v-Tree Languages

Leonhard Staut

Advisor: Dominik Kirst
Supervisor: Prof. Dr. Gert Smolka
Saarland University

September 20, 2017

Recap

@ Tree languages over infinite alphabet A undecidable in general
@ Class of tree languages with similar structure arising from systematic permutation of names

{ PARN
a b d

a,be A\{d,c};a#b }

@ Finitary representation: v-trees

Thesis summary

@ Formalization of v-trees and their language [—]
@ Decidability of [—]
@ Equivalence laws for [—]

@ Decidable v-tree automaton model

v-Tree

Definition (v-Tree [Kirst, 2016])
The type v-Tree is defined inductively by

ns=agh...n | vag.n
where ay ranges over the enumerable ranked alphabet A.

@ Language [n] is a class of pure trees with
» Same structure
» Instantiated v-bindings with fresh names

Vdg

Vbo o C‘3 ~
- ?3 ~ e do bo do
Qo bo do

Go,bo cA \ {do,C3};C70 75 bo }

v-Tree Language

Definition (v-Tree Language)

ti S [[ni]]ak::A
akty ...t € [akn ... ng]a

t € [(akbk) - nlpa bk € A by ¢ FN(vag.n)
t € [vag.n]a

@ (axby) is the transposition of a, and by
@ FN(n) are the free namesinn
- (akm ...ng) = (wag)(m-m) ... (7 ng)
7 - (vag.n) = v(may).(7 - n)

@ Equivariance: 7 - [n]a = [7 - n]ra

v-Tree Language Equivalence Laws

@ Laws of the form [n]a = [n']a

> Fortwo v-treeswe alsowriten =n' ==V A. [n]a = [n']a

@ First step towards future work on a decision procedure for [n]4 = [n']a

@ Nominal axioms for v-words hold for v-tree

b ¢ FN(x) — va.x = vb. (ab) - x
Nominal axioms as fragment of the nominal va.vb.x = vb.va.x
Kleene algebra [Gabbay and Ciancia, 2011] a ¢ FN(x) = va.x = x

a ¢ FN(x) — x(va.y) = va.xy

General Renaming

Theorem
7 fixes FN(n) — [n]la = [7 - n]a

@ Characteristic property for v-tree languages

@ Not a nominal axiom

@ Proof by induction

» Tree case easy
> Inthe case of a binding vay we have an instantiation by, such that t € [(axby) - n]p,.a
» Show that by is also the right instantiation for v(7ay) by rewriting permutations

Nominal axiom: Renaming of v-Bindings

Theorem
by ¢ FN(vay.n) — [vax.n]a = [vbk. (axbk) - nla

G

[—
vdp

do

@ Instance of general renaming
@ ay ¢ FN(vag.n) and by ¢ FN(vay.n)
@ (axby)isarenaming

G

I/bo
bo

Nominal axiom: Swapping of v-Bindings

Theorem
[[uak.yb[.n]]A = [[ub[.uak.n]]A

@ No conflicts when instantiating successive v-bindings

Vdo I/bo

vby — vdadyp

\ - \

C3 o}
PN PN

@ Proof idea: Show that any instantiation in the left v-tree is a valid instantiation in the right
v-tree
@ Show that the freshness conditions stay the same when swapping

Weakening and Strengthening for [n]4

@ List A carries names that may not be used to instantiate bindings
@ Weakening removes names from A, strengthening adds names to A

Lemma (Weakening)
t € [n)ea —t € [n]a

Lemma (Strengthening)
t € [n)a — c ¢ Name(t) —> t € [n]c:a

@ Only names not used for instantiation may be added to A
@ Proof by induction on [—]
@ Use thatinstantiations have to appear in the tree t

Nominal axiom: Empty v-Bindings

Theorem
ax ¢ FN(n) — [vag.nla = [n]a

@ Significant equivalence for decidability of t € [n]a

bo

@ Proof by Renaming and Weakening/Strengthening

t € [vak.n]a

t € [(akbk) - n]p,:a
te IIn]]bkiiA

t € [n]a

vdap

bo

Definition
Renaming
Weakening

Nominal axiom: Pushing down v-Bindings

va

|

n1 k n-l - va . nk
@ Change position of v-binding
@ Push v-binding along a path

» ldentify unique subtree n; to push the binding to

Binding positioning

@ Names in scope depend on position

@ Cannot re-position binding if scope is changed

Binding positioning

@ Freshness conditions imposed by free names depend on position

@ Cannot re-position binding if visibility of free names is changed

Binding positioning

@ Freshness conditions imposed by other v-bindings depend on position

vdp
| €
(&) VEERN
/ \ I/bo vap
Vbo Qo 7_é ‘ ‘
‘ bo do
bo

@ Cannot re-position binding if visibility of other bindings is changed

Nominal Axiom: Pushing v-Bindings (ctd.)

@ Letn; be the subtree where the v-binding is placed

(V[75] ay ¢ FN(I’)[))

— FN(vag.ci(ni . ..nj...ni)) \ {A} C FN(vay.n;)
— (VI#). B (vde.n') € n))
— [vak.ci(m...nj...n)]a = [cu(m ... (vag.n) ...

@ First assumption necessary because of scoping
@ Second and third because of freshness conditions

“Scope invariance”
“FNinvariance”

“vinvariance”

i)l

Future work

@ Formalization of decision procedure for [n] = [n’] using the equivalence laws

» Remove empty v-bindings

v

Push remaining v-bindings down

v

If equivalent, normalized v-trees are equal up to names in bindings
» Equality up to bound names decidable

@ Decidability of emptiness for NTA languages

@ Complement of NTA

References

Gabbay, M. K. and Ciancia, V. (2011). Freshness and name-restriction in sets of traces with
names. FOSSACS’11/ETAPS’11, Berlin, Heidelberg. Springer-Verlag.

thesis, Oxford University.

Pitts, A. M. (2013). Nominal Sets: Names and Symmetry in Computer Science. Cambridge

[§ Kirst, D. (2016). Intersection type systems corresponding to nominal automata. Master’s
[3
University Press.

[3

Stirling, C. (2009). Dependency Tree Automata. Springer Berlin Heidelberg, Berlin,
Heidelberg.

@ https://www.ps.uni-saarland.de/"staut/bachelor.php

https://www.ps.uni-saarland.de/~staut/bachelor.php

Appendix: Lines of code

@ Linear development structure

spec
228
103
190
38
212
130
89
173
163

proof
248
101
298
39
274
291
221
174
1646

Base

Name permutations
Lists

Pure trees

v-trees

Equivalence laws
Decidability of t € [n]
NTA

total

vdap

(&)

Qo Qo

vao instantiated with one
name

Appendix: v-Tree Expressiveness

vdap

I/bo

(o)

/N

Qo bo

vao and wvby instantiated
with two different names

G

/N

vag I/bo

do bo

vap and wvby instantiated
with two arbitrary names

20

Appendix: a-Equivalence for v-trees

S
Q
S
Q
Il
S
)
S
o

@ Equivalent language

@ Not a-equivalent, since bound names in one tree cannot be obtained from the other by
permutation

@ No other equivalence law is applicable

21

