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Preface

This text teaches functional programming and the structure of program-
ming languages to beginning students. It is written for the Program-
ming 1 course for computer science students at Saarland University. We
assume that incoming students are familiar with mathematical thinking,
but we do not assume programming experience. The course is designed
to take about one third of the study time of the first semester.

We have been teaching a course like this at Saarland University since
1998. Students perceive the course as challenging and exciting, whether
they have programmed before or not. In 2021, we changed the teaching
language to English and the programming language to OCaml.

As it comes to functional programming, we cover higher-order re-
cursive functions, polymorphic typing, and constructor types for lists,
trees, and abstract syntax. We emphasize the role of correctness state-
ments and practice inductive correctness proofs. We also cover asymp-
totic running time considering binary search (logarithmic), insertion sort
(quadratic), merge sort (linearithmic), and other algorithms.

As it comes to the structure of programming languages, we study
the different layers of syntax and semantics at the example of the ide-
alized functional programming language Mini-OCaml. We describe the
syntactic layers with grammars and the semantic layers with inference
rules. Based on these formal descriptions, we program recursive descent
parsers, type checkers and evaluators.

We also cover stateful programming with arrays and cells (assignable
variables). We explain how lists and trees can be stored as linked blocks
in an array, thus explaining memory consumption for constructor types.

There is a textbook1 written for the German iterations of the course
(1998 to 2020). The new English text realizes some substantial changes:
OCaml rather than Standard ML as programming language, less details
about the concrete programming language being used, more emphasis
on correctness arguments and algorithms, informal type-theoretic expla-
nations rather than formal set-theoretic definitions.

The current version of the text leaves room for improvement. More
basic explanations with more examples could be helpful in many places.
An additional chapter on imperative programming with loops and the

1Gert Smolka, Programmierung — eine Einführung in die Informatik mit Standard
ML. Oldenbourg Verlag, 2008.
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realization with stack machines with jumps (see the German textbook)
would be interesting, but this extra material may not fit into the time-
budget of a one-semester course.

At Saarland University, the course spans 15 weeks of teaching in the
winter semester. Each week comes with two lectures (90 minutes each),
an exercises assignment, office hours, tutorials, and a test (15 minutes).
There is a midterm exam in December and a final exam (offered twice)
after the lecture period has finished. The 2021 iteration of the course also
came with a take home project over the holiday break asking the students
to write an interpreter for Mini-OCaml. The take home project should
be considered an important part of the course, given that it requires
the students writing and debugging a larger program (about 250 lines),
which is quite different from the small programs (up to 10 lines) the
weekly assignments ask for.
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1 Getting Started

In this chapter we start programming in OCaml. We use an interactive
tool called an interpreter that checks and executes the declarations of a
program one by one. We concentrate on recursive functions on integers
computing things like powers, integer quotients, digit sums, and integer
roots. We also formulate a general algorithm known as linear search
as a higher-order function. We follow an approach known as functional
programming where functions are designed at a mathematical level using
types and equations before they are coded in a concrete programming
language.

1.1 Programs and Declarations

An OCaml program is a sequence of declarations, which are executed
in the order they are written. Our first program

let a = 2 * 3 + 2
let b = 5 * a

consists of two declarations. The first declaration binds the identifier a
to the integer 8, and the second declaration binds the identifier b to
the integer 40. This is clear from our understanding of the arithmetic
operations “+” and “∗”.

To learn programming in OCaml, you want to use an interactive
tool called an interpreter.1 The user feeds the interpreter with text.
The interpreter checks that the given text can be interpreted as a pro-
gram formulated correctly according to the rules of the programming
language. If this is the case, the interpreter determines a type for every
identifier and every expression of the program. Our example program
is formulated correctly and the declared identifiers a and b both receive
the type int (for integer). After a program has been checked success-
fully, the interpreter will execute it. In our case, execution will bind the
identifier a to the integer 8 and the identifier b to the integer 40. After
the program has been executed successfully, the interpreter will show
the values it has computed for the declared identifiers. If a program
is not formulated correctly, the interpreter will show an error message
indicating which rule of the language is violated. Once the interpreter

1A nice browser-based interpreter is https://try.ocamlpro.com.
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1 Getting Started

has checked and executed a program, the user can extend it with further
declarations. This way one can write the declarations of a program one
by one.

At this point you want to start working with the interpreter. You
will learn the exact rules of the language through experiments with the
interpreter guided by the examples and explanations given in this text.

Here is a program redeclaring the identifier a:

let a = 2 * 3 + 2
let b = 5 * a
let a = 5
let c = a + b

The second declaration of the identifier a shadows the first declaration
of a. Shadowing does not affect the binding of b since it is obtained
before the second declaration of a is executed. After execution of the
program, the identifiers a, b, and c are bound to the integers 5, 40,
and 45, respectively.

The declarations we consider in this chapter all start with the key-
word let and consist of a head and a body separated by the equality
symbol “=”. Keywords cannot be used as identifiers. The bodies of
declarations are expressions. Expressions can be obtained with iden-
tifiers, constants, and operators. The nesting of expressions can be
arranged with parentheses. For instance, the expression 2 · 3 + 2 − x
may be written with redundant parentheses as ((2 · 3) + 2)− x. The
parentheses in 2 · (x+ y)− 3 are not redundant and are needed to make
the expression x + y the right argument of the product with the left
argument 2.

Every expression has a type. So far we have only seen expressions
of the type int. The values of the type int are integers (whole num-
bers . . . ,−2,−1, 0, 1,−2, . . . ). In contrast to the infinite mathematical
type Z, OCaml’s type int provides only a finite interval of machine
integers realized efficiently by the hardware of the underlying com-
puter. The endpoints of the interval can be obtained with the prede-
fined identifiers min int and max int. All machine operations respect
this interval. We have max int + 1 = min int, for instance.2

When we reason about programs, we will usually ignore the machine
integers and just assume that all integers are available. As long as the

2It turns out that different interpreters realize different intervals for machine integers,
even on the same computer. For instance, on the author’s computer, in October
2021, the browser-based Try OCaml interpreter realizes max int as 231 − 1 =
2147483647, while the official OCaml interpreter realizes max int as 261 − 1 =
4611686018427387903.

2



1 Getting Started

numbers in a concrete computation are small enough, this simplification
does not lead to wrong conclusions.

Every programming language provides machine integers for effi-
ciency. There are techniques for realizing much larger intervals of in-
tegers based on machine integers in programming languages.

Exercise 1.1.1 Give an expression and a declaration. Explain the
structure of a declaration. Explain nesting of expressions. Give a type.

Exercise 1.1.2 To what value does the program

let a = 2 let a = a * a let a = a * a

bind the identifier a?

Exercise 1.1.3 Give a machine integer x such that x+ 1 < x.

1.2 Functions and Let Expressions

Things become interesting once we declare functions. The declaration

let square x = x * x

declares a function

square : int → int

squaring its argument. The identifier square receives a functional type
int → int describing functions that given an integer return an integer.
Given the declaration of square, execution of the declaration

let a = square 5

binds the identifier a to the integer 25.
Can we compute a power x8 with just three multiplications? Easy,

we just square the integer x three times:

let pow8 x = square (square (square x))

This declaration gives us a function pow8 : int → int.
Another possibility is the declaration

let pow8' x =
let a = x * x in
let b = a * a in
b * b

3



1 Getting Started

declaring a function pow8 ′ : int → int doing the three multiplications
using two local declarations. Local declarations are obtained with let
expressions

let d in e

combining a declaration d with an expression e using the keywords
let and in. Note that the body of pow′ nests two let expressions as
let d1 in (let d2 in e). OCaml lets you write redundant parentheses
marking the nesting (if you want to). Let expressions must not be con-
fused with top-level declarations (which don’t use the keyword in).

Exercise 1.2.1 Write a function computing x5 with just 3 multiplica-
tions. Write both a version with square and a version with local dec-
larations. Write the version with local declarations with and without
redundant parentheses marking the nesting.

1.3 Conditionals, Comparisons, and Booleans

The declaration

let abs x = if x < 0 then -x else x

declares a function abs : int → int returning the absolute value of an
integer (e.g., abs(−5) = 5). The declaration of abs uses a comparison
x < 0 and a conditional formed with the keywords if, then, and else.

The declaration

let max x y : int = if x <= y then y else x

declares a function max : int → int → int computing the maximum
of two numbers. This is the first function we see taking two argu-
ments. There is an explicit return type specification in the dec-
laration (appearing as “ : int”), which is needed so that max receives
the correct type.3

Given max, we can declare a function

let max3 x y z = max (max x y) z

returning the maximum of three numbers. This time no return
type specification is needed since max forces the correct type
max3 : int → int → int → int.

Next we declare a three-argument maximum function using a local
declaration:

3The complication stems from the design that in OCaml comparisons like ≤ also
apply to types other than int.
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1 Getting Started

let max3 x y z : int =
let a = if x <= y then y else x in
if a <= z then z else a

There is a type bool having two values true and false called booleans.
The comparison operator “≤” used for max (written “<=” in OCaml) is
used with the functional type int → int → bool saying that an expression
e1 ≤ e2 where both subexpressions e1 and e2 have type int has type bool.

The declaration

let test (x : int) y z = if x <= y then y <= z else false

declares a function test : int → int → int → bool testing whether its
three arguments appear in order. The type specification given for
the first argument x is needed so that test receives the correct type. Al-
ternatively, type specifications could be given for one or all of the other
arguments.

Exercise 1.3.1 Declare minimum functions analogous to the maximum
functions declared above. For each declared function give its type (before
you check it with the interpreter). Also, write the declarations with and
without redundant parentheses to understand the nesting.

Exercise 1.3.2 Declare functions int → int → bool providing the com-
parisons x = y, x 6= y, x < y, x ≤ y, x > y, and x ≥ y. Do this by
just using conditionals and comparisons x ≤ y. Then realize x ≤ y with
x ≤ 0 and subtraction.

1.4 Recursive Power Function

Our next goal is a function computing powers xn using multiplication.
We recall that powers satisfy the equations

x0 = 1
xn+1 = x · xn

Using the equations, we can compute every power xn where n ≥ 0. For
instance,

23 = 2 · 22 2nd equation
= 2 · 2 · 21 2nd equation
= 2 · 2 · 2 · 20 2nd equation
= 2 · 2 · 2 · 1 1st equation
= 8

5



1 Getting Started

The trick is that the 2nd equation reduces larger powers to smaller pow-
ers, so that after repeated application of the 2nd equation the power x0

appears, which can be computed with the 1st equation. What we see
here is a typical example of a recursive computation.

Recursive computations can be captured with recursive functions.
To arrive at a function computing powers, we merge the two equations
for powers into a single equation using a conditional:

xn = if n < 1 then 1 else x · xn−1

We now declare a recursive function implementing this equation:

let rec pow x n =
if n < 1 then 1
else x * pow x (n - 1)

The identifier pow receives the type pow : int → int → int. We say
that the function pow applies itself. Recursive function applications are
admitted if the declaration of the function uses the keyword rec.

We have demonstraed an important point about programming at the
example of the power function: Recursive functions are designed at a
mathematical level using equations. Once we have the right equations,
we can implement the function in any programming language.

1.5 Integer Division

Given two integers x ≥ 0 and y > 0, there exist unique integers k, r ≥ 0
such that

x = k · y + r

and

r < y

We call k the quotient and r the remainder of x and y. For instance,
given x = 11 and y = 3, we have the quotient 3 and the remainder 2
(since 11 = 3 · 3 + 2). We speak of integer division, or division with
remainder, or Euclidean division.

We may also characterize the quotient as the largest number k such
that k · y ≤ x, and define the remainder as r = x− k · y.

There is a nice geometrical interpretation of integer division. The
idea is to place boxes of the same length y next to each other into a
shelf of length x. The maximal number of boxes that can be placed into

6



1 Getting Started

the shelf is the quotient k and the length of the space remaining is the
remainder r = x − k · y < y. For instance, if the shelf has length 11
and each box has length 3, we can place at most 3 boxes into the shelf,
with 2 units of length remaining.4

Given that x and y uniquely determine k and r, we are justified in
using the notations x/y and x% y for k and r. By definition of k and r,
we have

x = (x/y) · y + x% y

and

x% y < y

for all x ≥ 0 and y > 0.
From our explanations it is clear that we can compute x/y and x% y

given x and y. In fact, the resulting operations x/y and x% y are es-
sential for programming and are realized efficiently for machine integers
on computers. We refer to the operations as division and modulo, or
just as “div” and “mod”. Accordingly, we read the applications x/y and
x% y as “x div y” and “x mod y”. OCaml provides both operations as
primitive operations using the notations x/y and x mod y.

Digit sum
With div and mod we can decompose the decimal representation of
numbers. For instance, 367 % 10 = 7 and 367/10 = 36. More generally,
x% 10 yields the last digit of the decimal representation of x, and x/10
cuts off the last digit of the decimal representation of x.

Knowing these facts, we can declare a recursive function computing
the digit sum of a number:

let rec digit_sum x =
if x < 10 then x
else digit_sum (x / 10) + (x mod 10)

For instance, we have digit sum 367 = 16. We note that digit sum
terminates since the argument gets smaller upon recursion.

Exercise 1.5.1 (First digit) Declare a function that yields the first
digit of the decimal representation of a number. For instance, the first
digit of 367 is 3.

Exercise 1.5.2 (Maximal digit) Declare a function that yields the
maximal digit of the decimal representation of a number. For instance,
the maximal digit of 376 is 7.

4A maybe simpler geometrical interpretation of integer division asks how many boxes
of height y can be stacked on each other without exceeding a given height x.

7
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Digit reversal
We now write a function rev that given a number computes the number
represented by the reversed digital representation of the number. For
instance, we want rev 76 = 67, rev 67 = 76, and rev 7600 = 67. To
write rev, we use an important algorithmic idea. The trick is to have an
additional accumulator argument that is initially 0 and that collects
the digits we cut off at the right of the main argument. For instance,
we want the trace

rev′ 456 0 = rev′ 45 6 = rev′ 4 65 = rev′ 0 654 = 654

for the helper function rev′ with the accumulator argument.
We declare rev and the helper function rev′ as follows:

let rec rev' x a =
if x <= 0 then a
else rev' (x / 10) (10 * a + x mod 10)

let rev x = rev' x 0

We refer to rev′ as the worker function for rev and to the argument a
of rev′ as the accumulator argument of rev′. We note that rev′ ter-
minates since the first argument gets smaller upon recursion.

Greatest common divisors
Recall the notion of greatest common divisors. For instance, the greatest
common divisor of 34 and 85 is the number 17. In general, two numbers
x, y ≥ 0 such that x + y > 0 always have a unique greatest common
divisor. We assume the following rules for greatest common divisors
(gcds for short):5

1. The gcd of x and 0 is x.
2. If y > 0, the gcd of x and y is the gcd of y and x% y.
The two rules suffice to declare a function gcd : int → int → int com-
puting the gcd of two numbers x, y ≥ 0 such that x+ y > 0:

let rec gcd x y =
if y < 1 then x
else gcd y (x mod y)

The function terminates for valid arguments since (x% y) < y for x ≥ 0
and y ≥ 1.

5We will prove the correctness of the rules in a later chapter.
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Computing div and mod with repeated subtraction
We can compute x/y and x% y using repeated subtraction. To do so,
we simply subtract y from x as long as we do not obtain a negative
number. Then x/y is the number of successful subtractions and b is the
remaining number.

let rec my_div x y = if x < y then 0 else 1 + my_div (x - y) y
let rec my_mod x y = if x < y then x else my_mod (x - y) y

We remark that both functions terminate for x ≥ 0 and y > 0 since the
first argument gets smaller upon recursion.

Exercise 1.5.3 (Traces) Give traces for the following applications:

rev′ 678 0 rev′ 6780 0 gcd 90 120 gcd 153 33 my mod 17 5

We remark that the functions rev′, gcd, and my mod employ a special
form of recursion known as tail recursion. We will discuss tail recursion
in §1.11.

1.6 Mathematical Level versus Coding Level

When we design a function for OCaml or another programming lan-
guage, we do this at the mathematical level. The same is true when
we reason about functions and their correctness. Designing and rea-
soning at the mathematical level has the advantage that it serves all
programming languages, not just the concrete programming language
we have chosen to work with (OCaml in our case). Given the design of
a function at the mathematical level, we refer to the realization of the
function in a concrete programming language as coding. Programming
as we understand it emphasizes design and reasoning over coding.

It is important to distinguish between the mathematical level and
the coding level. At the mathematical level, we ignore the type int of
machine integers and instead work with infinite mathematical types. In
particular, we will use the types

N : 0, 1, 2, 3, . . . natural numbers
N+ : 1, 2, 3, 4, . . . positive integers
Z : . . . ,−2,−1, 0, 1, 2, . . . integers
B : false, true booleans

When start with the design of a function, it is helpful to fix a math-
ematical type for the function. Once the type is settled, we can collect

9
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equations the function should satisfy. The goal here is to come up with
a collection of equations that is sufficient for computing the function.

For instance, when we design a power function, we may start with
the mathematical type

pow : Z→ N→ Z

and the equation

pow x n = xn

Together, the type and the equation specify the function we want to
define. Next we need equations that can serve as defining equations
for pow. The specifying equation is not good enough since we assume,
for the purpose of the example, that the programming language we want
to code in doesn’t have a power operator. We now recall that powers xn

satisfy the equations

x0 = 1
xn+1 = x · xn

In §1.4 we have already argued that rewriting with the two equations
suffices to compute all powers we can express with the type given for pow.
Next we adapt the equations to the function pow we are designing:

pow x 0 = 1
pow x n = x · pow x (n− 1) if n > 0

The second equation now comes with an application condition re-
placing the pattern n+ 1 in the equation xn+1 = x · xn.

We observe that the equations are exhaustive and disjoint, that is,
for all x and n respecting the type of pow, the left side of one and only
one of the equations applies to the application pow x n. We choose
the equations as defining equations for pow and summarize our design
with the mathematical definition

pow : Z→ N→ Z
pow x 0 := 1
pow x n := x · pow x (n− 1) if n > 0

Note that we write defining equations with the symbol “:=” to mark
them as defining.

We observe that the defining equations for pow are terminating.
The termination argument is straightforward: Each recursion step

10
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issued by the second equation decreases the second argument n by 1.
This ensures termination since a chain x1 > x2 > x3 > · · · of natural
numbers cannot be infinite.

Next we code the mathematical definition as a function declaration
in OCaml:

let rec pow x n =
if n < 1 then 1
else x * pow x (n - 1)

The switch to OCaml involves several significant issues:
1. The type of pow changes to int → int → int since OCaml has no

special type for N (as is typical for execution-oriented programming
languages). Thus the OCaml function admits arguments that are
not admissible for the mathematical function. We speak of spurious
arguments.

2. To make pow terminating for negative n, we return 1 for all n < 1.
We can also use the equivalent comparison n ≤ 0. If we don’t scare
away from nontermination for spurious arguments, we can also use
the equality test n = 0.

3. The OCaml type int doesn’t give us the full mathematical type Z of
integers but just a finite interval of machine integers.
When we design a function, there is always a mathematical level

governing the coding level for OCaml. One important point about the
mathematical level is that it doesn’t change when we switch to another
programming language. In this text, we will concentrate on the mathe-
matical level.

When we argue the correctness of the function pow, we do this at
the mathematical level using the infinite types Z and N. As it comes
to the realization in OCaml, we just hope that the numbers involved
for particular examples are small enough so that the difference between
mathematical arithmetic and machine arithmetic doesn’t show. The
reason we ignore machine integers at the mathematical level is simplicity.

1.7 More about Mathematical Functions

We use the opportunity and give mathematical definitions for some func-
tions we already discussed. A mathematical function definition consists
of a type and a system of defining equations.

11
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Remainder

% : N→ N+ → N
x% y := x if x < y

x% y := (x− y) % y if x ≥ y

Recall that N+ is the type of positive integers 1, 2, 3, . . . . By using the
type N+ for the divisor we avoid a division by zero.

Digit sum

D : N→ N
D(x) := x if x < 10
D(x) := D(x/10) + (x% 10) if x ≥ 10

Digit Reversal

R : N→ N→ N
R 0 a := a

R x a := R (x/10) (10 · a+ (x% 10)) if x > 0

A system of defining equations for a function must respect the type
specified for the function. In particular, the defining equations must be
exhaustive and disjoint for the type specified for the function.

Often, the defining equations of a function will be terminating for
all arguments. This is the case for each of the three function defined
above. In each case, the same termination argument applies: The first
argument, which is a natural number, is decreased by each recursion
step.

Curly braces
We can use curly braces to write several defining equations with the
same left-hand side with just one left-hand side. For instance, we may
write the defining equations of the digit sum function as follows:

Dx :=

x if x < 10
D(x/10) + (x% 10) if x ≥ 10

Total and partial functions
Functions where the defining equations terminate for all arguments are
called total, and function where this is not the case are called partial.
Most mathematical functions we will look at are total, but there are
a few partial functions that matter. If there is a way to revise the
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mathematical definition of a function such that the function becomes
total, we will usually do so. The reason we prefer total functions over
partial functions is that equational reasoning for total functions is much
easier than it is for partial functions. For correct equational reasoning
about partial functions we need side conditions making sure that all
function applications occurring in an equation used for reasoning do
terminate.

We say that a function diverges for an argument if it does not
terminate for this argument. Here is a function that diverges for all
numbers smaller than 10 and terminates for all other numbers:

f : N→ N
f(n) := f(n) if n < 10
f(n) := n if n ≥ 10

Exercise 1.7.1 Define a function N→ N that terminates for even num-
bers and diverges for odd numbers.

Graph of a function
Abstractly, we may see a function f : X → Y as the set of all argument-
result pairs (x, f(x)) where x is taken from the argument type X. We
speak of the graph of a function. The graph of a function completely
forgets about the definition of the function.

When we speak of a mathematical function in this text, we always
include the definition of the function with a type and a system of defining
equations. This information is needed so that we can compute with the
function.

In noncomputational mathematics, one usually means by a function
just a set of argument-result pairs.

GCD function
It is interesting to look at the mathematical version of the gcd function
from §1.5:

G : N→ N→ N
G x 0 := x

G x y := G y (x% y) if y > 0

The defining equations are terminating since the second argument is
decreased upon recursion (since x% y < y if y > 0). Note that the type
of G admits x = y = 0, a case where no greatest comon divisor exists.

13
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1.8 Linear Search and Higher-Order Functions

A boolean test for numbers is a function f : int → bool expressing a
condition for numbers. If f(k) = true, we say that k satisfies f .

Linear search is an algorithm that given a boolean test f : int → bool
and a number n computes the first number k ≥ n satisfying f by check-
ing f for

k = n, n+ 1, n+ 2, . . .

until f is satisfied for the first time. We realize linear search with an
OCaml function

first : (int → bool)→ int → int

taking the test as first argument:

let rec first f k =
if f k then k
else first f (k + 1)

Functions taking functions as arguments are called higher-order func-
tions. Higher-order functions are a key feature of functional program-
ming.

Recall that we have characterized in §1.5 the integer quotient x/y
as the maximal number k such that k · y ≤ x. Equivalently, we may
characterize x/y as the first number k ≥ 0 such that (k + 1) · y > x

(recall the shelf interpretation). This gives us the equation

x/y = first (λk. (k + 1) · y > x) 0 if x ≥ 0 and y > 0 (1.1)

The functional argument of first is described with a lambda expres-
sion

λk. (k + 1) · y > x

Lambda expressions are a common mathematical notation for describing
functions without giving them a name.6

We use Equation 1.1 to declare a function

div : int → int → int

computing quotients x/y:

let div x y = first (fun k -> (k + 1) * y > x) 0

6The greek letter “λ” is pronounced “lambda”. Sometimes lambda expressions λx.e
are written with the more suggestive notation x 7→ e.
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From the declaration we learn that OCaml writes lambda expressions
with the words “fun” and “->”. Here is a trace showing how quotients
x/y are computed with first:

div 11 3 = first (λk. (k + 1) · 3 > 11) 0 1 · 3 ≤ 11
= first (λk. (k + 1) · 3 > 11) 1 2 · 3 ≤ 11
= first (λk. (k + 1) · 3 > 11) 2 3 · 3 ≤ 11
= first (λk. (k + 1) · 3 > 11) 3 4 · 3 > 11
= 3

We remark that first is our first inherently partial function. For
instance, the function

first (λk. false) : N→ N

diverges for all arguments. More generally, the application first f n

diverges whenever there is no k ≥ n satisfying f .
Exercise 1.8.1 Declare a function div′ such that div x y = div′ x y 0
by specializing first to the test λk. (k + 1) · y > x.

Exercise 1.8.2 Declare a function sqrt : N→ N such that sqrt(n2) = n

for all n. Hint: Use first.

Exercise 1.8.3 Declare a terminating function bounded first such that
bounded first f n yields the first k ≥ 0 such that k ≤ n and k satisfies f .

1.9 Partial Applications

Functions described with lambda expressions can also be expressed with
declared functions. To have an example, we declare div with first and a
helper function test replacing the lambda expression:

let test x y k = (k + 1) * y > x
let div x y = first (test x y) 0

The type of the helper function test is int → int → int → bool. Apply-
ing test to x and y yields a function of type int → bool as required by
first. We speak of a partial application. Here is a trace showing how
quotients x/y are computed with first and test:

div 11 3 = first (test 11 3) 0 1 · 3 ≤ 11
= first (test 11 3) 1 2 · 3 ≤ 11
= first (test 11 3) 2 3 · 3 ≤ 11
= first (test 11 3) 3 4 · 3 > 11
= 3
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We may describe the partial applications of test with equivalent lambda
expressions:

test x y = λk. (k + 1) · y > x

test 11 3 = λk. (k + 1) · 3 > 11

We can also describe partial applications of test to a single argument
with equivalent lambda expressions:

test x = λyk. (k + 1) · y > x = λy. λk. (k + 1) · y > x

test 11 = λyk. (k + 1) · y > 11 = λy. λk. (k + 1) · y > 11

Note that lambda expressions with two argument variables are nota-
tion for nested lambda expressions with single arguments. We can also
describe the function test with a nested lambda expression:

test = λxyk. (k + 1) · y > x = λx. λy. λk. (k + 1) · y > x

Following the nesting of lambda expressions, we may see applications
and function types with several arguments as nestings of applications
and function types with single arguments:

e1 e2 e3 = (e1 e2) e3

t1 → t2 → t3 = t1 → (t2 → t3)

Note that applications group to the left and function types group to the
right.

We have considered equations between functions in the discussion of
partial applications of test. We consider two functions as equal if they
agree on all arguments. So functions with very different definitions may
be equal. In fact, two functions are equal if and only if they have the
same graph. We remark that there is no algorithm deciding equality of
functions in general.

Exercise 1.9.1
a) Write λxyk. (k + 1) · y > x as a nested lambda expression.
b) Write test 11 3 10 as a nested application.
c) Write int → int → int → bool as a nested function type.

Exercise 1.9.2 Express the one-argument functions described by the
expressions x2, x3 and (x+1)2 with lambda expressions in mathematical
notation. Translate the lambda expressions to expressions in OCaml and
have them type checked. Do the same for the two-argument function
described by the expression x < k2.
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Exercise 1.9.3 (Sum functions)
a) Define a function N → N computing the sum 0 + 1 + 2 + · · · + n of

the first n numbers.
b) Define a function N → N computing the sum 0 + 12 + 22 + · · · + n2

of the first n square numbers.
c) Define a function sum : (N → N) → N → N computing for a given

function f the sum f(0) + f(1) + f(2) + · · ·+ f(n).
d) Give partial applications of the function sum from (c) providing spe-

cialized sum functions as asked for by (a) and (b).

1.10 Inversion of Strictly Increasing Functions

A function f : N→ N is strictly increasing if

f(0) < f(1) < f(2) < · · ·

Strictly increasing functions can be inverted using linear search. That
is, given a strictly increasing function f : N → N, we can construct a
function g : N→ N such that g(f(n)) = n for all n. The construction is
explained by the equation

first (λk. f(k + 1) > f(n)) 0 = n (1.2)

which in turn gives us the equation

(λx. first (λk. f(k + 1) > x) 0) (f(n)) = n (1.3)

For a concrete example, let f(n) := n2. Equation 1.3 tells us that

g(x) := first (λk. (k + 1)2 > x) 0

is a function N→ N such that g(n2) = n for all n. Thus we know that

sqrt x := first (λk. (k + 1)2 > x) 0

computes integer square roots b 2
√
xc. For instance, we have sqrt(1) = 1,

sqrt(4) = 2, and sqrt(9) = 3. The floor operator bxc converts a real
number x into the greatest integer y ≤ x.

Exercise 1.10.1 Give a trace for sqrt 10.

Exercise 1.10.2 Declare a function sqrt ′ such that sqrt x = sqrt ′ x 0
by specializing first to the test λk. (k + 1)2 > x.
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Exercise 1.10.3 The ceiling operator dxe converts a real number
into the least integer y such that x ≤ y.
a) Declare a function computing rounded down cube roots b 3

√
xc.

b) Declare a function computing rounded up cube roots d 3
√
x e.

Exercise 1.10.4 Let y > 0. Convince yourself that λx. x/y inverts the
strictly increasing function λn. n · y.

Exercise 1.10.5 Declare inverse functions for the following functions:
a) λn.n3

b) λn.nk for k ≥ 2
c) λn.kn for k ≥ 2

Exercise 1.10.6 Declare a function inv : (N → N) → (N → N) that
given a strictly increasing function f yields a function inverting f . Then
express the functions from Exercise 1.10.5 using inv.

Exercise 1.10.7 Let f : N→ N be strictly increasing. Convince your-
self that the functions

λx. first (λk. f(k) = x) 0
λx. first (λk. f(k) ≥ x) 0
λx. first (λk. f(k + 1) > x) 0

all invert f and find out how they differ.

1.11 Tail Recursion

A special form of functional recursion is tail recursion. Tail recursion
matters since it can be executed more efficiently than general recursion.
Tail recursion imposes the restriction that recursive function applica-
tions can only appear in tail positions where they directly yield the
result of the function. Hence recursive applications appearing as part of
another application (operator or function) are not tail recursive. Typical
examples of tail recursive functions are the functions rev′, gcd, my mod,
and first we have seen before. Counterexamples for tail recursive func-
tions are the recursive functions pow (the recursive application is nested
into a product) and my div (the recursive application is nested into a
sum).
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Tail recursive functions have the property that their execution can
be traced in a simple way. For instance, we have the tail recursive trace

gcd 36 132 = gcd 132 36
= gcd 36 24
= gcd 24 12
= gcd 12 0
= 12

For functions where the recursion is not tail recursive, traces look more
complicated, for instance

pow 2 3 = 2 · pow 2 2
= 2 · (2 · pow 2 1)
= 2 · (2 · (2 · pow 2 0))
= 2 · (2 · (2 · 1))
= 8

In imperative programming languages tail recursive functions can be
expressed with loops. While imperative languages are designed such
that loops should be used whenever possible, functional programming
languages are designed such that tail recursive functions are preferable
over loops.

Often recursive functions that are not tail recursive can be reformu-
lated as tail recursive functions by introducing an extra argument serving
as accumulator argument. Here is a tail recursive version of pow :

let rec pow' x n a =
if n < 1 then a
else pow' x (n - 1) (x * a)

We explain the role of the accumulator argument with a trace:

pow′ 2 3 1 = pow′ 2 2 2
= pow′ 2 1 4
= pow′ 2 0 8
= 8

Exercise 1.11.1 (Factorials) In mathematics, the factorial of a pos-
itive integer n, denoted by n!, is the product of all positive integers less
than or equal to n:

n! = n · (n− 1) · · · · · 2 · 1
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For instance,

5! = 5 · 4 · 3 · 2 · 1 = 120

In addition, 0! is defined as 1. We capture this specification with a
recursive function defined as follows:

! : N→ N
0! := 1

(n+ 1)! := (n+ 1) · n!

a) Declare a function fac : int → int computing factorials.
b) Define a tail recursion function f : N→ N→ N such that n! = f 1n.
c) Declare a tail recursive function fac′ : int → int → int such that

fac′ 1 computes factorials.

1.12 Tuples

Sometimes we want a function that returns more than one value. For
instance, the time for a marathon may be given with three numbers in
the format h : m : s, where h is the number of hours, m is the number
of minutes, and s is the number of seconds the runner needed. The time
of Eliud Kipchoge’s world record in 2018 in Berlin was 2 : 01 : 39. There
is the constraint that m < 60 and s < 60.

OCaml has tuples to represent collections of values as single values.
To represent the marathon time of Kipchoge in Berlin, we can use the
tuple

(2, 1, 39) : int × int × int

consisting of three integers. The product symbol “×” in the tuple type
is written as “*” in OCaml. The component types of a tuple are not
restricted to int, and there can be n ≥ 2 positions, where n is called
the length of the tuple. We may have tuples as follows:

(2, 3) : int × int
(7, true) : int × bool

((2, 3), (7, true)) : (int × int)× (int × bool)

Note that the last example nests tuples into tuples. We mention that
tuples of length 2 are called pairs, and that tuples of length 3 are called
triples.
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We can now write two functions

sec : int × int × int → int
hms : int → int × int × int

translating between times given in total seconds and times given as
(h,m, s) tuples:

let sec (h,m,s) = 3600 * h + 60 * m + s
let hms x =

let h = x / 3600 in
let m = (x mod 3600) / 60 in
let s = x mod 60 in
(h,m,s)

Exercise 1.12.1
a) Give a tuple of length 5 where the components are the values 2 and 3.
b) Give a tuple of type int × (int × (bool × bool)).
c) Give a pair whose first component is a pair and whose second com-

ponent is a triple.

Exercise 1.12.2 (Sorting triples) Declare a function sort sorting
triples. For instance, we want sort (3, 2, 1) = (1, 2, 3). Designing such
a function is interesting. Given a triple (x, y, z), the best solution we
know of first ensures y ≤ z and then inserts x at the correct position.
Start from the code snippet

let sort (x,y,z) =
let (y,z) = if y <= z then (y,z) else (z, y) in
if x <= y then . . .
else . . .

where the local declaration ensures y ≤ z using shadowing.

Exercise 1.12.3 (Medians) The median of three numbers is the num-
ber in the middle. For instance, the median of 5, 0, 1 is 1. Declare a
function that takes three numbers and yields the median of the num-
bers.

1.13 Exceptions and Spurious Arguments

What happens when we execute the native operation 5/0 in OCaml?
Execution is aborted and an exception is reported:

Exception: Division_by_zero
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Exceptions can be useful when debugging erroneous programs. We will
say more about strings and exceptions in later chapters.

There is no equivalent to exceptions at the mathematical level. At
the mathematical level we use types like N+ or side conditions like y 6= 0
to exclude undefined applications like x/0.

When coding a mathematical function in OCaml, we need to replace
mathematical types like N with the OCaml type int. This introduces
spurious arguments not anticipated by the mathematical function.
There are different ways to cope with spurious arguments:
1. Ignore the presence of spurious arguments. This is the best strategy

when you solve exercises in this text.
2. Use a wrapper function raising exceptions when spurious arguments

show up. The wrapper function facilitates the discovery of situations
where functions are accidentally applied to spurious arguments.

As an example, we consider the coding of the mathematical remainder
function

rem : N→ N+ → N
rem x y := x if x < y

rem x y := rem (x− y) y if x ≥ y

as the OCaml function

let rec rem x y = if x < y then x else rem (x - y) y

receiving the type int → int → int. In OCaml we now have the spurious
situation that rem x 0 diverges for all x ≥ 0. There other spurious
situations whose analysis is tedious since machine arithmetic needs to
be taken into account. Using the wrapper function

let rem_checked x y =
if x >=0 && y > 0 then rem x y
else invalid_arg "rem_checked"

all spurious situations are uniformly handled by throwing the exception

Invalid_argument "rem_checked"

There are several new features here:
• The lazy boolean and connective x >= 0 && y > 0 tests two con-

ditions and is equivalent to if x >= 0 then y > 0 else false.
• There is the string "rem_checked". Strings are values like integers

and booleans and have type string.
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• The predefined function invalid arg raises an exception saying that
rem checked was called with spurious arguments.7

When an exception is raised, execution of a program is aborted and the
exception raised is reported.

