
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

Formalising the Undecidability
of Higher-Order Unification

Author
Simon Spies

Supervisor
Prof. Gert Smolka

Advisor
Yannick Forster

Reviewers
Prof. Gert Smolka

Prof. Bernd Finkbeiner

Submitted: 29th March 2019

ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby con�rm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit verö�entlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 29th March, 2019

Abstract

In this thesis we formally verify the undecidability of higher-order uni�cation in the
proof assistant Coq. Higher-order uni�cation procedures underlie many modern day
proof assistants including Coq. Higher-order uni�cation is the process of �nding an
instantiation of the free variables in two typed terms such that after substitution the
resulting terms are convertible.

While it is well-known that uni�cation of �rst-order terms is decidable, for terms of
higher order the problem has been shown to be undecidable. In 1973 Gerard Huet
proved that third-order uni�cation is undecidable with a reduction from the Post
correspondence problem. Warren D. Goldfarb improved on this result in 1981 by
proving that even uni�cation in second-order languages is undecidable. The proof is
obtained by a reduction from Hilbert’s tenth problem.

In this work we formalise both reductions in Coq. We simplify Huet’s proof by reduc-
ing from the modi�ed Post correspondence problem and give an intuitive explanation
of Goldfarb’s construction. Furthermore, we show that the undecidability of second
and third-order uni�cation is su�cient to conclude the undecidability of higher-order
uni�cation in general and how Huet’s result can be obtained as a corollary of Gold-
farb’s result.

Acknowledgements

First and foremost, I want to thank my advisor Yannick Forster. Yannick convinced
me to explore the area of computational logic early on in my Bachelor’s studies and
helped foster my interest in an academic future. His advice and support were far
beyond what can be expected for which I am truly grateful. This thesis would not
exist without him.

Furthermore, I want to express my gratitude to my supervisor Professor Smolka for
o�ering me this thesis. He introduced me to the �elds of programming language
semantics and formal veri�cation. I am thankful for his support and his mentorship
throughout my Bachelor’s studies. In addition, I want to thank Professor Finkbeiner
for reviewing this thesis.

Lastly, I want to thank my friends and family for their unwavering support during
these last months. In particular, I want to thank Marie and Dominik for proofreading
this thesis.

Contents

Abstract iii

1 Introduction 1

2 Informal Overview 5
2.1 Higher-Order Uni�cation . 6
2.2 Undecidability of Higher-Order Uni�cation 7
2.3 Nth-Order Uni�cation . 9
2.4 Third-Order Uni�cation . 9
2.5 Conservativity . 12
2.6 Second-Order Uni�cation . 13
2.7 Constants . 15
2.8 First-Order Uni�cation . 16

3 Formal Preliminaries 17

4 λ-calculus 19
4.1 Simply-Typed λ-calculus . 20

4.1.1 Equational Theory . 21
4.1.2 Simple Typing . 21

4.2 Order . 22
4.3 Lists of Terms . 24
4.4 Con�uence, Normalisation & Evaluation 27

4.4.1 Con�uence . 27
4.4.2 Normalisation . 28
4.4.3 Evaluation . 29

5 Uni�cation 31
5.1 Higher-Order Uni�cation . 31
5.2 Systems of Equations . 33
5.3 Nth-Order Uni�cation . 34

viii Contents

5.4 Enumerability . 36

6 Third-Order Uni�cation 39
6.1 Encoding . 40
6.2 MPCP Reduction . 42
6.3 Remarks . 45

7 Second-Order Uni�cation 47
7.1 Higher-Order Motivation . 48
7.2 Second-Order Realisation . 50

8 First-Order Uni�cation 59
8.1 Simpli�ed First-Order Uni�cation . 59

8.1.1 Term Decomposition . 60
8.1.2 Uni�cation Relation . 61

8.2 Full First-Order Uni�cation . 63
8.3 Remarks . 65

9 Conservativity & Constants 67
9.1 Conservativity . 67
9.2 Constants . 72

10 Formalisation 77
10.1 Overview . 78

11 Conclusion 81
11.1 Related Work . 81
11.2 Future Work . 83

Bibliography 85

Chapter 1

Introduction

When working in a proof assistant such as Coq, the problem of higher-order uni-
�cation naturally arises. For example, higher-order uni�cation is needed whenever
functional arguments of a universally quanti�ed proposition are to be inferred by the
proof assistant. Consider the proposition ∀n. n+0 = n. If we prove this claim by in-
duction on n, logically an application of the induction principle for natural numbers
∀P. P (0)→ (∀n. P (n)→ P (n+1))→ ∀n. P (n) is required. For the proof assistant
this means that ∀n. P (n) has to be specialised to the proposition ∀n. n + 0 = n. In
particular, an instantiation of the predicate variable P has to be chosen. In a type
theory such as the one underlying Coq a predicate on natural numbers is a func-
tion transforming a natural number n into a proposition over n. Here the predicate
λn.n+ 0 = n can be chosen as an instantiation of P . If said predicate is chosen, the
resulting proposition ∀n. (λn.n+ 0 = n) n is convertible to ∀n. n + 0 = n. While
using a proof assistant, it can become tedious to give such simple instantiations man-
ually. For this reason one would expect that a predicate for P can be inferred auto-
matically from the context. The process involved in �nding such an instantiation is
called higher-order uni�cation.

In general, higher-order uni�cation is the process of �nding a substitution for the
free variables in two typed terms such that under the substitution both terms are con-
vertible. When analysing the problem of higher-order uni�cation in the simply typed
λ-calculus, we can distinguish di�erent classes of sub-problems based on the types of
variables and constants that may appear in the terms. Types are distinguished based
on their order. First-order types are base types such as int or bool. Second-order
types are the types of functions with base type arguments. Third-order types are
the types of functions with second-order arguments. In general, nth-order types for
n > 1 are the types of functions with arguments of order n − 1. We speak of nth-
order uni�cation if the types of all variables are of at most order n and the types of all
constants are at most of ordern+1. It is well known that uni�cation of �rst-order lan-
guages is decidable [45]. In 1972 Lucchesi [34] and in 1973 Huet [28] independently

2 Introduction

discovered that for terms of third order the problem of uni�cation is undecidable.
In 1981 Goldfarb [25] improved on this result by showing that uni�cation is already
undecidable in second-order languages provided they contain a 2-ary function con-
stant. Uni�cation in second-order languages with only unary function constants,
also referred to as monadic second-order uni�cation, is still decidable as proved by
Farmer [16]. Despite higher-order uni�cation being undecidable, both higher-order
uni�cation and nth-order uni�cation are enumerable using the uni�cation algorithm
by Huet [29].

In this thesis we formalise the reductions given by Huet and Goldfarb in the construc-
tive type theory of Coq, establishing that second-order and third-order uni�cation
are undecidable. Huet [28] reduces the Post correspondence problem [42] to third-
order uni�cation by encoding cards over a binary alphabet as λ-terms. We simplify
Huet’s proof by reducing from the modi�ed Post correspondence problem [26] in-
stead. Goldfarb on the other hand gives a reduction from Hilbert’s tenth problem to
second-order uni�cation. He encodes diophantine equations, polynomial equations
over natural numbers, as uni�cation equations. While Huet conducts his analysis in a
Church-typed version of the λ-calculus where every term is well-typed, Goldfarb em-
ploys a second-order language without abstractions using hereditary substitutions.
In this thesis, we adapt both results to a Curry-style simply-typed λ-calculus and
prove them to be su�cient to conclude the undecidability of higher-order uni�cation
in general. In addition, we investigate the role of constants in uni�cation. Moreover,
we verify a uni�cation algorithm for the �rst-order fragment of the simply-typed
λ-calculus thus formally proving �rst-order uni�cation to be decidable.

Synthetic Undecidability For formalising reductions we utilise the approach of
synthetic computability theory. Synthetic computability theory di�ers from tradi-
tional computability theory in the notion of reduction and the results obtained by
reduction. In traditional computability theory one �xes a model of computation —
say Turing machines — and then proves results about the expressiveness of Turing
machines as a computational model. In particular, one establishes that there does
not exist a Turing machine deciding the halting problem on Turing machines. From
there on, one can show a number of problems undecidable by means of reduction, for
example the Post correspondence problem [42]. A problem P is undecidable in this
setting if there does not exist a Turing machine yielding a decision whether a given
instance of P has a solution or not. A reduction from a problem P to a problem Q,
written P � Q, is a function f , computable by a Turing machine, which transforms
instances of the problem P into instances of the problem Q such that an instance x
of P has a solution if and only if the transformation f(x) has a solution. The result
obtained through reduction is that there is a Turing machine deciding P whenever
there is a Turing machine deciding Q. In particular, if P is undecidable Q is also
undecidable.

3

However, in practice it is tedious to construct Turing machines computing the reduc-
tion function f and formally verify their correctness. Moreover, the undecidability of
the problem of interest is usually not dependent on the particular model of computa-
tion that was chosen. For this reason, we work in the setting of synthetic computabil-
ity theory. Synthetic in this context means that reduction functions are de�ned and
the veri�cation thereof is conducted in the constructive type theory of Coq [58]. In
contrast to classical computability theory, we do not �x a model of computation but
rely on the fact that all functions constructible in Coq are by de�nition computable.
In practice, this alleviates the need for proving the correctness of a program com-
puting the reduction function leaving just the veri�cation of the function. This style
corresponds well to the style of reductions found in the literature where reduction
functions are constructed without reference to a �xed model of computation [28, 25].

A problem in the synthetic setting is a predicate P on some typeX . An instance of P
is then a value x of type X . Given two problems P and Q where P is on type X
and Q is on type Y , a reduction P � Q consists of a reduction function f : X → Y

and a proof that P(x) i� Q(f(x)). A problem P is said to be decidable if there exists
a decision function d deciding whether P(x) holds or not. However, the notion of
undecidability di�ers in the synthetic setting. In contrast to the traditional approach,
undecidability in the synthetic sense is not simply the negation of decidability. While
every function constructible in Coq is computable in a model of computation, the type
theory underlying the proof assistant is consistent with the assumption of noncom-
putable functions. In particular, one may consistently assume a decision procedure
for arbitrary problems. Thus, synthetic undecidability of a problem P is not char-
acterised as the nonexistence of a decision procedure for P but as the existence of
a chain of reductions from a problem which is widely accepted as undecidable, for
example the halting problem on Turing machines.

The present work is part of an ongoing project to formalise computability theory as
a library of problems in the synthetic setting. In [21] the theory of synthetic unde-
cidability is developed formally in Coq and in [21, 20, 19, 18, 32] several problems
are proven to be synthetically undecidable, including the Post correspondence prob-
lem [20] and Hilbert’s tenth problem [32].

Formalisation The contents of this thesis are formalised in the proof assistant
Coq. The formalisation is self contained and we remark in Chapter 10 on details
of the formalisation. The only axiom we assume is functional extensionality. As a
consequence of the accompanying formalisation, we do not prove every claim on
paper. Instead, the theorems, facts and lemmas of this thesis are hyperlinked with
their formal counterparts. In addition, the entire formalisation is available at:

http://www.ps.uni-saarland.de/~spies/bachelor.php

In particular, we do not give all lemmas present in the Coq formalisation in this thesis.
Instead we present a selected subset which we believe to be helpful in understanding
the subject.

http://www.ps.uni-saarland.de/~spies/bachelor.php

4 Introduction

Overview In Chapter 2, we give an informal overview of the results presented in
this thesis and explain the main ideas behind their proofs. It is to be understood as a
gentle introduction into the contents of this thesis. In Chapter 3, we brie�y introduce
the common operations used in subsequent chapters. In Chapter 4, we formally in-
troduce the Curry-style simply-typedλ-calculus with unrestrictedβ-reduction which
will be used throughout this thesis. We establish an equational theory for the calcu-
lus and formally introduce the notion of order. In Chapter 5, we precisely de�ne the
problem of higher-order uni�cation U and uni�cation in the nth-order fragment Un.
For the remainder of this thesis we mean n > 0 when we write Un since no type can
ever have order zero and thus terms in U0 cannot contain variables. In Chapter 6,
we formalise and simplify the proof of the undecidability of third-order uni�cation
by Huet [28]. In Chapter 7, we formalise the reduction presented by Goldfarb [25]
and therefore formally prove second-order uni�cation to be undecidable. For the
Goldfarb reduction, we follow the explanation given by Dowek [13] using Church
numerals to encode Diophantine equations. This method yields the undecidability of
higher-order uni�cation in general, but not of the second-order fragment. The unde-
cidability of second-order uni�cation is achieved by moving to Goldfarb numerals, a
di�erent encoding of natural numbers. Apart from the equations generated for mul-
tiplication, this encoding is very close to the approach using Church numerals. In
Chapter 8, we state and verify a uni�cation algorithm for the �rst-order fragment of
the Curry-style simply-typed λ-calculus. In Chapter 9, we prove the conservativity
result Un � Um � U for n ≤ m, justifying the popular reasoning that the undecid-
ability of second or third-order uni�cation implies the undecidability of higher-order
uni�cation in general. The reduction functions used in the reductions can be viewed
as identity functions and therefore one can say we show U subsumes Un. Further-
more, one can say we prove U =

⋃
n∈NUn because every well-typed term can be

assigned some order n. In addition, we investigate the role of constants with respect
to uni�cation. We show how constants can be added without a�ecting uni�ability in
the nth-order fragment and we show how certain constants may be removed without
a�ecting uni�ability. In Chapter 10, we remark on the formalisation. In particular,
we comment on the overhead generated by formalising the work in a proof assistant
and give an overview of the development. In Chapter 11, we touch upon prospective
future work and present related work in the �elds of synthetic computability theory,
formalisations of uni�cation, and the undecidability of higher-order uni�cation.

Contribution We present the problem of higher-order uni�cation in a uni�ed set-
ting and investigate the role of constants with respect to uni�cation. We contribute a
formalisation of the undecidability of higher-order uni�cation using reductions pre-
sented by Huet and Goldfarb. We give a formalisation of a �rst-order uni�cation
algorithm for the simply-typed λ-calculus. We showcase an application of the strong
normalisation proof technique presented in [22] adjusted to yield a weak normalisa-
tion proof for the simply-typed λ-calculus with constants.

Chapter 2

Informal Overview

In this chapter we give an overview of the results presented in this thesis and sketch
the ideas behind them. We refrain from digressing into formal details and focus on the
intuitions underlying our constructions — a formal discussion of all results presented
here is conducted in subsequent chapters.

λ-calculus As the underlying language for uni�cation we employ a Curry-style
simply-typed λ-calculus with unrestricted β-reduction and constants. We use the
letters s, t for terms of the calculus and write Γ ` s : A if the term s can be assigned
the type A in the context Γ. Types consist of base types α, β, . . . and function types
A → B. For the remainder of this chapter we focus only on well-typed terms and
leave the typing information implicit whenever possible.

The letters σ, τ denote substitutions — in�nite maps from variables to terms. The
operation s[σ] expresses the capture-avoiding replacement of all free variables in s
according to the substitution σ. As a convention, when de�ning substitutions in
examples, we only give the terms that are assigned to the free variables. All other
variables are left unchanged. For example, consider the term λy.x y. Here the vari-
able y occurs bound and the variable x occurs free. A substitution may replace only
the variable x and if the term inserted for x contains the variable y as a free variable,
then the bound variable y is renamed to a fresh variable. Thus, for the substitution
σx = z we have (λy.x y)[σ] = λy.z y and for τx = y we have (λy.x y)[τ] = λz.y z.
Constants, denoted by the letter c, cannot be substituted but may occur in the terms
inserted by substitutions. We refer to both constants and variables as atoms.

We write s � t if a term s reduces in a single step to the term t and say s is β-
equivalent (“equivalent” for short) to t, written s ≡ t, if s and t are in the equivalence
closure of the reduction relation �. For example, the following two terms are equiv-
alent:

λxy.(λ_.z) x ≡ λxy.z ≡ λxy.(λ_.z) y (2.1)

6 Informal Overview

Every well-typed term is weakly normalising, meaning for every term Γ ` s : A

there exists a term t such that s reduces to t and t is a normal form. Due to the nature
of � this term t is unique.

2.1 Higher-Order Uni�cation

Higher-order uni�cation is the process of �nding a well-typed substitution for the
free variables in two typed terms s and t such that under the substitution both terms
are equivalent. We write Γ ` s ?

= t : A for the uni�cation equation between s and t
provided both terms are of type A under the typing context Γ, meaning Γ ` s : A

and Γ ` t : A. A substitution σ is said to unify an equation Γ ` s ?
= t : A, if s

and t are equivalent under the substitution, meaning s[σ] ≡ t[σ]. The substitution σ
is said to agree with the type constraints of Γ under the typing context ∆, written
∆ ` σ : Γ, if for every binding (x : A) ∈ Γ the term inserted for x, i.e. σx, is of typeA
under context ∆. For a given equation Γ ` s ?

= t : A, the problem of higher-order
uni�cation asks whether there exists a context ∆ and a substitution σ such that σ
agrees with the type constraints of Γ under ∆ and σ uni�es the equation. Explicitly,

U(Γ ` s ?
= t : A) i� ∆ ` σ : Γ and s[σ] ≡ t[σ] for some ∆, σ

There is a distinction to be made whether σmay insert terms containing free variables
or not. For instance, consider the uni�cation equation Γ ` λxy.f x ?

= λxy.f y :

α→ α→ α where Γ = (f : α→ α). As we allow open terms, the example Eq. (2.1)
shows that the substitution σf = λ_.z in the context ∆ = (z : α) uni�es both terms.
If we would only allow closed terms, then there is no substitution which both respects
the type of f and uni�es s and t in a language where the type α is empty. All closed
terms of type α → α are equivalent to identity functions and thus cannot unify the
equation.

When speaking of higher-order uni�cation we may freely assume that s and t are
normal and that σ only inserts normal terms, since uni�ability is de�ned up to equiv-
alence. To simplify matters, in this informal overview we do not explicitly annotate
each equation with its type and a typing context. Instead, we remark on the types of
the free variables contained in Γ such that the reader can infer a type of the entire
equation from context. For example, the above equation λxy.f x ?

= λxy.f y is fully
speci�ed by the knowledge that f is of type α→ α.

Systems of Equations Uni�cation, especially �rst-order uni�cation, is frequently
formulated as a problem over multiple equations. We refer to multiple equations
s1

?
= t1, . . . , sn

?
= tn as a system of equations [52] (“system” for short) and denote

them by the letter E. In a system all equations have to be typed in the same typing
context. We show in the following that both formulations are interreducible.

2.2. Undecidability of Higher-Order Uni�cation 7

We say σ uni�esE if σ uni�es all equations inE. The problem of unifying a system of
equations, system uni�cation SU, is described by SU(E) i� ∀s ?

= t ∈ E. s[σ] ≡ t[σ]

for some context ∆ and substitution ∆ ` σ : Γ where Γ is the typing context used to
type the equations of E. The reduction U � SU is easy since every equation s ?

= t

can be interpreted as a singleton system. For the converse direction, SU � U, we
combine a system of equations s1

?
= t1, . . . , sn

?
= tn into a single equation:

λh.h s1 · · · sn
?
= λh.h t1 · · · tn

The key insight behind the transformation is that whenever an atom is applied to
two or more arguments, then those arguments are independent from each other. By
independent we mean that from h s1 s2 ≡ h t1 t2 we can conclude the equivalences
s1 ≡ t1 and s2 ≡ t2 and vice versa. To ensure that h cannot be substituted, we
capture the variable with an abstraction. The argument generalises to the case of n
equations, as witnesses by:

∀i. si ≡ ti i� λh.h s1 · · · sn ≡ λh.h t1 · · · tn

Enumerability Using standard techniques, we show that higher-order uni�cation
is enumerable. We enumerate all equations Γ ` s ?

= t : A and well-typed instanti-
ations of the free variables of s and t. From this we select the instantiations under
which s and t are equivalent. Since all terms involved are well-typed, we can decide
whether two terms are equivalent by deciding whether their normal forms are equal
or not.

2.2 Undecidability of Higher-Order Uni�cation

We proceed by proving that higher-order uni�cation is undecidable by reduction from
Hilbert’s tenth problem. The proof follows an explanation by Dowek [13]. Hilbert’s
tenth problem, also referred to as H10, in its original form asks whether a given
Diophantine equation is satis�able. Diophantine equations are equations over nat-
ural numbers (or equivalently integers) involving addition, multiplication and con-
stants. In general, it is undecidable whether a Diophantine equation is satis�able
as proven by the combined work of Davis [7], Putnam [8], Robinson [46, 9], and
Matijasevivc [35]. Nowadays, the result is known as the DPRM-theorem and it was
only proved a few years before Huet proved third-order uni�cation to be undecid-
able [28].

To motivate why the question of satis�ability is not easy to answer, consider the
equation:

(x+ 1)3 + (y + 1)3 =̇ (z + 1)3 where x, y, z : N

8 Informal Overview

This equation is a special case of Fermat’s last theorem and thus there is no solution to
it, meaning it is not satis�able. An algorithm deciding the non-existence of a solution
for this equation would implicitly prove a non-trivial special case of Fermat’s last
theorem.

Since its original formulation there have been found several equivalent ways to ex-
press this problem. Following Goldfarb [25] we use a formulation based on simple
Diophantine equations over the natural numbers. A simple Diophantine equation
is an equation over the natural numbers involving a single addition, multiplication
or constant. The corresponding formulation of Hilbert’s tenth problem then asks
whether a system of such simple Diophantine equations has a solution. For example,
the following equations form a system:

x =̇ 42 y =̇ x · y z =̇ z + z

A solution for such a system is an assignment θmapping variables to natural numbers
such that under this assignment the resulting equations hold. This system has exactly
one solution, namely θx = 42 and θy = θz = 0.

The proof that Hilbert’s tenth problem reduces to higher-order uni�cation is based
on two core ideas. The �rst idea is to express natural numbers in the λ-calculus as
Church numerals and to encode simple Diophantine equations as uni�cation equa-
tions. The second idea is to ensure that the “domain” of the equations only allows
Church encoded natural numbers. The word “domain” in this context is to be un-
derstood as the collection of all the terms which may be inserted for the variables
occurring in the encoding of the simple Diophantine equations. The second idea is
realised by adding a characteristic equation for every variable which precisely char-
acterises what it means to be a Church numeral.

Church numerals are a common way to express natural numbers in the λ-calculus.
Every natural number n is represented by the abstraction JnK := λaf.fn a of type
α → (α → α) → α. fn expresses n-fold iteration of f on an initial value a. Since
fn+m a = fn (fm a) and fn·m a = (fm)n a, addition and multiplication are char-
acterised by

add s t := λaf.s (t a f) f mul s t := λaf.s a (λb.t b f)

satisfying add JnK JmK ≡ Jn+mK and mul JnK JmK ≡ Jn ·mK. What remains
is the restriction of the domain with the help of a characteristic equation which is
only satis�ed by valid Church encodings. As it turns out, the distribution property
of iteration su�ces for this equation, i.e. f (fn a) = fn (f a). For normal forms s
we show:

λaf.s (f a) f ≡ λaf.f (s a f) i� s = JnK for some n : N

2.3. Nth-Order Uni�cation 9

and thus de�ne CN x := λaf.x (f a) f
?
= λaf.f (x a f). In the reduction we add

one characteristic equation for every variable and one corresponding equation for
every simple Diophantine equation. Recall our example from the beginning: x =̇ 42,
y =̇ x · y and z =̇ z + z. For this system of Diophantine equations we produce the
system of uni�cation equations:

x
?
= J42K y

?
= mul x y z

?
= add z z CN x CN y CN z

2.3 Nth-Order Uni�cation

When analysing the problem of higher-order uni�cation, we distinguish di�erent
fragments of the problem based on the types of variables and constants that may
occur in s and t. We di�erentiate types based on their order, where the order of a
type A is given by ord α = 1 and ord (A→ B) = max{ord A+ 1, ord B}. We say a
term s is of order n, if the order of the types of its variables is at most n and the order
of the types of its constants is at most n + 1. Formally, we introduce the predicate
Γ `n s : A characterising the nth-order fragment of the calculus.

