 (Undecidability)

1. $\mathrm{CT} \rightarrow \exists e$. $\neg$ basic $(\overline{\mathrm{Pe}})$.
2. $\mathrm{CT} \rightarrow \exists e$. $\neg \operatorname{dec}(\mathrm{Pe})$.

Proof (1) follows with Facts 29.2.1 and 29.4.1. (2) is a consequence of (1).
Exercise 29.4.3
Prove $\mathrm{CT} \rightarrow($ basic $p \hookrightarrow$ diophantine $p)$ where diophantine $p:=\exists e . p \equiv \mathrm{Pe}$.
Exercise 29.4.4 Prove the following:
a) $\forall e \exists e^{\prime} \forall k$. eva (cons $\left.0 k\right) e=\operatorname{eva} k e^{\prime}$
b) $\mathrm{CT} \rightarrow \forall f^{\top} \exists e . \mathrm{K} f \hookrightarrow \exists n$. eva $n e=0$

Exercise 29.4.5 (Undecidability challenges) We formulate proof challenges that will require serious work with diophantine arithmetic.
a) $C T \rightarrow \neg \operatorname{dec}(\lambda e . \exists n$. Pen $)$
b) $C T \rightarrow \neg \operatorname{dec}(\lambda e . \exists n$. eva $n e=0)$

Note that the second challenge is a variant of the undecidability of the satisfiability of diophantine equations (Hilbert's 10th problem).

Exercise 29.4.6 (Abstract CT)
We have chosen to obtain the r.e. predicates with diophantine expressions building on Matiyasevich's result. There is also the possibility to obtain the r.e. predicates with expressions describing partial recursive functions or Turing machines. In any case we have a countable type of expressions that yields the r.e. predicates through binary tests. We may capture the generating expressions and Axiom CT with an abstraction described by the predicate

$$
\text { ACT } A^{\mathbb{T}} \tau^{A \rightarrow \mathrm{~T}_{2}} \delta^{\mathrm{N} \rightarrow A}:=(\forall f \exists a . \mathrm{D} f \equiv \mathrm{D}(\tau a)) \wedge(\forall a \exists n . \delta n=a)
$$

where $A$ is an abstract type of expressions. Prove the following:
a) $\mathrm{CT} \rightarrow \operatorname{sig}(\mathrm{ACT} \exp \tau)$
b) ACT $A \tau \delta \rightarrow \forall p$. basic $p \longleftrightarrow \exists a . p \equiv \mathrm{D}(\tau a)$
c) $\mathrm{ACT} A \tau \delta \rightarrow \mathrm{UT}$

### 29.5 Recusant Relations

We may ask whether there are functional and total relations that cannot be represented with functions. Assuming UT, we will show that such relations exist. This confirms our expectation that relations are more expressive than functions since there is no computability constraint for relations.

We define the characteristic relation $\rho p$ of predicates $p^{X \rightarrow \mathbb{P}}$ :

$$
\begin{array}{r}
\rho: \forall X .(X \rightarrow \mathbb{P}) \rightarrow(X \rightarrow \mathrm{~B} \rightarrow \mathbb{P}) \\
\rho p x b:=\text { IF } b \text { THEN } p x \text { ELSE } \neg p x
\end{array}
$$

Fact 29.5.1 Characteristic relations are functional. Moreover, assuming XM, characteristic relations are total.

Next we show that the characteristic predicate $\rho p$ can be represented as a function if and only if $p$ is decidable.

Fact 29.5.2 $\operatorname{dec} p \Leftrightarrow \Sigma f \forall x . \rho p x(f x)$.
Proof Let $d$ be a decider for $p$. Then $f x:=$ IF $d x$ THEN true ELSE false represents $\rho p$. Conversely, let $f$ represent $\rho p$. Then $f$ is a boolean decider for $p$.

Assuming UT and $X M$, we can now construct a functional and total relation $R^{\mathrm{N} \rightarrow \mathrm{B} \rightarrow \mathbb{P}}$ that cannot be represented with a function. We speak of a recusant relation.

Fact 29.5.3 (Recusant relation)
$\mathrm{UT} \rightarrow \mathrm{XM} \rightarrow \Sigma R^{\mathrm{N} \rightarrow \mathrm{B} \rightarrow \mathbb{P}}$. functional $R \wedge$ total $R \wedge \neg \exists f \forall x . R x(f x)$.
Proof Fact 29.2.2 gives us an undecidable predicate $p^{\mathrm{N} \rightarrow \mathbb{P}}$. By Fact 29.5 .2 we know that $\rho p$ cannot be represented with a function. Moreover, Fact 29.5.1 tells us that $\rho p$ is functional and total.

### 29.6 Inconsistent Strengthening of UT

One must be extremely careful with axioms one adds to a foundational sytem. A good example is

$$
\mathrm{UT}_{\Sigma}:=\Sigma U^{\mathrm{N} \rightarrow \mathrm{~T}_{2}} \forall f^{\mathrm{T}_{2}} \Sigma c . \mathrm{D} f \equiv \mathrm{D}(U c)
$$

which strengthens UT by replacing propositional existence of $c$ with computational availability of $c$. We will show that $\mathrm{UT}_{\Sigma}$ is inconsistent with function extensionality. ${ }^{1}$

[^16]In fact, extensionality for tests

$$
\text { TE }:=\forall f g^{\top} .(\forall n . f n=g n) \rightarrow f=g
$$

suffices for the inconsistency.
Lemma 29.6.1 $\mathrm{UT}_{\Sigma} \rightarrow \mathrm{TE} \rightarrow \operatorname{dec} \bar{K}$.
Proof $\mathrm{UT}_{\Sigma}$ gives us functions $U^{\mathrm{N} \rightarrow \mathrm{T}_{2}}$ and $\gamma^{\mathrm{T} \rightarrow \mathrm{N}}$ such that $\forall f . \mathrm{K} f \longleftrightarrow \mathrm{~K}(U(\gamma f) 0)$. We now assume $f$ and construct a decision $\mathcal{D}(\neg \mathrm{K} f)$. We consider the codes $\gamma f$ and $\gamma$ ( $\lambda k$.false).
If $\gamma f=\gamma$ ( $\lambda k$.false), we assume $\mathrm{K} f$ and derive a contradiction. We have $\mathrm{K} f \longleftrightarrow$ K ( $\lambda k$.false), a contradiction.
If $\gamma f \neq \gamma$ ( $\lambda k$.false), we assume $\neg \mathrm{K} f$ and prove $\gamma f=\gamma(\lambda k$.false). By the extensionality assumption it suffice to show $\forall k . f k=$ false, which follows from $\neg \mathrm{K} f$.

Fact 29.6.2 (Inconsistency) $\mathrm{UT}_{\Sigma} \rightarrow \mathrm{TE} \rightarrow \perp$.
Proof Follows with Lemma 29.6.1 and Fact 29.2.3.
Exercise 29.6.3 Prove UT $\rightarrow \mathrm{UT}_{\Sigma}$.

### 29.7 Post Hierarchy

The Post hierarchy is obtained with a preorder $p \preceq q$ on unary predicates such that $p$ is decidable if $q$ is decidable. We shall use the Post hierarchy to define the semidecidable predicates as the predicates $p \preceq K$. Semidecidable predicates are a generalization of basic predicates to general argument types.

Given predicates $p^{X \rightarrow \mathbb{P}}$ and $q^{Y \rightarrow \mathbb{P}}$, a reduction of $p$ to $q$ is a function $f^{X \rightarrow Y}$ such that $\forall x . p(x) \longleftrightarrow q(f x)$. Given a reduction of $p$ to $q$, we can obtain a decider for $p$ from a decider of $q$. We define a predicate

```
red : \(\forall X Y .(X \rightarrow \mathbb{P}) \rightarrow(Y \rightarrow \mathbb{P}) \rightarrow(X \rightarrow Y) \rightarrow \mathbb{P}\)
\(\operatorname{red}_{X Y} p q f:=\forall x . p(x) \hookrightarrow q(f x)\)
```

expressing that $p$ reduces to $q$ with $f$. We now define reduction types:

$$
p \preceq q:=\operatorname{sig}(\operatorname{red} p q)
$$

Reduction types $p \preceq q$ describe a preorder on predicates called reducibility that is compatible with predicate complement, subsumes predicate equivalence, and transports predicate decidability from right to left. We read $p \preceq q$ as $p$ is
below $q$ or as $q$ is above $p$. We will use two standard notations for the reduction preorder:

$$
\begin{aligned}
& p \npreceq q:=\neg(p \preceq q) \\
& p \prec q:=(p \preceq q) \times(p \npreceq q)
\end{aligned}
$$

Informally, we may see a preorder as a hierarchy. With this metaphor in mind, we refer to reducibility as the Post hierarchy to remember Emil Post who came up with computational reductions (called many-one reductions in computability theory) and studied their hierarchy in the 1940's.

Fact 29.7.1 We have functions as follows:

1. $p \preceq p$
2. $p \leq q \rightarrow q \leq r \rightarrow q \leq r$
3. $p \preceq q \rightarrow \bar{p} \preceq \bar{q}$
4. $p \equiv q \rightarrow p \preceq q$
5. $p \preceq q \rightarrow \operatorname{dec} q \rightarrow \operatorname{dec} p$

We also define interreduction types:

$$
p \approx q:=(p \preceq q) \times(q \preceq p)
$$

Interreduction types $p \approx q$ describe the equivalence relation obtained as the symmetric closure of the reduction preorder $p \preceq q$. We speak of reduction equivalence.

Fact 29.7.2 We have functions as follows:

1. $p \approx p$
2. $p \approx q \rightarrow q \approx p$
3. $p \approx q \rightarrow q \approx r \rightarrow q \approx r$
4. $p \approx q \rightarrow \bar{p} \approx \bar{q}$
5. $p \equiv q \rightarrow p \approx q$
6. $p \approx q \rightarrow \operatorname{dec} p \rightarrow \operatorname{dec} q$

When we construct concrete reductions, it is often helpful to make use of the Skolem translation (Fact 10.3.2).

## Fact 29.7.3 (Skolem for Reductions)

$(\forall x \Sigma y . p x \longleftrightarrow q y) \rightarrow p \leq q$.
Under XM we have $\overline{\bar{p}} \equiv p$ for all predicates $p$. We analyse the situation on a per-predicate basis using stability of predicates:

```
stable p}:=\forallx.\neg\negpx->p
```


## Fact 29.7.4 (Stable predicates)

1. stable $p \hookrightarrow \overline{\bar{p}} \equiv p$
2. stable $\bar{p}$
3. $\operatorname{dec} p \rightarrow$ stable $p$
4. $p \leq q \rightarrow$ stable $q \rightarrow$ stable $p$
5. stable $p \rightarrow \bar{p} \leq q \rightarrow p \leq \bar{q}$
6. stable $q \rightarrow p \leq \bar{q} \rightarrow \bar{p} \leq q$

The above fact is sharp in that in no statement an implication can be replaced with an equivalence.

## Exercise 29.7.5 (Constancy of tests)

Prove that the following predicates on tests are reduction equivalent to $\bar{K}$ :

1. $\lambda g^{\top} \cdot \forall n \cdot g n=$ false
2. $\lambda g^{\top} \cdot \forall n \cdot g n=$ true
3. $\lambda g^{\top} \cdot \exists b \cdot \forall n \cdot g n=b$
4. $\lambda f^{\top_{2}} \cdot \exists b \forall n k . f n k=b$

Exercise 29.7.6 (Domain membership and domain satisfiability)
Prove the following:
a) $\forall n$. $(\lambda f . \mathrm{D} f n) \approx \mathrm{K}$
b) $(\lambda f$. ex $(\mathrm{D} f)) \approx \mathrm{K}$

Hint for (b): Use arithmetic pairing to translate between unary and binary tests.
Exercise 29.7.7 (General Tests) Besides unary and binary tests we may also consider tests with three and more arguments. With arithmetic pairing we can show that satisfiability of tests with $n>1$ arguments is interreducible with satisfiability of unary tests. What makes the problem interesting is its dependently typed formalization. We define a family $\mathrm{T}^{\mathrm{N} \rightarrow \mathbb{T}}$ of test types

$$
\begin{aligned}
\mathrm{T}_{0} & :=\mathrm{B} \\
\mathrm{~T}_{\mathrm{S} n} & :=\mathrm{N} \rightarrow \mathrm{~T}_{n}
\end{aligned}
$$

and a family sat ${ }^{\forall n .} T_{n} \rightarrow \mathbb{P}$ of satisfaction predicates:

$$
\begin{aligned}
\operatorname{sat}_{0} f & :=\left(f=\operatorname{true}^{\prime}\right. \\
\operatorname{sat}_{\text {sin }} f & :=\exists k . \operatorname{sat}_{n}(f k)
\end{aligned}
$$

Prove the following:
a) $\forall n$. satss $n \approx \operatorname{sat}_{s} n$
b) $\forall n$. sats ${ }_{n} \approx K$

Hint: The proof for (a) is basically the proof for Exercise 29.7.6.

### 29.8 Semidecidable Predicates

We will define semidecidable predicates as the predicates $p \preceq K$. We also introduce a decidable predicate $\mathrm{D} \preceq \mathrm{K}$ such that a predicate $p$ is decidable if and only if $p \preceq \mathrm{D}$. We define D as follows:

$$
\mathrm{D}:=\lambda b^{\mathrm{B}} \cdot b=\text { true }
$$

Fact 29.8.1 (Decidable predicates)

1. $\operatorname{dec} D$
2. stable $D$
3. $p \preceq \mathrm{D} \Leftrightarrow \operatorname{dec} p$
4. $\operatorname{dec} p \rightarrow \operatorname{dec} \bar{p}$
5. $p \preceq \mathrm{D} \rightarrow \bar{p} \preceq \mathrm{D}$
6. $\overline{\mathrm{D}} \approx \mathrm{D}$

We call a predicate semidecidable if it is below K and refer to reductions of $p$ to K as semideciders for $p$. In other words, a predicate $p^{X \rightarrow \mathbb{P}}$ is semidecidable if and only if there is a function $f^{X \rightarrow \top}$ such that $\forall x . p x \longleftrightarrow \mathrm{~K}(f x)$. We refer to reductions of $p$ to $K$ as semideciders for $p$ and define a notation for semidecider types:

$$
\operatorname{sdec}_{X} p^{X \rightarrow \mathbb{P}}:=(p \preceq \mathrm{~K})
$$

Finally, we call a predicate cosemidecidable if its complement is semidecidable.
Fact 29.8.2 Basic predicates are the semidecidable predicates on numbers:
$\forall p^{\mathrm{N} \rightarrow \mathbb{P}}$. basic $p \longleftrightarrow \square(\operatorname{sdec} p)$.
Recall that $\square$ is the truncation operator defined in $\S 10.5$.

## Fact 29.8.3

1. $\forall f^{T_{2}} . \mathrm{D} f \preceq \mathrm{~K}$
2. $\mathrm{D} \preceq K$
3. $\mathrm{D} \preceq \overline{\mathrm{K}}$
4. $\mathrm{K} \preceq \mathrm{D} \rightarrow \overline{\mathrm{K}} \preceq \mathrm{K}$

Proof (1) is obvious from the definitions.
(2) $\lambda b . \lambda n . b$ reduces D to K .

3 We have $\mathrm{D} \preceq \overline{\mathrm{D}} \preceq \mathrm{D} \preceq \mathrm{K}$. Thus $\overline{\mathrm{D}} \preceq \overline{\mathrm{K}}$ and hence $\mathrm{D} \preceq \overline{\mathrm{K}}$.
(4) We have $\mathrm{K} \preceq \mathrm{D} \preceq \mathrm{K}$. Thus $\bar{K} \preceq \mathrm{D}$ since D is closed under complements. Now $\bar{K} \preceq K$.

Fact 29.8.4

1. sdec K
2. $p \leq q \rightarrow \operatorname{sdec} q \rightarrow \operatorname{sdec} p$
3. $\operatorname{dec} p \rightarrow \operatorname{sdec} p$
4. $\operatorname{dec} p \rightarrow \operatorname{sdec} \bar{p}$
5. $\forall f^{\mathrm{T}_{2}} . \operatorname{sdec}(\mathrm{D} f)$

We already know that K and $\overline{\mathrm{K}}$ are undecidable (Fact 29.2.3). We now show the stronger result that $\bar{K}$ is not semidecidable building on Fact 29.2.1. The proof demonstrates the elegance of arguing within the Post hierarchy.

Fact 29.8.5 (Undecidabilty)

1. UT $\rightarrow \neg \operatorname{sdec} \bar{K}$
2. UT $\rightarrow \neg \operatorname{dec} K$

Proof (1) We have $\neg$ sdec $\overline{\mathrm{D} f}$ for some binary test $f$ by Fact 29.2.1. By contraposition we assume sdec $\overline{\mathrm{K}}$ and prove sdec $\overline{\mathrm{D} f}$. It now suffices to prove $\overline{\mathrm{D} f} \leq \overline{\mathrm{K}}$, which follows from $\mathrm{D} f \leq \mathrm{K}$.
(2) We have $\neg \operatorname{sdec} \bar{K}$ by (1). By contraposition we assume dec K and prove sdec $\overline{\mathrm{K}}$. Easy since the assumption yields dec $\bar{K}$ and thus $\bar{K} \preceq D \preceq K$.

Exercise 29.8.6 Argue $\mathrm{D} \prec \mathrm{K}$ and $\overline{\mathrm{K}} \neq \mathrm{K}$.

## Exercise 29.8.7 (Extensionality law via transport law)

Prove the extensionality law $p \equiv p^{\prime} \rightarrow \operatorname{sdec} p \rightarrow \operatorname{sdec} p^{\prime}$ using the transport law for sdec and the reduction law $p \equiv p^{\prime} \rightarrow p \leq p^{\prime}$.

## Exercise 29.8.8 (Constancy of tests)

Prove that constancy of tests $\lambda g^{\top} . \exists b . \forall n . g n=b$ is not semidecidable.
Hint: Exercise 29.7.5.
Exercise 29.8.9 Prove that domain emptiness of binary tests is not semidecidable: $\neg \operatorname{sdec}\left(\lambda f^{T_{2}}\right.$. $\left.\neg \operatorname{ex}(\mathrm{D} f)\right)$.

### 29.9 More Semidecidability

One may see semidecidable predicates as arithmetic projections $\lambda x . \exists k . p(x, k)$ of decidable predicates $p^{X \times N \rightarrow \mathbb{P}}$. In fact, because of arithmetic pairing, the projection predicate $\lambda x . \exists k . p(x, k)$ is semidecidable already if the underlying predicate $p$ is semidecidable. Moreover, the underlying predicate $p$ may have more than one step
index. For instance, $\lambda x . \exists k_{1} k_{2} \cdot p\left(x, k_{1}, k_{2}\right)$ is semidecidable if $p^{X \times N \times N \rightarrow \mathbb{P}}$ is semidecidable.

In the following we assume that $\pi_{1}$ and $\pi_{2}$ are the projections for an arithmetic pairing function $\pi$ (Exercise 6.2.5).

## Fact 29.9.1 (Arithmetic projection)

Given a semidecidable predicate $p^{X \times N \rightarrow \mathbb{P}}, \lambda x . \exists n . p(x, n)$ is semidecidable:
$\forall p^{X \times N \rightarrow \mathbb{P}} . \operatorname{sdec} p \rightarrow \operatorname{sdec}(\lambda x . \exists n . p(x, n))$.
Proof Let $f^{X \times N \rightarrow \top}$ be a semidecider for $p^{X \times N \rightarrow \mathbb{P}}$. We show that

$$
g x n:=\operatorname{IF} f\left(x, \pi_{1} n\right)\left(\pi_{2} n\right) \text { THEN true ELSE false }
$$

satisfies $(\exists n . p(x, n)) \longleftrightarrow \mathrm{K}(g x)$ for all $x$.
For $\rightarrow$, we assume $p(x, n)$ and show $\mathrm{K}(g x)$. From $p(x, n)$ we obtain $\mathrm{K}(f(x, n))$ and thus $f(x, n) k$ for some $k$. Now $g x(\pi n k)=$ true follows.
For $\leftarrow$, we assume $g x k=$ true and show $p\left(x, \pi_{1} k\right)$. By the primary assumption it suffices to show $f\left(x, \pi_{1} k\right)\left(\pi_{2} k\right)$, which follows.

## Corollary 29.9.2 (Arithmetic double projection)

Given a semidecidable predicate $p^{X \times N \times N \rightarrow \mathbb{P}}, \lambda x . \exists n k . p x n k$ is semidecidable:
$\forall p^{X \times N \times N \rightarrow \mathbb{P}} . \operatorname{sdec} p \rightarrow \operatorname{sdec}(\lambda x . \exists n k . p(x, n, k))$.
Proof Apply Fact 29.9.1 twice. Note that $X \times \mathrm{N} \times \mathrm{N}=(X \times \mathrm{N}) \times \mathrm{N}$, and that $(x, n, k)=$ $((x, n), k)$.

It took several iterations until the author arrived at the formalization of arithmetic projection appearing above. There are two essential design decisions: Assume that the underlying predicate is semidecidable (rather than decidable) and use the cartesian representation for predicates with more than one argument.

Using arithmetic pairing, we can obtain an EWO for basic predicates, a fact noticed by Andrej Dudenhefner in 2020.

Fact 29.9.3 (EWO for basic predicates)
$\forall p^{\mathrm{N} \rightarrow \mathbb{P}} . \operatorname{sdec} p \rightarrow \operatorname{ex} p \rightarrow \operatorname{sig} p$.
Proof Suppose sdec $p f$ and $\exp$. Then $q n:=\left(f\left(\pi_{1} n\right)\left(\pi_{2} n\right)=\right.$ true $)$ is decidable and satisfiable. Hence an EWO for decidable predicates gives us $n$ such that $q n$. Thus $p\left(\pi_{1} n\right)$.

Andrej Dudenhefner also discovered in 2020 that semidecidable equality predicates are decidable.

Fact 29.9.4 (Semidecidable Equality)
Equality predicates are decidable if and only if they are semidecidable:
$\mathcal{E} X \Leftrightarrow \Sigma f^{X \rightarrow X \rightarrow \mathrm{~T}} . \forall x y^{X} . x=y \hookrightarrow \mathrm{~K}(f x y)$.
Proof Direction $\rightarrow$ is obvious. For direction $\leftarrow \operatorname{suppose} \forall x y^{X} . x=y \longleftrightarrow \operatorname{sat} f x y$ and fix $x, y: X$. We need to construct a decision $\mathcal{D}(x=y)$. With an arithmetic EWO we compute $k$ such that $f x x k=$ true. Now IF $f x y k$ THEN $x=y$ ELSE $x \neq y$ providing the decision.

Exercise 29.9.5 (Arithmetic projection) Show the following using Fact 29.9.1:
a) $\forall p^{X \rightarrow N \rightarrow \mathbb{P}} .(\forall x n \cdot \mathcal{D}(p x n)) \rightarrow \operatorname{sdec}(\lambda x \cdot \operatorname{ex}(p x))$
b) $\forall p^{X \times N \times N \times N \rightarrow \mathbb{P}} . \operatorname{sdec} p \rightarrow \operatorname{sdec}\left(\lambda x . \exists k_{1} k_{2} k_{3} . p\left(x, k_{1}, k_{2}, k_{3}\right)\right)$

Exercise 29.9.6 Construct a function $\operatorname{sdec} p \rightarrow \forall x y . p x \rightarrow(p y+(y \neq x))$.
Hint: The proof is similar to the proof of Fact 29.9.4. Using the witness operator one obtains $n$ such that $f x n=$ true and then discriminates on $f y n$. In fact, Fact 29.9.4 is a consequence of the above result. The exercise was contributed by Marc Hermes in March 2021.

### 29.10 Markov’s Principle

Suppose we have a proposition $P$ and two tests $f$ and $g$ characterizing $P$ and $\neg P$ : $P \hookrightarrow \mathrm{~K} f$ and $\neg P \hookrightarrow \mathrm{~K} g$. Then we can perform a linear search

$$
f 0|g 0, f 1| g 1, f 2 \mid g 2, \ldots
$$

on the disjunctive test $\lambda n . f n \mid g n$. If the proposition $P$ is definite (i.e., $P \vee \neg P$ ), the disjunctive test is satisfiable and the linear search will find the first $n$ such that $f n \mid g n=$ true. From $f n \mid g n=$ true we can obtain a decision $\mathrm{K} f+\mathrm{K} g$, from which we can obtain a decision $\mathcal{D} P$. In short, if we have a definite proposition $P$ and tests characterizing $P$ and $\neg P$, we can construct a decision for $P$.