We use the opportunity and introduce the lazy boolean connec-
tives as abbreviations for conditionals:

e1 && e2  if e1 then e2 else false lazy and
e1 || e2  if e1 then true else e2 lazy or

Exercise 1.13.1 Consider the declaration

let eager_or x y = x || y

Find expressions e1 and e2 such that the expressions e1 || e2 and
eager or e1 e2 behave differently. Hint: Choose a diverging expression
for e2 and keep in mind that execution of a function application exe-
cutes all argument expressions. In contrast, execution of a conditional
if e1 then e2 else e3 executes e1 and then either e2 or e3, but not both.

Exercise 1.13.2 (Sorting triples) Recall Exercise 1.12.2. With lazy
boolean connectives a function sorting triples can be written without
much thinking by doing a naive case analysis considering the alternatives
x is in the middle or y is in the middle or z is in the middle.

1.14 Summary

After working through this chapter you should be able to design and code
functions computing powers, integer quotients and remainders, digit
sums, digit reversals, and integer roots. You should understand that
the design of functions happens at a mathematical level using mathe-
matical types and equations. A given design can then be refined into
a program in a given programming language. In this text we are us-
ing OCaml as programming language, assuming that this is the first
programming language you see.8

7OCaml says “invalid argument” for “spurious argument”.
8Most readers will have done some programming in some programming language

before starting with this text. Readers of this group often face the difficulty that
they invest too much energy on mapping back the new things they see here to the
form of programming they already understand. Since functional programming is
rather different from other forms of programming, it is essential that you open
yourself to the new ideas presented here. Keep in mind that a good programmer
quickly adapts to new ways of thinking and to new programming languages.
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You also saw a first higher-order function first, which can be used to
obtain integer quotients and integer roots with a general scheme known
as linear search. You will see many more examples of higher-order func-
tions expressing basic computational schemes.

The model of computation we have assumed in this chapter is rewrit-
ing with defining equations. In this model, recursion appears in a natural
way. You will have noticed that recursion is the feature where things get
really interesting. We also have discussed tail recursion, a restricted form
of recursion with nice properties we will study more carefully as we go
on. All recursive functions we have seen in this chapter have equivalent
tail recursive formulations (often using an accumulator argument).

Finally, we have seen tuples, which are compound values combining
several values into a single value.
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2 Syntax and Semantics

Programming languages are structured into 4 layers:
• Lexical Syntax This layer concerns the translation of sequences

of characters into a sequences of words.
• Phrasal Syntax This layer concerns the translation of sequences

of words into syntax trees.
• Static Semantics This layer concerns the conditions syntax trees

must satisfy to be well-formed.
• Dynamic Semantics This layer concerns the evaluation of syntax

trees. In contrast to the processing of the other layers, which either
succeeds or fails, evaluation of a syntax tree may diverge (i.e., not
terminate),

The first three layers are called static layers. Every program is pro-
cessed following the four layers. First, the given sequence of characters
is translated into a sequence of words, then the sequence of words is
translated into a syntax tree, which is then elaborated and checked. An
interpreter will then evaluate the syntax tree representing the program.
There are also compilers compiling programs via syntax trees into low-
level programs for machines. Compiled programs may be stored and
executed on suitable machines. An interpreter for a language L may be
seen as a machine for L realized with software.

When a program is processed, errors can occur at each of the four
layers. Usually, a program will only be executed if there are no static
errors (i.e., errors concerning a static layer). When a program is exe-
cuted, dynamic errors like “division by zero” may still occur.

The components of an interpreter or compiler taking care of the static
layers are known as lexer (lexical syntax), parser (phrasal syntax), and
type checker (static semantics).

In this chapter we consider sublanguages of OCaml covering many
of the features we have seen in the first chapter.

This chapter is a demanding discussion of the structure of program-
ming languages introducing many new notions beginners will not have
seen before. To gain a better idea of where the journey goes, the reader
may first skim the last section of this chapter giving a high-level review
of the material of this chapter.
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2 Syntax and Semantics

2.1 Lexical Syntax

The lexical syntax of a programming languages fixes the characters a
program can be written with. There are white space characters in-
cluding space, horizontal tabulation, carriage return, and line feed. The
lexical syntax also fixes different classes of words. We have seen the
following classes of words in OCaml:
• Keywords We have seen the keywords

let rec in if then else fun

The symbols
( ) = : -> * ,

also count as keywords.
• Operators We have seen the operators

+ - / mod <> < <= > >=

There are many more.
• Boolean literals true and false.
• Integer literals Examples are 0 and 2456.
• String literals For instance, "Saarbrücken". String literals can

contain special letters like the German umlauts.
• Identifiers Examples are pow, pow’, and div_checked. Identifiers

start with a lower case letter and can contain letters, digits and the
characters “_” (underline) and “’” (prime). Identifiers exclude words
that appear as keywords, operators, or boolean literals. Moreover,
identifiers must not contain special letters like the German umlauts.
The identifiers int, bool, and string are used as names for the
respective types.

Words are usually separated by white space characters. In some cases,
white space characters are not needed, as for instance in the character
sequence 3*(x/y) where every character is a word.

The lexical word classes are disjoint. This shows in the symbols
“=” and “*”, which are classified as keywords but not as operators.
This fits their use as keywords in declarations and types. However, the
symbols “=” and “*” may also serve as infix operators in expressions.
The necessary disambiguation will happen at the level of the phrasal
syntax.

There are also comments, which are character sequences

(* . . . *)
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counting as white space. Comments are only visible at the lexical level.
Comments are useful for remarks the programmer wants to write into a
program. Here is a text where the words identified by the lexical syntax
are marked:

(* Linear Search *)
let rec first f k =
if f k then k (* base case *)
else first f ( k + 1 ) (* recursive case *)

Note that the characters of the three comments in the text count as
white space and don’t contribute to the words.

Consult the OCaml manual if you want to know more about the
lexical syntax of OCaml.

Exercise 2.1.1 Mark the words in the following character sequences.
For each word give the lexical class.
a) if x <= 1 then true else f (x+1)
b) let rec f x : int = (*TODO*) +x
c) let city = "Saarbrücken"in
d) int * int -> bool
e) if rec then <3
Why does the character sequence Saarbrücken not represent a valid
word?

2.2 Phrasal Syntax

The semantic layers of a language don’t see programs as sequences of
characters or words. Instead, the semantic layers of a language see
abstract syntactic objects called phrases. Phrases can be described by
sequences of words but are best understood as syntax trees. It is the
job of the phrasal syntax to say which phrases there are and how they
are represented as syntax trees and as sequences of words. While every
phrase can be represented with a sequence of words, not every sequence
of words represents a phrase. The phrasal syntax organizes the phrases of
the language into different syntactic classes. For OCaml, the syntactic
classes include types, expressions, declarations, and programs. Every
phrase of the language belongs to exactly one of the syntactic classes of
the language and has a unique representation as syntax tree.

At the phrasal level we are using mathematical symbols for the sym-
bolic words of the lexical syntax. Here is the translation table:
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2 Syntax and Semantics

+ - / mod + − / %
* · or ×
= <> = 6=
< <= > >= < ≤ > ≥
-> →

The keyword “*” is special in that it translates into the symbol × if
used to form tuple types, and into the symbol · if used as multiplication
operator.

2.2.1 Types

We have seen the base types int, bool, and string. Types can be
combined into function types and tuple types using the symbols →
and ×. As example we consider the nested function type

int → (int → bool)→ int

The type is given in lexical representation. As a syntax tree, the type
takes the form

→

→

int→

boolint

int

making explicit the nesting of the outer function type. The nesting can
also be indicated with redundant parentheses in the lexical represen-
tation:

int → ((int → bool)→ int)

Redundant parentheses are always possible. If you like, you can write
the base type int as ((int)).

The binary structure of function types explains functions with several
arguments as functions taking single arguments and returning functions.
Partial applications are a necessary feature of the binary structure of
function types.

Next we look at a nested tuple type

(int × bool)× string × (int × int)

whose tree representation looks as follows:
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×

×

intint

string×

boolint

Another example is the function type

int → int × int × int

whose result type is a tuple type. The tree representation of this type is
→

×

intintint

int

In contrast to function types, there is no implicit nesting of tuple types.
Thus the types int × int × int and int × (int × int) are different: The
first tuple type has three components while the second tuple type has
only two components.

It now should be clear that syntax trees are a device making explicit
the nesting of phrases and eliminating lexical details that are semanti-
cally irrelevant.

The syntactic structure of types described so far with examples can
be expressed succinctly with a grammar:

〈type〉 ::= 〈base type〉
| 〈type〉 → 〈type〉
| 〈type〉1 × · · · × 〈type〉n (n≥2)

〈base type〉 ::= int | bool | string

The grammar defines the syntactic classes 〈type〉 and 〈base type〉 by
means of grammar rules, where each rule offers three alternatives
separated by a vertical bar “|”. Function types and tuple types are com-
pound types coming with constituents that are types again. A func-
tion type 〈type〉 → 〈type〉, for instance, has two constituents, the argu-
ment type and the result type. A tuple type 〈type〉1× · · · × 〈type〉n
has n ≥ 2 constituents called component types. Tuple types are also
known as product types.

Grammars like the above grammar for types are often called BNFs.
Google BNF (Backus-Naur form) to learn more about their origin.
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Exercise 2.2.1 Draw syntax trees for the following phrases in lexical
representation.
a) int × int → bool
b) int × (int × int)× int → bool

2.2.2 Expressions

Following the ideas we have seen for types, we now describe the phrasal
syntax of a class of expressions with the grammar shown in Figure 2.1.
To keep things manageable, we only consider a small sublanguage of
OCaml. In particular, we do not consider type specifications in lambda
expressions and let expressions.

Note that there are binary operator applications (e.g., e1 + e2)
and unary operator applications (e.g., −e and +e).

We illustrate the syntactic structure described by the grammar with a
let expression represented both with a sequence of words and a syntax
tree:

let f x y = x+ y in f 5 2

let

•

2•

5f

+

yx

pattern

yxf

Note that the let expression shown contains patterns, a binary operator
application, and two function applications.

One thing we need to explain about the syntactic structure of expres-
sions in addition to what is explained by the grammar is how parentheses
can be omitted in lexical representations. For instance, the expression

<

+

y·

x2

−

23
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〈expression〉 ::=
| 〈atomic expression〉
| 〈operator application〉
| 〈function application〉
| 〈conditional 〉
| 〈tuple expression〉
| 〈lambda expression〉
| 〈let expression〉

〈atomic expression〉 ::= 〈literal 〉 | 〈identifier〉

〈operator application〉 ::=
| 〈expression〉 〈operator〉 〈expression〉
| 〈operator〉 〈expression〉

〈operator〉 ::= + | − | · | / | % | = | 6= | < | ≤ | > | ≥

〈function application〉 ::= 〈expression〉 〈expression〉

〈conditional 〉 ::= if 〈expression〉 then 〈expression〉 else 〈expression〉

〈tuple expression〉 ::= (〈expression〉1 , . . . , 〈expression〉n) (n≥2)

〈lambda expression〉 ::= fun 〈pattern〉1 · · · 〈pattern〉n → 〈expression〉 (n≥1)

〈let expression〉 ::= let 〈let pattern〉 = 〈expression〉 in 〈expression〉
〈let pattern〉 ::=
| 〈pattern〉
| 〈identifier〉 〈pattern〉1 · · · 〈pattern〉n (n≥1)

| rec 〈identifier〉 〈pattern〉1 · · · 〈pattern〉n (n≥0)

〈pattern〉 ::=
| 〈identifier〉
| (〈pattern〉1 , . . . , 〈pattern〉n) (n≥2)

Figure 2.1: Grammar for expressions
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may be described with the sequence of words

(3− 2) < ((2 · x) + y)

making explicit all nestings through parentheses, but can also be de-
scribed with the sequence

3− 2 < 2 · x+ y

omitting all parentheses following common mathematical conventions.
We start with the parentheses rule for function applications:

e1 e2 e3  (e1 e2) e3

The rule says that function applications group to the left, which ensures
that arguments are taken from left to right. The lexical representation
of the let expression shown above already made use of this rule.

The parentheses rules for binary operators distinguish 3 levels:

= 6= < ≤ > ≥
+ −
· / %

The operators at the lowest level take their arguments first, followed by
the operators at the mid-level, followed by the comparison operators at
the top level. This rule explains why we have

3− 2 < 2 · x+ y  (3− 2) < ((2 · x) + y)

If we have several operators at the same level, they take their arguments
from left to right. For instance,

e1 + e2 + e3 − e4 − e5  (((e1 + e2) + e3)− e4)− e5

The operators “+” and “−” can also be used as unary operators.
When used as unary operators, “+” and “−” take their arguments before
all binary operators. For instance,

1 + + + 5−−+−7  (1 + (+(+5)))− (−(+(−7)))

Note that the grammar in Figure 2.1 allows for free nesting of ex-
pressions. If you like, you can nest a parenthesized conditional into a
function application, or a let expression into the first constituent of a
conditional.
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There is the rule that function applications and operator applications
group before other syntactic forms. The rule has the effect that the scope
of lambda expressions is taken as large as possible:

λx.e1e2  λx.(e1e2)
λx.e1 o e2  λx.(e1 o e2)

Exercise 2.2.2 Draw syntax trees for the following phrases:

a) x+ 3 · f(x)− 4
b) 1 + (2 + (3 + 4))
c) 1 + 2 + 3 + 4
d) 1 + (2 + 3) + 4

e) 1 + 2 · x− y · 3 + 4
f) (1 + 2) · x− (y · 3) + 4
g) if x < 3 then 3 else p(3)
h) let x = 2 + y in x− y

i) let p x n = if n > 0 then x · p x (n− 1) else 1 in p 2 10

Exercise 2.2.3 (Redundant parentheses) Give lexical representa-
tions for the following syntax trees not using redundant parentheses:

•

+

3·

x2

f <

−

1x

+

23

−

−

−

43

2

1

−

−

−

x1

2.2.3 Declarations and Programs

There is no need to say much about declarations and programs: Decla-
rations already appear as prefixes of let expressions (the part before the
keyword in), and programs are simply sequences of declarations. We
may describe declarations and programs with the following grammar:

〈program〉 ::= 〈declaration〉1 · · · 〈declaration〉n (n≥0)

〈declaration〉 ::= let 〈let pattern〉 = 〈expression〉

Once we have the syntactic class 〈declaration〉, we could model let ex-
pressions as trees with only two subtrees

〈let expression〉 ::= 〈declaration〉 in 〈expression〉

What we see here is that there are many design choices for the grammar
of a language, even after the lexical representation of phrases is fixed.
Once the grammar is fixed, the structure of syntax trees is fixed, up to
the exact choices of labels.
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2.3 Derivation Systems

The semantic layers of a programming language are described with
derivation systems. Derivation systems are systems of inference
rules deriving statements called judgments. Judgments may be seen
as syntactic objects. We explain derivation systems with a system de-
riving judgments x <̇ y where x and y are integers. The system consists
of two inferences rules:

x <̇ x+ 1
x <̇ y y <̇ z

x <̇ z

We may verbalize the rules as saying:
1. Every number is smaller than its successor.
2. If x is smaller than y and y is smaller than z, then x is smaller than z.

Derivations of judgments are obtained by combining rules. Here are
two different derivations of the judgment 3 <̇ 6 :

3 <̇ 4
4 <̇ 5 5 <̇ 6

4 <̇ 6
3 <̇ 6

3 <̇ 4 4 <̇ 5
3 <̇ 5 5 <̇ 6

3 <̇ 6

Every line in the derivations represents the application of one of the
two inferences rules. Note that the initial judgments of the derivation
are justified by the first rule, and that the non-initial judgments of the
derivation are justified by the second rule.

In general, an inference rule has the format

P1 · · · Pn

C

where the conclusion C is a judgment and the premises P1, . . . , Pn

are either judgments or side conditions. A rule says that a derivation
of the conclusion judgment can be obtained from the derivations of the
premise judgments provided the side conditions appearing as premises
are satisfied. The inference rules our example system don’t have side
conditions.

Returning to our example derivation system, it is clear that whenever
a judgment x <̇ y is derivable, the comparison x < y is true. This
follows from the fact that both inference rules express valid properties
of comparisons x < y. Moreover, given two numbers x and y such x < y,
we can always construct a derivation of the judgment x <̇ y following a
recursive algorithm:
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1. If y = x+ 1, the first rule yields a derivation of x <̇ y.
2. Otherwise, obtain a derivation of x <̇ y − 1 by recursion. Moreover,

obtain a derivation of y − 1 <̇ y by the first rule. Now obtain a
derivation of x <̇ y using the second rule.
The example derivation system considered here was chosen for the

purpose of explanation. In practice, derivation systems are used for
describing computational relations that cannot be described otherwise.
Typing and evaluation of expressions are examples for such relations,
and we are going to use derivation systems for this purpose.

Exercise 2.3.1 Give all derivations for 5 <̇ 9.

Exercise 2.3.2 Give two inference rules for judgments x <̇ y such that
your rules derive the same judgments the rules given above derive, but
have the additional property that no judgments has more than one
derivation.

Exercise 2.3.3 Give two inference rules for judgments x <̇ y such that
a judgment x <̇ y is derivable if and only if x+k · 5 = y for some k ≥ 1.

2.4 Abstract Expressions

The semantic layers of a language see the phrases of the language as
abstract syntactic objects where lexical details don’t play a role. This
brings us back to the philosophy of Chapter 1 where we explained OCaml
with abstract syntactic notions such as expressions, types, and declara-
tions and lexical details where conveyed tacitly through the code for
mathematically motivated examples.

For the discussion of the semantic layers, we switch to a language of
abstract expressions differing from the sublanguage considered for the
syntactic layers. The reason for the switch is ease of explanation. The
new language has types as considered before

t ::= int | bool | string | t1 → t2 | t1 × · · · × tn n≥2
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and abstract expressions as described by the following grammar:

e ::= c | x | e1 o e2 | e1 e2

| if e1 then e2 else e3

| (e1, . . . , en) n≥2

| πn e n≥1

| let x = e1 in e2

| λx.e
| let rec f x = e1 in e2

The letter c ranges over constants (lexically represented as literals),
the letters x and f range over variables (lexically represented as iden-
tifiers), and the letter o ranges over operators. Constants are values
of the types int, bool, and string. For simplicity, we just have binary
operator applications. The variables introduced by lambda expressions
and let expressions are called local variables. Lambda expressions are
written in mathematical notation and take only one argument variable.
Similarly, let expressions bind only one or two variables. Tuple patterns
are replaced by projections πn, yielding the nth component of a tuple.

We will refer to the expressions identified by the phrasal syntax as
concrete expressions. It is possible to translate concrete expressions
into equivalent abstract expressions. The reverse translation is trivial
as long as no projections are used. The translation of projections poses
a problem since projections don’t commit to a particular tuple length.
The problem can be eliminated by working with graded projections
πn

i that yield the ith component of tuples of length n.

Exercise 2.4.1 Translate the following concrete expressions into equiv-
alent abstract expressions. Use graded projections.
a) let (x, y) = z in x+ y

b) λfxy.fxy

c) let rec f x y = if x < 1 then y else f (x− 1) (y + 1) in f 5 6

2.5 Static Semantics

We formulate the static semantics of abstract expressions using typing
judgments

E ` e : t

saying that in the environment E the expression e has type t. An
environment is a finite collection of bindings x : t mapping variables
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to types. We assume that environments are functional, that is, have at
most one binding per variable. Here is an example for a typing judgment:

x : int, y : bool ` if y then x else 0 : int

The inference rules in Figure 2.2 establish a derivation system for
typing judgments. We will refer to the rules as typing rules. If the
judgment E ` e : t is derivable, we say that expression e has type t
in environment E. The environment is needed so that e can contain
variables that are not bound by surrounding lambda expressions or let
expressions. The typing rules for constants and for operator applications
assume that the types for constants and operators are given in tables
(one type per constant or operator).

Note that the rules for constants, variables, and operator applications
have tacit premises (c : t, (x : t) ∈ E, o : t1 → t2 → t) that will not
show up in derivations but need to be checked for a derivation to be
valid. Tacit premises are better known as side conditions. Note that
the rule for projections also has a side condition (1 ≤ i ≤ n).

Here is a derivation for the above example judgement (we write E
for the environment [x : int, y : bool]):

E ` y : bool E ` x : int E ` 0 : int
E ` if y then x else 0 : int

Note that the subderivations are established by the rules for variables
and constants.

The rules for lambda expressions and let expressions update the
existing environment E with a binding x : t. If E doesn’t contain a
binding for x, the binding x : t is added. Otherwise, the existing binding
for x is replaced with x : t. For instance,

[x : t1, y : t2], z : t3 = [x : t1, y : t2, z : t3]
[x : t1, y : t2], x : t3 = [y : t2, x : t3]

We say that an expression e is well typed in an environment E if
the judgment E ` e : t is derivable for some type t. Correspondingly,
we say that an expressions e is ill-typed in an environment E if there
is no type t such that the judgment E ` e : t is derivable.

The notion of well-typedness generalizes to declarations and pro-
grams. OCaml will only execute well-typed programs.

The rules for lambda expressions and recursive let expressions are
special in that they guess types for the local variables they introduce.
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c : t
E ` c : t

(x : t) ∈ E
E ` x : t

o : t1 → t2 → t E ` e1 : t1 E ` e2 : t2
E ` e1 o e2 : t

E ` e1 : t2 → t E ` e2 : t2
E ` e1 e2 : t

E ` e1 : bool E ` e2 : t E ` e3 : t
E ` if e1 then e2 else e3 : t

E ` e1 : t1 · · · E ` en : tn
E ` (e1, . . . , en) : t1 × · · · × tn

E ` e : t1 × · · · × tn 1 ≤ i ≤ n
E ` πi e : ti

E ` e1 : t1 E, x : t1 ` e2 : t
E ` let x = e1 in e2 : t

E, x : t1 ` e : t2
E ` λx.e : t1 → t2

E, f : t1 → t2, x : t1 ` e1 : t2 E, f : t1 → t2 ` e2 : t
E ` let rec f x = e1 in e2 : t

Figure 2.2: Typing rules
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The guessing can be eliminated by adding type specifications for the
local variables:

λx.e  λx : t. e
let rec f x = e1 in e2  let rec f (x : t1) : t2 = e1 in e2

The typing rule for non-recursive let expressions

E ` e1 : t1 E, x : t1 ` e2 : t
E ` let x = e1 in e2 : t

accommodates the local variable x without type guessing since the
premise E ` e1 : t1 determines the type for x. This argument as-
sumes that a judgment E ` e : t determines t given E and e. We will
expand on this argument in the next section when we discuss a type
checking algorithm.

From the typing rules for let expressions one can obtain typing rules
for declarations and programs.

A system of typing rules is commonly referred to as a type system.
One says that the typing rules formulate a type discipline for a lan-
guage, and that type checking ensures that programs obey the type
discipline.

Here is an example of a type derivation involving tuples and projec-
tions:

[] ` 1 : int [] ` true : bool
[] ` (1, true) : int × bool [] ` 3 : int

[] ` ((1, true), 3) : (int × bool)× int
[] ` π1((1, true), 3) : int × bool

The derivation uses the typing rules for constants, tuple expressions,
and projections.

Here is an example of a type derivation where t1 and t2 are place-
holders for arbitrary types:

x : t2 ` x : t2
x : t1 ` λx.x : t2 → t2

[] ` λx.λx.x : t1 → t2 → t2

The derivation uses the typing rules for variables and lambda expres-
sions. Note how elegantly the typing rules handle the shadowing of the
first argument variable in λx.λx.x.
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Exercise 2.5.1 For each of the following expressions e construct a
derivation [] ` e : t. Use the placeholders t1, t2, t3 for types to avoid
unnecessary commitments to concrete types. Try to give most general
types.

a) λx.x

b) λxy.x

c) λxx.x

d) λfg x. fx(gx)
e) let rec fx = fx in f

f) λxyz.if x then y else z

Exercise 2.5.2 Extend the grammar for abstract expressions with rules
for declarations and programs and design corresponding typing rules.
Hint: Use judgments E ` D ⇒ E′ and E ` P ⇒ E′ and model programs
with the grammar rule P ::= ∅ | D P (∅ is the empty program).

2.6 Type Checking Algorithm

We call an expression simple if it carries type specifications for the
local variables introduced by lambda expression and recursive let ex-
pressions. By this definition every expression containing neither lambda
expressions nor recursive let expressions is simple.

Given an environment E and a simple expression e, there is at most
one type t such that E ` e : t. Moreover, there is a type checking
algorithm that given E and e yields the corresponding type if there is
one, and otherwise isolates a subexpression where the type checking fails.
We may also say that a type checking algorithm constructs a derivation
E ` e : t given E and e.

The algorithm exploits that there is exactly one typing rule for every
syntactic form. Moreover, the typing rules have the important prop-
erty that the judgments appearing as premises of a rule contain only
subexpressions of the expression appearing in the conclusion of the rule.
Consequently, construction of a derivation for a given expression by
backward application of the typing rules will always terminate. More-
over, when constructing a derivation for a simple expression, only simple
expressions can be reached and hence only typing rules for simple ex-
pressions have to be considered.

The typing rules for simple expressions describe a syntax-directed
type checking algorithm that given an environment E and a simple ex-
pressions e checks whether there is a type t such that the judgment
E ` e : t is derivable. Given a simple expression e, the algorithm con-
siders the uniquely determined typing rule for e and recurses on the
instantiated premises of the rule. For instance, given an environment E
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and an expression if e1 then e2 else e3, the algorithm follows the
typing rule for conditionals

E ` e1 : bool E ` e2 : t E ` e3 : t
E ` if e1 then e2 else e3 : t

and recurses on the subproblems (E, e1), (E, e2), and (E, e3). If the
algorithm succeeds for the subproblems with the types t1, t2, and t3, it
checks the equations t1 = bool and t2 = t3. If the equations are satisfied,
the algorithm has constructed a derivation for E ` e : t2. If the equations
are not satisfied, no such derivation exists and the algorithm fails with
one of the following error messages:
1. Expression e1 does not have type bool.
2. Expression e2 and e3 have different types.

We now have a type checking algorithm for simple expressions. The
algorithm is given by the inference rules for simple expressions. We will
eventually program the algorithm in OCaml. An important observation
is that the typing rules give us a concise description of the algorithm.
If we start to formulate the algorithmic reading of the rules with words,
we end up with a lengthy text that is hard to understand, as we have
seen at the example of the conditional rule.
Exercise 2.6.1 Give the typing rule for lambda expressions λx : t. e
augmented with type specifications. Formulate the algorithmic read-
ing of the rule with words.

Exercise 2.6.2 Give the typing rule for recursive let expressions

let rec f (x : t1) : t2 = e1 in e2

augmented with type specifications. Formulate the algorithmic reading
of the rule with words.
Exercise 2.6.3 For each of the following simple expressions e construct
a derivation E ` e : t. Use the placeholders t1, t2, t3, t4 for types to
avoid unnecessary commitments to concrete types. Try to give most
general types.

a) fx

b) fx(gx)y
c) λx : t1. λy : t2. x
d) λx : t1. λx : t2. x

e) λx : t. fx(gx)y
f) if x then y else z
g) if x then y else x
h) if x then y + 0 else z

Exercise 2.6.4 Test your understanding by giving typing rules for
judgments E ` e : t and expressions e ::= x | λx.e | ee without looking
at Figure 2.2.
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2.7 Free and Local Variables

Given an expression e, we call a variable x free in e if x has an occur-
rence in e that is not in the scope of a variable binder. For instance,
the variable x is free in the expression (λx.x)x since the 3rd occurrence
of x is not in the scope of the lambda expression. We call an expres-
sion e open if some variable occurs free in e, and closed otherwise.
For instance, the expression

let f = λx.fx in f

is open since f occurs free in it (2nd occurrence of f). On the other
hand, the expression

let rec fx = fx in f

is closed since the 2nd occurrence of f is in the scope of the recursive
let expression. When we speak of the free variables of an expressions,
we mean that variables that are free in the expression.

We distinguish between binding occurrences and using occur-
rences of a variable in an expression. For instance, in the expression

let f = λx.fx in f

the first occurrences of f and x are binding, and all other occurrences
of f and x are using.

The typing rules for expressions observe the binding rules for vari-
ables. If E ` e : t is derivable, we know that at most the variables that
are assigned a type by the environment E are free in e. Hence we know
that e is closed if [] ` e : t is derivable for some type t.

Let the letter X denote finite sets of variables. We say that an
expression e is closed in X if every variable that is free in e is an element
of X. It is helpful to consider a derivation system for judgments X ` e
such that X ` e is derivable if and only if e is closed in X. Figure 2.3
gives such a derivation system. We refer to the rules of the system as
binding rules. The notation X,x stands for the set obtained from X

by adding x (i.e., X ∪ {x}), Note that the binding rules can be seen as
simplifications of the typing rules, and that the algorithmic reading of
the rules is obvious (check whether e is closed in X). Only the rule for
variables has a side condition.

Exercise 2.7.1 Give derivations for the judgments {y, z} ` (λx.x) y
and ∅ ` λx.x. Explain why the judgment {x, y} ` z is not be derivable.
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X ` c
x ∈ X
X ` x

X ` e1 X ` e2

X ` e1 o e2

X ` e1 X ` e2

X ` e1 e2

X ` e1 X ` e2 X ` e3

X ` if e1 then e2 else e3

X ` e1 · · · X ` en

X ` (e1, . . . , en)
X ` e
X ` πi e

X ` e1 X, x ` e2

X ` let x = e1 in e2

X, x ` e
X ` λx.e

X, f, x ` e1 X, f ` e2

X ` let rec f x = e1 in e2

Figure 2.3: Binding rules

Exercise 2.7.2 Two expressions are alpha equivalent if they are
equal up to consistent renaming of local variables. For instance, λx.x
and λy.y are alpha equivalent. Consistent renaming of local variables is
also known as alpha renaming. For each of the following expressions
give an alpha equivalent expression such that no variable has more than
one binding occurrence.

a) (λx.x)(λx.x) b) λx.λx.λx.x c) let rec xx = x in x

2.8 Dynamic Semantics

The dynamic semantics of a programming language defines what effect
the execution of a phrase should have. For our language of abstract
expressions, the successful execution of an expression should produce a
value. One usually refers to the execution of an expression as evalua-
tion to emphasize that it will produce a value if it doesn’t diverge or
lead to an erroneous situation (e.g., division by zero).

In Chapter 1 we explained the evaluation of expressions with a
rewriting model simplifying expressions by rewriting with defining
equations. We now switch to an environment model where expres-
sions are evaluated in an environment binding variables to values. The
environment model is the standard model for the dynamic semantics of
programming languages.

One characteristic aspect of the environment model is the fact that
functions appear as values called closures. For instance, if we evaluate a
lambda expression λx.e in a value environment V , we obtain the closure

(x, e, V )

consisting of the argument variable x, the expression e, and the value
environment V providing the values for the free variables of the abstrac-
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tion λx.e. The name closure is motivated by the fact that a lambda
expression becomes a self-contained function once we add an environ-
ment providing values for the free variables. Closures don’t appear in the
rewriting model since there the values for free variables are substituted
in as part of rewriting.

Closures for recursive functions take the form

(f, x, e, V )

where f is the name of the function, x is the argument variable, e is
the body of the function, and V is a value environment providing values
for the free variables of e other than f and x. Only when the recursive
closure is applied to an argument, the bindings for f and x will be added
to the environment V .

We describe the evaluation of expressions with a derivation system
for evaluation judgments of the form

V ` e . v

saying that in the value environment V the expression e evaluates to the
value v. A value environment is a finite collection of bindings x . v
mapping variables to values. As for type environments, we assume that
value environments are functional.

Values are either values of the base types (numbers, booleans,
strings), or tuples of values, or closures as described above.

The inference rules for evaluation judgments, commonly called
evaluation rules, appear in Figure 2.4. The structure of the evalu-
ation rules is similar to the structure of the typing rules. As one would
expect, every evaluation rule has an algorithmic reading. For condition-
als we have two rules accommodating the two possible branchings. For
function applications we also have two rules accommodating separately
plain closures and recursive closures. Both rules evaluate the expression
of the closure in the environment of the closure updated with a binding
of the argument variable to the value serving as actual argument. In
the recursive case also a binding of the function variable to the closure
is added to enable recursion.

The rule for constants assumes that constants are values, which is
fine at the level of abstract syntax. Recall that constants range over
numbers, booleans, and strings. For operators we assume that we have
a table

v1 o v2 = v

fixing the results of successful operator applications.
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V ` c . c
(x . v) ∈ V
V ` x . v

V ` e1 . v1 V ` e2 . v2 v1 o v2 = v

V ` e1 o e2 . v

V ` e1 . true V ` e2 . v

V ` if e1 then e2 else e3 . v

V ` e1 . false V ` e3 . v

V ` if e1 then e2 else e3 . v

V ` e1 . v1 · · · V ` en . vn

V ` (e1, . . . , en) . (v1, . . . , vn)

V ` e . (v1, . . . , vn) 1 ≤ i ≤ n
V ` πi e . vi

V ` e1 . v1 V, x . v1 ` e2 . v

V ` let x = e1 in e2 . v

V ` λx.e . (x, e, V )

V ` e1 . (x, e, V ′) V ` e2 . v2 V ′, x . v2 ` e . v
V ` e1 e2 . v

V, f . (f, x, e1, V ) ` e2 . v

V ` let rec f x = e1 in e2 . v

V ` e1 . v1 V ` e2 . v2 v1 = (f, x, e, V ′) V ′, f . v1, x . v2 ` e . v
V ` e1 e2 . v

Figure 2.4: Evaluation Rules
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Note the side condition v1 = (f, x, e, V ′) appearing in the application
rule for recursive closures. We have this side condition for better read-
ability. It can be eliminated by replacing both occurrences of v1 with
the closure (f, x, e, V ′).

The evaluation rules describe the successful evaluation of expressions
at an abstract level omitting details that will be added by an implemen-
tation. In particular, the rules don’t say what happens when an operator
application fails (e.g., division by zero).

We say that an expression e is evaluable in an environment V if
there is a value v such that the judgment V ` e . v is derivable with the
evaluation rules.

Here is an example of a derivation of an evaluation judgment:

[] ` λx.λy.x . (x, λy.x, []) [] ` 1 . 1 x . 1 ` λy.x . (y, x, [x . 1])
[] ` (λx.λy.x) 1 . (y, x, [x . 1])

The above derivation can be written more concisely by omitting material
copied from the conclusion to the premises:

· · · . (x, λy.x, []) · · · . 1 x . 1 ` λy.x . (y, x, [x . 1])
[] ` (λx.λy.x) 1 . (y, x, [x . 1])

Note that the evaluation rules for function applications can yield a
value for an application e1 e2 only if both subexpressions e1 and e2 are
evaluable. This is in contrast to conditionals if e1 then e2 else e3,
which may be evaluable although one of the constituents e2 and e3 is
not evaluable. This relates to the problem underlying Exercise 1.13.1.

Type Safety
The evaluation rules do not mention types at all. Thus we can execute
ill-typed expressions. This may lead to erroneous situations that cannot
appear with well-typed expressions, for instance a function application
e1 e2 where e1 evaluates to a number, or an addition of a closure and
a string, the application of a projection to a value that is not a tuple,
In contrast, if we evaluate a well-typed expression, this kind of erro-
neous situations are impossible. This fundamental property is known
as type safety. Type safety provides for more efficient execution of
programming languages, and also makes it easier for the programer to
write correct programs. OCaml is designed as a type-safe language.

