Translating a Satallax Refutation to a Tableau
Refutation Encoded in Coq
Bachelor’'s Thesis - Final Talk

Andreas Teucke

Advisor: Chad Brown
Supervisor: Gert Smolka

Department of Computer Science
Saarland University

May 6, 2011
SAARLAND
UNIVERSITY

Andreas Teucke 1/26

Intr ion
troductio Goal

Conijecture

The Goal

Verifying the result of Satallax

@ Satallax reduces higher-order theorem proving
to checking unsatisfiability of SAT problems.

@ Can we trust the result of Satallax and the SAT-solver?

@ Goal: Extract a higher-order proof,
where one can easily check correctness.

@ Solution: A tableau refutation
encoded as a Coq Proof Script.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 2/26

Intr ion
troductio Goal

Conijecture

Outline

0 Introduction
@ Goal
@ Conjecture

e Recap

@ First Talk
@ Proposal Talk

Q Implementation
@ Search
@ Completion
@ Output

Andreas Teucke

SAARLAND
UNIVERSITY

3

e
PEER

26

Introduction Goal

Conjecture

The Conjecture

The result of Satallax defines a finite tableau calculus

@ Minisat is able to indirectly prove refutability,

@ while only knowing the HO formulae and tableau steps
encoded as literals and clauses.

@ Conjecture: A tableau calculus restricted to these formulae
refutes the HO problem.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 4/26

First Talk
Proposal Talk

Outline

9 Recap

@ First Talk
@ Proposal Talk

Andreas Teucke

SAARLAND
UNIVERSITY

e
PEER

5/26

First Talk

Recap Proposal Talk

First Talk

The restriction to a fixed set of formulae creates some
obstacles:

@ Analytic cut is in some cases required

@ The J rule cannot introduce arbitrary new variables,
but we can enforce an ordering such that the witnesses are
fresh.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 6/26

First Talk
Proposal Talk

Recap

Proposal Talk

If we have an abstract refutation for some problem A
- as a result from Satallax -,
then A is refutable in the restricted tableau calculus T

SAARLAND pf#
UNIVERSITY

Andreas Teucke 7126

First Talk
Proposal Talk

Recap

Abstract Refutation

A formal Definition

Definition (abstract refutation (F, S))
Let A be an open branch, F a finite set of formulae and
S a function from variables to terms.
Then we call (F, S) an abstract refutation of A, if

@ <sisacyclic

© Forevery x € dom S, x is not free in A

© For every full expansion B, either

B is refutable in 7 in one step or
there is an x € dom S such that 3t € Band —[tx] € B

where t = S(x)

SAARLAND
UNIVERSITY B0

Andreas Teucke 8/26

First Talk

Recap Proposal Talk

Abstract Refutation

An intuitive Definition.

Definition (abstract refutation (F, S))

Let A be an open branch, F a finite set of formulae and
S the log of existential witnesses.
Then we call (F, S) an abstract refutation of A, if

@ Existential witnesses are globally fresh, unique variables.

@ There exists an unsatisfiable set of clauses where each
clause is a subset of F and
encodes either A or a tableau step.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 9/26

First Talk

Recap Proposal Talk

Proof

A constructive proof that builds a simple refutation.

If (F,S) is an abstract refutation of A then A is refutable in T

@ Apply Cut on 3t formulae in chronological order of S
and introduce their withesses with the 3 rule.

@ Apply Cut on all remaining formulae in F.
© Close branches with single step in 7.

Ol

SAARLAND i
UNIVERSITY Gl

Andreas Teucke 10/26

Search
Completion
Implementation Output

Outline

Q Implementation
@ Search
@ Completion
@ Output

SAARLAND pf#
UNIVERSITY

Andreas Teucke 11/26

Search
Completion
Implementation Output

First Phase: Search

An automated HO theorem prover

The core of the implementation is like an automated
higher-order theorem prover.
Common techniques are implemented to improve the result:
@ Back-jumping
@ Semantic branching
For the proof script we log the steps the search takes.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 12/26

Search
Completion
Implementation Output

First Phase: Search

Difference to a pure automated theorem prover

Using the result of Satallax we know the following in advance:
@ The search is guaranteed to succeed eventually
@ All steps neccessary for the refutation
@ All instantiations for V and 3 steps

This will make it a lot easier for us.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 13/26

Search
Completion
Implementation Output

Preprocessing Steps

@ The clause set in the result of Satallax already encodes all
tableau steps necessary for a refutation.

@ The steps are extracted once from the clauses in a
preprocessing phase saving time during the search.

@ Reducing the set to its unsatisfiable core often drastically
reduces the number of steps.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 14/26

Search
Completion
Implementation Output

Static Sorting Heuristic

@ A common practice in SAT-solving is to statically sort
literals by number of occurrences in the clause set.

@ We sort steps in ascending order by the number of
alternatives and secondarily in descending order
by occurrences of their formulae in the set of steps.

@ This static order replaces a dynamic priority queue.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 15/26

Search
Completion
Implementation Output

Fixed Instantiations

@ Due to the fixed set of formulae
V and 3 instantiations are fixed as well.

@ Especially enumerating over infinite higher-order
instantiations is avoided

@ The clauses left by the reduction to the UNSAT core
determine the relevant instantiations for the encoded steps.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 16/26

Search
Completion
Implementation Output

Outline

Q Implementation

@ Completion

SAARLAND pf#
UNIVERSITY

Andreas Teucke 17/26

Search
Completion
Implementation Output

Second Phase: Completion

Satallax does not solve the original problem
as it rewrites input and intermediate results:

@ Logical constants are standardised to 1, —,V and =,
e.g., 3x.s rewritten as —~Vx.—s

@ [n-reduction
@ Double negations are removed
@ s=tandt= s are mapped to the same literal

These operations (except) have to be made explicit for Coq.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 18/26

Search
Completion
Implementation Output

REVES

The solution:
Apply the Leibniz property of precomputed equalities s =t :

Vp.ps—s=1t—pt
For this we often need to state p explicitly. For example,

to n-reduce f (Ax.g x) using Af.Ax.f x = Af.f.

we need to state p := \x.f(x g).