The definiteness of all propositions $P$ where $P$ and $\neg P$ can be characterized by tests can be obtained from an instance of excluded middle known as Markov's principle:

$$
\text { MP }:=\forall f^{N \rightarrow B} . \neg \neg \mathrm{K} f \rightarrow \mathrm{~K} f
$$

Markov's principle says that satisfiability of tests is stable. In fact, MP = stable K.

## Fact 29.10.1 (Markov equivalenc)

The following propositions are equivalent: MP $\longleftrightarrow$ stable $\mathrm{K} \longleftrightarrow \overline{\bar{K}} \equiv \mathrm{~K}$.

Fact 29.10.2 (Markov complement law) $\mathrm{MP} \rightarrow p \preceq \overline{\mathrm{~K}} \rightarrow \bar{p} \preceq \mathrm{~K}$.
Proof Follows with Facts 29.7.1 and 29.10.1.
We define the disjunction $f \mid g$ of two tests $f$ and $g$ as the test

$$
f \mid g:=\lambda n \text {. IF } f n \text { THEN true ELSE } g n
$$

Fact 29.10.3 $\mathrm{K} f \vee \mathrm{~K} g \longleftrightarrow \mathrm{~K}(f \mid g) \Leftrightarrow \mathrm{K} f+\mathrm{K} g$.
Proof Follows with Fact 29.1.2.
Fact 29.10.4 (Markov)
The following types are equivalent:

1. MP
2. $\forall f g^{\mathrm{N} \rightarrow \mathrm{B}} .(\neg \mathrm{K} f \longleftrightarrow \mathrm{~K} g) \rightarrow(\mathrm{K} f+\mathrm{K} g)$
3. $\forall P^{\mathbb{P}} \forall f g^{\mathrm{N} \rightarrow \mathrm{B}}$. $(P \longleftrightarrow \mathrm{~K} f) \rightarrow(\neg P \longleftrightarrow \mathrm{~K} g) \rightarrow \mathcal{D} P$

Proof $1 \rightarrow 2$. Let $\neg \mathrm{K} f \longleftrightarrow \mathrm{~K} g$. Using Fact 29.10.3 and (1) we assume $\neg$ sat $f \mid g$ and derive a contradiction. Using the assumptions, we have $\neg \mathrm{K} f$ and $\neg \neg \mathrm{K} f$.
$2 \rightarrow 1$. We assume $\neg \neg \mathrm{K} f$ and prove $\mathrm{K} f$. It suffices to prove $\mathrm{K} f+\operatorname{sat} \lambda n$.false. By (2) it suffices to prove $\neg \mathrm{K} f \longleftrightarrow \perp$, which follows from the assumption $\neg \neg \mathrm{K} f$.
$2 \rightarrow 3$. We assume $P \longleftrightarrow \mathrm{~K} f$ and $\neg P \longleftrightarrow \mathrm{~K} g$ and prove $\mathcal{D} P$. It suffice to show $\mathrm{K} f+\mathrm{K} g$, which follows with (2).
$3 \rightarrow 2$. We assume $\neg \mathrm{K} f \longleftrightarrow \mathrm{~K} g$ and prove $\mathrm{K} f+\mathrm{K} g$. We instantiate (3) with $P:=\mathrm{K} f$ and obtain $\mathcal{D K} f$, which yields the claim.

Corollary 29.10.5 (Bi-Testability) $\mathrm{MP} \rightarrow(P \longleftrightarrow \mathrm{~K} f) \rightarrow(\neg P \longleftrightarrow \mathrm{~K} g) \rightarrow \mathcal{D} P$.
Under MP, a predicate is decidable if and only if both the predicate and its complement are semidecidable.
Fact 29.10.6 (Bisemidecidability) $\forall p^{X \rightarrow \mathbb{P}} . \mathrm{MP} \rightarrow \operatorname{sdec} p \rightarrow \operatorname{sdec} \bar{p} \rightarrow \operatorname{dec} p$.
Proof Suppose $f$ and $g$ are semideciders for $p$ and $\bar{p}$. We fix $x$ and construct a decision $\mathcal{D}(p x)$. The assumptions give us tests $f x$ and $g x$ characterizing $p x$ and $\neg p x$. Now Corollary 29.10 .5 yields a decision $\mathcal{D}(p x)$.

The results on Markov's principle and semi-decidability appear in [12].
Exercise 29.10.7 Prove the following equivalences:
a) $\mathrm{MP} \rightarrow \operatorname{dec} p \Leftrightarrow \operatorname{sdec} p \times \operatorname{sdec} \bar{p}$
b) MP $\rightarrow \operatorname{dec} K \Leftrightarrow \operatorname{sdec} \bar{K}$

Exercise 29.10.8 Prove $\forall X^{\mathbb{T}} . X \rightarrow\left(\forall p^{X \rightarrow \mathbb{P}} . \operatorname{sdec} p \rightarrow \operatorname{sdec} \bar{p} \rightarrow \operatorname{dec} p\right) \rightarrow \mathrm{MP}$
Exercise 29.10.9 Prove $\mathrm{MP} \rightarrow \neg(\forall n . f n=b) \longleftrightarrow(\exists n . f n=!b)$.

### 29.11 Promises

We call functions $f^{\mathrm{N} \rightarrow \mathcal{O X}}$ promises. We see promises as tests with output. Given a promise $f$, we can perform a linear search $f 0, f 1, f 2, \ldots$ until we find the first $n$ and $x$ such that $f n={ }^{\circ} x$. If the search terminates, we refer to $n$ as the span and to $x$ as the value of $f$. Formally, we define the predicates

$$
\begin{aligned}
\operatorname{del} f^{N \rightarrow \mathcal{O X}} n & :=(f n \neq \emptyset) \\
\operatorname{span} f^{\mathrm{N} \rightarrow \mathcal{O X}} n & :=\text { least }(\operatorname{del} f) n \\
\delta f^{\mathrm{N} \rightarrow \mathcal{O X}} x n & :=\operatorname{span} f n \wedge f n={ }^{\circ} x \\
f \Downarrow & :=\operatorname{ex}(\operatorname{del} f) \\
f \downarrow x & :=\operatorname{ex}(\delta f x)
\end{aligned}
$$

The least witness predicate least is from §18.1.
We assume the implicit typings $f^{\mathrm{N} \rightarrow \mathcal{O X}}$ and $x^{X}$ for the rest of the section.
Fact 29.11.1 $f \downarrow x \rightarrow f \Downarrow$.
Fact 29.11.2 (Uniqueness)
Spans and values of promises are unique:

1. $\operatorname{span} f n \rightarrow \operatorname{span} f n^{\prime} \rightarrow n=n^{\prime}$
2. $f \downarrow x \rightarrow f \downarrow x^{\prime} \rightarrow x=x^{\prime}$

Proof Follows with the uniqueness of least (Fact 18.1.1).

## Fact 29.11.3 (Decidability)

1. $\mathcal{D}(\operatorname{del} f n)$
2. $\mathcal{D}(\operatorname{span} f n)$
3. $\mathcal{E}(X) \rightarrow \mathcal{D}(\delta f x n)$

Proof Follows with the decidability of least (Fact 18.3.1).

## Fact 29.11.4 (Computability)

1. $f \Downarrow \rightarrow \Sigma n$. $\operatorname{span} f n$
2. $f \Downarrow \rightarrow \Sigma x . f \downarrow x$

Proof (1) follows with an existential least witness operator (Fact 18.2.5) and the decidability of del (Fact 29.11.3). (2) is a straightforward consequence of (1).

## Fact 29.11.5 (Semidecidability)

1. $\operatorname{sdec}(\lambda f . f \Downarrow)$
2. $\mathcal{E} X \rightarrow \operatorname{sdec}(\lambda f . f \downarrow x)$

Proof (1) $\lambda f n$. IF $f n$ THEN true ELSE false is a reduction $(\lambda f . f \Downarrow) \preceq K$.
(2) $\lambda f n$. IF $d f x n$ THEN true ELSE false where $d$ decides $\delta$ (Fact 29.11.3) is a reduction $(\lambda f . f \downarrow x) \leq K$.
Lemma 29.11.6 (Reductions)

1. $X \rightarrow \mathrm{~K} \preceq(\lambda f . f \Downarrow)$
2. $(\lambda f \cdot f \Downarrow) \leq(\lambda f . f \downarrow x)$

Proof (1) $\lambda g n$. IF $g n$ THEN ${ }^{\circ} \chi$ ELSE $\emptyset$ is a reduction $K \preceq(\lambda f . f \Downarrow)$.
(2) $\lambda f n$. IF $f n$ THEN ${ }^{\circ} x$ ELSE $\emptyset$ is a reduction $(\lambda f . f \Downarrow) \leq(\lambda f . f \downarrow x)$. Direction $f \Downarrow \rightarrow r f \downarrow x$ of the correctness proof uses Fact 29.11.4(2).

Fact 29.11.7 (Interreducibility)
Promise delivery and test satisfiability are interreducible:

1. $X \rightarrow(\lambda f . f \Downarrow) \approx \mathrm{K}$
2. $\mathcal{E} X \rightarrow(\lambda f \cdot f \downarrow x) \approx \mathrm{K}$

Proof Follows with Facts 29.11.5 and 29.11.6.
Fact 29.11 .8 (Pruning) For every promise one can construct a value-equivalent promise that delivers at most once:
$\forall f \Sigma f^{\prime} .\left(\forall x . f \downarrow x \longleftrightarrow f^{\prime} \downarrow x\right) \wedge\left(\forall x n . f^{\prime} n={ }^{\circ} x \rightarrow \delta f x n\right)$.
Proof Function $f^{\prime} n:=\operatorname{IF} d f n$ THEN $f n \operatorname{ELSE} \emptyset$ where $d$ is a decider for span $f n$ (Fact 29.11.3) does it. Correctness can be verified by a case analysis following the definition of $f^{\prime}$.

Exercise 29.11.9 Show that the promise delivery predicates $\lambda f . f \Downarrow$ and $\lambda f . f \downarrow x$ are not cosemidecidable, assuming UT and an inhabited and discrete output type.

### 29.12 Promising Functions

A promising function is a function $f^{X \rightarrow(N \rightarrow O Y)}$ mapping values to promises. We use the notation

$$
\operatorname{PF} X Y:=X \rightarrow \mathrm{~N} \rightarrow \mathcal{O} Y
$$

for the types of promising functions. Given a promising function $f^{\mathrm{PF} X Y}$, we call the predicate $\lambda x . f x \Downarrow$ the domain of $f$ and the predicate $\lambda x y . f x \downarrow y$ the delivery relation of $f$. We call a promising function is total if its delivery relation is total.

Fact 29.12.1 (Promising functions)

1. The delivery relation of a promising function is functional.
2. The values of promising functions are computable: $f x \Downarrow \rightarrow \Sigma y . f x \downarrow y$.

Proof Immediate with Facts 29.11.2 and 29.11.4.
Fact 29.12.2 (Total promising functions)
Functions $g^{X \rightarrow Y}$ and total promising functions $f^{\mathrm{PF} X Y}$ are intertranslatable:

1. $\forall g^{X \rightarrow Y} \Sigma f^{\mathrm{PF} X Y} . \forall x . f x \downarrow h x$.
2. $\forall f^{\mathrm{PF} X Y} .(\forall x . f x \Downarrow) \rightarrow \Sigma h^{X \rightarrow Y} . \forall x . f x \downarrow h x$.

Proof (1) follows with constant promises. (2) follows with the Skolem translation and Fact 29.12.1 (2).

## Fact 29.12.3 (Composition)

Promising functions are closed under composition:
$\forall f^{\mathrm{PF} X Y} \forall g^{\mathrm{PF} Y Z} \Sigma h^{\mathrm{PF} X Z} \forall x z . h x \downarrow z \longleftrightarrow(\exists y . f x \downarrow y \wedge g y \downarrow z)$.
Proof We combine the spans for $f x \downarrow y$ and $g y \downarrow z$ with arithmetic pairing and make use of the decidability of span:

$$
\begin{aligned}
h x n:= & \text { MATCH } f x\left(\pi_{1} n\right) \\
& {[\emptyset \Rightarrow \emptyset} \\
& { }^{\circ} y \Rightarrow \operatorname{IF} \operatorname{span}(f x)\left(\pi_{1} n\right) \\
& \quad \text { THEN IF span }(g y)\left(\pi_{2} n\right) \text { THEN } g y\left(\pi_{2} n\right) \text { ELSE } \emptyset \\
& \quad \text { ELSE } \emptyset]
\end{aligned}
$$

Correctness of $h$ can be verified with a case analysis following the definition of $h$ and using the uniqueness of span.

Promising functions are semideciders with output. They can be seen as typetheoretic representation of computable functions as they appear in set-theoretic computability theory. We can translate between semideciders and promising functions such that the domain is preserved.

## Fact 29.12.4 (Translations)

1. $Y \rightarrow \forall g^{X \rightarrow N \rightarrow B} . \Sigma f^{\text {PF } X Y} . \forall x . \mathrm{K}(g x) \hookrightarrow f x \Downarrow$
2. $\forall f^{\mathrm{PF} X Y} \cdot \Sigma g^{X \rightarrow \mathrm{~N} \rightarrow \mathrm{~B}} \cdot \forall x \cdot \mathrm{~K}(g x) \hookrightarrow f x \Downarrow$

Proof (1) follows with $f x n$ := IF $g x n$ THEN ${ }^{\circ} y$ ELSE $\emptyset$ assuming $y^{Y}$. (2) follows with $g \times n:=\mathrm{IF} f \times n$ THEN true else false.

It follows that a predicate is semidecidable if and only if it agrees with the domain of a promising function.

Fact 29.12.5 (Semidecidable domains)

1. $\forall f^{\mathrm{PF} X Y} . \operatorname{sdec}(\lambda x . f x \Downarrow)$
2. $Y \rightarrow \forall p^{X \rightarrow \mathbb{P}} . \operatorname{sdec} p \Leftrightarrow \Sigma f^{\mathrm{PF} X Y} . p \equiv \lambda x . f x \Downarrow$

Fact 29.12.6 (Undecidable domain)
$\mathrm{UT} \rightarrow Y \rightarrow \Sigma f^{\mathrm{PFN} Y} . \neg \operatorname{sdec} \overline{\lambda n . f n \Downarrow}$.
Proof Follows with Facts 29.2.1 and 29.12.5 (2).
Fact 29.12.7 (Semidecidability of delivery)
$\mathcal{E} Y \rightarrow \forall f^{\mathrm{PF} X Y} . \operatorname{sdec}(\lambda x . f x \downarrow y)$.
Proof Let $f^{\text {PF } X Y}$. We use the Skolem translation and show

$$
\forall x . \Sigma g . f x \downarrow y \longleftrightarrow \mathrm{~K} g
$$

The test $g n:=\operatorname{IF} d(f x) y n$ THEN true ELSE false where $d$ decides $\delta$ (Fact 29.11.3) does it.

### 29.13 Recusant Partial Deciders

We call a promising function $f^{\text {PF XY }}$ recusant if it cannot be extended to a total promising function:

$$
\text { recusant } f^{\mathrm{PF} X Y}:=\forall g .(\forall x y . f x \downarrow y \rightarrow g x \downarrow y) \rightarrow \exists x . \neg g x \Downarrow
$$

Note that the definition of recusant states the nontotality of the extending function $g$ existentially as $\exists x . \neg g x \Downarrow$ rather than negatively as $\neg(\forall x . g x \Downarrow)$. While the existential version implies the negative version, it takes excluded middle for the negative version to imply the existential version.

We call promising functions $f^{\mathrm{PF} X \mathrm{~B}}$ partial deciders. Assuming UT, we will construct a recusant partial decider. Recusant partial deciders capture the notion of recursively inseparable sets from set-theoretic computability theory. If $f^{\mathrm{PFNB}}$ is a recusant partial decider, the predicates $\lambda x . f x \downarrow$ true and $\lambda x . f x \downarrow$ false represent recursively inseparable sets of numbers. The idea to capture recursive inseparability with partial deciders appears in Kirst and Peters [19].
Fact 29.13.1 (Decidable domain)
Promising functions with decidable domains have total extensions:
$Y \rightarrow \forall f^{\mathrm{PF} X Y} . \operatorname{dec}(\lambda x . f x \Downarrow) \rightarrow \Sigma g .(\forall x . g x \Downarrow) \wedge(\forall x y . f x \downarrow y \rightarrow g \downarrow y)$.
Proof Suppose $y^{Y}$ and $d^{\operatorname{dec}(\lambda x . f x \Downarrow)}$. Then $g x:=\operatorname{IF} d x$ THEN $f x$ ELSE $\lambda k . y$ is a total extension of $f$.

## Corollary 29.13.2 (Undecidable domain)

Recusant functions have undecidable domains: recusant $f \rightarrow \neg \operatorname{dec}(\lambda x . f x \Downarrow)$.
Fact 29.13.3 (Right composition)
$\forall f^{\mathrm{PF} X Y} \forall h^{Y \rightarrow Z} \Sigma g^{\mathrm{PF} X Z} \forall x y . f x \downarrow y \rightarrow g x \downarrow h y$.
Proof $g x n:=$ MATCH $f x k\left[{ }^{\circ} y \Rightarrow{ }^{\circ} h y \mid \emptyset \Rightarrow \emptyset\right]$ does it.
We define universal partial deciders as follows:

$$
\text { UPD }:=\Sigma U^{N \rightarrow \text { PFNB }} . \forall f^{\mathrm{PFNB}} \exists c \forall n b . f n \downarrow b \hookrightarrow U c n \downarrow b
$$

Given a universal partial decider $U$, we show that the diagonal partial decider $\lambda n . U n n$ is recusant.

Fact 29.13.4 (Recusant partial decider) UPD $\rightarrow \Sigma f^{\text {PFNB }}$. recusant $f$.

Proof Let $U$ be a universal partial decider. We show that the diagonal partial decider $\lambda n$.Unn is recusant. Suppose $f^{\mathrm{PFNB}}$ is an extension of $\lambda n$.Unn. Fact 29.13.3 gives us $g^{\mathrm{PFNB}}$ such that $\forall n b$. $f n \downarrow b \rightarrow g n \downarrow!b$. Since $U$ is universal, we have $\forall n b$. $g n \downarrow b \longleftrightarrow U c n \downarrow b$ for some $c$. We now assume $f c \Downarrow$ and derive a contradiction. By Fact 29.11.4 (2) we have $f c \downarrow b$. We instantiate the assumptions as follows:

$$
\begin{aligned}
& U c c \downarrow!b \rightarrow f c \downarrow!b \\
& g c \downarrow!b \longleftrightarrow U c c \downarrow!b \\
& f c \downarrow b \rightarrow g c \downarrow!b
\end{aligned}
$$

Hence we have both $f c \downarrow b$ and $f c \downarrow!b$. Contradiction with functionality of delivery (Fact 29.11.2).

Exercise 29.13.5 We say that a partial decider $f^{\mathrm{PF} X \mathrm{~B}}$ is sound for a predicate $p^{X \rightarrow \mathbb{P}}$ if $\forall x$. IF $f x$ THEN $p x$ ELSE $\neg p x$. Show that a predicate is decidable if and only if it has a sound and total partial decider.

### 29.14 Universal Partial Deciders

We now construct a universal partial decider from a universal test. The idea is as follows: Given a partial decider $f^{\text {PFNB }}$, we slice it into two binary tests $g_{1}$ and $g_{2}$ such that the domains of $g_{1}$ and $g_{2}$ agree with $\lambda n$. $f n \downarrow$ true and $\lambda n$.fn $\downarrow$ false. From the slices $g_{1}$ and $g_{2}$ we can rebuild the partial decider $f$. The universal partial decider will now use the code $\pi c_{1} c_{2}$ for a partial decider whose slices have the codes $c_{1}$ and $c_{2}$ for the given universal test.

We define a function $\gamma f g$ combining two unary tests into a boolean promise:

$$
\begin{aligned}
& \gamma:(\mathrm{N} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{N} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{N} \rightarrow \mathcal{O B}) \\
& \gamma f g:=\lambda n . \text { IF } f n \text { THEN }^{\circ} \text { true ELSE IF } g n \text { THEN }{ }^{\circ} \text { false ELSE } \emptyset
\end{aligned}
$$

Fact 29.14.1 $\gamma f g \downarrow b \rightarrow$ IF $b$ THEN $\mathrm{K} f$ ELSE $\mathrm{K} g$.

Proof We assume $\gamma f g n={ }^{\circ} b$ and prove IF $b$ THEN $\mathrm{K} f$ ELSE $\mathrm{K} g$ by case analysis on $f n$ and $g n$. Straightforward.

We define disjointness of unary tests as follows: $f \| g:=\mathrm{K} f \rightarrow \mathrm{~K} g \rightarrow \perp$.

## Fact 29.14.2 (Disjoint test combination)

$f \| g \rightarrow \gamma f g \downarrow b \longleftrightarrow($ IF $b$ THEN $\mathrm{K} f$ ELSE $\mathrm{K} g$ ).
Proof Direction $\rightarrow$ follows with Fact 29.14.1. We prove direction $\leftarrow$ for $b=$ true, the other case is analogous.
We assume $f \| g$ and $\mathrm{K} f$ and prove $\gamma f g \downarrow$ true. The assumption gives us $f n=$ true for some $n$ and thus $\gamma f g \Downarrow$. Now $\gamma f g \downarrow b$ for some $b$ with Fact 29.11.4 (2). This closes the proof since $\gamma f g \downarrow$ false is contradictory by Fact 29.14.1 and $f \| g$.

Fact 29.14.3 UT $\rightarrow$ UPD.
Proof Let $U$ be a universal test. We define

$$
V c n:=\gamma\left(U\left(\pi_{1} c\right) n\right)\left(U\left(\pi_{2} c\right) n\right)
$$

and show

$$
\forall f^{\mathrm{PFNB}} \exists c \forall n b . f n \downarrow b \longleftrightarrow V c n \downarrow b
$$

We assume $f^{\text {PFNB }}$ and slice it into binary tests $g_{1}$ and $g_{2}$ using Fact 29.12.7:

$$
\begin{aligned}
& \forall n . f n \downarrow \text { true } \longleftrightarrow \mathrm{K}\left(g_{1} n\right) \\
& \forall n . f n \downarrow \text { false } \longleftrightarrow \mathrm{K}\left(g_{2} n\right)
\end{aligned}
$$

We now exploit the universality of $U$ and obtain the codes for $g_{1}$ and $g_{2}$ :

$$
\begin{aligned}
& \forall n \cdot \mathrm{~K}\left(g_{1} n\right) \longleftrightarrow \mathrm{K}\left(U c_{1} n\right) \\
& \forall n \cdot \mathrm{~K}\left(g_{2} n\right) \longleftrightarrow \mathrm{K}\left(U c_{2} n\right)
\end{aligned}
$$

We now show

$$
f n \downarrow b \longleftrightarrow V\left(\pi c_{1} c_{2}\right) n \downarrow b
$$

for given $n$ and $B$. Using the definition of $V$, it remains to show

$$
f n \downarrow b \longleftrightarrow \gamma\left(U c_{1} n\right)\left(U c_{2} n\right) \downarrow b
$$

We now verify $U c_{1} n \| U c_{2} n$ using uniqueness of delivery for $f n$ (Fact 29.11.2) and reduce the claim to

```
\(f n \downarrow b \longleftrightarrow\) IF \(b\) THEN \(\mathrm{K}\left(U c_{1} n\right)\) ELSE K \(\left(U c_{2} n\right)\)
```

using Fact 29.14.2. This closes the proof since the equivalence is a straightforward consequence of the assumption for $c_{1}$ and $c_{2}$.

Theorem 29.14.4 (Recusant partial decider) UT $\rightarrow \Sigma f^{\mathrm{PFNB}}$. recusant $f$.
Proof Follows with Facts 29.13.4 and 29.14.3.

### 29.15 Notes

This chapter was written January to April 2024. I'm thankful to Dominik Kirst, whose slides for an Australian summer school got me started, and with whom I had weekly lunches and discussions during the writing. Dominik supplied me with results from the literature that evolved into Facts 29.5.3, 29.6.2, and 29.13.4.

