u-Tree Languages

Leonhard Staut

Advisor: Dominik Kirst Supervisor: Prof. Dr. Gert Smolka Saarland University September 20, 2017

- $\bullet\,$ Tree languages over infinite alphabet ${\rm A}\,$ undecidable in general
- Class of tree languages with similar structure arising from systematic permutation of names

$$\left\{\begin{array}{c|c} c \\ a & f \\ b & d \end{array} \middle| a, b \in \mathbb{A} \setminus \{d, c\}; a \neq b \end{array}\right\}$$

• Finitary representation: ν -trees

- Formalization of u-trees and their language $[\![-]\!]$
- $\bullet~$ Decidability of $[\![-]\!]$
- $\bullet~$ Equivalence laws for $[\![-]\!]$
- Decidable ν -tree automaton model

ν -Tree

Definition (*v*-Tree [Kirst, 2016])

The type u-Tree is defined inductively by

$$n ::= a_k n_1 \dots n_k \mid \nu a_k . n$$

where a_k ranges over the enumerable ranked alphabet A.

- Language [n] is a class of pure trees with
 - Same structure
 - Instantiated ν-bindings with fresh names

u-Tree Language

Definition (ν -Tree Language) $\frac{t_i \in \llbracket n_i \rrbracket_{a_k::A}}{a_k t_1 \dots t_k \in \llbracket a_k n_1 \dots n_k \rrbracket_A}$ $\frac{t \in \llbracket (a_k b_k) \cdot n \rrbracket_{b_k::A} \quad b_k \notin A \quad b_k \notin FN(\nu a_k.n)}{t \in \llbracket \nu a_k.n \rrbracket_A}$

- $(a_k b_k)$ is the transposition of a_k and b_k
- FN(n) are the free names in n

$$\pi \cdot (a_k n_1 \dots n_k) = (\pi a_k)(\pi \cdot n_1) \dots (\pi \cdot n_k)$$

$$\pi \cdot (\nu a_k . n) = \nu(\pi a_k) . (\pi \cdot n)$$

• Equivariance: $\pi \cdot \llbracket n \rrbracket_A \equiv \llbracket \pi \cdot n \rrbracket_{\pi \cdot A}$

u-Tree Language Equivalence Laws

- Laws of the form $\llbracket n \rrbracket_A \equiv \llbracket n' \rrbracket_A$
 - ► For two ν -trees we also write $n \equiv n' := \forall A$. $\llbracket n \rrbracket_A \equiv \llbracket n' \rrbracket_A$
- First step towards future work on a decision procedure for [[n]]_A ≡ [[n']]_A
- Nominal axioms for ν -words hold for ν -tree

• Nominal axioms as fragment of the nominal Kleene algebra [Gabbay and Ciancia, 2011]

 $b \notin FN(x) \rightarrow
ua.x =
ub. (ab) \cdot x$ ua.
ub.x =
ub.
ua.x $a \notin FN(x) \rightarrow
ua.x = x$ $a \notin FN(x) \rightarrow x(
ua.y) =
ua.xy$

General Renaming

Theorem

- π fixes FN $(n) \rightarrow \llbracket n \rrbracket_A \equiv \llbracket \pi \cdot n \rrbracket_A$
 - Characteristic property for ν -tree languages
 - Not a nominal axiom
 - Proof by induction
 - Tree case easy
 - ▶ In the case of a binding νa_k we have an instantiation b_k , such that $t \in \llbracket (a_k b_k) \cdot n \rrbracket_{b_k::A}$
 - Show that b_k is also the right instantiation for $\nu(\pi a_k)$ by rewriting permutations

Nominal axiom: Renaming of ν -Bindings

Theorem

$$b_k \notin \texttt{FN}(\boldsymbol{\nu} a_k.n) \rightarrow \llbracket \boldsymbol{\nu} a_k.n \rrbracket_A \equiv \llbracket \boldsymbol{\nu} b_k. (a_k b_k) \cdot n \rrbracket_A$$

C ₁	C1
νa_0	$= \nu b_0$
1	1
<i>a</i> ₀	b_0

- Instance of general renaming
- $a_k \notin FN(\nu a_k.n)$ and $b_k \notin FN(\nu a_k.n)$
- $(a_k b_k)$ is a renaming

Nominal axiom: Swapping of u-Bindings

Theorem $\llbracket \boldsymbol{\nu} a_k. \boldsymbol{\nu} b_l. n \rrbracket_A \equiv \llbracket \boldsymbol{\nu} b_l. \boldsymbol{\nu} a_k. n \rrbracket_A$

