
ν-Tree Languages

Leonhard Staut
Advisor: Dominik Kirst
Supervisor: Prof. Dr. Gert Smolka
Saarland University
September 20, 2017

1

Recap

Tree languages over infinite alphabetA undecidable in general
Class of tree languages with similar structure arising from systematic permutation of names

{
c

a b d
a, b ∈ A \ {d, c}; a 6= b

}

Finitary representation: ν-trees

2

Thesis summary

Formalization of ν-trees and their language J−K

Decidability of J−K

Equivalence laws for J−K

Decidable ν-tree automatonmodel

3

ν-Tree

Definition (ν-Tree [Kirst, 2016])
The type ν-Tree is defined inductively by

n ::= akn1 . . . nk | νak.n
where ak ranges over the enumerable ranked alphabetA.

Language JnK is a class of pure trees with
I Same structure
I Instantiated ν-bindings with fresh names

νa0
νb0
c3

a0 b0 d0

{
c3

a0 b0 d0
a0, b0 ∈ A \ {d0, c3}; a0 6= b0

}

4

ν-Tree Language

Definition (ν-Tree Language)

ti ∈ JniKak::A
akt1 . . . tk ∈ Jakn1 . . . nkKA

t ∈ J(akbk) · nKbk::A bk /∈ A bk /∈ FN(νak.n)
t ∈ Jνak.nKA

(akbk) is the transposition of ak and bk
FN(n) are the free names in n

π · (akn1 . . . nk) = (πak)(π · n1) . . . (π · nk)

π · (νak.n) = ν(πak).(π · n)

Equivariance: π · JnKA ≡ Jπ · nKπ·A

5

ν-Tree Language Equivalence Laws

Laws of the form JnKA ≡ Jn′KA
I For two ν-trees we also write n ≡ n′ := ∀ A. JnKA ≡ Jn′KA

First step towards future work on a decision procedure for JnKA ≡ Jn′KA

Nominal axioms for ν-words hold for ν-tree

Nominal axioms as fragment of the nominal
Kleene algebra [Gabbay and Ciancia, 2011]

b /∈ FN(x)→ νa.x = νb. (ab) · x
νa.νb.x = νb.νa.x

a /∈ FN(x)→ νa.x = x
a /∈ FN(x)→ x(νa.y) = νa.xy

6

General Renaming

Theorem
π fixes FN(n)→ JnKA ≡ Jπ · nKA

Characteristic property for ν-tree languages

Not a nominal axiom

Proof by induction

I Tree case easy
I In the case of a binding νak we have an instantiation bk, such that t ∈ J(akbk) · nKbk::A
I Show that bk is also the right instantiation for ν(πak) by rewriting permutations

7

Nominal axiom: Renaming of ν-Bindings

Theorem
bk /∈ FN(νak.n)→ Jνak.nKA ≡ Jνbk. (akbk) · nKA

c1

νa0

a0

≡
c1

νb0

b0

Instance of general renaming
ak /∈ FN(νak.n) and bk /∈ FN(νak.n)
(akbk) is a renaming

8

Nominal axiom: Swapping of ν-Bindings

Theorem
Jνak.νbl.nKA ≡ Jνbl.νak.nKA

No conflicts when instantiating successive ν-bindings

νa0

νb0
c3

a0 b0 d0

≡

νb0
νa0

c3

a0 b0 d0

Proof idea: Show that any instantiation in the le� ν-tree is a valid instantiation in the right
ν-tree
Show that the freshness conditions stay the same when swapping

9

Weakening and Strengthening for JnKA

List A carries names that may not be used to instantiate bindings
Weakening removes names from A, strengthening adds names to A

Lemma (Weakening)
t ∈ JnKc::A → t ∈ JnKA

Lemma (Strengthening)
t ∈ JnKA → c /∈ Name(t)→ t ∈ JnKc::A

Only names not used for instantiation may be added to A
Proof by induction on J−K
Use that instantiations have to appear in the tree t

10

Nominal axiom: Empty ν-Bindings

Theorem
ak /∈ FN(n)→ Jνak.nKA ≡ JnKA

Significant equivalence for decidability of t ∈ JnKA

b0 ≡ νa0

b0

Proof by Renaming and Weakening/Strengthening

t ∈ Jνak.nKA
t ∈ J(akbk) · nKbk::A Definition
t ∈ JnKbk::A Renaming
t ∈ JnKA Weakening

11

Nominal axiom: Pushing down ν-Bindings

νa

c

n1 nk

c

n1 . . . νa

. . .

. . . nk

Change position of ν-binding

Push ν-binding along a path

I Identify unique subtree nj to push the binding to

12

Binding positioning

Names in scope depend on position

νa

c

a a

6≡

c

a νa

a

Cannot re-position binding if scope is changed

13

Binding positioning

Freshness conditions imposed by free names depend on position

νa

c

b a

6≡

c

b νa

a

Cannot re-position binding if visibility of free names is changed

14

Binding positioning

Freshness conditions imposed by other ν-bindings depend on position

νa0

c2

νb0

b0

a0
6≡

c2

νb0

b0

νa0

a0

Cannot re-position binding if visibility of other bindings is changed

15

Nominal Axiom: Pushing ν-Bindings (ctd.)

Let nj be the subtree where the ν-binding is placed

(∀ l 6= j. ak /∈ FN(nl)) “Scope invariance”

→ FN(νak.ck(n1 . . . nj . . . nk)) \ {A} ⊆ FN(νak.nj) “FN invariance”

→ (∀ l 6= j. @ (νdk.n′) ∈ nl) “ν invariance”

→ Jνak.ck(n1 . . . nj . . . nk)KA ≡ Jck(n1 . . . (νak.nj) . . . nk)KA

First assumption necessary because of scoping
Second and third because of freshness conditions

16

Future work

Formalization of decision procedure for JnK ≡ Jn′K using the equivalence laws

I Remove empty ν-bindings
I Push remaining ν-bindings down
I If equivalent, normalized ν-trees are equal up to names in bindings
I Equality up to bound names decidable

Decidability of emptiness for NTA languages

Complement of NTA

17

References

Gabbay, M. K. and Ciancia, V. (2011). Freshness and name-restriction in sets of traces with
names. FOSSACS’11/ETAPS’11, Berlin, Heidelberg. Springer-Verlag.

Kirst, D. (2016). Intersection type systems corresponding to nominal automata. Master’s
thesis, Oxford University.

Pitts, A. M. (2013). Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press.

Stirling, C. (2009). Dependency Tree Automata. Springer Berlin Heidelberg, Berlin,
Heidelberg.

https://www.ps.uni-saarland.de/~staut/bachelor.php

18

https://www.ps.uni-saarland.de/~staut/bachelor.php

Appendix: Lines of code

Linear development structure

spec proof
228 248 Base
103 101 Name permutations
190 298 Lists
38 39 Pure trees
212 274 ν-trees
130 291 Equivalence laws
89 221 Decidability of t ∈ JnK
173 174 NTA
1163 1646 total

19

Appendix: ν-Tree Expressiveness

νa0

c2

a0 a0

νa0

νb0

c2

a0 b0

c2

νa0

a0

νb0

b0

νa0 instantiated with one
name

νa0 and νb0 instantiated
with two di�erent names

νa0 and νb0 instantiated
with two arbitrary names

20

Appendix: α-Equivalence for ν-trees

c

νa

a

νa

a

≡

c

νa

a

νb

b

Equivalent language
Not α-equivalent, since bound names in one tree cannot be obtained from the other by
permutation
No other equivalence law is applicable

21