We may say that this chapter investigates results from set-theoretic computability in computational type theory. The type-theoretic development profits from the fact that an explicit model of computation (e.g. Turing machines) can be replaced with the synthetic notion of computability that comes with CTT.

Different variants of Axiom CT (Church's thesis) appear in the literature. Troelstra and Van Dalen [28] discuss CT informally in the context of constructive Mathematics. Forster $[10,11$ ] is the first to study CT in computational type theory. Forster [11] shows that based on a call-by-value lambda calculus L formalized in CTT the following formulations of CT are equivalent:

1. Every function $\mathrm{N} \rightarrow \mathrm{B}$ in CTT is computable in L .
2. The domains of binary tests in CTT can be obtained as the domains of computable functions in L.
Forster [11] also covers the diophantine representation of recursively enumerable sets.

## 30 Inductive Equality

Inductive equality extends Leibniz equality with eliminators discriminating on identity proofs. The definitions are such that inductive identities appear as computational propositions enabling reducible casts between computational types.

There is an important equivalence between uniqueness of identity proofs (UIP) and injectivity of dependent pairs (DPI) (i.e., injectivity of the second projection). As it turns out, UIP holds for discrete types (Hedberg's theorem) but is unprovable in computational type theory in general

Hedberg's theorem is of practical importance since it yields injectivity of dependent pairs and reducibility of identity casts for discrete types, two features that are essential for inversion lemmas for indexed inductive types.

The proofs in this chapter are of surprising beauty. They are obtained with dependently typed algebraic reasoning about identity proofs and often require tricky generalizations.

### 30.1 Basic Definitions

We define inductive equality as an inductive predicate with two parameters and one index:

$$
\begin{aligned}
& \text { eq }(X: \mathbb{T}, x: X): X \rightarrow \mathbb{P}::= \\
& \text { । Q: eq } X x x
\end{aligned}
$$

We treat the argument $X$ of the constructors eq and Q as implicit argument and write $s=t$ for eq $s t$. Moreover, we call propositions $s=t$ identities, and refer to proofs of identities $s=t$ as paths from $s$ to $t$.

Note that identities $s=t$ are computational propositions. This provides for expressivity we cannot obtain with Leibniz equality. We define two eliminators for identities

$$
\begin{array}{ll}
C: \forall X^{\mathbb{T}} \forall x^{X} \forall p^{X \rightarrow \mathbb{T}} \forall y . x=y \rightarrow p x \rightarrow p y & \\
C X x p_{-}\left(\mathrm{Q}_{-}\right) a:=a & \\
\mathcal{J}: \forall X^{\mathbb{T}} \forall x^{X} \forall p^{\forall y \cdot x=y \rightarrow \mathbb{T}} . p x(\mathrm{Q} x) \rightarrow \forall y e . p y e & \\
\mathcal{J} X x p a_{-}\left(\mathrm{Q}_{-}\right):=a & : p x(\mathrm{Q} x)
\end{array}
$$

called cast operator and full eliminator. For $C$ we treat the first four arguments as implicit arguments, and for $\mathcal{J}$ the first two arguments.

We call applications of the cast operator casts. A cast $C_{p} e a$ with $e^{x=y}$ changes the type of $a$ from $p x$ to $p y$ for every admissible type function $p$. We have

$$
C(\mathrm{Q} x) a \approx a
$$

and say that trivial casts $C(\mathrm{Q} x) a$ can be discharged. We also have

$$
\forall p^{X \rightarrow \mathbb{T}} \forall e^{x=y} \forall a^{p x} . C_{p} e a \approx \mathcal{J}\left(\lambda y_{-} . p y\right) a y e
$$

which says that the cast eliminator can be expressed with the full eliminator.
Inductive quality as defined here is stronger than the Leibniz equality considered in Chapter 4. The constructors of the inductive definition give us the constants eq and Q , and with the cast operator we can easily define the constant for the rewriting law. Inductive equality comes with two essential generalizations over Leibniz equality: Rewriting can now take place at the universe $\mathbb{T}$ using the cast operator, and both the cast operator and the full eliminator come with computation rules. We will make essential use of both features in this chapter.

We remark that equality in Coq is defined as inductive equality and that the full eliminator $\mathcal{J}$ corresponds exactly to Coq's matches for identities.

The laws for propositional equality can be seen as operators on paths. It turns out that that these operators have elegant algebraic definitions using casts:

$$
\begin{aligned}
& \sigma: x=y \rightarrow y=x \\
& \sigma e:=C_{(\lambda y . y=x)} e(\mathrm{Q} x) \\
& \tau: x=y \rightarrow y=z \rightarrow x=z \\
& \tau e:=C_{(\lambda y \cdot y=z \rightarrow x=z)} e(\lambda e . e) \\
& \varphi: x=y \rightarrow f x=f y \\
& \varphi e:=C_{(\lambda y . f x=f y)} e(\mathrm{Q}(f x))
\end{aligned}
$$

It also turns out that these operators satisfy familiar looking algebraic laws.
Exercise 30.1.1 Prove the following algebraic laws for casts and identities $e^{x=y}$.
a) $C e(\mathrm{Q} x)=e$
b) $C e e=\mathrm{Q} y$

In each case, determine a suitable type function for the cast.

## Exercise 30.1.2 (Groupoid operations on paths)

Prove the following algebraic laws for $\sigma$ and $\tau$ :
a) $\sigma(\sigma e)=e$
b) $\tau e_{1}\left(\tau e_{2} e_{3}\right)=\tau\left(\tau e_{1} e_{2}\right) e_{3}$
c) $\tau e(\sigma e)=\mathrm{Q} x$

Note that $\sigma$ and $\tau$ give identity proofs a group-like structure: $\tau$ is an associative operation and $\sigma$ obtains inverse elements.

Exercise 30.1.3 Show that $\mathcal{J}$ is more general that $C$ by defining $C$ with $\mathcal{J}$.
Exercise 30.1.4 Prove (true $=$ false $) \rightarrow \forall X^{\mathbb{T}}$. $X$ not using falsity elimination.
Exercise 30.1.5 (Impredicative characterization)
Prove $x=y \longleftrightarrow \forall p^{x \rightarrow \mathbb{P}} . p x \rightarrow p y$ for inductive identities. Note that the equivalence says that inductive identities agree with Leibniz identities (§4.5).

### 30.2 Uniqueness of Identity Proofs

We will now show that the following properties of types are equivalent:

$$
\begin{array}{rrr}
\operatorname{UIP}(X) & :=\forall x y^{X} \forall e e^{\prime x=y} \cdot e=e^{\prime} & \text { uniqueness of identity proofs } \\
\operatorname{UIP}^{\prime}(X) & :=\forall x^{X} \forall e^{x=x} \cdot e=\mathrm{Q} x & \text { u. of trivial identiy proofs } \\
\mathrm{K}(X) & :=\forall x \forall p^{x=x \rightarrow \mathbb{P}} \cdot p(\mathrm{Q} x) \rightarrow \forall e . p e & \text { Streicher's } K \\
\operatorname{CD}(X) & :=\forall p^{X \rightarrow \mathbb{T}} \forall x \forall a^{p x} \forall e^{x=x} . C e a=a & \text { cast discharge } \\
\operatorname{DPI}(X) & :=\forall p^{X \rightarrow \mathbb{T}} \forall x u v .(x, u)_{p}=(x, v)_{p} \rightarrow u=v & \text { dependent pair injectivity }
\end{array}
$$

The flagship property is UIP (uniqueness of identity proofs), saying that identities have at most one proof. What is fascinating is that UIP is equivalent to DPI (dependent pair injectivity), saying that the second projection for dependent pairs is injective. While UIP is all about identity proofs, DPI doesn't even mention identity proofs. There is a famous result by Hofmann and Streicher [17] saying that computational type theory does not prove UIP. Given the equivalence with DPI, this result is quite surprising. On the other hand, there is Hedberg's theorem [15] (§30.3) saying that UIP holds for all discrete types. We remark that UIP is an immediate consequence of proof irrelevance.

We now show the above equivalence by proving enough implications. The proofs are interesting in that they need clever generalization steps to harvest the power of the identity eliminators $\mathcal{J}$ and $C$. Finding the right generalizations requires insight and practice. ${ }^{1}$

[^17]30 Inductive Equality

Fact 30.2.1 $\operatorname{UIP}(X) \rightarrow \operatorname{UIP}^{\prime}(X)$.
Proof Instantiate UIP $(X)$ with $y:=x$ and $e^{\prime}:=\mathrm{Q} x$.
Fact 30.2.2 $\mathrm{UIP}^{\prime}(X) \rightarrow \mathrm{K}(X)$.
Proof Instantiate $\mathrm{UIP}^{\prime}(X)$ with $e$ from $\mathrm{K}(X)$ and rewrite.
Fact 30.2.3 $\mathrm{K}(X) \rightarrow \mathrm{CD}(X)$.
Proof Apply $K(X)$ to $\forall e^{x=x}$. Cea $=a$.
Fact 30.2.4 $\mathrm{CD}(X) \rightarrow \mathrm{DPI}(X)$.
Proof Assume $\mathrm{CD}(X)$ and $p^{X \rightarrow \mathbb{T}}$. We obtain the claim with backward reasoning:

$$
\begin{array}{rrr}
\forall x u v .(x, u)_{p}=(x, v)_{p} \rightarrow u=v & \text { by instantiation } \\
\forall a b^{\operatorname{sig} p} . a=b \rightarrow \forall e^{\pi_{1} a=\pi_{1} b} \cdot C e\left(\pi_{2} a\right)=\pi_{2} b & \text { by elimination on } a=b \\
\forall a^{\operatorname{sig} p} \forall e^{\pi_{1} a=\pi_{1} a} . C e\left(\pi_{2} a\right)=\pi_{2} a & \text { by CD }
\end{array}
$$

Fact 30.2.5 $\mathrm{DPI}(X) \rightarrow \mathrm{UIP}^{\prime}(X)$.
Proof Assume $\operatorname{DPI}(X)$. We obtain the claim with backward reasoning:

$$
\begin{array}{rr}
\forall e^{x=x} \cdot e=\mathrm{Q} x & \text { by DPI } \\
\forall e^{x=x} \cdot(x, e)_{\mathrm{eq} x}=(x, \mathrm{Q} x)_{\mathrm{eq} x} & \text { by instantiation } \\
\forall e^{x=y} \cdot(y, e)_{\mathrm{eq} x}=(x, \mathrm{Q} x)_{\mathrm{eq} x} & \text { by } \mathcal{J}
\end{array}
$$

Fact 30.2.6 $\mathrm{UIP}^{\prime}(X) \rightarrow \operatorname{UIP}(X)$.
Proof Assume UIP $^{\prime}(X)$. We obtain the claim with backward reasoning:

$$
\begin{array}{lr}
\forall e^{\prime} e^{x=y} \cdot e=e^{\prime} & \text { by } \mathcal{J} \text { on } e^{\prime} \\
\forall e^{x=x} \cdot e=\mathrm{Q} x & \text { by UIP }
\end{array}
$$

Theorem 30.2.7 UIP $(X), \operatorname{UIP}^{\prime}(X), \mathrm{K}(X), \mathrm{CD}(X)$, and $\operatorname{DPI}(X)$ are equivalent.
Proof Immediate by the preceding facts.
Exercise 30.2.8 Verify the above proofs with a proof assistant to appreciate the subtleties.

Exercise 30.2.9 Give direct proofs for the following implications: UIP $(X) \rightarrow \mathrm{K}(X)$, $\mathrm{K}(X) \rightarrow \operatorname{UIP}^{\prime}(X)$, and $\mathrm{CD}(X) \rightarrow \operatorname{UIP}^{\prime}(X)$.

Exercise 30.2.10 Prove that dependent pair types are discrete if their component types are discrete: $\forall X \forall p^{X \rightarrow \mathbb{T}} . \mathcal{E}(X) \rightarrow(\forall x . \mathcal{E}(p X)) \rightarrow \mathcal{E}(\operatorname{sig} p)$.

### 30.3 Hedberg's Theorem

We will now prove Hedberg's theorem [15]. Hedberg's theorem says that all discrete types satisfy UIP. Hedberg's theorem is important in practice since it says that the second projection for dependent pair types is injective if the first components are numbers.

The proof of Hedberg's theorem consists of two lemmas, which are connected with a clever abstraction we call Hedberg functions. In algebraic speak one may see a Hedberg function a polymorphic constant endo-function on paths.

Definition 30.3.1 A function $f: \forall x y^{X} . x=y \rightarrow x=y$ is a Hedberg function for $X$ if $\forall x y^{X} \forall e e^{\prime x=y} . f e=f e^{\prime}$.

Lemma 30.3.2 (Hedberg) Every type that has a Hedberg function satisfies UIP.
Proof Let $f: \forall x y^{X}$. $x=y \rightarrow x=y$ be a Hedberg function for $X$. We treat $x, y$ as implicit arguments and prove the equation

$$
\forall x y \forall e^{x=y} . \tau(f e)(\sigma(f(\mathrm{Q} y)))=e
$$

We first destructure $e$, which reduces the claim to

$$
\tau(f(\mathrm{Q} x))(\sigma(f(\mathrm{Q} x)))=\mathrm{Q} x
$$

which is an instance of equation (c) shown in Exercise 30.1.2.
Now let $e, e^{\prime}: x=y$. We show $e=e^{\prime}$. Using the above equation twice, we have

$$
e=\boldsymbol{\tau}(f e)(\sigma(f(\mathrm{Q} y)))=\boldsymbol{\tau}\left(f e^{\prime}\right)(\sigma(f(\mathrm{Q} y)))=e^{\prime}
$$

since $f e=f e^{\prime}$ since $f$ is a Hedberg function.
Lemma 30.3.3 Every discrete type has a Hedberg function.
Proof Let $d$ be an equality decider for $X$. We define a Hedberg function for $X$ as follows:

$$
f x y e:=\operatorname{IF} d x y \text { is L } \hat{e} \text { THEN } \hat{e} \text { ELSE } e
$$

We need to show $f x y e=f x y e^{\prime}$. If $d x y=\mathrm{L} \hat{e}$, both sides are $\hat{e}$. Otherwise, we have $e: x=y$ and $x \neq y$, which is contradictory.

Theorem 30.3.4 (Hedberg) Every discrete type satisfies UIP.
Proof Lemma 30.3.3 and Lemma 30.3.2.

Corollary 30.3.5 Every discrete type satisfies DPI.

Proof Theorems 30.3.4 and 30.2.7.

Exercise 30.3.6 Prove Hedberg's theorem with the weaker assumption that equality on $X$ is propositionally decidable: $\forall x y^{X} . x=y \vee x \neq y$.

Exercise 30.3.7 Construct a Hedberg function for $X$ assuming FE and stability of equality on $X: \forall x y^{X} . \neg \neg(x=y) \rightarrow x=y$.

Exercise 30.3.8 Assume FE and show that $\mathrm{N} \rightarrow \mathrm{B}$ satisfies UIP.
Hint: Use Exercises 30.3.7 and 15.4.12.

### 30.4 Inversion with Casts

Sometimes a full inversion operator for an indexed inductive type family can only be expressed with a cast. As example we consider derivation types for comparisons $x<y$ defined as follows:

$$
\begin{aligned}
& \mathrm{L}(x: \mathrm{N}): \mathrm{N} \rightarrow \mathbb{T}::= \\
& \mid \mathrm{L}_{1}: \mathrm{L} x(\mathrm{~S} x) \\
& \mathrm{L}_{2}: \forall y . \mathrm{L} x y \rightarrow \mathrm{~L} x(\mathrm{~S} y)
\end{aligned}
$$

The type of the inversion operator for $L$ can be expressed as

$$
\begin{aligned}
\forall x y \forall a^{\mathrm{L} x y} . & \text { MATCH } y \text { RETURN } \mathrm{L} x y \rightarrow \mathbb{T} \\
& {[0 \Rightarrow \lambda a \cdot \perp} \\
& \mid \mathrm{S} y^{\prime} \Rightarrow \lambda a^{\mathrm{L} x\left(\mathrm{~S} y^{\prime}\right)} \cdot\left(\Sigma e^{y^{\prime}=x} \cdot C e a=\mathrm{L}_{1} x\right)+\left(\Sigma a^{\prime} \cdot a=\mathrm{L}_{2} x y^{\prime} a^{\prime}\right) \\
& ] a
\end{aligned}
$$

The formulation of the type follows the pattern we have seen before, except that there is a cast in the branch for $L_{1}$ :

$$
\Sigma e^{y^{\prime}=x} \cdot C e a=\mathrm{L}_{1} x
$$

The cast is necessary since $a$ has the type $\mathrm{L} x\left(\mathrm{~S} y^{\prime}\right)$ while $\mathrm{L}_{1} x$ has the type $\mathrm{L} x(\mathrm{~S} x)$. A formulation without a cast seems impossible. The defining equations for the inversion operator discriminate on $a$, as usual, which yields the obligations

$$
\begin{aligned}
& \Sigma e^{x=x} \cdot C e\left(\mathrm{~L}_{1} x\right)=\mathrm{L}_{1} x \\
& \Sigma a^{\prime} . \mathrm{L}_{2} x y^{\prime} a=\mathrm{L}_{2} x y^{\prime} a^{\prime}
\end{aligned}
$$

The first obligation follows with cast discharge and UIP for numbers. The second obligation is trivial.

We need the inversion operator to show derivation uniqueness of L. As it turns our, we need an additional fact about $L$ :

$$
\begin{equation*}
\mathrm{L} x x \rightarrow \perp \tag{30.1}
\end{equation*}
$$

This fact follows from a more semantic fact

$$
\begin{equation*}
\mathrm{L} x y \rightarrow x<y \tag{30.2}
\end{equation*}
$$

which follows by induction on $L x y$. We don't have a direct proof of (30.1).
We now prove derivation uniqueness

$$
\forall x y \forall a b^{\llcorner x y} \cdot a=b
$$

for $L$ following the usual scheme (induction on $a$ with $b$ quantified followed by inversion of $b$ ). This gives four cases, where the contradictory cases follow with (30.1). The two remaining cases

$$
\begin{aligned}
& \forall b^{\mathrm{L} x(\mathrm{~S} x)} \forall e^{x=x} \cdot C e b=b \\
& \mathrm{~L}_{2} x y a^{\prime}=\mathrm{L}_{2} x y b^{\prime}
\end{aligned}
$$

follow with UIP for numbers and the inductive hypothesis, respectively.
We can also define an index inversion operator for L

$$
\forall x y \forall a^{\mathrm{L} x y} . \text { MATCH } y\left[0 \Rightarrow \perp \mid \mathrm{S} y^{\prime} \Rightarrow x \neq y^{\prime} \rightarrow \mathrm{L} x y^{\prime}\right]
$$

by discriminating on $a$.
Exercise 30.4.1 The proof sketches described above involve sophisticated type checking and considerable technical detail, more than can be certified reliably on paper. Use the proof assistant to verify the above proof sketches.

### 30.5 Constructor Injectivity with DPI

We present another inversion fact that can only be verified with UIP for numbers. This time we need DPI for numbers. We consider the indexed type family

$$
\begin{aligned}
& \mathrm{K}(x: \mathrm{N}): \mathrm{N} \rightarrow \mathbb{T}::= \\
& \mid \mathrm{K}_{1}: \mathrm{K} x(\mathrm{~S} x) \\
& \mathrm{K}_{2}: \forall z y . \mathrm{K} x z \rightarrow \mathrm{~K} z y \rightarrow \mathrm{~K} x y
\end{aligned}
$$

which provides a derivation system for arithmetic comparisons $x<y$ taking transitivity as a rule. Obviously, K is not derivation unique. We would like to show that the value constructor $\mathrm{K}_{2}$ is injective:

$$
\begin{equation*}
\forall a^{\mathrm{K} x z} \forall b^{\mathrm{K} z y} . \quad \mathrm{K}_{2} x z y a b=\mathrm{K}_{2} x z y a^{\prime} b^{\prime} \rightarrow(a, b)=\left(a^{\prime}, b^{\prime}\right) \tag{30.3}
\end{equation*}
$$

We will do this with a customized index inversion operator

$$
\mathrm{K}_{\mathrm{inv}}: \forall x y . \mathrm{K} x y \rightarrow(y=\mathrm{S} x)+(\Sigma z . \mathrm{K} x z \times \mathrm{K} z y)
$$

satisfying

$$
\mathrm{K}_{\mathrm{inv}} x y\left(\mathrm{~K}_{2} x z y a b\right) \approx \mathrm{R}(z,(a, b))
$$

( $R$ is one of the two value constructors for sums). Defining the inversion operator $\mathrm{K}_{\text {inv }}$ is routine. We now prove (30.3) by applying $\mathrm{K}_{\text {inv }}$ using Fact 4.6.1 to both sides of the assumed equation of (30.3), which yields

$$
\mathrm{R}(z,(a, b))=\mathrm{R}\left(z,\left(a^{\prime}, b^{\prime}\right)\right)
$$

Now the injectivity of the sum constructor R (a routine proof) yields

$$
(z,(a, b))=\left(z,\left(a^{\prime}, b^{\prime}\right)\right)
$$

which yields $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ with DPI for numbers.
The proof will also go through with a simplified inversion operator $\mathrm{K}_{\text {inv }}$ where in the sum type is replaced with the option type $\mathcal{O}(\Sigma z . \mathrm{K} x z \times \mathrm{K} z y)$. However, the use of a dependent pair type seems unavoidable, suggesting that injectivity of $\mathrm{K}_{2}$ cannot be shown without DPI.

Exercise 30.5.1 Prove injectivity of the constructors for sum using the applicative closure law (Fact 4.6.1).

Exercise 30.5.2 Prove injectivity of $\mathrm{K}_{2}$ using a customized inversion operator employing an option type rather than a sum type.

Exercise 30.5.3 Prove injectivity of $\mathrm{K}_{2}$ with the dependent elimination tactic of Coq's Equations package.

Exercise 30.5.4 Define the full inversion operator for K.
Exercise 30.5.5 Prove $\mathrm{K} x y \Leftrightarrow x<y$.
Exercise 30.5.6 Prove that there is no function $\forall x y . \mathrm{K} x y \rightarrow \Sigma z . \mathrm{K} x z \times \mathrm{K} z y$.

### 30.6 Inductive Equality at Type

We define an inductive equality type at the level of general types

$$
\begin{aligned}
& \text { id }(X: \mathbb{T}, x: X): X \rightarrow \mathbb{T}::= \\
& \mid I: \text { id } X x x
\end{aligned}
$$

and ask how propositional inductive equality and computational inductive equality are related. In turns out that we can go back and forth between proofs of propositional identities $x=y$ and derivations of general identities id $x y$, and that UIP at one level implies UIP at the other level. We learn from this example that assumptions concerning only the propositional level (i.e., UIP) may leak out to the computational level and render nonpropositional types inhabited that seem to be unconnected to the propositional level.

First, we observe that we can define transfer functions

$$
\begin{aligned}
& 1: \forall X \forall x y^{X} \forall e^{x=y} . \text { id } x y \\
& \downarrow: \forall X \forall x y^{X} \forall a^{\text {id } x y} . x=y
\end{aligned}
$$

such that $\uparrow(\mathrm{Q} x) \approx I x$ and $\downarrow(I x) \approx \mathrm{Q} x$ for all $x$, and $\downarrow(\uparrow e)=e$ and $\uparrow(\downarrow a)=a$ for all $e$ and $a$. We can also define a function

$$
\varphi: \forall X Y \forall f^{X \rightarrow Y} \forall x x^{\prime X} . \text { id } x x^{\prime} \rightarrow \mathrm{id}(f x)\left(f x^{\prime}\right)
$$

Fact 30.6.1 UIP $X \rightarrow \forall x y^{X} \forall a b^{\text {id } x y}$. id $a b$.
Proof We assume UIP $X$ and $x, y: X$ and $a, b: \operatorname{id} x y$. We show id $a b$. It suffices to show

$$
\text { id }(\uparrow(\downarrow a))(\uparrow(\downarrow b))
$$

By $\varphi$ it suffices to show id $(\downarrow a)(\downarrow b)$. By $\uparrow$ it suffices to show $\downarrow a=\downarrow b$, which holds by the assumption UIP $X$.