The fragment of higher-order uni�cation where all terms are at most of order n is
called nth-order uni�cation and denoted by Un. An instance of this problem is an
equation Γ `n s

?
= t : A where both s and t are of type A under the context Γ in the

nth-order fragment of the calculus. Analogously to U, Un is characterised by

Un(Γ `n s
?
= t : A) i� ∆ `n σ : Γ and s[σ] ≡ t[σ] for some ∆, σ

where ∆ `n σ : Γ expresses that σ agrees with the type constraints of Γ under ∆

and σ inserts terms of at most order n.

Analogously to the higher-order case, we introduce systems of nth-order equations
and the corresponding uni�cation problem SUn. Moving from higher-order uni�ca-
tion to nth-order uni�cation, the reduction U � SU carries over unchanged, mean-
ing Un � SUn. However, the proof of SU � U is not preserved. By transforming
s1

?
= t1, . . . , sk

?
= tk into λh.h s1 · · · sk

?
= λh.h t1 · · · tk the order of the terms

is a�ected due to the variable h. If A1, . . . , Ak are the types of the equations of
the system, then the variable h is of type A1 → · · · → Ak → α which has order
1 + max{ord A1, . . . , ord Ak}.

2.4 Third-Order Uni�cation

Huet [28] and Lucchesi [34] were the �rst to prove that third-order uni�cation and
higher-order uni�cation in general are undecidable. They both give proofs by re-
duction from the Post correspondence problem. In this thesis we simplify Huet’s

10 Informal Overview

construction to yield an undecidability proof of third-order uni�cation by reduction
from the modi�ed Post correspondence problem [26].

We call a pair of two strings l and r over the binary alphabet {0, 1} a card, written l/r,
and a collection of cards l1/r1, . . . , ln/rn a stack of cards. Intuitively, the modi�ed
Post correspondence problem MPCP can be described as follows: Given an initial
card and a stack of cards, such as

11

1
and

0

110

101

000

does there exist a sequence of the cards, starting with the initial card, possibly con-
taining cards multiple times or not at all, in which the cards produce the same string
in the top and bottom row. In the case of our example we start the sequence by using
the initial card twice and follow up with the second card.

11

1

11

1

0

110

The top and bottom rows then both read 11110.

When reducing MPCP to third-order uni�cation, we have to transform an initial
card l0/r0 and a stack of cards l1/r1, . . . , ln/rn into a uni�cation equation s ?

= t.
This equation has to be chosen such that any solution to the MPCP instance yields
a substitution unifying s and t. Furthermore, any substitution unifying s and t has to
implicitly pick a sequence of the cards such that the top and bottom rows agree. In
the reduction, we transform l0/r0, . . . , ln/rn into the uni�cation equation:

λu1u0.l0 (xf l0 · · · ln)
?
= λu1u0.r0 (xf r0 · · · rn)

where xf : (α→ α)n+1 → α and (α→ α)n+1 means n + 1 arguments of type
α → α. We encode strings over the binary alphabet {0, 1} into λ-terms using a
modi�ed Church encoding of binary strings. We �x the variables u1, u0 and map the
string 110 to the abstraction 110 := λx.u1 (u1 (u0 x)). Note that the proper Church
encoding of binary strings would take u1, u0 as arguments of the abstraction as well.

To motivate the transformation, we consider closed terms f : (α→ α)n+1→ α → α.
and to simplify matters, we assume that α is an empty type allowing us for now to
ignore constants. The notion of parametricity [43] suggests

f g0 · · · gn s ≡ gi1 (· · · (gik s)) for some order i1, . . . , ik.

meaning f applies its arguments g0, . . . , gn in some order to s. Moreover, the no-
tion of parametricity suggests that the order i1, . . . , ik in which the arguments are
applied is independent of the choice of g0, . . . , gn and s. In particular, if we have
f l0 · · · ln s ≡ f r0 · · · rn s, then we can conclude li1 (· · · (lik s)) ≡ ri1 (· · · (rik s)).

2.4. Third-Order Uni�cation 11

Due to the de�nition of the encoding of strings, the successive application of encoded
strings is equivalent to applying the concatenated string. Thus, the above equivalence
holds if and only if li1 · · · lik s ≡ ri1 · · · rik s. If we pick for s a variable, such as ε,
this equivalence allows us to conclude the equality of li1 · · · lik and ri1 · · · rik .

Hence, one might falsely think that the equation xf l0 · · · ln ε
?
= xf r0 · · · rn ε is suf-

�cient for the reduction. Note that in this equation xf takes an additional argument
and thus is of type (α→ α)n+1 → α→ α. However, since the variables u1, u0 occur
free in this equation, there is no restriction preventing a substitution from inserting
λx.x for both u1 and u0. The solution for this problem is to transform their free oc-
currences into bound occurrences: λu1u0.xf l0 · · · ln ε

?
= λu1u0.xf r0 · · · rn ε. Nev-

ertheless, we are not guaranteed that the �rst card of a solving sequence is always
the initial card. We can address this problem by applying the initial card to the result
of xf , resulting in λu1u0.l0 (xf l0 · · · ln ε)

?
= λu1u0.r0 (xf r0 · · · rn ε).

As a last step in the transformation, we remove the variable ε. In a language with
constants there might be terms of type α. Even if there are none, the de�nition
of higher-order uni�cation allows substitutions to insert free variables as long as
they are assigned a type in some context ∆. Thus, ε has no in�uence on the ex-
istence of solutions. We change the type of xf to (α→ α)n+1 → α and obtain:
λu1u0.l0 (xf l0 · · · ln)

?
= λu1u0.r0 (xf r0 · · · rn).

In the veri�cation of the reduction, we have to show that a MPCP instance has a
solution if and only if the above equation has a solution. To motivate why this is
true we recall the example from the beginning. The cards 11/1, 0/110, 101/000 are
transformed into the equation:

λu1u0.11 (xf 11 0 101)
?
= λu1u0.1 (xf 1 110 000)

For the “if” direction, we can use the solving sequence to construct a unifying sub-
stitution. We pick σxf = λx0x1x2.x0 (x1 ε) in the context ∆ = (ε : α). Under this
substitution we have:

11 (σxf 11 0 101) ≡ 11 (11 (0 ε)) ≡ 11110 ε ≡ 1 (1 (110 ε)) ≡ 1 (σxf 1 110 000)

For the “only if” direction, a normal form analysis on σxf reveals a term structure
which implicitly contains the sequence of the cards. For example, σxf might be of
the shape λx0x1x2.x0 (x1 t) where t does not start with any xi. The equivalence
11 (σxf 11 0 101) ≡ 1 (σxf 1 110 000) then allows us to conclude that the sequence
“initial card, initial card, second card” is a valid solution for the MPCP instance.

12 Informal Overview

2.5 Conservativity

In [28] Huet proves the undecidability of higher-order uni�cation and remarks that
since the proof only requires terms of order three, he actually gives a proof of the
undecidability of third-order uni�cation. When formalising proofs such a claim can-
not be made as easily. The original proof would have to be duplicated and adapted to
yield a proof of the undecidability of third-order uni�cation.

An alternative technique to conclude both the undecidability of third-order uni�-
cation and higher-order uni�cation is to prove MPCP � U3 � U. For the latter
reduction we establish the conservativity of uni�cation. By conservativity we mean
that any nth-order equation Γ `n s

?
= t : A is uni�able i� it is uni�able in the nth-

order fragment of the calculus. One can say that higher-order uni�cation subsumes
nth-order uni�cation and the same can be said for the system variants of the problem.
Thus, for n ≤ m we show:

Un Um U

SUn SUm SU

⊆ ⊆

⊆ ⊆

where P→ Q means P reduces to Q and P ⊆ Q means Q subsumes P.

Every higher-order substitution ∆ ` σ : Γ unifying Γ `n s
?
= t : A is implicitly

also a mth-order substitution where m is the maximum order of the terms that are
inserted for free variables of s and t. Thus, in the following we focus on proving
Un ⊆ Um for n ≤ m. Proving Un ⊆ Um essentially boils down to proving the
following claim:

s[σ] ≡ t[σ] for some ∆ and ∆ `n σ : Γ i� s[τ] ≡ t[τ] for some Σ and Σ `m σ : Γ

The “if” direction being trivial, we focus on the “only if” direction. The key insight
for the “only if” direction is that variables and constants whose order is too high can
be replaced. As an example, consider the equation

λx.g a y
?
= λx.f x x

where g : α→ α→ α and a : α are constants and the free variables f : α→ α→ α

and y : α have to be replaced. A simple second-order substitution unifying both
terms would be σy = z, σf = λx1x2.g a z in the context ∆ = (z : α). However,
there is also the third-order substitution τy = h (g a) and τf = λx1x2.g a (h (g a))

in the context ∆ = (h : (α → α) → α) unifying both terms. In the following, we
show how the former can be recovered from the latter.

We observe that the following three criteria can arti�cially increase the order of a
unifying substitution σ up to m when the original terms are of order n.

2.6. Second-Order Uni�cation 13

1. σ can insert free variables of order m.

2. σ can insert constants of order m+ 1 which do not occur in s or t.

3. σ can insert non-normal terms containing bound variables of order m. For
example, the variable y could have been instantiated with the third-order term
(λg.g z) (λx.x) in the previous equation.

We show that whenever none of the above criteria apply, a normal term can be shown
to be of order n. In the following, we address each criteria individually and explain
how we transform τ stepwise to obtain a substitution σ of order n.

1. Whenever we encounter a free variable x : A1 → · · · → Ak → α in τ of
order m, we replace it with the �rst-order term λx1 · · ·xk.z where z : α. The
justi�cation for this is given by the compatibility of ≡ with substitution:

s ≡ t implies s[σ] ≡ t[σ] for all σ, s, t

2. Whenever we encounter a constant c : A1 → · · · → Ak → α which does
not appear in s or t, we replace it with the �rst-order term λx1 · · ·xk.z where
z : α analogously to the previous technique. The key observation here is that
replacing only the constants which do not occur in s or t does not a�ect s and
t and thus does not a�ect uni�ability.

3. We normalise all terms after applying transformations 1 and 2.

In the example τy = h (g a) and τf = λx1x2.g a (h (g a)), after transformation 1
we obtain the substitution τ1y = (λg.z) (g a) and τ1f = λx1x2.g a ((λg.z) (g a)).
After the second and third transformation this substitution is simpli�ed to τ2y = z

and τ2f = λx1x2.g a z.

2.6 Second-Order Uni�cation

Goldfarb [25] improved on the result of Huet by showing that uni�cation is already
undecidable in second-order languages provided they contain at least a single 2-ary
function constant g : α → α → α. He establishes the undecidability of second-
order uni�cation by a reduction from Hilbert’s tenth problem. In its essence, the
structure of Goldfarb’s proof follows the structure of the undecidability proof we
gave in Section 2.1. The di�erence between both proofs lies in the encoding of natural
numbers.

While we use Church numerals in Section 2.1, Goldfarb gives an encoding based on a
2-ary function constant g : α→ α→ α. We call natural numbers encoded using this
constant Goldfarb numerals. A Goldfarb numeral JnK is obtained from the Church
numeral by �xing the function variable f to the term g a where a : α is a constant.
Explicitly, the Goldfarb numeral for n is the term JnK = λa.(g a)n a. In contrast to

14 Informal Overview

Church numerals, which are of type α → (α → α) → α, Goldfarb numerals are of
type α → α. As a consequence, the undecidability of second-order uni�cation can
be proved. However, the price of changing the encoding is that multiplication can no
longer be encoded in the style of Church numerals. Consequently, Goldfarb gives a
di�erent encoding of multiplication which we motivate in the following.

Consider the iterative algorithm mult for computing the product m · n = mult(0, 0):

mult(a, i) = a if i = m

mult(a, i) = mult(a+ n, i+ 1) if i 6= m

We focus on the transformation succ(a, i) := (a+n, i+1) which is applied to a and i
in each step of the computation. If we start in the pair (0, 0) and repeatedly iterate
the successor function succ, we produce the sequence: (0, 0); (n, 1); . . . ; (m · n,m).
The correctness of mult then justi�es the idea that a �nite sequence of the form

(0, 0); (n, 1); · · · ; (p,m)

generated by iteratively applying succ on (0, 0) serves as a proof of m · n = p. As
a consequence, to express the equation m · n = p it su�ces to give an equation
which can only be satis�ed if there exists a �nite sequence obeying the same iterative
structure and terminating in the pair (p,m). We encode this concept in the equation:

X; (p,m) = (0, 0); succ(X)

where succ is lifted to �nite sequences by pointwise application. This equation is
satis�able by a �nite sequence X if and only if m · n = p.

To understand why this equation expresses an iterative structure, we consider the in-
�nite sequence (0, 0); (n, 1); (2n, 2); . . . This sequence is characterised by the recur-
sive equationX = (0, 0); succ(X) since for any sequenceX satisfying this equation,
we can show

X = (0, 0); succ(X) = (0, 0); (n, 1); succ(succ(X)) = . . .

In the �nite case the pair (p,m) ensures that the iteration has to end after m steps.
For ti := (i · n, i) we show that X = t0; · · · ; tm−1 is the solution for the equation
(0, 0); (n, 1); · · · ; (p,m) if and only if m · n = p.

All that remains is to express the above equation as a uni�cation equation. This is
accomplished by �nding a suitable second-order encoding of �nite sequences and
encoding the succ function by means of uni�cation.

2.7. Constants 15

2.7 Constants

Goldfarb remarks in his work [25] that the proof remains valid even in languages
without the constants a, b : α. The straightforward way to verify this claim formally
is to duplicate the original proof and to adapt it to a language without a and b. How-
ever, there is a more elegant way to solve this problem. In the following we motivate
techniques useful for introducing and removing constants from a language without
a�ecting uni�ability. We write UCn for the uni�cation problem where all constants
are drawn from C. While formally we represent C as a Coq type, to simplify matters
in this informal overview we pretend C is a set of constants and use set notation.

The �rst technique allows for the introduction of arbitrary constants into a language.
Explicitly, we prove UCn � UDn whenever C ⊆ D. The key insight in this reduction is
that whenever s and t draw their constants exclusively from C, then they are uni�able
if and only if they are uni�able with constants from C. Thus, we may remove all
constants which do not occur in s or t from a unifying substitution τ to obtain a
unifying substitution σ which draws its constants from C. We cannot simply replace
constants by variables as they may have a type of order n + 1 whereas the order of
the types of variables is bounded by n. Similarly to the proof of conservativity, if a
constant c : A1 → · · · → Ak → α is to be removed, we replace it with the term
λx1 · · ·xk.z in a context ∆ where z : α.

The second technique allows for the elimination of constants of an order strictly
smaller than n. Explicitly, we prove UDn � UCn whenever C ⊆ D and all d ∈ D − C
are of an order strictly smaller than n. The main idea is to replace constants by bound
variables. For example, consider the terms g x

?
= g a where g : α → α → α and

x, a : α. Any substitution σ with σx ≡ a uni�es both terms. When eliminating the
constant a from the language, a �rst attempt could be to introduce a new variable xa
and to replace every occurrence of a with xa. We ensure that xa is not a�ected by
substitutions by capturing xa. Applying both transformations to g x

?
= g a results in

the equation λxa.g x
?
= λxa.g xa. However, under these transformations the terms

are no longer uni�able since inserting the variable xa for x would cause a renaming
of the bound variable xa. We �x this problem by ensuring that the new variables
introduced by this transformation are made available to all free variables. To this
end, we transform the type of x from α to α→ α and replace every occurrence of x
with x xa. Hence, we obtain λxa.g (x xa)

?
= λxa.g xa. In the case of our example, it

remains to prove that

(g x)[σ] ≡ (g a)[σ] for some σ i� (λxa.g (x xa))[τ] ≡ (λxa.g xa)[τ] for some τ

For the sake of simplicity we only show how speci�c substitutions σ and τ are trans-
formed. For the “if” direction let σx = a. Then we pick the substitution τx = λxa.xa

16 Informal Overview

which can be obtained from σ by taking xa as an argument and replacing the con-
stant a with xa. For the “only if” direction let τx = λxa.xa. Then we pick σx =

(λxa.xa) a which can be obtained from τ by applying τx to the argument a.

Combining both techniques, we can conclude U
{a,b,g}
2 � U

{g}
2 � UC2 where g ∈ C.

Furthermore, we can obtain Huet’s result from Goldfarb’s result

U
{g}
2 � U

{g}
3 � U∅3 � U3

Farmer [16] shows that monadic second-order uni�cation, i.e. uni�cation where all
function constants are at most unary, is decidable. We remark that eliminating con-
stants of an order strictly smaller than n is the best we can hope for in general. If we
could eliminate constants of order n, we would obtain the reduction U

{a,b,g}
2 � U∅2.

However, U{a,b,g}2 being undecidable and U∅2 being decidable, the assumption that
constants of order n can be eliminated as well is contradictory.

2.8 First-Order Uni�cation

We give a decision procedure for �rst-order uni�cation in the λ-calculus. In the con-
text of �rst-order uni�cation one usually considers a language similar to s, t ::=

x | c | s t. However, when unifying �rst-order terms in the λ-calculus subtle dif-
ferences arise. For example, consider the �rst-order terms g x a and g b a where
g : α→ α→ α and a, b, x : α. Using the substitution σx = b they can be uni�ed. If
we turn the free occurrence of x into a bound occurrence using a λ-abstraction, then
the resulting terms λx.g x a and λx.g b a can no longer be uni�ed.

The above example shows that when it comes to �rst-order uni�cation in the λ-
calculus, then we have to distinguish between bound and free variables. In essence,
uni�cation in the �rst-order fragment of the λ-calculus may be understood as uni-
�cation in the language s, t ::= x | c | s t where only a subset of the variables can
be instantiated. More explicitly, to answer the question of uni�ability for two �rst-
order terms s and t it su�ces to normalise s and t to normal forms λx1 · · ·xk.s′ and
λx1 · · ·xl.t′ where s′ and t′ are free of abstractions, decide whether k = l and if so
decide whether the terms s′ and t′ are uni�able when the variables x1, . . . , xk are
considered bound.

Chapter 3

Formal Preliminaries

In this chapter we introduce common operations which are used throughout the the-
sis.

We write OX for the option type over X , ∅ for the empty option. The option con-
taining the value x is simply denoted by x as well.

We write LX for the type of lists over X , nil for the empty list and x :: A for the list
A which is extended by the element x. For the concatenation of A and B we write
A++B and ~A for the list obtained by reversing A. |A| denotes the length of A and
A[i] the element at position i of A. The �rst position of A is 0 and if i not strictly
smaller than the length of A, then A[i] is ∅. x ∈ A means the element x is contained
in the list A and A ⊆ B means every element of A is contained in B. We write
[fx | x ∈ A] for the list which results from applying the function f to every element
in A and we write an for the list obtained by repeating the term a exactly n times.

If the pair (ι, %) forms a retraction from X to Y , we write X ↪→ Y . The proposition
x ∈ im ι means ιy = x for some y. We assume retractions are always tight, meaning
x 6∈ im ι i� %x = ∅.

We write X + Y for the sum type of X and Y with the injections L+ : X → X + Y

and R+ : Y → X + Y .

Chapter 4

λ-calculus

In this thesis, we consider a Curry-style simply-typed λ-calculus [6, 40, 2] with unre-
stricted β-reduction, meaning β-reductions are allowed in all subterms. For a discrete
type of constants C we de�ne terms, types and typing contexts by:

s, t, u, v ::= x | c | λx.s | s t (x : N, c : C)
A,B ::= α | A→ B (α : N)

Γ,∆,Σ ::= x1 : A1, . . . , xn : An

Variables and constants will sometimes be referred to as atoms, denoted by the letter
a. On paper we use named syntax whereas in Coq we use De Bruijn indices [10]. As
a consequence, abstractions are of the form λs instead of λx.s in the formal develop-
ment. The variable n in De Bruijn notation indicates that n binders have to be skipped
until the binder of the variable is reached. For example, the term (λxyz.z) (λy.y) can
be expressed as (λλλ2) (λ0). In the formalisation, we represent type contexts Γ by
lists of types and the proposition (x : A) ∈ Γ is to be interpreted as Γ[x] = A. We
write dom Γ for the list of variables contained in the context Γ dom Γ

vars s

and vars s for the free
variables of the term s.

Substitutions In this work we use parallel substitutions [10], i.e. maps from vari-
ables to terms, denoted by σ, τ . We write s[σ] for the result of applying the substitu-
tion σ to all free variables of s. Following Barendregt’s variable convention [2], we
assume that the free variables occurring in our terms are always distinct from bound
variables. As a consequence, on paper we assume that substitution s[σ] is always
capture-avoiding. If σ is a substitution, we write σ[x := s] for the substitution ob-
tained by extending σ with a binding of x to s. We write σ[τ] for the composition
of σ and τ and s/x for the single-point substitution replacing the variable x with
the term s. Analogously, we denote parallel renamings by ρ, δ. Parallel renamings
are parallel substitutions which insert only variables. We do not state every lemma
regarding substitution on paper but remark on important ones such as:

Fact 4.1 If σx = τx for all x ∈ vars s, then s[σ] = s[τ].

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.prelim.html#dom
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#vars
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#subst_extensional

20 λ-calculus

4.1 Simply-Typed λ-calculus

In accordance to Huet [28], we employ unrestricted β-reduction as a reduction strat-
egy. We write s � t if the term s reduces in a single step to the term t.

De�nition 4.2s � t

s �∗ t
(λx.s) t � s[x/t]

s � s′
λx.s � λx.s′

s � s′
s t � s′ t

t � t′
s t � s t′

The re�exive, transitive closure of � is denoted by �∗.

Fact 4.3

1. � is compatible with renaming and substitution.

2. �∗ is a compatible with the term structure, substitutions, and renamings.

We say a term s is normal, written normal s,normal s

s . t

if it does not reduce any further and
write s . t if s reduces to t and t is normal. We establish that normality is preserved
under renaming and in some cases even under substitution. In addition, we give an
alternative characterisation of normality which follows the term structure.

Fact 4.4

1. Normality is decidable.

2. If s is normal, then s[ρ] is normal for every renaming ρ.

3. If s is normal and σx is normal and not an abstraction for all x, then s[σ] is
normal.

Fact 4.5 The following rules and their inversions hold for normality:

normal x normal c
normal s

normal (λx.s)
normal s normal t ¬isLam s

normal (s t)

In the context of reduction, we will frequently be concerned with the applicative
headhead s of a term. The applicative head of a term s, written head s, is the left-most
subterm with respect to application. For example, we have head (a y (λz.z)) = a

and head ((λxy.x y) a z) = λxy.x y. Notably, if the applicative head of a term s is
an abstraction and the term s is an application, then there must exist a β-redex which
can be reduced. In this case s is of the shape s = (λx.s′) t1 · · · tn. To invert reduction
sequences, we use the following fact:

Fact 4.6 Let ρ be a renaming.