Exercise 2.8.1 For the following expressions e find values v such that
[] ` e . v is derivable. Draw the derivations.
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λx1 . . . xn.e cascaded lambda
 λx1. · · · . λxn.e

let fx1 . . . xn = e1 in e2 lifted lambda
 let f = λx1 . . . xn. e1 in e2

let rec fx x1 . . . xn = e1 in e2 lifted lambda
 let rec fx = λx1 . . . xn. e1 in e2

let (x, y) = e1 in e2 tuple pattern
 let a = e1 in let x = π1 a in let y = π2 a in e2 a fresh

e1 && e2 lazy and
 if e1 then e2 else false

e1 || e2 lazy or
 if e1 then true else e2

(o) lifted operator
 λxy. x o y

Figure 2.5: Derived forms with translation rules

a) (λx.x)1
b) (λx.λy.x)1
c) (λf.λx.fx) (λx.x)

d) let rec fx = x in f

e) (λy. let rec fx = x in f) 5

Exercise 2.8.2 Give evaluation rules for declarations and programs.
Hint: Use judgments V ` D ⇒ V ′ and V ` P ⇒ V ′ and model programs
with the grammar P ::= ∅ | D P (∅ is the empty program).

2.9 Derived Forms

When describing a programming language, it is useful to distinguish
between a kernel language and derived forms. Derived forms are
constructs that are explained by translation to the kernel language. The
advantage of this approach is that derived forms need neither typing nor
evaluation rules. Figure 2.5 shows several derived forms together with
their translations into abstract expressions. Derived forms like these do
exist in OCaml.

The translation rule for tuple patterns needs the side condition that
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lazy or || right
lazy and && right
comparisons = 6= < ≤ > ≥ none
arithmetic operations + − left

· / % left
unary minus and plus − + right
function application e1 e2 left

Figure 2.6: Operator precedences and associativities

the transport variable a must be fresh (i.e., does not occur otherwise).
The freshness condition is needed so that a does not shadow an outer
variable used in e1. Moreover, the freshness condition disallows a = x.

Syntactically, the lazy boolean operations && (and) and || (or) act
as operators that take their arguments after comparisons. Moreover,
|| takes its arguments after && . Both lazy boolean operators group to
the right. Figure 2.6 shows a table showing the precedence (in taking
arguments) and associativity (i.e., grouping direction) of all operators
we have seen so far. In OCaml operators are realized following the table,
except that comparisons group to the left.

The grouping rules for the typ-forming operators are as follows:

function type former → right
tuple type former × none

Abstract expressions can express a form of programs that comes close
to programs as sequences of declarations. A program now takes the form

D1 · · · Dn in e

and is translated into the let expression

D1 in · · · in Dn in e

For e we may choose a tuple expression listing all variables declared by
the declarations D1 . . . Dn.

Exercise 2.9.1 Give typing and evaluation rules for the lazy boolean
operations assuming they are accommodated as abstract expressions.

Exercise 2.9.2 (Tuple patterns) The translation rule for tuple pat-
terns in Figure 2.5 is just given for pairs so that the translation fits into
one line. Give the translation rule for triples. Try to give the translation
rule for general patterns using the dots notation (· · · ).
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Exercise 2.9.3 (Recursive lambda expressions) We may extend
our language with recursive lambda expressions ρfx.e describing a re-
cursive function with a local variable f serving as function name. Note
that the greek letter ρ takes the place of the greek letter λ.
a) Explain recursive lambda expressions ρfx.e as derived form.
b) Give a typing rule for recursive lambda expressions ρfx.e assuming

they are abstract expressions.
c) Give an evaluation rule for recursive lambda expressions ρfx.e as-

suming they are abstract expressions.

2.10 Summary and Discussion

In this chapter we discussed the structure of programming languages
taking a small sublanguage of OCaml as example. A good starting
point into this venture is an abstract grammar

e ::= c | x | e1 o e2 | e1 e2 | λx.e | · · ·

describing expressions as abstract syntactic objects. The grammar iden-
tifies atomic expressions (constants, variables) and composite expres-
sions (applications, lambda expressions, etc). Composite expressions
come with constituents, which may be expressions again (note the re-
cursive structure of expressions). We speak of nesting of expressions.
Composite expressions can be drawn as syntax trees representing nest-
ing and constituents graphically.

When we program, expressions are written as sequences of charac-
ters, which are converted into sequences of words, which are then parsed
into expressions. The rules for the conversion of character sequences
into abstract expressions are fixed by the concrete syntax of a language,
which refines the abstract syntax of the language. The part of the con-
crete syntax concerned with characters and words is known as lexical
syntax. In the lexical representation of an expression, subexpressions
can be indicated with parentheses, following a convention familiar from
mathematical notation. To reduce the number of parentheses needed
for the textual representation of expressions, the concrete syntax of a
language fixes operator precedences and grouping rules.

We also have types as abstract syntactic objects:

t ::= int | t1 → t2 | · · ·

Given the abstract syntax of a language, we can define the static
semantics and the dynamic semantics of the language. The dynamic
semantics is concerned with the evaluation of expressions and does not
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make use of types. The static semantics defines a type discipline such
that the evaluation of well-typed expressions doesn’t lead to obviously
erroneous situations. The static semantics determines well-typed ex-
pressions and their types, and the dynamic semantics determines evalu-
able expressions and their values. Both semantics employ environments
mapping free variables to either types or values. The dynamic semantics
represents functional values as so-called closures combining the syntactic
description of a function with a value environment providing values for
the free variables.

The semantic systems of a language are described as so-called deriva-
tion systems consisting of inference rules for syntactic objects called
judgments. We speak of typing judgments and typing rules for the static
semantics, and of evaluation judgments and evaluation rules for the dy-
namic semantics. Typing rules and evaluation rules have a declarative
reading (concerning the naive construction of derivations) and an algo-
rithmic reading. The algorithmic reading of the inference rules gives us
abstract algorithms that given an expression and an environment com-
pute either the type or the value of the expression provided it exists.

The type checking algorithm given by the typing rules needs to guess
the types of the argument variables of lambda expressions. The guessing
can be eliminated by using lambda expressions carrying the type of the
argument variable:

e ::= · · · | λx : t.e

For recursive function declarations we need an argument type and a
result type to avoid guessing:

e ::= · · · | let rec f(x : t1) : t2 = e1 in e2

A good way to think about type checking sees type checking as ab-
stract evaluation of an expression. While evaluation computes values,
type checking computes types. There is the connection that an expres-
sion of a type t evaluate to a value of type t (so-called type safety).
As a consequence, well-typed expressions have the property that there
evaluation cannot lead to type conflicts (e.g., addition of a function and
a number, or application of a number to a number).

The type checking algorithm given by the typing rules always termi-
nates. This is in contrast to the evaluation algorithm given by the evalu-
ation rules, which may diverge on expressions not identified as evaluable
by the evaluation rules. Note however that the evaluation algorithm will
always terminate on expressions identified as evaluable by the evaluation
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rules. The reason type checking always terminates is that in contrast to
evaluation type checking does not unfold function applications.

In later chapters we will implement in OCaml a type checker and
an evaluator for the language considered here following the algorithmic
reading of the typing and evaluation rules. The main thing we are cur-
rently missing for doing this in OCaml are data structures for sequences
and syntax trees.

One speaks of static typing to emphasize the fact that evaluation
does not rely on type information. In fact, evaluation is defined for all
expressions, not just well-typed expressions.

There is the possibility to extend an existing syntax with so-called
derived forms whose static and dynamic semantics is obtained with a
translation to the existing syntax. Examples for derived forms we dis-
cussed include lazy boolean operations and cascaded lambda expres-
sions.

Types give us an organizing principle for the language constructs:
• The base type bool comes with the boolean constants and the condi-

tional. In the language we consider, conditionals cannot be expressed
otherwise.

• Function types come with function applications, lambda expression,
and recursive let expressions.

• Tuple types come with tuple expressions and projections. Graded
projections πn

i state the length of the tuple they are operating on
and can be expressed in OCaml. Ungraded projections πi only state
the minimal length of the tuple they are operating on and cannot be
expressed in OCaml.
Syntax and semantics of programming languages are inherently re-

cursive notions (even in the absence of recursive functions). This also
shows in that recursion is a key aspect of grammars and derivation sys-
tems, two mathematical tools we were using for describing syntax and
semantics.

There are programming language that come with no or just rudi-
mentary type checking (e.g., Scheme and JavaScript). In practice, type
checking is of great importance since it identifies erroneous construc-
tions in programs before programs are executed. Identifying erroneous
constructions in programs at execution time running them on test data
(so-called debugging) requires understanding and cleverness and is very
time consuming (i.e., expensive in human ressources) in practice.

One important technique the reader learns in this chapter is high-
level programming of type checkers and evaluators using judgments and
inference rules.
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This chapter attempts to discuss the structure of programming lan-
guages with sufficient depth. The key notions are abstract syntax, typ-
ing, and evaluation, accompanied by grammars and derivation system as
descriptive tools. A weakness of the current presentation of the chapter
is that we start with a detailed account of concrete syntax, which, it
turns out, doesn’t matter for the key issues we are interested in. With
hindsight we now recommend a more gentle path through the material
of this chapter:
• Abstract expressions (grammars, constituents, syntax trees)
• Parentheses (application chaining, operator precedences)
• Derived forms (cascaded lambdas)
• Derivation systems x <̇ y

• Binding X ` e
• Typing E ` e : t
• Evaluation V ` e : v
• Lexical syntax
The material on lexical syntax can be shortened.

No doubt, this is a demanding chapter for newcomers who have not
seen grammars and derivation systems before. In contrast to Chapter 1,
where we can rely on established mathematical intuitions for numbers,
the discussion of programming language structure in this chapter is a
venture into new territory.
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So far, some functions don’t have unique types, as for instance the pro-
jection functions for pairs. The problem is solved by giving such func-
tions schematic types called polymorphic types.

Using polymorphic types, we can declare a tail-recursive higher-order
function iterating a function on a given value. It turns out that many
functions can be obtained as instances of iteration. Our key example
will be a function computing the nth prime number.

3.1 Polymorphic Functions

Consider the declaration of a projection function for pairs:
let fst (x,y) = x

What type does fst have? Clearly, int × int → int and bool × int → bool
are both types admissible for fst. In fact, every type t1 × t2 → t1
is admissible for fst. Thus there are infinitely many types admissible
for fst.

OCaml solves the situation by typing fst with the polymorphic type

∀αβ. α× β → α

A polymorphic type is a type scheme whose quantified variables (α
and β in the example) can be instantiated with all types. The instances
of the polymorphic type above are all types t1 × t2 → t1 where the
types t1 and t2 can be freely chosen. When a polymorphically typed
identifier is used in an expression, it can be used with any instance of its
polymorphic type. Thus fst (1 , 2 ) and fst (true, 5 ) are both well-typed
expressions.

Here is a polymorphic swap function for pairs:
let swap (x,y) = (y,x)

OCaml will type swap with the polymorphic type

∀αβ. α× β → β × α

This is in fact the most general polymorphic type that is admissible
for swap. Similarly, the polymorphic type given for fst is the most
general polymorphic type admissible for fst. OCaml will always derive
most general types for function declarations.
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Exercise 3.1.1 Declare functions admitting the following polymorphic
types:
a) ∀α. α→ α

b) ∀αβ. α→ β → α

c) ∀αβγ. (α× β → γ)→ α→ β → γ

d) ∀αβγ. (α→ β → γ)→ α× β → γ

e) ∀αβ. α→ β

3.2 Iteration

Given a function f : t → t, we write fn(x) for the n-fold application
of f to x. For instance, f0(x) = x, f1(x) = f(x), f2(x) = f(f(x)),
and f3(x) = f(f(f(x))). More generally, we have

fn+1(x) = fn(fx)

Given an iteration fn(x), we call f the step function and x the start
value of the iteration.

With iteration we can compute sums, products, and powers of non-
negative integers just using additions x+ 1:

x+ n = x+ 1 · · · + 1 = (λa.a+ 1)n(x)
n · x = 0 + x · · · + x = (λa.a+ x)n(0)
xn = 1 · x · · · · x = (λa.a · x)n(1)

Exploiting commutativity of addition and multiplication, we arrive at
the defining equations

succ x := x+ 1
add x n := succn(x)
mul n x := (add x)n(0)
pow x n := (mul x)n(1)

We define a polymorphic iteration operator

iter : ∀α. (α→ α)→ N→ α→ α

iter f 0 x := x

iter f (n+ 1) x := iter f n (f x)

so that we can obtain iterations fn(x) as applications iter f nx of the
operator. Note that the function iter is polymorphic, higher-order, and
tail-recursive. In OCaml, we will use the declaration
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let rec iter f n x =
if n < 1 then x
else iter f (n - 1) (f x)

Functions for addition, multiplication, and exponentiation can now
be declared as follows:

let succ x = x + 1
let add x y = iter succ y x
let mul x y = iter (add y) x 0
let pow x y = iter (mul x) y 1

Note that these declarations are non-recursive. Thus termination needs
only be checked for iter , where it is obvious (2nd argument is decreased).

Exercise 3.2.1 Declare a function testing evenness of numbers by it-
erating on booleans. What do you have to change to obtain a function
checking oddness?

Exercise 3.2.2 We have the equation

fn+1(x) = f(fn(x))

providing for an alternative, non-tail-recursive definition of an itera-
tion operator. Give the mathematical definition and the declaration in
OCaml of an iteration operator using the above equation.

3.3 Iteration on Pairs

Using iteration and successor as basic operations on numbers, we have
defined functions computing sums, products, and powers of nonnegative
numbers. We can also define a predecessor function1

pred : N+ → N
pred (n+ 1) := n

just using iteration and successor (the successor of an integer x is x+1).
The trick is to iterate on pairs. We start with the pair (0, 0) and iterate
with a step function f such that n+1 iterations yield the pair (n, n+1).
For instance, the iteration

f5(0, 0) = f4(0, 1) = f3(1, 2) = f2(2, 3) = f(3, 4) = (4, 5)

using the step function

f(a, k) = (k, k + 1)
1the predecessor of an integer x is x− 1.
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yields the predecessor of 5 as the first component of the computed pair.
More generally, we have

(n, n+ 1) = fn+1 (0, 0)

We can now declare a predecessor function as follows:

let pred n = fst (iter (fun (a,k) -> (k, succ k)) n (0,0))

Iteration on pairs is a powerful computation scheme. Our second
example concerns the sequence of Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

which is well known in mathematics. The sequence is obtained by start-
ing with 0, 1 and then adding new elements as the sum of the two pre-
ceding elements. We can formulate this method as a recursive function

fib : N→ N
fib(0) := 0
fib(1) := 1

fib (n+ 2) := fib (n) + fib (n+ 1)

Incidentally, this is the first recursive function we see where the recursion
is binary (two recursive applications) rather than linear (one recursive
application). Termination follows with the usual argument that each
recursion step decreases the argument.

If we look again at the rule generating the Fibonacci sequence, we
see that we can compute the sequence by starting with the pair (0, 1)
and iterating with the step function f(a, b) = (b, a+ b). For instance,

f5(0, 1) = f4(1, 1) = f3(1, 2) = f2(2, 3) = f(3, 5) = (5, 8)

yields the pair (fib(5), fib(6)). More generally, we have

(fib(n), fib(n+ 1)) = (λ(a, b).(b, a+ b))n (0, 1)

Thus we can declare an iterative Fibonacci function as follows:

let fibi n = fst (iter (fun (a,b) -> (b, a + b)) n (0,1))

In contrast to the previously defined function fib, function fibi requires
only tail recursion as provided by iter .

Exercise 3.3.1 Declare a function computing the sum 0+1+2+ · · ·+n
by iteration starting from the pair (0, 1).
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Exercise 3.3.2 Declare a function f : N→ N computing the sequence

0, 1, 1, 2, 4, 7, 13, . . .

obtained by starting with 0, 1, 1 and then adding new elements as the
sum of the three preceding elements. For instance, f(3) = 2, f(4) = 4,
and f(5) = 7.

Exercise 3.3.3 Functions defined with iteration can always be elabo-
rated into tail-recursive functions not using iteration. If the iteration is
on pairs, one can use separate accumulator arguments for the compo-
nents of the pairs. Follow this recipe and declare a tail-recursive function
fib′ such that fib′ n 0 1 = fib(n).

Exercise 3.3.4 Recall the definition of factorials n! from Exer-
cise 1.11.1.
a) Give a step function f such that (n! , n) = fn(1, 0).
b) Declare a function faci computing factorials with iteration.
c) Declare a tail-recursive function fac′ such that fac′ n 1 0 = n!. Follow

the recipe from Exercise 3.3.3.

3.4 Computing Primes

A prime number is an integer greater 1 that cannot be obtained as
the product of two integers greater 1. There are infinitely many prime
numbers. The sequence of prime numbers starts with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, · · ·

We want to declare a function nth prime : N→ N that yields the el-
ements of the sequence starting with nth prime 0 = 2 . Assuming a
primality test prime : int → bool, we can declare nth prime as follows:

let next_prime x = first prime (x + 1)
let nth_prime n = iter next_prime n 2

Note that next prime x yields the first prime greater than x. Also note
that the elegant declarations of next prime and nth prime are made
possible by the higher-order functions first and iter .

It remains to come up with a primality test (a test checking
whether an integer is a prime number). Here are 4 equivalent char-
acterizations of primality of x assuming that x, k, and n are natural
numbers:
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1. x ≥ 2 ∧ ∀ k ≥ 2. ∀n ≥ 2. x 6= k · n
2. x ≥ 2 ∧ ∀ k, 2 ≤ k < x. x% k > 0
3. x ≥ 2 ∧ ∀ k > 1, k2 ≤ x. x% k > 0
4. x ≥ 2 ∧ ∀ k, 1 < k ≤ 2

√
x. x% k > 0

Characterization (1) is close to the informal definition of prime numbers.
Characterizations (2), (3), and (4) are useful for our purposes since they
can be realized algorithmically. Starting from (1), we see that x− 1 can
be used as an upper bound for k and n. Thus we have to test x = k · n
only for finitely many k and n, which can be done algorithmically. The
next thing we see is that is suffices to have k because n can be kept
implicit using the remainder operation. Finally, we see that it suffices
to test for k such that k2 ≤ x since we can assume n ≥ k. Thus we can
sharpen the upper bound from x− 1 to 2

√
x.

Here we choose the second characterization to declare a primality
test in OCaml and leave the realization of the computationally faster
fourth characterization as an exercise.

To test the bounded universal quantification in the second charac-
terization, we declare a higher-order function

forall : int → int → (int → bool)→ bool

such that

forall mnf = true ←→ ∀k,m ≤ k ≤ n. f k = true

using the defining equations2

forall m n f :=

true m > n

f m && forall (m+ 1) n f m ≤ n

The function forall terminates since |n+ 1−m| ≥ 0 decreases with
every recursion step.

We now define a primality test based on the second characterization:

prime x := x ≥ 2 && forall 2 (x− 1) (λk. x% k > 0)

The discussion of primality tests makes it very clear that program-
ming involves mathematical reasoning.

Efficient primality tests are important in cryptography and other
areas of computer science. The naive versions we have discussed here
are known as trial division algorithms and are too slow for practical
purposes.

2We use the curly brace as an abbreviation to write two equations as a single equa-
tion.
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3 Polymorphic Functions and Iteration

Exercise 3.4.1 Declare a test exists : int → int → (int → bool)→ bool
such that existsmnf = true ←→ ∃k, m ≤ k ≤ n. fk = true in two
ways:
a) Directly following the design of forall.
b) Using forall and boolean negation not : bool → bool.

Exercise 3.4.2 Declare a primality test based on the fourth charac-
terization (i.e., upper bound 2

√
x). Convince yourself with an OCaml

interpreter that testing with upper bound 2
√
x is much faster on large

primes (check 479,001,599 and 87,178,291,199).

Exercise 3.4.3 Explain why the following functions are primality tests:
a) λx. x ≥ 2 && first (λk. x% k = 0) 2 = x

b) λx. x ≥ 2 && (first (λk. k2 ≥ x || x% k = 0) 2)2 > x

Hint for (b): Let k be the number the application of first yields. Distin-
guish three cases: k2 < x, k2 = x, and k2 > x.

Exercise 3.4.4 Convince yourself that the four characterization of pri-
mality given above are equivalent.

3.5 Polymorphic Typing Rules

We distinguish between monomorphic and polymorphic types.
Polymorphic types (e.g., ∀α. α → α) are type schemes where one or
several type variables are universally quantified. Monomorphic types
(e.g., t → t) may contain type variables but must not contain quan-
tifiers. Polymorphic types are obtained from monomorphic types by
quantifying one or several variables. This disallows nesting of polymor-
phic types into function types or tuple types.

The typing rules from §2.5 can be extended to polymorphic types.
We will write t for monomorphic types and T for polymorphic types. A
type environment E can now contain both monomorphic bindings x : t
and polymorphic bindings x : T . The rules from §2.5 stay unchanged
except for the now more general E and t. Three new polymorphic
typing rules are added to handle polymorphic types.

The first polymorphic typing rule provides for the use of polymorphic
variables in expressions:

(x : T ) ∈ E T � t
E ` x : t
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The notation T � t says that the monomorphic type t is an instance of
the polymorphic type T . We can now derive the typing

f : ∀α. α→ α ` f : int → int

The second polymorphic typing rule accommodates let expressions
declaring polymorphic functions:

E ` e1 : t1 E, x : T ` e2 : t T �̇E t1 e1 = λ · · ·
E ` let x = e1 in e2 : t

The side condition T �̇E t says that the monomorphic type t is a most
general instance of the polymorphic type T obtained by erasing the
quantifier prefix of T after the quantified type variables have been re-
named so that they don’t occur in E. The side condition e1 = λ · · · says
that e1 must be a lambda expression. We can now derive the typing

[] ` let f = λx.x in (f 5, f true) : int × bool

where f is assigned the polymorphic type ∀α. α → α and the most
general instance α → α by the rule for let expressions. The two using
occurrences of f are typed with the instances int → int and bool → bool
of ∀α. α→ α.

Note that the two rules for polymorphic types are not algorithmic
since they involve guessing of types. It turns out that OCaml comes
with a smart type inference algorithm doing all type guessing in an
algorithmic way. In fact you can use OCaml to find out for given E

and e the most general type t such that E ` e : t.

Example: Polymorphic self application
As an example we consider the expression

let f = λx.x in ff

which defines f as an identity function. This expression can only be
typed if f is given a polymorphic type since f : t→ t cannot be applied
to itself (since t 6= t → t). However, the polymorphic typing rule for
let expressions makes it possible to assign to f the polymorphic type
∀α. α→ α, which makes it possible to type the self application ff with
the instances (α → α) → (α → α) and α → α. Here is a derivation
establishing a most general type for ff (the derivation is given in two
parts to fit on the page):

E, f : ∀α. α→ α ` f : (α→ α)→ (α→ α) E, f : ∀α. α→ α ` f : α→ α

E, f : ∀α. α→ α ` ff : α→ α
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E, x : α ` x : α
E ` λx.x : α→ α

· · · · · ·
E, f : ∀α. α→ α ` ff : α→ α

E ` let f = λx.x in ff : α→ α

The derivation assumes that E does not contain the type variable α.

Exercise 3.5.1 (Untypable expressions) We say that an expres-
sion e is typable if there are an environment E and a type t such
that the judgment E ` e : t is derivable. Explain why the following
expression are not typable.

a) λf.ff b) (λf. (f 5, f ”a”)) (λx.x)

Polymorphic typing rule for recursive let expressions
We also need a polymorphic typing rule for recursive let expressions.
This rule doesn’t need new ideas but can be obtained as a combination
of the monomorphic typing rule for recursive let expressions and the
polymorphic typing rule for let expressions we have just seen:

E, f : t1 → t2, x : t1 ` e1 : t2 E, f : T ` e2 : t T �̇E t1 → t2

E ` let rec f x = e1 in e2 : t

Note that f is typed monomorphically for e1 and polymorphically for e2.3
Keep in mind that only variables declared by let expressions can be

assigned polymorphic types.

3.6 Polymorphic Exception Raising and Equality Testing

Recall the predefined function invalid arg discussed in §1.13. Like every
function in OCaml, invalid arg must be accommodated with a type. It
turns out that the natural type for invalid arg is a polymorphic type:

invalid arg : ∀α. string → α

With this type an application of invalid arg can be typed with whatever
type is required by the context of the application. Since evaluation of
the application raises an exception and doesn’t yield a value, the return
type of the function doesn’t matter for evaluation.

3In principle, f can be typed polymorphically for both constituents e1 and e2 of a
recursive let expression, but this generalization of the polymorphic typing rule for
recursive let expressions ruins the type inference algorithm for polymorphic types.
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3 Polymorphic Functions and Iteration

Like functions, operations must be accommodated with types. So
what is the type of the equality test? OCaml follows common math-
ematical practice and admits the equality test for all types. To this
purpose, the operator testing equality is accommodated with a poly-
morphic type:

= : ∀α. α→ α→ bool

The polymorphic type promises more than the equality test delivers.
There is the general problem that a meaningful equality test for functions
cannot be realized computationally. OCaml bypasses the problem by
the crude provision that an equality test on functions raises an invalid
argument exception.

We assume that functions at the mathematical level always return
values and do not raise exceptions. We handle division by zero by assum-
ing that it returns some value, say 0. Similarly, we handle an equality
test for functions by assuming that it always returns true. When reason-
ing at the mathematical level, we will avoid situations where the ad hoc
definitions come into play, following common mathematical practice.

3.7 Summary

Functions can receive polymorphic types. Polymorphic types are type
schemes whose variables serve as placeholders for arbitrary types. A
polymorphic function can be used with every instance of its type scheme.
Typical examples for polymorphic functions (i.e., functions that are as-
signed a polymorphic type) are functions for tuples and the iteration
operator.

OCaml will assign polymorphic types to declared functions whenever
this is possible. This way OCaml’s type inference algorithm can infer
unique polymorphic types for functions that don’t have most general
monomorphic types.

Type checking as explained in §2.5 extends to polymorphic types by
adding three polymorphic typing rules. Only variables declared with
let expressions can receive polymorphic types. In particular, lambda
expressions cannot receive polymorphic types.

We remark that the dynamic semantics of programs is not affected by
polymorphic types since it doesn’t know about static types anyway. We
may see polymorphic types as a means for making programs well typed
that otherwise would not be well typed. An example is the iteration
function which can iterate on different types (we have seen iterations on
numbers, booleans, and pairs). Another example are graded projections
for tuples, which can be used for different component types.
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3 Polymorphic Functions and Iteration

Iteration is a tail-recursive computation scheme that can be formu-
lated as a polymorphic higher-order function. Without functional argu-
ments it is impossible to formulate iteration as a function, and without
polymorphism we cannot formulate iteration for all iteration types.
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4 Lists

Lists are a basic mathematical data structure providing a recursive rep-
resentation for finite sequences. Lists are essential for programming.
OCaml, and functional programming languages in general, accommo-
date lists in a mathematically clean way. Three interesting problems
we will attack with lists are decimal representation, sorting, and prime
factorization:

dec 735 = [7, 3, 5]
sort [7, 2, 7, 6, 3, 4, 5, 3] = [2, 3, 3, 4, 5, 6, 7, 7]

prime fac 735 = [3, 5, 7, 7]

4.1 Nil and Cons

A list represents a finite sequence [x1, . . . , xn] of values. All elements
of a list must have the same type. A list type L(t) contains all lists
whose elements are of type t; we speak of lists over t. For instance,

[1, 2, 3] : L(Z)
[true, true, false] : L(B)

[(true, 1), (true, 2), (false, 3)] : L(B× Z)
[[1, 2], [3], []] : L(L(Z))

All lists are obtained from the empty list [] using the binary constructor
cons written as “::”:

[1] = 1 :: []
[1, 2] = 1 :: (2 :: [])

[1, 2, 3] = 1 :: (2 :: (3 :: []))

The empty list [] also counts as a constructor and is called nil. Given a
nonempty list x :: l (i.e., a list obtained with cons), we call x the head
and l the tail of the list.

It is important to see lists as trees. For instance, the list [1, 2, 3] may
be depicted as the tree
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::

::

::

[]3

2

1

The tree representation shows how lists are obtained with the construc-
tors nil and cons. It is important to keep in mind that the bracket
notation [x1, . . . , xn] is just notation for a list obtained with n applica-
tions of cons from nil. Also keep in mind that every list is obtained with
either the constructor nil or the constructor cons.

Notationally, cons acts as an infix operator grouping to the right.
Thus we can omit the parentheses in 1 :: (2 :: (3 :: [])). Moreover, we
have [x1, . . . , xn] = x1 :: · · · :: xn :: [].

Given a list [x1, . . . , xn], we call the values x1, . . . , xn the elements
or the members of the list.

Despite the fact that tuples and lists both represent sequences, tuple
types and list types are quite different:
• A tuple type t1 × · · · × tn admits only tuples of length n, but may

fix different types for different components.
• A list type L(t) admits lists [x1, . . . , xn] of any length but fixes a

single type t for all elements.

Exercise 4.1.1 Give the types of the following lists and tuples.
a) [1, 2, 3]
b) (1, 2, 3)

c) [(1, 2), (2, 3)]
d) ((1, 2), (2, 3))

e) [[1, 2], [2, 3]]

4.2 Basic List Functions

The fact that all lists are obtained with nil and cons facilitates the
definition of basic operations on lists. We start with the definition of a
polymorphic function

length : ∀α. L(α)→ N
length [] := 0

length (x :: l) := 1 + length l
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that yields the length of a list. We have length [x1, . . . , xn] = n. An-
other prominent list operation is concatenation:

@ : ∀α. L(α)→ L(α)→ L(α)
[] @ l2 := l2

(x :: l1) @ l2 := x :: (l1 @ l2)

We have [x1, . . . , xm] @ [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]. We call
l1 @ l2 the concatenation of l1 and l2.

How can we define an operation reversing lists:

rev [x1, . . . , xn] = [xn, . . . , x1]

For instance, rev [1, 2, 3] = [3, 2, 1]. To define rev, we need defining
equations for nil and cons. The defining equation for nil is obvious,
since the reversal of the empty list is the empty list. For cons we use
the equation rev (x :: l) = rev (l) @ [x] which expresses a basic fact about
reversal. This brings us to the following definition of list reversal:

rev : ∀α. L(α)→ L(α)
rev [] := []

rev (x :: l) := rev (l) @ [x]

We can also define a tail recursive list reversal function. As usual
we need an accumulator argument. The resulting function combines
reversal and concatenation:

rev append : ∀α. L(α)→ L(α)→ L(α)
rev append [] l2 := l2

rev append (x :: l1) l2 := rev append l1 (x :: l2)

We have rev (l) = rev append l []. The following trace shows the defining
equations of rev append at work:

rev append [1, 2, 3] [] = rev append [2, 3] [1]
= rev append [3] [2, 1]
= rev append [] [3, 2, 1]
= [3, 2, 1]

The functions defined so far are all defined by list recursion.1 List
recursion means that there is no recursion for the empty list, and that

1List recursion is better known as structural recursion on lists.
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for every nonempty list x :: l the recursion is on the tail l of the list.
List recursion always terminates since lists are obtained from nil with
finitely many applications of cons.

Another prominent list operation is

map : ∀αβ. (α→ β)→ L(α)→ L(β)
map f [] := []

map f (x :: l) := f x :: map f l

We have map f [x1, . . . , xn] = [f x1, . . . , f xn]. We say that map applies
the function f pointwise to a list. Note that map is defined once more
with list recursion.

Finally, we define a function that yields the list of all integers between
two numbers m and n (including m and n):

seq : Z→ Z→ L(Z)
seq m n := if m > n then [] else m :: seq (m+ 1)n

For instance, seq −1 5 = [−1, 0, 1, 2, 4, 5]. This time the recursion is not
on a list but on the number m. The recursion terminates since every
recursion step decreases n−m and recursion stops once n−m < 0.

Exercise 4.2.1 Define a function null : ∀α. L(α)→ B testing whether
a list is the empty list. Do not use the equality test.

Exercise 4.2.2 Consider the expression 1 :: 2 :: [] @ 3 :: 4 :: [].
1. Put in the redundant parentheses.
2. Give the list the expression evaluates to in bracket notation.
3. Give the tree representation of the list the expression evaluates to.

Exercise 4.2.3 Decide for each of the following equations whether it
is well-typed, and, in case it is well-tyoed, whether it is true. Assume
l1, l2 : List(N).
a) 1 :: 2 :: 3 = 1 :: [2, 3]
b) 1 :: 2 :: 3 :: [] = 1 :: (2 :: [3])
c) l1 :: [2] = l1 @ [2]
d) (l1 @ [2]) @ l2 = l1 @ (2 :: l2)
e) (l1 :: 2) @ l2 = l1 @ (2 :: l2)
f) map (λx. x2) [1, 2, 3] = [1, 4, 9]
g) rev (l1 @ l2) = rev l2 @ rev l1
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4.3 List Functions in OCaml

Given a mathematical definition of a list function, it is straightforward
to declare the function in OCaml. The essential new construct are so-
called match expressions making it possible to discriminate between
empty and nonempty lists. Here is a declaration of a length function:

let rec length l =
match l with
| [] -> 0
| x :: l -> 1 + length l

The match expression realizes a case analysis on lists using separate
rules for the empty list and for nonempty lists. The left hand sides of
the rules are called patterns. The cons pattern applies to nonempty
lists and binds the local variables x and l to the head and the tail of
the list.

Note that the pattern variable l introduced by the second rule of the
match shadows the argument variable l in the declaration of length. The
shadowing could be avoided by using a different variable name for the
pattern variable (for instance, l′ ).

Below are declarations of OCaml functions realizing the functions
append, rev append, and map defined before. Note how the defining
equations translate into rules of match expressions.

let rec append l1 l2 =
match l1 with
| [] -> l2
| x :: l1 -> x :: append l1 l2

let rec rev_append l1 l2 =
match l1 with
| [] -> l2
| x :: l1 -> rev_append l1 (x :: l2)

let rec map f l =
match l with
| [] -> []
| x :: l -> f x :: map f l

For each of the function declarations, OCaml infers the polymorphic
type we have specified with the mathematical definition.

We remark that OCaml realizes the bracket notation for lists using
semicolons to separate elements. For instance, the list [1, 2, 3] is written
as [1; 2; 3] in OCaml.

OCaml provides predefined functions for lists as fields of a predefined
standard module List. For instance:
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List.length : 'a list -> int
List.append : 'a list -> 'a list -> 'a list
List.rev_append : 'a list -> 'a list -> 'a list
List.rev : 'a list -> 'a list
List.map : ('a -> 'b) -> 'a list -> 'b list

The above listing uses OCaml notation:
• Dot notation is used to name the fields of modules; for instance,

List.append denotes the field append of the module List.
• List types L(t) are written in reverse order as “t list”.
• Type variables are written with a leading quote, for instance, “'a”
• The quantification prefix of polymorphic types is suppressed, relying

on the assumption that all occurring type variables are quantified.
Here are further notational details concerning lists in OCaml:
• List concatenation List.append is also available through the infix

operator “@”.
• The infix operators “::” and “@” both group to the right, and “::”

takes its arguments before “@”. For instance,

1 :: 2 :: [3; 4]@[5]  (1 :: (2 :: [3; 4]))@[5]

• The operators “::” and “@” take their arguments before comparisons
and after arithmetic operations.

Exercise 4.3.1 Declare a function seq following the mathematical def-
inition in the previous section.

Exercise 4.3.2 (Init) Declare a polymorphic function init such that
init n f = [f(0), . . . , f(n − 1)] for n ≥ 0. Note that n is the length
of the result list. Write your function with a tail-recursive helper func-
tion. Make sure your function agrees with OCaml’s predefined function
List.init. Use List.init to declare polymorphic functions that yield lists
[f(m), f(m+ 1), . . . , f(m+ n− 1)] and [f(m), f(m+ 1), . . . , f(n)].

Exercise 4.3.3 Declare a function flatten : ∀α. L(L(α)) → L(α) con-
catenating the lists appearing as elements of a given list:

flatten [l1, . . . , ln] = l1 @ · · ·@ ln @ []

For instance, we want flatten [[1, 2], [], [3], [4, 5]] = [1, 2, 3, 4, 5].