Exercise 30.6.2 Prove the converse direction of Fact 30.6.1.
Exercise 30.6.3 Prove Hedberg's theorem for general inductive equality. Do not make use of propositional types.

Exercise 30.6.4 Formulate the various UIP characterizations for general inductive equality and prove their equivalence. Make sure that you don't use propositional types. Note that the proofs from the propositional level carry over to the general level.

### 30.7 Notes

The dependently typed algebra of identity proofs identified by Hofmann and Streicher [17] plays an important role in homotopy type theory [29], a recent branch of type theory where identities are accommodated as nonpropositional types and UIP is inconsistent with the so-called univalence assumption. Our proof of Hedberg's theorem follows the presentation of Kraus et al. [20]. That basic type theory cannot prove UIP was discovered by Hofmann and Streicher [17] in 1994 based on a so-called groupoid interpretation.

## 31 Well-Founded Recursion

Well-founded recursion is provided with an operator

$$
\mathrm{wf}(R) \rightarrow \forall p^{X \rightarrow \mathbb{T}} .(\forall x .(\forall y \cdot R y x \rightarrow p y) \rightarrow p x) \rightarrow \forall x \cdot p x
$$

generalizing arithmetic size induction such that recursion can descend along any well-founded relation. In addition, the well-founded recursion operator comes with an unfolding equation making it possible to prove for the target function the equations used for the definition of the step function. Well-foundedness of relations is defined constructively with recursion types

$$
\mathcal{A}_{R}(x: X): \mathbb{P}::=\mathrm{C}\left(\forall y . R y x \rightarrow \mathcal{A}_{R} y\right)
$$

obtaining well-founded recursion from the higher-order recursion coming with inductive types. Being defined as computational propositions, recursion types mediate between proofs and computational recursion.

The way computational type theory accommodates definitions and proofs by general well-founded recursion is one of the highlights of computational type theory.

### 31.1 Recursion Types

We assume a binary relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$ and pronounce the $R y x$ as $y$ below $x$. We define the recursion types for $R$ as follows:

$$
\mathcal{A}_{R}(x: X): \mathbb{P}::=\mathrm{C}\left(\forall y . R y x \rightarrow \mathcal{A}_{R} y\right)
$$

and call the elements of recursion types recursion certificates. Note that recursion types are computational propositions. A recursion certificate of type $\mathcal{A}_{R}(x)$ justifies all recursions starting from $x$ and descending on the relation $R$. That a recursion on a certificate of type $\mathcal{A}_{R}(x)$ terminates is ensured by the built-in termination property of computational type theory. Note that recursion types realize higher-order recursion.

We will harvest the recursion provided by recursion certificates with a recursion operator

$$
\begin{aligned}
& W^{\prime}: \forall p^{x \rightarrow \mathbb{T}} \cdot(\forall x .(\forall y \cdot R y x \rightarrow p y) \rightarrow p x) \rightarrow \forall x \cdot \mathcal{A}_{R} x \rightarrow p x \\
& W^{\prime} p F x(\mathrm{C} \varphi):=F x\left(\lambda y r . W^{\prime} p F y(\varphi y r)\right)
\end{aligned}
$$

Computationally, $W^{\prime}$ may be seen as an operator that obtains a function

$$
\forall x . \mathcal{A}_{R} x \rightarrow p x
$$

from a step function

$$
\forall x .(\forall y . R y x \rightarrow p y) \rightarrow p x
$$

The step function describes a function $\forall x . p x$ obtained with a continuation function

$$
\forall y . R y x \rightarrow p y
$$

providing recursion for all $y$ below $x$. We also speak of recursion guarded by $R$.
We define well-founded relations as follows:

$$
\operatorname{wf}\left(R^{X \rightarrow X \rightarrow \mathbb{P}}\right):=\forall x \cdot \mathcal{A}_{R}(x)
$$

Note that a proof of a proposition $\mathrm{wf}(R)$ is a function that yields a recursion certificate $\mathcal{A}_{R}(x)$ for every $x$ of the base type of $R$. For well-founded relations, we can specialize the recursion operator $W^{\prime}$ as follows:

$$
\begin{aligned}
& W: \operatorname{wf}(R) \rightarrow \forall p^{X \rightarrow \mathbb{T}} \cdot(\forall x \cdot(\forall y \cdot R y x \rightarrow p y) \rightarrow p x) \rightarrow \forall x \cdot p x \\
& W h p F x:=W^{\prime} p F x(h x)
\end{aligned}
$$

We will refer to $W^{\prime}$ and $W$ as well-founded recursion operators. Moreover, we will speak of well-founded induction if a proof is obtained with an application of $W^{\prime}$ or $W$.

It will become clear that $W$ generalizes the size induction operator. For one thing we will show that the order predicate $<^{N \rightarrow N \rightarrow N}$ is a well-founded relation. Moreover, we will show that well-founded relations can elegantly absorbe size functions.

The inductive predicates $\mathcal{A}_{R}$ are often called accessibility predicates. They inductively identify the accessible values of a relation as those values $x$ for which all values $y$ below (i.e., $R y x$ ) are accessible. To start with, all terminal values of $R$ are accessible in $R$. We have the equivalence

$$
\mathcal{A}_{R}(x) \longleftrightarrow\left(\forall y . R y x \rightarrow \mathcal{A}_{R}(y)\right)
$$

Note that the equivalence is much weaker than the inductive definition in that it doesn't provide recursion and in that it doesn't force an inductive interpretation of the predicate $\mathcal{A}_{R}$ (e.g., the full predicate would satisfy the equivalence).

We speak of recursion types $\mathcal{A}_{R}(x)$ rather than accessibility propositions $\mathcal{A}_{R}(x)$ to emphasize that the propositional types $\mathcal{A}_{R}(x)$ support computational recursion.

Fact 31.1.1 (Extensionality) Let $R$ and $R^{\prime}$ be relations $X \rightarrow X \rightarrow \mathbb{P}$.
Then $\left(\forall x y . R^{\prime} x y \rightarrow R x y\right) \rightarrow \forall x . \mathcal{A}_{R}(x) \rightarrow \mathcal{A}_{R^{\prime}}(x)$.
Proof By well-founded induction with $W^{\prime}$.

Exercise 31.1.2 Prove $\mathcal{A}_{R}(x) \longleftrightarrow\left(\forall y . R y x \rightarrow \mathcal{A}_{R}(y)\right)$ from first principles. Make sure you understand both directions of the proof.

Exercise 31.1.3 Prove $\mathcal{A}_{R}(x) \rightarrow \neg R x x$.
Hint: Use well-founded induction with $W^{\prime}$.

Exercise 31.1.4 Prove $R x y \rightarrow R y x \rightarrow \neg \mathcal{A}_{R}(x)$.
Exercise 31.1.5 Show that well-founded relations disallow infinite descend:
$\mathcal{A}_{R}(x) \rightarrow p x \rightarrow \neg \forall x . p x \rightarrow \exists y . p y \wedge R y x$.
Exercise 31.1.6 Suppose we narrow the propositional discrimination restriction of the underlying type theory such that recursion types are the only propositional types allowing for computational discrimination. We can still express an empty propositional type with computational falsity elimination:

$$
V: \mathbb{P}::=\mathcal{A}_{\left(\lambda a b^{\top} . \mathrm{T}\right)}(\mathrm{I})
$$

Define a function $V \rightarrow \forall X^{\mathbb{T}}$. $X$.

### 31.2 Well-founded Relations

Fact 31.2.1 The order relation on numbers is well-founded.

Proof We prove the more general claim $\forall n x . x<n \rightarrow \mathcal{A}_{<}(x)$ by induction on the upper bound $n$. For $n=0$ the premise $x<n$ is contradictory. For the successor case we assume $x<\operatorname{Sn}$ and prove $\mathcal{A}_{<}(x)$. By the single constructor for $\mathcal{A}$ we assume $y<x$ and prove $\mathcal{A}_{<}(x)$. Follows by the inductive hypothesis since $y<n$.п

Given two relations $R^{X \rightarrow X \rightarrow \mathbb{P}}$ and $S^{Y \rightarrow Y \rightarrow \mathbb{P}}$, we define the lexical product $R \times S$ as a binary relation $X \times Y \rightarrow X \times Y \rightarrow \mathbb{P}$ :

$$
R \times S:=\lambda\left(x^{\prime}, y^{\prime}\right)(x, y)^{X \times Y} . R x^{\prime} x \vee x^{\prime}=x \wedge S y^{\prime} y
$$

Fact 31.2.2 (Lexical products) $\mathrm{wf}(R) \rightarrow \mathrm{wf}(S) \rightarrow \mathrm{wf}(S \times R)$.

Proof We prove $\forall x y . \mathcal{A}_{R \times S}(x, y)$ by nested well-founded induction on first $x$ in $R$ and then $y$ in $S$. By the constructor for $\mathcal{A}_{R \times S}(x, y)$ we assume $R x^{\prime} x \vee x^{\prime}=x \wedge S y^{\prime} y$ and prove $\mathcal{A}_{R \times S}\left(x^{\prime}, y^{\prime}\right)$. If $R x^{\prime} x$, the claim follows by the inductive hypothesis for $x$. If $x^{\prime}=x \wedge S y^{\prime} y$, the claim is $\mathcal{A}_{R \times S}\left(x, y^{\prime}\right)$ and follows by the inductive hypothesis for $y$.

The above proof is completely straightforward when carried out formally with the well-founded recursion operator $W$.

Another important construction for binary relations are retracts. Here one has a relation $R^{Y \rightarrow Y \rightarrow \mathbb{P}}$ and uses a function $\sigma^{X \rightarrow Y}$ to obtain a relation $R_{\sigma}$ on $X$ :

$$
R_{\sigma}:=\lambda x^{\prime} x \cdot R\left(\sigma x^{\prime}\right)(\sigma x)
$$

We will show that retracts of well-founded relations are well-founded. It will also turn out that well-founded recursion on a retract $R_{\sigma}$ is exactly well-founded size induction on $R$ with the size function $\sigma$.
Fact 31.2.3 (Retracts) $\mathrm{wf}(R) \rightarrow \mathrm{wf}\left(R_{\sigma}\right)$.
Proof Let $R^{Y \rightarrow Y \rightarrow \mathbb{P}}$ and $\sigma^{X \rightarrow Y}$. We assume wf $(R)$. It suffices to show

$$
\forall y x . \sigma x=y \rightarrow \mathcal{A}_{R_{\sigma}}(x)
$$

We show the lemma by well-founded induction on $y$ and $R$. We assume $\sigma x=y$ and show $\mathcal{A}_{R_{\sigma}}(x)$. Using the constructor for $\mathcal{A}_{R_{\sigma}}(x)$, we assume $R\left(\sigma x^{\prime}\right)(\sigma x)$ and show $\mathcal{A}_{R_{\sigma}}\left(x^{\prime}\right)$. Follows with the inductive hypothesis for $\sigma x^{\prime}$.

Corollary 31.2.4 (Well-founded size induction)
Let $R^{Y \rightarrow Y \rightarrow \mathbb{P}}$ be well-founded and $\sigma^{X \rightarrow Y}$. Then:
$\forall p^{X \rightarrow \mathbb{T}} .\left(\forall x .\left(\forall x^{\prime} . R\left(\sigma x^{\prime}\right)(\sigma x) \rightarrow p x^{\prime}\right) \rightarrow p x\right) \rightarrow \forall x \cdot p x$.
We now obtain the arithmetic size induction operator from $\S 19.2$ as a special case of the well-founded size induction operator.

Corollary 31.2.5 (Arithmetic size induction)
$\forall \sigma^{X \rightarrow N} \forall p^{X \rightarrow \mathbb{T}} .\left(\forall x .\left(\forall x^{\prime} . \sigma x^{\prime}<\sigma x \rightarrow p x^{\prime}\right) \rightarrow p x\right) \rightarrow \forall x . p x$.
Proof Follows with Corollary 31.2.4 and Fact 31.2.1.
There is a story here. We came up with retracts to have an elegant construction of the wellfounded size induction operator appearing in Corollary 31.2.4. Note that conversion plays an important role in type checking the construction. The proof that retracts of well-founded relations are well-founded (Fact 31.2.3) is interesting in that it first sets up an intermediate that can be shown with well-founded recursion. The equational premise $\sigma x=y$ of the intermediate claim is needed so that the well-founded recursion is fully informed. Similar constructions will appear once we look at inversion operators for indexed inductive types.

Exercise 31.2.6 Prove $R \subseteq R^{\prime} \rightarrow \mathrm{wf}\left(R^{\prime}\right) \rightarrow \mathrm{wf}(R)$ for all relations $R, R^{\prime}: X \rightarrow X \rightarrow \mathbb{P}$. Tip: Use extensionality (Fact 31.1.1).

Exercise 31.2.7 Give two proofs for $\mathrm{wf}(\lambda x y . \mathrm{S} x=y)$ : A direct proof by structural induction on numbers, and a proof exploiting that $\lambda x y . \mathrm{S} x=y$ is a sub-relation of the order relation on numbers.

### 31.3 Unfolding Equation

Assuming FE, we can prove the equation

$$
W F x=F x(\lambda y r . W F y)
$$

for the well-founded recursion operator $W$. We will refer to this equation as unfolding equation. The equation makes it possible to prove that the function $W F$ satisfies the equations underlying the definition of the guarded step function $F$. This is a major improvement over arithmetic size induction where no such tool is available. For instance, the unfolding equation gives us the equation

$$
D x y= \begin{cases}0 & \text { if } x \leq y \\ \mathrm{~S}(D(x-\mathrm{S} y) y) & \text { if } x>y\end{cases}
$$

for an Euclidean division function $D$ defined with well-founded recursion on $<_{\mathrm{N}}$ :

$$
\begin{aligned}
& D x y:=W(F y) x \\
& F: \mathrm{N} \rightarrow \forall x \cdot\left(\forall x^{\prime} \cdot x^{\prime}<x \rightarrow \mathrm{~N}\right) \rightarrow \mathrm{N} \\
& F y x h:= \begin{cases}0 & \text { if } x \leq y \\
\mathrm{~S}\left(h(x-\mathrm{S} y)^{\ulcorner } x-\mathrm{S} y<x^{\urcorner}\right) & \text {if } x>y\end{cases}
\end{aligned}
$$

Note that the second argument $y$ is treated as a parameter. Also note that the equation for $D$ is obtained from the unfolding equation for $W$ by computational equality.

We now prove the unfolding equation using FE. We first show the remarkable fact that under FE all recursion certificates are equal.

## Lemma 31.3.1 (Uniqueness of recursion types)

Under FE, all recursion types are unique: FE $\rightarrow \forall x \forall a b^{\mathcal{A}_{R}(x)} . a=b$.

Proof We prove

$$
\forall x \forall a^{\mathcal{A}_{R}(x)} \forall b c^{\mathcal{A}_{R}(x)} . b=c
$$

using $W^{\prime}$. This gives us the claim $\forall b c^{\mathcal{A}_{R}(x)} . b=c$ and the inductive hypothesis

$$
\forall x^{\prime} . R x^{\prime} x \rightarrow \forall b c^{\mathcal{A}_{R}\left(x^{\prime}\right)} . b=c
$$

We destructure $b$ and $c$, which gives us the claim

$$
C \varphi=C \varphi^{\prime}
$$

for $\varphi, \varphi^{\prime}: \forall x^{\prime} . R x^{\prime} x \rightarrow \mathcal{A}_{R}\left(x^{\prime}\right)$. By FE it suffices to show

$$
\varphi x^{\prime} r=\varphi^{\prime} x^{\prime} r
$$

for $r^{R x^{\prime} x}$. Holds by the inductive hypothesis.

## Fact 31.3.2 (Unfolding equation)


Then $\mathrm{FE} \rightarrow \mathrm{wf}(R) \rightarrow \forall x . W F x=F x\left(\lambda x^{\prime} r . W F x^{\prime}\right)$.
Proof We prove $W F x=F x\left(\lambda x^{\prime} r . W F x^{\prime}\right)$. We have

$$
W F x=W^{\prime} F x a=W^{\prime} F x(C \varphi)=F x\left(\lambda x^{\prime} r . W^{\prime} F x^{\prime}\left(\varphi x^{\prime} r\right)\right)
$$

for some $a$ and $\varphi$. Using FE, it now suffices to prove the equation

$$
W^{\prime} F x^{\prime}\left(\varphi x^{\prime} r\right)=W^{\prime} F x^{\prime} b
$$

for some $b$. Holds by Lemma 31.3.1.
For functions $f^{\forall x \cdot p x}$ and $F^{\forall x .\left(\forall x^{\prime} \cdot R x^{\prime} x \rightarrow p x^{\prime}\right) \rightarrow p x}$ we define

$$
f \vDash F:=\forall x . f x=F x(\lambda y r . f y)
$$

and say that $f$ satisfies $F$. Given this notation, we may write

$$
\mathrm{FE} \rightarrow \mathrm{wf}(R) \rightarrow W F \vDash F
$$

for Fact 31.3.2. We now prove that all functions satisfying a step function agree if FE is assumed and $R$ is well-founded.

Fact 31.3.3 (Uniqueness)
Let $R^{X \rightarrow X \rightarrow \mathbb{P}}, p^{X \rightarrow \mathbb{T}}$, and $F^{\forall x . ~}\left(\forall x^{\prime} . R x^{\prime} x \rightarrow p x^{\prime}\right) \rightarrow p x$.
Then $\mathrm{FE} \rightarrow \mathrm{wf}(R) \rightarrow(f \vDash F) \rightarrow\left(f^{\prime} \vDash F\right) \rightarrow \forall x . f x=f^{\prime} x$.
Proof We prove $\forall x . f x=f^{\prime} x$ using $W$ with $R$. Using the assumptions for $f$ and $f^{\prime}$, we reduce the claim to $F x\left(\lambda x^{\prime} r . f x^{\prime}\right)=F x\left(\lambda x^{\prime} r . f^{\prime} x^{\prime}\right)$. Using FE, we reduce that claim to $R x^{\prime} x \rightarrow f x^{\prime}=f^{\prime} x^{\prime}$, an instance of the inductive hypothesis.

Exercise 31.3.4 Note that the proof of Lemma 31.3.1 doubles the quantification of $a$. Verify that this is justified by the general law $(\forall a . \forall a . p a) \rightarrow \forall a . p a$.

$$
\begin{aligned}
& g: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& g 0 y= y \\
& g(\mathrm{~S} x) 0=\mathrm{S} x
\end{aligned} \quad \begin{aligned}
& g(\mathrm{~S} x)(\mathrm{S} y)= \begin{cases}g(\mathrm{~S} x)(y-x) & \text { if } x \leq y \\
g(x-y)(\mathrm{S} y) & \text { if } x>y\end{cases} \\
& \text { guard conditions } \\
& x \leq y \rightarrow \mathrm{~S} x+(y-x)<\mathrm{S} x+\mathrm{S} y \\
& x>y \rightarrow(x-y)+\mathrm{S} y<\mathrm{S} x+\mathrm{S} y
\end{aligned}
$$

Figure 31.1: Recursive specification of a gcd function

### 31.4 Example: GCDs

Our second example for the use of well-founded recursion and the unfolding equation is the construction of a function computing GCDs (§20.5). We start with the procedural specification in Figure 31.1. We will construct a function $g^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}}$ satisfying the specification using $W$ on the retract of $<_{N}$ for the size function

$$
\begin{aligned}
& \sigma: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{~N} \\
& \sigma(x, y):=x+y
\end{aligned}
$$

The figure gives the guard conditions for the recursive calls adding the preconditions established by the conditional in the third specifying equation.

Given the specification in Figure 31.1, the formal definition of the guarded step function is straightforward:

$$
\begin{aligned}
& F: \forall c^{\mathrm{N} \times \mathrm{N}} .\left(\forall c^{\prime} \cdot \sigma c^{\prime}<\sigma c \rightarrow \mathrm{~N}\right) \rightarrow \mathrm{N} \\
& \quad F(0, y)_{\_}:=y \\
& F(\mathrm{~S} x, 0)_{-} \\
& :=\mathrm{S} x \\
& F(\mathrm{~S} x, \mathrm{~S} y) h:= \begin{cases}h(\mathrm{~S} x, y-x)^{\ulcorner } \mathrm{S} x+(y-x)<\mathrm{S} x+\mathrm{S} y^{\urcorner} & \text {if } x \leq y \\
h(x-y, \mathrm{~S} y)^{\ulcorner }(x-y)+\mathrm{S} y<\mathrm{S} x+\mathrm{S} y^{\urcorner} & \text {if } x>y\end{cases}
\end{aligned}
$$

We now define the desired function

$$
\begin{aligned}
& g: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& g x y:=\operatorname{WHF}(x, y)
\end{aligned}
$$

using the recursion operator $W$ and the function

$$
H: \forall c^{\mathrm{N} \times \mathrm{N}} \cdot \mathcal{A}_{(<\mathrm{N}) \sigma}(c)
$$

obtained with the functions for recursion certificates for numbers (Fact 31.2.1) and retracts (Fact 31.2.3). Each of the three specifying equations in Figure 31.1 can now be obtained as an instance of the unfolding equation (Fact 31.3.2).

In summary, we note that the construction of a function computing GCDs with a well-founded recursion operator is routine given the standard constructions for retracts and the order on numbers. Proving that the specifying equations are satisfied is straightforward using the unfolding equation and FE.

That the example can be done so nicely with the general retract construction is due to the fact that type checking is modulo computational equality. For instance, the given type of the step function $F$ is computationally equal to

$$
\forall c^{\mathrm{N} \times \mathrm{N}} .\left(\forall c^{\prime} \cdot\left(<_{\mathrm{N}}\right)_{\sigma} c^{\prime} c \rightarrow \mathrm{~N}\right) \rightarrow \mathrm{N}
$$

Checking the conversions underlying our presentation is tedious if done by hand but completely automatic in Coq.

Exercise 31.4.1 Construct a function $f^{\mathrm{N}-\mathrm{N}-\mathrm{N}}$ satisfying the Ackermann equations (§1.11) using well-founded recursion for the lexical product $<_{N} \times<_{N}$.

### 31.5 Unfolding Equation without FE

We have seen a proof of the unfolding equation assuming FE. Alternatively, one can prove the unfolding equation assuming that the step function has a particular extensionality property. For concrete step function one can usually prove that they have this extensionality without using assumptions.

We assume a relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$, a type function $p^{X \rightarrow \mathbb{T}}$, and a step function

$$
F: \forall x .\left(\forall x^{\prime} . R x^{\prime} x \rightarrow p x^{\prime}\right) \rightarrow p x
$$

We define extensionality of $F$ as follows:

$$
\operatorname{ext}(F):=\forall x h h^{\prime} .\left(\forall y r . h y r=h^{\prime} y r\right) \rightarrow F x h=F x h^{\prime}
$$

The property says that $F x h$ remains the same if $h$ is replaced with a function agreeing with $h$. We have $\mathrm{FE} \rightarrow \operatorname{ext}(F)$. Thus all proofs assuming $\operatorname{ext}(F)$ yields proofs for the stronger assumption FE .

Fact 31.5.1 $\operatorname{ext}(F) \rightarrow \forall x a a^{\prime} . W^{\prime} F x a=W^{\prime} F x a^{\prime}$.

Proof We assume $\operatorname{ext}(F)$ and show $\forall x \forall a^{\mathcal{A}_{R}(x)} . \forall a a^{\prime} . W^{\prime} F x a=W^{\prime} F x a^{\prime}$ using $W^{\prime}$. This give us the inductive hypothesis

$$
\forall y \forall r^{R y x} \forall a a^{\prime} . W^{\prime} F y a=W^{\prime} F y a^{\prime}
$$

By destructuring we obtain the claim $W^{\prime} F x(C \varphi)=W^{\prime} F x\left(C \varphi^{\prime}\right)$ for two functions $\varphi, \varphi^{\prime}: \forall y . R y x \rightarrow \mathcal{A}_{R}(y)$. By reducing $W^{\prime}$ we obtain the claim

$$
F x\left(\lambda y r . W^{\prime} F y(\varphi y r)\right)=F x\left(\lambda y r . W^{\prime} F y\left(\varphi^{\prime} y r\right)\right)
$$

By the extensionality of $F$ we now obtain the claim

$$
W^{\prime} F y(\varphi y r)=W^{\prime} F y\left(\varphi^{\prime} y r\right)
$$

for $r^{R y x}$, which is an instance of the inductive hypothesis.
Fact 31.5.2 (Unfolding equation)
Let $R$ be well-founded. Then $\operatorname{ext}(F) \rightarrow \forall x . W F x=F x(\lambda y r . W F y)$.
Proof We assume $\operatorname{ext}(F)$ and prove $W F x=F x(\lambda y r$. WFy). We have $W F x=$ $W^{\prime} F x(C \varphi)=F x\left(\lambda y r . W^{\prime} F y(\varphi y r)\right)$. Extensionality of $F^{\prime}$ now gives us the claim $W^{\prime} F y(\varphi y r)=W^{\prime} F y\left(\varphi^{\prime} y r\right)$, which follows by Fact 31.5.1.

