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The Tableau Calculus
Satallax

A Cut-free Tableau Calculus for Simple Type Theory T

C. Brown, G. Smolka : "Analytic Tableaux for Simple Type
Theory and its First-Order Fragment" (2010)
J. Backes, C. Brown: "Analytic Tableaux for Higher-Order
Logic with Choice" (2010)
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Some Tableau Rules from T

T∨
s ∨ t
s | t

T∧
(s ∧ t)

s, t

T∀
∀x .s
sx

y
y ∈ U T∃

∃x .s
sx

y
y ∈ V fresh

TMAT
δs,¬δt
s 6= t
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Automated Theorem Prover Satallax

Written by Chad E. Brown as a theorem prover using the
tableau calculus
It reduces HO problems to a sequence of SAT problems,
which are solved by Minisat
In case Minisat returns unsatisfiable, the initial problem is
refutable
Chad E. Brown:" Reducing Theorem Proving to a
Sequence of SAT Problems" (September 10, 2010)
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The Output of Satallax
called a Satallax Refutation

Returns an unsatisfiable set of clauses CΣ

Using PicoSat the set is reduced to its unsatisfiable core
A clause c is a finite set of formulas c = {s1, . . . , sn}
thought of disjunctively
The initial (unit) clauses correspond to the assumptions in
the original branch
All other clauses correspond to rules in the calculus
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Step 1: A Finite Tableau Calculus TΣ

each clause c defines a set Fc of allowed formulas,
a set of steps Tc,F restricted on formulas in F and
a set ∆c , that tells, whether a step can be applied
e.g. for c = { s ∨ t , s, t}
Fc = { s ∨ t , ¬(s ∨ t), s, t}
Tc,F = {< A,A ∪ {s},A ∪ {t} > |{s ∨ t} ⊆ A ⊆ F} ⊆ T∨
∆c = {s ∨ t}
F =

⋃
c∈C

Fc and TΣ =
⋃

c∈C
Tc,F
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Step 2: Searching for a Refutation

Start with only the initial branch in the tableau
While there is an open branch A in the tableau do

Choose c ∈ CΣ such that A ∩ c = ∅ (c is not satisfied by A).
Such a clause exists, because CΣ is strongly unsatisfiable.
Apply Tc and replace A by the new branches in the tableau.

This terminates, because every branch in the tableau
would eventually be a CΣ-branch
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Step 2: Searching for a Refutation

e.g. c = { s ∨ t , s, t} :
Case 1 {s ∨ t} ⊆ A : apply < A,A ∪ {s},A ∪ {t} >∈ TΣ
add A ∪ {s} and A ∪ {t}.
Case 2 {s ∨ t} 6⊆ A : apply Cut on s ∨ t
add A ∪ {s ∨ t , s} , A ∪ {s ∨ t , t} and A ∪ {¬(s ∨ t)}.
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What is Cut and Why We don’t Want it

Cut as a tableau rule Tcut s | ¬s is not in the cut-free

tableau calculus T
Therefore we know that there is a refutation without Cut
Can we always choose c such that we are in case 1?
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A Surprising Example

initial branch A = {{δs ∨ δt}, {¬δu ∨ ¬δt}, {s = t}, {t = u}}
could result in CΣ =
δs ∨ δt
¬δu ∨ ¬δt
s = t
t = u
δs ∨ δt t δs t δt ← T∨
¬δu ∨ ¬δt t ¬δu t ¬δt ← T∨
δs t ¬δt t s 6= t ← TMAT
δt t ¬δu t t 6= u ← TMAT .
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A Surprising Example

Trying to refute this in TΣ without Cut . . .

δs ∨ δt
¬δu ∨ ¬δt

s = t
t = u

δs δt
¬δu ¬δt

δt ¬δt
t 6= u s 6= t

s 6= t
¬δu ¬δt
t 6= u

. . . we get stuck.

Andreas Teucke Satallax to tableau



Introduction
The Goal of my Thesis

Summary

The Algorithm
Cut-free?

A Surprising Example

But with a Cut on δt we can complete the refutation.