1. If λx.s �∗ t then s �∗ s′ and t = λx.s′ for some s′.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#step
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#Semantics.CompatibilityProperties
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#ren_step_proper
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#lam_proper
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal
http://www.ps.uni-saarland.de/~spies/hou/HOU.std.ars.basic.html#evaluates
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#dec_normal
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_ren
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_subst
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#Semantics.Normality
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_var
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_const
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_lam_intro
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#normal_app_l
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#head
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#Semantics.InversionLemmas
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#steps_lam

4.1. Simply-Typed λ-calculus 21

2. If s t �∗ u then either there exist s′, t′ with s �∗ s′, t �∗ t′ and u = s′ t′ or there
exists s′ with s �∗ λx.s′ and the applicative head of s is an abstraction.

3. If s[ρ] �∗ t then there exists s′ with s �∗ s′ and t = s′[ρ].

4.1.1 Equational Theory

When reasoning about the equivalence of two terms up to reduction, we shall use
the equivalence closure of �, denoted by ≡. s ≡ tCon�uence of � entails that ≡ satis�es
the Church-Rosser property which allows us to lift compatibility properties from�∗
to ≡. We defer a con�uence proof of � to Section 4.4.

Fact 4.7

1. If s ≡ s′, then there is a term t such that s �∗ t and s′ �∗ t.

2. ≡ is compatible with the term structure, substitutions, and renamings.

3. If σx ≡ τx for all x ∈ vars s, then s[σ] ≡ s[τ].

Similar to syntactic equality, we can recover the injectivity and disjointness of term
constructors. Clearly, we cannot expect application to be injective without further
side conditions, since the applicative head might be an abstraction which could be
reduced.

Fact 4.8

1. If x ≡ y, then x = y.

2. If c ≡ c′, then c = c′.

3. If λx.s ≡ λx.t, then s ≡ t.

4. If the applicative heads of s, s′ are atoms and s t ≡ s′ t′, then s ≡ s′ and t ≡ t′.

Fact 4.9 Let the applicative head of s1 be an atom.

x 6≡ c x 6≡ λy.s c 6≡ λx.s x 6≡ s1 s2 c 6≡ s1 s2 λx.s 6≡ s1 s2

4.1.2 Simple Typing

Huet [28] and Snyder and Gallier [52] present their versions of the simply-typed
λ-calculus in a Church-typed fashion, meaning only well-typed terms exist. As a
consequence, functions operating on terms are formally always de�ned on typing
derivations. This complicates the formalisation in Coq signi�cantly. We remark on
this aspect in Chapter 10. Furthermore, even if one does not require every term to be

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#steps_app
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.semantics.html#steps_anti_ren
http://www.ps.uni-saarland.de/~spies/hou/HOU.std.ars.confluence.html#church_rosser
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#Equivalence.CompatibilityProperties
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#subst_pointwise_equiv
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#Equivalence.InjectivityProperties
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_var_eq
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_const_eq
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_lam_elim
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_app_elim
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#Equivalence.DisjointnessProperties
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_var_const
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_var_lambda
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_const_lam
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_var_app
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_const_app
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#equiv_neq_lambda_app

22 λ-calculus

well-typed, the inclusion of types into the syntax introduces a certain overhead with
respect to formalisation. The Type system cannot be exchanged without reproving
lemmas about for example reduction, equivalence, and substitution.

For these reasons, we present uni�cation in a Curry-style type system. Let Ω be a
signature assigning types to constants. We write Γ ` s : A, if s can be assigned the
type A under context Γ and ∆ ` σ : Γ if σ agrees with the constraints of Γ under ∆.
Analogously, we introduce ∆ ` ρ : Γ for renamings.

De�nition 4.10Γ ` s : A

∆ ` ρ : Γ

∆ ` σ : Γ

(x : A) ∈ Γ

Γ ` x : A Γ ` c : Ωc
Γ ` s : A→ B Γ ` t : A

Γ ` s t : B

Γ, x : A ` s : B

Γ ` λx.s : A→ B

∀(x : A) ∈ Γ. (ρx : A) ∈ ∆

∆ ` ρ : Γ

∀(x : A) ∈ Γ. ∆ ` σx : A

∆ ` σ : Γ

As a consequence of choosing this type system, terms do not have unique types. For
example, the term λx.x can be typed as α → α and as (α → α) → (α → α) in
every context Γ. With respect to uni�cation, it is still possible to choose the types
of the terms inserted by substitutions since the types of the free variables are always
determined by the context Γ. We prove that the type of a term is preserved under
renaming, substitution, and reduction.

Fact 4.11 (Preservation) Let Γ ` s : A.

1. If ∆ ` ρ : Γ, then ∆ ` s[ρ] : A.

2. If ∆ ` σ : Γ, then ∆ ` s[σ] : A.

3. If s � s′, then Γ ` s′ : A.

4. If s �∗ s′, then Γ ` s′ : A.

We remark that substitutions ∆ ` σ : Γ are only required to insert terms which are
well-typed for the variables of Γ. For all other variables a substitution may return
untyped terms. In the context of uni�cation all free variables in s and t will always
be contained in Γ and therefore only well-typed terms will be inserted into s and t.
To this end, we establish:

Lemma 4.12 If Γ ` s : A and x ∈ vars s, then x ∈ dom Γ.

4.2 Order

In this section we formally introduce the notion of order. As a consequence of using a
calculus without explicit type annotations we cannot simply compute “the” order of
a term. We compensate this problem by introducing an order type system Γ `n s : A

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#typingRen
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#typingSubst
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#Typing.Preservation
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#preservation_under_renaming
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#preservation_under_substitution
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#preservation_under_reduction
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#preservation_under_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.typing.html#typing_variables

4.2. Order 23

which captures the nth-order fragment of the calculus. The type system Γ `n s : A

is monotone with respect to order and may be understood as a more �ne-grained
version of Γ ` s : A.

We de�ne the order of a type in accordance to [52] and extend the terminology to
typing contexts.

De�nition 4.13 ord A

ord Γord α = 1 ord (A→ B) = max(1 + ord A, ord B) ord Γ = max
(x:A)∈Γ

ord A

The fragment of the language containing only variables with a type of at most order n
and constants of at most order n+ 1 is characterised by the order type system Γ `n
s : A.

De�nition 4.14 Γ `n s : A

∆ `n ρ : Γ

∆ `n σ : Γ
(x : A) ∈ Γ ord A ≤ n

Γ `n x : A

ord (Ωc) ≤ n+ 1

Γ `n c : Ωc

Γ `n s : A→ B Γ `n t : A
Γ `n s t : B

Γ, x : A `n s : B

Γ `n λx.s : A→ B

∀(x : A) ∈ Γ. (ρx : A) ∈ ∆

∆ `n ρ : Γ

∀(x : A) ∈ Γ. ∆ `n σx : A

∆ `n σ : Γ

For renamings the de�nition of ∆ `n ρ : Γ coincides with ∆ ` ρ : Γ. Note that
under this de�nition the order of a term is neither always unique nor can it always
be computed by inspecting only the term itself. For example, the term λx.x can be
typed as Γ `1 λx.x : α→ α and as Γ `2 λx.x : (α→ α)→ (α→ α). When
it comes to uni�cation, we are mostly interested in the order of the free variables
which is always determined by Γ.

Every well-typed term can be typed at some order and every order-typed term is
well-typed. Furthermore, the judgement is monotone with respect to the order.

Fact 4.15

1. If Γ `n s : A, then Γ ` s : A.

2. If Γ ` s : A, then Γ `n s : A for some n.

3. If Γ `n s : A and n ≤ m, then Γ `m s : A.

All properties also hold for substitutions.

We can generalise Lemma 4.12. All properties stated in Fact 4.11 also hold for the
order type system Γ `n s : A.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ord
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ord'
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#typingRen
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertypingSubst
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_soundness
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_completeness
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_monotone

24 λ-calculus

Lemma 4.16 If Γ `n s : A and x ∈ vars s, then (x : B) ∈ Γ for some B with
ord B ≤ n.

Fact 4.17 (Order-Preservation) Let Γ `n s : A.

1. If ∆ `n ρ : Γ, then ∆ `n s[ρ] : A.

2. If ∆ `n σ : Γ, then ∆ `n s[σ] : A.

3. If s � s′, then Γ `n s′ : A.

4. If s �∗ s′, then Γ `n s′ : A.

The statement for preservation under substitution and renaming can be strengthened
such that σ and ρ only have to be typed properly for the free variables of s.

Fact 4.18 Let Γ `n s : A.

1. If for all (x : B) ∈ Γ x ∈ vars s implies (ρx,B) ∈ ∆, then ∆ `n s[ρ] : A.

2. If for all (x : B) ∈ Γ x ∈ vars s implies ∆ `n σx : B, then ∆ `n s[σ] : A.

4.3 Lists of Terms

On paper, terms like s1(· · · (sn t) · · ·) are easy to read and understand. Working in
a proof assistant on the other hand, writing “· · · ” is not an option. However, the
previous term can be seen as the application of a list of terms [s1, . . . , sn] from the
left to the term t. Therefore we generalise several notions of the previous sections
to lists of terms S, T , lists of variables X,Y , and lists of types L,K . Substitutions
and renamings are extended to lists by applying them successively to each element
of the list, explicitly S[ρ] := [s[ρ] | s ∈ S] and S[σ] := [s[σ] | s ∈ S]. By σ[X := S]

we denote the substitution obtained through extending σ by pointwise binding the
terms S to the variables X .

We lift both reduction and typing to lists yielding a type system Γ ` S : L, an order
type system Γ `n S : L, and a small-step semantics S � S′.

De�nition 4.19S � S′

Γ ` S : L

Γ `n S : L

s � s′
s :: S � s′ :: S

S � S′
s :: S � s :: S′

Γ ` nil : nil

Γ ` s : A Γ ` S : L
Γ ` (s :: S) : (A :: L)

Γ `n nil : nil

Γ `n s : A Γ `n S : L

Γ `n (s :: S) : (A :: L)

The order of a list of types is de�ned by ord L := maxA∈L ord Aord L . Con�uence of the
semantics is inherited from con�uence of the single term reduction, which entails
that the equivalence closure of the list reduction �, also denoted by ≡, satis�es the
Church-Rosser property.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#vars_ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#OrderTyping.PreservationOrdertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_preservation_under_renaming
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_preservation_under_substitution
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_preservation_under_reduction
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_preservation_under_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_weak_preservation_under_renaming
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ordertyping_weak_preservation_under_substitution
http://www.ps.uni-saarland.de/~spies/hou/HOU.std.ars.list_reduction.html#lstep
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#listtyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#listtyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.order.html#ord'

4.3. Lists of Terms 25

Fact 4.20 The reduction strategy � is con�uent on lists.

Instead of extending the syntax of the calculus itself, we introduce metalevel types
and operations on lists. The type constructor→ is lifted to lists by:

De�nition 4.21 L→ A

nil→ A = A (B :: L)→ A = B → (L→ A)

The notions of list application to a term from the left, written S t, or from the right,
written s T , as well as a list indexed abstraction, written ΛX.s, are de�ned as:

De�nition 4.22
S t

s T

ΛX.s

nil t = t

(s :: S) t = s (S t)

s nil = s

s (t :: T) = (s T) t

Λnil.s = s

Λx :: X.s = λx.ΛX.s

In the Coq formalisation, because of the De Bruijn representation, we index the list
abstraction Λ by a natural number n instead of a list of variables X .

By nature of the extension, these new operators inherit many properties of their sin-
gle term counterparts. We do not explicitly spell out the details of how substitution
and renaming behave in the context of the list operators but summarize results re-
garding the operational semantics in the following lemma:

Lemma 4.23

1. �, �∗, and ≡ are compatible with list application from the left, list application
from the right, and list abstractions.

2. In the presence of list application from the left, list application from the right, and
list abstractions normality is preserved through the term structure.

Using the list operators, we can generalise the β-rule to:

Lemma 4.24
|X| = |T |

(ΛX.s) T �∗ s[X := T]

Proof By generalising the claim to (ΛX ++Y .s)[σ] T �∗ ΛY.s[σ[X := T]] and in-
duction on T . �

We derive typing rules of the list operations for both ` and `n. Note that the typing
rule for application from the left is only a special case of a more general rule. However,
for our purposes this one will su�ce.

http://www.ps.uni-saarland.de/~spies/hou/HOU.std.ars.list_reduction.html#confluence_lstep
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#Arr
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppL
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppR
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#Lambda
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#TermsExtension.ListOperatorsCompatibilityProperties
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#TermsExtension.Normality
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppR_Lambda

26 λ-calculus

Lemma 4.25

|L| = |X| Γ, X : ~L ` s : A

Γ ` ΛX.s : L→ A

Γ ` S : (A→ A)n Γ ` t : A

Γ ` S t : A

Γ ` s : ~L→ A Γ ` T : L
Γ ` s T : A

All rules also hold for order typing.

In accordance with Chapter 3 (A→ A)n here denotes the list containing A → A

exactly n times. The e�ect of the above rules can be inverted using the following
inversion principles. For list application from the left we cannot recover the premise
of the above rule as it is only a special case of a more general rule. Thus, we settle on
S and t being well-typed in the context Γ.

Lemma 4.26

1. If Γ ` ΛX.s : B, then Γ, X : ~L ` s : A and B = L → A and |L| = |X| for
some L,A.

2. If Γ ` S t : B, then Γ ` S : L and Γ ` t : A for some L,A.

3. If Γ ` s T : B, then Γ ` T : L and Γ ` s : ~L→ A for some L.

All properties also hold for order typing.

As the applicative head is de�ned by recursion only the left side of applications, we
can decompose every term s into its applicative head and a list of arguments being
applied from the right.

Lemma 4.27 s = (head s) T for some list T .

Whenever we encounter a normal term s, s can be written as a sequence of abstrac-
tions followed by some atom applied to a list of normal arguments. We capture this
form with an inductive predicate nf s.

Lemma 4.28nf s Every normal term s satis�es the inductive predicate

s = ΛX.a T ∀t ∈ T. nf t
nf s

This predicate gives rise to a useful induction principle on normal forms. Instead
of proving claims by induction on the structure of the normal form s, we can do an
induction on nf s.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#TermsExtension.ListOperatorsTyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#TermsExtension.ListOperatorsTyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#Lambda_typing_inv
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppL_typing_inv
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppR_typing_inv
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#head_decompose
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#normal_nf
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#nf

4.4. Con�uence, Normalisation & Evaluation 27

4.4 Con�uence, Normalisation & Evaluation

In this section we establish standard results about our version of the simply-typed
λ-calculus. We prove the reduction strategy � is con�uent. Furthermore, we prove
that every term Γ ` s : A is weakly normalising. Weak normalisation will allow us
to reason about normal forms of typed terms Γ ` s : A in subsequent chapters. In
particular, we use weak normalisation to obtain an evaluator ξ for typed terms which
is used to normalise typed substitutions in subsequent chapters.

4.4.1 Con�uence

Following the standard technique introduced by Tait and Martin-Löf and re�ned by
Takahashi [57], we prove con�uence of �. As the proof is well known, we only
give the de�nition of the parallel reduction relation < and the maximal reduction
function ς and state the necessary lemma.

De�nition 4.29 ςs

s < t
ςx = x

ςc = c

ς(λx.s) = λx.ςs

ς((λx.s) t) = (ςs)[ςt/x]

ς(s t) = (ςs) (ςt) othw.

x < x c < c

s < s′

λx.s < λx.s′
s < s′ t < t′

(λx.s) t < s′[t′/x]

s < s′ t < t′

s t < s′ t′

The function ς can be interpreted as a reduction strategy reducing all β-redexes that
occur inside of its argument. The relation < allows for the reduction of multiple β-
redexes in the left term. The following lemma ensures that ς is an upper bound as to
how far < can reduce in one step.

Lemma 4.30

1. < is re�exive and compatible with both renamings and substitutions.

2. <∗ is compatible with abstractions and applications.

3. �⊆<⊆�∗

4. If s < t, then t < ςs.

These properties are su�cient to conclude the con�uence of �.

Fact 4.31 (Con�uence) If s �∗ t1 and s �∗ t2, then there is a term t such that
t1 �∗ t and t2 �∗ t.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#rho
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#par
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#refl_par
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#par_lam_proper
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#sandwich_step
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#tak_fun_rho
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.confluence.html#confluence_step

28 λ-calculus

4.4.2 Normalisation

Girard [24] was the �rst to give a strong normalisation proof of the simply-typed
λ-calculus with unrestricted reduction. In contrast to normalisation proofs for re-
stricted reduction strategies [15], unrestricted reduction entails that abstractions are
no longer normal forms. We compensate this di�erence by adapting a technique pre-
sented in [22]. The authors prove strong normalisation for the call-by-push-value
λ-calculus with unrestricted reduction. We modify their technique to yield a weak
normalisation proof for this version of the λ-calculus.

The main idea of the proof is to establish that well-typed terms Γ ` s : A are se-
mantically well-typed, written Γ � s : A, a property we will refer to as semantic
soundness. Γ � s : A in turn will entail that s is weakly normalising. Similar to [22]
the judgement � relies on the de�nition of logical relations, in our case V[A], E [A]

and G[Γ]. In order to de�ne these relations, we adapt the notion of an active term
to the simply-typed λ-calculus. A term s is active if and only if s is an abstraction.
We group all normal, active terms that behave similar to expressions of type A in
the value relation V[A]. The expression relation E [A] is the extension of V[A] by all
normalising terms, whose normal form is in the relation V[A] if it is active.

De�nition 4.32
V[α] := ∅ V[A→ B] := {λx.s | normal s and ∀t ∈ E [A].∀ρ.(λx.s)[ρ] t ∈ E [B]}

E [A] := {s | ∃t. s . t and if t is active, then t ∈ V[A]}

G[Γ] := {σ | ∀(x : A) ∈ Γ. σx ∈ E [A]}

Γ � s : A := ∀σ ∈ G[Γ]. s[σ] ∈ E [A]

The relation E [A] only requires active normal forms to be in V[A]. As a consequence,
the normalisation of open terms is possible. Variables are contained in the E [A] rela-
tion and therefore the identity substitution is a possible choice for σ in the de�nition
of �. To ease the proof of semantic soundness, we �x some properties about our log-
ical relations. By construction, the relations V[A], E [A] and G[Γ] are Kripke logical
relations. The relation E [A] is closed under both expansion and reduction.

Lemma 4.33

1. x ∈ E [A], id ∈ G[Γ].

2. If s ∈ E [A] and σ ∈ G[Γ], then σ[x := s] ∈ G[Γ, x : A].

3. Let s �∗ t. Then s ∈ E [A] i� t ∈ E [A].

4. The relations V[A], E [A] and G[Γ] are closed under renaming. Explicitly, if R ∈
{V[A], E [A],G[Γ]} and x ∈ R, then x[ρ] ∈ R.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#E_var
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#G_cons
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#closure_under_expansion
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#ren_closed_V

4.4. Con�uence, Normalisation & Evaluation 29

The proof of semantic soundness is by induction on the typing judgement using the
following compatibility lemmas.

Lemma 4.34

1. If (x : A) ∈ Γ and σ ∈ G[Γ], then σx ∈ E [A].

2. c ∈ E [Ωc]

3. If s ∈ E [B] and ∀tρ. t ∈ E [A]→ (λx.s)[ρ] t ∈ E [B], then λx.s ∈ E [A→ B].

4. If s ∈ E [A→ B] and t ∈ E [A], then s t ∈ E [B].

Proof The third and fourth claim follow using Lemma 4.33 as well as the de�nition
of V[A→ B]. The others are trivial. �

Lemma 4.35 If Γ ` s : A, then Γ � s : A.

Proof By induction on Γ ` s : A using Lemma 4.34. All cases are trivial except for
the case of abstractions. Let Γ, x : A � s : B and σ ∈ G[Γ]. We establish s ∈ E [B]

by using the inductive hypothesis and Lemma 4.33. Using Lemma 4.34 it remains to
prove that under the assumption t ∈ E [A] we can show (λx.s)[ρ] t ∈ E [B]. Using
Lemma 4.33 it su�ces to prove s[σ[ρ][x := t]] ∈ E [B] which follows with the induc-
tive hypothesis and Lemma 4.33. �

Corollary 4.36

1. If Γ ` s : A, then s . t for some t.

2. If Γ `n s : A, then s . t for some t.

Proof Follows from Lemma 4.35 with σ := id . �

4.4.3 Evaluation

As a by-product of the above proofs we can utilise the reduction strategy ς to obtain
a step-indexed interpreter ξn for �∗ and an evaluator ξ of typed terms.

De�nition 4.37 ξns

ξ0s = ∅ ξn+1s = s if δs ξn+1s = ξn(ςs) othw.

where δ is a decider for the normality of terms.

For the correctness of the step indexed interpreter we establish:

Lemma 4.38

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#compat_var
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#compat_const
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#compat_lambda
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#compat_app
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#semantic_soundness
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#termination_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.normalisation.html#ordertyping_termination_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.std.ars.evaluator.html#E

30 λ-calculus

1. s . t i� ξns = t for some n.

2. If n ≤ m and ξns = t, then ξms = t.

3. If s . t for some t, then we can compute the normal form of s.

Weak normalisation of typed terms allows us to lift the step indexed interpreter ξn
to a full interpreter ξ on typed terms.

De�nition 4.39ξs By Lemma 4.38 and Corollary 4.36 there exists a function mapping
well-typed terms s to their normal form. We denote this function with ξs and leave the
typing information implicit on paper.

Lemma 4.40

s . ξs normal (ξs) Γ ` s : A
Γ ` ξs : A

Γ `n s : A
Γ `n ξs : A

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.evaluator.html#xi_correct
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.evaluator.html#xi_monotone
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.evaluator.html#compute_evaluation_step
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.evaluator.html#eta
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.evaluator.html#eta_correct

Chapter 5

Uni�cation

Higher-order uni�cation is the process of �nding a well-typed substitution for the
free variables in two typed terms such that under the substitution both terms are
equivalent. As an example, we consider λxy.fx and λxy.fy of type α→ α→ α in
the context Γ = (f : α → α). Recall from Section 2.1 that if we replace the free
variable f with the term ∆ ` λ_.z : α→ α in the context ∆ = (z : α), then the
resulting terms are equivalent, i.e. λxy.(λ_.z)x ≡ λxy.z ≡ λxy.(λ_.z)y.

Note that uni�ability in the above example crucially depends on the fact that the
substitution may introduce a new variable of type α. If α is an empty type, then
there is no closed, well-typed substitution unifying λxy.fx and λxy.fy because the
variable f has to be replaced by some term of type α → α. All closed terms of
type α → α are equivalent to the identity function λx.x and inserting the identity
function for f does not unify both terms.

5.1 Higher-Order Uni�cation

In general, a substitution σ uni�es two terms s and t if s[σ] ≡ t[σ] and σ agrees
with the types of the variables of s and t. Explicitly, if s and t have the same type
in context Γ, then σ must satisfy ∆ ` σ : Γ for some typing context ∆. While ∆

may be chosen by the substitution, the requirement ∆ ` σ : Γ enforces that the
same context ∆ is used to type all the terms inserted by the substitution. We speak
of higher-order uni�cation U, if no restriction is applied to the order of terms.

De�nition 5.1 Γ ` s ?
= t : A

A higher-order uni�cation instance is a dependent tuple (Γ, s, t, A,H1, H2) consisting
of a typing context Γ, two terms s and t, a type A, a proofH1 of Γ ` s : A, and a proof
H2 of Γ ` t : A. We write Γ ` s ?

= t : A if we want to refer to Γ, s, t, A explicitly and
leave the typing information implicit.

UU(Γ ` s ?
= t : A) := ∃∆σ. ∆ ` σ : Γ and s[σ] ≡ t[σ]

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#uni
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#U

32 Uni�cation

In the previous example, we establish U(Γ ` λxy.fx ?
= λxy.fy : α→ α) for Γ =

(f : α → α) with the substitution σf = λ_.z in context ∆ = (z : α). The terms
∆ ` λx.x ?