Exercise 31.5.3 From the definition of extensionality for step function it seams clear that ordinary step functions are extensional. To prove that an ordinary step function is extensional, no induction is needed. It suffices to walk through the matches and confront the recursive calls.
a) Prove that the step function for Euclidean division is extensional (§31.3).
b) Prove that the step function for GCDs is extensional (§31.4).
c) Prove that the step function for the Ackermann equations is extensional (Exercise 31.4.1).

Exercise 31.5.4 Show that all functions satisfying an extensional step function for a well-founded relation agree.

### 31.6 Witness Operator

There is an elegant and instructive construction of an existential witness operator for numbers (Fact 22.2.3) using recursion types. We assume a decidable predicate $p^{N \rightarrow \mathbb{P}}$ and define a relation

$$
R x y:=x=\mathrm{S} y \wedge \neg p y
$$

on numbers. We would expect that $p$ is satisfiable if and only if $\mathcal{A}_{R}$ is satisfiable. And given a certificate $\mathcal{A}_{R}(x)$, we can compute a witness of $p$ doing a linear search starting from $x$ using well-founded recursion.

Lemma 31.6.1 $p(x+y) \rightarrow \mathcal{A}_{R}(y)$.
Proof Induction on $x$ with $y$ quantified. The base case follows by falsity elimination. For the successor case, we assume $H: p(\mathrm{~S} x+y)$ and prove $\mathcal{A}_{R}(y)$. Using the constructor for $\mathcal{A}_{R}$, we assume $\neg p y$ and prove $\mathcal{A}_{R}(\mathrm{~S} y)$. By the inductive hypothesis it suffices to show $p(x+\mathrm{S} y)$. Holds by $H$.

Lemma 31.6.2 $\mathcal{A}_{R}(x) \rightarrow \operatorname{sig}(p)$.
Proof By well-founded induction with $W^{\prime}$. Using the decider for $p$, we have two cases. If $p x$, we have $\operatorname{sig}(p)$. If $\neg p x$, we have $R(\mathrm{~S} x) x$ and thus the claim holds by the inductive hypothesis.

Fact 31.6.3 (Existential witness operator)
$\forall p^{N \rightarrow \mathbb{P}} .(\forall x . \mathcal{D}(p x)) \rightarrow \operatorname{ex}(p) \rightarrow \operatorname{sig}(p)$.
Proof We assume a decidable and satisfiable predicate $p^{N \rightarrow \mathbb{P}}$ and define $R$ as above. By Lemma 31.6.2 it suffices to show $\mathcal{A}_{R}(0)$. We can now obtain a witness $x$ for $p$. The claim follows with Lemma 31.6.2.

We may see the construction of an existential witness operator for numbers with linear search types (Fact 22.2.3) as a specialization of the construction shown here where the general recursion types used here are replaced with special purpose linear search types.

Exercise 31.6.4 Prove $\mathcal{A}_{R}(n) \longleftrightarrow T(n)$.
Exercise 31.6.5 Prove that $\mathcal{A}_{R}$ yields the elimination lemma for linear search types:

$$
\forall q^{\mathrm{N} \rightarrow \mathbb{T}} .(\forall n .(\neg p n \rightarrow q(\mathrm{~S} n)) \rightarrow q n) \rightarrow \forall n \cdot \mathcal{A}_{R}(n) \rightarrow q n
$$

Do the proof without using linear search types.

### 31.7 Equations Package and Extraction

The results presented so far are such that, given a recursive specification of a function, we can obtain a function satisfying the specification, provided we can supply a well-founded relation and proofs for the resulting guard conditions (see Figure 31.1 for an example). Moreover, if we don't accept FE as an assumption, we need to prove that the specified step function is extensional as defined in §31.5.

The proof assistant Coq comes with a tool named Equations package making it possible to write recursive specifications and associate them with well-founded relations. The tool then automatically generates the resulting proof obligations. Once
the user has provided the requested proofs for the specification, a function is defined and proofs are generated that the function satisfies the specifying equations. This uses the well-founded recursion operator and the generic proofs of the unfolding equation we have seen. One useful feature of Equations is the fact that one can specify functions with several arguments and with size induction. Equations then does the necessary pairing and the retract construction, relieving the user from tedious coding.

Taken together, we can now define recursive functions where the termination conditions are much relaxed compared to strict structural recursion. In contrast to functions specified with strict structural recursion, the specifying equations are satisfied as propositional equations rather than as computational equations. Nevertheless, if we apply functions defined with well-founded recursion to concrete and fully specified arguments, reduction is possible and we get the accompanying computational equalities (e.g., gcd $2156 \approx 7$ ).

This is a good place to mention Coq's extraction tool. Given a function specified in computational type theory, one would expect that one can extract related programs for functional programming languages. In Coq, such an extraction tool is available for all function definitions, and works particularly well for functions defined with Equations. The vision here is that one specifies and verifies functions in computational type theory and then extracts programs that are correct by construction. A flagship project using extraction is CompCert (compcert.org) where a verified compiler for a subset of the $C$ programming language has been developed.

### 31.8 Padding and Simplification

Given a certificate $a: \mathcal{A}_{R}(x)$, we can obtain a computationally equal certificate $b: \mathcal{A}_{R}(x)$ that exhibits any number of applications of the constructor for certificates:

$$
\begin{aligned}
& a \approx C x\left(\lambda y r \cdot a^{\prime}\right) \\
& a \approx C x\left(\lambda y r \cdot C y\left(\lambda y^{\prime} r^{\prime} \cdot a^{\prime \prime}\right)\right)
\end{aligned}
$$

We formulate the idea with two functions

$$
\begin{aligned}
& D: \forall x . \mathcal{A}_{R}(x) \rightarrow \forall y . R y x \rightarrow \mathcal{A}_{R}(y) \\
& D x a:=\text { MATCH } a[C \varphi \Rightarrow \varphi] \\
& P: N \rightarrow \forall x \cdot \mathcal{A}_{R}(x) \rightarrow \mathcal{A}_{R}(x) \\
& P 0 x a:=a \\
& P(\mathrm{Sn}) a:=C x(\lambda y r . \operatorname{Pny}(\text { Dxayr }))
\end{aligned}
$$

and refer to $P$ as padding function. We have, for instance,

$$
\begin{aligned}
& P(1+n) x a \approx C x\left(\lambda y_{1} r_{1} \cdot P n y_{1}\left(D x a y_{1} r_{1}\right)\right) \\
& P(2+n) x a \approx C x\left(\lambda y_{1} r_{1} \cdot C y_{1}\left(\lambda y_{2} r_{2} \cdot P n y_{2}\left(D y_{1}\left(D x a y_{1} r_{1}\right) y_{2} r_{2}\right)\right)\right)
\end{aligned}
$$

The construction appears tricky and fragile on paper. When carried out with a proof assistant, the construction is fairly straightforward: Type checking helps with the definitions of $D$ and $P$, and simplification automatically obtains the right hand sides of the two examples from the left hand sides.

When we simplify a term $P(k+n) x a$ where $k$ is a concrete number and $n, x$, and $a$ are variables, we obtain a term that needs at least $2 k$ additional variables to be written down. Thus the example tells us that simplification may have to introduce an unbounded number of fresh variables.

The possibility for padding functions seems to be a unique feature of higherorder recursion.

Exercise 31.8.1 Write a padding function for linear search types (§22.1).

### 31.9 Classical Well-foundedness

Well-founded relations and well-founded induction are basic notions in set-theoretic foundations. The standard definition of well-foundedness in set-theoretic foundations asserts that all non-empty sets have minimal elements. The set-theoretic definition is rather different the computational definition based on recursion types. We will show that the two definitions are equivalent under XM , where sets will be expressed as unary predicates.

A meeting point of the computational and the set-theoretic world is well-founded induction. In both worlds a relation is well-founded if and only if it supports wellfounded induction.

Fact 31.9.1 (Characterization by well-founded induction)
$\forall R^{X \rightarrow X \rightarrow \mathbb{P}} . \mathrm{wf}(R) \longleftrightarrow \forall p^{X \rightarrow \mathbb{P}} .(\forall x .(\forall y . R y x \rightarrow p y) \rightarrow p x) \rightarrow \forall x . p x$.
Proof Direction $\rightarrow$ follows with $W$. For the other direction, we instantiate $p$ with $\mathcal{A}_{R}$. It remains to show $\forall x .\left(\forall y . R y x \rightarrow \mathcal{A}_{R} y\right) \rightarrow \mathcal{A}_{R} x$, which is an instance of the type of the constructor for $\mathcal{A}_{R}$.

The characterization of well-foundedness with the principle of well-founded induction is very interesting since no inductive types and only a predicate $p^{X \rightarrow \mathbb{P}}$ is used. Thus the computational aspects of well-founded recursion are invisible. They are added by the presence of the inductive predicate $\mathcal{A}_{R}$ admitting computational elimination.

Next we establish a positive characterization of the non-well-founded elements of a relation. We define progressive predicates and progressive elements for a relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$ as follows:

$$
\begin{aligned}
\operatorname{pro}_{R}\left(p^{X \rightarrow \mathbb{P}}\right) & :=\forall x \cdot p x \rightarrow \exists y \cdot p y \wedge R y x \\
\operatorname{pro}_{R}\left(x^{X}\right) & :=\exists p \cdot p x \wedge \operatorname{pro}_{R}(p)
\end{aligned}
$$

Intuitively, progressive elements for a relation $R$ are elements that have an infinite descent in $R$. Progressive predicates are defined such that every witness has an infinite descent in $R$. Progressive predicates generalize the frequently used notion of infinite descending chains.

Fact 31.9.2 (Disjointness) $\forall x \cdot \mathcal{A}_{R}(x) \rightarrow \operatorname{pro}_{R}(x) \rightarrow \perp$.
Proof By well-founded induction with $W^{\prime}$. We assume a progressive predicate $p$ with $p x$ and derive a contradiction. By destructuring we obtain $y$ such that $p y$ and $R y x$. Thus $\operatorname{pro}_{R}(y)$. The inductive hypothesis now gives us a contradiction.

Fact 31.9.3 (Exhaustiveness) $\mathrm{XM} \rightarrow \forall x . \mathcal{A}_{R}(x) \vee \operatorname{pro}_{R}(x)$.
Proof Using XM, we assume $\neg \mathcal{A}_{R}(x)$ and show $\operatorname{pro}_{R}(x)$. It suffices to show $\operatorname{pro}_{R}\left(\lambda z . \neg \mathcal{A}_{R}(z)\right)$. We assume $\neg \mathcal{A}_{R}(z)$ and prove $\exists y . \neg \mathcal{A}_{R}(y) \wedge R y z$. Using XM, we assume $H: \neg \exists y . \neg \mathcal{A}_{R}(y) \wedge R y z$ and derive a contradiction. It suffices to prove $\mathcal{A}_{R}(z)$. We assume $R z^{\prime} z$ and prove $\mathcal{A}_{R}\left(z^{\prime}\right)$. Follows with $H$ and XM.

Fact 31.9.4 (Characterization by absence of progressive elements)
$\mathrm{XM} \rightarrow\left(\mathrm{wf}(R) \longleftrightarrow \neg \exists x . \operatorname{pro}_{R}(x)\right)$.
Proof For direction $\rightarrow$ we assume $\mathrm{wf}(R)$ and $\operatorname{pro}_{R}(x)$ and derive a contradiction. We have $\mathcal{A}_{R}(x)$. Contradiction by Fact 31.9.2.

For direction $\leftarrow$ we assume $\neg \exists x$. $\operatorname{pro}_{R}(x)$ and prove $\mathcal{A}_{R}(x)$. By Fact 31.9.3 we assume $\operatorname{pro}_{R}(x)$ and have a contradiction with the assumption.

We define the minimal elements in $R^{X \rightarrow X \rightarrow \mathbb{P}}$ and $p^{X \rightarrow \mathbb{P}}$ as follows:

$$
\min _{R, p}(x):=p x \wedge \forall y . p y \rightarrow \neg R y x
$$

Using XM, we show that a predicate is progressive if and only if it has no minimal element.

Fact 31.9.5 XM $\left.\rightarrow \operatorname{pro}_{R}(p) \hookrightarrow \neg \exists x . \min _{R, p}(x)\right)$.

Proof For direction $\rightarrow$, we derive a contradiction from the assumptions $\operatorname{pro}_{R}(p)$, $p x$, and $\forall y . p y \rightarrow \neg R y x$. Straightforward.

For direction $\leftarrow$, using XM , we derive a contradiction from the assumptions $\neg \exists x . \min _{R, p}(x), p x$, and $H: \neg \exists y$. $p y \wedge R y x$. We show $\min _{R, p}(x)$. We assume $p y$ and $R y x$ and derive a contradiction. Straightforward with $H$.

Next we show that $R$ has no progressive element if and only if every satisfiable predicate has a minimal witness.

Fact 31.9.6 $\mathrm{XM} \rightarrow\left(\neg\left(\exists x . \operatorname{pro}_{R}(x)\right) \longleftrightarrow \forall p .(\exists x \cdot p x) \rightarrow \exists x . \min _{R, p}(x)\right)$.

Proof For direction $\rightarrow$, we use XM and derive a contradiction from the assumptions $\neg \exists x . \operatorname{pro}_{R}(x), p x$, and $\neg \exists x . \min _{R, p}(x)$. With Fact 31.9 .5 we have $\operatorname{pro}_{R}(p)$. Contradiction with $\neg \exists x . \operatorname{pro}_{R}(x)$.

For direction $\leftarrow$, we assume $p x$ and $\operatorname{pro}_{R}(p)$ and derive a contradiction. Fact 31.9.5 gives us $\neg \exists x . \min _{R, p}(x)$. Contradiction with the primary assumption.

We now have that a relation $R$ is well-founded if and only if every satisfiable predicate has a minimal witness in $R$.

Fact 31.9 .7 (Characterization by existence of minimal elements)
$\mathrm{XM} \rightarrow\left(\mathrm{wf}(R) \longleftrightarrow \forall p^{X \rightarrow \mathbb{P}} .(\exists x \cdot p x) \rightarrow \exists x . \min _{R, p}(x)\right.$.

Proof Facts 31.9.4 and 31.9.6.

The above proofs gives us ample opportunity to contemplate about the role of XM in proofs. An interesting example is Fact 31.9.3, where XM is used to show that an element is either well-founded or progressive.

### 31.10 Transitive Closure

The transitive closure $R^{+}$of a relation $R^{X \rightarrow X \rightarrow \mathbb{P}}$ is the minimal transitive relation containing $R$. There are different possibilities for defining $R^{+}$. We choose an inductive definition based on two rules:

$$
\frac{R x y}{R^{+} x y} \quad \frac{R^{+} x y^{\prime} \quad R y^{\prime} y}{R^{+} x y}
$$

We work with this format since it facilitates proving that taking the transitive closure of a well-founded relation yields a well-founded relation. Note that the inductive predicate behind $R^{+}$has four parameters $X, R, x, y$, where $X, R, x$ are uniform and $y$ is non-uniform.

Fact 31.10.1 Let $R^{X \rightarrow X \rightarrow \mathbb{P}}$. Then $\mathrm{wf}(R) \rightarrow \mathrm{wf}\left(R^{+}\right)$.
Proof We assume wf $(R)$ and prove $\forall y . \mathcal{A}_{R^{+}}(y)$ by well-founded induction on $y$ and $R$. This gives us the induction hypothesis and the claim $\mathcal{A}_{R^{+}}(y)$. Using the constructor for recursion types we assume $R^{+} x y$ and show $\mathcal{A}_{R^{+}}(x)$. If $R^{+} x y$ is obtained from $R x y$, the claim follows with the inductive hypothesis. Otherwise we have $R^{+} x y^{\prime}$ and $R y^{\prime} y$. The inductive hypothesis gives us $\mathcal{A}_{R^{+}}\left(y^{\prime}\right)$. Thus $\mathcal{A}_{R^{+}}(x)$ since $R^{+} x y^{\prime}$.

Exercise 31.10.2 Prove that $R^{+}$is transitive.
Hint: Assume $R^{+} x y$ and prove $\forall z . R^{+} y z \rightarrow R^{+} x z$ by induction on $R^{+} y z$. First formulate and prove the necessary induction principle for $R^{+}$.

### 31.11 Notes

The inductive definition of the well-founded points of a relation appears in Aczel [1] in a set-theoretic setting. Nordström [25] adapts Aczel's definition to a constructive type theory without propositions and advocates functions recursing on recursion types. Balaa and Bertot [3] define a well-founded recursion operator in Coq and prove that it satisfies the unfolding equation. They suggest that Coq should support the construction of functions with a tool taking care of the tedious routine proofs coming with well-founded recursion, anticipating Coq's current Equations package.

## 32 Aczel Trees and Hierarchy Theorems

Aczel trees are wellfounded trees where each node comes with a type and a function fixing the subtree branching. Aczel trees were conceived by Peter Aczel [2] as a representation of set-like structures in type theory. Aczel trees are accommodated with inductive type definitions featuring a single value constructor and higher-order recursion.

We discuss the dominance condition, a restriction on inductive type definitions ensuring predicativity of nonpropositional universes. Using Aczel trees, we will show an important foundational result: No universe embeds into one of its types. From this hierarchy result we obtain that proof irrelevance is a consequence of excluded middle, and that omitting the propositional discrimination restriction in the presence of the impredicative universe of propositions results in inconsistency.

### 32.1 Inductive Types for Aczel Trees

We define an inductive type providing Aczel trees:

$$
\mathcal{T}: \mathbb{T}::=\mathbb{T}(X: \mathbb{T}, X \rightarrow \mathcal{T})
$$

There is an important constraint on the universe levels of the two occurrences of $\mathbb{T}$ we will discuss later. We see a tree $\mathrm{T} X f$ as a tree taking all trees $f x$ as (immediate) subtrees, where the edges to the subtrees are labelled with the values of $X$. We clarify the idea behind Aczel trees with some examples. The term

$$
\mathrm{T} \perp(\lambda a . \text { MATCH } a[])
$$

describes an atomic tree not having subtrees. Given two trees $t_{1}$ and $t_{2}$, the term

$$
\text { TВ }\left(\lambda b . \text { мATCH } b\left[\text { true } \Rightarrow t_{1} \mid \text { false } \Rightarrow t_{2}\right]\right)
$$

describes a tree having exactly $t_{1}$ and $t_{2}$ as subtrees where the boolean values are used as labels. The term

$$
\text { TN }\left(\lambda_{-} . \mathrm{T}_{\perp}(\lambda h . \text { MATCH } h[])\right.
$$

describes an infinitely branching tree that has a subtree for every number. All subtrees of the infinitely branching tree are equal (to the atomic tree).

Consider the term

$$
\mathrm{T} \mathcal{T}(\lambda s . s)
$$

which seems to describe a universal tree having every tree as subtree. It turns out that the term for the universal tree does not type check since there is a universe level conflict. First we note that Coq's type theory admits the definition

$$
\mathcal{T}: \mathbb{T}_{i}::=\mathrm{T}\left(X: \mathbb{T}_{j}, X \rightarrow \mathcal{T}\right)
$$

only if $i>j$. This reflects a restriction on inductive definitions we have not discussed before. We speak of the dominance condition. In its general form, the dominance condition says that the type of every value constructor (without the parameter prefix) must be a member of the universe specified for the type constructor. The dominance condition admits the above definition for $i>j$ since then $\mathbb{T}_{j}: \mathbb{T}_{i}$, $X: \mathbb{T}_{i}$, and $\mathcal{T}: \mathbb{T}_{i}$ and hence

$$
\left(\forall X^{\mathbb{T}_{j}} \cdot(X \rightarrow \mathcal{T}) \rightarrow \mathcal{T}\right): \mathbb{T}_{i}
$$

using the universe rules from §5.9. For the reader’s convenience we repeat the rules for universes

$$
\begin{aligned}
& \mathbb{T}_{1}: \mathbb{T}_{2}: \mathbb{T}_{3}: \cdots \\
& \mathbb{P} \subseteq \mathbb{T}_{1} \subseteq \mathbb{T}_{2} \subseteq \mathbb{T}_{3} \subseteq \cdots \\
& \mathbb{P}: \mathbb{T}_{2}
\end{aligned}
$$

and function types

$$
\frac{\vdash u: U \quad x: u \vdash v: U}{\vdash \forall x^{u} \cdot v: U} \quad \frac{\vdash u: U \quad x: u \vdash v: \mathbb{P}}{\vdash \forall x^{u} \cdot v: \mathbb{P}}
$$

here. The variable $U$ ranges over the computational universes $\mathbb{T}_{i}$. The first rule says that every computational universe is closed under taking function types. The second rule says that the universe $\mathbb{P}$ enjoys a stronger closure property known as impredicativity.

Note that the term for the universal tree $\mathrm{T} \mathcal{T}(\lambda s . s)$ does not type check since we do not have $\mathcal{T}: \mathbb{T}_{j}$ for $i>j$.

Exercise 32.1.1 The dominance condition for inductive type definitions requires that the types of the value constructors are in the target universe of the type constructor, where the types of the value constructor are considered without the parameter prefix. That the parameter prefix is not taken into account ensures that
the universes $\mathbb{T}_{i}$ are closed under the type constructors for pairs, options, and lists. Verify the following typings for lists:

\[

\]

Write down an analogous table for pairs and options.

### 32.2 Propositional Aczel Trees

We now note that the definition

$$
\mathcal{T}_{\mathrm{p}}: \mathbb{P}::=\mathrm{T}_{\mathrm{p}}\left(X: \mathbb{P}, X \rightarrow \mathcal{T}_{\mathrm{p}}\right)
$$

of the type of propositional Aczel trees satisfies the dominance condition since the type of the constructor $T_{p}$ is in $\mathbb{P}$ by the impredicativity of the universe $\mathbb{P}$ :

$$
\left(\forall X^{U} .\left(X \rightarrow \mathcal{T}_{p}\right) \rightarrow \mathcal{T}_{p}\right): \mathbb{P}
$$

Moreover, the term for the universal tree

$$
u_{\mathrm{p}}:=\mathrm{T}_{\mathrm{p}} \mathcal{T}_{\mathrm{p}}(\lambda s . s)
$$

does type check for propositional Aczel trees. So there is a universal propositional Aczel tree.

The universal propositional Aczel tree $u_{\mathrm{p}}$ is paradoxical in that it conflicts with our intuition that all values of an inductive type are wellfounded. A value of an inductive type is wellfounded if descending to a subvalue through a recursion in the type definition always terminates. Given that reduction of recursive functions is assumed to be terminating, one would expect that values of inductive types are wellfounded. However, the universal propositional Aczel tree $T_{p} \mathcal{T}_{p}(\lambda s . s)$ is certainly not wellfounded. So we have to adopt the view that because of the impredicativity of the universe $\mathbb{P}$ certain recursive propositional types do admit non-wellfounded values. This does not cause harm since the propositional discrimination restriction reliably prevents recursion on non-wellfounded values.

We remark that there are recursive propositional types providing for functional recursion. A good example are the linear search types for the existential witness operator for numbers (§22.1)). It seems that the values of computational propositions are always wellfounded.