Exercise 4.3.4 (Decimal Numbers) With lists we have a mathe-
matical representation for decimal numbers. For instance, the decimal
representation for the natural number 1234 is the list [1,2,3,4].
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a) Declare a function dec : N → L(N) that yields the decimal number
for a natural number. For instance, we want dec 1324 = [1, 3, 2, 4].

b) Declare a function num : L(N) → N that converts decimal numbers
into numbers: num (dec n) = n.

Hint: Declare num with a tail-recursive function num′ such that, for
instance,

num [1, 2, 3] = num′ [1, 2, 3] 0
= num′ [2, 3] 1
= num′ [3] 12
= num′ [] 123 = 123

Exercise 4.3.5 Declare functions

zip : ∀αβ. L(α)→ L(β)→ L(α× β)
unzip : ∀αβ. L(α× β)→ L(α)× L(β)

such that

zip [x1, . . . , xn] [y1, . . . , yn] = [(x1, y1), . . . , (xn, yn)]
unzip [(x1, y1), . . . , (xn, yn)] = ([x1, . . . , xn], [y1, . . . , yn])

4.4 Fine Points About Lists

We speak of the collection of list types L(t) as a type family. We may
describe the family of list types with the grammar

L(α) ::= [] | α :: L(α)

fixing the constructors nil and cons. Speaking semantically, every
value of a list type is obtained with either the constructor nil or the
constructor cons. Moreover, [] is a value that is a member of every list
type L(t), and v1 :: v2 is a value that is a member of a list type L(t) if
the value v1 is a member of the type t and the value v2 is a member of
the type L(t).

As it comes to type checking, the constructors nil and cons are ac-
commodated with polymorphic types:

[] : ∀α. L(α)
(::) : ∀α. α→ L(α)→ L(α)

OCaml comes with the peculiarity that constructors taking arguments
(e.g., cons) can only be used when applied to all arguments. We can
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bypass this restriction by declaring a polymorphic function applying the
cons constructor:

cons : ∀α. α→ L(α)→ L(α)
cons x l := x :: l

OCaml provides this function as List.cons.

4.5 Membership and List Quantification

We define a polymorphic function that tests whether a value appears as
element of a list:

mem : ∀α. α→ L(α)→ B
mem [] := false

mem x (y :: l) := (x = y) || mem x l

Note that mem tail-recurses on the list argument. Also recall the discus-
sion of OCaml’s polymorphic equality test in §3.6. We will write x ∈ l
to say that x is an element of the list l.

The structure of the membership test can be generalized with a poly-
morphic function that for a test and a list checks whether some element
of the list satisfies the test:

exists : ∀α. (α→ B)→ L(α)→ B
exists p [] := false

exists p (x :: l) := p x || exists p l

The expression

exists (λx. x = 5) : L(Z)→ B

now gives us a test that checks whether a lists of numbers contains the
number 5. More generally, we have

mem x l = exists ((=)x) l

Exercise 4.5.1 Declare mem and exists in OCaml. For mem consider
two possibilities, one with exists and one without helper function.

Exercise 4.5.2 Convince yourself that exists is tail-recursive (by elim-
inating the derived form || ).
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Exercise 4.5.3 Declare a tail-recursive function

forall : ∀α. (α→ B)→ L(α)→ B

testing whether all elements of a list satisfy a given test. Consider two
possibilities, one without a helper function, and one with exists exploit-
ing the equivalence (∀x ∈ l. p(x)) ←→ (¬∃x ∈ l. ¬p(x)).

Exercise 4.5.4 Declare a function count : ∀α. α→ L(α)→ N that
counts how often a value appears in a list. For instance, we want
count 5 [2, 5, 3, 5] = 2.

Exercise 4.5.5 (Inclusion) Declare a function

incl : ∀α. L(α)→ L(α)→ B

which tests whether all elements of the first list are elements of the
second list.

Exercise 4.5.6 (Repeating lists) A list is repeating if it has an el-
ement appearing at two different positions. For instance, [2, 5, 3, 5] is
repeating and [2, 5, 3] is not repeating.
a) Declare a function testing whether a list is repeating.
b) Declare a function testing whether a list is non-repeating.
c) Declare a function that given a list l yields a non-repeating list con-

taining the same elements as l.

4.6 Head and Tail

In OCaml we can declare polymorphic functions

hd : ∀α. L(α)→ α

tl : ∀α. L(α)→ L(α)

that yield the head and the tail of nonempty lists:

let hd l =
match l with
| [] -> failwith "hd"
| x :: _ -> x

let tl l =
match l with
| [] -> failwith "tl"
| _ :: l -> l
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Both functions raise exceptions when applied to the empty list. Note
the use of the underline symbol “_” for pattern variables that are not
used in a rule. Also note the use of the predefined function

failwith : ∀α. string → α

raising an exception Failure s carrying the string s given as argument.
Interesting is the polymorphic type of failwith making it possible to type
an application of failwith with whatever type is required by the context
of the application.

At the mathematical level we don’t admit exceptions. Thus we can-
not define a polymorphic function

hd : ∀α. L(α)→ α

since we don’t have a value we can return for the empty list over α.

Exercise 4.6.1 Define a polymorphic function tl : ∀α. L(α) → L(α)
returning the tail of nonempty lists. Do not use exceptions.

Exercise 4.6.2 Declare a polymorphic function last : ∀α. L(α) → α

returning the last element of a nonempty lists.

4.7 Position Lookup

The positions of a list are counted from left to right starting with
the number 0. For instance, the list [5, 6, 5] has the positions 0, 1, 2;
moreover, the element at position 1 is 6, and the value 5 appears at the
positions 0 and 2. The empty list has no position. More generally, a list
of length n has the positions 0, . . . , n− 1.

We declare a tail-recursive lookup function

nth : ∀α. L(α)→ int → α

that given a list and a position returns the element at the position:

let rec nth l n =
match l with
| [] -> failwith "nth"
| x :: l -> if n < 1 then x else nth l (n-1)

The function raises an exception if l = [] or n ≥ length l. Note that
nth l 0 yields the head of l if l is nonempty. Also note that nth termi-
nates since it recurses on the list argument. Here is a trace:

nth [0, 2, 3, 5] 2 = nth [2, 3, 5] 1 = nth [3, 5] 0 = 3
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Exercise 4.7.1 What is the result of nth [0, 2, 3, 5] (−2) ?

Exercise 4.7.2 Declare a function nth checked that raises an invalid-
argument exception (see §1.13) if n < 0 and otherwise agrees with nth.
Check that your function behaves the same as the predefined function
List.nth.

Exercise 4.7.3 Define a function pos : ∀α. L(α)→ Z→ B testing
whether a number is a position of a list.

Exercise 4.7.4 Declare a function find : ∀α. α → L(α) → N that
returns the first position of a list a given value appears at. For instance,
we want find 1 [3, 1, 1] = 1. If the value doesn’t appear in the list, a
failure exception should be raised.

4.8 Option Types

The lookup function for lists

nth : ∀α. L(α)→ int → α

raises an exception if the position argument is not valid for the given
list. There is the possibility to avoid the exception by changing the
result type of nth to an option type

nth opt : ∀α. L(α)→ int → O(α)

that in addition to the values of α has an extra value None that can be
used to signal that the given position is not valid. In fact, OCaml comes
with a type family

O(α) ::= None | Some α

whose values are obtained with two polymorphic constructors

Some : ∀α. α→ O(α)
None : ∀α. O(α)

such that Some injects the values of a type t into O(t) and None rep-
resents the extra value. We can declare a lookup function returning
options as follows:

let rec nth_opt l n =
match l with
| [] -> None
| x :: l -> if n < 1 then Some x else nth_opt l (n-1)
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An option may be seen as a list that is either empty or a singleton
list [x]. In fact, it is possible to replace option types with list types.
Doing this gives away information as it comes to type checking.

Exercise 4.8.1 Declare a function nth opt checked that raises an
invalid-argument exception if n < 0 and otherwise agrees with nth opt.

Exercise 4.8.2 Declare a function

nth list : ∀α. L(α)→ int → L(α)

that agrees with nth opt but returns a list with at most one element.

Exercise 4.8.3 Declare a function find opt : ∀α. α → L(α) → O(N)
that returns the first position of a list a given value appears at. For
instance, we want find opt 7 [3, 7, 7] = Some 1 and find opt 2 [3, 7, 7] =
None.

4.9 Generalized Match Expressions

OCaml provides pattern matching in more general form than the ba-
sic list matches we have seen so far. A good example for explaining
generalized match expressions is a function

eq : ∀α. (α→ α→ B)→ L(α)→ L(α)→ B

testing equality of lists using an equality test for the base type given as
argument:

let rec eq (p: 'a -> 'a -> bool) l1 l2 =
match l1, l2 with
| [], [] -> true
| x::l1, y::l2 -> p x y && eq p l1 l2
| _, _ -> false

The generalized match expression in the declaration matches on two
values and uses a final catch-all rule. Evaluation of a generalized match
tries the patterns of the rules in the order they are given and commits
to the first rule whose pattern matches. The pattern of the final rule
will always match and will thus be used if no other rule applies. One
speaks of a catch all rule.

Note that the above declaration specifies the type of the argument p
using a type variable α. Without this specification OCaml would infer
the more general type ∀αβ. (α→ β → B)→ L(α)→ L(β)→ B for eq.

The generalized match in the above declaration translates to a simple
match with nested simple matches:
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match l1 with
| [] ->

begin match l2 with
| [] -> true
| _ :: _ -> false
end

| x::l1 ->
begin match l2 with

| [] -> false
| y::l2 -> p x y && eq p l1 l2

end

The keywords begin and end provide a notational variant for a pair
( · · · ) of parentheses.

The notions of disjointness and exhaustiveness established for defin-
ing equations in §1.6 carry over to generalized match expressions. We
will only use exhaustive match expressions but occasionally use non-
disjoint match expressions where the order of the rules matters (e.g.,
catch-all rules). We remark that simple match expressions are always
disjoint and exhaustive.

We see generalized match expressions as derived forms that compile
into simple match expressions.

OCaml also has match expressions for tuples. For instance,

let fst a =
match a with
| (x, _) -> x

declares a projection function fst : ∀αβ. α× β → α for pairs. In fact,
match expressions for tuples are native in OCaml and the uses of tu-
ple patterns we have seen in let expressions, lambda abstractions, and
declarations all compile into match expressions for tuples.

Patterns in OCaml may also contain numbers and other constants.
For instance, we may declare a function that tests whether a list starts
with the numbers 1 and 2 as follows:

let test l =
match l with
| 1 :: 2 :: _ -> true
| _ -> false

Exercise 4.9.1 Declare a function testing whether a list starts with the
numbers 1 and 2 just using simple match expressions for lists.

Exercise 4.9.2 Declare a function swap : ∀αβ. α×β → β×α swapping
the components of a pair using a simple match expression for tuples.
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Exercise 4.9.3 (Maximal element) Declare a function that yields
the maximal element of a list of numbers. If the list is empty, a failure
exception should be raised.

Exercise 4.9.4 Translate the expression
fun l -> match l with

| 0::x::_-> Some x
| x::1::_ -> Some x
| _ -> None

into an expression only using simple matches.

4.10 Sublists

A sublist of a list l is obtained by deleting n ≥ 0 positions of l. For
instance, the sublists of [1, 2] are the lists

[1, 2], [2], [1], []

We observe that the empty list [] has only itself as a sublist, and that
a sublist of a nonempty list x :: l is either a sublist of l, or a list x :: l′
where l′ is a sublist of l. Using this observation, it is straightforward to
define a function that yields a list of all sublists of a list:

pow : ∀α. L(α)→ L(L(α))
pow [] := [[]]

pow (x :: l) := pow l @ map (λ l. x :: l) (pow l)

We call pow l the power list of l.
A sublist test “l1 is sublist of l2” needs a more involved case analysis:

is sublist : ∀α. L(α)→ L(α)→ B
is sublist l1 [] := l1 = []

is sublist [] (y :: l2) := true
is sublist (x :: l1) (y :: l2) := is sublist (x :: l1) l2 ||

x = y && is sublist l1 l2

We remark that a computationally naive sublist test can be obtained
with the power list function and the membership test:

is sublist l1 l2 = mem l1 (pow l2)

Exercise 4.10.1 (Graded power list)
Declare a function gpow : ∀α. N→ L(α)→ L(L(α)) such that gpow k l

yields a list containing all sublists of l of length k.
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Exercise 4.10.2 (Prefixes, Segments, Suffixes)
Given a list l = l1 @ l2 @ l3, we call l1 a prefix, l2 a segment, and l3 a
suffix of l. The definition is such that prefixes are segments starting at
the beginning of a list, and suffixes are segments ending at the end of a
list. Moreover, every list is a prefix, segment, and suffix of itself.
a) Convince yourself that segments are sublists.
b) Give a list and a sublist that is not a segment of the list.
c) Declare a function that yields a list containing all prefixes of a list.
d) Declare a function that yields a list containing all suffixes of a list.
e) Declare a function that yields a list containing all segments of a list.

Exercise 4.10.3 (Splits) Given a list l = l1 @ l2, we call the pair
(l1, l2) a split of l. Declare a function that yields a list containing all
splits of a list.

Exercise 4.10.4 Declare a function filter : ∀α. (α→ B)→ L(α)→ L(α)
that given a test and a list yields the sublist of all elements that pass
the test. For instance, we want filter (λx. x > 2) [2, 5, 1, 5, 2] = [5, 5].

4.11 Folding Lists

Consider the list
a1 :: (a2 :: (a3 :: []))

If we replace cons with + and nil with 0, we obtain the expression

a1 + (a2 + (a3 + 0))

which evaluates to the sum of the elements of the list. If we replace cons
with · and nil with 1, we obtain the expression

a1 · (a2 · (a3 · 1))

which evaluates to the product of the elements of the list. More gener-
ally, we obtain the expression

f a1 (f a2 (f a3 b))

if we replace cons with a function f and nil with a value b. Even more
generally, we can define a function fold such that fold f l b yields the
value of the expression obtained from l by replacing cons with f and nil
with b:

fold : ∀αβ. (α→ β → β)→ L(α)→ β → β

fold f [] b := b

fold f (a :: l) b := f a (fold f l b)
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We have the following equations:
fold (+) [x1, . . . , xn] 0 = x1 + · · ·+ xn + 0

fold (λab. a2 + b) [x1, . . . , xn] 0 = x2
1 + · · ·+ x2

n + 0
l1 @ l2 = fold (::) l1 l2

flatten l = fold (@) l []
length l = fold (λab. b+ 1) l 0

rev l = fold (λab. b@ [a]) l []
Folding of lists is similar to iteration with numbers in that both

recursion schemes can express many functions without further recursion.
There is a tail-recursive variant foldl of fold satisfying the equation

foldl f l b = fold f (rev l) b :
foldl : ∀αβ. (α→ β → β)→ L(α)→ β → β

foldl f [] b := b

foldl f (a :: l) b := foldl f l (f a b))
One says that fold folds a list from the right

fold f [a1, a2, a3] b = f a1 (f a2 (f a3 b))
that foldl folds a list from the left

foldl f [a1, a2, a3] b = f a3 (f a2 (f a1 b))
If the order of the folding is not relevant, the tail-recursive version foldl
is preferable over fold.

OCaml provides the function fold as List.fold right. OCaml also pro-
vides a function List.fold left, which however varies the argument order
of our function foldl. To avoid confusion, we will not use List.fold left
in this chapter but instead use our function foldl.
Exercise 4.11.1 Using fold, declare functions that yield the concate-
nation, the flattening, the length, and the reversal of lists.

Exercise 4.11.2 Using foldl, declare functions that yield the length,
the reversal, and the concatenation of lists.

Exercise 4.11.3 We have the equations
foldl f l b = fold f (rev l) b
fold f l b = foldl f (rev l) b

a) Show that the second equation follows from the first equation using
the equation rev (rev l)) = l.

b) Obtain fold from foldl not using recursion.
c) Obtain foldl from fold not using recursion.
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4.12 Insertion Sort

A sequence x1, . . . , xn of numbers is called sorted if its elements appear
in order: x1 ≤ · · · ≤ xn. Sorting a sequence means to rearrange the
elements such that the sequence becomes sorted. We want to define a
function

sort : L(Z)→ L(Z)

such that sort l is a sorted rearrangement of l. For instance, we want
sort [5, 3, 2, 7, 2] = [2, 2, 3, 5, 7].

For now, we only consider sorting for lists of numbers. Later it will
be easy to generalize to other types and other orders.

There are different sorting algorithms. Probably the easiest one is
insertion sort. For insertion sort one first defines a function that inserts
a number x into a list such that the result list is sorted if the argument
list is sorted.2 Now sorting a list l is easy: We start with the empty
list, which is sorted, and insert the elements of l one by one. Once all
elements are inserted, we have a sorted rearrangement of l. Here are
definitions of the necessary functions:

insert : Z→ L(Z)→ L(Z)
insert x [] := [x]

insert x (y :: l) := if x ≤ y then x :: y :: l else y :: insert x l

isort : L(Z)→ L(Z)
isort [] := []

isort (x :: l) := insert x (isort l)

Make sure you understand every detail of the definition. We offer a
trace:

isort [3, 2] = insert 3 (isort [2])
= insert 3 (insert 2 (isort []))
= insert 3 (insert 2 [])
= insert 3 [2] = 2 :: insert 3 [] = 2 :: [3] = [2, 3]

Note that isort inserts the elements of the input list reversing the order
they appear in the input list.

2More elegantly, we may say that the insertion function preserves sortedness.
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Comparisons are polymorphically typed
Declaring the functions insert and isort in OCaml is now routine. There
is, however, the surprise that OCaml derives polymorphic types for
insert and isort if no type specification is given:

insert : ∀α. α→ L(α)→ L(α)
isort : ∀α. L(α)→ L(α)

This follows from the fact that OCaml accommodates comparisons with
the polymorphic type

∀α. α→ α→ B

it also uses for the equality test (§3.6). We will explain later how com-
parisons behave on tuples and lists. For boolean values, OCaml realizes
the order false < true. Thus we have

isort [true, false, false, true] = [false, false, true, true]

Exercise 4.12.1 Declare a function sorted : ∀α. L(α) → B that tests
whether a list is sorted. Use tail recursion. Write the function with a
generalized match and show how the generalized match translates into
simple matches.

Exercise 4.12.2 Declare a function perm : ∀α. L(α)→ L(α)→ B that
tests whether two lists are equal up to reordering.

Exercise 4.12.3 (Sorting into descending order)
Declare a function sort desc : ∀α. L(α) → L(α) that reorders a list
such that the elements appear in descending order. For instance, we
want sort desc [5, 3, 2, 5, 2, 3] = [5, 5, 3, 3, 2, 2].

Exercise 4.12.4 (Sorting with duplicate deletion)
Declare a function dsort : ∀α. L(α)→ L(α) that sorts a list and removes
all duplicates. For instance, dsort [5, 3, 2, 5, 2, 3] = [2, 3, 5].

Insertion order
Sorting by insertion inserts the elements of the input list one by one
into the empty list. The order in which this is done does not matter for
the result. The function isort defined above inserts the elements of the
input list reversing the order of the input list. If we define isort as

isort l := fold insert l []
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we preserve the insertion order. If we switch to the definition

isort l := foldl insert l []

we obtain a tail-recursive insertion function inserting the elements of the
input list in the order they appear in the input list.

Exercise 4.12.5 (Count Tables) Declare a function

table : ∀α. L(α)→ L(α× N+)

such that (x, n) ∈ table l if and only if x occurs n > 0 times in l. For
instance, we want

table [4, 2, 3, 2, 4, 4] = [(4, 3), (2, 2), (3, 1)]

Make sure table lists the count pairs for the elements of l in the order
the elements appear in l, as in the example above.

4.13 Generalized Insertion Sort

Rather than sorting lists using the predefined order ≤, we may sort lists
using an order given as argument:

insert : ∀α. (α→ α→ B)→ α→ L(α)→ L(α)
insert p x [] := [x]

insert p x (y :: l) := if p x y then x :: y :: l else y :: insert p x l

gisort : ∀α. (α→ α→ B)→ L(α)→ L(α)
gisort p l := fold (insert p) l []

Now the function gisort (≤) sorts as before in ascending order, while the
function gisort (≥) sorts in descending order:

gisort (≥) [1, 3, 3, 2, 4] = [4, 3, 3, 2, 1]

When we declare the functions insert and gisort in OCaml, we can
follow the mathematical definitions. Alternatively, we can declare gisort
using a local declaration for insert:

let gisort p l =
let rec insert x l =

match l with
| [] -> [x]
| y :: l -> if p x y then x :: y :: l else y :: insert x l

in
foldl insert l []
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This way we avoid the forwarding of the argument p.
Exercise 4.13.1 Declare a function

reorder : ∀αβ. L(α× β)→ L(α× β)

that reorders a list of pairs such that the first components of the pairs are
ascending. If there are several pairs with the same first component, the
original order of the pairs should be preserved. For instance, we want
reorder [(5, 3), (3, 7), (5, 2), (3, 2)] = [(3, 7), (3, 2), (5, 3), (5, 2)]. Declare
reorder as a one-liner using the sorting function gisort.

4.14 Lexical Order

We now explain how we obtain an order for lists over t from an order
for the base type t following the principle used for ordering words in
dictionaries. We speak of a lexical ordering. Examples for the lexical
ordering of lists of integers are

[] < [−1] < [−1,−2] < [0] < [0, 0] < [0, 1] < [1]

The general principle behind the lexical ordering can be formulated with
two rules:
• [] < x :: l
• x1 :: l1 < x2 :: l2 if either x1 < x2, or x1 = x2 and l1 < l2.
Following the rules, we define a function that yields a test for the lexical
order ≤ of lists given a test for an order ≤ of the base type:

lex : ∀α. (α→ α→ B)→ L(α)→ L(α)→ B
lex p [] l2 := true

lex p (x1 :: l1) [] := false
lex p (x1 :: l1) (x2 :: l2) := p x1 x2 &&

if p x2 x1 then lex p l1 l2 else true
Exercise 4.14.1 (Lexical order for pairs) The idea of lexical order
extends to pairs and to tuples in general.
a) Explain the lexical order of pairs of type t1 × t2 given orders for the

component types t1 and t2.
b) Declare a function

lexP : ∀αβ. (α→ α→ B)→ (β → β → B)→ α× β → α× β → B

testing the lexical order of pairs. For instance, we want

lexP (≤) (≥) (1, 2) (1, 3) = false
and lexP (≤) (≥) (0, 2) (1, 3) = true.
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4.15 Prime Factorization

Every integer greater than 1 can be written as a product of prime num-
bers; for instance,

60 = 2 · 2 · 3 · 5
147 = 3 · 7 · 7
735 = 3 · 5 · 7 · 7

One speaks of the prime factorization of a number. Recall that a prime
number is an integer greater than 1 that cannot be obtained as the
product of two integers greater than 1 (§3.4).

It is straightforward to compute the smallest prime factor of a num-
ber x ≥ 2: We simply search for the first k ≥ 2 dividing x (i.e.,
x% k = 0). Such a k exists since x divides x. Moreover, the first k di-
viding x is always prime since otherwise there would be a smaller number
greater than 1 dividing k and thus also x.

If we can compute smallest prime factors, we can compute prime
factorizations by dividing with the prime factor found and continuing
recursively. We realize this algorithm with an OCaml function

prime fac : int → L(int)

declared as follows:
let rec prime_fac x =

if x < 2 then []
else let k = first (fun k -> x mod k = 0) 2 in

if k = x then [x]
else k :: prime_fac (x / k)

We have prime fac 735 = [3, 5, 7, 7], for instance.
As is, the algorithm is slow on large prime numbers (try 479,001,599).

The algorithm can be made much faster by stopping the linear search
for the first k dividing x once k2 > x since then the first k dividing x is
x. Moreover, if we have a least prime factor k < x, it suffices to start
the search for the next prime factor at k since we know that no number
smaller than k divides x. We realize the optimized algorithm as follows:

let rec prime_fac' k x =
if k * k > x then [x]
else if x mod k = 0 then k :: prime_fac' k (x / k)
else prime_fac' (k + 1) x

We have prime fac′ 2 735 = [3, 5, 7, 7], for instance. Interestingly, the
optimized algorithm is simpler than the naive algorithm we started from
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(as it comes to code, but not as it comes to correctness). It makes sense
to define a wrapper function for prime fac′ ensuring that prime fac′ is
applied with admissible arguments:

let prime_fac x = if x < 2 then [] else prime_fac' 2 x

We used several mathematical facts to derive the optimized prime fac-
torization algorithm:
1. If 2 ≤ x < k2 and no number 2 ≤ n ≤ k divides x, then x is a prime

number.
2. If 2 ≤ k < x, and k divides x, and no number 2 ≤ n < k divides x,

then k is the least prime factor of x.
3. If 2 ≤ k < x, and k divides x, and no number 2 ≤ n < k divides x,

then no number 2 ≤ n < k divides x/k.

The correctness of the algorithm also relies on the fact that the safety
condition
• 2 ≤ k ≤ x and no number 2 ≤ n < k divides x
propagates from every initial application of prime fac′ to all recursive
applications. We say that the safety condition is an invariant for the
applications of prime fac′.

It suffices to argue the termination of prime fac′ for the case that
the safety condition is satisfied. In this case the x− k ≥ 0 is decreased
by every recursion step.

Exercise 4.15.1 Give traces for the following applications:
a) prime fac′ 2 7 b) prime fac′ 2 8 c) prime fac′ 2 15

Exercise 4.15.2 Declare a function that yields the least prime factor
of an integer x ≥ 2. Make sure that at most 2

√
x remainder operations

are necessary.

Exercise 4.15.3 Declare a primality test using at most 2
√
x remainder

operations for an argument x ≥ 2.

Exercise 4.15.4 Dieter Schlau has simplified the naive prime factor-
ization function:

let rec prime_fac x =
if x < 2 then []
else let k = first (fun k -> x mod k = 0) 2 in

k :: prime_fac (x / k)

Explain why Dieter’s function is correct.
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4.16 Key-Value Maps

Recall the use of environments in the typing and evaluation systems for
expressions we discussed in Chapter 2. There environments are modeled
as sequences of pairs binding variables to types or values, as for instance
in the value environment [x . 5, y . 7, z . 2]. Abstractly, we can see
an environment as a list of pairs

(key, value)

consisting of a key and a value, where the key may be a string or a
number representing a variable, and the value may represent a type or
an evaluation value. One says that key-value lists are maps from keys
to values. Following this consideration, we now define maps as values
of the type family

map α β := L(α× β)

Recall that the typing and evaluation rules need only two operations

lookup : ∀αβ. map α β → α→ O(β)
update : ∀αβ. map α β → α→ β → map α β

on environments, where lookup yields the value for a given key provided
the environment contains a pair for the key, and update updates an
environment with a given key-value pair. For instance,

lookup [(”x”, 5), (”y”, 13), (”z”, 2)] ”y” = 13
update [(”x”, 5), (”y”, 7), (”z”, 2)] ”y” 13 = [(”x”, 5), (”y”, 13), (”z”, 2)]

The defining equations for lookup and update are as follows:

lookup [] a := None
lookup ((a′, b) :: l) a := if a′ = a then Some b

else lookup l a

update [] a b := [(a, b)]
update ((a′, b′) :: l) a b := if a′ = a then (a, b) :: l

else (a′, b′) :: update l a b

Exercise 4.16.1 Give the values of the following expressions:
a) update (update (update [] ”x” 7) ”y” 2) ”z” 5
b) lookup (update l ”x” 13) ”x”
c) lookup (update l a 7) a
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Exercise 4.16.2 Decide for each of the following equations whether it
is true in general.
a) lookup (update l a b) a = Some b

b) lookup (update l a′ b) a = lookup l a if a′ 6= a

c) update (update l a b) a′ b′ = update (update l a′ b′) a b if a 6= a′

d) lookup (update (update l a b) a′ b′) a = Some b if a 6= a′

Exercise 4.16.3 (Boundedness) Declare a function

bound : ∀αβ. map α β → α→ bool

that checks whether a map binds a given key. Note that you can define
bound using lookup.

Exercise 4.16.4 (Deletion) Declare a function

delete : ∀αβ. map α β → α→ map α β

deleting the entry for a given key. We want lookup (delete l a) a = None
for all environments l and all keys a.

Exercise 4.16.5 (Maps with memory) Note that lookup searches
maps from left to right until it finds a pair with the given key. This
opens up the possibility to keep previous values in the map by modify-
ing update so that it simply appends the new key-value pair in front of
the list:

update l a b := (a, b) :: l

Redo the previous exercises for the new definition of update. Also define
a function

lookup all : ∀αβ. map α β → α→ L(β)

that yields the list of all values for a given key.
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Exercise 4.16.6 (Maps as functions) Maps can be realized with
functions if all maps are constructed from the empty map

empty : ∀αβ. map α β

with update and the only thing that matters is that lookup yields the
correct results. Assume the definition

map α β := α→ Some β

and define empty and the operations update and lookup accordingly. Test
your solution with

lookup (update (update (update empty ”y” 7) ”x” 2) ”y” 5) ”y” = Some 5

Note that you can still define the operations bound and delete from
Exercises 4.16.1 and 4.16.2.
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Trees are a mathematical data structure generalizing lists. Like lists,
trees are indispensable for programming, no matter what programming
language is used. In functional programming languages, trees are real-
ized with constructors, and tree types are accommodated as construc-
tor types. With list types and option types we have already seen two
instances of constructor types. It turns out that the objects of ab-
stract syntax can be elegantly accommodated as the values of construc-
tor types.

Most of the chapter is devoted to the linearization of trees as strings
as it relates abstract and concrete syntax. Besides prefix and postfix
linearizations we study infix linearizations with operator precedence and
associativity.

5.1 Constructor Types

Recall that the elements of list types are obtained with two constructors
nil and cons. Similarly, the elements of option types are obtained with
the constructors None and Some. We say that list types and option
types are constructor types. We can describe both type families with
grammars:

L(α) ::= [] | α :: L(α)
O(α) ::= None | Some α

We can also see the type B as a constructor type:

B ::= false | true
Moreover, we can see the family of pair types as a family of constructor
types:

α× β ::= (α, β)

Simple matches are available for every constructor type. We have
seen simple matches for list types and option types before. It turns out
that we can express conditionals with simple matches for booleans:

if e1 then e2 else e3  match e1 with
| true→ e2

| false→ e3
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Note that the translation to boolean matches explains nicely that not
both e2 are e3 are evaluated and that e1 must be evaluated first. We
can also reduce pair patterns to simple matches for pairs:

let (x, y) = e1 in e2  match e1 with
| (x, y)→ e2

5.2 AB-Trees

Constructor types are a basic mathematical construction. In OCaml,
and other functional programming languages as well, constructor types
can be freely defined. It turns out that constructor types can serve as
types for syntactic objects. We start with a simple class of syntactic
objects we call AB-trees:

tree ::= A | B(tree, tree)

As the definition says, AB-trees are obtained with two constructors

A : tree
B : tree → tree → tree

Here are expressions describing values of type tree:

A B(A,A) B(B(A,A), A) B(B(A,A), B(A,B(A,A)))

The graphical tree representations of these values look as follows:

A

B

AA

B

AB

AA

B

B

B

AA

A

B

AA

In OCaml we can declare AB-trees as follows:

type tree = A | B of tree * tree

We remark that in OCaml the constructor B taking arguments is not
provided as a function but is only available as part of constructor ap-
plications B(e1, e2). OCaml imposes the rule that the names of the
constructors introduced by a constructor type declaration must start
with a capital letter.
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Based on the graphical notation one speaks of the nodes and the
edges of a tree. The nodes are the occurrences of the constructors in
the drawing, and the edges are the lines between the nodes. The root
of a tree is the topmost node of the tree, and the leaves of a tree are
the bottom-most nodes of the tree. The size of a tree is the number of
nodes in its drawing, and the depth of a tree is the maximal number of
edges on a path from the root to a leaf (only proceeding downwards).

Here is a function yielding the size of an AB-tree, defined both math-
ematically and in OCaml:

size : tree → N
size A := 1

size (B t1 t2) := 1 + size t1 + size t2

let rec size t =
match t with
| A -> 1
| B(t1,t2) -> 1 + size t1 + size t2

Note that in the mathematical definition we take the freedom to write
a constructor application B(t1, t2) like a function application as B t1 t2.
OCaml, on the other side, insists that constructor applications are writ-
ten with parentheses and commas (e.g., B(t1, t2)).

Exercise 5.2.1 Define and declare a function depth : tree → N that
yields the depth of a tree. For instance, we want depth(B(BAA)A) = 2.

Exercise 5.2.2 Define and declare a function breadth : tree → N that
yields the number of leaves a tree has.

Exercise 5.2.3 Define and declare a function mirror : tree → tree that
yields a tree whose graphical representation is the mirror image of the
given tree. For instance, we want mirror (B(BAA)A) = BA(BAA) and
mirror (B(BA(BAA))A) = BA(B(BAA)A).

Exercise 5.2.4 Define and declare a function dtree : N → tree that
for n yields a tree of depth n and size 2n+ 1.
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Exercise 5.2.5 (Maximal Trees)
A tree is maximal if its size is maximal for all trees of the same depth.
The unique maximal tree of depth 2 looks as follows:

B

B

AA

B

AA

a) Convince yourself that the two subtrees of a maximal tree are max-
imal and identical.

b) Declare a function mtree : N→ tree that yields the unique maximal
tree of depth n. Use a let expression to avoid binary recursion. Also
give a tail-recursive function such that mtree′ nA yields the maximal
tree of depth n.

c) Give a non-maximal tree t such that mirror(t) = t.
d) Declare a function check : tree → O(N) such that check(t) = Some(n)

if t is a maximal tree of depth n, and check(t) = None if t is not
maximal.

Exercise 5.2.6 (Minimal Trees)
A tree is minimal if its size is minimal for all trees of the same depth.
The two minimal trees of depth 2 look as follows:

B

B

AA

A

B

AB

AA

a) Declare a function mtree : N → tree that yields a minimal tree of
depth n. Also give a tail-recursive function such that mtree′ nA
yields a minimal tree of depth n.

b) Declare a function check : tree → O(N) such that check(t) = Some(n)
if t is a minimal tree of depth n, and check(t) = None if t is not
minimal.

5.3 Prefix, Postfix, and Infix Linearization

OCaml gives us a linear representation for AB-trees using parentheses
and commas; for instance, B(B(A,A), A). There are more elegant linear
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representations for AB-trees not requiring parentheses and commas:

B(B(A,A), A) OCaml linearization
BBAAA prefix linearization
AABAB postfix linearization

Prefix linearizations of AB-trees are obtained by deleting all parentheses
and commas in the OCaml linearization, and postfix linearizations are
obtained by additionally moving the constructor B behind the associ-
ated subtree linearizations. Formally, we define prefix linearizations and
postfix linearizations with two functions:

pre : tree → string
pre (A) := ”A”

pre (B(t1, t2)) := ”B” ∧ pre (t1) ∧ pre (t2)

post : tree → string
post (A) := ”A”

post (B(t1, t2)) := post (t1) ∧ post (t2) ∧ ”B”

The caret symbol “ ∧ ” denotes the concatenation operator
∧ : string → string → string

for strings. For instance, we have ”Dieter” ∧ ”Schlau” = ”DieterSchlau”.
It turns out that one can define functions depre and depost inverting

the linearization functions pre and post:

depre (pre (t)) = t depost (post (t)) = t

We may say that the functions reconstruct trees from their string repre-
sentations. The algorithms behind the functions are fundamental for the
processing of programming languages in general and will be discussed in
a later chapter.