= λx.z : α→ α are an example of two terms which are not uni�able.
There does not exist a term which can be substituted for z such that the resulting
terms would be equivalent since we utilise capture-avoiding substitution.

Normalisation In this paragraph we show that reduction has no e�ect on uni�-
ability since uni�ability is de�ned up to equivalence. In particular, we show that
arbitrary parts of the de�nition may be assumed to be normal. The higher-order uni-
�cation problem U postulates the existence of a well-typed substitution σ without
reference to normality. While it will sometimes be convenient to give a substitution
which is not normal, we prove in the following that there always exists a correspond-
ing substitution inserting normal forms only. The key to obtaining this substitution
is the evaluator ξ introduced in Section 4.4.

De�nition 5.2NU

NU(Γ ` s ?
= t : A) := ∃∆σ. ∆ ` σ : Γ and s[σ] ≡ t[σ] and ∀x. normal (σx)

Fact 5.3

1. If ∆ ` σ : Γ, then we can compute a substitution τ such that ∆ ` τ : Γ,
∀x ∈ dom Γ. normal (τx), and σx �∗ τx for all x.

2. U(Γ ` s ?
= t : A) i� NU(Γ ` s ?

= t : A).

Proof

1. Pick the substitution τ such that τx = σx if x 6∈ dom Γ and τx = ξ(σx) if
x ∈ dom Γ.

2. The “only if” direction is trivial. For the “if” direction assume ∆ ` τ : Γ

and s[τ] ≡ t[τ] for some substitution τ and context ∆. By Item 1 we obtain
a substitution τ ′ with ∀x ∈ dom Γ. normal (τ ′x) and ∀x. σx �∗ τ ′x. Pick
σx := τ ′x if x ∈ domΓ and σx := x otherwise. Sinceσ and τ are extensionally
equivalent on dom Γ ⊇ vars [s, t], meaning σx ≡ τx for all x ∈ dom Γ, we
obtain s[σ] ≡ t[σ] with Fact 4.7. �

We prove that uni�cation is invariant under reduction in the sense that the terms s, t
may be replaced with equivalent terms s′, t′ as long as s′ and t′ have the same type. As
a consequence, uni�ability of two typed terms s and t is equivalent to the uni�ability
of their normal forms. This justi�es extending the evaluator ξ to uni�cation instances
by ξ(Γ ` s ?

= t : A) = Γ ` ξs ?
= ξt : A.

Fact 5.4 Let Γ ` s ?
= t : A and Γ ` s′ ?

= t′ : A such that s ≡ s′ and t ≡ t′.

1. U(Γ ` s ?
= t : A) i� U(Γ ` s′ ?

= t′ : A).

2. U(Γ ` s ?
= t : A) i� U(ξ(Γ ` s ?

= t : A)).

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#NU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#NU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#normalise_subst
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#U_NU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#U_reduction
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.higher_order_unification.html#uni_normalise_correct

5.2. Systems of Equations 33

5.2 Systems of Equations

While Huet [28], Goldfarb [25] and Snyder and Gallier [52] de�ne higher-order uni�-
cation as the problem of unifying a single equation, Dowek [13] considers uni�cation
the problem of unifying multiple equations. Following Snyder and Gallier [52], we
refer to multiple equations as a system of equations. In the following, we de�ne the
problem of system uni�cation SU and relate it to higher-order uni�cation U.

We write s ?
= t for a single equation, i.e. the pair (s, t) and denote systems of equa-

tions, i.e. lists of equations by the letter E. We extend typing to systems of equations
with the type system Γ ` E : L and say a system of equations Γ ` E : L is uni�able,
if there exists a substitution ∆ ` σ : Γ unifying all equations in E.

De�nition 5.5 Γ ` E : L

Γ ` nil : nil
Γ ` s : A Γ ` t : A Γ ` E : L

Γ ` (s
?
= t :: E) : (A :: L)

For the sake of readability we also write Γ ` E : L for instances of system uni�cation.
Instances of system uni�cation are dependent tuples of the form (Γ, E, L,H) where H
is a proof of Γ ` E : L.

SUSU(Γ ` E : L) := ∃∆σ. ∆ ` σ : Γ and EL[σ] ≡ ER[σ]

where EL refers to the terms on the left of the equations in E and ER refers to those on
the right.

We show that higher-order uni�cation and system uni�cation are interreducible. To
prove SU � U we exploit that bound variables can neither be replaced nor re-
duced. For example, given the equations s1

?
= t1 and s2

?
= t2, we produce the terms

λh.h s1s2
?
= λh.h t1t2, which are uni�able i� the original terms are uni�able by the

same substitution.

Fact 5.6 U � SU and SU � U.

Proof The �rst claim follows by lifting terms and types to singleton lists, explicitly
f(Γ ` s ?

= t : A) := Γ ` [s
?
= t] : [A]. For the second claim pick the reduction

function f(Γ ` E : L) := Γ ` λh.h EL
?
= λh.h ER : (~L→ α)→ α. The result

follows with Fact 4.8 and Lemma 4.23. �

Analogously to single equations, whenever a system of equations is uni�able, then
there exists a normal substitution unifying the system.

Fact 5.7 NSUSU(Γ ` E : L) i� NSU(Γ ` E : L) where

NSU(Γ ` E : L) := ∃∆σ. ∆ ` σ : Γ and EL[σ] ≡ ER[σ] and ∀x. normal (σx)

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.systemunification.html#eqs_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.systemunification.html#SU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.systemunification.html#U_SU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.systemunification.html#SU_SNU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.systemunification.html#SNU

34 Uni�cation

5.3 Nth-Order Uni�cation

When analysing the problem of higher-order uni�cation U, we can distinguish dif-
ferent fragments. We speak of nth-order uni�cation if the terms are of the nth-order
fragment of the calculus. In accordance with Snyder and Gallier [52] we de�ne the
problem of nth-order uni�cation Un.

De�nition 5.8Γ `n s
?
= t : A

An instance of nth-order uni�cation is a dependent tuple (Γ, s, t, A,H1, H2) consisting
of a typing context Γ, two terms s and t, a type A, a proof H1 of Γ `n s : A, and a
proof H2 of Γ `n t : A. We write Γ `n s

?
= t : A if we want to refer to Γ, s, t, A

explicitly and leave the typing information.

Un Un(Γ `n s
?
= t : A) := ∃∆σ. ∆ `n σ : Γ and s[σ] ≡ t[σ]

For the remainder of this thesis, we will always assume n > 0 when speaking of Un

or any related problems involving order. While U0 is formally de�ned, its instances
cannot contain free variables. Furthermore, the problem is not well behaved in the
sense that it is not conservative. Consider Γ `0 g

?
= g : α→ α→ α in the context

Γ = (x : α) for a language with only the single constant g : α→ α→ α. We cannot
prove U0 of this instance because there is no substitution ∆ `0 σ : Γ as there is no
term ∆ `0 s : α. However, there is the substitution σx = z with z : α `1 σ : Γ

unifying both terms at order one.

System of Equations Analogously to the higher-order case, we consider systems
of equations in the nth-order fragment of the calculus. We characterise nth-order
systems of equations with the order type system Γ `n E : L and the problem of
nth-order system uni�cation SUn as the counterpart to SU.

De�nition 5.9Γ `n E : L

Γ `n nil : nil
Γ `n s : A Γ `n t : A Γ `n E : L

Γ `n (s
?
= t :: E) : (A :: L)

For the sake of readability we also write Γ `n E : L for instances of nth-order system
uni�cation. Instances of nth-order system uni�cation are dependent tuples of the form
(Γ, E, L,H) where H is a proof of Γ `n E : L.

SUn SUn(Γ `n E : L) := ∃∆σ. ∆ `n σ : Γ and EL[σ] ≡ ER[σ]

In contrast toSU, the situation forSUn is somewhat di�erent. While we can establish
Un � SUn, the proof of SU � U is not preserved. By transforming Γ ` E : L into
Γ ` λh.h EL

?
= λh.h ER : (~L→ α)→ α, the order of the types involved is a�ected

as well. The variable h has type ~L→ α thus the resulting terms are at least of order
ord ~L+1. As L depends on the system uni�cation instance, we cannot give a general
reduction. However, we can establish the following result which is still useful for
subsequent reductions:

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#ordunif
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#orduni
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#OU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#eqs_ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#SOU

5.3. Nth-Order Uni�cation 35

Lemma 5.10
For ord L < n de�ne f(Γ `n E : L) := Γ `n λh.h EL

?
= λh.h ER : (~L→ α)→ α.

SUn(Γ `n E : L) i� Un(f(Γ `n E : L)).

We conjecture that in a calculus with η-reduction the above technique can be adapted
to yield a proof of Un � SUn. The results on normalisation for U and SU can be
lifted to the nth-order fragment.

Fact 5.11 NUn

NSUn

De�ne

NUn(Γ `n s
?
= t : A) := ∃∆σ. ∆ `n σ : Γ and s[σ] ≡ t[σ] and ∀x. normal (σx)

NSUn(Γ `n E : L) := ∃∆σ. ∆ `n σ : Γ and EL[σ] ≡ ER[σ] and ∀x. normal (σx)

1. Un(Γ `n s
?
= t : A) i� NUn(Γ `n s

?
= t : A)

2. SUn(Γ `n E : L) i� NSUn(Γ `n E : L)

Retyping Unused arguments inside a term Γ `n s : A may increase the order of
its type A beyond n + 1. As an example consider λxy.x. The term can be typed
both as `1 λxy.x : α→ α→ α and as `3 λxy.x : α→ ((α→ β)→ β)→ α. In
the following we show that such terms with types of arti�cially in�ated order can be
retyped to types of order n+ 1 in a context of order n.

De�nition 5.12 retypen A

retypen Γ

Let dAen := A if ord A ≤ n and dAen := α otherwise.

retypen α = α retypen (A→ B) = dAen → retypen B

retypen Γ = [(x : dAen) | (x : A) ∈ Γ]

Clearly ord (retypen A) ≤ n + 1 and ord (retypen Γ) ≤ n. We show that every
normal term Γ `n s : A can be retyped.

Lemma 5.13 Γ `n s : A normal s
retypen Γ `n s : retypen A

Proof By induction on the structure of nf s. �

When establishing the decidability of �rst-order uni�cation, it will be convenient to
work with normal terms in a �rst-order context with a second-order type. Thus,
we de�ne retypen (Γ `n s

?
= t : A) := (retypen Γ) `n ξs

?
= ξt : (retypen A) and

establish:

Fact 5.14 Un(Γ `n s
?
= t : A) i� Un(retypen (Γ `n s

?
= t : A))

The proof of the above fact requires techniques introduced in Chapter 9. Hence, in
the formalisation this proof occurs alongside the results of Chapter 9.

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#SOU_OU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#NOU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#NSOU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#OU_NOU
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.nth_order_unification.html#SOU_NSOU
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.retyping.html#retype_type
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.retyping.html#retype_ctx
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.retyping.html#normal_retyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.retyping.html#retype_iff

36 Uni�cation

5.4 Enumerability

Despite uni�cation being undecidable, we can still prove that the problem is recur-
sively enumerable. In our setting, recursive enumerability of a problem P is estab-
lished by giving an enumeration of all instances of P that have a solution. Explicitly,
if P is a problem on type X , then an enumeration of P is a function e : N → OX ,
such that P(x) i�∃n. e(n) = x for all x. We say a type X is enumerable if we can
�nd an enumeration of all values of the type.

Following Forster et al. [21], there is a particularly convenient style for establishing
enumerability — list enumerators. List enumerators are similar to enumerations in
the sense that they enumerate all values of type X which satisfy P. However, while
enumerations may return at most one value for every natural number n, a list enu-
merator may return �nitely many elements for every natural number n in form of a
list. Furthermore, it will be convenient to only work with cumulative list enumera-
tors. A list enumerator L is cumulative, if L(n) is always a pre�x of L(n + 1). For
every enumeration there exists a cumulative list enumerator and vice versa [21].

In the following we give a proof that higher-order uni�cation is enumerable. Ex-
plicitly, this means we enumerate all equations Γ ` s ?

= t : A where s and t are
uni�able. Using list enumerations, it is straightforward to enumerate simple types
such as terms. We do nothing more than to successively apply term constructors to
produce every possible term eventually.

Lemma 5.15 Terms, types, and typing contexts are enumerable.

Proof In order to give a list enumeration Ltm of terms, we assume list enumerations
of constants LC and de�ne

Ltm0 := nil

Ltm(n+ 1) := Ltmn++ [x | x ∈ LNn]

++ [c | c ∈ LCn]

++ [λx.s | (x, s) ∈ LNn× Ltmn]

++ [s t | (s, t) ∈ Ltmn× Ltmn]

Types and typing contexts are enumerated analogously. �

Enumerating all uni�able equations Γ ` s
?
= t : A is more complicated. Besides

enumerating s and t, we enumerate proofs of the well-typedness of s and t. Recall that
Γ ` s ?

= t : A is just notation for a dependent tuple of the form (Γ, s, t, A,H1, H2)

where H1 is a proof of Γ ` s : A and H2 is a proof of Γ ` t : A. Thus, we need
an enumeration of all proofs of the proposition Γ ` s : A. For this purpose we
de�ne a recursive function LΓ`s:An parametric over the context Γ, term s and typeA
yielding a list of proofs of Γ ` s : A for every n. While the function is recursive on n,
the recursive structure of the typing judgement on the term s is re�ected by a case
distinction on s.

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#L_exp

5.4. Enumerability 37

Lemma 5.16 The proofs of Γ ` s : A are enumerable.

Proof Pick

LΓ`s:A0 := nil LΓ`x:A(n+1) := LΓ`x:An++
[

H
Γ ` x : A

where H : (x,A) ∈ Γ
]

LΓ`c:A(n+ 1) := LΓ`c:An++
[

Γ ` c : Ωc where A = Ωc
]

LΓ`λx.s:A→B(n+ 1) := LΓ`λx.s:A→Bn++
[

H
Γ ` λx.s : A→ B

∣∣∣ H ∈ LΓ,x:A`s:Bn
]

LΓ`s t:B(n+ 1) :=

LΓ`s t:Bn++
[

H1 H2

Γ ` s t : B

∣∣∣ (H1, H2) ∈ LΓ`s:A→Bn× LΓ`t:An,A ∈ Ltyn
]

LΓ`s:A(n+ 1) := LΓ`s:An othw.

where [f H where H : P] is a shorthand for [f H] if P is provable by some proof H
and nil otherwise. We omit H if the P does not occur as a premise of the rule. The
claim follows with a routine induction on Γ ` s : A. �

Corollary 5.17

1. The dependent tuples Γ ` s ?
= t : A are enumerable by a list enumerator Leq.

2. The predicate ` is enumerable by a list enumerator L`.

Every equation Γ ` s ?
= t : A contains only �nitely many variables. Since only the

occurring variables are of interest for substitutions, enumerating all relevant substi-
tutions is accomplished by enumerating all instantiations of those variables. Note
that we cannot hope for a technique enumerating well typed substitutions in general
as they are uncountable. However, for a �xed substitution τ we can enumerate all
contexts ∆,Γ and substitutions ∆ ` σ : Γ such that σx = τx for all x 6∈ dom Γ.
Since uni�ability is not a�ected by variables not occurring in Γ, we may pick τ = id

later on.

Lemma 5.18
We can enumerate all (∆, σ,Γ) such that ∆ ` σ : Γ and σx = τx for all x 6∈ dom Γ.

Proof Extend L` to substitutions by

L`0 := nil

L`(n+ 1) := L`n

++ [(∆, τ, nil) |∆ ∈ Lctxn]

++[(∆, σ[x := s], (Γ, x : A))|((∆, σ,Γ), (∆, s, A), x) ∈ L`n× L`n× LNn]

�

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#L_typingT
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#L_uni
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#L_uni
http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#L_subst

38 Uni�cation

To conclude the enumerability of U, we single out all the uni�able equations from
the enumeration Leq.

Theorem 5.19 U is enumerable.

Proof Instead of enumerating U directly, we enumerate the related problem
U′(Γ ` s ?

= t : A,∆, σ) := ∆ ` σ : Γ and s[σ] ≡ t[σ] and ∀x 6∈ dom Γ. σx = x.

Pick

L0 := nil

L(n+ 1) := Ln

++ [(I,∆, σ) | (I, (∆, σ,Γ)) ∈ Leqn× L`n where ξn(s[σ]) = ξn(t[σ])]

where I = (Γ, s, t, A,H1, H2) and ξn(s[σ]) = ξn(t[σ]) is to be read as ξn(s[σ]) =

u = ξn(t[σ]) for some term u. Using Lemma 4.38, the proof is routine. The enumer-
ability of U follows from a projection of U′ on ∆, σ, Fact 4.1 and Lemma 4.12. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.unification.enumerability.html#enumerable_unification

Chapter 6

Third-Order Uni�cation

In this chapter, we formally prove the undecidability of third-order uni�cation fol-
lowing a proof by Huet [28]. Huet proves that third-order uni�cation in a language of
arbitrary constants is undecidable by reduction from the Post correspondence prob-
lem PCP [42]. We simplify his undecidability proof by reducing from the modi�ed
Post correspondence problem MPCP [26] instead.

Recall from Section 2.4 that an MPCP instance consists of an initial card c0 and a
stack of cards C such as 11/1 and 0/110, 101/000. Formally, symbols, words, cards,
and stacks of cards are generated by the following abstract syntax:

b ::= 1 | 0 w, l, r ::= ε | bw c ::= l/r C ::= nil | c, C

and we write W for a list of words. In the formalisation we realise symbols b with
booleans, words w with lists of symbols, cards c with pairs of words and stacks C
with lists of cards. We call the upper half of a card c the top of c and the lower half
the bottom of c. We introduce the operations π1c, π2c which can be used to obtain
the top and bottom of a card and lift them to stacks by π1C and π2C .

De�nition 6.1 π1c π2c

π1C π2Cπ1(l/r) = l π2(l/r) = r π1C = [π1c | c ∈ C] π2C = [π2c | c ∈ C]

The Post correspondence problem PCP asks for a sequence of cards drawn from a
stack C , possibly containing cards multiple times or not at all, in which the cards
produce the same string in the top and bottom row. The modi�ed Post correspon-
dence problemMPCP is a special case of the Post correspondence problem where the
�rst card of the sequence is �xed to some initial card c0. Intuitively, given the cards
l0/r0, . . . , ln/rn a solution of PCP is a non-empty sequence of indices i1, . . . , ik
such that li1 · · · lik = ri1 · · · rik . For a solution of MPCP, we require i1 = 0. We call
such a sequence of indices an ordering and represent orderings with lists of indices
I = [i1, . . . , ik].

http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#symbol
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#word
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#card
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#stack
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#hd
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#tl
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#heads
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#tails

40 Third-Order Uni�cation

Forster and Larchey-Wendling [18] propose a formal characterisation of PCP over
a binary alphabet which we adapt in this thesis. Forster et al. [20] propose a formal
characterisation ofMPCPwhich is equivalent to the one we provide in the following.
In the context of PCP and MPCP, we will sometimes require the elements of a listA
in some ordering I . For this purpose we introduce the operation A[I]. Furthermore,
since we are interested in the concatenation of the top and bottom row of a sequence
of cards, we introduce an operation for the concatenation of a list of words ΣW .

De�nition 6.2A[I]

ΣW A[nil] = nil

A[i :: I] = A[i] :: A[I] i < |A|
A[i :: I] = A[I] i ≥ |A|

Σnil = nil

Σ(w :: W) = wΣW

The Post correspondence problem PCP can then formally be de�ned as follows:
Given a stack of cards C = l1/r1, . . . , ln/rn, is there an ordering I ⊆ [1, . . . , n]

such that I = [i1, . . . , ik] is not empty and the concatenation of the upper and lower
halves results in the same string, i.e. li1 · · · lik = ri1 · · · rik . For the modi�ed Post
correspondence problem MPCP we are given an initial card l0/r0 and a stack of
cards C = l1/r1, . . . , ln/rn and we ask for an ordering I ⊆ [0, . . . , n] such that
l0li1 · · · lik = r0ri1 · · · rik .

De�nition 6.3PCP

MPCP PCP(C) := ∃I ⊆ [0, . . . , |C| − 1].Σ
(
(π1C)[I]

)
= Σ

(
(π2C)[I]

)
and I 6= nil

MPCP(c0, C) := ∃I ⊆ [0, . . . , |C|]. π1c0Σ
(
(π1C0)[I]

)
= π2c0Σ

(
(π2C0)[I]

)
where C0 := c0, C

6.1 Encoding

Recall that when reducing the modi�ed Post correspondence problem to third-order
uni�cation, we have to transform a pairC0 = c0, C of initial card c0 and stack of cards
C into a uni�cation equation s ?

= t. In particular, we have to transform stringsw over
the alphabet {0, 1} into λ-terms.

De�nition 6.4b w W Fix the variables u1, u0.

1 = u1 0 = u0 w = λx.
[
b
∣∣ b ∈ w] x W =

[
w
∣∣ w ∈W]

http://www.ps.uni-saarland.de/~spies/hou/HOU.std.lists.advanced.html#select
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#PCP
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#PCP
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.pcp.html#MPCP
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Encoding
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#encb
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#enc
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Enc

6.1. Encoding 41

The encoding is a modi�ed Church encoding of boolean strings. It is modi�ed in the
sense that u1 and u0 are not taken as arguments but instead are �xed. In the case of
the cards 0/110, 101/000, the string 101 is encoded as λx.u1 (u0 (u1 x)). Provided
u0, u1 have type α→ α, our encoding returns terms of type α→ α. The typing can
then be lifted to lists of encoded words.

Lemma 6.5 Let Γ ` u0 : α→ α and Γ ` u1 : α→ α.

Γ ` b : α→ α Γ ` w : α→ α Γ `W : (α→ α)|W |

We observe that applying an encoded wordw = b1 · · · bn corresponds to applying all
symbols b1, . . . , bn from the left. For this reason concatenation of words is succes-
sive application and applying lists of encoded strings W corresponds to applying all
encoded strings from the left. Intuitively, w1 · · ·wn s ≡ w1 (· · · (wn s) · · ·).

Lemma 6.6

ε s ≡ s bw s ≡ b (ws) ww′ s ≡ w (w′s) ΣW s ≡W s

We establish that substitutions σ, not a�ecting u1 and u0, do not a�ect encoded terms.

Lemma 6.7 If σu1 = u1 and σu0 = u0, then b[σ] = b, w[σ] = w, andW [σ] = W

The above lemma is heavily used in the formal development. For the sake of simplicity
we do not use it on paper explicitly. Instead, we assume that substitutions solving the
U3 instance of the reduction do not contain u0 or u1 as free variables.

In proof of the reduction we will also need to conclude the equality of two encoded
words from their equivalence when applied to arguments. In general, this is clearly
not the case. Take 11 (u0 z) and 110 z for instance. While both terms are equivalent,
the encoded strings are not the same. However, considering equations of the form
w s ≡ w′ t, we can conclude the equality of w and w′ if we can ensure that s and t
never produce u1 or u0 on the left side of an application.

Lemma 6.8 Let s 6≡ u0 s′, s 6≡ u1 s′, t 6≡ u0s′, t 6≡ u1 s′ for all s′.