### 32.3 Subtree Predicate and Wellfoundedness

We will consider computational Aczel trees at the lowest universe level

$$
\mathcal{T}: \mathbb{T}_{2}::=\mathrm{T}\left(X: \mathbb{T}_{1}, X \rightarrow \mathcal{T}\right)
$$

and propositional Aczel trees

$$
\mathcal{T}_{\mathrm{p}}: \mathbb{P}::=\mathrm{T}_{\mathrm{p}}\left(X: \mathbb{P}, X \rightarrow \mathcal{T}_{\mathrm{p}}\right)
$$

as defined before. We reserve the letters $s$ and $t$ for Aczel trees.
To better understand the situation, we define a subtree predicate for computational Aczel trees:

$$
\begin{aligned}
& \in: \mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathbb{P} \\
& s \in \operatorname{T} X f:=\exists x . f x=s
\end{aligned}
$$

Remarkably, the propositional discrimination restriction prevents us from defining an analogous subtree predicate for propositional Aczel trees (since the target type is not a proposition but the universe $\mathbb{P}$ ).

For computational Aczel trees we can prove $\forall s . s \notin s$, which disproves the existence of a universal tree. We will prove $\forall s . s \notin s$ by induction on $s$.

Definition 32.3.1 (Eliminator for computational Aczel trees)

$$
\begin{aligned}
& \mathrm{E}_{\mathcal{T}}: \forall p^{\mathcal{T} \rightarrow \mathbb{T}} \cdot(\forall X f \cdot(\forall x \cdot p(f x)) \rightarrow p(\mathrm{~T} X f)) \rightarrow \forall s \cdot p s \\
& \mathrm{E}_{\mathcal{T}} p F(\mathrm{~T} X f):=F X f\left(\lambda x \cdot \mathrm{E}_{\mathcal{T}} p F(f x)\right)
\end{aligned}
$$

Fact 32.3.2 (Irreflexivity) $\forall s^{\mathcal{T}} . s \notin s$.
Proof By induction on $s$ (using $\mathrm{E}_{\mathcal{T}}$ ) it suffice to show $\mathrm{T} X f \notin \mathrm{~T} X f$ given the inductive hypothesis $\forall x$. $f x \notin f x$. It suffices to show for every $x^{X}$ that $f x=\mathrm{T} X f$ is contradictory. Since $f x=\mathrm{T} X f$ implies $f x \in f x$, we have a contradiction with the inductive hypothesis.

For propositional Aczel trees we can prove that a subtree predicate $R^{\mathcal{T}_{\mathfrak{p}} \rightarrow \mathcal{T}_{\mathfrak{p}} \rightarrow \mathbb{P}}$ such that

$$
R s\left(T_{p} X f\right) \longleftrightarrow \exists x . f x=s
$$

does not exist. This explains why the existence of the universal propositional Aczel tree does not lead to a proof of falsity.

Definition 32.3.3 (Eliminator for propositional Aczel trees)

$$
\begin{aligned}
& \mathrm{E}_{\mathcal{T}_{\mathrm{p}}}: \forall p^{\mathcal{T}_{\mathrm{p}} \rightarrow \mathbb{P}} \cdot\left(\forall X f .(\forall x \cdot p(f x)) \rightarrow p\left(\mathrm{~T}_{\mathrm{p}} X f\right)\right) \rightarrow \forall s \cdot p s \\
& \mathrm{E}_{\mathcal{T}_{\mathrm{p}}} p F\left(\mathrm{~T}_{\mathrm{p}} X f\right):=F X f\left(\lambda x \cdot \mathrm{E}_{\mathcal{T}_{\mathrm{p}}} p F(f x)\right)
\end{aligned}
$$

Fact 32.3.4 $\neg \exists R^{\mathcal{T}_{\mathfrak{p}} \rightarrow \mathcal{T}_{\mathrm{p}} \rightarrow \mathbb{P}} . \forall s X f . R s\left(\mathrm{~T}_{\mathrm{p}} X f\right) \longleftrightarrow \exists x . f x=s$.
Proof Let $R^{\mathcal{T}_{\mathrm{p}} \rightarrow \mathcal{T}_{\mathrm{p}} \rightarrow \mathbb{P}}$ be such that $\forall s X f . R s\left(\mathrm{~T}_{\mathrm{p}} X f\right) \longleftrightarrow \exists x . f x=s$. We derive a contradiction. Since the universal propositional Aczel tree $u_{\mathrm{p}}:=\mathrm{T}_{\mathrm{p}} \mathcal{T}_{\mathrm{p}}$ ( $\lambda s . s$ ) satisfies $R u u$, it suffices to prove $\forall s . \neg R s s$. We can do this by induction on $s$ (using $\mathrm{E}_{\mathcal{T}_{\mathrm{p}}}$ ) following the proof for computational Aczel trees (Fact 32.3.2).

We summarize the situation as follows. Given a type

$$
\mathcal{T}: U::=\mathrm{T}(X: V, X \rightarrow \mathcal{T})
$$

of Aczel trees, if we can define a subtree predicate $\in: \mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathbb{P}$ such that

$$
s \in \mathrm{~T} X f \longleftrightarrow \exists x . f x=s
$$

we cannot define a universal tree $u \in u$. This works out such that for propositional Aczel trees we cannot define a subtree predicate (because of the propositional discrimination restriction) and for computational Aczel trees we cannot define a universal tree (because of the dominance restriction).

Exercise 32.3.5 Suppose you are allowed exactly one violation of the propositional discrimination restriction. Give a proof of falsity.

### 32.4 Propositional Hierarchy Theorem

A fundamental result about Coq's type theory says that the universe $\mathbb{P}$ of propositions cannot be embedded into a proposition, even if equivalent propositions may be identified. This important result was first shown by Thierry Coquand [9] in 1989 for a subsystem of Coq's type theory. We will prove the result for Coq's type theory by showing that an embedding as specified provides for the definition of a subtree predicate for propositional Aczel trees.

Theorem 32.4.1 (Coquand) There is no proposition $A^{\mathbb{P}}$ such that there exist functions $E^{\mathbb{P} \rightarrow A}$ and $D^{A \rightarrow \mathbb{P}}$ such that $\forall P^{\mathbb{P}} . D(E(P)) \longleftrightarrow P$.

Proof Let $A^{\mathbb{P}}, E^{\mathbb{P} \rightarrow A}, D^{A \rightarrow \mathbb{P}}$ be given such that $\forall P^{\mathbb{P}} . D(E(P)) \longleftrightarrow P$. By Fact 32.3 .4 is suffices to show that

$$
\text { Rst }:=D\left(\text { MATCH } t\left[T_{p} X f \Rightarrow E(\exists x . f x=s)\right]\right)
$$

satisfies $\forall s X f . R s\left(\mathrm{~T}_{\mathrm{p}} X f\right) \longleftrightarrow \exists x . f x=s$, which is straightforward. Note that the match in the definition of $R$ observes the propositional discrimination restriction since the proposition $\exists x . f x=s$ is encoded with $E$ into a proof of the proposition A.

Exercise 32.4.2 Show $\neg \exists A^{\mathbb{P}} \exists E^{\mathbb{P} \rightarrow A} \exists D^{A \rightarrow \mathbb{P}} \forall P^{\mathbb{P}} . D(E(P))=P$.
Exercise 32.4.3 Show $\forall P^{\mathbb{P}} . P \neq \mathbb{P}$.

### 32.5 Excluded Middle Implies Proof Irrelevance

With Coquand's theorem we can show that the law of excluded middle implies proof irrelevance (see $\S 5.10$ for definitions). The key idea is that given a proposition with two different proofs we can define an embedding as excluded by Coquand's theorem. For the proof to go through we need the full elimination lemma for disjunctions (see Exercise 32.5.2).

Theorem 32.5.1 Excluded middle implies proof irrelevance.
Proof Let $d^{\forall X: \mathbb{P} . X \vee \neg X}$ and let $a$ and $b$ be proofs of a proposition $A$. We show $a=b$. Using excluded middle, we assume $a \neq b$ and derive a contradiction with Coquand's theorem. To do so, we define an encoding $E^{\mathbb{P} \rightarrow A}$ and a decoding $D^{A \rightarrow \mathbb{P}}$ as follows:

$$
\begin{aligned}
& E(X):=\operatorname{IF} d X \text { THEN } a \text { ELSE } b \\
& D(c):=\quad(a=c)
\end{aligned}
$$

It remains to show $D(E(X)) \longleftrightarrow X$ for all propositions $X$. By computational equality it suffices to show

$$
(a=\operatorname{IF} d X \text { THEN } a \text { ELSE } b) \longleftrightarrow X
$$

By case analysis on $d X: X \vee \neg X$ using the full elimination lemma for disjunctions (Exercise 32.5.2) we obtain two proof obligations

$$
\begin{aligned}
& X \rightarrow(a=a \longleftrightarrow X) \\
& \neg X \rightarrow(a=b \longleftrightarrow X)
\end{aligned}
$$

which both follow by propositional reasoning (recall the assumption $a \neq b$ ).
Exercise 32.5.2 Prove the full elimination lemma for disjunctions

$$
\forall X Y^{\mathbb{P}} \forall p^{X \vee Y \rightarrow \mathbb{P}} .\left(\forall x^{X} \cdot p(\mathrm{~L} x)\right) \rightarrow\left(\forall y^{Y} \cdot p(\mathrm{R} y)\right) \rightarrow \forall a \cdot p a
$$

which is needed for the proof of Theorem 32.5.1.

### 32.6 Hierarchy Theorem for Computational Universes

We will now show that no computational universe embeds into one of its types. Note that by Coquand's theorem we already know that the universe $\mathbb{P}$ does not embed into one of its types.

We define a general embedding predicate $\mathcal{E}^{\mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{P}}$ for types:

$$
\mathcal{E} X Y:=\exists E^{X \rightarrow Y} \exists D^{Y \rightarrow X} \forall x . \quad D(E x)=x
$$

Fact 32.6 .1 Every type embeds into itself: $\forall X^{\mathbb{\top}}: \mathcal{E} X X$.
Fact 32.6.2 $\forall X Y^{\mathbb{T}}: \neg \mathcal{E} X Y \rightarrow X \neq Y$.
Fact 32.6.3 $\mathbb{P}$ embeds into no proposition: $\forall P^{\mathbb{P}} . \neg \mathcal{E P P}$.
Proof Follows with Coquand's theorem 32.4.1.
We now fix a computational universe $U$ and work towards a proof of $\forall A^{U}$. $\neg \mathcal{E} U A$. We assume a type $A^{U}$ and an embedding $\mathcal{E} U A$ with functions $E^{U \rightarrow A}$ and $D^{A \rightarrow U}$ satisfying $D(E X)=X$ for all types $X^{U}$. We will define a customized type $\mathcal{T}: U$ of Aczel trees for which we can define a subtree predicate and a universal tree. It then suffices to show irreflexivity of the subtree predicate to close the proof.

We define a type of customized Aczel trees:

$$
\mathcal{T}: U::=\mathrm{T}(a: A, D a \rightarrow \mathcal{T})
$$

and a subtree predicate:

$$
\begin{aligned}
& \in: \mathcal{T} \rightarrow \mathcal{T} \rightarrow \mathbb{P} \\
& s \in \mathrm{~T} a f:=\exists x . f x=s
\end{aligned}
$$

Fact 32.6.4 (Irreflexivity) $\forall s^{\mathcal{T}} . s \notin s$.
Proof Analogous to the proof of Fact 32.3.2.
Recall that we have to construct a contradiction. We embark on a little detour before we construct a universal tree. By Fact 32.6.1 and the assumption we have $\mathcal{E} \mathcal{T}(D(E \mathcal{T}))$. Thus there are functions $F^{\mathcal{T} \rightarrow D(E \mathcal{T})}$ and $G^{D(E \mathcal{T}) \rightarrow \mathcal{T}}$ such that $\forall s^{\mathcal{T}} . G(F s)=s$. We define

$$
u:=\mathrm{T}(E \mathcal{T}) G
$$

By Fact 32.6.1 it suffices to show $u \in u$. By definition of the membership predicate it suffices to show

$$
\exists x . G x=u
$$

which holds with the witness $x:=F u$. We now have the hierarchy theorem for computational universes.

Theorem 32.6.5 (Hierachy) $\forall X^{U} . \neg \mathcal{E} U X$.
Exercise 32.6.6 Show $\forall X^{U} . X \neq U$ for all universes $U$.
Exercise 32.6.7 Let $i \neq j$. Show $\mathbb{T}_{i} \neq \mathbb{T}_{j}$.
Exercise 32.6.8 Assume the inductive type definition $A: \mathbb{T}_{1}::=C\left(\mathbb{T}_{1}\right)$ is admitted although it violates the dominance condition. Give a proof of falsity.

## Acknowledgements

Thorsten Altenkirch suggested Aczel trees as a means for obtaining negative results in January 2016 at the POPL conference in St. Petersburg, Florida. Steven Schäfer came up with an elegant proof of Coquand's theorem using Aczel trees in June 2018 at the Types conference in Braga, Portugal.

## Part V

## Appendices

## Appendix: Typing Rules

$$
\begin{aligned}
& \frac{\vdash u: \mathbb{T}_{i} \quad x: u \vdash v: \mathbb{P}}{\vdash \forall x^{u} \cdot v: \mathbb{P}} \quad \frac{\vdash u: \mathbb{T}_{i} \quad x: u \vdash v: \mathbb{T}_{i}}{\vdash \forall x^{u} \cdot v: \mathbb{T}_{i}} \\
& \frac{\vdash s: \forall x^{u} \cdot v \quad \vdash t: u}{\vdash s t: v_{t}^{x}} \quad \frac{\vdash u: \mathbb{T}_{i} \quad x: u \vdash s: v}{\vdash \lambda x^{u} \cdot s: \forall x^{u} \cdot v} \\
& \frac{\vdash s: u^{\prime} \quad u \approx u^{\prime} \quad \vdash u: \mathbb{T}_{i}}{\vdash s: u} \\
& x: u \vdash x: u \\
& \overline{\vdash \mathbb{P}: \mathbb{T}_{2}} \quad \overline{\vdash \mathbb{T}_{i}: \mathbb{T}_{i+1}} \quad \frac{\vdash s: u \quad \vdash u \subset u^{\prime}}{\vdash s: u^{\prime}} \\
& \overline{\vdash \mathbb{P} \subset \mathbb{T}_{i}} \quad \frac{i<j}{\vdash \mathbb{T}_{i} \subset \mathbb{T}_{j}} \quad \frac{\vdash u: \mathbb{T}_{i} \quad \vdash v \subset v^{\prime}}{\vdash \forall x^{u} \cdot v \subset \forall x^{u} \cdot v^{\prime}}
\end{aligned}
$$

- The constants $\mathbb{P} \subset \mathbb{T}_{1} \subset \mathbb{T}_{2} \subset \cdots$ are called universes. There is no $\mathbb{T}_{0}$.
- Computational equality $s \approx t$ is defined with reduction and $\alpha$ - and $\eta$-equivalence.
- $v_{t}^{x}$ is capture-free substitution.
- Assumptions ( $x: u$ before $\vdash$ ) must be introduced by the rules for $\forall$ and $\lambda$.
- Simple function types $u \rightarrow v$ are notation for dependent function types $\forall x: u . v$ where $x$ does not occur in $v$.
- $\mathbb{T}_{1}$ is called Set in Coq.
- Functions whose type ends with the universe $\mathbb{P}$ are called predicates.
- Functions whose type ends with a universe are called type functions or type families.


## Appendix: Inductive Definitions

We collect technical information about inductive definitions here. Inductive definitions come in two forms, inductive type definitions and inductive function definitions. Inductive type definitions introduce typed constants called constructors, and inductive function definitions introduce typed constants called inductive functions. Inductive function definitions come with defining equations serving as computation rules. Inductive definitions are designed such that they preserve consistency.

## Inductive Type Definitions

An inductive type definition introduces a system of typed constants consisting of a type constructor and $n \geq 0$ value constructors. The type constructor must target a universe, and the value constructors must target a type obtained with the type constructor. The first $n \geq 0$ arguments of the type constructor may be declared as parameters. The remaining arguments of a type constructor are called indices.

Parameter condition: Each value constructor must take the parameters of the type constructor as leading arguments and must target the type constructor applied to these arguments. We speak of the parametric arguments and the proper arguments of a value constructor.

Strict positivity condition: If a value constructor uses the type constructor in an argument type, the path to the type constructor must not go through the left-hand side of a function type.

Dominance condition: If the type constructor targets a universe $\mathbb{T}_{i}$, the types of the proper arguments of the value constructors must be in $\mathbb{T}_{i}$.

## Inductive Function Definitions

An inductive function definition introduces a constant called an inductive function together with a system of defining equations serving as computation rules. An inductive function must be defined with a functional type, a number of required arguments, and a distinguished required argument called the discriminating argument. The type of an inductive function must have the form

$$
\forall x_{1} \ldots x_{k} \forall y_{1} \ldots y_{m} . c s_{1} \ldots s_{n} y_{1} \ldots y_{m} \rightarrow t
$$

## Appendix: Inductive Definitions

where the following conditions are satisfied:

- $c s_{1} \ldots s_{n} y_{1} \ldots y_{m}$ types the discriminating argument.
- $\quad c$ is a type constructor with $n \geq 0$ parameters and $m \geq 0$ indices.
- Index condition: The index variables $y_{1}, \ldots, y_{m}$ must be distinct and must not occur in $s_{1}, \ldots, s_{n}$.
- Propositional discrimination restriction: $t$ must be a proposition if $c$ is not computational. A type constructor $c$ is computational if in case it targets $\mathbb{P}$ it has at most one proof constructor $d$ and all proper arguments of $d$ have propositional types.
For every value constructor of $c$ a defining equation must be provided, where the pattern and the target type of the defining equations are determined by the type of the inductive function, the position of discriminating argument, and the number of arguments succeeding the discriminating argument. Each pattern contains exactly two constants, the inductive function and a value constructor in the position of the discriminating argument. Patterns must be linear (no variable appears twice) and must give the index arguments of the inductive function as underlines. The patterns for constructors must omit the parametric arguments of the constructor.

Every defining equation must satisfy the guard condition, which constrains the recursion of the inductive function to be structural on the discriminating argument. The guard condition must be realized as a decidable condition. There are different possibilities for the guard condition. In this text we have been using the strictest form of the guard condition.

The format of inductive function definitions is such that for every inductive type a universal inductive function (a universal eliminator) can be obtained taking as arguments continuations for the value constructors of the type. A particular inductive function for the type can then be obtained by providing the particular continuations. If a constructor is recursive, its continuation takes the results of the recursive calls as arguments. Eager recursion is fine since computation terminates. Universal eliminators usually employ target type functions.

## Remarks

1. The format for inductive functions is such that universal eliminators can be defined that can express all other inductive functions. Inductive functions may also be called eliminators.
2. The special case of zero value constructors is redundant. A proposition $\perp$ with an eliminator $\perp \rightarrow \forall X^{\mathbb{T}}$. $X$ can be defined with a single proof constructor $\perp \rightarrow \perp$.
3. Assuming type definitions at the computational level, accommodating type definitions also at the propositional level is responsible for the elimination restric-
tion.
4. The dominance condition is vacuously satisfied for propositional type definitions.
5. Defining equations with a secondary case analysis (e.g., subtraction) come as syntactic convenience. They can be expressed with auxiliary functions defined as inductive functions.
6. Our presentation of inductive definitions is compatible with Coq but takes away some of the flexibility provided by Coq. Our format requires that in Coq a recursive abstraction (i.e., fix) is directly followed by a match on the discriminating argument. This excludes a direct definition of Euclidean division. It also excludes the (redundant) eager recursion pattern sometimes used for well-founded recursion in the Coq literature.

## Examples

We give for some inductive type families discussed in this text

- the type of the type constructor.
- the type of one of the value constructors.
- the type of the eliminator we have been using (prefix and target, clauses for value constructors omitted).
. The pattern of the defining equation for the eliminator and the given value constructor.


## Lists

$$
\begin{aligned}
\mathcal{L} & : \mathbb{T} \rightarrow \mathbb{T} \\
\text { cons } & : \forall X . X \rightarrow \mathcal{L}(X) \rightarrow \mathcal{L}(X) \\
\mathrm{E} & : \forall X . \forall p^{\mathcal{L}(X) \rightarrow \mathbb{T}} \cdot \ldots \rightarrow \forall A . p A \\
\mathrm{E} X p \cdots(\operatorname{cons} x A) & :=e x A(E \cdots A)
\end{aligned}
$$

$\mathcal{L}(X)$ has uniform parameter $X$.

## Linear search types

$$
\begin{aligned}
& T:(\mathrm{N} \rightarrow \mathbb{P}) \rightarrow \mathrm{N} \rightarrow \mathbb{T} \\
& \mathrm{C}: \forall q n \cdot(\neg q n \rightarrow T q(\mathrm{~S} n)) \rightarrow \text { Tqn } \\
& \mathrm{E}: \forall q \cdot \forall p^{\mathrm{N} \rightarrow \mathbb{T}} \cdot \ldots \rightarrow \forall n \cdot T q n \rightarrow p n \\
& \mathrm{E} q p \cdots n(\mathrm{C} \varphi):=\operatorname{en}(\lambda a \cdot E \cdots(\mathrm{~S} n)(\varphi a))
\end{aligned}
$$

Tqn has uniform parameter q and nonuniform parameter $n$.

## Appendix: Inductive Definitions

## Hilbert derivation types

$$
\left.\begin{array}{rl}
\mathcal{H} & : \text { For } \rightarrow \mathbb{T} \\
\mathrm{K} & : \forall s t . \mathcal{H}(s \rightarrow t \rightarrow s) \\
\mathrm{E} & : \forall p^{\text {For } \rightarrow \mathbb{T}} . \ldots \rightarrow \forall s . \mathcal{H}(s) \rightarrow p s \\
\mathrm{E} p & \cdots ._{-}(\mathrm{K} s t)
\end{array}\right)=\text { est }
$$

$\mathcal{H}(s)$ has index $s$.

## ND derivation types

$$
\begin{aligned}
& \vdash: \mathcal{L}(\text { For }) \rightarrow \text { For } \rightarrow \mathbb{T} \\
& \mathrm{I}_{\rightarrow}: \forall \text { Ast. }(s:: A \vdash t) \rightarrow(A \vdash(s \rightarrow t)) \\
& \mathrm{E}: \forall p^{\mathcal{L}(\text { For }) \rightarrow \text { For } \rightarrow \mathbb{T}} \cdot \ldots \rightarrow \forall A s .(A \vdash s) \rightarrow p A s \\
& \mathrm{E} p \cdots A_{-}\left(\mathrm{I}_{\rightarrow} s t d\right):=e \operatorname{Ast}(E \cdots(s:: A) t d)
\end{aligned}
$$

$A \vdash s$ has nonuniform parameter $A$ and index $s$.

## Appendix: Basic Definitions

We summarize basic definitions concerning functions and predicates. We make explicit the generality coming with dependent typing. As it comes to arity, we state the definitions for the minimal number of arguments and leave the generalization to more arguments to the reader (as there is no formal possibility to express this generalization).

A fixed point of a function $f^{X \rightarrow X}$ is a value $x^{X}$ such that $f x=x$.
Two types $X$ and $Y$ are in bijection if there are functions $f^{X \rightarrow Y}$ and $g^{Y \rightarrow X}$ inverting each other; that is, the roundtrip equations $\forall x \cdot g(f x)=x$ and $\forall y \cdot f(g y)=y$ are satisfied. We define:

$$
\operatorname{inv} g f:=\forall x \cdot g(f x)=x \quad g \text { inverts } f
$$

For functions $f: \forall x^{X} . p x$ we define:

$$
\begin{array}{rrr}
\text { injective }(f) & :=\forall x x^{\prime} . f x=f x^{\prime} \rightarrow x=x^{\prime} & \text { injectivity } \\
\text { surjective }(f) & :=\forall y \exists x . f x=y & \text { surjectivity } \\
\text { bijective }(f) & :=\text { injective }(f) \wedge \text { surjective }(f) & \text { bijectivity } \\
f \equiv f^{\prime} & :=\forall x . f x=f x^{\prime} & \text { agreement }
\end{array}
$$

The definitions extend to functions with $n \geq 2$ arguments as one would expect. Note that injectivity, surjectivity, and bijectivity are invariant under agreement.

For binary predicates $P: \forall x^{X} . p x \rightarrow \mathbb{P}$ we define:

$$
\begin{array}{rrr}
\text { functional }(P) & :=\forall x y y^{\prime} . P x y \rightarrow P x y^{\prime} \rightarrow y=y^{\prime} & \text { functionality } \\
\text { total }(P) & :=\forall x \exists y \cdot P x y & \text { totality }
\end{array}
$$

The definitions extend to predicates with $n \geq 2$ arguments as one would expect. To functional relations we may also refer as unique relations.