An infix linearization of an AB-tree puts the symbol for B between
the descriptions of the subtrees. For instance, (ABA)BA is an infix lin-
earization of B(B(A,A), A). Infix linearization must use parentheses for
some trees, even if they treat B as a left-associative or a right-associative
syntactic operator. The most basic infix linearization puts parentheses
around every linearization of a tree obtained with the constructor B:

infix : tree → string
infix (A) := ”A”

infix (B(t1, t2)) := ”(” ∧ infix (t1) ∧ ”B” ∧ infix (t2) ∧ ”)”
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The process of translating string representations into tree represen-
tations is known as parsing. We will see parsing methods for prefix,
postfix, and infix linearizations in a later chapter. We call a linearization
scheme invertible if there is a function translating back the linearization
of a tree into the tree. Formally, we want the equation

parse (lin (t)) = t

for all trees t, where lin : tree → string is a linearization function and
parse : string → tree is the inverting parsing function.

Exercise 5.3.1 Declare a function tree → string linearizing AB-trees
in OCaml notation.

Exercise 5.3.2 Declare a function L(B) → string linearizing boolean
lists using bracket notation.

Exercise 5.3.3 Declare a function int → string linearizing numbers.
As it comes to strings, all you need are string concatenation and string
constants (e.g., ”5”). First write a function converting digits 0, . . . , 9
into singleton strings ”0”, . . . , ”9”.

Exercise 5.3.4 Declare a function L(int) → string linearizing lists of
integers using bracket notation.

5.4 Infix Linearization with Dropped Parentheses

Here are two mutually recursive functions tree → string linearizing AB-
trees with a minimum of parentheses given that B is accommodated as
a left-associative infix operator:

tree (A) := ”A”
tree (B(t1, t2)) := tree (t1) ∧ ”B” ∧ ptree (t2)

ptree (A) := ”A”
ptree (B(t1, t2)) := ”(” ∧ tree (B(t1, t2)) ∧ ”)”

We have tree (B(B(A,A), A)) = ”ABABA” and tree (B(A,B(A,A))) =
”AB(ABA)”. Both functions linearize trees, where B-trees are linearized
either with parentheses (ptree) or without parentheses (tree). In either
case, the left subtree of a B-tree is linearized without parentheses and
the right subtree is linearized with parentheses.
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We can describe the linearization functions tree and ptree ele-
gantly with a grammar:

tree ::= ”A” | tree ”B” ptree
ptree ::= ”A” | ”(” tree ”)”

The linearization reading of the grammar is as follows:
• If tree is given a tree A, it yields the string ”A”. If tree is given a

tree B(t1, t2), it puts ”B” in between the linearizations of t1 and t2,
where t1 is linearized with tree and t2 is linearized with ptree.

• If ptree is given a tree A, it yields the string ”A”. Otherwise, ptree
delegates to tree and encloses the result into parentheses.
In OCaml the mutual recursion can be expressed as

tree

ptree

let rec tree t = match t with
| A -> "A"
| B(t1,t2) -> tree t1 ˆ "B" ˆ ptree t2

and ptree t = match t with
| A -> "A"
| t -> "(" ˆ tree t ˆ ")"

The graph diagram on the right depicts the mutual recursion present in
the linearization functions and in the grammar. We remark that OCaml
has separate name spaces for types and functions. Thus we can use the
identifier tree both for the type of AB-trees and a linearization function.

It is possible to eliminate the mutual recursion by localizing the
helper function ptree:

let rec tree t =
let ptree t = match t with

| A -> "A"
| t -> "(" ˆ tree t ˆ ")"

in match t with
| A -> "A"
| B(t1,t2) -> tree t1 ˆ "B" ˆ ptree t2

It is straightforward to change the linearization grammar for AB-
trees such that B is treated as a right-associative syntactic operator:

tree ::= ”A” | ptree ”B” tree
ptree ::= ”A” | ”(” tree ”)”

Exercise 5.4.1 Declare a function linearizing AB-trees by treating
B as a right-associative syntactic operator. For instance, we want
B(A,B(A,A))  ”ABABA”.
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5.5 ABC-Trees

We now consider trees with two binary constructors:

type ctree = A | B of ctree * ctree | C of ctree * ctree

We leave the prefix, postfix, and fully parenthesized infix linearizations
of ABC-trees as exercises since they are routine extensions of the respec-
tive linearizations of AB-trees. What is interesting however is the infix
linearization of ABC-trees omitting parentheses. Here is a linearization
grammar such that B takes its arguments before C, and both B and C
are left-associative:

ctree ::= ctree ”C” btree | btree
btree ::= btree ”B” ptree | ptree
ptree ::= ”A” | ”(” ctree ”)”

You may think of B as multiplication and C as addition. Note that all
three rules of the grammar rely on delegation to another rule, which can
be realized directly with generalized matches:

ctree

btree

ptree

let rec ctree t = match t with
| C(t1,t2) -> ctree t1 ˆ "C" ˆ btree t2
| t -> btree t

and btree t = match t with
| B(t1,t2) -> btree t1 ˆ "B" ˆ ptree t2
| t -> ptree t

and ptree t = match t with
| A -> "A"
| t -> "(" ˆ ctree t ˆ ")"

The graph diagram on the right depicts the mutual recursion present
in the linearization functions and in the grammar. The diagram may
be seen as a graphical representation of the grammar. Note that there
are 3 levels, where the 2 upper levels accommodate the syntactic infix
operators.

There is the interesting possibility to linearize B-trees with juxtapo-
sition, that is, without including “B” into the linearization.1 This is the
way functional programming languages accommodate function applica-
tions. With juxtaposition you may think of B as function application

1In Mathematics, products are often written with juxtaposition; e.g., 2n for 2 · n.
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and of C as addition. We can switch to juxtaposition for B by changing
the grammar rule for btree as follows:

btree ::= btree ptree | ptree

This preserves the left associativity of B.
Exercise 5.5.1 Declare functions that for ABC-trees yield
a) the prefix linearization.
b) the postfix linearization.
c) the fully parenthesized infix linearization.

Exercise 5.5.2 Declare functions that for ABC-trees yield the infix lin-
earization where B takes its arguments before C and
a) both B and C are right-associative.
b) B is left-associative and C is right-associative.
c) neither B nor C is associative.
In each case give a linearization grammar first.

Exercise 5.5.3 Declare functions that for ABC-trees yield the infix lin-
earization where B takes its arguments before C, both B and C are
treated as left-associative syntactic operators, and B is accommodated
with juxtaposition.

Exercise 5.5.4 Declare functions that for ABC-trees yield the infix lin-
earization where both B and C are left-associative and take their argu-
ments at the same level. Think of B and C as addition and subtraction.
Give a linearization grammar first.

Exercise 5.5.5 Note that the grammar in §5.4 does not use delegation
in the first rule for tree. Give an equivalent linearization grammar using
delegation in both rules.

5.6 Mini-OCaml

Constructor types are the mathematical device for formalizing abstract
syntax. We consider a class of abstract expressions given by the following
grammar (similar to the grammar in §2.4):

e ::= x | c | e1 o e2 | e1 e2

| if e1 then e2 else e3

| λx.e
| let x = e1 in e2

| let rec f x = e1 in e2
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The letter c ranges over constants which we choose to be booleans or
integers, the letters x and f range over variables which we choose to be
strings, and the letter o ranges over the operators ’≤’, ’+’, ’-’, and ’·’. As
discussed before, we see abstract expressions as the abstract syntax of a
sublanguage of OCaml we call Mini-OCaml.

The grammar for abstract expressions translates into a constructor
type declaration in OCaml as follows:
type var = string
type con = Bcon of bool | Icon of int
type op = Add | Sub | Mul | Leq
type exp = Var of var | Con of con

| Oapp of op * exp * exp
| Fapp of exp * exp
| If of exp * exp *exp
| Lam of var * exp
| Let of var * exp * exp
| Letrec of var * var * exp * exp

Note the following:
• Variables are represented as strings. The name var is not a construc-

tor type but is an additional name for the type string.
• Constants are represented as the values of a constructor type con.

This way constants can be either booleans or integers. A simple
match for con has 2 rules.

• Operators are represented as the values of a constructor type op. A
simple match for op has 4 rules.

• Expressions are represented as the values of a constructor type exp.
A simple match for exp has 8 rules.
Using the ideas discussed in this chapter, we give a linearization

grammar for abstract expressions that is compatible with OCaml’s con-
crete syntax:
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exp

pexp

cexp

sexp

mexp

aexp

exp ::= ”if” exp ”then” exp ”else” exp
| ”fun” var ”->” exp
| ”let” var ”=” exp ”in” exp
| ”let rec” var var ”=” exp ”in” exp
| cexp

cexp ::= sexp ”<=” sexp | sexp
sexp ::= sexp ”+” mexp | sexp ”-” mexp | mexp

mexp ::= mexp ”*” aexp | aexp
aexp ::= aexp pexp | pexp
pexp ::= var | con | ”(” exp ”)”

The grammar follows the conventions of OCaml except that the com-
parison operator is not associative:
• Conditionals, lambda expressions, and let expressions take their ar-

guments after operator and function applications. Hence they must
be enclosed in parentheses when they appear as argument expressions
of operator and function applications.

• Function applications take their arguments before operator applica-
tions.

• Multiplication takes it arguments before addition and subtraction,
and all three operators are left-associative.

• Addition and subtraction are at the same level and take their argu-
ments before the comparison operator ’≤’, which is neither left nor
right-associative.
Note that the grammar has 6 levels. The top level accommodates

prefix constructs (conditionals and lambda and let expressions), and the
bottom level accommodates primitive expressions (variables and con-
stants). Level 2 accommodates function applications, and the remaining
3 levels accommodate the infix operators.

In contrast to the grammars we have seen so far, the linearization
functions for the linearization grammar for expressions must put white
space characters between the words so that identifiers, keywords, and
numbers are properly separated.

OCaml’s concrete syntax doesn’t have constants for negative inte-
gers but represents them with a unary negation operator. There is the
subtlety that one can write ”2 + -7” but that one can not drop the paren-
theses in ”f (-7)”. For our purposes it seems best to linearize negative
integers always with parentheses.
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Another feature of OCaml’s concrete syntax is the requirement that
identifiers used for values must start with lower case letters. Identifiers
starting with upper case letters are reserved for constructors.
Exercise 5.6.1 Recall the binding rules from Figure 2.3.
a) Declare a function L(var) → exp → bool that checks whether a

binding judgment X ` e is derivable.
b) Declare a function exp → bool that checks whether an expression is

closed.
c) Declare a function exp → L(var) that yields a list containing the free

variables of an expression.
Exercise 5.6.2 Declare a function exp → string that linearizes ex-
pressions following the given linearization grammar. Your linearization
should be such that the string can serve as OCaml input after removal
of the double quotes ’”’, provided only lower-case identifiers are used for
variables.

Exercise 5.6.3 Extend the grammar for abstract expressions and the
above development with pair expressions and projections:

e ::= · · · | (e1, e2) | π1 e | π2 e

As concrete syntax for the projections π1 and π2 you may choose the
identifiers fst and snd.

5.7 Natural Numbers as Constructor Type

Consider the constructor type

nat ::= O | S nat

introducing two constructors

O : nat
S : nat → nat successor

The values of nat

O, S O, S(S O)), S(S(S O))), . . .

may be understood as the natural numbers. We can now easily define
addition and multiplication as functions:

+ : nat → nat → nat · : nat → nat → nat
0 + n := n

S m+ n := S (m+ n)
0 · n := 0

S m · n := m · n+ n
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Taken together, we now see that we can define the natural numbers as
a constructor type, and the operations on natural numbers as recursive
functions. The idea for this setup goes back to the work of Dedekind
and Peano. Defining the natural numbers with a constructor type is
logically of great importance. On the practical side, however, the naive
constructor representation of natural numbers is not helpfull since it is
hopelessly inefficient.

Exercise 5.7.1 Declare the constructor type nat in OCaml and de-
clare functions for addition, multiplication, and exponentiation. Also
declare functions converting between nonnegative machine integers and
constructor numbers.

5.8 Summary

In this chapter we have learned a lot of fundamental things. Mathemat-
ically, trees come into existence through nesting of tuples realized by
constructor applications. The fundamental notion of constructor types
provides a rich construction scheme for tree types naturally accommo-
dating systems of abstract syntax. Very conveniently, there is not much
to learn about constructor types in OCaml since everything generalizes
the way it is done for the built-in constructor type of lists.

Much of the chapter is devoted to the interaction of abstract and
concrete syntax. Of particular interest are syntactic infix operators with
precedence and associativity. We finally discussed an abstract syntax
for Mini-OCaml, which will serve as the basis of a type checker and an
evaluator in later chapters. We will also see a parser translating strings
into abstract syntax trees.
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The process of translating string representations of syntactic objects
into tree representations is known as parsing. We will focus on a parsing
method called recursive descent which works well for prefix linearizations
and infix linearizations. For postfix linearizations we will see a different
parsing method that is tail-recursive and maintains a stack of already
parsed phrases. Once we have discussed the necessary techniques at the
example of ABC-trees, we will consider a parser for abstract expressions.

6.1 Lexing

The first step in parsing a string translates the string into a list of tokens
representing words. Most examples in this chapter take ABC-trees

type tree = A | B of tree * tree | C of tree * tree

as syntactic objects (often we will just use the constructors A and B).
We accommodate the tokens needed for ABC-trees with a constructor
type definition

type token = AT | BT | CT | LP | RP

providing tokens for the words ’A’, ’B’, ’C’ and the parentheses ’(’ and ’)’.
To translate a string into a list of tokens, we need to know a little

bit more about strings in OCaml.
Strings provide an efficient and hardware-oriented representation of

sequences of characters, where characters are represented as sequences
of 8 booleans called bytes. Altogether there are 256 = 28 characters.
OCaml has types for both strings and characters and provides a function

String.get : string → int → char

such that string.get s i yields the character at position i of the string s.
The positions of a string are numbered starting from 0 like the positions
of a list. A main advantage of the hardware-oriented representation of
strings is the fact that the get operation is fast, no matter how long the
string and how large the position are. OCaml also provides a function

String.length : string → int
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that yields the length of a string (the number of positions a string has).
OCaml has constants for characters, for instance ’A’, ’B’, ’C’, ’(’,

and ’)’. There are also three constants ’ ’, ’\n’, and ’\t’ corresponding to
the white space characters associated with the space key, enter key, and
tabulator key on a keyboard.

For our examples dealing with ABC-trees, we will use a tail-recursive
lexer

lex : string → L(token)

declared as follows:

let lex s =
let n = String.length s in
let rec lex i l =

if i >= n then List.rev l
else match String.get s i with

| 'A' -> lex (i+1) (AT::l)
| 'B' -> lex (i+1) (BT::l)
| 'C' -> lex (i+1) (CT::l)
| '(' -> lex (i+1) (LP::l)
| ')' -> lex (i+1) (RP::l)
| ' ' | '\n' | '\t' -> lex (i+1) l
| _ -> failwith "lex: illegal character"

in lex 0 []

The tail-recursive helper function recurses on the current position in the
string and accumulates the recognized tokens in a list that is reversed
once the string is fully processed. The rule for white space characters
exploits a convenience of OCaml making it possible to collapse rules
with identical right-hand sides into a single rule.

Here is an example for lex:

lex "A BAC (A B A)" = [AT; BT; AT; CT; LP; AT; BT; AT; RP]

Exercise 6.1.1 Write a tail-recursive lexer for ABC-trees treating all
characters but ’A’, ’B’, ’C’, ’(’, and ’)’ as white space characters. For
instance, ”A (likes) B” should yield the list [AT ,LP,RP,BT ].

Exercise 6.1.2 Write a tail-recursive lexer for ABC-trees treating com-
ments (∗ · · · ∗) as white space as does an OCaml interpreter. Make
sure that nested comment parentheses like (∗ · · · (∗ · · · ∗) · · · ∗) are
treated correctly. Hint: Have a counter argument recording how many
opening comment parentheses have to be closed.
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Exercise 6.1.3 (Explode and implode)
The functions

let explode s = List.init (String.length s) (String.get s)
let implode l = List.fold_right (fun c s -> String.make 1 c ˆ s) l ""

convert between strings and character lists such that the equations

implode (explode s) = s

explode (implode l) = l

hold for all strings s and all character lists l. Note the use of OCaml’s
function String.make providing for the translation of characters into
strings (String.make n c yields the string consisting of n ≥ 0 occurrences
of the character c).
a) Try explode "Saarbrücken" and try to explain what you see.
b) Try implode [’\240’; ’\159’; ’\152’; ’\138’] and enjoy.
c) Try implode [’\240’; ’\159’; ’\167’; ’\144’] and enjoy.
d) Convince yourself that OCaml’s order on characters yields true for

the following comparisons: ’A’ < ’B’, ’Z’ < ’a’, and ’a’ < ’b’.
Look up “ASCII” in the web to know more.

e) Convince yourself that OCaml’s order on strings is the lexical order
on character lists obtained with OCaml’s order on characters.

Exercise 6.1.4 (ASCII Codes) OCaml has two functions

Char .code : char → int
Char .chr : int → char

converting between characters and ASCII codes, which are numbers be-
tween 0 and 255. We have Char .chr (Char .code c) = c for all charac-
ters c. Moreover c < c′ if and only if Char .code c < Char .code c′. Look
up an ASCII table in the web to learn more. Using conversion to ASCII
codes, declare functions as follows:
a) A function checking wether a character is a digit.
b) A function converting characters that are digits into numbers.
c) A function checking whether a character is a lower case letter

between ’a’ and ’z’.
d) A function checking whether a character is an upper case letter

between ’A’ and ’Z’.
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6.2 Recursive Descent Parsing

Recursive descent parsing is a standard method for reconstructing syn-
tactic objects from lexical representations. We demonstrate the method
for the prefix linearization of AB-trees. We start with the grammar1

tree ::= ”A” | ”B” tree tree

The grammar describes a parsing function

tree : L(token)→ tree × L(token)

processing a token list as follows:
• If the first token of the list is ’A’, return the tree A and the tail of

the list.
• If the first token of the list is ’B’, use recursion to obtain a tree t1

and a tree t2 from the list (t1 first, then t2). Then return the tree
B(t1, t2) and the remaining list.

We realize the described parsing function in OCaml as follows:
let rec tree l = match l with

| AT::l -> (A,l)
| BT::l ->

let (t1,l) = tree l in
let (t2,l) = tree l in
(B(t1,t2), l)

| _ -> failwith "tree"

Note the systematic use of shadowing for the local variable l. The pars-
ing function terminates since both recursive applications are done with
smaller token lists. Here is an example:

tree (lex "BBAABABAA") = (B (B (A, A), B (A, B (A, A))), [])

The recursive calls of the parsing function on the given token list can be
visualized with parentheses in the lexical representation:

BBAABABAA

B B A A B A B A A

B (B(A)(A)) (B (A) (B(A)(A)))

It is interesting to extend the grammar and the parsing function such
that a prefix linearization can contain redundant parentheses:

tree ::= ”A” | ”B” tree tree | ”(” tree ”)”
1In grammars we write tokens as strings.
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The new grammar rule is realized with an additional rule

| LP::l -> let (t,l) = tree l in (t, verify RP l)

in the parsing function, where the helper function checking the presence
of the right parenthesis is declared as follows:

let verify c l = match l with
| [] -> failwith "verify: no token"
| c'::l -> if c'=c then l else failwith "verify: wrong token"

Note that we use the letter c for variables ranging over tokens (the letter t
is already taken for trees).

Exercise 6.2.1 Declare recursive descent parsers for ABC-trees in pre-
fix linearization.

Exercise 6.2.2 Declare recursive descent parsers for AB-trees and lin-
earizations as follows:
a) OCaml linearization, with and without extra parentheses.
b) Fully parenthesized infix linearization, with and without extra paren-

theses.
Do the same for ABC-trees.

Exercise 6.2.3 (Linearization with parentheses only)
AB-trees can be linearized with just parentheses. For instance,

B(B(A,B(A,A)), B(A,A))  ((()(()()))(()()))

Declare a linearizer and a parser for this format.

Exercise 6.2.4 Declare a function checking that a string consists of
balanced parentheses only. For instance, ((()())()()) is fine but ((()()) is
not.

6.3 Infix with Associativity

Recall the infix linearization of AB-trees where B is treated as a left or
a right-associative syntactic operator. To get recursive descent parsers
for these linearizations, we use the following grammar:

tree ::= ptree tree′

tree′ ::= ”B” ptree tree′ | []
ptree ::= ”A” | ”(” tree ”)”
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Note that the rule for tree′ has a nil alternative which is matched by
the empty token list. The recursion of the grammar terminates since
every recursion step takes at least one token from the token list. Here
are the parsing functions for the grammar treating B as a left-associative
infix operator:

let rec tree l =
let (t,l) = ptree l in tree' t l

and tree' t l = match l with
| BT::l -> let (t',l) = ptree l in tree' (B(t,t')) l
| _ -> (t,l)

and ptree l = match l with
| AT::l -> (A,l)
| LP::l -> let (t,l) = tree l in (t, verify RP l)
| _ -> failwith "tree"

The trick is that the helper function

tree′ : tree → L(token)→ tree × L(token)

gets the tree that has been parsed before as an argument. Note that
realizing the nil alternative of tree′ is straightforward.

If we want to treat B as a right-associative infix operator, the gram-
mar remains unchanged and the rule for the token BT of the parsing
function tree′ is changed as follows:

| BT::l -> let (t',l) = ptree l in
let (t'',l) = tree' t' l in
(B(t,t''), l)

Exercise 6.3.1 Declare a parser for ABC-trees where B and C are left-
associative infix operators at the same precedence level.

Exercise 6.3.2 Declare a function that takes an AB-tree in infix lin-
earization and returns an infix linearization of the tree as follows:
a) Remove redundant parentheses assuming B is left-associative.
b) Remove redundant parentheses assuming B is right-associative.
c) Translate from B left-associative to B right-associative.
d) Translate from B left-associative to OCaml linearization.
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Exercise 6.3.3 (Simplified right associativity) The parsing gram-
mar given in this section makes it possible to parse B either as a left-
associative or a right-associative operator. For the case where B is
accommodated as a right-associative operator, the rule for the auxiliary
parsing function tree′ can be simplified to

tree′ ::= ”B” tree | []

Declare parsing functions for the simplified grammar.

Exercise 6.3.4 After having seen the simplified grammar for right-
associativity, Dieter Schlau gets excited and finally comes up with a
simplified grammar he claims works for left-associativity:

tree ::= ptree | tree ”B” ptree

Explain why Dieter’s grammar cannot be realized with parsing functions.

6.4 Infix with Precedence and Juxtaposition

We now come to the case where we have two infix operators B and C

and B takes its arguments before C (we say that B takes precedence
over C). As in the linearization grammars the precedence hierarchy is
taken care of in the parsing grammar by having rules for every prece-
dence level:

tree ::= btree tree′

tree′ ::= ”C” btree tree′ | []
btree ::= ptree btree′

btree′ ::= ”B” ptree btree′ | []
ptree ::= ”A” | ”(” tree ”)”

We leave the realization of the parsing procedures as exercise. Recall
that a single infix operator of highest precedence can be accommodated
with juxtaposition. For the above grammar this means that the rule for
btree′ is changed to

btree′ ::= ptree btree′ | []

As it comes to the parsing function for this rule we are now confronted
with the problem that we need to decide whether the first alternative
or the nil alternative is to be taken. We base the decision on the first
token and take the first alternative if the token is a token a ptree can
start with (”A” or ”(”).

108



6 Parsing

Exercise 6.4.1 Declare parsers for ABC-trees and infix linearizations
where B takes arguments before C, C is left-associative, and
a) B is left-associative.
b) B is right-associative.
c) B is realized with left-associative juxtaposition.
d) B is realized with right-associative juxtaposition.

Exercise 6.4.2 (Pair Notation) We may linearize trees B(t1, t2) as
pairs (t1, t2). In this case, B needs neither precedence nor associativity
since it can be accommodated at the lowest level ptree. Consider the
following parsing grammar accommodating C as an infix operator and B
with pair notation:

tree ::= ptree tree′

tree′ ::= ”C” ptree tree′ | []
ptree ::= ”A” | ”(” tree ”)” | ”(” tree ”,” tree ”)”

Declare parsing functions for the grammar treating C as left-associative
operator.

6.5 Postfix Parsing

Recall the postfix linearization of ABC-Trees:

tree ::= ”A” | tree tree ”B” | tree tree ”C”

For instance, the tree B(B(A,A), A) has the postfix linearization
AABAB. As with the prefix linearization, there is no need for paren-
theses.

There is an elegant tail-recursive method for parsing postfix lineariza-
tions that is different from recursive descent parsing. The key idea is
to work with a stack of already parsed subtrees so that when the oper-
ator B is encountered, the associated subtrees t1 and t2 can be taken
from the stack and be replaced by the compound tree B(t1, t2). We
demonstrate the method with a trace for the string ”AABAB”:

”AABAB” []
”ABAB” [A]

”BAB” [A,A]
”AB” [B(A,A)]

”B” [A,B(A,A)]
”” [B(B(A,A), A)]
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We realize the design with a function

depost : L(token)→ L(tree)→ L(tree)

such that depost (lex (post(t))) [] = [t], and more generally the equation

depost (lex (post(t) @ l1)) l2 = depost l1 (t :: l2)

holds for all trees t, character lists l1, and stacks l2 (i.e., lists of trees).
The defining equations for depost are now straightforward:

depost [] l2 := l2

depost (AT :: l1) l2 := depost l1 (A :: l2)
depost (BT :: l1) (t2 :: t1 :: l2) := depost l1 ((B(t1, t2) :: l2)
depost (CT :: l1) (t2 :: t1 :: l2) := depost l1 ((C(t1, t2) :: l2)

depost := []

The reversal of t1 and t2 in the equation for the token BT is needed
since the linearization of t1 precedes the linearization of t2, which means
that t1 is put on the stack before t2.

Exercise 6.5.1 Declare a function depost ′ : string → O(tree) such that
depost ′(s) = Some t if and only if post (t) = s.

6.6 Mini-OCaml

The techniques we have seen for recursive decent parsing suffice to con-
struct a parser for Mini-OCaml. We adapt the linearization grammar
in §5.6 by adding auxiliary categories as follows:

cexp ::= sexp cexp′

cexp′ ::= ”<=” sexp | []
sexp ::= mexp sexp′

sexp′ ::= ”+” mexp sexp′ | ”-” mexp sexp′ | []
mexp ::= aexp mexp′

mexp′ ::= ”*” aexp mexp′ | []
aexp ::= pexp aexp′

aexp′ ::= pexp aexp′ | []

The lexer for Mini-OCaml needs work. We start with the constructor
type for tokens:
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type con = Bcon of bool | Icon of int
type token = Add | Sub | Mul | LP | RP | Eq | Leq | Arr

| Var of string | Con of con
| If | Then | Else | Lam | Let | In | Rec

The lexer can be realized with a system of mutually tail-recursive func-
tions. The basic design is as follows:
1. Finish if the string exhausted.
2. If first character is

a) white space, skip and recurse.
b) ’+’, ’*’, ’=’, ’(’, or ’)’, add corresponding token and recurse.
c) ’<’, verify next character is ’=’, add token Leq, and recurse.
d) ’-’ and next character is ’>’, add token Arr . Otherwise, add token

sub. In both cases recurse.
e) digit, read number, add number token, and recurse.
f) lower-case letter, read identifier, and recurse after adding token

as follows:
i. If identifier is ”if”, ”then”, ”else”, ”fun”, ”let”, ”in”, or ”rec”, add

corresponding token.
ii. If identifier is ”true” or ”false”, add corresponding constant

token.
iii. Otherwise add variable token.

Exercise 6.6.1 Declare a function string → int reading a number from
a string. Assume that the string starts with a digit and read as many
digits as possible. For instance, ”123 Dieter” should yield the number
123. Realize the function with a tail-recursive helper function and make
use of ASCII codes (see Exercise 6.1.4). You may use the function

let num c = Char.code c - Char.code '0'

to convert characters that are digits into numbers.

Exercise 6.6.2 Declare a function string → string reading an identi-
fier starting with a lower case letter from a string. Assume that the
string starts with a lower case letter and read as many letters and digits
as possible. For instance, ”dieter2Schlau+x” should yield the identifier
”dieter2Schlau”. Realize the function with a tail-recursive helper func-
tion and OCaml’s function List.sub s i n yielding the substring of s
starting at position i and having length n. Make use of ASCII codes
(see Exercise 6.1.4) to identify lower case letters, upper case letters, and
digits.
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Exercise 6.6.3 (Project) Realize a lexer, a parser, and a linearizer
for Mini-OCaml. Check that parsing after linearization takes you back
to the tree you started with, and that parsing followed by linearization
gives you an equivalent string. Extent Mini-OCaml with pair expressions
(e1, e2) and the accompanying projections.
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In this chapter we describe a programming project in which you will
realize a complete Mini-OCaml interpreter. This is the first time we ask
you to write and debug a program that altogether has a few hundred
lines of code. As you will find out, this makes a dramatic difference to
writing and debugging the few-line programs we have been considering
so far.

Debugging larger programs can be very difficult. The method work-
ing best in practice is having a modular design of the program where
each module can be debugged by itself. We speak of divide and conquer.

To find bugs you need to come up with tests, and once you have
found a bug, you usually need to refine the test showing the bug in
order that you find the place in the program that is responsible for the
bug.

For the project, a Mini-OCaml interpreter, we provide you with a
modular design featuring the following components:
• A lexer translating strings into lists of tokens.
• A parser translating lists of tokens into abstract expressions.
• A type checker computing the type of an expression in an environ-

ment.
• An evaluator computing the value of an expression in an environ-

ment.
Each of the components can be written and debugged by itself, which is
the best one can hope for. The glue between the components is provided
by constructor types for expressions, types, and tokens. There is also
a constructor type for the values of Mini-OCaml covering plain and
recursive closures.

We assumes you are familiar with Chapter 2 on syntax and semantics
and Chapter 6 on parsing.
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7.1 Expressions, Types, Environments

Our starting point is the abstract grammar for the types and expressions
of Mini-OCaml:

t ::= bool | int | t1 → t2

o ::= + | − | · | ≤
e ::= x | c | e1 o e2 | e1 e2 (c : B | Z)

| if e1 then e2 else e3

| λx.e | λx : t.e
| let x = e1 in e2

| let rec f x = e1 in e2

| let rec f (x : t1) : t2 = e1 in e2

The letter c ranges over constants which we choose to be booleans or
integers, and the letters x and f range over variables which we choose
to be strings.

An important design decision is to have lambda expressions and re-
cursive let expressions both in untyped and typed form.

We realize the abstract grammar in OCaml with a system of con-
structor types:
type ty = Bool | Int | Arrow of ty * ty
type con = Bcon of bool | Icon of int
type op = Add | Sub | Mul | Leq
type var = string
type exp = Var of var | Con of con

| Oapp of op * exp * exp
| Fapp of exp * exp
| If of exp * exp *exp
| Lam of var * exp
| Lamty of var * ty * exp
| Let of var * exp * exp
| Letrec of var * var * exp * exp
| Letrecty of var * var * ty * ty * exp * exp

Note that var is not a constructor type but simply a second name for
string that we introduce for readability.

Exercise 7.1.1 Write a tail-recursive faculty function n! in Mini-
OCaml. First write the expression in OCaml, then translate it into
the abstract syntax of Mini-OCaml in OCaml.
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Environments
For the evaluator and the type checker we need environments. We im-
plement environments as key-value maps:
type ('a,'b) env = ('a * 'b) list
let empty : ('a,'b) env = []
let update (env : ('a,'b) env) a b : ('a,'b) env = (a,b) :: env
let rec lookup (env : ('a,'b) env) a = match env with

| (a',b) :: env -> if a = a' then Some b else lookup env a
| [] -> None

Note that env is a second name for list. There is the possibility to realize
environments with a custom constructor type different from lists.

7.2 Type Checker

We realize the type checker for Mini-OCaml with a function

check : env var ty → exp → ty

that checks whether an expression is well-typed in an environment. If
this is the case, check yields the unique type of the expression, otherwise
it throws an exception. Expressions containing untyped lambda or re-
cursive let expressions count as ill-typed. The type checker matches on
the given expression and for each variant follows the algorithmic reading
of the respective typing rule (Figure 2.2):

let rec check env e : ty = match e with
| Var x -> · · ·
| Con (Bcon b) -> Bool
| Con (Icon n) -> Int
| Oapp (o,e1,e2) -> check_op o (check env e1) (check env e2)
| Fapp (e1,e2) -> check_fun (check env e1) (check env e2)
| If (e1,e2,e3) -> · · ·
| Lam (_,_) -> failwith "fun: missing type"
| Lamty (x,t,e) -> Arrow (t, check (update env x t) e)
| Let (x,e1,e2) -> check (update env x (check env e1)) e2
| Letrec (f,x,e1,e2) -> failwith "let rec: missing types"
| Letrecty (f,x,t1,t2,e1,e2) -> · · ·

Note that we are using helper functions for operator and function appli-
cations for better readability.

7.3 Evaluator

For the evaluator we first define a constructor type providing the values
of Mini-OCaml as OCaml values:
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type value = Bval of bool | Ival of int
| Closure of var * exp * (var, value) env
| Rclosure of var * var * exp * (var, value) env

We realize the evaluator with a function

eval : env var value → exp → value

that evaluates an expression in an environment. The evaluator matches
on the given expression and for each variant follows the algorithmic
reading of the respective evaluation rule (Figure 2.4):

let rec eval env e : value = match e with
| Var x -> · · ·
| Con (Bcon b) -> Bval b
| Con (Icon n) -> Ival n
| Oapp (o,e1,e2) -> eval_op o (eval env e1) (eval env e2)
| Fapp (e1,e2) -> eval_fun (eval env e1) (eval env e2)
| If (e1,e2,e3) -> · · ·
| Lam (x,e) | Lamty (x,_,e) -> Closure (x,e,env)
| Let (x,e1,e2) -> eval (update env x (eval env e1)) e2
| Letrec (f,x,e1,e2) | Letrecty (f,x,_,_,e1,e2) -> · · ·

and eval_fun v1 v2 = match v1 with · · ·

As with the type checker, we use helper functions for operator and func-
tion applications for better readability. This time the helper function for
function applications is mutually recursive with the master evaluation
function.

7.4 Lexer

The lexer for Mini-OCaml needs work, mainly because it needs to rec-
ognize identifiers (i.e., variables) and number constants. The first step
consists in declaring a constructor type for tokens:

type const = BCON of bool | ICON of int
type token = LP | RP | EQ | COL | ARR | ADD | SUB | MUL | LEQ

| IF | THEN | ELSE | LAM | LET | IN | REC
| CON of const | VAR of string | BOOL | INT

The tokens LP, RP, EQ, COL, ARR, and LAM are realized with the
strings ”(”, ”)”, ”=”, ”:”, ”->”, and ”fun”.
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We realize the lexer with 5 mutually tail-recursive functions:

let lex s : token list =
let get i = String.get s i in
let getstr i n = String.sub s (i-n) n in
let exhausted i = i >= String.length s in
let verify i c = not (exhausted i) && get i = c in
let rec lex i l =

if exhausted i then List.rev l
else match get i with

| '+' -> lex (i+1) (ADD::l)
· · ·
| c when whitespace c -> lex (i+1) l
| c when digit c -> lex_num (i+1) (num c) l
| c when lc_letter c -> lex_id (i+1) 1 l
| c -> failwith "lex: illegal character"

and lex_num i n l = · · ·
and lex_num' i n l = lex i (CON (ICON n)::l)
and lex_id i n l = · · ·
and lex_id' i n l = match getstr i n with

| "if" -> lex i (IF::l)
· · ·
| s -> lex i (VAR s::l)

in lex 0 []

There is some cleverness in this design. We avoid considering auxiliary
strings by accessing the given string by position using String.get and by
using String.sub to extract an identifier identified by its starting posi-
tion and length. The constants true and false and keywords like if are
first recognized as identifiers and then transformed into the respective
constant or keyword tokens.

Digits and letters are recognized by using the function Char .code and
exploiting the fact that the codes of the respective characters follow each
other continuously in a canonical order (there are separate intervals for
digits, lower case letters, and upper case letters).

Following OCaml, an identifier must start with a lower case letter
and can then continue with digits, lower and upper case letters, and the
special characters ’ ’ (underline) and ’’’ (quote).