1. If b1 ≡ b2, then b1 = b2.

2. If w s ≡ w′ t, then w′ = w′.

Proof

1. Case analysis on b.

2. By induction on w with w′ generalised using Lemma 6.6 and Item 1. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Encoding.Typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Encoding.Reduction
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Encoding.Substitution
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#Encoding.Injectivity
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#encb_eq
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.encoding.html#enc_eq

42 Third-Order Uni�cation

6.2 MPCP Reduction

Given a pair C0 = c0, C consisting of a stack of cards C = c1, . . . , cn and an initial
card c0, we construct an equation Γ̂ `3 ŝ

?
= t̂ : Â such that ŝ and t̂ are uni�able if

and only if the cards can form a solving sequence. Pick

Γ̂ := xf : (α→ α)|C0| → α

ŝ := λu0u1.π1c0 (xf π1C0)

t̂ := λu0u1.π2c0 (xf π2C0)

Â := (α→ α)→ (α→ α)→ α

The typing of both terms follows with Lemmas 4.25 and 6.5. A substitution σ cannot
instantiate u1, u0 in the above equations because they are bound.

As a consequence of the de�nition of applying a list of terms from the right, the
order in which the encoded card halves are applied to xf is not the same as the or-
der in which they appear in the stack and in Chapter 2. For instance, the term ŝ,
when unfolding the de�nition of list application, reads λu0u1.l0 (xf ln · · · l1 l0) for
li := π1ci. While this order may be counter-intuitive, it simpli�es the formalisation.
With this order of arguments the De Bruijn indices of the variables coincide with the
indices in a corresponding ordering. Recall the solution of the above example. While
on paper we write λx2x1x0.x0 (x1 z), in the formalisation this term is represented
by λλλ0 (1 3). In the solution of this particular choice of cards, we use 0 to refer
to the initial card and 1 to refer to the second card. Hence we do not have to apply
any transformation from the variables to the indices of an ordering. If the arguments
were given in ascending order, each De Bruijn index i would have to be inverted,
i.e. transformed into n− i to obtain I .

The direction from MPCP to U3 is straightforward. Given a solution i1, . . . , ik for
cards l0/r0, . . . , ln/rn, we substitute the variable xf with the term

λxn · · ·x1x0.xi1 (· · · (xik z) · · ·)

which uni�es both sides of the equation since l0li1 · · · lik = r0ri1 · · · rik .

Lemma 6.9 IfMPCP(C0), then U3(Γ̂ `3 ŝ
?
= t̂ : Â).

Proof Let I ⊆ [0, . . . , n] be an ordering solving the MPCP instance. Fix variables
X = [xn, . . . , x1, x0] and pick

∆ := (z : α) σxf := λX.X[I] z

http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.simplified.html#MPCP'_U3

6.2. MPCP Reduction 43

With Lemma 4.25 typing ∆ ` σ : Γ̂ follows and it remains to show that s[σ] ≡ t[σ]

which under the use of Fact 4.7 amounts to π1c0 (σxf π1C0) ≡ π2c0 (σxf π2C0):

π1c0 ((λX.X[I] z) π1C0) ≡ π2c0 ((λX.X[I] z) π2C0) (σxf = λX.X[I] z)

i� π1c0 (π1C0[I] z) ≡ π2c0 (π2C0[I] z) (Lemma 4.24)

i� π1c0 ((π1C0)[I] z) ≡ π2c0 ((π2C0)[I] z) (W [I] = W [I])

i� π1c0Σ
(
(π1C0)[I]

)
z ≡ π2c0Σ

(
(π2C0)[I]

)
z (Lemma 6.6)

which follows since by assumption I is a solution to the MPCP instance, meaning
π1c0Σ((π1C0)[I]) = π2c0Σ((π2C0)[I]). �

For the converse direction we start from NU3 instead of U3. This step is justi�ed
by Fact 5.11. The idea of the proof is that the term inserted for xf must be equivalent
to some term of the shape λxnxn−1 . . . xm.xi1 (· · · (xik t) · · ·) for some t where t is
not an application of any of the xi’s from the left. To obtain such decompositions, we
show:

Lemma 6.10 For every decidable predicate on terms P and term s, we can compute
the longest list S satisfying P such that s = S t for some t.

As in the introductory example the ordering [i1, . . . , ik] in which the arguments are
applied yields a solution to the uni�cation instance. From the uni�ability of both
terms we can derive the equation l0li1 · · · lik s′ ≡ r0ri1 · · · rik t′ for some s′, t′ which
do not produce any more u0, u1’s. This allows us to conclude the equality of both
encoded strings.

Lemma 6.11 If NU3(Γ̂ `3 ŝ
?
= t̂ : Â), thenMPCP(C0).

Proof Assume ∆ `3 σ : Γ̂, such that ∀x. normal (σx) and ŝ[σ] ≡ t̂[σ]. With
Lemma 4.28 we know that σxf = ΛX.e with e = a T for some atom a, some list of
variables X , and some list of terms T . Using Fact 4.8 we obtain the equivalence

π1c0 ((ΛX.e) π1C0) ≡ π2c0 ((ΛX.e) π2C0)

From the judgement ∆ `3 σ : Γ̂ we know ∆ ` ΛX.e : (α→ α)|C0| → α. Thus
with Lemma 4.26 we deduce

∆, X : (α→ α)|X| ` e : (α→ α)|C0|−|X| → α

We decompose C0 into two lists C1, C2 such that C0 = C1 ++C2 and |X| = |C2| and
proceed by case analysis on C1.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.terms_extension.html#AppL_largest
http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.simplified.html#U3_MPCP'

44 Third-Order Uni�cation

1. Let C1 = nil. This means |X| = |C0| and ∆, X : (α→ α)|C0| ` e : α. Us-
ing Lemma 6.10 we decompose e into S t for the longest list S such that for all
s ∈ S the predicate P (s) := s ∈ X holds. “Longest” in this context means that
if t = s1 s2 for some s1, s2, then P (s1) does not hold. Clearly all elements of S
are variables hence we have some ordering I ⊆ [0, . . . , n] such that S = X[I].

De�ne t1 := t[X := π1C0] and t2 := t[X := π2C0]. Then

π1c0 ((ΛX.X[I] t) π1C0) ≡ π2c0 ((ΛX.X[I] t) π2C0) (e = X[I] t)

i� π1c0 (π1C0[I] t1) ≡ π2c0 (π2C0[I] t2) (Lemma 4.24)

i� π1c0 ((π1C0)[I] t1) ≡ π2c0 ((π2C0)[I] t2)

i� π1c0Σ
(
(π1C0)[I]

)
t1 ≡ π2c0Σ

(
(π2C0)[I]

)
t2 (Lemma 6.6)

Using Lemma 6.8 we obtain π1c0Σ
(
(π1C0)[I]

)
= π2c0Σ

(
(π2C0)[I]

)
provided

t1 6≡ u0 s
′, t1 6≡ u1 s

′, t2 6≡ u0 s
′, t2 6≡ u1 s

′ for all s′. All those cases are
analogous. We consider t1 6≡ u0 s

′. Assume t1 ≡ u0 s
′. Since t is normal and

u0 may not occur in t, it is easy to see that the only way this is possible is if
t is of the form t = x T ′ for x ∈ X . If T ′ = nil, then t1 = w for some word
w. Since this is an abstraction, we arrive at a contradiction to t1 ≡ u0 s

′. If
T ′ = [t′] for some t′, we have a contradiction, since in this case t = x t′ and
P (x) holds. Recall x ∈ X and thus x : α→ α. If T ′ has at least two elements,
we arrive at a contradiction since the type of x is α→ α and therefore x may
not have more than one argument.

2. Let C1 = c′ :: C ′1. Recall that σxf = ΛX.e with e = a T . Then

π1c0

(
(ΛX.a T) π1C2 π1C ′1 π1c′

)
≡ π2c0

(
(ΛX.a T) π2C2 π2C ′1 π2c′

)
We proceed by case analysis on a.

(a) Case a = x for some variable x. Due to the types of its arguments a
cannot have the type α → α and therefore x 6∈ X . This entails that
x is the new applicative head of the list applications after reduction. Us-
ing Lemma 6.8 we can conclude that π1c0 = π2c0, meaning I = nil solves
the MPCP instance.

(b) Case a = c for some constant c. Then c is the new applicative head of the
list applications after reduction. Using Lemma 6.8 we can conclude that
π1c0 = π2c0, meaning I = nil solves the MPCP instance. �

Theorem 6.12 MPCP � U3

Proof Follows with Lemmas 6.9 and 6.11. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.third_order.simplified.html#MPCP_U3

6.3. Remarks 45

6.3 Remarks

We reduce from the modi�ed Post correspondence problem whereas Huet reduces
from the Post correspondence problem. As a consequence, Huet has to ensure that
the ordering I that is implicitly picked by the substitution is never empty. In essence,
he accomplishes this by adding the constraint λu0.xf u0 · · · u0

?
= λu0.u0 (xg u0)

which forces the term inserted for xf to use at least one of its arguments. More
precisely, he picks the equation e1

?
= e2 where

e1 := λu0u1xh.xh (xf l1 · · · ln) (xf u0 · · · u0)
e2 := λu0u1xh.xh (xf r1 · · · rn) (u0 (xg u0))

We can avoid a second equation by reducing from MPCP which makes the empty
ordering I = nil an acceptable solution. In our reduction, even if I = nil meaning the
term inserted for xf just returns some term t of type α without using its arguments,
we can still construct a solution for the MPCP instance. In this case the top and the
bottom of the initial card c0 have to be the same.

The original proof by Huet uses Church-typing meaning every term s also has a
type As. In this work we used a Curry-style type system on top of untyped syntax.
We do not see any di�erences arising from this decision in the above proof. In the Coq
development, we have also formalised the original proof in our Curry-typed calculus.

Huet conducts his reduction in a calculus with tuples and remarks that the version in a
calculus without tuples, as we present it here, also allows for an undecidability proof.
We remark that our encoding di�ers marginally from the encoding of Huet. Huet
encodes words as ε = λx.x, 1w = λx.u1 (w x), and 0w = λx.u0 (w x) whereas our
encoding is the normal form of Huet’s encoding.

Since Huet only considers well-typed terms, all terms are normalising. Thus, he de-
�nes the equivalence of two terms as syntactic equality of the normal forms. The fol-
lowing lemma shows that this de�nition coincides with ours for normalising terms:

Fact 6.13 If s . v1 and t . v2, then s ≡ t i� v1 = v2.

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.equivalence.html#Equivalence.HuetDefinition

Chapter 7

Second-Order Uni�cation

In this chapter we formalise the undecidability of second order uni�cation as �rst pre-
sented by Goldfarb [25]. Recall from Chapter 2 that Goldfarb improved on the result
of Huet by showing that uni�cation is already undecidable in second-order languages
provided they contain at least a single 2-ary function constant g : α→ α→ α. He es-
tablishes the undecidability of second-order uni�cation by a reduction from Hilbert’s
tenth problem H10. In general, Hilbert’s tenth problem asks whether a Diophantine
equation has a solution. In this thesis, we use the formulation of H10 over systems
of simple Diophantine equations. Simple Diophantine equations (“Diophantine equa-
tions” in the following) are given by the abstract syntax:

d ::= x =̇ c | x+ y =̇ z | x · y =̇ z (xyz : N, c : N)

We denote systems of Diophantine equations by the letter D and represent them as
lists. Solutions, i.e. variable assignments for Diophantine equations, are denoted by
the letter θ. We write θ � d if the variable assignment θ satis�es the equation d and
lift the notation to systems of equations. Hilbert’s tenth problem can then be de�ned
as the satis�ability of a system of equations, i.e. the existence of a satisfying variable
assignment.

De�nition 7.1 θ � d

θ � D

H10

θ � x =̇ c i� θx = c

θ � x+ y =̇ z i� θy + θy = θz

θ � x · y =̇ z i� θy · θy = θz

θ � D i� θ � d for all d ∈ D

H10(D) := ∃θ. θ � D

In the remainder of this chapter, we formalise Goldfarb’s reduction from Hilbert’s
tenth problem to second-order uni�cation. Following the explanation by Dowek [13],

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.diophantine_equations.html#sol
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.diophantine_equations.html#Sol
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.diophantine_equations.html#H10

48 Second-Order Uni�cation

in Section 7.1 we motivate Goldfarb’s construction by reducing Hilbert’s tenth prob-
lem to higher-order uni�cation in general. Recall from Section 2.2 that we use Church
numerals to encode natural numbers in the λ-calculus and encode Diophantine equa-
tions as the uni�cation equations resulting from translating addition, multiplication,
and constants into the setting of Church numerals. In this translation it is crucial
that the “domain” of the variables occurring in encoded equations consists of Church
numerals. We achieve this by adding a characteristic equation for every occurring
variable x which asserts that the only valid instantiation of x is a proper Church en-
coding. This construction only yields a proof for the undecidability of higher-order
uni�cation. A proof of the undecidability of second-order uni�cation can be obtained
by Goldfarb’s original construction based on Goldfarb numerals which we explain
and formalise in Section 7.2.

7.1 Higher-Order Motivation

In his construction, Dowek encodes natural numbers as Church numerals. Every
natural number n corresponds to the Church numeral JnK expressing n-fold iteration.
We express addition and multiplication with the corresponding operations on Church
numerals.

De�nition 7.2JnK

add s t

mul s t
JnK := λaf.fn a add s t := λaf.s (t a f) f mul s t := λaf.s a (λb.t b f)

In the formalisation we represent fn a as the list containing f exactly n times applied
from the left to a.

Lemma 7.3

1. JnK s f ≡ fn s

2. Jm+ nK ≡ add JmK JmK

3. Jm · nK ≡ mul JmK JmK

4. normal JnK

5. If JnK ≡ JmK, then n = m.

6. Γ `3 JnK : α→ (α→ α)→ α

In the reduction we need to construct variable assignments for systems of Diophan-
tine equations from substitutions. In particular, we have to decide whether some
term represents an encoded natural number n and if so compute n. This is achieved
by means of the following lemma:

Lemma 7.4 For every term s we can either compute a natural number n such that
JnK = s, or prove that no such n exists.

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#enc
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#add
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#mul
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#enc_app
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#enc_add
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#enc_mul
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#normal_enc
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#enc_equiv_injective
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#typing_enc
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#dec_enc

7.1. Higher-Order Motivation 49

In the reduction we ensure that all terms inserted for variables behave like encodings
of some natural number. This is realised by a characteristic equation describing what
it means to be a Church encoding.

Lemma 7.5 Let s be a normal term.

λaf.f (s a f) ≡ λaf.s (f a) f i� s = JnK for some n : N

Reduction The characteristic equation is given by

CN x := λaf.x (f a) f
?
= λaf.f (x a f)

We encode a system of Diophantine equations D into a system of uni�cation equa-
tions D. In particular, we transform every equation d ∈ D into a uni�cation equa-
tion d.

x =̇ c := x
?
= JcK x+ y =̇ z := add x y

?
= z x · y =̇ z := mul x y

?
= z

To ensure that variables are only replaced by valid Church encodings, we add the
characteristic equation CN x for every variable. Furthermore, we prove that the
equations inherit their types from the type of Church numerals.

Lemma 7.6 Let JNK := α→ (α→ α)→ α and ΓD := [(x : JNK) | x ∈ vars D].

x ∈ vars D
ΓD `3 CN x : JNK

x =̇ c ∈ D
ΓD `3 x =̇ c : JNK

x+ y =̇ z ∈ D
ΓD `3 x+ y =̇ z : JNK

x · y =̇ z ∈ D
ΓD `3 x · y =̇ z : JNK

In analogy to the notation θ � d we de�ne σ � s ?
= t which we use if σ uni�es s

and t. In particular, we mean σ uni�es the encoding of d when we write σ � d.

De�nition 7.7 σ � s
?
= t

σ � s
?
= t i� s[σ] ≡ t[σ]

For the correctness of the translation we establish that the characteristic equation is
only satis�ed by valid Church encodings and that the operations on Church encoded
terms mirror the operations on natural numbers.

Lemma 7.8 Let σx be normal for all x.

1. σ � CN x i� σx = JnK for some n : N.

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#enc_characteristic
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.encoding.html#Encoding.Typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#EquationEquivalences
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#EquationEquivalences.Variables

50 Second-Order Uni�cation

2. Let σx = JmK, σy = JnK and σz = JpK.

σ � x =̇ c i� m = c σ � x+ y =̇ z i� m+ n = p

σ � x · y =̇ z i� m · n = p

Theorem 7.9 H10 � SU3

Proof For a system of Diophantine equationsDwe produce the system of equations:

f(D) = ΓD `3 ED : (α→ (α→ α)→ α)|ED|

where ED = [CN x | x ∈ vars D] ++
[
d
∣∣ d ∈ D]

It remains to prove that H10(D) i� SU3(f(D)).

1. Let θ be a solution for D. Pick ∆ := ∅ and σx := JθxK. Typing follows
with Lemma 7.3 and the equivalences with Lemma 7.8.

2. By Fact 5.11 let ∆ `3 σ : ΓD be a normal substitution unifying the equations
ED . Using Lemma 7.4 we de�ne θx := n if σx = JnK and θx := 0 otherwise.
We establish the equations using Lemma 7.8. �

Remarks Note that in the formalisation it is more convenient to add the equation
CN x once for every equation containing x.

We remark that our explanation di�ers from the one presented by Dowek [13] in
two key aspects. The �rst aspect is that we encode systems of simple Diophantine
equations instead of encoding entire polynomials. The second aspect concerns the
characteristic equation for variables. Dowek gives the equation λa.x a (λy.y)

?
=

λy.y. In this work, we choose a di�erent equation because we believe our equation
is better �t to motivate Goldfarb’s characteristic equation. In addition, its type is JNK
which is also the type of all other equations hence simplifying the formalisation.

7.2 Second-Order Realisation

Recall from Section 2.6 that in its essence, the structure of Goldfarb’s proof is the
same as the structure of the above proof. The di�erence between both proofs lies
in the encoding of natural numbers. The Church encoding of a natural number n,
JnK = λaf.fn a, takes as one of its arguments a function f : α → α. Working
in a language with constants a, b : α and g : α → α → α, Goldfarb �xes for f
the term g a : α → α. We write JnK for the Goldfarb numeral corresponding to the
number n and nt for the result of applying a Goldfarb numeral to t. The mathematical
function n· may be understood as the metalevel equivalent to JnK. Furthermore, we

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#EquationEquivalences.Constants
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#H10_DWK
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.dowek.reduction.html#DWK_H10

7.2. Second-Order Realisation 51

introduce a relation s ≈ JnK which expresses the notion that s behaves like the
Goldfarb numeral JnK.

De�nition 7.10 JnK nt

s ≈ JnKJnK := λa.(g a)n a nt := (g a)n t s ≈ JnK := ∀t. s t ≡ nt

The reason for introducing s ≈ JnK is that the characteristic equation for Goldfarb
numerals can only ensure that any swhich satis�es the equation behaves like a Gold-
farb numeral. Frequently, reasoning about nt instead of JnK will allow us to use syn-
tactic equality whereas proofs using JnK are based on equivalence. Thus, we focus
primarily on nt in the following and establish:

Lemma 7.11

1. 0t = t and n+ 1t = g a (nt) and n+mt = n(mt).

2. If normal t, then normal (nt).

3. If t1, t2 are atoms and nt1 = mt2, then n = m and t1 = t2.

4. Γ `2 t : α
Γ `2 nt : α

Similar to Section 7.1, in the reduction we need to construct variable assignments
for systems of Diophantine equations from substitutions. In particular, we have to
decide whether some term represents an encoded natural number and if so compute
which natural number is represented by the term. This is achieved by means of the
following lemma:

Lemma 7.12

1. For every term s we can either compute a natural number n such that s = na, or
we can prove that no such n exists.

2. For every normal term s we can either compute a natural number n such that
s a ≡ na, or we can prove that no such n exists.

The characteristic equation we gave in the previous section can be reused, if f is �xed
to g a and a is instantiated with a, meaning GN x := x (g a a)

?
= g a (x a). With

this equation we do not axiomatise being a Goldfarb numeral directly. Instead, we
axiomatise behaving like a Goldfarb numeral. Explicitly:

Lemma 7.13 Let s be some normal term.

s(g a a) ≡ g a (s a) i� s ≈ JnK for some n : N

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.encoding.html#enc_zero
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.encoding.html#enc_normal
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.encoding.html#enc_injective
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.encoding.html#enc_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#dec_enc_eq
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#dec_enc
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#normal_forms_encodes

52 Second-Order Uni�cation

As a consequence of this encoding, the undecidability of second-order uni�cation
can be proven. However, the price of changing the encoding is that multiplication
can no longer be encoded in the style of Church numerals. For Church numerals we
encoded the multiplication m · n as an application of m to an abstraction dependent
on n. Since for Goldfarb numerals f is �xed to g a, this is not possible.

Motivation Multiplication Goldfarb solves this problem by encoding the multi-
plication computation into uni�cation itself in a certain sense. For every equation
x · y = z, Goldfarb constructs two uni�cation equations which are satis�able by a
substitution σ with σx ≈ JmK, σx ≈ JnK and σx ≈ JpK i� m · n = p. Note that
σx ≈ JmK, σx ≈ JnK and σx ≈ JpK for some m,n, p is not guaranteed by the
multiplication equations themselves but can be guaranteed by adding characteristic
equations.

Recall from Section 2.6 the characterisation of multiplication using �nite sequences.
We represent �nite sequences as lists in the following and de�ne the successor func-
tion succ(a, i) := (a + n, b + i) and and succ(X) := [succ (a, i) | (a, i) ∈ X]. Ab-
stracting over the start values, we can generalise the characterisation to:

X ++[(a+ p, b+m)] = (a, b) :: succ(X)

Lemma 7.14 m · n = p i� X ++[(a+ p, b+m)] = (a, b) :: succ(X) for some X .

Proof Let ti := (a+ i · n, b+ i).

1. “If”: The claim follows for X := [ti | i = 0, . . . ,m− 1].

2. “Only if”: It su�ces to prove that X ++[x] = (a, b) :: succ(X) implies x = t|X|
for all x. The claim then follows with x = (a+ p, b+m).

We proceed by induction on X with a, b generalised. For the empty list the
claim is trivial. ForX = (k, l) :: X ′ we have k = a and l = b. ThusX ′++[(a+

p, b+m)] = (a + n, b+ 1) :: succ(X ′). The claim follows with the inductive
hypothesis. �

To conclude our motivation of the encoding of multiplication, we dispense with the
list concatenation in our equation. Under the encoding which we will use for lists
and pairs, we cannot express list concatenation as a λ-term. Therefore, we remove
list concatenation by considering �nite, un�nished sequences of pairs. By un�nished
we mean that they contain a hole • at the end which can be used to concatenate �nite
sequences. For example, an un�nished sequence may look like this:

(a, b); (a+ n, b+ 1); (a+ 2n, b+ 2); •

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.motivation.html#forward

7.2. Second-Order Realisation 53

We introduce an operation X[s1, . . . , sn] which �lls the hole of X with the �nite
sequence s1; · · · ; sn. Using this hole �lling operation, we characterise multiplication
by

X[(a+ p, b+m)] = (a, b) :: succ(X[])

The only valid solution to this equation is the �nite, un�nished sequence

(a, b); . . . ; (a+ (m− 1) · n, b+ (m− 1)); •

In the remainder of this paragraph, we motivate how this technique of axiomatis-
ing multiplication can be transformed into the setting of uni�cation. In the setting
of uni�cation, the “hole �lling” operation can be understood as a substitution of the
variable • and every un�nished �nite sequence X can be interpreted as a function
which cannot analyse its arguments. For the encoding of lists and pairs, we �x con-
stants a, b : α and g : α→ α→ α and de�ne:

(s, t) := g s t nil := a s :: t := g s t

We write [s1, . . . , sn] for the list s1 :: · · · :: sn :: nil. Note that the encoding for :: and
pairs is the same. We add both encodings to ease readability. Using pairs, lists, and a
fresh variable Mxyz of type α→ α→ α we encode x · y =̇ z with the equations:

Mxyz a b [(z a, x b)]
?
= (a, b) :: Mxyz (y a) (1b) nil

Mxyz b a [(z b, x a)]
?
= (b, a) :: Mxyz (y b) (1a) nil

To understand the connection between these two equations and the equation be-
tween �nite, un�nished sequences, we consider what happens in the presence of a
substitution σ. Due to the characteristic equations for Goldfarb numerals, we may
assume that σx ≈ JmK, σy ≈ JnK, σz ≈ JpK. We abbreviate σMxyz with X . In the
presence of this substitution, we obtain:

X a b [(pa,mb)] ≡ (a, b) :: X (na) (1b) nil

X b a [(pb,ma)] ≡ (b, a) :: X (nb) (1a) nil

For now, focus on the �rst equation. The term X a b can be thought of as the �nite,
un�nished sequence which starts in (a, b). The application to [(pa,mb)] corresponds
to �lling the hole •with the �nite sequence [(p+a,m+ b)]. The termX na (1b) can
be thought of as the �nite, un�nished sequence which is started in (n+ a, 1 + b). As
a consequence, the termX a b [(pa,mb)] can be thought of asX [(a+p, b+m)] and
(a, b) :: X (na) (1b) nil can be thought of as the �nite sequence (a, b) :: succ(X []).