SAARLAND pf#
UNIVERSITY

Andreas Teucke 19/26

Search
Completion
Implementation Output

A real example

tab_rew_or H358 H359 (fun (x1:0—>0—>0)=>" ((forall

(x2:1) (x3:i), (forall (x4:i), in’ x4 x2 = in’ x4 x3) -> X2 = x3) ->

(forall (x2:i), ™ in’ x2 emptyset) -> (forall (x2:i) (x3:i) (x4:i), in’ x4
(setadjoin x2 x3) = (~ x4 = x2 -> in’ x4 x3)) -> (forall (x2:i) (x3:i),

in’ x3 (powerset x2) = (forall (x4:i), in’ x4 x3 -> in’ x4 x2)) ->

(forall (x2:i) (x3:i), in’ x3 (setunion x2) = (~ (forall (x4:i), in’ X3 x4

-> (7 in’ x4 x2)))) -> in’ emptyset omega -> (forall (x2:i), in’ x2
omega -> in’ (setadjoin x2 x2) omega) -> (forall (x2:i), ~ (in’

emptyset x2 -> (~ (forall (x3:i), ~ (in’ x3 omega -> (~ in’ X3 x2))

-> in’ (setadjoin x3 x3) x2))) -> (forall (x3:i), in’ x3 omega -> in’

x3 x2)) -> (forall (x2:i —> i —> 0) (x3:i), (forall (x4:i), in’ x4 x3 -> (

~ (forall (x5:i), x2 x4 x5 -> (~ (forall (x6:i), x2 x4 x6 -> x5 =

x6))))) -> (~ (forall (x4:i), ~ (forall (x5:i), i’ x5 x4 = (~ (forall

(x6:), in” x6 x3 -> (7 X2 x6 x5))))))) -> (forall (x2:i), ™ (forall,, ; anp e
(x3:i), 7 in” x3 x2) ->... UNEVERSTTY

Andreas Teucke 20/26

Search
Completion
Implementation Output

A real example

@ This would continue for thirty slides...

@ ... for one rewrite in a proof script with over seven hundred
rewrites.

@ Although this is a worst case example,
it shows that rewrites should be avoided if possible.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 21/26

Search
Completion
Implementation Output

Lazy Rewriting

To achieve this the translation tries to apply workarounds:
@ The refutation from the first phase is modified.

@ If appropriate we apply alternative rules ,
e.g., Tv instead of 7_, avoids rewriting s v t into s — t.

@ If nothing works rewrite will be applied.

s—t -(s—=1)
T*) e
-S|t s, —t
sVt SAt
Tv TA
st st

SAARLAND pf#
UNIVERSITY

Andreas Teucke 22/26

Search
Completion
Implementation Output

Outline

Q Implementation

@ Output

SAARLAND pf#
UNIVERSITY

Andreas Teucke 23/26

Search
Completion
Implementation Output

Third Phase: Proof Script

Tableau rules encoded as Coq tactic macros

To encode a tableau rule such as

S51,..., 5

t171 g eeey t1’m ‘ ’ tn71 g eeey tn7m
we proof the corresponding lemma T

S1—=>..=28—=> (h1—=..obhpn—1) — ..
= (g = o= tam— L) — L.

and refine it in a tactic macro
refine (T sl..sl _.._); intros tl..tm.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 24/26

Search
Completion
Implementation Output

An example

Boolean extensionality

S#pt

7' - -
5E s,—t] —s,t

Lemma TBE:

Vst:o. (s#t)— (s—>-t—1) —
(ns—=t—1) — 1L

Ltac tab_be H H1 H2 :=
(refine (TBE H _ _) ; intros H1l H2).

SAARLAND pf#
UNIVERSITY

Andreas Teucke 25/26

Search
Completion
Implementation Output

Summary

@ The result of Satallax defines a small finite tableau calculus
that can refute the initial problem.

@ The implementation uses its own customized higher-order
theorem prover to search in this calculus.

@ Future work

e Learning
o Satisfiability case

SAARLAND pf#
UNIVERSITY

Andreas Teucke 26/26

Appendix References

References |

[§ Julian Backes and Chad E. Brown.
Analytic tableaux for higher-order logic with choice.
In Reiner Hahnle Jurgen Giesl, editor, Automated
Reasoning: 5th International Joint Conference, IJCAR
2010, Edinburgh, UK, July 16-19, 2010, Proceedings,
volume 6173 of LNCS/LNAI, pages 76—90. Springer, 2010.

[Chad E. Brown.

Reducing higher-order theorem proving to a sequence of
SAT problems.

In CADE — the 23rd International Conference on Automated
Deduction (To Appear). LNCS, Feb 2011.

To Appear.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 27/26

Appendix References

References Il

[3 Niklas Eén and Niklas Sérensson.
An extensible SAT-solver.
In Enrico Giunchiglia and Armando Tacchella, editors,
Theory and Applications of Satisfiability Testing, volume
2919 of Lecture Notes in Computer Science, pages
333-336. Springer Berlin / Heidelberg, 2004.

[3 Yves Bertot and Pierre Castéran.
Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer Verlag,
2004.

SAARLAND pf#
UNIVERSITY

Andreas Teucke 28/26

	Introduction
	Goal
	Conjecture

	Recap
	First Talk
	Proposal Talk

	Implementation
	Search
	Completion
	Output

	Appendix