Note the use of patterns with when conditions in the declaration
of the parsing function lex. This is a syntactical convenience translating
into nested conditionals.

Note that lex id ′ is the function where you can change the identifier-
like keywords of the concrete syntax. For instance, you may replace the
keyword fun with the keyword lam or lambda. Such a change will not
show at the level of tokens and hence will not be visible in the parser.
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We remark that the lexer follows the longest munch rule when it
reads identifiers and numbers; that is, it reads as many characters as
are possible for an identifier or number. Thus ” ifx ” is recognized
as a single variable token Var ”ifx” rather than the keyword token If
followed by the variable token Var ”x”.

Exercise 7.4.1 Rewrite the function lex so that no patterns with when
conditions are used. Use nested conditionals instead.

Exercise 7.4.2 Extend the lexer with comments.

7.5 Parser

The parsing grammar for Mini-OCaml consists of a grammar for types
and a grammar for expressions building on the grammar for types. We
start with the grammar for expressions.

The parsing grammar for Mini-OCaml expressions has 6 levels:

exp if, fun, let top level
cexp ≤ comparisons
sexp +, − additive operators
mexp · multiplicative operators
aexp function applications
pexp bottom level

The top level takes care of the prefix phrases, which recurse to the top
level. The top level delegates to the comparison level in case no keyword
for a prefix phrase is present. We then have 4 infix levels taking care of
operator applications and function applications. Function applications
are at the lowest infix level and are realized with juxtaposition. Addi-
tive and multiplicative operators and function applications are realized
with left-associativity, and comparisons are realized without associativ-
ity, deviating from OCaml. The bottom level takes care of variables,
constants, and parenthesized expressions. For the 3 levels realizing left-
associativity the parsing grammar has auxiliary categories sexp′, mexp′,
and aexp′.

The parsing function for the top level is interesting in that it can
make good use of pattern matching:
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let rec exp l : exp * token list = match l with
| IF::l -> · · ·
| LAM::VAR x::ARR::l -> · · ·
| LAM::LP::VAR x::COL::l -> · · ·
| LET::VAR x::EQ::l -> · · ·
| LET::REC::VAR f::VAR x::EQ::l -> · · ·
| LET::REC::VAR f::LP::VAR x::COL::l -> · · ·
| l -> cexp l

Note that we follow OCaml’s concrete syntax for typed lambda expres-
sions in that we require parentheses around typed argument variables;
for instance, the abstract lambda expression λx : int. x must be written
as ”fun(x:int)->x”.

We now come to the parsing grammar for Mini-OCaml types:

ty ::= pty ty′

ty′ ::= ”->” ty | []
pty ::= ”bool” | ”int” | ”(” ty ”)”

The parsing function ty′ accommodates ”->” as a right-associative infix
operator.

Exercise 7.5.1 Give the parsing grammar for Mini-OCaml expressions.

Exercise 7.5.2 Write the parsing functions for Mini-OCaml types and
Mini-OCaml expressions.

7.6 The Project

You project consists in writing one file realizing two functions

checkStr : string → type
evalStr : string → value

parsing strings as Mini-OCaml expressions and either type checking or
evaluating the expressions. Here are our side conditions:
1. Use the CMS to hand in your file in time.
2. Only files that type check are accepted.
3. You can earn a maximum of 15 points with the project. The project

counts as the test for this week.
4. If your functions contain errors you know of, please say so in the file.
5. Please use the types and the function and variable names specified

in this chapter.
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6. It’s fine to explore the files parser .ml, typechecker .ml, and
evaluator .ml we provide, but do not cut and paste.

7. It’s fine to discuss and exchange ideas with your fellow students.
8. You may ask on the forum to clarify the specification of the project,

but you must not ask for solutions or post solutions.
9. You must understand in detail the program you hand in.
10. You must not copy code.

We hope you will enjoy the project. There are many interesting
issues and add-ons you may explore. Here are a few proposals:

1. Find an example for every exception your interpreter may raise. Clas-
sify into exceptions concerning lexing, parsing, type checking, and
evaluation.

2. Extend Mini-OCaml with pairs. Besides pair expressions (e1, e2),
provide let expressions let (x1, x2) = e1 in e2 with pair patterns.
Alternatively, provide native projections fst e and snd e, or lambda
expressions λ(x1, x2).e with pair patterns. Show that the 3 alterna-
tives for pair decomposition can express each other.

3. Extend Mini-OCaml with expressions fail ty that raise an exception.
Explain why fail expressions must be given with a type.

4. Extend the lexer with comments.
5. Challenge. Extend Mini-OCaml with lists. Expressions should pro-

vide nil and cons and simple matches for lists. The difficult part is
the typing. To fit the design of the type checker, nil must be anno-
tated with the base type of the list type (the situation is similar to
fail expressions).
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Often there are several algorithms solving a given computational task,
and these algorithm may differ significantly in their running times. A
typical example is sorting of lists. Insertion sort, the sorting algorithm
we have already seen, requires quadratic worst-case time. We will see a
substantially faster algorithm known as merge sort in this chapter whose
running time is almost linear.

It turns out that we can define the running time of an expression
as the number of function calls needed for its execution. This abstract
and technology-independent notion of running time provides an excellent
tool for distinguishing between faster and slower algorithms.

8.1 The Idea

Given a specification of a computational task, we can write different
functions satisfying the specification. In case the functions are based
on different algorithms, the execution times of the functions may dif-
fer substantially. There is an abstract notion of asymptotic running
time predicting the execution times of functions. Prominent examples
of asymptotic running times are

O(1) constant time
O(logn) logarithmic time
O(n) linear time
O(n logn) linearithmic time
O(n2) quadratic time
O(2n) exponential time

A function that has linear running time has the property that the ex-
ecution time grows at most linearly with the argument size. Similarly,
functions that have logarithmic or quadratic or exponential running time
have the property that the execution time grows at most logarithmically
or quadratically or exponentially with the argument size. Linearithmic
time is almost like linear time and behaves the same in practice. Fi-
nally, the execution time of a function that has constant running time
is bounded for all arguments by a fixed constant. In practice, constant,
linear, and linearithmic running time is what one looks for, quadratic
running times signals that there will be performance problems for larger
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arguments, and exponential running time signals that there are argu-
ments of reasonable size for which the execution time is too high for
practical purposes.

The running times for list sorting algorithms are interesting. We will
see that insertion sort has quadratic running time, and that there is a
sorting algorithm (merge sort) with linearithmic running time that is
much faster in practice.

Logarithmic running time O(logn) is much faster than linear time.
The standard example for logarithmic running time is binary search, an
algorithm for searching ordered sequences we will discuss in this chap-
ter. Logarithmic running time occurs if the input size is halved at each
recursion step, and only a constant number of functions calls is needed
to prepare a recursion step.

A good measure of the abstract running time of an expression is the
number of function calls needed for its execution. Expressions whose ex-
ecution doesn’t involve function calls receive the abstract running time 0.
As an example, we consider a list concatenation function:

[] @ l2 := l2

(x :: l1) @ l2 := x :: (l1 @ l2)

The defining equations tell us that the running time of a concatenation
l1 @ l2 only depends on the length of the list l1. In fact, from the defining
equations of the concatenation function @ we can obtain a recursive
running time function

r(0) := 1
r(n+ 1) := 1 + r(n)

giving us the running time for every call l1 @ l2 where l1 has length n.
A little bit of discrete mathematics gives us an explicit characterization
of the running time function:

r(n) = n+ 1

We can now say that the list concatenation function @ has linear running
time in the length of the first list.

We remark that we distinguish between function applications and
function calls. A function application is a syntactic expression e e1 . . . en.
A function call is a tuple (v, v1, . . . , vn) of values that is obtained by
evaluating the expressions of a function application.
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8.2 List Reversal

We will now look at two functions for list reversal giving us two interest-
ing examples for abstract running times. We start with a tail-recursive
function

rev append [] l2 := l2

rev append (x :: l1) l2 := rev append l1 (x :: l2)

that has linear running time in the length of the first argument (following
the argumentation we have seen for list concatenation). We can now
reverse a list l with a function call (rev append l []) taking running time
linear in the length of l. We remark at this point that rev append gives
us an optimal list reversal function that cannot be further improved.

Another list reversal function we call naive reversal is

rev [] := []
rev (x :: l) := rev (l) @ [x]

Practical experiments with an OCaml interpreter show that the per-
formance of naive list reversal is much worse than the performance of
tail-recursive list reversal. While rev append will yield the reversal of a
list of length 20000 instantaneously, the naive reversal function rev will
take considerable time for the same task (go to length 100000 to see a
more impressive time difference).

The above experiments require an interpreter that can handle deeply
nested function calls. While this is the case for the native OCaml
interpreter, the browser-based TryOCaml interpreter severely limits the
height of the call stack (about 1000 function calls at the time of writ-
ing). Thus the above experiments require a native OCaml interpreter.
We remark that function calls in tail position (as is the case with tail re-
cursion) don’t require allocation on the call stack. In fact, TryOcaml can
easily execute the tail-recursive function rev append for lists of length
100000. On the other hand, TryOcaml aborts the execution of the naive
list reversal function rev already for lists of length 3000.

We return to the discussion why naive list reversal is so much slower
than tail-recursive list reversal. The answer simply is that naive list
reversal has quadratic running time while tail-recursive list reversal has
linear runtime. For instance, when we reverse a list of length 104, naive
reversal roughly requires 100 million function calls while tail-recursive
reversal only needs ten thousand function calls (think of money to get a
feel for the numbers).
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Tail-recursive list reversal has running time n+1 for lists of length n,
which can be shown with the same method we used for list concatena-
tion. For naive reversal we have to keep in mind that list concatenation
ist not an operation (as suggested by the symbol @ ) but a function. This
means we have to count the function calls needed for concatenation for
every recursive call of rev. This gives us the recursive definition of the
running time function for rev:

r(0) := 1
r(n+ 1) := 1 + r(n) + (n+ 1)

The term (n + 1) is the number of recursion steps a concatenation
rev (l) @ [x] takes if l has length n. We make use of the fact that rev
leaves the length of a list unchanged. We now have a recursive definition
of the exact runtime function for rev. With standard techniques from
discrete mathematics one can obtain an equation characterizing r(n)
without recursion:

r(n) = (n+ 1)(n+ 2)/2

One speaks of recurrence solving. We will not explain this topic here.
For practical purposes it is often convenient to use one of the recurrence
solvers in the Internet.1

Exercise 8.2.1 Define a linear time function concatenating two lists us-
ing only tail recursion. Hint: Exploit the equations l1 @r l2 = rev l1 @ l2
and rev (rev l) = l.

8.3 Insertion Sort

Recall insertion sort from §4.12:

insert : Z→ L(Z)→ L(Z)
insert x [] := [x]

insert x (y :: l) := x :: y :: l if x ≤ y
insert x (y :: l) := y :: insert x l if x > y

isort : L(Z)→ L(Z)
isort [] := []

isort (x :: l) := insert x (isort l)
1We recommend https://www.wolframalpha.com. Entering the two defining equa-

tions into the solver will suffice to obtain the closed formula characterization of
r(n).
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The structure of insertion sort is similar to naive list reversal. However,
there is the new aspect that an insertion may cost between 1 and n+ 1
function calls depending on where the insertion in a list of length n takes
place. We say that list insertion has constant running time in the best
case and linear running time in the worst case. We also say that list
insertion has linear worst-case running time.

We now look at the running time of isort. We have linear best-
case running time (2n + 1) if the input list is in ascending order
(x1 ≤ x2 ≤ · · ·) and quadratic worst-case running time ((n+1)(n+2)/2)
if the input list is in strictly descending order (x1 > x2 > · · · ). The run-
ning time function for the worst case is identical with the running time
function for naive list reversal.

The quadratic worst-case running time shows in practice. While a
list of length 20000 is sorted instantaneously if it is in ascending order,
sorting takes considerable time if the list is in strictly descending order.

8.4 Merge Sort

Because of its quadratic worst-case running time, insertion sort is not
a good sorting function in practice. It turns out that there is a much
better sorting algorithm called merge sort that in practice has almost
linear running time in the length of the input list.

Merge sort first splits the input list into two lists of equal length
(plus/minus one). It then sorts the two sublists by recursion and merges
the two sorted lists into one sorted list. Both splitting and merging can
be carried out in linear time in the length of the input list. The question
now is how often merge sort has to recurse. It turns out that the recur-
sion depth (see §8.8) of merge sort is logarithmic in the length of the in-
put length. For instance, if we are given an input list of length 220 (about
one million), the recursion depth will be 20, since the length of the lists
to be sorted decreases exponentially: 220, 219, 218, 217, 216, 215, . . . .

We formulate merge sort in OCaml as follows:

let rec split l l1 l2 = match l with
| [] -> (l1,l2)
| [x] -> (x::l1,l2)
| x::y::l -> split l (x::l1) (y::l2)

let rec merge l1 l2 = match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| x::l1, y::l2 when x <= y -> x :: merge l1 (y::l2)
| x::l1, y::l2 -> y :: merge (x::l1) l2
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let rec msort l = match l with
| x::y::l -> let (l1,l2) = split l [x] [y] in

merge (msort l1) (msort l2)
| l -> l

From the code it is clear that there is no dependence on the order of the
input list. It is also clear that the running time of split for an input list
of length n is at most n + 1 (for larger n it is at most 1 + n/2). The
running time of merge is 1 + n1 + n2 where n1 and n2 are the lengths
of the input lists l1 and l2. Thus the running time of msort is linear
in the length of the input list plus twice the running time of msort for
input lists of half the length. This results in linearithmic running time
O(n logn) for msort and input lists of length n.

Note that in the above code split is tail-recursive but merge is not.
A tail-recursive variant of merge is straightforward:

let rec merge l1 l2 l = match l1, l2 with
| [], l2 -> List.rev_append l l2
| l1, [] -> List.rev_append l l1
| x::l1, y::l2 when x <= y -> merge l1 (y::l2) (x::l)
| x::l1, y::l2 -> merge (x::l1) l2 (y::l)

With the tail-recursive merge function only the recursion depth of msort
remains, which is logarithmic in the length of the input list.

Exercise 8.4.1 Check with an interpreter that the execution time of
msort is moderate even for lists of length 105. Convince yourself that
the ordering of the input list doesn’t matter.

8.5 Binary Search

Suppose we have a function f : N → N and want to check whether the
sequence

f(0), f(1), f(2), . . .

takes the value x for some k (that is, f(k) = x). Without further
information about f , we can perform a linear search for the first k such
that f(k) = x.

We can search faster if we assume that f is increasing:

f(0) ≤ f(1) ≤ f(2) ≤ · · ·
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We can then apply a search technique called binary search. Binary
search modifies the problem such that, given l, r, and x, we look for a
position k in the sequence

f(l) ≤ · · · ≤ f(r)

such that l ≤ k ≤ r and f(k) = x. Binary search proceeds as follows:

1. If r < l, the number k we are looking for does not exist.
2. If l ≤ r, we determine m = (l + r)/2 and consider three cases:

a) If f(m) = x, m is the number we are looking for.
b) If f(m) < x, we continue the search in the interval (m+ 1, r).
c) If f(m) > x, we continue the search in the interval (l, m− 1).

We note that on recursion the size of the interval to be searched is
halved. Thus, if we start with an interval of length 2n, we have at most
n+ 1 recursion steps until we terminate. In other words, the worst-case
running time of binary search measured in recursion steps is logarithmic
in the length of the interval to be searched. This is in contrast to linear
search, where the worst-case running time measured in recursion steps
is linear in the length of the interval to be searched.

We realize binary search with an OCAML function

find : ∀α. (int → α)→ α→ int → int → O(int)

declared as follows:

let find f x l r =
let rec aux l r =

if r < l then None
else let m = (l+r)/2 in

let y = f m in
if x = y then Some m
else if x < y then aux l (m-1) else aux (m+1) r

in aux l r

Note that the helper function aux is tail recursive.
In contrast to linear search, binary needs an upper bound r. If we

work with machine numbers, we may simply use the largest machine
integer max int as an upper bound. If we consider the problem mathe-
matically, we fist need to find an upper bound r such that x ≤ f(r). If
such an r exists, we may find it quickly with an exponential search.
We start with a large number k and double k until x ≤ f(k). If f is
strictly increasing (f(0) < f(1) < f(2) < · · · ), we have x ≤ f(x) and
can hence use x as an upper bound.
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Exercise 8.5.1 The binary search function can be simplified if it re-
turns booleans rather than options. Declare a binary search function
checking whether f yields a given value for some number in a given
interval. Use the lazy boolean connectives.

Exercise 8.5.2 Binary search can be used for inversion of strictly in-
creasing functions.
a) Declare a function square deciding whether an integer x ≥ 0 is a

square number (that is, x = n2 for some n). The worst-case running
time of square x should be logarithmic in x.

b) Declare a function sqrt that given an integer x ≥ 0 computes the
largest n such that n2 ≤ x. The worst-case running time of sqrt x
should be logarithmic in x.

c) Declare a function inv that given a strictly increasing function
f : N→ N and an integer x ≥ 0 computes the largest n such that
f(n) ≤ x. The worst-case running time of inv f x should be loga-
rithmic in x if f has constant running time.

8.6 Trees

Recall the definition of AB-trees:

tree ::= A | B(tree, tree)

Two essential notions for trees in general and AB-trees in particular are
size and depth:

size A := 1
size (B (t1 t2)) := 1 + size t1 + size t2

depth A := 0
depth (B (t1 t2)) := 1 + max (depth t1) (depth t2)

Note that the function size computes its own running time; that is, the
running time of size for a tree t is size (t).

Here is a function mtree : N→ tree that yields an AB-tree of depth n
that has maximal size (see also Exercise 5.2.5):

mtree (0) := A

mtree (n+ 1) := B (mtree (n),mtree (n))

The running time of mtree is

r(0) := 1
r(n+ 1) := 1 + r(n) + r(n)
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A recurrence solver yields the explicit characterization

r(n) = 2n+1 − 1

which tells us that mtree has exponential running time O(2n).
It is straightforward to rewrite mtree such that the running time

becomes linear:

mtree (0) := A

mtree (n+ 1) := let t = mtree (n) in B (t, t)

The insight is that a maximal tree for a given depth has two identical
subtrees. Thus it suffices to compute the subtree once and use it twice.

For maximal trees the running time of size is exponential in the depth
of the input tree. Consequently, the running time of λn. size (mtree n)
is exponential in n even if the linear-time variant of mtree is used.

Exercise 8.6.1 (Minimal Trees) We call an AB-tree of depth n

minimal if its size is minimal for all AB-tree of depth n.
a) Argue that there are two different minimal AB-trees of depth 2.
b) Declare a linear-time function that given n yields a minimal AB-tree

of depth n.
c) Declare a linear-time function that given n yields the size of minimal

AB-trees of depth n.
d) Give an explicit formula for the size of minimal AB-trees of depth n.

Exercise 8.6.2 (Ternary Trees) Consider ternary trees as follows:

tree ::= A | B(tree, tree, tree)

a) Declare a function that yields the size of ternary trees.
b) Declare a function that yields the depth of ternary trees.
c) Declare a linear-time function that yields a ternary tree of depth n

that has maximal size.
d) Declare a linear-time function that yields a ternary tree of depth n

that has minimal size.
e) Give an explicit formula for the size of maximal ternary trees of

depth n.
f) Give an explicit formula for the size of minimal ternary trees of

depth n.
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8.7 Summary and Background

A key idea in this chapter is taking the number of function calls needed
for the execution of an expression as running time of the expression.
This definition of running time works amazingly well in practice, in par-
ticular as it comes to identifying functions whose execution time may
be problematic in practice. As one would expect, in a functional pro-
gramming language significant running times can only be obtained with
recursion.

Another basic idea is looking at the maximal running time for argu-
ments of a given size. For lists, typically their length is taken as size.
The idea of taking the maximal running time for all arguments of a given
size is known as worst-case assumption. A good example for the worst-
case assumption is insertion sort, where the best-case running time is
linear and the worst-case running time is quadratic in the length of the
input list.

Once a numeric argument size is fixed, one can usually define the
worst-case running time function for a given function as a recursive
function N→ N following the defining equations of the given function.

Given a recursive running time function, one can usually obtain an
explicit formula for the running time using so-called recurrence solving
techniques from discrete mathematics. Once one has an explicit formula
for the running time, one can obtain the asymptotic running time in
big O notation (e.g., O(n), O(n logn), O(n2)). Big O notation is also
known as Bachmann–Landau notation or asymptotic notation.

Big O notation is based on an asymptotic dominance relation f � g
for functions f, g : N→ N defined as follows:

f � g := ∃n0, k, c. ∀n ≥ n0. f(n) ≤ k · g(n) + c

Speaking informally, we have f � g iff f is upwards bounded by a
pumped version of g for all n but finitely many exceptions.

Asymptotic dominance gives us the asymptotic equivalence relation

f ≈ g := f � g ∧ g � f

If f ≈ g, one says that f and g have the same growth rate.
Here are a few examples to help your intuition:

2n+ 13 ≈ n

7n2 + 2n+ 13 ≈ n2

2n+3 + 7n2 + 2n+ 13 ≈ 2n
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We also have

n1 � n2 � n3 � · · ·︸ ︷︷ ︸
polynomial

� 2n � 3n � 4n � · · ·︸ ︷︷ ︸
exponential

where the converse directions do not hold. One speaks of polynomial
and exponential functions.

We now say that a function f is O(g) if f and g are asymptotically
equivalent. Big O notations like O(n) and O(n2) are in fact abbre-
viations for O(λn.n) and O(λn.n2). Moreover, O(n logn) abbreviates
O(λn. plog2(n+ 1)q).

Big O notation characterizes functions according to their growth
rates: different functions with the same growth rate may be represented
using the same O notation. The letter O is used because the growth
rate of a function is also referred to as the order of the function.

In the literature, “f is O(g)” stands for f � g (upper bound) and
“f is Θ(g)” stands for f ≈ g (tight upper bound). We have taken the
freedom to write O(g) in place of Θ(g) because in practice when one says
that insertion sort has running time O(n2) one means that the running
time function of insertion sort is Θ(g).

Exercise 8.7.1 Give the order of the following functions using big O
notation.

a) λn. 2n+ 13
b) λn. 5n2 + 2n+ 13
c) λn. 5n3 + n(n+ 1) + 13n+ 2

d) λn. 2n + n4

e) λn. 2n+5 + n2

Exercise 8.7.2 (Characterizations of asymptotic dominance)
Show that the following propositions are equivalent for all functions
f, g : N→ N:
1. ∃n0, k, c. ∀n ≥ n0. f(n) ≤ k · g(n) + c

2. ∃k.∀n. f(n) ≤ k · (g(n) + 1)

8.8 Call Depth

The execution of a function call usually requires the execution of further
function calls. This is particularly true for calls of recursive functions.
The function calls that must be executed for a given initial function
call are naturally organized into a call tree where the calls needed for a
particular call appear as descendants of the particular call. Note that
the size of a call tree is the abstract running time of the initial function
call appearing as the root of the tree.

131



8 Running Time

When a call is executed, all calls in its call tree must be executed.
When an interpreter executes a call that is a descendent of the the initial
call, it must store the path from the root to the current call so that it
can return from the current call to the parent call. The path from the
initial call to the current call is stored in the so-called call stack.

The length of the path from the initial call to a lower call is known as
call depth (often called recursion depth). In contrast to functional pro-
gramming languages, most programming languages severely limit the
available call depth, typically to a few thousand calls. At this point
tail-recursion and tail-recursive calls turn out to be important since tail-
recursive calls don’t count for the call depth in some programming sys-
tems limiting the call depth. The reason is that a tail-recursive call
directly yields the result of the parent call so that it can replace the
parent call on the call stack when its execution is initiated.

In contrast to native OCaml interpreters, the browser-based
TryOCaml interpreter (realized with JavaScript) limits the recursion
depth to a few thousand calls. If you want to attack computationally
demanding problems with TryOCaml, it is necessary that you limit
the necessary recursion depth by replacing full recursion with tail
recursion. A good example for this problem is merge sort, where the
helper functions split and merge can be realized with tail recursion and
only the main function requires full recursion. Since the main function
halves the input size upon recursion, it requires call depth that is only
logarithmic in the size of the initial input (for instance, call depth 20
for a list of length 106).
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In this chapter we will prove properties of functions defined with equa-
tions and terminating recursion. To handle recursive functions, termi-
nating recursive proofs commonly known as inductive proofs will be
used.

We assume familiarity with equational reasoning, a basic mathemat-
ical proof technique obtaining valid equations by rewriting with valid
equations. For instance, 5 + (x − x) = 5 follows with the equations
x− x = 0 and x+ 0 = x. One speaks of replacement of equals by equals.

9.1 Propositions and Proofs

Propositions are mathematical statements that may be true or false.
Equations are a basic form of propositions. Proofs are mathematical
constructions that demonstrate the truth of propositions. Propositions
can be combined with three basic connectives:

conjunction P ∧Q P and Q

disjunction P ∨Q P or Q
implication P → Q if P then Q

There is a special proposition⊥ called falsity that has no proof. Negation
¬P is expressed as P → ⊥. Variables occurring in propositions can be
qualified with typed quantifications:

universal quantification ∀x : t. P for all x of type t, P
existential quantification ∃x : t. P for some x of type t, P

Propositions are used all the time in mathematical reasoning. Often
propositions are formulated informally using natural language.

For every proposition but ⊥, there is a basic form of proof:
• To prove a conjunction P ∧Q, one proves both P and Q.
• To prove a disjunction P ∨Q, one proves either P or Q.
• To prove an implication P → Q, one describes a function that given

a proof of P yields a proof of Q.
• To prove a universal quantification ∀x : t. P , one describes a function

that given a value x of type t yields a proof of P .
• To prove an existential quantification ∃x : t. P , one gives a value x of

type t and a proof of P .
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Usually propositions and proofs are written in natural language us-
ing symbolic notation where convenient. There are typed functional
programming languages in which one can write propositions and proofs,
and these languages are implemented with proof assistants helping with
the construction of proofs.1

9.2 List induction

Many properties of the basic list functions defined in Chapter 4 can be
expressed with equations. The functions for list concatenation and list
reversal, for instance, satisfy the following equations:

(l1 @ l2) @ l3 = l1 @ (l2 @ l3)
rev (l1 @ l2) = rev l2 @ rev l1

rev (rev l) = l

The letters l1, l2, l3, and l act as variables ranging over lists over some
base type α. With all typed quantifications made explicit, the second
equation, for instance, becomes

∀α :T. ∀l1 :L(α). ∀l2 :L(α). rev (l1 @ l2) = rev l2 @ rev l1

where the symbol T represents the type of types. We will usually not give
the types of the variables, but for the correctness of the mathematical
reasoning it is essential that types can be assigned consistently.

The equations can be shown by equational reasoning using the defin-
ing equations of the functions and a recursive proof technique called list
induction.

Fact 9.2.1 (List induction) To show that a proposition p(l) holds for
all lists l, it suffices to show the following propositions:
1. Nil case: p([])
2. Cons case: ∀x.∀l. p(l) → p(x :: l)

Proof We assume proofs of the nil case and the cons case. Let l be a
list. We prove p(l) by case analysis and recursion on l. If l = [], the nil
case gives us a proof. If l = x :: l′, recursion gives us a proof of p(l′).
Now the function proving the cons case gives us a proof of p(l). �

The predicate p is known as induction predicate,2 and the propo-
sition p(l) in the cons case is known as inductive hypothesis.

1A popular proof assistant we use in Saarbrücken is the Coq proof assistant.
2A predicate may be thought of as a function that yields a proposition.
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We will demonstrate equational reasoning and the use of list induc-
tion by proving some properties of list concatenation. We will make
extensive use of the defining equations for @ :

@ : ∀α. L(α)→ L(α)→ L(α)
[] @ l2 := l2

(x :: l1) @ l2 := x :: (l1 @ l2)

We say that an equation follows by simplification if its two sides
can be made equal by applying defining equations (from left to right).
For instance,

[1, 2] @ ([3, 5] @ [5, 6]) = [1, 2, 3, 5] @ [5, 6]

follows by simplification (both sides simplify to [1, 2, 3, 5, 5, 6]).
Once variables are involved, simplification is often not enough. For

instance, [] @ l = l follows by simplification, but l@ [] = l does not. To
prove l@ [] = l, we need list induction in addition to simplification.

Fact l@ [] = l.

Proof By list induction on l.
• Nil case: [] @ [] = [] holds by simplification.
• Cons case: We assume a proof of l@ [] = l and show (x :: l) @ [] =

x :: l. By simplification it suffices to prove x :: (l@ []) = x :: l. Holds
by the inductive hypothesis, which gives us a proof of l@ [] = l. �

The above proof is quite wordy for a routine argument. We will
adopt a more compact format.

Fact 9.2.2 l@ [] = l.

Proof Induction on l. The nil case holds by simplification. Cons case:

(x :: l) @ [] = x :: l simplification
x :: (l@ []) induction

x :: l �

The compact format arranges things such that the inductive hypoth-
esis is identical with the claim that is proven. This way there is no need
to write down the inductive hypothesis.

Our second example for an inductive proof concerns the associativity
of list concatenation.
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Fact 9.2.3 (l1 @ l2) @ l3 = l1 @ (l2 @ l3).

Proof Induction on l1. The nil case holds by simplification. Cons case:

((x :: l1) @ l2) @ l3 = (x :: l1) @ (l2 @ l3) simplification
x :: ((l1 @ l2) @ l3) = x :: (l1 @ (l2 @ l3)) induction
x :: (l1 @ (l2 @ l3)) �

Exercise 9.2.4 Prove map f (l1 @ l2) = map f l1 @ map f l2.

9.3 Properties of List Reversal

We now use equational reasoning and list induction to prove equational
properties of list reversal. For some cases a quantified inductive hypoth-
esis is needed, an important feature we have not seen before. We start
with the definition of naive list reversal:

rev : ∀α. L(α)→ L(α)
rev [] := []

rev (x :: l) := rev (l) @ [x]

We prove a distribution property for list reversal and list concatenation.
The proof requires lemmas for list concatenation we have shown before.

Fact 9.3.1 rev (l1 @ l2) = rev l2 @ rev l1.

Proof Induction on l1. Nil case:

rev ([] @ l2) = rev l2 @ rev [] simplification
rev l2 = rev l2 @ [] Fact 9.2.2

Cons case:

rev ((x :: l1) @ l2) = rev l2 @ rev (x :: l1) simplification
rev (l1 @ l2) @ [x] = rev l2 @ (rev l1 @ [x]) induction

(rev l2 @ rev l1) @ [x] Fact 9.2.3 �

Next we show that naive lists reversal agrees with tail-recursive list
reversal. Recall the definition of reversing concatenation (rev append):

@r : ∀α. L(α)→ L(α)→ L(α)
[] @r l2 := l2

(x :: l1) @r l2 := l1 @r (x :: l2)
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Fact 9.3.2 l1 @r l2 = rev l1 @ l2.

Proof We prove ∀ l2. l1 @r l2 = rev l1 @ l2 by induction on l1. The
quantification of l2 is needed so we get a strong enough inductive hy-
pothesis.

The nil case holds by simplification. Cons case:

(x :: l1) @r l2 = rev (x :: l1) @ l2 simplification
l1 @r (x :: l2) = (rev l1 @ [x]) @ l2 induction

rev l1 @ (x :: l2) Fact 9.2.3
rev l1 @ ([x] @ l2) simplification

Note that the inductive hypothesis is used with the instance
l2 := x :: l2. �

The above proof uses a quantified inductive hypothesis, a fea-
ture we have not seen before. The induction predicate for the proof is
λl1.∀l2. l1 @r l2 = rev l1 @ l2. The quantification of l2 is essential since
the function l1 @r l2 changes both arguments upon recursion. While in-
duction on l1 takes care of the change of l1, quantification takes care of
the change of l2.

Fact 9.3.3 rev l = l@r [].

Proof Follows with Facts 9.3.2 and 9.2.2. �

Fact 9.3.4 (Self inversion) rev (rev l) = l.

Proof By induction on l using Fact 9.3.1. �

Tail-recursive linear-time list concatenation
With reversing concatenation l1 @r l2 we can define a function concate-
nating two lists using only tail-recursion and taking running time linear
in the length of the first list:

con l1 l2 := (l1 @r []) @r l2

Fact 9.3.5 l1 @ l2 = (l1 @r []) @r l2.

Proof Follows with Facts 9.3.2, 9.3.3, and 9.3.4. �

Exercise 9.3.6 Give the induction predicate for the proof of Fact 9.3.2.

Exercise 9.3.7 Prove rev (rev l) = l.
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Exercise 9.3.8 Prove map f (rev l) = rev (map f l).

Exercise 9.3.9 In this exercise we will write |l| for length l for better
mathematical readability. Prove the following properties of the length
of lists:
a) |l1 @ l2| = |l1|+ |l2|.
b) |rev l| = |l|.
c) |map f l| = |l|.

Exercise 9.3.10 (Tail-recursive list concatenation)
Define a function con concatenating two lists using only tail-recursion
whose running time is linear in the length of the first list.

Exercise 9.3.11 Give the running time function for con l1 l2 and the
length of l1 not using recursion.

Exercise 9.3.12 (Power lists)
Consider a power list function defined as follows:

pow : ∀α. L(α)→ L(L(α))
pow [] := [[]]

pow (x :: l) := pow l @ map (λ l. x :: l) (pow l)

a) Prove |pow l| = 2|l| where |l| is notation for length l. The equation
says that a list of length n has 2n sublists.

b) Give the running time function for function pow.
c) Give the running time function for a variant of pow which avoids the

binary recursion with a let expression.

Exercise 9.3.13 (Tail-recursive length of lists) Consider the tail-
recursive function

len [] a = a

len (x :: l) a = len l (a+ 1)

Prove len l a = a+ length l by induction on l. Note that a needs to be
quantified in the inductive hypothesis. Give the induction predicate.

9.4 Natural Number Induction

Inductive proofs are not limited to lists. The most basic induction prin-
ciple is induction on natural numbers, commonly known as mathematical
induction.
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Fact 9.4.1 (Mathematical induction) To show that a proposition
p(n) holds for all natural numbers n, it suffices to show the following
propositions:
• Zero case: p(0)
• Successor case: ∀n. p(n) → p(n+ 1)

Proof A proof of the successor case provides us with a function that
for every number n and for every proof of p(n) yields a proof of p(n+1).
Given proofs of the zero case and the successor case, we can construct
for all numbers n a proof of p(n) by case analysis and recursion on n:
• If n = 0, the zero case provides a proof of p(n).
• If n = n′ + 1, we obtain a proof of p(n′) by recursion. The function

provided by the successor case then gives us a proof of p(n′ + 1),
which is a proof of p(n). �

If you are familiar with mathematical induction, you may be wonder-
ing why we are using the terms “zero case” and “successor case” in place
of the standard terms “base case” and “induction step”. The reason is
that we want to emphasize the similarity between list induction and
mathematical induction. In fact, we can see natural numbers as values
that are obtained with the constructors zero and successor, similar to
how lists are obtained with the constructors nil and cons. Written with
constructors, the number 3 takes the form succ (succ (succ 0)), where
the successor constructor satisfies succ n = n+ 1.

We demonstrate number induction with the function

sum : N→ N
sum 0 := 0

sum (n+ 1) := sum n+ (n+ 1)

Fact 9.4.2 2 · sum n = n · (n+ 1).

Proof By induction on n. The zero case holds by simplification.
We argue the successor case:

2 · sum (n+ 1) = (n+ 1) · ((n+ 1) + 1) simplification
2 · sum n+ 2 · n+ 2 = (n+ 1) · (n+ 2) induction
n · (n+ 1) + 2 · n+ 2 simplification �

Exercise 9.4.3 (Little Gauss formula) Prove the following equa-
tions by induction on n.
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a) 0 + 1 + · · ·+ n = n · (n+ 1)/2
b) 0 + 1 + · · ·+ n = sum n

Equations (a) is known as little Gauss formula and gives us an efficient
method to compute the sum of all numbers up to n by hand. For in-
stance, the sum of all numbers up to 100 is 100 · 101/2 = 5050. The
second equation tells us that the mathematical notation 0 + 1 + · · ·+ n

may be defined with the recursive function sum.