54 Second-Order Uni�cation

The dual use of a and b enforces that X is parametric over a and b. For the sake of
simplicity assume X = λw1w2w3.u for some term u. Using the duality of a and b in
the above equations, we can show that the terms corresponding to ti in the setting of
uni�cation are (i · nw1, iw2). Thus, we de�ne ti := (i · nw1, iw2). The reader may
think of the application to w1 and w2 as the addition of a and b. Furthermore, the
variable w3 represents the hole of the un�nished �nite sequence.

Reduction In essence, operations of Diophantine equations are mirrored by their
counterparts on Goldfarb numerals in the reduction. We encode a system of Dio-
phantine equations D into a system of uni�cation equations D. In particular, we
transform every equation d ∈ D into uni�cation equations d.

x =̇ c := x a
?
= ca x+ y =̇ z := x (y a)

?
= z a

For multiplication x · y =̇ z, we give two equations

Mxyz a b [(z a, x b)]
?
= (a, b) :: Mxyz (y a) (1b) nil

Mxyz b a [(z b, x a)]
?
= (b, a) :: Mxyz (y b) (1a) nil

where lists and tuples are to be understood as introduced in the motivation. We index
the variableM by xyz to ensure that we have a fresh variable for every choice of x, y
and z. In the formalisation, we realise this by drawing variables from two di�erent
copies of the natural numbers and injecting them into the natural numbers. Explicitly,
we use a bijection 〈·, ·〉 : N× N→ N and a bijection I+ : N + N→ N to represent x
as I+(L+ x) and Mxyz as I+(R+ 〈x, 〈y, z〉〉).

We prove that all equations are of type α.

Lemma 7.15 Let

ΓD := [(x : α→ α) | x ∈ vars D] ∪
[
(Mxyz : α3 → α)

∣∣ x · y =̇ z ∈ D
]

x ∈ vars D
ΓD `2 GN x : α

x =̇ c ∈ D
ΓD `2 x =̇ c : α

x+ y =̇ z ∈ D
ΓD `2 x+ y =̇ z : α

x · y =̇ z ∈ D
ΓD `2 x · y =̇ z : α2

For the correctness of the translation we establish that the characteristic equation is
only satis�ed by terms behaving like Goldfarb numerals and that the operations on
Goldfarb encoded terms mirror the operations on natural numbers.

Lemma 7.16 Let σx be normal for all x.

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.encoding.html#Encoding.Typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#EquationEquivalences

7.2. Second-Order Realisation 55

1. σ � GN x i� σx ≈ JnK for some n : N.

2. Let σx ≈ JmK, σy ≈ JnK and σz ≈ JpK.

σ � x = c i� m = c σ � x+ y =̇ z i� m+ n = p

Since this is similar to the reduction in Section 7.1, we primarily focus on the encoding
of multiplication. Recall the uni�cation equations generated for x · y = z.

Mxyz a b [(z a, x b)]
?
= (a, b) :: Mxyz (y a) (1b) nil

Mxyz b a [(z b, x a)]
?
= (b, a) :: Mxyz (y b) (1a) nil

In Lemma 7.8 we prove m ·n = p if and only if σ � x · y = z. For Goldfarb numerals
we are forced to adapt this claim to take the variable Mxyz into account. To this end,
assume a substitution σ which only inserts normal forms such that σx ≈ JmK , σy ≈
JnK and σz ≈ JpK. For the “if” direction, we adapt the claim to

Lemma 7.17 If m · n = p and σMxyz = λw1w2w3.t0 :: . . . :: tm−1 :: w3, then σ �
x · y = z.

Proof The �rst equation simpli�es to (a, b) :: . . . :: (m · na,mb) :: nil on both sides
and the second equation to (b, a) :: . . . :: (m · nb,ma) :: nil. �

The term t0 :: . . . :: tm−1 :: w3 represents a �nite, un�nished sequence with the
hole w3. We proceed by proving the “only if” direction which is left unchanged,
meaning we prove:

If σ � x · y =̇ z, then m · n = p.

For the sake of simplicity, we assume σMxyz = λw1w2w3.u for some u in the fol-
lowing and address this assumption in Lemma 7.22. Given σMxyz = λw1w2w3.u,
we obtain by β-reduction

σ � x · y =̇ z i� u[σk] ≡ t0[σk] :: u[τk] for k = 1, 2

where the substitutions σ1, σ2, τ1, τ2 are given by:

w1 w2 w3

σ1 a b [(pa,mb)]

σ2 b a [(pb,ma)]

w1 w2 w3

τ1 na 1b nil

τ2 nb 1a nil

In this context, the use of τ1, τ2 corresponds to succ and w3 represents the hole •.
Here, 1· represents the successor function and n· the addition of n. On the left this

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Variables
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Constants
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#forward_mul1

56 Second-Order Uni�cation

hole may be �lled with [(pa,mb)] and [(pb,ma)] respectively, whereas on the right
side this hole may be �lled with the empty sequence nil.

Since u is normal and the substitutions insert normal terms which are free of abstrac-
tions, we conclude that all terms occurring in the above equations are normal. As a
consequence, we deduce that the terms on the left and right of the above equalities
are syntactically equal, meaning

u[σk] = t0[σk] :: u[τk] for k = 1, 2

We analyse how the dual de�nition of σ1 and σ2 can be used to enforce that u actually
inserts tuples of the shape of ti.

Lemma 7.18

1. If s[σ1] = a and s[σ2] = b, then s = w1.

2. If s[σ1] = b and s[σ2] = a, then s = w2.

3. If s[σk] = ti[σk] for k = 1, 2, then s = ti.

The following lemma shows how we can interpret τ1, τ2 as the succ function.

Lemma 7.19 ti+1[σk] = ti[τk] for k = 1, 2.

Using this lemma, we establish the iterative character of these equations with the
following lemma:

Lemma 7.20 Let s[σk] = ti[σk] :: s[τk] for k = 1, 2.

1. s = w3 or s = ti :: s′ for some s′.

2. s = ti :: ti+1 :: . . . :: ti+(l−1) :: w3 for some l.

Proof

1. By analysis of the structure of u using Lemma 7.18.

2. By size induction on s using Item 1. �

Corollary 7.21 If u[σk] = t0[σk] :: u[τk] for k = 1, 2, thenm · n = p.

Proof By Lemma 7.20, we have u = t0 :: . . . :: tl−1 :: w3 for some l. Case analysis
on l. If l = 0, then (pa,mb) = (a, b) which means m = p = 0. If l = l′ + 1, then by
de�nition of σ1 and τ1, we have

(a, b) :: . . . :: (n · l′a, l′b) :: (pa,mb) :: nil = (a, b) :: . . . :: (n · la, lb) :: nil

In particular, (pa,mb) = (n · la, lb) which means p = l ·n andm = l, thusm ·n = p.
�

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#subst_var_a
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#subst_var_b
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#subst_T
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#T_step_tau1_sigma1
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#step_u
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#steps_u
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#steps_u_mult

7.2. Second-Order Realisation 57

We now address the assumption σMxyz = λw1w2w3.u. As it turns out, there is
one more possible instantiation of Mxyz . For the special case where m = 1 and
m · n = p, both λw1w2w3.g (g w1 w2) w3 and λw1w2.g (g w1 w2) are valid instan-
tiations of Mxyz . The latter is constructed from the former by one η-reduction.

Lemma 7.22 If σ � x · y =̇ z, then σMxyz = λw1w2.g (g w1 w2) or σMxyz is of the
shape λw1w2w3.u for some u.

We combine this lemma with the previous results to obtain:

Lemma 7.23 If σ � x · y =̇ z, thenm · n = p.

Proof Case analysis on the shape of σMxyz using Lemma 7.22.

1. Let σMxyz = λw1w2.g (g w1 w2). Then (a, b) :: (pa,mb) :: nil = (a, b) ::

(na, 1b) :: nil. Thus, we have n = p and m = 1.

2. Let σMxyz = λw1w2w3.u for some u. Then u[σk] ≡ t0[σk] :: u[τk] for k =

1, 2. Since all terms involved are normal and no abstractions are inserted by
the substitutions, we may conclude u[σk] = t0[σk] :: u[τk] for k = 1, 2. The
claim follows with Corollary 7.21. �

We write SU
{a,b,g}
2 for the second-order system uni�cation problem with constants

a, b, g and analogously U
{a,b,g}
2 for the second-order uni�cation problem with con-

stants a, b, g.

Theorem 7.24 H10 � SU
{a,b,g}
2

Proof For a system of Diophantine equationsDwe produce the system of equations:

f(D) = ΓD `3 ED : α|ED|

where ED =
[
x
∣∣ x ∈ vars D

]
++
[
d
∣∣ d ∈ D]

where the notation
[
d
∣∣ d ∈ D] is here to be understood as adding two equations in

the case of multiplication and one otherwise. We show H10(D) i� SU2(f(D)):

1. Let θ be a solution forD. Pick ∆ := ∅ and σ such that σx = JθxK and σMxyz =

λw1w2w3.t0 :: . . . :: tθx−1 :: w3 where ti := (θy · iw1, iw2). Typing follows
with Lemma 7.11 and the equivalences with Lemmas 7.16 and 7.17.

2. By Fact 5.11 let ∆ `2 σ : ΓD be a normal substitution unifying the equations
ED . Using Lemma 7.12 we de�ne θx := n if σx a ≡ na and θx := 0 otherwise.
We establish the equations using Lemmas 7.16 and 7.23. �

Corollary 7.25 (Goldfarb) H10 � U
{a,b,g}
2

Proof Analogous to Theorem 7.24 using Lemma 5.10. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#multiplication_lambdas
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#backward_mult
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#Goldfarb'
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#H10_SU
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#SU_H10
http://www.ps.uni-saarland.de/~spies/hou/HOU.second_order.goldfarb.reduction.html#Goldfarb

Chapter 8

First-Order Uni�cation

In this chapter we give a decision procedure for �rst-order uni�cation in the λ-
calculus. Our work is based on the formalisation by Smolka and Husson [51].

When speaking of �rst-order uni�cation, one usually considers languages consisting
of variables, constants, and application [39, 36] such as s, t ::= x | c | s t or equiv-
alently languages consisting of variables and nary function constants applied to all
their arguments [1, 30]. Recall from Section 2.8 that subtle di�erences arise when we
consider uni�cation of �rst-order terms in the λ-calculus. For example, consider the
�rst-order terms g x a and g b a where g : α → α → α and a, b, x : α. They can be
uni�ed using the substitution σx := b. However, if we turn the free occurrence of x
into a bound occurrence using a λ-abstraction, then the resulting terms λx.g x a and
λx.g b a can no longer be uni�ed. Consequently, when constructing a uni�cation
algorithm we have to take free and bound variables into account.

8.1 Simpli�ed First-Order Uni�cation

In general, we meanU1 when we speak of �rst-order uni�cation. To simplify matters,
we �rst prove the decidability of �rst-order uni�cation in the λ-free fragment of the
calculus and proceed by proving the decidability of �rst-order uni�cation in the full
calculus. A term is λ-free, if it does not contain any abstractions. For example, g b a

is λ-free whereas f (λx.x) is not. In the following we assume that all equations s ?
= t

and systems of equations E only contain λ-free terms. This assumption is addressed
in Section 8.2.

For �rst-order uni�cation in the λ-free fragment we assume a decidable predicate
free free xwhich distinguishes free variables from bound variables. We say a substitution σ
respects bound variables if σx = x for all bound variables x and no bound variable
occurs free in the terms inserted by σ.

Note that λ-free terms are always normal since they cannot contain any β-redexes.
As a consequence, when it comes to uni�ability we reason about syntactic equality
instead of equivalence. We use analogous notation to Chapter 7, with syntactic equal-

60 First-Order Uni�cation

ity instead of equivalence. Explicitly, we write σ � s ?
= t for s[σ] = t[σ] and σ � E

if σ � s ?
= t for all s ?

= t ∈ E.

To decide whether λ-free �rst-order terms containing bound and free variables are
uni�able, we give a computable relation E 7→ σ operating on systems of equations.
The operational reading of E 7→ σ yields the implementation rules for a uni�cation
procedure which we implement using the Equations tool [54]. To prove the correct-
ness of the procedure, we verify three properties.

1. Computability. For every list of equationsE we can compute a substitution σ
with E 7→ σ or we can prove that no such σ exists.

2. Soundness. Whenever we can derive a substitution E 7→ σ, then σ solves
the equations in E, meaning σ � E. Furthermore, σ is λ-free, respects bound
variables, and if Γ `1 E : L, then ∆ `1 σ : Γ for some context ∆.

3. Completeness. Whenever the equations in E are solved by a substitution σ
respecting bound variables, then there exists a substitution τ such thatE 7→ τ .

8.1.1 Term Decomposition

To de�ne E 7→ σ we �rst de�ne an auxiliary procedure decomp which decomposes
systems of equations into simpler systems where the left side is always a variable.
For instance, take the system of equations g a b

?
= g a b, g x y

?
= g (g y a) (g a a).

We can decompose these equations into the simpler system x
?
= g y a and y ?

= g a a

which is uni�able if and only if the original system is uni�able. We remove equations
where the left and the right side are the same and we decompose equations with
applications on both sides such as s1 s2

?
= t1 t2 into the equations resulting from

simplifying s1
?
= t1 and s2

?
= t2.

De�nition 8.1decomp (s
?
= t)

decomp E
decomp (s

?
= s) = nil decomp (x

?
= s) = [x

?
= s] decomp (s

?
= x) = [x

?
= s]

decomp (s1 s2
?
= t1 t2) = decomp (s1

?
= t1) ++ decomp (s2

?
= t2)

decomp (_ ?
= _) = ∅ othw.

decomp nil = nil decomp (s
?
= t :: E) = decomp (s

?
= t) ++ decomp E

The concatenationA++B is to be interpreted such thatA++B = ∅wheneverA = ∅
or B = ∅.

We show that decomposition of systems does not a�ect uni�ability. To this end, we
introduce the equivalence relation E1 ≈ E2 which expresses that E1 and E2 are
uni�able by the same substitutions. Explicitly, E1 ≈ E2 := ∀σ. σ � E1 i� σ � E2.

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp'

8.1. Simpli�ed First-Order Uni�cation 61

Lemma 8.2

1. ≈ is compatible with ++

2. [s
?
= s] ≈ nil

3. [s
?
= t] ≈ [t

?
= s]

4. [s1 s2
?
= t1 t2] ≈ [s1

?
= t1, s2

?
= t2]

5. [s
?
= t] ≈ decomp (s

?
= t).

6. E ≈ decomp E

where decomp is assumed to return a nonemty option in Items 5 and 6.

Uni�cation equations with di�erent constants on both sides, such as a ?
= b or equa-

tions where constants are equated with applications such as g a a
?
= a are not uni�-

able. In these cases the decomposition returns ∅ which we justify with the following
lemma:

Lemma 8.3

1. If decomp (s
?
= t) = ∅, then there is no σ such that σ � s ?

= t.

2. If decomp E = ∅, then there is no σ such that σ � E.

Formally, decomp could also encounter an abstraction and return ∅ which we ignore
since we only consider λ-free terms.

Furthermore, we prove that decomposition retains well-typedness in the sense that
well-typed systems of equations are decomposed into systems of equations which
are also well-typed. In addition, we establish that decomp does not introduce new
variables.

Lemma 8.4

1. If Γ `1 s
?
= t : A and decomp (s

?
= t) = E, then Γ `1 E : L for some L.

2. If Γ `1 E : L and decomp E = E′, then Γ `1 E
′ : L′ for some L′.

3. If decomp (s
?
= t) = E, then vars E ⊆ vars [s, t].

4. If decomp E = E′, then vars E′ ⊆ vars E.

8.1.2 Uni�cation Relation

Using decomp we introduce the relation E 7→ σ whose operational reading yields a
uni�cation procedure. Before we formally introduce the relation, we use the exam-
ple from above to motivate the relation. Given the system g a b

?
= g a b, g x y

?
=

g (g y a) (g a a) a decomposition yields the system x
?
= g y a and y ?

= g a a. To unify
both equations we can choose σy = g a a and σx = (g y a)[g a a/y] = g (g a a) a.

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#Unification.Unifiability
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp_none_not_unifiable
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp'_none_not_unifiable
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#decomp_typing'
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#vars_decomp
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#vars_decomp

62 First-Order Uni�cation

De�nition 8.5E 7→ σ

decomp E = nil

E 7→ id

decomp E = x
?
= s :: E′ free x x 6∈ vars s ∀y ∈ vars s. free y E′[s/x] 7→ σ

E 7→ σ[x := s[σ]]

In general, whenever the decomposition of E returns an empty system, all equations
of E are trivially uni�able. If the decomposition yields a nonempty system x

?
= s ::

E′, then we can analyse whether x is a bound variable or s contains a bound variable.
If this is the case, then x ?

= s cannot be solved with a substitution that respects bound
variables. Note that in the case where s is the variable x, the decomposition would
have eliminated the equation. If x occurs as a proper subterm of s, then there cannot
exist a substitution unifying both sides. Otherwise, we can substitute s for x in the
remaining system E and recursively obtain a substitution σ unifying this modi�ed
system. If such a substitution σ is found, then we extend it by a binding for x. As the
above example shows, s can contain free variables thus we have to ensure that those
variables are replaced by their instantiations from σ.

Computability We observe that the number of variables decreases with every re-
cursive step in the E 7→ σ relation. This motivates the following induction principle
for systems of equations.

Lemma 8.6
∀E. (∀E′. vars E′ (vars E → P E′)→ P E

∀E. P E

Proof Follows from the well-foundedness of (. �

Fact 8.7 (Computability) For every list of equations E we can compute a substitu-
tion σ with E 7→ σ, or we can prove that no such σ exists.

Proof By induction on E using the induction principle from Lemma 8.6. Case anal-
ysis on decomp E:

1. Case decomp E = nil. Then E 7→ id .

2. Case decomp E = x
?
= s :: E′. We decide free x, x 6∈ vars s and ∀x ∈

vars s. free x. If one of the above does not hold, then there exists no such σ. By
the inductive hypothesis we decide whether there exists σ with E′[s/x] 7→ σ,
since x 6∈ vars (E′[s/x]). If this is the case, thenE 7→ σ[x := s[σ]]. Otherwise,
there cannot be a σ which could be derived from the rules of E 7→ σ.

3. Otherwise, no such σ can be derived. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#eqs_size_induction
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#Unification.Computability

8.2. Full First-Order Uni�cation 63

Soundness We show that whenever we can derive a substitution E 7→ σ, then σ
is su�cient to unify the equations in E. The replacement of x with s in the relation
E 7→ σ is justi�ed by the following lemma:

Lemma 8.8 x
?
= s :: E ≈ x ?

= s :: E[s/x]

To conclude soundness, we show that σ is λ-free, respects bound variables, and that
σ is well-typed if E was well-typed.

Fact 8.9 (Soundness) Let E 7→ σ.

1. If Γ `1 E : L and ord Γ ≤ 1, then Γ `1 σ : Γ.

2. σ � E.

3. σx is λ-free for all x.

4. σ respects bound variables.

Proof By induction on E 7→ σ. The �rst claim follows with Lemma 8.4. The second
claim follows using Lemmas 8.2 and 8.8. The others are trivial. �

Completeness We show that whenever the a system of equationsE is uni�able by
a substitution τ respecting the bound variables, then we can derive a substitution σ
unifyingE using the rules ofE 7→ σ. The following lemma ensures that all premises
of the second rule are ful�lled, whenever there is a unifying substitution τ .

Lemma 8.10 Let τ � x ?
= s such that τ respects the bound variables.

1. If x 6= s, then x 6∈ vars s.

2. If x 6∈ vars s, then free x.

3. If x 6∈ vars s and free x, then free y for all y ∈ vars s.

Using the above lemma we establish completeness.

Fact 8.11 (Completeness) Let τ be a substitution that respects bound variables. If
τ � E, then there exists σ with E 7→ σ.

Proof By induction on E using the induction principle of Lemma 8.6, and Lem-
mas 8.2, 8.3, 8.8 and 8.10. �

8.2 Full First-Order Uni�cation

In general, we consider the problem U1 to be the problem of �rst-order uni�cation.
As a consequence, there are �rst-order uni�able terms which are not λ-free. Take
Γ `1 λy.x

?
= λy.a : α→ α in the context Γ = (x : α) for example. Both terms

are uni�able with the substitution σx = a. We observe that in a �rst-order equation

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#equi_unifiable_cons
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#Unification.Soundness
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify_unifiable
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify_lambda_free
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify_free'
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unifies_not_var
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unifies_free
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unifies_free_all
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unify_complete

64 First-Order Uni�cation

Γ `1 s
?
= t : A all occurring variables are at most of order one. Thus any normal form

that is inserted for a variable in the process of uni�cation cannot be an abstraction.
The following lemma ensures that the terms inserted for variables are λ-free.

Lemma 8.12 If Γ `1 s : A, normal s, and the applicative head of s is an atom, then s
is λ-free.

Proof The claim follows by induction on nf s. �

We justify reasoning about equality instead of equivalence even in the �rst-order
fragment containing abstractions with the following lemma:

Lemma 8.13 Let Γ `1 s
?
= t : A for normal terms s and t. If ∆ `1 σ : Γ and

normal (σx) for all x, then s[σ] ≡ t[σ] implies s[σ] = t[σ].

Theorem 8.14 U1 is decidable.

Proof By Fact 5.11 it su�ces to decide whether there exists a unifying substitution
inserting normal forms only. Let Γ `1 s

?
= t : A. Due to the retyping presented

in Fact 5.14, we can assume wlog. that s and t are normal, ord Γ ≤ 1, and ord A ≤ 2.
Lemma 8.13 justi�es deciding whether there exists a substitution σ and a context ∆

such that:

∆ `1 σ : Γ, s[σ] = t[σ], and normal σx for all x.

Since s and t are normal, we can do a normal form analysis on nf s and nf t. Let
s = λx1 · · ·xk.a1 T1 and t = λx1 · · ·xl.a2 T2.