δs ∨ δt
¬δu ∨ ¬δt

s = t
t = u

δs δt
¬δu ¬δt

δt ¬δt
t 6= u s 6= t

s 6= t
¬δu ¬δt
t 6= u
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Making a Compromise

Conclusion :
TΣ isn’t complete without Cut
As a solution certain Cuts will be allowed in TΣ
TΣ ∪ {< A,A ∪ {s},A ∪ {¬s} > |∃ c ∈ CΣ, s ∈ ∆c}
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Search for a refutation in a finite calculus provided by
Satallax
This calculus won’t be cut-free

Outlook
Further restricting the use of Cuts
Dealing with freshness
F. Pfenning: "Analytic and non-analytic proofs" (1984).
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Some Definitions

Definition
A is a C -branch if A ⊆ FC , A is open, and ∀c ∈ C,A ∩ c 6= ∅.

Definition
A set of clauses C is strongly unsatisfiable, if there are no
C-branches.
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Definition rule-clauses

Definition And-rule : for c = { s ∧ t , s} ∨ c = { s ∧ t , t}
Fc = { s ∧ t , s ∧ t , s, t} , ∆c = {s ∧ t} and
Tc,F = {< A,A ∪ {s, t} > |{s ∧ t} ⊆ A ⊆ F} ⊆ T∧
Definition Forall-rule : for c = { ∀x .s, sx

y }
Fc = { ∀x .s, ,∀x .s, sx

y } , ∆c = {∀x .s} and
Tc,F = {< A,A ∪ {sx

y} > |{∀x .s} ⊆ A ⊆ F} ⊆ T∀

Definition Exists-rule : for c = { ∃x .s, sx
y }

Fc = { ∃x .s, ∃x .s, sx
y } , ∆c = {∃x .s} and

Tc,F = {< A,A ∪ {sx
y} > |{∃x .s} ⊆ A ⊆ F

∧ y is fresh in A} ⊆ T∃
In this case we say c selects y.
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A Surprising Example - cut-free refutation

We would have to use TMAT on δs and ¬δu and TCON on s = t
and s 6= u to complete the refutation.

δs ∨ δt
¬δu ∨ ¬δt

s = t
t = u

δs δt
¬δu ¬δt

s 6= u
s 6= s t 6= u

s 6= t
¬δu ¬δt
t 6= u
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How Freshness Adds to my Troubles

T∀
∀x .s
sx

y
y ∈ U T∃

∃x .s
sx

y
y ∈ V fresh

As the variables are already chosen by Satallax,
if we choose a c which selects a variable x ,
x will need to be still fresh in A
Therefore which c is chosen has to be restricted
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A Solution - The Strict Partial Order <C

Definition
The strict partial order <C on clauses in C is the transitive
closure of <0

C , where ∀c1, c2 ∈ C,
c1 <

0
C c2 → ∃ variable x , c1 selects x ∧ x is free in c2.

The initial list of clauses Satallax produces is a
linearisation of <CΣ

The c has to be chosen as a minimum in the set of clauses
unsatisfied by A
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Another Example

the initial branch
A = { { ∀xy .¬r x y}, {(∀x .r x x) ∨ ∃x .r x x} }
could result in CΣ =
∀xy .¬r x y
(∀x .r x x) ∨ ∃x .r x x

(∀x .r x x) ∨ ∃x .r x x t ∀x .r x x t ∃x .r x x ← T∨
∃x .r x x t r x x ← T∃
∀x .r x x t r x x ← T∀
∀xy .¬r x y t ∀y .¬r x y ← T∀
∀y .¬r x y t ¬r x x ← T∀
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Another Example

With a Cut on ∃x .r x x we can again complete the refutation

∀xy .¬r x y
(∀x .r x x) ∨ ∃x .r x x
∀x .r x x ∃x .r x x

¬∃x .r x x ∃x .r x x
r x x r x x

∀y .¬r x y ∀y .¬r x y
¬r x x ¬r x x

r x x
∀y .¬r x y
¬r x x
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Another Example - desired solution

But we actually would like to have . . .

∀xy .¬r x y
(∀x .r x x) ∨ ∃x .r x x
∀x .r x x ∃x .r x x

r x x r x x
∀y .¬r x y ∀y .¬r x y
¬r x x ¬r x x
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