Exercise 9.4.4 (Running time functions)
In Chapter 8, we derived the following running time functions:

r1(0) := 1 r2(0) := 1
r1(n+ 1) := 1 + r1(n) r2(n+ 1) := 1 + r2(n) + (n+ 1)

r3(0) := 1
r3(n+ 1) := 1 + r3(n) + r3(n)

Using a recurrence solver, we obtained explicit characterizations of the
functions:

r1(n) = n+ 1 r2(n) = (n+ 1)(n+ 2)/2
r3(n) = 2n+1 − 1

Use mathematical induction to verify the correctness of the explicit char-
acterizations. Note that the proof obligations imposed by mathematical
induction boil down to checking that the explicit characterizations sat-
isfy the defining equations of the running time functions.

Exercise 9.4.5 (Sum of odd numbers)
Define a function f : N+ → N+ computing the sum 1 + 3 + · · ·+ (2n−1)
of the odd numbers from 1 to 2n− 1. Prove f(n) = n2.

Exercise 9.4.6 (Sum of square numbers)
Define a function f : N+ → N+ computing the sum 02 + 12 + · · ·+ n2 of
the square numbers. Prove f(n) = n · (2n2 + 3n+ 1)/6.

9.5 Correctness of Tail-Recursive Formulations

Given a recursive function that is not tail-recursive, one can often come
up with a tail-recursive version collecting intermediate results in addi-
tional accumulator arguments. One then would like to prove that the
tail-recursive version agrees with the original version. We already saw
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such a proof in §9.3 for the tail-recursive version of list-reversal. For list
reversal we have to prove

rev l = l@r []

using list recursion. The induction will only go through if we generalize
the correctness statement to

l1 @r l2 = rev l1 @ l2

If we think about it, the generalized correctness statement amounts to
an equational specification of l1 @r l2. Since the tail-recursive function
l1 @r l2 recurses on l1 and modifies l2, a proof by list induction on l1
quantifying the accumulator arguments l2 works.

Recall the Fibonacci function from §3.3:

fib : N→ N
fib(0) := 0
fib(1) := 1

fib (n+ 2) := fib (n) + fib (n+ 1)

One speaks of a binary recursion since there are two parallel recursive
applications in the 3rd defining equation. It is known that the running
time of fib is exponential in the sense that it is not bounded by any
polynomial.

To come up with a tail-recursive version of fib, we observe that a
Fibonacci number is obtained as the sum of the preceding two Fibonacci
numbers starting from the initial Fibonacci numbers 0 and 1. In §3.3
this fact is used to obtain the Fibonacci numbers with iteration. We now
realize the iteration using two accumulator arguments for the preceding
Fibonacci numbers:

fibo : N→ N→ N→ N
fibo 0 a b := a

fibo (n+ 1) a b := fibo n b (a+ b)

We would like to show

fib n = fibo n 0 1

A proof by induction on n will not go through since fibo modifies its
two accumulator arguments. What we need is a more general equation
specifying fibo more accurately:

fibo n (fib m) (fib (m+ 1)) = fib (n+m)
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We prove the equation by induction on n with m quantified. The zero
case holds by simplification, and the successor case goes as follows:

fibo (n+ 1) (fib m) (fib (m+ 1)) = fib (n+ 1 +m) simplification
fibo n (fib (m+ 1)) (fib m+ fib (m+ 1)) def. eq. fib ←

fibo n (fib (m+ 1)) (fib (m+ 2)) induction
fib (n+ (m+ 1)) simplification

Note the right-to-left application of the 3rd defining equation of fib.

Exercise 9.5.1 (Tail-recursive factorial function)
Consider the tail-recursive function

fac : N→ N→ N
fac 0 a := a

fac (n+ 1) a := fac n ((n+ 1) · a)

Prove fac n a = a · n! by induction on n assuming the equations 0! = 1
and (n + 1)! = (n + 1) · n! . Note that a needs to be quantified in the
inductive hypothesis. Give the induction predicate.

Exercise 9.5.2 (Tail-recursive power function)
Consider the tail-recursive function

pow : N→ N→ N→ N
pow x 0 a := a

pow x (n+ 1) a := pow x n (x · a)

Prove pow x n a = xn · a by induction on n. Note that a needs to be
quantified in the inductive hypothesis. Give the induction predicate.

Exercise 9.5.3 (Tail-recursive sum) Define a tail-recursive variant
sum′ of sum and prove sum′ n 0 = sum n.

Exercise 9.5.4 There is an alternative proof of the correctness of fibo
using a lemma for fibo.
a) Prove fibo (n+ 2) a b = fibo n a b+ fibo (n+ 1) a b.
b) Prove fib n = fibo n 0 1 by induction on n using (a).
Hint: (a) follows by induction on n with a and b quantified.
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9.6 Properties of Iteration

Using number induction, we will prove some properties of iteration §3.2.
We start with the iteration function

it : ∀α. (α→ α)→ N→ α→ α

it f 0 x := x

it f (n+ 1) x := f (it f n x)

Note that it is defined differently from the tail-recursive iteration func-
tion iter in §3.2. We will eventually show that both iteration functions
agree.

We first show that factorials

!0 := 1
!(n+ 1) := (n+ 1) · n!

can be computed with iteration.

Fact 9.6.1 (n, n!) = it (λ (k, a). (k + 1, (k + 1) · a)) n (0, 1).

Proof We define f(k, a) := (k + 1, (k + 1) · a) and prove

(n, n!) = it f n (0, 1)

by induction on n. The zero case holds by simplification. We argue the
successor case:

(n+ 1, (n+ 1)!) = it f (n+ 1) (0, 1) simplification
f (n, n!) = f (it f n (0, 1)) induction �

Next we prove an important property of it that we need for showing
the agreement with iter .

Fact 9.6.2 (Shift Law) f (it f n x) = it f n (f x).

Proof Induction on n. The zero case holds by simplification.
Successor case:

f (it f (n+ 1) x) = it f (n+ 1) (f x) simplification
f (f (it f n x)) = f (it f n (f x)) induction �

Recall the tail-recursive iteration function iter from §3.2 :

iter f 0 x := x

iter f (n+ 1) x := iter f n (f x)
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Fact 9.6.3 (Agreement) it f nx = iter f nx.

Proof We prove ∀x. it f nx = iter f nx by induction on n. The quan-
tification of x is needed since iter changes this argument upon recursion.
The zero case holds by simplification. Successor case:

it f (n+ 1)x = iter f (n+ 1)x simplification
f(it f nx) = iter f n (fx) shift law
it f n (fx) induction �

Exercise 9.6.4 Prove xn = it (λa. a · x)n 1.

Exercise 9.6.5 Recall the Fibonacci function fib from §9.5. Prove
(fib n,fib (n+ 1)) = it f n (0, 1) for f (a, b) := (b, a+ b).

Exercise 9.6.6 Prove the shift law for iter in two ways: (1) by a direct
inductive proof, and (2) using the agreement with it and the shift law
for it.

9.7 Induction for Terminating Functions

Given a terminating recursive function, and a property concerning the
results of the function, we can prove the property following the defining
equations of the function and assuming the property for the recursive
calls of the function. Such a proof is an inductive proof following the
recursion scheme underlying the defining equations. We speak of func-
tion induction.

Our first example for function induction concerns the remainder op-
eration:

% : N→ N+ → N
x% y := x if x < y

x% y := (x− y) % y if x ≥ y

Note that the type of % ensures that y > 0 in x% y, a property that in
turn ensures termination of the function. From the definition it seems
that we have x% y < y. A proof of this property needs induction to
account for the recursion of the second defining equation.

Fact x% y < y.
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Proof By induction on x% y. If x% y is obtained with the first defining
equation, we have x < y and x% y = x, which yields the claim. If
x% y is obtained with the second defining equation, the claim follows by
induction. More precisely, we have x% y = (x−y) % y and (x−y) % y < y

by induction for the recursive call. �

The induction used in the proof is function induction. A proof by
function induction follows the case analysis established by the defining
equations and assumes that the claim holds for the recursive applica-
tions. The use of function induction is admissible for functions with
terminating defining equations. What happens is that function induc-
tion constructs a recursive proof following the terminating recursion of
the defining equations.

We impose the restriction that the proposition to be shown by func-
tion induction contains exactly one application of the function govern-
ing the induction. A proof by function induction now case analyses the
function application following the defining equations of the function. By
simplifying with the defining equations recursive calls of the function are
introduced, and for these calls we do have the inductive hypothesis.

Using the above example, we introduce a more formalized way to
write down proofs by function induction.

Fact 9.7.1 x% y < y.

Proof By induction on x% y.
1. x% y = x and x < y. The claim follows.
2. x% y = (x− y) % y and x ≥ y. By induction we have (x− y) % y < y.

The claim follows. �

Exercise 9.7.2 Let y > 0. Prove x = (x/y) · y + x% y by function
induction on x/y. First write down the type and the defining equations
for x/y and x% y.

9.8 Euclid’s Algorithm

There is an elegant algorithm known as Euclid’s algorithm computing
the greatest common divisor of two integers x, y ≥ 0. The algorithm is
based on two straightforward rules:
1. If one of the numbers is 0, the other number is the greatest common

divisor of the two numbers.
2. If 0 < y ≤ x, replace x with x− y.
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Note that either the first or the second rule is applicable, and that
application of the second rule terminates since the second rule decreases
the sum of the two numbers.

We now recall that x% y is obtained by subtracting y from x as long
as y ≤ x. This gives us the following function for computing greatest
common divisors:

gcd : N→ N→ N
gcd x 0 := x

gcd x y := gcd y (x% y) if y > 0

The function terminates since recursion decreases the second argument
(ensured by Fact 9.7.1). Here is a trace:

gcd 91 35 = gcd 35 21 = gcd 21 14 = gcd 14 7 = gcd 7 0 = 7

Our goal here is to carefully explain how the algorithm can be derived
from basic principles so that the correctness of the algorithm is obvious.

In this section, all numbers will be nonnegative integers. We first
define the divides relation for numbers:

k | x := ∃n. x = n · k k divides x

By our convention, k, x, and n are all nonnegative integers. When we
have k | x, we say that k is a divisor or a factor of x. Moreover, when
we say that k is a common divisor of x and y we mean that k is a
divisor of both x and y.

We observe that every number x has 1 and x as divisors. Moreover, a
positive number x has only finitely many divisors, which are all between
1 and x. In contrast, 0 has infinitely many divisors since it is divided
by every number. It follows that two numbers have a greatest common
divisor if and only if not both numbers are zero.

We call a number z the GCD of two numbers x and y if the divisors of
z are exactly the common divisors of x and y. Here are examples:
• The GCD of 15 and 63 is 3.
• The GCD of 0 and 0 is 0.

More generally, we observe the following facts.

Fact 9.8.1 (GCD)
1. The GCD of two numbers uniquely exists.
2. The GCD of x and x is x.
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3. Zero rule: The GCD of x and 0 is x.
4. Symmetry: The GCD of x and y is the GCD of y and x.
5. The GCD of two numbers that are not both 0 is the greatest common

divisor of the numbers.

Our goal is to find an algorithm that computes the GCD of two
numbers. If one of the two numbers is 0, we are done since the other
number is the GCD of the two numbers. It remains to find a rule that
given two positive numbers x and y yields two numbers x′ and y′ that
have the same GCD and whose sum is smaller (i.e., x+y > x′+y′). We
then can use recursion to reduce the initial numbers to the trivial case
where one of the numbers is 0.

It turns out that the GCD of two number x ≥ y stays unchanged
if x is replaced with the difference x− y.

Fact 9.8.2 (Subtraction Rule) If x ≥ y, then the common divisors
of x and y are exactly the common divisors of x− y and y.

Proof We need to show two directions.
Suppose x = n·a and y = n·b. We have x−y = n·a−n·b = n·(a−b).
Suppose x − y = n · a and y = n · b. We have x = x − y + y =

n · a+ n · b = n · (a+ b). �

Fact 9.8.3 (Modulo Rule) If y > 0, then the common divisors of x
and y are exactly the common divisors of x% y and y.

Proof Follows with the subtraction rule (Fact 9.8.2) since x% y is ob-
tained from x by repeated subtraction of y. More formally, we argue the
claim by function induction on x% y.
1. x% y = x and x < y. The claim follows.
2. x% y = (x−y) % y and x ≥ y. By induction we have that the common

divisors of x− y and y are the common divisors of (x− y) % y and y.
The claim follows with the subtraction rule (Fact 9.8.2). �

Euclid’s algorithm now simply applies the modulo rule until the zero
rule applies, using the symmetry rule when needed. Recall our formula-
tion of Euclid’s algorithm with the function

gcd : N→ N→ N
gcd x 0 := x

gcd x y := gcd y (x% y) if y > 0

Recall that gcd terminates since recursion decreases the second argument
(ensured by Fact 9.7.1).
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Fact 9.8.4 (Correctness) gcd x y is the GCD of x and y.

Proof By function induction on gcd x y.
1. gcd x 0 = x. Claim follows by zero rule.
2. gcd x y = gcd y (x% y) and y > 0. By induction we know that

gcd y (x% y) is the GCD of y and x% y. Hence gcd x y is the GCD
of y and x% y. It follows with the modulo rule and the symmetry
rule that gcd x y is the GCD of x and y. �

Running Time
The running time of gcd x y is at most y since each recursion step de-
creases y. In fact, one can show that the asymptotic running time of
gcd x y is logarithmic in y. For both considerations we exploit that x% y
is realized as a constant-time operation on usual computers. One can
also show that gcd at least halves its second argument after two recursion
steps. For an example, see the trace at the beginning of this section.

Exercise 9.8.5 Define a function g : N→ N→ N computing the GCD
of two numbers whose recursion decreases the first argument.

Exercise 9.8.6 Define a function g : N→ N→ N computing the GCD
of two numbers using subtraction and not using the remainder operation.
Argue the correctness of your function. Hint: Define the function such
that recursion decreases the sum of the two arguments.

Exercise 9.8.7 Define a function g : N+ → N+ → N+ computing the
GCD of two positive numbers using the remainder function. Argue the
correctness of your function. Use only one conditional.

Exercise 9.8.8 Define a function g : L(N)→ N such that the common
divisors of the elements of a list l are exactly the divisors of g(l).

Exercise 9.8.9 Argue the correctness of the claims of Fact 9.8.1.

9.9 Complete Induction

Complete induction is a generalization of mathematical induction mak-
ing it possible to assume in a proof of p(n) a proof of p(k) for all k < n.
Complete induction may be seen as a natural scheme for recursive proofs
where the recursion is on natural numbers. Using complete induction, we
can justify the function inductions we have seen so far. While complete
induction appears to be more powerful than mathematical induction, it
can be obtained from mathematical induction with an elegant proof.
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Fact 9.9.1 (Complete induction) To show that a proposition p(n)
holds for all natural numbers n, it suffices to show the following propo-
sition:

∀n. (∀k < n. p(k)) → p(n)

Proof We assume H1 : ∀n. (∀k < n. p(k)) → p(n). To show ∀n. p(n),
we show more generally

∀n. ∀k < n. p(k)

by induction on n. So the trick is to do mathematical induction on the
upper bound introduced by the generalization.

The zero case ∀k < 0. p(k) is obvious since there is no natural number
k < 0.

In the successor case, we have the inductive hypothesis

H2 : ∀k < n. p(k)

and show ∀k < n+ 1. p(k). We assume H3 : k < n+ 1 and prove p(k).
By H1 it suffices to prove

∀k′ < k. p(k′)

We assume k′ < k and prove p(k′). By H3 we have k′ < n. Now the
claim follows by H2. �

Informally, we may say that complete induction allows us to assume
proofs of all propositions p(k) with k < n when we prove p(n). In
a certain sense, we get this inductive hypothesis for free, in the same
way we get recursion for free when we define a function. In contrast
to mathematical induction, complete induction does not impose a case
analysis.

We can now explain the function induction on x% y used for
Fact 9.7.1, Exercise 9.7.2, and Fact 9.8.3 with complete induction on x.
Similarly, the function induction on gcd x y used for Fact 9.8.4 can be
explained with complete induction on y. In each case, the complete in-
duction agrees with the termination argument for the underlying func-
tion (x% y decreases x, gcd x y decreases y). The induction predicates
for the complete inductions are as follows:
• Fact 9.7.1: p(x) := x% y < y.
• Exercise 9.7.2: p(x) := x = (x/y) · y + x% y.
• Fact 9.8.3: p(x) := the cds3 of x, y are the cds of y, x% y.

3common divisors
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• Fact 9.8.4: p(y) := ∀x. gcd x y is the GCD of x, y.
That x is quantified in the induction predicate for Fact 9.8.4 is necessary
since gcd changes both arguments. We will not go further into logical
details here but instead rely on our mathematical intuition.

We give three examples for the use of complete induction.

Fact 9.9.2 A list of length n has 2n sublists.

Proof For n = 0, the claim is obvious. For n > 0, the list has the form
x :: l. Every sublist of x :: l now either keeps x or deletes x. A sublist
of x :: l that deletes x is a sublist of l. By complete induction we know
that l has 2n−1 sublists. We now observe that the sublists of x :: l that
keep x are exactly the sublists of l with x added in front. This gives us
that l has 2n−1 + 2n−1 = 2n sublists. �

Note that the proof suggests a function that given a list obtains a
list of all sublists.

Recall that a prime number is an integer greater 1 that cannot be
obtained as the product of two integers greater 1 (§3.4).

Fact 9.9.3 Every integer greater than 1 has a prime factorization.

Proof Let x > 1. If x is prime, then [x] is a prime factorization of x.
Otherwise, x = x1 · x2 with 1 < x1, x2 < x. By complete induction
we have prime factorizations l1 and l2 for x1 and x2. We observe that
l1 @ l2 is a prime factorization of x. �

Note that the proof suggest a function that given a number greater 1
obtains a prime factorization of the number. The function relies on a
helper function that given x > 1 decides whether there are x1, x2 > 1
such that x = x1 · x2.

Fact 9.9.4 (Euclidean division) Let x ≥ 0 and y > 0. Then there
exist a ≥ 0 and 0 ≤ b < y such that x = a · y + b.

Proof By complete induction on x. If x < y, we satisfy the claim with
a = 0 and b = x. Otherwise x ≥ y. By the inductive hypothesis we have
x− y = a · y + b with a ≥ 0 and 0 ≤ b < y. We have x = (a+ 1) · y + b,
which yields the claim. �

Exercise 9.9.5 Declare a prime factorization function following the
proof of Fact 9.9.3.
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Exercise 9.9.6 Declare a division function following the proof of
Fact 9.9.4. Given x and y as required, the function should return a
quotient-remainder pair (a, b) for x and y.

Exercise 9.9.7 Prove fib(n) < 2n by complete induction.

Exercise 9.9.8 Derive mathematical induction from complete induc-
tion.

9.10 Prime Factorization Revisited

We have discussed prime factorization algorithms in §4.15. We now
review the correctness arguments in the light of the formal foundations
we have laid out in this chapter. The verification of the optimized prime
factorization algorithm will require invariants, an important feature we
have not yet seen in this chapter.

We recall two important definitions:

k | x := ∃n. x = n · k k divides x
prime x := x ≥ 2 ∧ ¬∃ k, n ≥ 2. x = k · n

The definitions assume that k and x are natural numbers.
We start with a straightforward prime factorization algorithm:

pfac : N→ L(N)

pfac x :=

[] if x < 2
let k = first (λk. k |x) 2 in k :: pfac (x/k) if x ≥ 2

We first argue the termination of pfac. The linear search realized with
first terminates since x ≥ 2, the search starts with 2, and x divides x.
The linear search yields a k such that 2 ≤ k ≤ x and thus x/k < x.
Thus pfac terminates since it decreases its argument.

We now show

(x < 2 ∧ pfac x = []) ∨ (x ≥ 2 ∧ pfac x is prime fact. of x)

by functional induction on pfac x. The interesting case is x ≥ 2. The
linear search gives us the least prime factor k of x satisfying 2 ≤ k ≤ x.
We have either k < x or k = x. Thus either x/k ≥ 2 or x/k = 1. With
the inductive hypothesis it now follows that k :: pfac (x/k) is the prime
factorization of x.
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Next we consider an optimized prime factorization algorithm:

pfac′ : N→ N→ L(N)

pfac′ k x :=


[x] if k2 > x

k :: pfac′ k (x/k) if k2 ≤ x and k | x
pfac′ (k + 1) x if k2 ≤ x and ¬(k | x)

We would like to show that pfac′ 2 x yields a prime factorization of x if
x ≥ 2. Since k (the counter) is modified upon recursion, it is clear that
pfac′ 2 x cannot be verified by itself and we have to look more generally
at pfac′ k x where the arguments satisfy some safety condition. The
safety condition must be satisfied by the initial arguments and must be
preserved for the recursive calls identified by the defining equations of
pfac′. Safety conditions that are preserved for the recursive calls of a
function are called invariants. Safety conditions act as preconditions
for a function specifying the admissible arguments of the function.

So far, all functions we did correctness proofs for did terminate for
all arguments admitted by the types of the functions. This is not the
case for pfac′, which diverges for x = 1 and k = 1. Thus we need an
invariant for pfac′ ensuring termination. We choose the condition

safe1 k x := 2 ≤ k ≤ x

which is satisfied by the initial arguments and is preserved for both
recursive calls. Thus safe1 is an invariant for pfac′, as required by the
termination argument. Given safe1 k x, termination follows from the
fact that the difference x− k ≥ 0 is decreased upon recursion.

With the invariant safe1 in place, we can use function induction on
pfac′ k x to show that pfac′ k x always yields a factorization of x (that
is, x is the product of the numbers in the list pfac′ k x). Using function
induction, we can also verify that the numbers in the list pfac′ k x appear
in ascending order starting with the number 2.

It remains to show that all numbers in the list pfac′ k x are prime.
For this to be true, the invariant safe1 is not strong enough. To have
this property, we need to ensure that k is a lower bound for all numbers
m ≥ 2 dividing x:

safe2 k x := 2 ≤ k ≤ x ∧ ∀m ≥ 2. m | x→ m ≥ k

It is not difficult to verify that safe2 k x is an invariant for pfac′ k x.
With function induction we can now verify that every number in
pfac′ k x is prime if safe2 k x is satisfied.
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To summarize, the essential new concept we need for the verification
of the optimized prime factorization algorithm are invariants. An invari-
ant is a precondition for the arguments of a function that is preserved
under recursion. The idea then is that a function is only verified for
arguments satisfying the invariant. This way we can exclude arguments
for which the function does not terminate or operations are not defined
(e.g., division or reminder for 0). We may see an invariant for a function
as a refinement of the type of the function. Like the type of a function,
an invariant for a function must be checked for every (recursive) appli-
cation of the function. We may see invariant checking as a refined form
of type checking that in contrast to ordinary type checking often cannot
be done algorithmically.

Running times
Let us look at the running times of pfac x and pfac′ 2x for the case
where x is a prime number. Then pfac′ 2x will increment k starting from
2 until k2 > x and then finish. This give us a running time O(d

√
x e).

On the other hand, pfac x will increment k starting from 2 until x in
the recursion realizing first. This give us a running time O(x). We
conclude that the running time of pfac x is quadratic in the running
time of pfac′ 2x.

Exercise 9.10.1 For each of the recursive applications of pfac′ give the
condition one has to verify to establish safe2 as an invariant.

Exercise 9.10.2 Convince yourself that the proposition safe2 k x is
equivalent to k ≥ 2 ∧ x ≥ 2 ∧ ∀m ≥ 2. m | x→ m ≥ k.

Exercise 9.10.3 Declare the functions pfac and pfac′ in OCaml.

Exercise 9.10.4 Consider the function f : Z→ Z defined as

f(x) := if x = 7 then x else f(x− 1)

Give a predicate p(x) holding exactly for the numbers f terminates on.
Convince yourself that p is an invariant for f .

Exercise 9.10.5 Consider the function f : Z→ Z→ Z defined as

f x y := if x = 0 ∧ y = 27 then x+ y else f(x− 1)(y + 1)

Give an invariant pxy for f holding exactly for the numbers f terminates
on.
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Exercise 9.10.6 Consider the function f : N+ → N→ N defined as

f n k := if k/n = 2 then k else f n (k + 1)

a) Give an invariant p nk for f holding exactly for the numbers f ter-
minates on.

b) Give an invariant p nk for f that is strong enough to show fn 0 = 2·n.
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Arrays are mutable data structures representing computer memory
within programming languages. The mutability of arrays is in contrast
to the immutability of values (e.g., numbers, lists). Mutability is an
intrinsic aspect of physical objects while immutability is a characteristic
feature of mathematical objects (a clock changes its state, but a number
has no state that could change).

Arrays are made available through special values acting as names and
through operations acting on arrays identified by array values. Due to
their mutability, arrays don’t have a direct mathematical representation,
making functions using arrays more difficult to reason about.

10.1 Basic Array Operations

Arrays may be described as fixed-length mutable sequences with
constant-time field access and update.

x0 · · · xn−1

0 n−1

The length and the element type of an array are fixed at allocation time
(the time an array comes into existence). The fields or cells of an array
are boxes holding values known as elements of the array. The fields
are numbered starting from 0. One speaks of the indices or positions
of an array. The key difference between lists and arrays is that arrays
are mutable in that the values in their fields can be overwritten by
an update operation. Arrays are represented by special array values
acting as immutable names for the mutable array objects in existence.
Each time an array is allocated in the computer’s memory, a fresh name
identifying the new array is chosen.

OCaml provides arrays through the standard structure Array. The
operation

Array.make : ∀α. int → α→ array(α)

allocates a fresh array of a given length where all fields are initialized
with a given value. An array type has the form array(t) and covers all
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arrays whose elements have type t, no matter what the length of the
array is. There is also a special constructor type unit

unit ::= ()

with a single constructor () serving as target type of the array update
operation. There are access and update operations for the fields of an
array:

Array.get : ∀α. array(α)→ int → α

Array.set : ∀α. array(α)→ int → α→ unit

An operation Array.get a i yields the ith element of a (i.e., the value in
the ith field of the array a), and an operation Array.set a i x updates
the ith element of a to x (i.e., the value in the ith field of the array a is
replaced with the value x). Both operations raise an invalid argument
exception

Exception: Invalid_argument "index out of bounds"

if the given index is not admissible for the given array.
OCaml supports convenient notations for field access and field up-

date:

e1.(e2)  Array.get e1 e2

e1.(e2)← e3  Array.set e1 e2 e3

Let’s step through a first demo:

1 let a = Array.make 3 7
2 let v_before = a.(1)
3 let _ = a.(1) <- 5
4 let v_after = a.(1)

The 1st declaration allocates an array a whose initial state is [7, 7, 7].
The 2nd declaration binds the identifier v before to 7 (the 1st element
of a at this point). The 3rd declaration updates a to the state [7, 5, 7].
The 4th declaration binds the identifier v after to 5 (the 1st element
of a at this point). Note that the identifier v before is still bound to 7.

There is also a basic array operation that yields the length of an
array:

Array.length : ∀α. array (α)→ int

As a convenience, OCaml offers the possibility to allocate an array
with a given initial state:
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let a = [|1;2;3|]

This declaration binds a to a new array of length 3 whose fields hold the
values 1, 2, 3. The declaration may be seen as derived syntax for

let a = Array.make 3 1
let _ = a.(1) <- 2
let _ = a.(2) <- 3

Sequentializations
OCaml offers expressions of the form

e1; e2

called sequentializations, which execute e1 before e2 and yield the
value of e2. The value of e1 is ignored. The reason e1 is executed is that
it may update an array, a so-called side effect. OCaml issues a warning
in case the type of e1 is not unit. We can now write the expression

let a = Array.make 3 1 in a.(1) <- 2; a.(2) <- 3; a

to explain the expression [|1; 2; 3|]. We remark that the sequentialization
operator e1; e2 is treated as a right-associative operator so that iterated
sequentializations e1; . . . ; en can be written without parentheses.

Sequentializations may be considered as a derived form that can be
expressed with a let expression let = e1 in e2.

10.2 Conversion between Arrays and Lists

The state of an array can be represented as a list, and given a list,
one can allocate a fresh array whose state is given by the list. OCaml
provides the conversions with two predefined functions:

Array.to list : ∀α. array(α)→ L(α)
Array.of list : ∀α. L(α)→ array(α)

At this point we need to say that OCaml provides an immutable empty
array for every element type (i.e., an array of length 0 with no fields).

The conversion from arrays to lists can be defined with the operations
Array.length and Array.get:

let to_list a =
let rec loop i l =

if i < 0 then l else loop (i-1) (a.(i)::l)
in loop (Array.length a - 1) []
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The loop function shifts a pointer i from right to left through the array
and collects the values in the scanned field in a list l.

The conversion from lists to arrays can be defined with the operations
Array.make and Array.set:
let of_list l =

match l with
| [] -> [||]
| x::l ->

let a = Array.make (List.length l + 1) x in
let rec loop l i =

match l with
| [] -> a
| x::l -> (a.(i) <- x; loop l (i + 1))

in loop l 1

Here the loop function recurses on the list and shifts a pointer from left
to right through the array to copy the values from the list into the array.
There is the subtlety that given an empty list we can obtain the cor-
responding empty array only with the expression [| |] since Array.make
requires a default value even if we ask for an empty array. Thus we
consider [| |] as a native constant rather than a derived form. In fact,
the empty array [| |] is an immutable value.

Note that the worker functions in both conversion functions are tail-
recursive. We reserve the identifier loop for tail-recursive worker func-
tions.

Exercise 10.2.1 (Cloning)
Declare a function ∀α. array(α) → array(α) cloning arrays. Make sure
your function also works for empty arrays. OCaml offers a cloning func-
tion as Array.copy.

Exercise 10.2.2 OCaml offers a predefined function Array.init such
that Array.init n f allocates an array with initial state List.init n f .
Declare such an init function for arrays using neither List.init nor
Array.of list. Use only tail recursion.

Exercise 10.2.3 Declare a function that yields the sum of the elements
of an array over int.

10.3 Binary Search

Given a sorted array a and a value x, one check whether x occurs in a

with a running time that is at most logarithmic in the length of the
array. The trick is to check whether the value in the middle of the array
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is x, and in case it is not, continue with either the left half or the right
half of the array. The calculation of the running time assumes that field
access is constant time, which is the case for arrays. One speaks of
binary search to distinguish the algorithm from linear search, which has
linear running time.1 We have seen binary search before in generalized
form (§8.5).

Binary search is usually realized such that in the positive case it
returns an index where the element searched for occurs.

To ease the presentation of binary search and related algorithms, we
work with a three-valued constructor type

type comparison = LE | EQ | GR

and a polymorphic comparison function

let comp x y : comparison =
if x < y then LE
else if x = y then EQ else GR

The binary search function

bsearch : ∀α. array(α)→ α→ O(N)

can now be declared as follows:

let bsearch a x : int option =
let rec loop l r =

if l > r then None
else let m = (l+r)/2 in

match comp x a.(m) with
| LE -> loop l (m-1)
| EQ -> Some m
| GR -> loop (m+1) r

in loop 0 (Array.length a - 1)

Note that the worker function loop is tail-recursive and that the segment
of the array to be considered is at least halved upon recursion.

Binary search satisfies two invariants:
1. The state of the array agrees with the initial state (that is, remains

unchanged).
2. All elements to the left of l are smaller than x and all elements to

the right of r are greater than x.
Given the invariants, the correctness of bsearch is easily verified.

1Linear search generalizes binary search in that it doesn’t assume the array is sorted.
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Exercise 10.3.1 (Linear search) Declare a function

lsearch : ∀α. array(α)→ α→ O(N)

that checks whether a value occurs in an array and in the positive case
yields an index where the value occurs. The running time of lsearch
should be O(n) where n is the length of the array.

Exercise 10.3.2 (Binary search for increasing functions)
Declare a function

search : ∀α. (N→ α)→ N→ α→ O(α)

that given an increasing function f , a number n, and a value x, checks
whether there is some i ≤ n such that f(i) = x using at most O(logn)
calls of f . A function f is increasing if f(i) ≤ f(j) whenever i ≤ j.

10.4 Reversal

There is an elegant algorithm reversing the elements of an array in time
linear in the length of the array. The algorithm is based on a function

swap : ∀α. array(α)→ N→ N→ unit

swapping the values at two given positions of a given array:
let swap a i j : unit =

let x = a.(i) in a.(i) <- a.(j); a.(j) <- x

The algorithm now reverses a segment i < j in an array by swapping the
values at i and j and continuing with the smaller segment (i+ 1, j − 1):

let reverse a : unit =
let rec loop i j =

if i > j then ()
else (swap a i j; loop (i+1) (j-1))

in loop 0 (Array.length a - 1)

One may see i and j as pointers to fields of the array that are moved
inside from the leftmost and the rightmost position.

Function reverse satisfies two invariants:
1. The state of the array agrees with the initial state up to repeated

swapping.
2. The segments l ≤ i and j ≤ r agree with the reversed initial state.
Exercise 10.4.1 Declare a function rotate : ∀α. array(α)→ unit ro-
tating the elements of an array by shifting each element by one position
to the right except for the last element, which becomes the new first
element. For instance, rotation changes the state [1, 2, 3] of an array to
[3, 1, 2].
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10.5 Sorting

A naive sorting algorithm for arrays is selection sort: To sort a segment
i < j, one swaps the least element of the segment into the first position
of the segment and then continues sorting the smaller segment i+1 ≤ j.
let ssort a : unit =

let r = Array.length a - 1 in
let rec min k j : int =

if k >= r then j
else if a.(k+1) < a.(j) then min (k+1) (k+1)
else min (k+1) j

in let rec loop i : unit =
if i >= r then ()
else (swap a (min i i) i; loop (i+1))

in loop 0

Function ssort satisfies the following invariants:
1. The state of the array agrees with the initial state up to repeated

swapping.
2. The segment 0 < l is sorted.
3. Every element of the segment 0 < l is less or equal than every element

of the segment l ≤ r.
4. The element at j is the least element of the segment i ≤ k.

The running time of selection sort is quadratic in the length of the
array. Note that the two worker functions min and loop use only tail
recursion.

A prominent sorting algorithm for arrays is quick sort. The top
level of quick sort is reminiscent of merge sort: Quick sort partitions an
array into two segments using swapping, where all elements of the left
segment are smaller than all elements of the right segment. It then sorts
the two segments recursively.

let qsort a =
let partition l r = · · · in
let rec qsort' l r =

if l >= r then ()
else let m = partition l r in

qsort' l (m-1); qsort' (m+1) r
in qsort' 0 (Array.length a - 1)

Given l < r, partition yields m such that l < m < r and
1. a.(i) < a.(m) for all i such that l ≤ i ≤ m− 1
2. a.(m) ≤ a.(i) for all i such that m+ 1 ≤ i ≤ r
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It is easy to verify that qsort terminates and sorts the given array if
partition has the properties specified. Moreover, if partition splits a
segment in two segments of the same size (plus/minus 1) and runs in
linear time in the length of the given segment, the running time of qsort
is O(n logn) (following the argument for merge sort).

We give a simple partitioning algorithm that chooses the rightmost
element of the segment as pivot element that will be swapped to the
dividing position m once it has been determined:

let partition l r =
let x = a.(r) in
let rec loop i j =

if j < i
then (swap a i r; i)
else if a.(i) < x then loop (i+1) j
else if a.(j) >= x then loop i (j-1)
else (swap a i j; loop (i+1) (j-1))

in loop l (r-1)

The function expects a segment l < r in a and works with two pointers i
and j initialized as l and r−1 and satisfying the following invariants for
the pivot element x = a.(r) :
1. l ≤ i ≤ r and l − 1 ≤ j < r

2. a.(k) < x for all positions k left of i (meaning l ≤ k < i)
3. x ≤ a.(k) for all postions k right of j (meaning j < k ≤ r)
The situation may be described with the following diagram:

· · · · · · · · · x

l i→ ← j r

< x ≥ x

The pointers are moved further inside the segment as long as the in-
variants are preserved. If this leads to j < i, the dividing position is
chosen as i and the elements at i and r are swapped. If i ≤ j, we have
a.(j) < x and x ≤ a.(i). Now the elements at i and j are swapped and
both pointers are moved inside by one position.