• No conflicts when instantiating successive u-bindings

- Proof idea: Show that any instantiation in the left ν-tree is a valid instantiation in the right ν-tree
- Show that the freshness conditions stay the same when swapping

Weakening and Strengthening for $[n]_A$

- List A carries names that may not be used to instantiate bindings
- Weakening removes names from A, strengthening adds names to A

```
Lemma (Weakening)
t \in [n]_{c:A} \to t \in [n]_A
```

Lemma (Strengthening)

 $t \in \llbracket n \rrbracket_{\mathcal{A}} o c \notin \texttt{Name}(t) o t \in \llbracket n \rrbracket_{c::\mathcal{A}}$

- Only names not used for instantiation may be added to A
- Proof by induction on $[\![-]\!]$
- Use that instantiations have to appear in the tree t

Nominal axiom: Empty ν -Bindings

Theorem

 $a_k \notin \texttt{FN}(n) \rightarrow \llbracket \boldsymbol{\nu} a_k.n \rrbracket_A \equiv \llbracket n \rrbracket_A$

• Significant equivalence for decidability of $t \in [\![n]\!]_A$

$$b_0 \equiv rac{
u a_0}{b_0}$$

• Proof by Renaming and Weakening/Strengthening

$$\begin{split} t &\in \llbracket \nu a_k.n \rrbracket_A \\ t &\in \llbracket (a_k b_k) \cdot n \rrbracket_{b_k::A} & Definition \\ t &\in \llbracket n \rrbracket_{b_k::A} & Renaming \\ t &\in \llbracket n \rrbracket_A & Weakening \end{split}$$

Nominal axiom: Pushing down ν -Bindings

- Change position of ν -binding
- Push ν -binding along a path
 - Identify unique subtree n_i to push the binding to

Binding positioning

• Names in scope depend on position

• Cannot re-position binding if scope is changed

Binding positioning

• Freshness conditions imposed by free names depend on position

• Cannot re-position binding if visibility of free names is changed

Binding positioning

• Freshness conditions imposed by other u-bindings depend on position

• Cannot re-position binding if visibility of other bindings is changed

Nominal Axiom: Pushing ν -Bindings (ctd.)

• Let n_j be the subtree where the ν -binding is placed

 $(\forall l \neq j. a_k \notin FN(n_l))$ "Scope invariance" $\rightarrow FN(\nu a_k.c_k(n_1...n_j...n_k)) \setminus \{A\} \subseteq FN(\nu a_k.n_j)$ "FN invariance" $\rightarrow (\forall l \neq j. \nexists (\nu d_k.n') \in n_l)$ " ν invariance" $\rightarrow [\![\nu a_k.c_k(n_1...n_j...n_k)]\!]_A \equiv [\![c_k(n_1...(\nu a_k.n_j)...n_k)]\!]_A$

- First assumption necessary because of scoping
- Second and third because of freshness conditions

Future work

- Formalization of decision procedure for $[n] \equiv [n']$ using the equivalence laws
 - Remove empty ν-bindings
 - Push remaining ν-bindings down
 - ▶ If equivalent, normalized *v*-trees are equal up to names in bindings
 - Equality up to bound names decidable
- Decidability of emptiness for NTA languages
- Complement of NTA

References

- Gabbay, M. K. and Ciancia, V. (2011). Freshness and name-restriction in sets of traces with names. FOSSACS'11/ETAPS'11, Berlin, Heidelberg. Springer-Verlag.
- Kirst, D. (2016). Intersection type systems corresponding to nominal automata. Master's thesis, Oxford University.
- Pitts, A. M. (2013). Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press.
- Stirling, C. (2009). *Dependency Tree Automata*. Springer Berlin Heidelberg, Berlin, Heidelberg.
 - https://www.ps.uni-saarland.de/~staut/bachelor.php

Appendix: Lines of code

• Linear development structure

	proof	spec
Base	248	228
Name permutations	101	103
Lists	298	190
Pure trees	39	38
u-trees	274	212
Equivalence laws	291	130
Decidability of $t \in \llbracket n rbracket$	221	89
NTA	174	173
total	1646	1163

Appendix: ν -Tree Expressiveness

 $u a_0$ instantiated with one name

 νa_0 and νb_0 instantiated with two different names

 νa_0 and νb_0 instantiated with two arbitrary names

Appendix: α -Equivalence for ν -trees

- Equivalent language
- Not α -equivalent, since bound names in one tree cannot be obtained from the other by permutation
- No other equivalence law is applicable