1. Case k 6= l. Wlog. let k < l. We show both terms cannot be uni�able. By
way of contradiction assume both terms are uni�able. If a1 is a constant, then
substitution does not a�ect a1 and thus we can obtain an equation between an
abstraction and a constant. This is clearly a contradiction. If a1 is a variable,
then the type of this variable must be a function type. A contradiction, since
�rst-order terms cannot contain function variables.

2. Case k = l. Using Lemma 8.12 we establish that a1 T1 and a2 T2 are λ-
free. Thus, we can use the decision procedure from Fact 8.7 to decide whether
[a1 T1

?
= a2 T2] 7→ σ for some σ where there variables x1, . . . , xk are consid-

ered bound and all others are free. If this is the case, then soundness (Fact 8.9)
guarantees that σ uni�es s and t. If this is not the case, then completeness
(Fact 8.11) guarantees that no σ exists unifying s and t. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#order_one_lambda_free
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#FO_subst_equiv_eq
http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#firstorder_decidable

8.3. Remarks 65

8.3 Remarks

1. Note that in the formalisation the above theorem has to be adapted to the De
Bruijn setting. In particular, the substitution σ has to be adapted when moving
from the λ-free fragment to the full �rst-order fragment.

2. Using the Equations tool [54] we de�ne a Coq function unif E which computes
a substitution σ if E is uni�able and returns ∅ otherwise. The function can be
understood as the uni�cation procedure computing the relation E 7→ σ. In
particular, we show:

Lemma 8.15 unif E = σ i� E 7→ σ.

Using the well-foundedness of (and Lemma 8.4 it is straightforward to argue
termination using Equations.

http://www.ps.uni-saarland.de/~spies/hou/HOU.firstorder.html#unif_correct

Chapter 9

Conservativity & Constants

Huet [28] and Goldfarb [25] give proofs of the undecidability of third and second-
order uni�cation which we formalise in Chapters 6 and 7. In this chapter, we show
how these results can be extended to yield the undecidability of higher-order uni�-
cation in general. Explicitly, we establish the conservativity of uni�cation meaning
a nth-order equation Γ `n s

?
= t : A is uni�able if and only if it is uni�able in

the nth-order fragment of the calculus. From this we conclude Un � Um � U for
n ≤ m. In addition, we present techniques for the introduction and elimination of
constants without a�ecting uni�ability. Using these techniques, we can obtain Gold-
farb’s strengthened result that uni�cation is already undecidable in languages with
only a single binary constant g. The combined results of this chapter yield:

U
{a,b,g}
2 � U

{g}
2 � U

{g}
3 � U∅3 � U3 � U

where U{g}n is nth-order uni�cation in the fragment where g is the only constant and
U∅3 is third-order uni�cation in the fragment without constants.

9.1 Conservativity

In this section, we establish the conservativity of uni�cation and prove for n+1 ≤ m:

Un Un+1 · · · Um · · · U� � � � �

As the reduction functions used in these reductions are identity functions up to the
typing judgements, one can say that mth-order uni�cation subsumes nth-order uni-
�cation and higher-order uni�cation subsumes mth-order uni�cation. Similarly, we
establish that a system Γ `n E : A is uni�able, if it is already uni�able by a substitu-
tion of order n, yielding a proof of

SUn SUn+1 · · · SUm · · · SU� � � � �

68 Conservativity & Constants

Operations on Constants In the proof of Un � Un+1 we need to transform a
substitution ∆ `n+1 σ : Γ into a substitution Σ `n τ : Γ which still uni�es the
terms. In particular, we have to transform terms with constants of order n + 2 into
terms with constants of at most order n+ 1.consts s

consts S

We write consts s for the list containing
all constants of s and constsS for the list containing all the constants of terms fromS.

Lemma 9.1

1. If s �∗ t, then consts s ⊇ consts t.

2. If Γ `n s : A and c ∈ consts s, then ord (Ωc) ≤ n+ 1.

To eliminate and introduce constants, we de�ne an operation s[κ], similar to sub-
stitution, replacing constants according to κ. Analogous to substitution this opera-
tion is capture avoiding. For example, for κa = x we have (g x a)[κ] = g x x and
(λx.a)[κ] = λy.x.

De�nition 9.2s[κ] σ[κ] For a map from constants to terms κ, we write s[κ] for the result of
replacing all constants of s according to κ. We write σ[κ] for the substitution obtained
by replacing the constants of σ according to κ.

Lemma 9.3

1. �, �∗, ≡ are compatible with constant replacement.

2. If κc = c for all c ∈ consts s, then s[κ] = s.

3. If s[κ] = s, then s[σ[κ]] = s[σ][κ].

4. If Γ ` s : A and Γ ` κc : Ωc for all x ∈ consts s, then Γ ` s[κ] : A.

5. If Γ `n s : A and Γ `n κc : Ωc for all x ∈ consts s, then Γ `n s[κ] : A.

Inhabiting Types When proving conservativity results about uni�cation, we need
to replace constants and variables not belonging to the nth-order fragment of the
calculus. For example, the variable y : (α → β) → β → α does not belong to the
second-order fragment but it may occur in a unifying substitution for a second-order
equation. Its type (α → β) → β → α is not inhabited by any closed term in a
language without constants. However, as substitutions may insert open terms, the
variable y can be replaced by λy1y2.x in the context ∆ = (x : α). In contrast to
the variable y, λy1y2.x is a �rst-order term. We generalise this idea with the term
inhabx A which inhabits type A whenever x is a variable of the target type of A.

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#consts
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#Consts
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#consts_subset_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#typing_constants
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#subst_consts
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#step_subst_consts
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#subst_consts_ident
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#subst_const_comm_id
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#preservation_consts
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#preservation_consts

9.1. Conservativity 69

De�nition 9.4 target A

target Γ

arity A

inhabx A

target α = α

target (A→ B) = target B

target Γ = [(x, target A) | (x,A) ∈ Γ]

arity α = 0

arity (A→ B) = 1 + arity B

inhabx A := ΛY.x where Y = [y1, . . . , yarity A] andx 6∈ Y

Using inhabx Awe can produce terms of arbitrary typesAwhenever we may choose
the context.

Lemma 9.5 (x, target A) ∈ Γ

Γ `1 inhabx A : A
and (x,A) ∈ Γ

target Γ `1 inhabx A : A

Substitution Transformations Recall from Section 2.5 the three transformations
we apply to to higher-order substitutions, unifying an equation Γ `n s

?
= t : A, in

order to obtain nth-order substitutions.

1. Whenever we encounter a free variable x : A1 → · · · → Ak → α not of
order n, we substitute it with the �rst-order term λx1 · · ·xk.z where z : α.

2. Whenever we encounter a constant c : A1 → · · · → Ak → α which does not
appear in s or t, we replace it with the �rst-order term λx1 · · ·xk.z where z : α

analogously to the previous technique.

3. We normalise all terms after applying the above transformations.

For the �rst transformation, we substitute all free variables by �rst-order inhabitants
of the same type.

Lemma 9.6 Let Γ `n s
?
= t : A. If ∆ ` σ : Γ and s[σ] ≡ t[σ], then there exists a

context Σ and a substitution Σ ` τ : Γ with s[τ] ≡ t[τ] and ord Σ ≤ 1.

Proof De�ne τ ′ x := inhabx A if (x : A) ∈ ∆ and τ ′ x := x otherwise. Pick
Σ := target ∆ and τ := σ[τ ′]. The claim follows with Fact 4.11 and Lemma 9.5
and ≡ being compatible with substitution (Fact 4.7). �

For the second transformation, recall that the key observation is that s and t are
uni�able if and only if they are uni�able with a substitution that only draws con-
stants from consts s and consts t. In the case where s and t are in the nth-order
fragment of the language, all such constants are guaranteed to have an order of at
most n + 1. While we require the transformation only for well-typed higher-order

http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#target
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#target'
http://www.ps.uni-saarland.de/~spies/hou/HOU.calculus.syntax.html#arity
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#inhab
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#inhab_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#inhab_typing'
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#downcast_variables

70 Conservativity & Constants

substitutions, the same transformation can also be used to simplify the proof of con-
servativity of uni�cation with respect to constants. In said proof it is essential that
the order of the substitution is not increased in the transformation. Therefore, we
show that the relevant constants can be removed from substitutions inserting terms
of order m > 0 and deduce in a second step that this entails the case of well-typed
higher-order substitutions in general.

Lemma 9.7 Let m > 0 and Γ `n s
?
= t : A. If ∆ `m σ : Γ and s[σ] ≡ t[σ],

then there exists a substitution ∆ ∪ Σ `m τ : Γ with s[τ] ≡ t[τ], ord Σ ≤ 1 and
consts (τx) ⊆ consts [s, t] for all x.

Proof We de�ne the list C := consts [σx | x ∈ dom Γ] containing all constants that
potentially have to be replaced and associate every constant c ∈ C with a fresh
variable xc. We replace constants according to κ, where κc = c if c ∈ consts [s, t],
κc = inhabxc (Ωc) if c ∈ C , and κc = x0 otherwise for some �xed variable x0. We
pick Σ := target [(xc : Ωc) | c ∈ C] and τ := σ[κ]. Typing follows from Lemmas 9.3
and 9.5 and from Lemma 9.3 we know that s[κ] = s and t[κ] = t. Hence, s[τ] =

s[σ[κ]] = s[σ][κ] ≡ t[σ][κ] = t[σ[κ]] = t[τ]. �

Note that in the formalisation we do not associate every constant with a variable
directly. Instead, the variable xc is represented by the De Bruijn index |∆|+ i where
i is the index of the �rst occurrence of c in C . The e�ect is the same — we are
guaranteed that xc does not occur in dom ∆ and there is at least one variable for
every constant.

Corollary 9.8 Let Γ `n s
?
= t : A. If ∆ ` σ : Γ and s[σ] ≡ t[σ], then there exists a

substitution ∆ ∪ Σ ` τ : Γ with s[τ] ≡ t[τ], ord Σ ≤ 1 and consts (τx) ⊆ consts [s, t]

for all x.

In the proof of conservativity, we need to show that certain terms obtained after
transformations 1, 2, and 3 are in the nth-order fragment of the calculus.

Lemma 9.9

Γ ` s : A normal s ord [Ωc | c ∈ consts s], ord A ≤ n+ 1 ord Γ ≤ n
Γ `n s : A

Proof By induction on Γ ` s : A.

1. Case Γ ` x : A. Then (x : A) ∈ Γ, thus the claim follows with ord Γ ≤ n.

2. Case Γ ` c : Ωc. The claim follows by assumption.

3. Case Γ ` λx.s : A→ B. Then Γ, (x : A) ` s : B. We utilise ord (A→ B) ≤
n+1 to obtain ordA ≤ n and the claim follows with the inductive hypothesis.

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#downcast_constants_ordered
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#downcast_constants
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#ordertyping_from_basetyping

9.1. Conservativity 71

4. Case Γ ` s t : B. Then Γ ` s : A→ B and Γ ` t : A for some A. Since s t
is normal, the applicative head of s must be some atom a. As a consequence,
using the head decomposition from Lemma 4.27 and the typing inversion for
list application from the right (Lemma 4.26), we obtain that a has some type of
the form ~L→ A→ B. Regardless of whether a is a variable or a constant, we
can prove that the order of its type is at most n+ 1 by our assumptions. Thus
ord A ≤ n and the claim follows with the inductive hypotheses. �

Since Γ may also contain variables which neither occur in s nor in t, the constraint
Γ `n s

?
= t : A does not imply that ord Γ ≤ n. As a consequence, there can be

(x : A) ∈ Γ where ord A > n. Thus, if t is the term inserted by a substitution after
transformations 1, 2, and 3, we cannot ensure that t is in the nth-order fragment
of the language, since Lemma 9.9 is not applicable. However, as only the variables
occurring in s and t are relevant for uni�ability, we can address this complication
with the following lemma:

Lemma 9.10 Let Γ `n s
?
= t : A. If s[σ] ≡ t[σ] and ∆ `n σx : A for all (x : A) ∈ Γ

where x ∈ vars [s, t], then there exists a substitution Σ `n τ : Γ such that s[τ] ≡ t[τ].

Proof We associate with every (x : A) ∈ Γ a fresh variable yx. Pick Σ := ∆ ∪
target [(yx : A) | (x : A) ∈ Γ] and τx := σx if x ∈ vars [s, t], τx := inhabyx A

if (x : A) ∈ Γ and τx := x otherwise. Typing follows with Lemma 9.3 and the
equivalence with Fact 4.1. �

Conservativity We combine the transformation presented above to conclude the
conservativity of uni�cation and lift the result to systems of equations.

Fact 9.11

1. Let Γ `n s
?
= t : A. If ∆ ` σ : Γ and s[σ] ≡ t[σ], then there is a substitution

Σ `n τ : Γ with s[τ] ≡ t[τ] for some context Σ.

2. Let Γ `n E : L. If ∆ ` σ : Γ and EL[σ] ≡ ER[σ], then there is a substitution
Σ `n τ : Γ with EL[τ] ≡ ER[τ] for some context Σ.

Proof

1. Subsequent use of Lemmas 9.6 and 9.10 and Corollary 9.8 as well as Lemmas 9.1
and 9.9.

2. For systems, we use a similar construction as in Section 5.2 and transform lists
of terms EL, ER into single terms λh.h EL, λh.h EL. The claim then follows
analogously to Item 1. �

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#ordertyping_weak_ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#unification_downcast
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#unification_downcast_eqs

72 Conservativity & Constants

Theorem 9.12 (Conservativity) Let n ≤ m.

1. Un � Un+1

2. Un � Um

3. Un � U

4. SUn � SUn+1

5. SUn � SUm

6. SUn � SU

Proof By picking the identity function for each reduction and Facts 4.15 and 9.11.�

None of the reduction functions have to transform Γ, s, t, or A. Thus, one can say
higher-order uni�cation subsumes nth-order uni�cation. As a corollary, we conclude
the undecidability of higher-order uni�cation in general and establish the enumer-
ability of nth-order uni�cation, system uni�cation and nth-order system uni�cation.

Corollary 9.13

1. MPCP � U and PCP � U.

2. Un,SU and SUn are enumerable.

9.2 Constants

In this section we investigate the role of constants in uni�cation. Goldfarb [25] proves
the undecidability of second-order uni�cation in the presence of a 2-ary function
constant whereas Farmer [16] proves the decidability of second-order uni�cation for
all languages containing only constants of at most arity one. Huet [28] on the other
hand shows that uni�cation is undecidable in third-order languages regardless of the
constants of the language. In the following, we present techniques how constants
can be introduced and eliminated from a language in the context of uni�cation. As a
consequence, we obtain Huet’s result as a corollary of Goldfarb’s result.

In Chapter 4, we de�ned the simply-typed λ-calculus parametric over a type C of
constants. We write UCUC UCn

to refer to the uni�cation problem in the language where
all constants are of type C. Analogously, we write UCn for the nth-order uni�cation
problem in the language where all constants are of type C.

Introduction of Constants In the following we prove the how constants can be
introduced without a�ecting nth-order uni�ability. We assume two types of con-
stants C,D such that the pair (ι, %) forms a tight retraction C ↪→ D and denote the
constant signature of C by ΩC and the signature ofD by ΩD . Furthermore, we require
ΩCc = ΩD(ιc) for all c : C. We show the conservativity of nth-order uni�cation with
respect to constants, meaning UCn � UDn . Formally, we transform instances of UCn
into instances of UDn with the reduction function:

f(Γ `n s
?
= t : A) = Γ `n s[ι]

?
= t[ι] : A

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#unification_step
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#unification_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#unification_conserve
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#systemunification_step
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#systemunification_steps
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#systemunification_conserve
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.conservativity.html#MPCP_U
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.enumerability.html#enumerable_orderdunification

9.2. Constants 73

Once more, the key observation is that two terms u, v are uni�able if and only if they
are uni�able with a substitution that only draws constants from consts u and consts v.
As a consequence, when given a substitution unifying s[ι] and t[ι], we replace all
constants that do not occur in im ι with terms of the same type. We cannot simply
replace constants by variables as they may have a type of order n + 1 whereas the
order of the types of variables is bounded by n.

For example, consider C = ∅ and D = {g} for g : α → α → α. For the sake of
simplicity, we omit the retraction (ι, %) and use set notation in this example. The
equation Γ ` f ?

= g : α→ α→ α for Γ = (f, g : α → α → α) is solved by σf =

σg = g in a language with constants from D. To obtain a solution with constants
only from C, we replace g by a term of the same type in σ. Explicitly, we replace g

with the term λx1x2.xg where xg is a fresh variable. The resulting substitution τ can
be typed in the context ∆ = (xg : α) and we have f [τ] ≡ λx1x2.xg ≡ g[τ].

In general, we associate every constant d : D with a fresh variable xd and replace
constants according to κ:

κ d = c where %d = c κ d = inhabxd (ΩDd) where %d = ∅

Lemma 9.14 Let D := consts [σx | x ∈ dom Γ].

1. s[ι][σ[ι]] = s[σ][ι] and s[σ[κ]] = s[ι][σ][κ]

2. ∆ `n σ : Γ

∆ `n σ[ι] : Γ
and ∆ `n σ : Γ target [(xd : ΩDd) | d ∈ D] ⊆ ∆

∆ `n σ[κ] : Γ

Fact 9.15 UCn � UDn

Proof We pick the reduction function f(Γ `n s
?
= t : A) = Γ `n s[ι]

?
= t[ι] : A.

→: Let Σ `n τ : Γ and s[τ] ≡ t[τ]. Pick ∆ := Σ and σ := τ [ι]. Then by
Lemma 9.14 s[ι][σ] = s[ι][τ [ι]] = s[τ][ι] ≡ t[τ][ι] = t[ι][τ [ι]] = t[ι][σ] and
∆ `n σ : Γ.

←: Let Σ `n τ : Γ and s[ι][τ] ≡ t[ι][τ]. We group all relevant constants in the list
D := consts [σx | x ∈ dom Γ]. Pick ∆ := Σ∪ target [(xd : ΩDd) | d ∈ D] and
σ := τ [κ]. Lemma 9.14 ensures ∆ `n σ : Γ and in addition, s[σ] = s[τ [κ]] =

s[ι][τ][κ] ≡ t[ι][τ][κ] = t[τ [κ]] = t[σ]. �

In the formalisation the variable xd is obtained through a mapping h from constants
to variables. Analogous to the proof of Lemma 9.7, we pick the assignment h such
that hd = |Σ| + i where i is the �rst occurrence of d in D if d ∈ D, and hd = x0 if
d 6∈ D for some �xed x0.

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#subst_consts_inject_forward
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#inj_typing
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#unification_constants_monotone

74 Conservativity & Constants

Elimination of Constants In the following we show how all constants with an
order strictly smaller than n can be eliminated from the nth-order fragment without
a�ecting uni�ability. In particular, this result will allow us to derive the strongest
version of Goldfarb’s result [25]: Uni�cation is undecidable in any second-order lan-
guage with a single 2-ary function constant of order 2. As mentioned in Chapter 2,
the decidability of monadic second-order uni�cation [16] implies that we cannot hope
to eliminate all constants of order n as well.

Recall from Section 2.7 that the main idea is to replace constants by bound variables.
For example, the terms Γ ` g x

?
= g a : α→ α where g, a are constants and Γ =

(x : α) are transformed into the terms Γ ` λxa.g (x xa)
?
= λxa.g xa : α→ α→ α

where ∆ = (x : α → α), if a is eliminated. Instead of σx = a, both terms are
uni�able under the substitution σx = λxa.xa after the transformation.

Formally, we assume two types of constants C,D and the pair (ι, %) forming a tight
retraction C ↪→ D and prove that UDn � UCn if ord (ΩDd) < n for all d 6∈ im ι. Similar
to the previous paragraph, we require ΩCc = ΩD(ιc) for all c : C. The retract can be
understood as a �lter deciding which values ofD are to be retained and which are to
be replaced.

To simplify matters, we start by analysing how a �xed list of constants D can be
replaced. For now, �x a list of constants D and assume ord (ΩCd) < n for all d ∈ D.

We associate with every constant d ∈ D a fresh variable xd and group them together
asX = [xd | d ∈ D]. In the formalisation, this is realised similarly to the proof of 9.7.
We encode variables with εx, constants by εd and lift the encoding to terms εs, types
ε(A), contexts ε(Γ), and substitutions εσ.

εx := x X εd :=

c %d = c

xd d ∈ D
x0 othw.

εs := ΛX.s[σε][κε]

ε(A) := [ΩDd | d ∈ D]→ A ε(Γ) := [ε(A) | A ∈ Γ] (εσ)x := ε(σx)

where σεx := εx, κεc := εc, and x0 is some �xed variable. In the previous example,
we would have D = [a], X = [xa], σεx = x xa, κεa = xa and κεg = g.

We observe (ε(g x)) a = (λxa.g (x xa)) a ≡ g (x a). Thus, applying the encoded
term to a almost reverses the e�ect of the encoding. The only di�erence is that after
reduction, the variable x is applied to a. This motivates the de�nition ε−1s := s[ι]D.
The idea is that ε−1(εs) �∗ s[x 7→ x D], meaning the term obtained by encoding and
decoding almost reduces to the original except for the variables. The free variables
are applied to all constants that were removed by the encoding. We lift the decoding
to substitutions by (ε−1σ) x := ε−1(σx).

9.2. Constants 75

Lemma 9.16 Let all constants d ∈ consts s which are not contained in im ι be in D.
In addition, let all constants d ∈ consts (σx) which are not contained in im ι be in D
for all x.

1. Γ `n s : A

ε(Γ) `n εs : ε(A)
and

Γ `n t : ε(A)

Γ `n ε−1t : A

2. ∆ `n σ : Γ

ε∆ `n εσ : ε(Γ)
and

∆ `n τ : ε(Γ)

∆ `n ε−1τ : Γ

3. ≡ is compatible with ε and ε−1.

4. (εs)[εσ] �∗ ε(s[σ]) and ε−1((εs)[τ]) �∗ s[ε−1τ]

Theorem 9.17 UDn � UCn whenever ord (ΩDd) < n for all d 6∈ im ι.

Proof Pick f(Γ `n s
?
= t : A) = ε(Γ) `n εs

?
= εt : ε(A). Note that since

ord (ΩDd) < n for all d 6∈ im ι, the encoding of s and t can be typed in the nth-order
fragment of the calculus. It remains to show

UDn (Γ `n s
?
= t : A) i� UCn(f(Γ `n s

?
= t : A))

We pick D := [d | d ∈ consts [s, t] where d 6∈ im ι].

→: Let Σ′ `n τ ′ : Γ and s[τ ′] ≡ t[τ ′]. Using Lemma 9.7 we obtain a substitution
Σ′ ∪ Σ `n τ : Γ such that s[τ] ≡ t[τ] and consts (τx) ⊆ consts [s, t] for all x.
We pick ∆ := ε(Σ′ ∪ Σ) and σ := ετ . With Lemma 9.16 we know ∆ `n σ :

ε(Γ) and (εs)[σ] = (εs)[ετ] ≡ ε(s[τ]) ≡ ε(t[τ]) ≡ (εt)[ετ] = (εt)[σ].

←: Let Σ `n τ : Γ and (εs)[τ] ≡ (εt)[τ]. Pick ∆ := Σ and σ := ε−1τ .
With Lemma 9.16 we know ∆ `n σ : Γ and s[σ] = s[ε−1τ] ≡ ε−1((εs)[τ]) ≡
ε−1((εt)[τ]) ≡ t[ε−1τ] = t[σ]. �

Using the techniques presented above we derive Goldfarb’s strongest result and show
how Huet’s result can be obtained from Goldfarb’s result.