The partitioning algorithm is subtle in that it cannot be understood
without the invariants. The algorithm moves the pointers i and j inside
where the moves must respect the invariants and the goal is j < i. There
is one situation where a swap preserves the invariants and enables a move
of both i and j. As long as i ≤ j, a move is always possible.

The given partitioning algorithm may yield an empty segment and
a segment only by one position shorter than the given segment, which
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means that the worst case running time of qsort will be quadratic. Bet-
ter partitioning algorithms can be obtained by first swapping a cleverly
determined pivot element into the rightmost position of the given seg-
ment.

Exercise 10.5.1 Declare a function sorted : ∀α. array(α)→ B that
checks whether an array is sorted. Do not convert to lists. Also write a
function that checks whether an array is strictly sorted (i.e., sorted and
no element occurring twice).

Exercise 10.5.2 Declare functions that for a nonempty array yield an
index such that the value at the index is minimal (or maximal) for the
array.

Exercise 10.5.3 Declare a variant of selection sort swapping the great-
est element to the right.

Exercise 10.5.4 (Quick sort with middle element as pivot)
The performance of quick sort for sorted arrays can be dramatically
improved by swapping the middle and the rightmost element before
partitioning (thus making the middle element the pivot). Realize the
improved quick sort algorithm in OCaml and check the performance
claim for the array Array.init 100000 (λi.i).

Exercise 10.5.5 (Quick sort with median-of-three pivots)
Some implementations of quick sort choose the pivot as the median of
the leftmost, middle, and rightmost element of the segment (the median
of three numbers is the number that is in the middle after sorting).
This can be realized by swapping the median into the rightmost position
before the actual partition starts.
a) A segment in an array has the median property if the rightmost

element of the segment is the median of the leftmost, middle, and
rightmost element of the segment. Declare a function ensure median
that given an array and a nonempty segment establishes the median
property by possibly swapping two elements.
Hint: The necessary case analysis as amazingly tricky. Do a naive
case analysis whether the leftmost or the rightmost or the middle
element is the median using lazy boolean connectives.

b) Declare a quick sort function where partition establishes the median
property before it partitions.
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10.6 Equality for Arrays

OCaml’s polymorphic equality test

= : ∀α. α→ α→ B

considers two arrays as equal if their states are equal. However, different
arrays may have the same state. There is a second polymorphic equality
test

== : ∀α. α→ α→ B

testing the equality of two array values without looking at their state:
let a = Array.make 2 1
let b = Array.make 2 1
let test2 = (a = b) (* true *)
let test1 = (a == b) (* false *)
let test3 = (a.(1) <- 2; a=b) (* false *)
let test4 = (a.(1) <- 1; a=b) (* true *)

We will refer to = as structural equality and to == as physical
equality. The name physical equality refers to the fact that the operator
== when applied to arrays tests whether they are the same physical
object (i.e., are stored at the same address in the computer memory). For
arrays and other mutable objects, physical equality implies structural
equality. We will consider physical equality only for arrays.

10.7 Execution Order

As soon as mutable objects are involved, the order in which expressions
and declarations are executed plays an important role. Consider for
instance a get and a set operation on the field of an array. If the get
operation is executed before the set operation, one gets the old value of
the field, while if the set operation is executed before the get operation,
one gets the new value of the field.

Like most programming languages, OCaml fixes the execution order
only for certain expressions:
• Given e1; e2, subexpression e1 is executed before e2.
• Given let e1 in e2, subexpression e1 is executed before e2.
• Given if e1 then e2 else e2, subexpression e1 is executed before e2

or e3, and only one of the two is executed.
In contrast, the execution order of operator applications e1 o e2, func-
tion applications e0 e1 . . . en, and tuple expressions (e1, . . . , en) is not
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fixed and the interpreter can choose which order it realizes. This design
decision gives compilers2 more freedom in generating efficient machine
code.

You can find out more about the execution order your interpreter
realizes by executing the following declarations:

1 let test = invalid_arg "1" + invalid_arg "2"
2 let test = (invalid_arg "1", invalid_arg "2")
3 let test = (invalid_arg "1"; invalid_arg "2")

Depending on the execution order, the declarations raise different ex-
ceptions.

We remark that execution order as we discuss it here is only observ-
able through side effects (i.e., raised exceptions and array updates).

One distinguishes between pure and impure functional lan-
guages. Exceptions, mutable objects, and physical equality make func-
tional languages impure. Pure functional languages are very close to
mathematical constructions, while impure functional languages integrate
mutable objects, exceptions, and aspects concerning their implementa-
tion on computers.

10.8 Cells

OCaml provides single field arrays called cells using a type family ref (t)
and three operations:

ref : ∀α. α→ ref (α) allocation
! : ∀α. ref (α)→ α dereference

:= : ∀α. ref (α)→ α→ unit assignment

The allocation operation ref creates a new cell initialized with a value
given; the dereference operation ! yields the value stored in a cell; and
the assignment operation := updates a cell with a given value (i.e., the
value in the cell is replaced with a given value). Cell values (i.e., the
names of cells) are called references.

With cells we can declare a function

next : unit → int

that counts how often it was called:

let c = ref 0
let next () = (c := !c + 1; !c)

2A compiler is a tool translating programs in a high-level language (e.g., OCaml)
into machine language.
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Now the declarations
1 let test1 = next () 1
2 let test2 = (next (), next ()) (3, 2)
3 let test3 = next () + next () + next () 15

bind their identifiers to the values given at the right. The second dec-
laration assumes that the tuple expressions is executed from right to
left.

We will see the function next as a stateful enumerator of the sequence
1, 2, 3, . . . . We can change the declaration of next such that the function
encapsulates the cell storing its state:

let next = let c = ref 0 in
fun () -> (c := !c + 1; !c)

This version is preferable for situations where only next is supposed to
manipulate its state.
Exercise 10.8.1 Declare a function newEnum : unit → unit → int
such that newEnum () yields a function enumerating 1, 2, 3, . . . . Make
sure that each call newEnum () yields a fresh enumerator function start-
ing from 1.

Exercise 10.8.2 Declare a function unit → int that enumerates the
square numbers 0, 1, 4, 9, 16, . . . .

Exercise 10.8.3 Declare a function unit → int that enumerates the
factorials 1, 1, 2, 6, 24, 120, . . . .

Exercise 10.8.4 Declare a function unit → int that enumerates the
Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . .
Exercise 10.8.5 Complete the declaration of next such that

let next = · · ·
let x = next ()
let y = next () + next () + next ()

binds x to 2 and y to 28.
Exercise 10.8.6 (Enumerator with reset function)
Declare a function

unit → (unit → int)× (unit → unit)

that on each application yields a pair consisting of an enumerator for
1, 2, 3 . . . and a function resetting the enumerator to 1.

Exercise 10.8.7 Implement cells with arrays using the identifiers cell,
alloc, get, and set.
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10.9 Mutable Objects Mathematically

Mutable objects don’t have a direct mathematical representation. What
we can do is represent the state of a mutable object as an immutable
value. The other aspect of an immutable object we can represent math-
ematically is a name fixing its identity. We may then describe the allo-
cation of a mutable object as choosing a fresh name (a name that has
not been used so far) and an initial state associated with this name. We
thus represent the state of an object as a pair consisting of the name of
the object and the current state of the object. As names we may use
natural numbers.
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In this chapter we consider array-based data structures known as stacks,
queues, and heaps that are essential for machine-oriented programming.
We explain how values of constructor types are stored in heaps using
linked blocks, thus providing a first model for the space consumption
of OCaml functions. We implement the data structures studied in this
chapter using structure and signature declarations, two OCaml features
we have not seen so far.

11.1 Structures and Signatures

OCaml offers a facility to bundle declarations into a structure and
to restrict the visibility of the declarations with a signature. As a
straightforward example we consider a signature and a structure for
cells. We declare the signature as follows:

module type CELL = sig
type 'a cell
val make : 'a -> 'a cell
val get : 'a cell -> 'a
val set : 'a cell -> 'a -> unit

end

The keywords in the first line are explained by the fact that OCaml refers
to structures also as modules, and to signatures also as module types.
We also note that the signatures CELL keeps the type constructor cell
abstract, making it possible to give different implementations for cells.

An obvious implementation of the signature CELL would just mirror
OCaml’s native cells. For the purpose of demonstration, we choose an
implementation of CELL with arrays of length 1. We realize the imple-
mentation with a declaration of a structure Cell realizing the signature
CELL.

module Cell : CELL = struct
type 'a cell = 'a array
let make x = Array.make 1 x
let get c = c.(0)
let set c x = c.(0) <- x

end
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There is type checking that ensures that the structure implements the
fields the signature requires with the required types. Before checking
compliance with the signature, the declarations of the structure are
checked as if they would appear at the top level.

Once the structure Cell is declared, we can use its fields with the dot
notation:

let enum = let c = Cell.make 0 in
fun () -> let x = Cell.get c in Cell.set c (x+1); x

The declaration gives us an enumerator function for 0, 1, 2, . . . .

Exercise 11.1.1 Implement the signature CELL with OCaml’s prede-
fined reference cells.

Exercise 11.1.2 Arrays can be implemented with cells and lists. De-
clare a signature with a type family array(α) and the operations make,
get, set, and length, and implement the signature with a structure not
using arrays. We remark that expressing arrays with cells and lists comes
at the expense that get and set cannot be realized as constant-time op-
erations.

11.2 Stacks and Queues

An agenda is a mutable data structure holding a sequence of values
called entries. The entries are entered into the agenda one after the
other, and the sequence reflects the order in which the entries were
entered. Depending on the kind of agenda, there are specific operations
for inspecting and deleting entries.

Two prominent kinds of agendas are stacks and queues. A stack
realizes a last-in-first-out (LIFO) policy, where only the most recent
entry can be removed.

· · · ←→
↓

↓

A queue realizes a first-in-first-out (FIFO) policy, where only the oldest
entry can be removed.

· · · −→
↓

↓
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We may think of a stack as oscillating at the right getting larger and
smaller with insertion and removal, and of a queue as moving to the
right with insertion and as shrinking at the left with removal.

For stacks we may have the signature

module type STACK = sig
type 'a stack
val make : 'a -> 'a stack
val push : 'a stack -> 'a -> unit
val pop : 'a stack -> unit
val top : 'a stack -> 'a
val height : 'a stack -> int

end

and the implementation

module Stack : STACK = struct
type 'a stack = 'a list ref
exception Empty
let make x = ref [x]
let push s x = s:= x :: !s
let pop s = match !s with

| [] -> raise Empty
| _::l -> s:= l

let top s = match !s with
| [] -> raise Empty
| x::_ -> x

let height s = List.length (!s)
end

The operation make allocates a stack with a given single element. One
says that push puts an additional element on the stack, pop removes
the topmost element of the stack, top yields the topmost element of the
stack, and height yields the height of the stack.

A stack may become empty after sufficiently many pop operations.
Note that the structure Stack declares an exception Empty that is raised
by pop if applied to an empty stack.

We require that make is given an initial element so that the element
type of the stack is fixed. Alternatively one can have a make operation
that throws away the given element.

For queues we may have the signature
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module type QUEUE = sig
type 'a queue
val make : 'a -> 'a queue
val insert : 'a queue -> 'a -> unit
val remove : 'a queue -> unit
val first : 'a queue -> 'a
val length : 'a queue -> int

end

and the implementation
module Queue : QUEUE = struct

type 'a queue = 'a list ref
exception Empty
let make x = ref [x]
let insert q x = q:= !q @ [x]
let remove q = match !q with

| [] -> raise Empty
| _::l -> q:= l

let first q = match !q with
| [] -> raise Empty
| x::_ -> x

let length q = List.length (!q)
end

The operation make allocates a queue with a given single element. One
says that insert appends a new element to the queue, remove removes
the first element of the queue, first yields the first element of the queue,
and length yields the length of the queue.

As it comes to efficiency, our naive implementations of stacks and
queues can be improved. For queues, one would like that insert takes
constant time rather than linear time in the length of the queue.

11.3 Array-Based Stacks

We will now realize a stack with an array. The elements of the stack are
written into the array, and the height of stack is bounded by the length
of the array. This approach has the advantage that a push operation
does not require new memory but reuses space in the existing array.
Such memory-aware techniques are important when data structures are
realized close to the machine level.

We will realize a bounded stack with a structure and a single array.
To make this possible, we fix the element type of the stack to machine
integers. We declare the signature
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module type BSTACK = sig
val empty : unit -> bool
val full : unit -> bool
val push : int -> unit
val pop : unit -> unit
val top : unit -> int

end
and realize the stack with the following structure:
module S : BSTACK = struct

let size = 100
let a = Array.make size 0
let h = ref 0 (* height of stack *)
exception Empty
exception Full
let empty () = !h = 0
let full () = !h = size
let push x = if full() then raise Full else (a.(!h) <- x; h:= !h + 1)
let pop () = if empty() then raise Empty else h:= !h - 1
let top () = if empty() then raise Empty else a.(!h -1)

end
The height of the stack will oscillate in the array depending on the

push and pop operations executed. If the size of the array is exhausted,
the exception Full will be raised.

Note that with the structure approach stacks are realized as struc-
tures. Since structures are not values, structures cannot be passed as
arguments to functions nor can they be the result of functions.

Note that all operations of bounded stacks are constant time.

Exercise 11.3.1 (Array-based stacks as values)
Array-based stacks can also be represented as values combining an array
with a cell holding the current height of the stack. Modify the signature
Stack from §11.2 such that make takes the maximal height of the stack
object to be allocated as argument, and implement the signature with
a structure such that all operations but make are constant time. Note
that this approach provides a family of stack types where the element
type can be freely chosen.

Exercise 11.3.2 Assume a structure S : BSTACK .
a) Declare a function toList : unit → L(int) that yields the state of the

stack S as a list with the most recent entry appearing first.
b) Declare a function ofList : L(int)→ unit that updates the state of

the stack S to the sequence given by the list.
Use only operations declared in the signature BSTACK . OCaml’s type
checking will ensure this if S is declared with signature BSTACK .
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As an interesting variant, extend the signature BSTACK with the
operations toList and ofList so that they can be implemented within the
structure with constant running time.

Exercise 11.3.3 Extend signature BSTACK and structure S with an
operation height : unit → int that yields the current height of the stack.

11.4 Circular Queues

Similar to what we have seen for stacks, length-bounded queues can be
realized within arrays. This time we use the signature

module type BQUEUE = sig
val empty : unit -> bool
val full : unit -> bool
val insert : int -> unit
val remove : unit -> unit
val first : unit -> int

end

and implement it with the structure
module Q : BQUEUE = struct

let size = 100
let a = Array.make size 0
let s = ref 0 (* position of first entry *)
let l = ref 0 (* number of entries *)
exception Empty
exception Full
let empty () = !l = 0
let full () = !l = size
let pos x = x mod size
let insert x = if full() then raise Full

else (a.(pos(!s + !l)) <- x; l:= !l + 1)
let remove () = if empty() then raise Empty

else (s:= pos (!s + 1); l:= !l - 1)
let first () = if empty() then raise Empty else a.(!s)

end

As with stacks, there is no recursion and all operations are constant
time. This time we represent the queue with an array and two cells
holding the position of the first entry and the number of entries in the
queue. To fully exploit the capacity of the array, the sequence of entries
may start at some position of the array and continue at position 0 of the
array if necessary. This way the sequence of entries can move through
the array as if the array was a ring. Technically, this is realized with the
constant-time remainder operation.
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The ring implementation of queues described above is known as a
circular buffer or as a ring buffer.

Exercise 11.4.1 (Array-based queues as values)
Similar to what we have seen for stacks in Exercise 11.3.1, array-based
queues can be represented as values combining an array with two cells
holding the position of the first entry and the number of entries in the
queue. Modify the signature Queue from §11.2 such that make takes
the maximal length of the queue object to be allocated as argument,
and implement the signature with a structure such that all operations
but make are constant time.

Exercise 11.4.2 Assume a structure Q : BQUEUE .
a) Declare a function toList : unit → L(int) that yields the state of the

queue Q as a list with the most recent entry appearing first.
b) Declare a function ofList : L(int)→ unit that updates the state of

the queue Q to the sequence given by the list.
Use only operations declared in the signature BQUEUE . OCaml’s type
checking will ensure this if Q is declared with signature BQUEUE .

As an interesting variant, extend the signature BQUEUE with the
operations toList and ofList so that they can be implemented within the
structure with constant running time.

11.5 Block Representation of Lists in Heaps

Values of constructor types like lists, AB-trees, and expressions must be
stored in computer memory. We demonstrate the underlying technique
by showing how values of constructor types can be represented in an
array-based data structure called a heap.

A heap is an array where mutable fixed-length sequences of machine
integers called blocks are stored. For instance, the list

[10, 11, 12]

may be stored with three blocks connected through links:

10 11 12 −1
0 12 34 5

Each of the 3 blocks has two fields, where the first field represents a
number in the list and the second field holds a link, which is either a
link to the next block or −1 representing the empty list. The numbers
below the fields are the indices in the array where the fields are allocated.
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The fields of a block are allocated consecutively in the heap array. The
address of a block is the index of its first field in the heap array. Links
always point to blocks and are represented through the addresses of the
blocks. Thus the above linked block representation of the list [10, 11, 12]
is represented with the following segment in the heap:

12 −1 11 0 10 2 · · ·
0 1 2 3 4 5

Note that the representation of the empty list as −1 is safe since the
addresses of blocks are nonnegative numbers (since they are indices of
the heap array).

Given a linked block representation of a list

10 11 12 −1

we can freely choose where the blocks are allocated in the heap. There
is no particular order to observe, except that the fields of a block must
be allocated consecutively. We might for instance choose the following
addresses:

10 11 12 −1
95 9662 63104 105

It is also perfectly possible to represent circular lists like

1 2

We emphasize that mathematical lists cannot be circular. It is a con-
sequence of the physical block representation that circular lists come
into existence. Lists as they appear with the block representation are
commonly called linked lists.

Exercise 11.5.1 How many blocks and how many fields are required to
store the list [1, 2, 3, 4] in a heap using the linked block representation?

11.6 Realization of a Heap

We will work with a heap implementing the signature

module type HEAP = sig
type address = int
type index = int
val alloc : int -> address
val get : address -> index -> int
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val set : address -> index -> int -> unit
val release : address -> unit

end

The function alloc allocates a new block of the given length in the heap
and returns the address of the block. Blocks must have at least length 1
(that is, at least one field). The function get yields the value in the field
of a block, where the field is given by its index in the block, and the
block is given by its address in the heap. The function set replaces the
value in the field of a block. Thus we may think of blocks as mutable
objects. The function release is given the address of an allocated block
and deallocates this block and all blocks allocated after this block. We
implement the heap with the following structure:

module H : HEAP = struct
let maxSize = 1000
let h = Array.make maxSize (-1)
let s = ref 0 (* current size of heap *)
exception Address
exception Full
type address = int
type index = int
let alloc n = if n < 1 then raise Address

else if !s + n > maxSize then raise Full
else let a = !s in s:= !s + n; a

let check a = if a < 0 || a >= !s then raise Address else a
let get a i = h.(check(a+i))
let set a i x = h.(check(a+i)) <-x
let release a = s:= check a

end

Note that we use the helper function check to ensure that only allocated
addresses are used by set, get, and release. The exception address signals
an address error that has occurred while allocating or accessing a block.

Given the heap H, we declare a high-level allocation function

alloc′ : L(int)→ address

allocating a block for a list of integers:

let alloc' l =
let a = H.alloc (List.length l) in
let rec loop l i = match l with

| [] -> a
| x::l -> H.set a i x; loop l (i+1)

in loop l 0
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Note that the low level allocation function ensures that an allocation
attempt for the empty list fails with an address exception.

It is now straightforward to declare a function

putlist : L(int)→ address

allocating a linked block representation of a given list in the heap:

let rec putlist l = match l with
| [] -> -1
| x::l -> alloc' [x; putlist l]

Next we declare a function

getlist : address → L(int)

that given the address of the first block of a list stored in the heap
recovers the list as a value:

let rec getlist a =
if a = -1 then []
else H.get a 0 :: getlist (H.get a 1)

Note that putlist and getlist also work for the empty list. We have

getlist (putlist l) = l

for every list l whose block representation fits into the heap.

Exercise 11.6.1 Given an expression allocating the list [1, 2, 3] in the
heap H.

Exercise 11.6.2 Given an expression allocating a circular list [1, 2, . . . ]
as shown in §11.5 in the heap H.

Exercise 11.6.3 Declare a function that given a number n > 0 allo-
cates a cyclic list [1, 2, . . . , n, . . .] in the heap H.

Exercise 11.6.4 Declare a function that checks whether a linked list
in the heap H is circular.

11.7 Block Representation of AB-Trees

Block representation works for constructor types in general. The idea
is that a constructor application translates into a block holding the ar-
guments of the constructor application. If there are no arguments, we
don’t need a block and use a negative number to identify the nullary
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constructor. If there are arguments, we use a block having a field for
every argument. If there are several constructors taking arguments, the
blocks will also have a tag field holding a number identifying the con-
structor. This will work for constructor types where the arguments of
the constructors are either numbers, booleans, or values of constructor
types.

As example we consider AB- and ABC-trees (§5.2 and §5.5). For AB-
trees we don’t need a tag field since there is only one constructor taking
arguments. Thus the block representation of AB-trees is as follows:

1. A tree A is represented as −1.
2. A tree B(t1, t2) is represented as a block with 2 fields carrying the

addresses of t1 and t2.

For instance, the block representation of the treeB(B(A,A), B(A,A))
looks as follows:

−1 −1

−1 −1

At this point we may ask why in the tree B(A,A) is represented with
two boxes rather than just one:

−1 −1

In fact, if the boxes represent immutable values, there is no need for
this double allocation. One says that the more compact representation
realizes structure sharing. For the maximal tree of depth 3

B( B(B(A,A), B(A,A)) , B(B(A,A), B(A,A)))

the naive representation and the representation with maximal structure
sharing look as follows:

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

We now see that the block representation with no structure sharing is ex-
ponentially larger than the block representation with maximal structure
sharing.
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Exercise 11.7.1 Consider the ABC-tree

B( C(A,B(A,A)), B(A,A))

with a block representation employing the tags 0 and 1 for the construc-
tors B and C.
a) Draw a block representation without structure sharing.
b) Draw a block representation with structure sharing.
c) Give an expression allocating the tree with structure sharing.

Exercise 11.7.2 Declare functions such that getTree (putTree t) = t

holds for all AB-trees that fit into the heap.

Exercise 11.7.3 ABC-trees can be stored in a heap by a repre-
senting trees of the forms B(t1, t2) and C(t1, t2) with blocks with
three fields, where two fields hold the subtrees and the additional
tag field says whether B or C is used. Declare functions such that
getTree (putTree t) = t holds for all ABC-trees t that fit into the heap.

11.8 Structure Sharing and Physical Equality

An OCaml interpreter stores the values of constructor types it computes
with in a heap using a block representation, and physical equality (§10.6)
of values of constructor types is equality of heap addresses. If we use
the function (§8.6)

let rec mtree n =
if n < 1 then A
else let t = mtree (n-1) in B(t,t)

to obtain the maximal AB-tree of depth n, we are guaranteed to obtain
a heap representation with maximal structure sharing whose size O(n).
On the other hand, the function

let rec mtree' n =
if n < 1 then A else B(mtree (n-1), mtree (n-1))

will construct a heap representation without structure sharing whose
size is O(2n). Thus mtree′ is naive in that it takes exponential space
and exponential time where linear space and linear time would suffice.
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Exercise 11.8.1 Consider the block representation of AB-trees in the
heap H.
a) Declare a function that writes the maximal AB-tree of depth n into

the heap such that running time and space consumption in the heap
are linear in the depth.

b) Declare a function that reads AB-trees from a heap preserving struc-
ture sharing between subtrees that are siblings (as in B(t, t)). On the
heap representations of the trees obtained with the function from (a)
your function should only use linear time in the depth of the tree.

c) Using physical equality, you can find out in constant time whether
two AB-trees in OCaml have the same heap representation. Declare
a function writing AB-trees into the heap such that structure sharing
between sibling subtrees in OCaml is preserved. Test your function
with mtree′.
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The 2021 iteration of the course came with 3 written exams:
• A midterm exam of 90 minutes on December 11, 2021.
• An endterm exam of 120 minutes on February 26, 2022.
• A late endterm exam of 120 minutes on March 26, 2022.
To pass the course, students had to score 50% in one of the two endterm
exams. To participate in the endterm exams, students had to score 50%
in the midterm exam. In addition, students had to score enough points
in the weekly tests and the Mini-OCaml project.

Below we give the problems of the exams of the 2021 iteration so that
future instructors and students can get an idea what we expect students
learn in the course.

The course presents more topics than can be covered in the exams.
Students don’t know which topics are chosen for the exams. Important
topics missing in the exams shown here are binary search, parsing of
infix operators, and the quick sort algorithm for arrays.

Midterm

First 8P
Declare a function foo that for a non-negative integer x yields the largest
number n such that n3 ≤ x. For instance, foo (26) = 2 and foo (27) = 3.
Fibonacci numbers with iteration 8P
Recall the sequence of Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8. . . . . Using
iteration, declare a function fib that for n ≥ 0 yields the nth Fibonacci
number. For instance, fib(0) = 0, fib(1) = 1, and fib(4) = 3. Hint:
fib(n+ 2) = fib(n) + fib(n+ 1).
List reversal 8P
Declare a polymorphic function rev reversing lists. For instance,
rev [1, 2, 3] = [3, 2, 1]. Use only tail recursion. Do not use list con-
catenation @ .
List construction 8P
Declare a polymorphic function init : ∀α. N → (N → α) → L(α) such
that init n f = [f(0), . . . , f(n − 1)]. For instance, init f 0 = [] and
init f 2 = [f(0), f(1)]. Use only tail recursion.
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Decimal representation 8P
Declare a function dec that yields the decimal representation of a number
as a list. For instance, dec(456) = [4, 5, 6] and dec(0) = [].
Prime factorization 8P
Declare a function pfac that yields the prime factorization of a number
x ≥ 2 as a list. For instance, pfac(60) = [2, 2, 3, 5].

Insertion sort 8P
Declare a polymorphic function sort sorting lists following the insertion
sort algorithm. For instance, sort [5, 3, 2, 3, 2] = [2, 2, 3, 3, 5].
List prefixes 8P
Declare a polymorphic function pre that given a list yields a list
containing all prefixes of the list. For instance, pre [1, 2, 3] =
[[], [1], [1, 2], [1, 2, 3]].
AB-tree construction 8P
Declare a function ctree that for a number n ≥ 0 yields an AB-tree of
depth n and size 2n+ 1. For instance, ctree(1) = B(A,A).
AB-tree infix linearization 8P
Declare a function lin linearizing AB trees such thatB is treated as a left-
associative infix operator. For instance, lin(B(B(A,A), B(A,A))) =
”ABAB(ABA)”.
Typing and evaluation rules 10P
Complete the typing and evaluation rules for lambda expressions and
function applications.

E ` λx.e : V ` λx.e .

E ` e1 e2 : V ` e1 e2 .

Early Endterm

Euclid’s algorithm 6P
Declare a function gcd : N → N → N computing the GCD of two
numbers using the remainder operation x% y. Use only tail recursion.
List construction 6P
Declare a function make : ∀α. N → (N → α) → L(α) such that
make n f = [f(0), . . . , f(n− 1)]. Use only tail recursion.
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Fibonacci numbers 6P
Declare a constant-time function enum : unit → int enumerating the
sequence of Fibonacci numbers:

fib 0 := 0
fib 1 := 1

fib (n+ 1) := fib n+ fib (n+ 1)

Prime numbers 10P
Recall the sequence of prime numbers: 2, 3, 5, 7, 11, . . . .
a) Declare a function prime : int → bool testing primality.
b) Declare a function enum : unit → int enumerating the sequence of

prime numbers.
You may use the function first.
Prefixes, suffixes, segments 12P
Given a list l = l1 @ l2 @ l3, we call l1 a prefix, l2 a segment, and l3 a
suffix of l. The lists l1, l2, and l3 may be empty.
a) Declare a function ∀α. L(α)→ L(L(α)) that yields a list containing

all suffixes of a list.
b) Declare a function ∀α. L(α)→ L(L(α)) that yields a list containing

all prefixes of a list.
c) Declare a function ∀α. L(α)→ L(L(α)) that yields a list containing

all segments of a list.
You may use the functions List.cons, List.map, and List.concat.
Merge sort with duplicate removal 12P
The merge sort algorithm for lists can be modified such that it sorts a
list and also removes duplicates. For instance, for the list [3, 2, 3, 2, 1]
we want the list [1, 2, 3].
a) Declare a function merge : ∀α. L(α) → L(α) → L(α) merging two

duplicate-free sorted lists into one duplicate-free sorted list. For in-
stance, we want merge [1, 2] [2, 3] = [1, 2, 3]. The running time of
merge should be at most linear in the sum of the lengths of the two
input lists.

b) Given a function split : ∀α. L(α) → L(α) → L(α) → L(α) × L(α)
splitting lists and the merge function from (a), declare a function
sort : ∀α. L(α) → L(α) that sorts and removes duplicates. The
running time of sort should be O(n logn). Assume that split splits a
list into two lists of equal size (plus/minus 1) and has running time
linear in the size of the input list.

183



12 Appendix: Example Exams

Array reversal 10P
Declare a function rev : ∀α. array(α) → unit reversing arrays. For
instance, an array with state [1, 2, 3] should be updated to the state
[3, 2, 1].

Let expressions 14P
We consider expressions consisting of variables and let expressions:

type var = string
type exp = Var of var | Let of var * exp * exp

Note that the expressions considered can be type checked and evaluated
in environments without making assumptions about types and values.
a) Realize environments with three declarations as follows:

type 'a env
val lookup : 'a env -> var -> 'a option
val update : 'a env -> var -> 'a -> 'a env

b) Declare a type checker
val check : 'a env -> exp -> 'a option

Do not raise exceptions.
c) Can the type checker be used as an evaluator? Answer yes or no.

Postfix linearization 12P
We consider AB-trees and their postfix linearization following the gram-
mar tree ::= ”A” | tree tree ”B”. We assume the type declarations

type tree = A | B of tree * tree
type token = AT | BT

a) Declare a function lin : tree → L(token) computing the postfix lin-
earization of AB-trees.

b) Declare a tail-recursive function par : L(token)→ L(tree)→ O(tree)
parsing the postfix linearization of AB-trees. We want par (lin t) [] =
Some t for all AB-trees t and par l [] = None if l is not a postfix
linearization of an AB-tree.

Prime factorization 10P
Declare a function pfac : N → N → L(N) such that pfac x 2 computes
the prime factorization of x ≥ 2. Do not use helper functions. Give
the invariant pfac must satisfy so that pfac x k computes the prime
factorization of x.
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Decimal representation 12P
a) Declare a function dec : N→ L(N) computing the decimal represen-

tation of x. For instance, dec 453 = [4, 5, 3]. Use only tail recursion.
b) Declare a function num : array (int)→ int converting a decimal rep-

resentation stored in an array into the number represented. For
instance, we want undec [|5; 6; 2|] = 562. Use only tail recursion.

Heap representation with structure sharing 12P
We consider AB-trees

type tree = A | B of tree * tree

and assume a heap with an operation

alloc : int list -> address

allocating blocks and an operation

get : address -> index -> int

reading the fields of a block. As usual, address and index are names for
the type int, and the fields of a block are numbered starting from 0.
a) Declare a function putMaxTree : int → address that for n ≥ 0 stores

the maximal AB-tree of depth n in the heap using blocks of length 2
and taking running time O(n).

b) Declare a function getTree : address → tree that reads AB-trees
from the heap preserving structure sharing between siblings. A call
getTree (putMaxTree n) should take running time O(n).

Late Endterm

Strictly ascending lists 7P
Declare a tail-recursive function test : ∀α. L(α) → B testing whether
a list is strictly ascending. A list [x1, x2, . . . , xn] is strictly ascending if
x1 < x2 < · · · < xn.
Enumerators 8P
Declare a function enum : ∀α. (int → α)→ unit → α such that each call
enum f yields a new enumerator for the sequence f(0), f(1), f(2), . . . .
Linear search 8P
Declare a function find : ∀α. α→ L(α)→ O(N) that for x and l returns
the first position x occurs in l. For instance, find 3 [3, 2, 3] = Some 0
and find 1 [3, 2, 3] = None. Use only tail recursion.
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Sorting and removing duplicates 12P
Declare a function sortRem : ∀α. L(α)→ L(α) that sorts a list and re-
moves duplicates. For instance, sortRem [3, 2, 3, 4, 2] = [2, 3, 4]. Follow
the insertion sort algorithm.
Sublists 13P
The sublists of a list are obtained by deleting n ≥ 0 positions. For
instance, the sublists of [1, 2] are [], [1], [2], [1, 2].
a) Declare a function pow : ∀α. L(α) → L(L(α)) that yields a list

containing all sublists of a list.
b) Declare a function pow′ : ∀α. N → L(α) → L(L(α)) such that

pow′ n l computes a list containing all sublists of l whose length is n.
Prefix linearization 13P
We consider AB-trees and their prefix linearization following the gram-
mar tree ::= ”A” | ”B” tree tree. We assume the type declarations

type tree = A | B of tree * tree
type token = AT | BT

a) Declare a function lin : tree → L(token) computing the pre-
fix linearization of AB-trees. For instance, lin (B(A,B(A,A))) =
[BT ,AT ,BT ,AT ,AT ].

b) Declare a function par : L(token)→ tree parsing the prefix lineariza-
tion of AB-trees. We want par (lin t) = t for all AB-trees t. If l is not
a prefix linearization of an AB-tree, par should raise an exception
with failwith ”par”. For instance, par should raise an exception on
[AT ,AT ].

Minimal and maximal AB-trees 16P
We consider AB-trees

type tree = A | B of tree * tree

a) Declare a function min : N → tree that for n yields an AB-tree of
depth n that has minimal size. For depth 2 the trees B(B(A,A), A)
and B(A,B(A,A)) have minimal size.

b) Declare a function max : N → tree that for n yields an AB-tree of
depth n that has maximal size. Make sure the running time of your
function is linear in the depth of the tree.

c) Declare a function check : tree → O(N) such that check(t) = Some(n)
if t is a minimal tree of depth n, and check(t) = None if t is not
minimal.
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Expressions 15P
We consider expressions e ::= c | x | λx.e | e1e2 implemented with the
declarations

type var = string
type exp = Con of int | Var of var | Lam of var * exp | App of exp * exp

a) Declare a function
closed : var list -> exp -> bool

that checks whether an expression is closed in a list of variable. For
instance, λx.fxy is closed in [f, y].

b) Declare a function
eval : value env -> exp -> value

evaluating an expression in an environment. We assume that values
and environments are implemented as follows:
type 'a env
val lookup : 'a env -> var -> 'a option
val update : 'a env -> var -> 'a -> 'a env
type value = Int of int | Clo of var * exp * value env

If an expression cannot be evaluated, eval should raise an exception
with failwith ”eval”.

Array rotation 12P
Declare a function rotate : ∀α. array(α)→ unit rotating the elements
of an array by shifting each element by one position to the right except
for the last element, which becomes the new first element. For instance,
rotation changes the state [1, 2, 3] of an array to [3, 1, 2]. Use only tail
recursion.
Correctness 16P
Consider two iteration functions ∀α. (α→ α)→ N→ α→ α defined as
follows:

it f 0 x := x it ′ f 0 x := x

it f (n+ 1) x := it f n (f x) it ′ f (n+ 1) x := f (it ′ f n x)

Prove that the two iteration functions agree, that is, it f n x = it ′ f n x.
Hint: You will need a lemma for the proof. State and prove the lemma.
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