For unary predicates $P, Q: X \rightarrow \mathbb{P}$ we define:

$$
\begin{array}{lr}
P \subseteq Q:=\forall x . P x \rightarrow Q x & \text { respect } \\
P \equiv Q:=\forall x \cdot P x \hookrightarrow Q x & \text { agreement }
\end{array}
$$

The definitions extend to predicates with $n \geq 2$ arguments as one would expect.

## Appendix: Basic Definitions

For functions $f: \forall x^{X} . p x$ and predicates $P: \forall x^{X} . p x \rightarrow \mathbb{P}$ :

$$
f \subseteq P:=\forall x . P x(f x) \quad \text { respect }
$$

The definitions extend to functions with $n \geq 2$ arguments and predicates with $n+1$ arguments as one would expect.

The following facts have straightforward proofs:

1. $P \subseteq Q \rightarrow$ functional $(Q) \rightarrow$ functional $(P)$
2. $P \subseteq Q \rightarrow \operatorname{total}(P) \rightarrow \operatorname{total}(Q)$
3. $P \subseteq Q \rightarrow \operatorname{total}(P) \rightarrow$ functional $(Q) \rightarrow P \equiv Q$
4. $f \subseteq P \rightarrow$ functional $(P) \rightarrow(\forall x y . P x y \longleftrightarrow f x=y)$

## Appendix: Exercise Sheets

Below you will find the weekly exercise sheets for the course Introduction to Computational Logic as given at Saarland University in the summer semester 2022 (13 weeks of full teaching). The sheets tell you which topics of MPCTT we covered and how much time we spent on them.

## Assignment 1

Do the following exercises on paper using mathematical notation and also with the proof assistant Coq. Follow the style of Chapter 1 and the accompanying Coq file gs.v. For each function state the type and the defining equations. Make sure you understand the definitions and proofs you give.

Exercise 1.1 Define an addition function add for numbers and prove that it is commutative.

Exercise 1.2 Define a distance function dist for numbers and prove that it is commutative. Do not use helper functions.

Exercise 1.3 Define a minimum function min for numbers and prove that it is commutative. Do not use helper functions. Prove $\min x(x+y)=x$.

Exercise 1.4 Define a function fib satisfying the procedural Fibonacci equations. Define the unfolding function for the equations and prove your function satisfies the unfolding equation.

Exercise 1.5 Define an iteration function computing $f^{n}(x)$ and prove the shift laws $f^{S n}(x)=f^{n}(f x)=f\left(f^{n}(x)\right)$.

Exercise 1.6 Give the types of the constructors pair and Pair for pairs and pair types. Give the inductive type definition. Define the projections fst and snd and prove the $\eta$-law. Define a swap function and prove that it is self-inverting. Do not use implicit arguments.

## Want More?

You will find further exercises in Chapter 1 of MPCT. You may for instance define Ackermann functions using either a higher-order helper function or iteration and verify that your functions satisfy the procedural specification given as unfolding function.

## Assignment 2

Do the exercises on paper using mathematical notation and also with the proof assistant Coq.

Exercise 2.1 Define a truncating subtraction function using a plain constant definition and a recursive abstraction.

Exercise 2.2 Assume $A:=$ FIX $f x . \lambda y$. MATCH $x[0 \Rightarrow y \mid \mathrm{S} x \Rightarrow \mathrm{~S}(f x y)]$.
a) Gives the types for $A, f, x$, and $y$.
b) For each of the following equations, give the normal forms of the two sides and say which reduction rules are needed. Decide whether the equation holds by computational equality.
(i) $\mathrm{A} 1=\mathrm{S}$.
(ii) $A 2=\lambda y \cdot \mathrm{SS} y$
(iii) $(\operatorname{LET} f=A 1 \operatorname{IN} f)=\mathrm{S}$
(iv) $A=\lambda x y \cdot A x y$
(v) $A=\operatorname{FIX} f x$. MATCH $x[0 \Rightarrow \lambda y \cdot y \mid \mathrm{S} x \Rightarrow \lambda y . \mathrm{S}(f x y)]$

Exercise 2.3 Prove the following propositions (tables, terms, and Coq). Assume that $X, Y, Z$ are propositions.
a) $X \rightarrow Y \rightarrow X$
b) $(X \rightarrow Y \rightarrow Z) \rightarrow(X \rightarrow Y) \rightarrow X \rightarrow Z$
c) $(X \rightarrow Y) \rightarrow \neg Y \rightarrow \neg X$
d) $(X \rightarrow \perp) \rightarrow(\neg X \rightarrow \perp) \rightarrow \perp$
e) $\neg(X \leftrightarrow \neg X)$
f) $\neg \neg(\neg \neg X \rightarrow X)$
g) $\neg \neg(((X \rightarrow Y) \rightarrow X) \rightarrow X)$
h) $\neg \neg((\neg Y \rightarrow \neg X) \rightarrow X \rightarrow Y)$
i) $(X \wedge Y \rightarrow Z) \rightarrow(X \rightarrow Y \rightarrow Z)$
j) $(X \rightarrow Y \rightarrow Z) \rightarrow(X \wedge Y \rightarrow Z)$
k) $\neg \neg(X \vee \neg X)$
l) $\neg(X \vee Y) \rightarrow \neg X \wedge \neg Y$
m) $\neg X \wedge \neg Y \rightarrow \neg(X \vee Y)$

## Assignment 3

Do the exercises on paper using mathematical notation and also with the proof assistant Coq.

Exercise 3.1 (Match functions and impredicative characterizations) Give the types and the defining equations for the matching functions for $\perp$, $\wedge$ and $\vee$. Following the types of the matching functions, state the impredicative characterizations for $\perp, \wedge$ and $\vee$. Make sure you can prove the impredicative characterizations (proof table, proof term, coq script). Type the type arguments of the matching functions with $\mathbb{T}$ (rather than $\mathbb{P}$ ) if this is possible (propositional discrimination restriction). Explain why in the impredicative characterizations all type arguments must be typed with $\mathbb{P}$.

Exercise 3.2 (Exclusive disjunction) Exclusive disjunction $X \oplus Y$ is a logical connective satisfying the equivalence $X \oplus Y \longleftrightarrow(X \wedge \neg Y) \vee(Y \wedge \neg X)$.
a) Give an inductive definition of exclusive disjunction and prove the above equivalence.
b) Define the matching function for inductive exclusive disjunction.
c) Give and verify the impredicative characterization of exclusive disjunction.

Exercise 3.3 (Double negation law) Prove the equivalence

$$
\left(\forall X^{\mathbb{P}} \cdot X \vee \neg X\right) \longleftrightarrow\left(\forall X^{\mathbb{P}} . \neg \neg X \rightarrow X\right)
$$

to show that the law of excluded middle is intuitionistically equivalent to the double negation law. Do the proof first with a table and then verify your reasoning with Coq.

Exercise 3.4 (Conversion rule) Prove

$$
\left(\forall p^{X \rightarrow \mathbb{P}} \cdot p y \rightarrow p x\right) \rightarrow\left(\forall p^{X \rightarrow \mathbb{P}} \cdot p x \longleftrightarrow p y\right)
$$

with a table and with Coq. Assume $X: \mathbb{T}$ and determine the types of the variables $x$ and $y$.

Exercise 3.5 (Propositional equality) Assume the constants

$$
\begin{aligned}
& \text { eq }: \forall X^{\mathbb{T}} . X \rightarrow X \rightarrow \mathbb{P} \\
& \mathrm{Q}: \forall X^{\mathbb{T}} \forall x^{X} . \text { eq } X x x \\
& \mathrm{R}: \forall X^{\mathbb{T}} \forall x y^{X} \forall p^{X \rightarrow \mathbb{P}} . \text { eq } X x y \rightarrow p x \rightarrow p y
\end{aligned}
$$

for propositional equality and prove the following proposition assuming the variable types $x: X, y: X, z: X, f: X \rightarrow Y, X: \mathbb{T}$, and $Y: \mathbb{T}$ :
a) eq $x y \rightarrow \operatorname{eq} y x$
b) eq $x y \rightarrow$ eq $y z \rightarrow$ eq $x z$
c) $\mathrm{eq} x y \rightarrow \mathrm{eq}(f x)(f y)$
d) $\neg e q \top \perp$
e) $\neg e q$ true false

For each occurrence of eq determine the implicit argument.

## Appendix: Exercise Sheets

## Assignment 4

Do the exercises on paper using mathematical notation and verify your findings with the proof assistant Coq.

Exercise 4.1 Define the equational constants eq, Q, and R.
Exercise 4.2 MPCTT gives two proofs of transitivity, one using the conversion rule and one not using the conversion rule. Give each proof as a table and as a term and verify your findings with the proof assistant Coq.

Exercise 4.3 Define the eliminators for booleans, numbers, and pairs.

## Exercise 4.4 (Truncating subtraction)

Define a truncating subtraction function using the eliminator for numbers and not using discrimination. Show that your function agrees with the standard subtraction function from Chapter 1 using the eliminator for numbers.

## Exercise 4.5 (Boolean equality decider)

Define a boolean equality decider eqb : N $\rightarrow \mathrm{N} \rightarrow \mathrm{B}$ using the eliminator for numbers and not using discrimination. Show that your function satisfies eqbxy=true $\longleftrightarrow$ $x=y$ using the eliminator for numbers. Use this result to show $\forall x y^{\mathrm{N}} . x=y \vee x \neq$ $y$.

## Exercise 4.6 (Boolean pigeonhole principle)

a) Prove the pigeonhole principle for B : $\forall x y z^{\mathrm{B}} . x=y \vee x=z \vee y=z$.
b) Prove Kaminski's equation based on the instance of the boolean pigeonhole principle for $f(f x), f x$, and $x$.

Exercise 4.7 (Pair types)
a) Define the eliminator for pair types.
b) Prove that the pair constructor is injective using the eliminator.
c) Use the eliminator to define the projections $\pi_{1}, \pi_{2}$ and swap.
d) Prove the eta law using the eliminator
e) Prove $\operatorname{swap}(\operatorname{swap} a)=a$.

## Exercise 4.8 (Unit type T)

a) Define the eliminator for T (following the scheme for B ).
b) Prove the pigeonhole principle for T : $\forall x y^{\top} . x=y$.
c) Prove $B \neq T$.

Exercise 4.9 Show $\mathrm{B} \neq \mathbb{T}$.
We remark that $B=\mathbb{P}$ cannot be proved or disproved.

## Assignment 5

Do the exercises on paper and verify your findings with Coq.
Exercise 5.1 Define the constants ex, E , and $\mathrm{M}_{\exists}$ for existential quantification both inductively and impredicatively.

Exercise 5.2 Give and verify the impredicative characterization of existential quantification.

Exercise 5.3 Give a proof term for $(\exists x . p x) \rightarrow \neg \forall x . \neg p x$ using the constants for existential quantification. Do not use matches.

Exercise 5.4 Prove the following facts about existential quantification:
a) $(\exists x \exists y . p x y) \rightarrow \exists y \exists x . p x y$
b) $(\exists x . p x \vee q x) \longleftrightarrow(\exists x . p x) \vee(\exists x . q x)$
c) $((\exists x \cdot p x) \rightarrow Z) \longleftrightarrow \forall x \cdot p x \rightarrow Z$
d) $\neg \neg(\exists x . p x) \hookrightarrow \neg \forall x . \neg p x$
e) $(\exists x . \neg \neg p x) \rightarrow \neg \neg \exists x . p x$
f) $(\exists x \cdot p x) \wedge Z \longleftrightarrow \exists x . p x \wedge Z$
g) $x \neq y \longleftrightarrow \exists p \cdot p x \wedge \neg p y$

## Exercise 5.5 (Fixed points)

a) Prove that all functions $T \rightarrow$ T have fixed points.
b) Prove that the successor function $\mathrm{S}: \mathrm{N} \rightarrow \mathrm{N}$ has no fixed point.
c) For each type $Y=\perp, \mathrm{B}, \mathrm{B} \times \mathrm{B}, \mathrm{N}, \mathbb{P}, \mathbb{T}$ give a function $Y \rightarrow Y$ that has no fixed point.
d) State and prove Lawvere's fixed point theorem.

Exercise 5.6 (Intuitionistic drinker) Using excluded middle, one can argue that in a bar populated with at least one person one can always find a person such that if this person drinks milk everyone in the bar drinks milk:

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} \cdot\left(\exists x^{X} \cdot \mathrm{~T}\right) \rightarrow \exists x \cdot p x \rightarrow \forall y \cdot p y
$$

The fact follows intuitionistically once two double negations are inserted:

$$
\forall X^{\mathbb{T}} \forall p^{X \rightarrow \mathbb{P}} .\left(\exists x^{X} \cdot \top\right) \rightarrow \neg \neg \exists x . p x \rightarrow \forall y . \neg \neg p y
$$

Prove the intuitionistic version.

## Appendix: Exercise Sheets

Exercise 5.7 Give the procedural specification for the Fibonacci function as an unfolding function and prove that all functions satisfying the unfolding equation agree.

Exercise 5.8 (Puzzle) Give two types that satisfy and dissatisfy the predicate $\lambda X^{\mathbb{T}} . \forall f g^{X \rightarrow X} \forall x y^{X} . f x=y \vee g y=x$.

## Assignment 6

## Exercise 6.1 (Constructor laws for sum types)

Prove the constructor laws for sum types.
a) $\mathrm{L} x \neq \mathrm{R} y$.
b) $\mathrm{L} x=\mathrm{L} x^{\prime} \rightarrow x=x^{\prime}$.
c) $\mathrm{R} y=\mathrm{R} y^{\prime} \rightarrow y=y^{\prime}$.

Exercise 6.2 (Sum and sigma types)
a) Define the universal eliminator for sum types and use it to prove $\forall a^{X+Y} \cdot(\Sigma x \cdot a=\mathrm{L} x)+(\Sigma y \cdot a=\mathrm{R} y)$
b) Define the projections $\pi_{1}$ and $\pi_{2}$ for sigma types.
c) Write the eta law $\forall a^{\operatorname{sig} p}$. $a=\left(\pi_{1} a, \pi_{2} a\right)$ for sigma types without notational sugar and without implicit arguments and fully quantified.
d) Define the universal eliminator for sigma types and use it to prove the eta law.
e) Prove $\forall x y^{\mathrm{B}} . x \& y=$ false $\Leftrightarrow(x=$ false $)+(y=$ false $)$.

Exercise 6.3 (Certifying division by 2)
Define a function $\forall x^{\mathrm{N}} \Sigma n .(x=n \cdot 2)+(x=\mathrm{S}(n \cdot 2))$.

## Exercise 6.4 (Certifying distance function)

Assume a function $\forall x y^{\mathrm{N}} \Sigma z . \quad(x+z=y)+(y+z=x)$ and use it to define functions $f$ as follows. Verify that your functions satisfy the specifications.
a) $f x y=x-y$
b) $f x y=$ true $\longleftrightarrow x=y$
c) $f x y=(x-y)+(y-x)$
d) $f x y=$ true $\longleftrightarrow(x-y)+(y-x) \neq 0$

Exercise 6.5 (Certifying deciders) Define functions as follows.
a) $\forall X Y^{\mathbb{T}}$. $\mathcal{D}(X) \rightarrow \mathcal{D}(Y) \rightarrow \mathcal{D}(X+Y)$.
b) $\forall X^{\mathbb{T}}$. $(\mathcal{D}(X) \rightarrow \perp) \rightarrow \perp$.
c) $\forall X^{\mathbb{T}} f^{X \rightarrow \mathrm{~B}} x^{X} . \mathcal{D}(f x=$ true $)$.
d) $\forall X^{\mathbb{T}} \cdot \mathcal{D}(X) \Leftrightarrow \Sigma b^{\mathrm{B}} . X \Leftrightarrow b=$ true.

## Appendix: Exercise Sheets

## Exercise 6.6 (Bijectivity)

a) Prove $\mathcal{B} B(T+T)$.
b) Prove $(\mathcal{B} B T) \rightarrow \perp$.
c) Prove $\mathcal{B}(X \times Y)\left(\operatorname{sig}\left(\lambda x^{X} . Y\right)\right)$.
d) Prove $\mathcal{B}(X+Y)\left(\operatorname{sig}\left(\lambda b^{\mathrm{B}}\right.\right.$. IF $b$ THEN $X$ else $\left.\left.Y\right)\right)$.
e) Find a type $X$ for which you can prove $\mathcal{B} X(X+\mathrm{T})$.
f) Assume function extensionality and prove $\mathcal{B}(T \rightarrow T) T$.
g) Assume function extensionality and prove $\mathcal{B}(B \rightarrow B)(B \times B)$.

## Assignment 7

Do the proofs with the proof assistant and explain the proof ideas on paper.

## Exercise 7.1 (Option types)

a) State and prove the constructor laws for option types.
b) Give the universal eliminator for option types.
c) Prove $\mathcal{B}(\mathcal{O}(X))(X+\mathrm{T})$.
d) Prove $\mathcal{E}(X) \Leftrightarrow \mathcal{E}(\mathcal{O}(X))$.
e) Prove $\forall a^{\mathcal{O}(X)}, a \neq \emptyset \Leftrightarrow \Sigma x . a={ }^{\circ} x$.
f) Prove $\forall f^{X \rightarrow \mathcal{O}(Y)} .(\forall x . f x \neq \emptyset) \rightarrow \forall x \Sigma y . f x={ }^{\circ} y$.
g) Prove $\forall x^{\mathcal{O}^{3}(\perp)} \cdot x=\emptyset \vee x={ }^{\circ} \emptyset \vee x={ }^{\circ} \emptyset$.
h) Prove $\forall f \mathcal{O}^{\mathcal{O}^{3}(\perp) \rightarrow \mathcal{O}^{3}(\perp)} \forall x . f^{8}(x)=f^{2}(x)$.
i) Find a type $X$ and functions $f: X \rightarrow \mathcal{O}(X)$ and $g: \mathcal{O}(X) \rightarrow X$ such that you can prove $\operatorname{inv} g f$ and disprove $\operatorname{inv} f g$.

## Exercise 7.2 (Finite types)

Let $d$ be a certifying decider for $p: \mathcal{O}^{n}(\perp) \rightarrow \mathbb{T}$. Prove the following:
a) $\mathcal{D}(\forall x \cdot p x)$.
b) $\mathcal{D}(\Sigma x . p x)$.
c) $(\Sigma x \cdot p x)+(\forall x \cdot p x \rightarrow \perp)$.
d) The type N of numbers is not finite.

## Exercise 7.3 (Pigeonhole)

Prove $\forall f \mathcal{O}^{S n}(\perp) \rightarrow \mathcal{O}^{n}(\perp) . \Sigma a b . a \neq b \wedge f a=f b$.
Intuition: If $n+1$ pigeons are in $n$ holes, there must be a hole with at least two pigeons in it.

## Exercise 7.4 (Function extensionality)

Assume function extensionality and prove the following.
a) $\forall f^{\top \rightarrow \top} \cdot f=\lambda a^{\top} \cdot a$.
b) $\mathcal{B}(\mathrm{T} \rightarrow \mathrm{T}) \mathrm{T}$.
c) $B \neq(T \rightarrow T)$.
d) $\mathcal{E}(B \rightarrow B)$.

## Exercise 7.5 (Proof irrelevance)

a) Prove $\mathrm{PE} \rightarrow \mathrm{PI}$.
b) Suppose there is a function $f:(T \vee T) \rightarrow \mathrm{B}$ such that $f(\mathrm{LI})=$ true and $f(\mathrm{RI})=$ false. Prove $\neg \mathrm{PI}$. Why can't you define $f$ inductively?

## Appendix: Exercise Sheets

## Exercise 7.6 (Set extensionality)

We define set extensionality as $\mathrm{SE}:=\forall X^{\mathbb{T}} \forall p q^{X \rightarrow \mathbb{P}} .(\forall x . p x \longleftrightarrow q x) \rightarrow p=q$. Prove the following:
a) $\mathrm{FE} \rightarrow \mathrm{PE} \rightarrow \mathrm{SE}$.
b) $\mathrm{SE} \rightarrow \mathrm{PE}$.
c) $\mathrm{SE} \rightarrow p-(q \cup r)=(p-q) \cap(p-r)$.

## Assignment 8

Do the proofs with the proof assistant and explain the proof ideas on paper.

## Exercise 8.1 (Arithmetic proofs from first principles)

Prove the following statements not using lemmas from the Coq library. Use the predefined definitions of addition and subtraction and define order as $(x \leq y):=(x-y=0)$. Start from the accompanying Coq file providing the necessary definitions.
a) $x+y=x \rightarrow y=0$
b) $x-0=x$
c) $x-x=0$
d) $(x+y)-x=y$
e) $x-(x+y)=0$
f) $x \leq y \rightarrow x+(y-x)=y$
g) $(x \leq y)+(y<x)$
h) $\neg(y \leq x) \rightarrow x<y$
i) $x \leq y \hookrightarrow \exists z \cdot x+z=y$
j) $x \leq x+y$
k) $x \leq \mathrm{S} x$
l) $x+y \leq x \rightarrow y=0$
m) $x \leq 0 \rightarrow x=0$
n) $x \leq x$
o) $x \leq y \rightarrow y \leq z \rightarrow x \leq z$
p) $x \leq y \rightarrow y \leq x \rightarrow x=y$
q) $x \leq y<z \rightarrow x<z$
r) $\neg(x<0)$
s) $\neg(x+y<x)$
t) $\neg(x<x)$
u) $x \leq y \rightarrow x \leq y+z$
v) $x \leq y \rightarrow x \leq \mathrm{S} y$
w) $x<y \rightarrow x \leq y$
x) $\neg(x<y) \rightarrow \neg(y<x) \rightarrow x=y$
y) $x \leq y \leq \mathrm{S} x \rightarrow x=y \vee y=\mathrm{S} x$
z) $x+y \leq x+z \rightarrow y \leq z$

Exercise 8.2 (Arithmetic proofs with automation)
Do the problems of Exercise 1 with Coq's definition of order and the automation tactic lia.

## Appendix: Exercise Sheets

## Exercise 8.3 (Complete induction)

a) Define a certifying function $\forall x y$. $(x \leq y)+(y<x)$.
b) Prove a complete induction lemma.
c) Prove $\forall x y . \Sigma a b . x=a \cdot \mathrm{~S} y+b \wedge b \leq y$ using complete induction and repeated subtraction.
d) Formulate the procedural specification

$$
\begin{aligned}
& f: \mathrm{N} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} \\
& f x y:=\mathrm{IF}^{\ulcorner } x \leq y^{\urcorner} \text {THEN } x \operatorname{ELSE} f(x-\mathrm{S} y y) y
\end{aligned}
$$

as an unfolding function using the function from (a).
e) Prove that all functions satisfying the procedural specification agree.
f) Let $f$ be a function satisfying the procedural specification.
i) Prove $\forall x y$. $f x y \leq y$.
ii) Prove $\forall x y . \Sigma k . x=k \cdot \mathrm{~S} y+f x y$.

## Assignment 9

Do all exercises with the proof assistant.

## Exercise 9.1 (Certifying deciders with lia)

Define deciders of the following types using lia but not using induction.
a) $\forall x y \cdot(x \leq y)+(y<x)$
b) $\forall x y$. $(x \leq y)+\neg(x \leq y)$
c) $\forall x y^{\mathrm{N}} \cdot(x=y)+(x \neq y)$
d) $\forall x y \cdot(x<y)+(x=y)+(y<x)$

## Exercise 9.2 (Uniqueness with trichotomy)

Show the uniqueness of the predicate $\delta$ for Euclidean division using nia but not using induction.