Corollary 9.18

1. H10 � U
{a,b,g}
2 � U

{g}
2

2. U{g}2 � U
{g}
3 � U∅3 � U3

3. Let (ι, %) be a retraction {g} ↪→ C with ΩC(ιg) = α→ α→ α.
Then H10 � UC2 .

http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#remove_constants_ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#remove_constants_ordertyping
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#remove_constants_ordertypingSubst
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#enc_proper
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#enc_subst_term_reduce
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#remove_constants_forward
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#Goldfarb_remove
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#Goldfarb_Huet
http://www.ps.uni-saarland.de/~spies/hou/HOU.concon.constants.html#Goldfarb_sharp

Chapter 10

Formalisation

In this chapter we remark on interesting aspects of the formalisation, highlight im-
portant design choices, and discuss complications we encountered. All proofs pre-
sented in this thesis are formalised in the proof assistant Coq and the theorems, facts
and lemmas of this thesis are hyperlinked with their formal counterparts. The thesis
is accompanied by brief documentation of the Coq code available at:

http://www.ps.uni-saarland.de/~spies/bachelor.php

The formalisation is self-contained and follows the structure presented in this the-
sis. The only axiom assumed in the work is the widely accepted axiom of functional
extensionality. Functional extensionality expresses that two Coq functions are equal
whenever they agree on all arguments. In particular, we do not assume any classi-
cal axioms, rendering the formalisation fully constructive. The assumption of func-
tional extensionality has no e�ect on the computability of Coq functions in a model
of computation. Consequently all reduction functions presented in this thesis are
computable.

Tools Working with substitutions is simpli�ed by the Autosubst 2 [55] tool. We
synthesise the term syntax and the substitution operation s[σ] with this tool from
a higher-order abstract syntax speci�cation. Furthermore, we use the tool to syn-
thesise several lemmas concerning substitutions and automation to use said lem-
mas. As a consequence, many claims regarding substitution can be proved auto-
matically by use of the asimpl tactic. Frequently proving such claims involves re-
peated use of the substitution lemmas. In this work, we extended the automation
mechanism with substitution lemmas concerning our metalevel operations. Doing
so renders the automation powerful enough to automatically prove equalities such
as (n((λx.x) x))[a/x] = n((λx.x) a).

We extensively used the rewriting mechanism [53] included with Coq. The relation≡
is registered as an equivalence relation and�∗ as a pre–order. The compatibility lem-

http://www.ps.uni-saarland.de/~spies/bachelor.php

78 Formalisation

mas of both relations are added to the mechanism to simplify their use. For example,
the compatibility of ε with ≡ (Lemma 9.16) can be derived automatically from the
compatibility of ≡ with list abstractions, substitutions and constant replacement.

We used the Equations tool [54] to implement a uni�cation algorithm for the λ-free
fragment of the calculus.

External Code We build on the formalisation of abstract reduction systems con-
tained in the folder std/ars which was developed in the lecture Semantics at Saar-
land University [50]. The code contained in the �le list_reduction.v is our contri-
bution. Furthermore, we build on the formalisation of enumerability and reductions
by Forster et al. [21].

Variables We formalise the simply-typedλ-calculus presented in this thesis using a
De Bruijn representation of variables. Recall that the variable n in De Bruijn notation
indicates that n binders have to be skipped until the binder of the variable is reached.
For example, the term (λxyz.z) (λy.y) can be expressed as (λλλ2) (λ0). For the sake
of readability we choose named syntax on paper. As a consequence some notions
di�er on paper from their formal counterparts. For example, typing contexts are
represented as lists of types in the formalisation and (x : A) ∈ Γ corresponds to
Γ[x] = A. We remark in the thesis whenever this is the case.

Overhead We believe that the overhead generated by formalising all results in a
proof assistant is similar to the overhead produced by writing detailed paper proofs.
Several proofs in this thesis, for example Theorem 6.12 and Lemma 7.22, require a con-
siderable amount of bookkeeping which is greatly simpli�ed by working in a proof
assistant.

Traditionally, higher-order uni�cation is considered in a Church-typed λ-calculus. In
this thesis we use Curry-typing instead. While working with a Church-typed calcu-
lus can be more appealing on paper, in Coq Church-typing entails dependently typed
syntax. Dependently typed syntax complicates statements, de�nitions and proofs
since functions transforming terms have to transform their types as well. Further-
more, dependently typed syntax is currently not supported by the Autosubst 2 [55]
tool. As a consequence of Curry-typing, well-typedness must be established at sev-
eral places in the development and must be preserved while analysing terms.

10.1 Overview

Overall, the self-contained formalisation amounts to approximately 9500 lines of code
in its entirety. A signi�cant portion of this code is devoted to what we would call
“preliminaries” which we do not consider relevant when it comes to the complexity of

10.1. Overview 79

our development. Thus, preliminaries are excluded in the following overview which
summarises the size of the formalisation in lines of code.

We formalise the Curry-style simply-typed λ-calculus in the directory calculus and
the uni�cation problems in the directory unification. The undecidability of third-
order uni�cation is contained in the directory third_order and the undecidability
of second-order uni�cation in the directory second_order. The decidability of �rst-
order uni�cation is established in firstorder.v. Conservativity and the results re-
garding constants are contained in the directory concon.

Overview Speci�cation Proofs
Simply-typed λ-calculus 790 1120
Higher-Order Uni�cation 350 380
Third-Order Undecidability 190 400
Second-Order Undecidability 570 850
First-Order Decidability 290 510
Conservativity & Constants 480 890
Total 2670 4150

Third-Order Uni�cation Our formalisation of the undecidability of third-order
uni�cation can be decomposed into a formal de�nition of the modi�ed Post corre-
spondence problem and the Post correspondence problem, a de�nition of the encod-
ing of strings, the original reduction by Huet [28], and our simpli�ed version.

Third-Order Uni�cation Speci�cation Proofs
PCP Problems 30 30
Shared Encoding 80 110
Original 50 170
Simpli�ed 30 90
Total 190 400

Second-Order Uni�cation Our formalisation of the undecidability of second-order
uni�cation can be decomposed into a formal de�nition of Hilbert’s tenth problem, the
explanation based on [13], the motivation for the encoding of multiplication, and the
actual reduction.

Second-Order Uni�cation Speci�cation Proofs
Hilbert’s Tenth Problem 30 10
Motivation Structure 180 260
Motivation Multiplication 30 20
Reduction 330 560
Total 570 850

Chapter 11

Conclusion

In this chapter we comment on related work and indicate directions into which this
work could be expanded in the future. A comprehensive summary of the �eld of
higher-order uni�cation and related problems can be found in [13, 27]. Levy and
Veanes [33] give a compact historical overview on higher-order uni�cation problems.

11.1 Related Work

We give related work in the �elds of synthetic undecidability, higher-order uni�cation
and formalisations of uni�cation.

Synthetic Undecidability In the �eld of synthetic undecidability, most notably
the work of Forster et al. [18, 20, 19, 21, 32] is to mention. In [21] they develop
synthetic undecidability in the type theory of Coq and lay the foundations for our
work. In particular, they provide a framework for establishing enumerability which
we used in this work. In [32] the synthetic undecidability of Hilbert’s tenth problem is
proved and in [20] the synthetic undecidability of the Post correspondence problem.
Thus, in the context of their work we obtain the following chain of reductions:

H PCP H10 U
{g}
2

U3 Un U� � � � � �

where 3 ≤ n and H refers to the halting problem on turing machines. This work is
intended as a contribution to their library of undecidable problems formalised in the
proof assistant Coq:

https://github.com/uds-psl/coq-library-undecidability

Higher-Order Uni�cation The undecidability of higher-order uni�cation was es-
tablished independently by Huet [28] in 1973 and Lucchesi [34] in 1972. Both show
the undecidability of third-order uni�cation by a reduction from the Post correspon-
dence problem. The reduction Lucchesi gives is more complicated than the one by
Huet. In this work we simpli�ed Huet’s proof by reduction from the modi�ed Post
correspondence problem. For comparison, we provide a formalisation of the original
proof by Huet as well.

https://github.com/uds-psl/coq-library-undecidability

82 Conclusion

Baxter [3] gives an undecidability proof of third-order uni�cation where the arity of
all terms is restricted to two. We conjecture that the proof we gave in Section 7.1 can
be adapted to yield the same result. Instead of producing a system of equations of the
shape λfa.s1

?
= λfa.t1, . . . , λfa.sn

?
= λfa.tn, we produce the single equation

λfa.cons s1 (· · · (cons sn nil) · · ·) ?
= λfa.cons t1 (· · · (cons tn nil) · · ·)

where cons : α → β → β and nil : β are constants. Narendran [38] shows that
even monadic third-order uni�cation, i.e. third-order uni�cation where every term is
at most of arity one is undecidable.

In 1981 Goldfarb [25] improved on the result that third-order uni�cation is undecid-
able by proving the undecidability of second-order uni�cation. Dowek [13] gives an
explanation of the proof structure of Goldfarb’s work and Narendran [38] gives an
explanation of Goldfarb’s multiplication equations in the context of Huet’s higher-
order uni�cation procedure [29]. With this thesis we attempt to give an explanation
of the equations outside of the context of uni�cation in a more intuitive setting.

Levy and Veanes [33], Schubert [49], Ganzinger et al. [23], and Farmer [17] analyse
undecidable fragments of second-order uni�cation. Levy and Veanes, Schubert, and
Ganzinger et al. give new reductions to establish the undecidability of second-order
uni�cation. Levy and Veanes reduce from simultaneous rigid E-uni�cation, Schubert
from the halting problem on two-counter automata, and Ganzinger et al. from rigid
reachability.

From a computational perspective, our naive enumeration of high-order uni�cation
is terribly ine�cient. In 1975 Huet introduced a computationally more e�cient uni-
�cation procedure [29]. Prior to the uni�cation procedure of Huet, the enumerability
had already been established [41, 31].

The notion of removing constants from the underlying language is already present
in [56]. Working with normal substitutions without loss of generality is a well-
established practice and used for example in [52, 34].

In this thesis we used named syntax on paper and a De Bruijn representation in the
formalisation. In [11] and [14] formal representations of the problem are considered
and related.

Formalisations Robinson was the �rst to give a uni�cation algorithm for �rst-
order uni�cation [45]. The algorithm presented in this thesis is based on the proce-
dure described in [51]. There are already a number of formalisations of �rst-order
uni�cation. We do not intend for this list to be exhaustive. Paulson [39] veri�es �rst-
order uni�cation in the theorem prover LCF. McBride [36] veri�es �rst-order uni�-
cation in LEGO. Bove [4] veri�es the problem in ALF. Coen [5] veri�es it in CCL — a

11.2. Future Work 83

logical theory developed in Isabelle. Avelar et al. [1] verify the problem in PVS. Ruiz-
Reina et al. [48] verify a uni�cation algorithm with quadratic running time in ACL2.
Rouyer [47], Jaume [30], Smolka and Husson [51], and Ribeiro and Camarão [44] each
verify some form of �rst-order uni�cation in Coq. None of the above present uni�-
cation in the setting of the λ-calculus. The version of the problem they use may be
understood as uni�cation in the λ-free fragment of our calculus where all variables
are free. We are not aware of other formalisations of higher-order uni�cation.

11.2 Future Work

While the results presented in this section have already been proved, they have yet
to be formalised.

In this work we prove the decidability of �rst-order uni�cation and the undecidability
of second-order uni�cation with at least one 2-ary function constant. The remain-
ing gap — second-order uni�cation with constants of at most arity one — is called
monadic second-order uni�cation and is decidable [16, 60].

While su�cient to establish enumerability, the naive enumeration we gave in Chap-
ter 5 is computationally ine�cient. Huet [29] proposes a procedure for higher-order
uni�cation which provides the foundation of the uni�cation algorithms underlying
modern proof assistants. However, we are not aware of a formalised correctness proof
of said procedure.

While higher-order uni�cation is undecidable in general, decidable and undecidable
fragments have been found. One such decidable fragment of higher-order uni�cation
is pattern uni�cation [37]. Pattern uni�cation restricts the terms of the language by
allowing only certain arguments of higher-order variables. Higher-order variables
can only be applied to bound, distinct variables.

A di�erent direction this work could be expanded into is the area of type systems.
Dowek proves that typeability is undecidable in the λΠ-calculus [12] by reduction
from the Post correspondence problem. Typeability, also known as type inference,
asks whether a given term can be assigned a type. The proof is an adaptation of
Huet’s undecidability proof of third-order uni�cation. In future work one could in-
vestigate whether the undecidability proof can be simpli�ed by reduction from the
modi�ed Post correspondence problem. Type checking, i.e. verifying that a given
term s has a given type A, is undecidable in a Curry-typed version of System Fω .
In the folklore a reduction from second-order uni�cation to type checking in this
calculus is known [59].

Bibliography

[1] Andréia Borges Avelar, André Luiz Galdino, Flávio Leonardo Cavalcanti
de Moura, and Mauricio Ayala-Rincón. First-order uni�cation in the PVS proof
assistant. Logic Journal of the IGPL, 22(5):758–789, 2014.

[2] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 2nd revised edition, 1984.

[3] Lewis D Baxter. The undecidability of the third order dyadic uni�cation prob-
lem. Information and Control, 38(2):170–178, 1978.

[4] Ana Bove. Programming in Martin-Löf type theory: Uni�cation-A non-trivial
example. 1999.

[5] Martin David Coen. Interactive program derivation. Technical report, Univer-
sity of Cambridge, Computer Laboratory, 1992.

[6] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory Logic:
Volume II. North-Holland Publishing Company, 1972.

[7] Martin Davis. Arithmetical problems and recursively enumerable predicates 1.
The journal of symbolic logic, 18(1):33–41, 1953.

[8] Martin Davis and Hilary Putnam. A computational proof procedure; Axioms for
number theory; Research on Hilbert’s Tenth Problem. Air Force O�ce of Scienti�c
Research, Air Research and Development . . . , 1959.

[9] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for ex-
ponential Diophantine equations. Annals of Mathematics, pages 425–436, 1961.

[10] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
theorem. In IndagationesMathematicae (Proceedings), volume 75, pages 381–392.
Elsevier, 1972.

[11] Flávio LC de Moura, Mauricio Ayala-Rincón, and Fairouz Kamareddine. Higher-
order uni�cation: A structural relation between Huet’s method and the one
based on explicit substitutions. Journal of Applied Logic, 6(1):72–108, 2008.

86 Bibliography

[12] Gilles Dowek. The undecidability of typability in the lambda-pi-calculus. In
International Conference on Typed Lambda Calculi and Applications, pages 139–
145. Springer, 1993.

[13] Gilles Dowek. Higher-order uni�cation and matching. Handbook of automated
reasoning, 2:1009–1062, 2001.

[14] Gilles Dowek, Thérese Hardin, and Claude Kirchner. Higher-order uni�cation
via explicit substitutions. In Proceedings of Tenth Annual IEEE Symposium on
Logic in Computer Science, pages 366–374. IEEE, 1995.

[15] Derek Dreyer, Ralf Jung, Jan-Oliver Kaiser, Hoang-Hai Dang, and David Swasey.
Semantics of type systems – lecture notes. 2018. URL https://courses.ps.
uni-saarland.de/sem_ws1718/3/Resources.

[16] William M Farmer. A uni�cation algorithm for second-order monadic terms.
Annals of Pure and applied Logic, 39(2):131–174, 1988.

[17] William M Farmer. Simple second-order languages for which uni�cation is un-
decidable. Theoretical Computer Science, 87(1):25–41, 1991.

[18] Yannick Forster and Dominique Larchey-Wendling. Towards a library of for-
malised undecidable problems in Coq: The undecidability of intuitionistic lin-
ear logic. In Workshop on Syntax and Semantics of Low-level Languages, Oxford,
2018.

[19] Yannick Forster and Dominique Larchey-Wendling. Certi�ed undecidability of
intuitionistic linear logic via binary stack machines and minsky machines. In
Proceedings of the 8th ACM SIGPLAN International Conference on Certi�ed Pro-
grams and Proofs, pages 104–117. ACM, 2019.

[20] Yannick Forster, Edith Heiter, and Gert Smolka. Veri�cation of PCP-related com-
putational reductions in Coq. In International Conference on Interactive Theorem
Proving, pages 253–269. Springer, 2018.

[21] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in
Coq, with an application to the Entscheidungsproblem. In Proceedings of the 8th
ACM SIGPLAN International Conference on Certi�ed Programs and Proofs, pages
38–51. ACM, 2019.

[22] Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. Call-by-push-
value in Coq: operational, equational, and denotational theory. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certi�ed Programs and Proofs,
pages 118–131. ACM, 2019.

https://courses.ps.uni-saarland.de/sem_ws1718/3/Resources
https://courses.ps.uni-saarland.de/sem_ws1718/3/Resources

Bibliography 87

[23] Harald Ganzinger, Florent Jacquemard, and Margus Veanes. Rigid reachability.
In Annual Asian Computing Science Conference, pages 4–21. Springer, 1998.

[24] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proof and types. Cambridge
University Press, 1989.

[25] Warren D. Goldfarb. The undecidability of the second-order uni�cation prob-
lem. Theoretical Computer Science, 13:225–230, 1981.

[26] John E Hopcroft. Introduction to automata theory, languages, and computation.
Pearson Education India, 2008.

[27] Gérard Huet. Higher order uni�cation 30 years later. In International Conference
on Theorem Proving in Higher Order Logics, pages 3–12. Springer, 2002.

[28] Gérard P Huet. The undecidability of uni�cation in third order logic. Information
and control, 22(3):257–267, 1973.

[29] Gerard P. Huet. A uni�cation algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1(1):27–57, 1975.

[30] Mathieu Jaume. A full formalization of SLD-resolution in the Calculus of Induc-
tive Constructions. Journal of Automated Reasoning, 23(3):347–371, 1999.

[31] Don C Jensen and Tomasz Pietrzykowski. Mechanizing ω-order type theory
through uni�cation. Theoretical Computer Science, 3(2):123–171, 1976.

[32] Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth
problem in Coq. Technical report, Feb 2019. URL http://www.ps.
uni-saarland.de/Publications/details/Larchey-WendlingForster:
2019:H10_in_Coq.html. To appear.

[33] Jordi Levy and Margus Veanes. On the undecidability of second-order uni�ca-
tion. Information and Computation, 159(1-2):125–150, 2000.

[34] CL Lucchesi. The undecidability of the uni�cation problem for third order lan-
guages. Report CSRR, 2059:129–198, 1972.

[35] Yuri V. Matijasevivc. Enumerable sets are Diophantine. In Soviet Mathematics:
Doklady, volume 11, pages 354–357, 1970.

[36] Conor McBride. First-order uni�cation by structural recursion. Journal of func-
tional programming, 13(6):1061–1075, 2003.

[37] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple uni�cation. Journal of logic and computation, 1(4):497–536,
1991.

[38] Paliath Narendran. Some remarks on second order uni�cation. 1989.

http://www.ps.uni-saarland.de/Publications/details/Larchey-WendlingForster:2019:H10_in_Coq.html
http://www.ps.uni-saarland.de/Publications/details/Larchey-WendlingForster:2019:H10_in_Coq.html
http://www.ps.uni-saarland.de/Publications/details/Larchey-WendlingForster:2019:H10_in_Coq.html

88 Bibliography

[39] Lawrence C Paulson. Verifying the uni�cation algorithm in LCF. Science of
computer programming, 5:143–169, 1985.

[40] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[41] Tomasz Pietrzykowski. A complete mechanization of second-order type theory.
Journal of the ACM (JACM), 20(2):333–364, 1973.

[42] Emil L Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264–268, 1946.

[43] John C Reynolds. Types, abstraction and parametric polymorphism. 1983.

[44] Rodrigo Ribeiro and Carlos Camarão. A mechanized textbook proof of a type
uni�cation algorithm. In Brazilian Symposium on Formal Methods, pages 127–
141. Springer, 2015.

[45] John Alan Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM (JACM), 12(1):23–41, 1965.

[46] Julia Robinson. Existential de�nability in arithmetic. Transactions of the Amer-
ican Mathematical Society, 72(3):437–449, 1952.

[47] Joseph Rouyer. Développement de l’algorithme d’uni�cation dans le calcul des
constructions avec types inductifs. PhD thesis, INRIA, 1992.

[48] José-Luis Ruiz-Reina, Francisco-Jesús Martín-Mateos, José-Antonio Alonso, and
María-José Hidalgo. Formal correctness of a quadratic uni�cation algorithm.
Journal of Automated Reasoning, 37(1-2):67–92, 2006.

[49] Aleksy Schubert. Second-order uni�cation and type inference for Church-style
polymorphism. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 279–288. ACM, 1998.

[50] Gert Smolka. Semantics. 2018. URL https://courses.ps.uni-saarland.
de/sem_ws1718/3/Resources.

[51] Gert Smolka and Adrien Husson. Introduction to Computational Logic.
Uni�cation, 2014. URL https://courses.ps.uni-saarland.de/icl/2/
Resources.

[52] Wayne Snyder and Jean H Gallier. Higher order uni�cation revisited: Complete
sets of transformations. Technical Reports (CIS), page 778, 1989.

[53] Matthieu Sozeau. A new look at generalized rewriting in type theory. Journal
of formalized reasoning, 2(1):41–62, 2010.

[54] Matthieu Sozeau and Cyprien Mangin. Equations reloaded. Technical report,
2018.

https://courses.ps.uni-saarland.de/sem_ws1718/3/Resources
https://courses.ps.uni-saarland.de/sem_ws1718/3/Resources
https://courses.ps.uni-saarland.de/icl/2/Resources
https://courses.ps.uni-saarland.de/icl/2/Resources

Bibliography 89

[55] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with
multi-sorted De Bruijn terms and vector substitutions. In Proceedings of the 8th
ACM SIGPLAN International Conference on Certi�ed Programs and Proofs, pages
166–180. ACM, 2019.

[56] Richard Statman. On the existence of closed terms in the typed λ calculus II:
Transformations of uni�cation problems. Theoretical Computer Science, 15(3):
329–338, 1981.

[57] Masako Takahashi. Parallel reductions in λ-calculus. Journal of Symbolic Com-
putation, 7(2):113–123, 1989.

[58] The Coq Development Team. coq.inria.fr.

[59] Joe B Wells. Typability and type checking in System F are equivalent and unde-
cidable. Annals of Pure and Applied Logic, 98(1-3):111–156, 1999.

[60] AP Zhezherun. Decidability of the uni�cation problem for second-order lan-
guages with unary functional symbols. Cybernetics and Systems Analysis, 15(5):
735–741, 1979.

	Abstract
	Introduction
	Informal Overview
	Higher-Order Unification
	Undecidability of Higher-Order Unification
	Nth-Order Unification
	Third-Order Unification
	Conservativity
	Second-Order Unification
	Constants
	First-Order Unification

	Formal Preliminaries
	-calculus
	Simply-Typed -calculus
	Equational Theory
	Simple Typing

	Order
	Lists of Terms
	Confluence, Normalisation & Evaluation
	Confluence
	Normalisation
	Evaluation

	Unification
	Higher-Order Unification
	Systems of Equations
	Nth-Order Unification
	Enumerability

	Third-Order Unification
	Encoding
	MPCP Reduction
	Remarks

	Second-Order Unification
	Higher-Order Motivation
	Second-Order Realisation

	First-Order Unification
	Simplified First-Order Unification
	Term Decomposition
	Unification Relation

	Full First-Order Unification
	Remarks

	Conservativity & Constants
	Conservativity
	Constants

	Formalisation
	Overview

	Conclusion
	Related Work
	Future Work

	Bibliography