## Exercise 9.3 (Euclidean quotient)

We consider $\gamma x y a:=(a \cdot \mathrm{~S} y \leq x<\mathrm{S} a \cdot \mathrm{~S} y)$.
a) Show that $\gamma$ specifies the Euclidean quotient: $\gamma x y a \hookrightarrow \exists b$. $\delta x y a b$.
b) Show that $\gamma$ is unique: $\gamma x y a \rightarrow \gamma x y a^{\prime} \rightarrow a=a^{\prime}$.
c) Show that every function $f^{\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}}$ satisfies

$$
(\forall x y . \gamma x y(f x y)) \longleftrightarrow \forall x y \cdot f x y=\operatorname{IF}^{`} x \leq y^{\urcorner} \text {THEN } 0 \text { ELSE } \mathrm{S}(f(x-\mathrm{S} y) y)
$$

d) Consider the function

$$
\begin{aligned}
f: \mathrm{N} \rightarrow \mathrm{~N} & \rightarrow \mathrm{~N} \\
f 0 y b & :=0 \\
f(\mathrm{~S} x) y b & :=\mathrm{IF}^{\curlyvee} b=y^{\top} \text { THEN } \mathrm{S}(f x y 0) \text { ELSE } f x y(\mathrm{~S} b)
\end{aligned}
$$

Show $\gamma x y(f x y 0)$; that is, $f x y 0$ is the Euclidean quotient of $x$ and $\mathrm{S} y$. This requires a lemma. Hint: Prove $b \leq y \rightarrow \gamma(x+b) y(f x y b)$.

## Exercise 9.4 (Least and safe predicates)

a) Prove safe $p(\mathrm{~S} n) \longleftrightarrow$ safe $p n \wedge \neg p n$.
b) Prove least ( $\lambda a \cdot x<\mathrm{S} a \cdot \mathrm{~S} y) a \longleftrightarrow \exists b \cdot x=a \cdot \mathrm{~S} y+b \wedge b \leq y$.
c) Prove least $(\lambda z . x \leq y+z) z \longleftrightarrow z=x-y$.
d) Show that the predicates in (b) and (c) are decidable using lia.
e) $\operatorname{Prove}\left(\forall p^{N \rightarrow \mathbb{P}}\right.$. ex $p \rightarrow \operatorname{ex}($ least $\left.p)\right) \rightarrow \forall x$. safe $p x \vee \operatorname{ex}($ least $p)$.

Appendix: Exercise Sheets

Exercise 9.5 (Least witness search)
Let $p^{N \rightarrow \mathbb{P}}$ be a decidable predicate and $L$ and $G$ be the functions from $\S 17.4$ of MPCTT. Prove the following:
a) $\forall n$. least $p(G n) \vee(G n=n \wedge$ safe $p n)$
b) $\forall n . p n \rightarrow$ least $p(G n)$
c) $\forall n k$. safe $p k \rightarrow$ least $p(\operatorname{Lnk}) \vee(\operatorname{Lnk}=k+n \wedge$ safe $p(k+n)$
d) $\forall n . p n \rightarrow$ least $p(L n 0)$

## Assignment 10

Do all exercises with the proof assistant.

## Exercise $\mathbf{1 0 . 1}$ (Relational specification of least witness operators)

One can give a relational specification of least witness operators in the way we have seen it for division operators. Given a decidable predicate $p^{N \rightarrow \mathbb{P}}$, we define

$$
\delta x y:=(\text { least } p y \wedge y \leq x) \vee(y=x \wedge \text { safe } p x)
$$

Understand and prove the following:
a) $\forall n x y . p n \rightarrow n \leq x \rightarrow \delta x y \rightarrow$ least $p y$

## soundness

b) $\forall x y y^{\prime} . \delta x y \rightarrow \delta x y^{\prime} \rightarrow y=y^{\prime}$ uniqueness
c) $\forall x \Sigma y \cdot \delta x y$ satisfiability
d) $\forall x . \delta x(G x) \quad$ correctness of $G$
e) $\forall x . \delta x(L x 0) \quad$ correctness of $L$

Claim (e) needs to be generalized to $L x y$ for the induction to go through.

## Exercise 10.2 (List basics)

Define the universal eliminator and the constructor laws for lists. First on paper using mathematical notation, then with Coq.

## Exercise 10.3 (List facts)

Understand and prove the following facts about lists:
a) $x:: A \neq A$
b) $(A+B)+C=A+(B+C)$
c) $\operatorname{len}(A+B)=\operatorname{len} A+\operatorname{len} B$
d) $x \in A+B \longleftrightarrow x \in A \vee x \in B$.
e) $x \in f @ A \longleftrightarrow \exists a \cdot a \in A \wedge x=f a$.

## Exercise 10.4 (Lists over discrete type)

Understand and prove the following facts about lists over a discrete type:
a) $\operatorname{rep} A+\operatorname{nrep} A$
b) $\operatorname{nrep} A \hookrightarrow \neg \operatorname{rep} A$
c) $\operatorname{dec}(\operatorname{rep} A)$
d) $x \in A \rightarrow \Sigma B$. len $B<\operatorname{len} A \wedge A \subseteq x:: B$
e) $\operatorname{nrep} A \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \Sigma z . z \in A \wedge z \notin B$
f) $\operatorname{nrep} A \rightarrow \operatorname{nrep} B \rightarrow A \equiv B \rightarrow \operatorname{len} A=\operatorname{len} B$

## Exercise 10.5 (Pigeonhole)

Prove that a list of numbers whose sum is greater than the length of the list must contain a number that is at least 2: sum $A>\operatorname{len} A \rightarrow \Sigma x . x \in A \wedge x \geq 2$. First define the function sum.

## Appendix: Exercise Sheets

Exercise 10.6 (Andrej's Challenge)
Assume an increasing function $f^{\mathrm{N} \rightarrow \mathrm{N}}$ (i.e., $\forall x . x<f x$ ) and a list $A$ of numbers satisfying $\forall x . x \in A \longleftrightarrow x \in f @ A$. Show that $A$ is empty.

## Assignment 11

## Exercise 11.1 (Even and Odd)

Define recursive predicates even and odd on numbers and show that they partition the numbers: even $n \rightarrow$ odd $n \rightarrow \perp$ and even $n+\operatorname{odd} n$.

## Exercise 11.2 (Non-repeating lists)

Assume a discrete base type and prove the following facts. You may use the discriminating element lemma.
a) $\mathcal{D}(x \in A)$ and $\mathcal{D}(A \subseteq B)$
b) $\forall A \cdot \Sigma B . B \equiv A \wedge \operatorname{nrep} B$
c) $A \subseteq B \rightarrow \operatorname{len} B<\operatorname{len} A \rightarrow \operatorname{rep} A$
d) $\operatorname{nrep} A \rightarrow A \subseteq B \rightarrow \operatorname{len} B \leq \operatorname{len} A \rightarrow \operatorname{nrep} B$
e) $\operatorname{nrep} A \rightarrow A \subseteq B \rightarrow \operatorname{len} B \leq \operatorname{len} A \rightarrow B \equiv A$
f) $\operatorname{nrep}(f @ A) \rightarrow \operatorname{nrep} A$
g) $\operatorname{nrep} A \rightarrow \operatorname{nrep}(\operatorname{rev} A)$

## Exercise 11.3 (Equivalent nonrepeating lists)

Show that equivalent nonrepeating lists have equal length without assuming discreteness of the base type. Hint: Show nrep $A \rightarrow A \subseteq B \rightarrow$ len $A \leq$ len $B$ by induction on $A$ with $B$ quantified using a deletion lemma.

## Exercise 11.4 (Existential characterizations)

Give non-recursive existential characterizations for $x \in A$ and rep $A$ and prove their correctness.

## Exercise 11.5 (Existential witness operator for booleans)

Let $p^{\mathbb{B} \rightarrow \mathbb{P}}$ be a decidable predicate. Prove ex $p \rightarrow \operatorname{sig} p$.

## Exercise 11.6 (Search types)

Prove the following facts about search types for a decidable predicate $p^{N \rightarrow \mathbb{P}}$.
a) $p n \rightarrow T n$
b) $T(\mathrm{~S} n) \rightarrow T n$
c) $T(k+n) \rightarrow T n$
d) $\mathrm{Tn} \rightarrow \mathrm{TO}$
e) $p n \rightarrow T 0$.
f) $p n \rightarrow m \leq n \rightarrow T m$
g) $\forall Z^{\mathbb{T}}$. $((\neg p n \rightarrow T(\mathrm{Sn})) \rightarrow Z) \rightarrow T n \rightarrow Z$
h) $\forall q^{N \rightarrow \mathbb{T}} .(\forall n .(\neg p n \rightarrow q(S n)) \rightarrow q n) \rightarrow \forall n$. Tn $\rightarrow q n$
i) $T n \longleftrightarrow \exists k . k \geq n \wedge p k$

Note that (h) provides an induction lemma for $T$ useful for direction $\rightarrow$ of (i).

## Appendix: Exercise Sheets

## Exercise 11.7 (Strict positivity)

Assume that the inductive type definition $B: \mathbb{T}::=C(B \rightarrow \perp)$ is admitted although it violates the strict positivity condition. Give a proof of falsity. Hint: Assume the definition gives you the constants

$$
B: \mathbb{T} \quad C:(B \rightarrow \perp) \rightarrow B \quad M: \forall Z . B \rightarrow((B \rightarrow \perp) \rightarrow Z) \rightarrow Z
$$

First define a function $f: B \rightarrow \perp$ using the matching constant $M$.

## Assignment 12

## Exercise 12.1 (Intuitionistic ND)

Assume the weakening lemma and prove the following facts with tables giving for each line the names of the deduction rules used:
a) $(A \vdash \neg \neg \perp) \rightarrow(A \vdash \perp)$
b) $(A \vdash \neg \neg \neg s) \rightarrow(A \vdash \neg s)$
c) $(A \vdash s) \rightarrow(A \vdash \neg \neg s)$
d) $A \vdash s \rightarrow A, s \vdash t \rightarrow A \vdash t$
e) $A \vdash \neg \neg(s \rightarrow t) \rightarrow \neg \neg s \rightarrow \neg \neg t$
f) $(\vdash s \rightarrow t \rightarrow u) \rightarrow(A \vdash s) \rightarrow(A \vdash t) \rightarrow(A \vdash u)$
g) $(A \vdash s \rightarrow t) \rightarrow(A, s \vdash t)$
h) $(A \vdash s \vee t) \Leftrightarrow \forall u$. $(A, s \vdash u) \rightarrow(A, t \vdash u) \rightarrow(A \vdash u)$

## Exercise 12.2 (Classical ND)

Assume the weakening lemma and prove the following facts with tables giving for each line the names of the deduction rules used:
a) $(A \vdash \perp) \rightarrow(A \vdash s)$
b) $(A \vdash \neg \neg \neg s) \rightarrow(A \vdash s)$
c) $\dot{\vdash} s \vee \neg s$
d) $\dot{\vdash}((s \rightarrow t) \rightarrow s) \rightarrow s$

## Exercise 12.3 (Glivenko)

Assume $\forall A s .(A \vdash s) \rightarrow(A \vdash \dot{\vdash})$ and $\forall A s$. $(A \vdash \dot{\vdash}) \rightarrow(A \vdash \neg \neg s)$ and prove the following:
a) $A \dot{\vdash} \neg S \Leftrightarrow A \vdash \neg S$
b) $A \vdash \perp \perp A \vdash \perp$
c) $((\vdash \perp) \rightarrow \perp) \Leftrightarrow((\stackrel{\perp}{ }) \rightarrow \perp)$

## Exercise 12.4 (Induction)

a) $(A \vdash s) \rightarrow p A s$ can be shown by induction on the derivation of $A \vdash s$. Give the proof obligation for each of the 9 deduction rules.
b) How do the obligations change if we switch to the classical system and prove $(A \dot{\vdash} s) \rightarrow p A s ?$
c) As an example, give the proof obligations for a proof of $(A \vdash \rho) \rightarrow(A \vdash \neg \neg s)$.

Appendix: Exercise Sheets

Exercise 12.5 (Reversion, challenging)
We define a reversion function $A \cdot s$ preserving the order of assumptions:

$$
\begin{aligned}
{[] \cdot s } & :=s \\
(t:: A) \cdot s & :=t \rightarrow(A \cdot s)
\end{aligned}
$$

Prove $(A \vdash s) \Leftrightarrow(\vdash A \cdot s)$.

## Assignment 13

## Exercise 13.1 (Formulas)

We consider an inductive type for formulas $s::=x|\perp| s \rightarrow t$ with the constructors for, Var, Bot, and Imp.
a) Give the types of the constructors.
b) Give the type of the eliminator for formulas.
c) Define a recursive predicate ground for formulas saying that a formula contains no variables.
d) Prove ground $(s) \rightarrow([\square \vdash s)+([] \vdash \neg s)$ using the eliminator from (b).

## Exercise 13.2 (Hilbert Systems)

We consider formulas $s::=x|\perp| s \rightarrow t \mid s \vee t$.
a) Give the rules for the Hilbert systems $\mathcal{H}(s)$.
b) Give the types of the constructors for the inductive type family $A \Vdash s$. Explain why $A$ is a uniform parameter and $s$ is an index.
c) Complete the type of the induction lemma $\forall A p . \cdots \rightarrow \forall s . A \Vdash s \rightarrow p s$.
d) Prove $(A \Vdash s \rightarrow s)$.
e) Prove $(A \Vdash t) \rightarrow(A \Vdash s \rightarrow t)$.
f) Prove $(s:: A \Vdash t) \rightarrow(A \Vdash s \rightarrow t)$.

## Exercise 13.3 (Heyting evaluation)

Consider the Heyting interpretation $0<1<2$.
a) Define the evaluation function $\mathcal{E}$.
b) Give an assignment such that $((x \rightarrow y) \rightarrow x) \rightarrow x$ evaluates to 1 .
c) Explain how one shows $\mathcal{H}(((x \rightarrow y) \rightarrow x) \rightarrow x) \rightarrow \perp$ using (b).
d) Give a formula that evaluates under all assignments to 2 but is not intuitionistically provable.

## Exercise 13.4 (Certifying solver)

Assume that $\mathcal{E}$ is the boolean evaluation function and that every refutation predicate $\rho$ has a certifying solver $\forall A .(\Sigma \alpha . \forall s \in A . \mathcal{E} \alpha s=$ true $)+\rho A$. Show the following:
a) $\lambda A . A \dot{\vdash} \perp$ is a refutation predicate.
b) $\mathcal{D}(\vdash s)$.
c) $\dot{\vdash} s \Leftrightarrow \forall \alpha$. $\mathcal{E} \alpha s=$ true.

## Appendix: Exercise Sheets

## Exercise 13.5 (Refutation system)

Consider the predicate $\rho^{\mathrm{For} \rightarrow \mathbb{P}}$ inductively defined with the following rules:

$$
\begin{aligned}
& \frac{\perp \in A}{\rho(A)} \\
& \frac{s \in A \quad \neg s \in A}{\rho(A)} \\
& \begin{array}{lll}
(s \rightarrow t) \in A \quad \rho(\neg s:: A) & \rho(t:: A) \\
\rho(A)
\end{array} \frac{\neg(s \rightarrow t) \in A \quad \rho(s:: \neg t:: A)}{\rho(A)} \\
& \frac{(s \wedge t) \in A \quad \rho(s:: t:: A)}{\rho(A)} \quad \frac{\neg(s \wedge t) \in A \quad \rho(\neg s:: A) \quad \rho(\neg t:: A)}{\rho(A)} \\
& \frac{(s \vee t) \in A \quad \rho(s:: A) \quad \rho(t:: A)}{\rho(A)} \quad \frac{\neg(s \vee t) \in A \quad \rho(\neg s:: \neg t:: A)}{\rho(A)}
\end{aligned}
$$

a) Show $\rho(\neg(((s \rightarrow t) \rightarrow s) \rightarrow s))$.
b) Show $\rho(A) \rightarrow \exists s . s \in A \wedge \mathcal{E} \alpha s=$ false.
c) Show the weakening property: $\rho(A) \rightarrow A \subseteq B \rightarrow \rho(B)$.
d) Show $\rho$ is a refutation predicate.

## Appendix: Glossary

Here is a list of technical terms used in the text but not used (much) in the literature. The technical terms are given in the order they appear first in the text.

- Discrimination
- Inductive function
- Target type function
- Propositional discrimination restriction
- Computational falsity elimination
- Index condition and index variables
- Reloading match


## Appendix: Author's Notes

## Work to do

- summary Part Basics
- chapter Introduction
- inductive type definitions in Coq with "|"?
- Coq development of certifying boolean solver (§25.12) needs update
- in chapter on Leibniz equality, make more explicit constructor laws, applicative closure laws, and disequality law


## - Think about

- ground terms / ground propositions
- reducible/abstract functions
- abstract functions matter (D.M, gcd); don't want to see defining equations; reducible functions are overrated
- might have reducible version of abstract function for ground proofs (primality prover)
- kinds of functions: plain, inductive, abstract, certifying, reducible
- Proof construction is incremental and goal driven (type driven)
- proof mode; proof tables, scripts, proof term construction, informal proofs
- propositions as types is perfect foundation of mathematical reasoning (there is nothing better), explains formulation, application, and proofs of theorems
- function application can happen forward and backward
- let expressions provide for middle out reasoning
- refinement types; numeral types as refinement type of N could be nice; but do we have applications? target types of certifying functions may be seen as refinement types and occur frequently


## Appendix: Author's Notes

## Changelog

2023

- new chapter Axiom CT and Semidecidability

2023

- chapters on certifying functions
- abstract syntax
- finite types, countable types, EWOs
- arithmetic recursion and Euclidean division
- vectors recursive and inductive, bijection
(prompted by Lean's course by values recursion, via Yannick)
- numerals recursive and inductive, bijection
- chapter on indexed inductives with inductive equality, reflexive transitive closure, comparisons, numerals, vectors, PCP and bijections with recursive variants
- inductive GCD relation
- Revised structure, now 4 parts named Basics, More Basics, Case Studies, and Foundational Studies

2021

- MPCTT started
- switch to inductive and plain functions in Chapter 2
- unfolding functions and procedural specifications
- computational falsity elimination
- Andrej Dudenhefner was lead TA

2020

- $x \leq y$ as $x-y=0$, game changer
- chapters on finite types and data types appeared

2019

- semi-decidability


## Coq wishlist

- inductive and plain function definitions
- notations for sum and sigma types
- disallow computational destructuring of conjunctions; inductive definition could request computational elimination.
- get rid of printing Set universe


## Editorial decisions

- Refer to all kinds of theorems as facts
- Assert certifying functions as facts when no name is given
- Define certifying functions in Coq with Fact/Qed


## Done

- introduce injections and bijections early
- introduce finite types based on lists early
- countable types.
- linear arithmetic as abstraction level
- abstract constants; equality and Euclidean division as simply typed examples
- construct certifying deciders in proof mode and provide with abstract constants
- introduce indexed inductives in Part Basics
- constructor patterns always omit arguments of type constructor
- upgrade regular expressions
- harmonize recursive and inductive numeral types


## Bibliography

[1] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of Mathematical Logic, pages 739-782. North-Holland, 1977.
[2] Peter Aczel. The Type Theoretic Interpretation of Constructive Set Theory. Studies in Logic and the Foundations of Mathematics, 96:55-66, January 1978.
[3] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion in type theory. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics, pages 1-16. Springer Berlin Heidelberg, 2000.
[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. NorthHolland, 2nd revised edition, 1984.
[5] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM), 11(4):481-494, 1964.
[6] Rod M. Burstall. Proving properties of programs by structural induction. The Computer Journal, 12(1):41-48, 1969.
[7] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The MIT Press, 2013.
[8] R. L. Constable. Computational type theory. Scholarpedia, 4(2):7618, 2009.
[9] Thierry Coquand. Metamathematical investigations of a calculus of constructions, 1989.
[10] Yannick Forster. Church's thesis and related axioms in Coq's type theory. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), volume 183 of LIPIcs, pages 21:1-21:19, 2021.
[11] Yannick Forster. Computability in Constructive Type Theory. PhD thesis, Saarland University, 2021.
[12] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in coq, with an application to the entscheidungsproblem. In 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, New York, NY, USA, Jan 2019. ACM.

## Bibliography

[13] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39(1):176-210, 1935. Translation in: Collected papers of Gerhard Gentzen, ed. M. E. Szabo, North-Holland,1969.
[14] Gerhard Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39(1):405-431, 1935. Translation in: Collected papers of Gerhard Gentzen, ed. M. E. Szabo, North-Holland, 1969.
[15] Michael Hedberg. A coherence theorem for Martin-Löf's type theory. Journal of Functional Programming, 8(4):413-436, 1998.
[16] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators, an Introduction. Cambridge University Press, 2008.
[17] Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness of identity proofs. In LICS 1994, pages 208-212, 1994.
[18] Stanisław Jaśkowski. On the rules of supposition in formal logic, Studia Logica 1: 5-32, 1934. Reprinted in Polish Logic 1920-1939, edited by Storrs McCall, 1967.
[19] Dominik Kirst and Benjamin Peters. Gödel's theorem without tears - essential incompleteness in synthetic computability. In Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, pages 30:1-30:18, 2023.
[20] Nicolai Kraus, Martín Hötzel Escardó, Thierry Coquand, and Thorsten Altenkirch. Generalizations of Hedberg's theorem. In Proceedings of TLCA 2013, volume 7941 of LNCS, pages 173-188. Springer, 2013.
[21] Edmund Landau. Grundlagen der Analysis: With Complete German-English Vocabulary, volume 141. American Mathematical Soc., 1965.
[22] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9. Bibliopolis Naples, 1984.
[23] Yuri V. Matiyasevich. Martin Davis and Hilbert's Tenth Problem. In Eugenio G. Omodeo and Alberto Policriti, editors, Martin Davis on Computability, Computational Logic, and Mathematical Foundations, volume 10 of Outstanding Contributions to Logic, pages 35-54. Springer, 2016.
[24] John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions. Mathematical aspects of computer science, 1, 1967.
[25] Bengt Nordström. Terminating general recursion. BIT Numerical Mathematics, 28(3):605-619, Sep 1988.
[26] Raymond M. Smullyan and Melvin Fitting. Set Theory and the Continuum Hypothesis. Dover, 2010.
[27] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge University Press, 2nd edition, 2000.
[28] A.S. Troelstra and D. Van Dalen. Constructivism in Mathematics. Vol. 121 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1988.
[29] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
[30] Louis Warren, Hannes Diener, and Maarten McKubre-Jordens. The drinker paradox and its dual. CoRR, abs/1805.06216, 2018.


[^0]:    ${ }^{1}$ In this section, only inductive hypotheses appear as assumption. We will see more assumptions once we prove claims with implication in Chapter 3.

[^1]:    ${ }^{2} \mathrm{~A}$ higher-order function is a function taking a function as argument.

[^2]:    ${ }^{1}$ Note the notational coincidence.

[^3]:    ${ }^{2}$ Suppose there is a closed term of type $\perp$. Because of termination and type preservation there is a closed and normal term of type $\perp$. By canonicity this term must be obtained with a constructor for $\perp$. Contradiction.

[^4]:    ${ }^{1}$ Recall that target type functions appeared first with the rewriting law for propositional equality.

[^5]:    ${ }^{2}$ The equation was brought up as a proof challenge by Mark Kaminski in 2005 when he wrote his Bachelor's thesis on a calculus for classical higher-order logic.
    ${ }^{3}$ Coq supports the pattern with the destruct tactic and the eqn modifier.

[^6]:    ${ }^{4}$ Since computation in type theory is always terminating, eager recursion cannot cause problems.

[^7]:    ${ }^{5}$ A related problem appears in set theory, where the set of all sets must be excluded.

[^8]:    ${ }^{1}$ Relying on the context for disambiguation, we reuse the names $L$ and $R$ also used for the proof constructors of disjunctions.

[^9]:    ${ }^{1}$ The nested pair representation is well-known from lists. It appeared in set theory where it us used to represent tuples of arbitrary length.

[^10]:    ${ }^{1}$ The inductive definition of equality will be discussed in Chapter 30.

[^11]:    ${ }^{1}$ The letter $T$ derives from the intuition that propositions obtained with the computational $T$ provide for a transfer from the propositional level to the computational level.

[^12]:    ${ }^{1}$ The use of abstract syntax is discussed more carefully in Chapter 7.

[^13]:    ${ }^{2}$ Hilbert systems are also known as axiomatic systems. They originated with Gottlieb Frege before they were popularized by David Hilbert.

[^14]:    ${ }^{3}$ An assignment assigns a truth value to every atomic formula.

[^15]:    ${ }^{4}$ We are reusing the turnstile $\Vdash$ previously used for Hilbert systems.

[^16]:    ${ }^{1}$ The result appears in Troelstra and Van Dalen [28] and Forster [10].

[^17]:    ${ }^{1}$ We acknowledge the help of Gaëtan Gilbert, (Coq Club, November 13, 2020).

