Generating Induction Principles for
Nested Inductive Types in MetaCoq

Marcel Ullrich

Advisor - Yannick Forster

Supervisor - Gert Smolka

Saarland University

Programming Systems Lab

34 July 2020

Intro Nested Induction Comparison

o0

MeraCoQ

based on Template-Coq'!
a wealth of projects?
PCUIC for idealised syntax

plugins as Coq functions environment — term — term

®©® © © ®©@ ®

commands for quoting and environment manipulation

!Gregory Michael Malecha. “Extensible proof engineering in intensional type theory”. PhD thesis.
Harvard University, 2015. ||| 5 ||
2Matthieu Sozeau et al. “The MetaCoq Project”. In: (2019).

PCUIC Terms

Inductive term : Type :=

tRel : nat -> term
tVar : ident -> term
tEvar : nat -> list term -> term
tSort : Universe.t -> term
tProd : name -> term -> term -> term
tLambda : name -> term -> term -> term
tLetIn : name -> term -> term -> term -> term
tApp : term -> term -> term
tConst : kername -> Instance.t -> term
tInd : inductive -> Instance.t -> term
tConstruct : inductive -> nat -> Instance.t -> term
tCase : inductive * nat ->
term -> term -> list (nat * term) -> term
tProj : projection -> term -> term
tFix : mfixpoint term -> nat -> term
tCoFix : mfixpoint term -> nat -> term

Nested Ind: arison Outro

000000

Nested Induction

Nested Induction
€00000

NEesTED INDUCTION

roseTree = node (xs : list roseTree)

Nested Induction Comparison

900000

NEesTED INDUCTION

roseTree = node (xs : list roseTree)

V(P :roseTree — P).
(V(xs : list roseTree).
P (node xs)) —

V(r:roseTree). Pr

Outro

Nested Induction Comparison

900000

NEesTED INDUCTION

roseTree = node (xs : list roseTree)

V(P :roseTree — IP).
(V(xs : list roseTree).
All roseTree P xs —P (node xs)) —

V(r:roseTree). P r

Al Px AILXPxs
AlLX P[] ™ AIl X P (x = xs) Alleons

Nested Induction
[¢] Je]e]ele)

MaNuAL DERIVATION

Definition roseTree induct
forall P : roseTree -> Prop, -
(forall xs : list roseTree, .
ALl P xs ->
P (node xs)) ->.
forall r : roseTree, P r :=

fun PH = fix f r :=

match r with
| node xs => H xs.
((fix f' xs : ALl P xs
match xs with
| nil => All nil P
| cons y ys => All cons Py ys (fy) (f' ys)
end
) xs) .
end. H

Nested Induction Comparison Outro

[e]e] Je]ele]

ReLaTED WORK

® Sozeau et al., “The MetaCoq Project”, 2019

® Johann and Polonsky, “Deep Induction: Induction Rules for (Truly) Nested Types”,
2020

® Tassi, “Deriving proved equality tests in Cog-elpi: Stronger induction principles for
containers in Coq”, 2019

Nested Induction
000000

(GENERALISATION

EroseTree : V(P :ToseTree — P).
(V(xs : list roseTree).
Plist roseTree P xs —P (node xs)) —

V(r:roseTree). Pr

Nested Induction
000000

(GENERALISATION

EroseTree : V(P :ToseTree — P).
(V(xs : list roseTree).
Plist roseTree P xs —P (node xs)) —

V(r:roseTree). Pr

EroseTree == A P Hpode-
fix fr.

matchr [

node xs = Hpnode X8 (Frist ToseTree P f xs)

Nested Induction Comparison

0000e0

UNARY PARAMETRICITY

xs:list (X:T):=[]|xzxs

list' :V(X:T). (X = T) = list X — T

nilt Px x listt X Px xs
list® X Px (x = xs)

t

listt X Px [] cons

Nested Induction Comparison Outro

0000e0

UNARY PARAMETRICITY

xs:list (X:T):=[]|xzxs

list' :V(X:T). (X = T) = list X — T

nitt Px x listt X Px xs
list® X Px (x = xs)

t

listt X Px [] cons

(Vx. Px x) — (Vxs. list® X Px xs)

list' X Px xs — Vx. x € xs — Px x

Nested Induction
[e]e]e]e]e])

IMPLEMENTATION

Class registered {X:Type} (ty:X) :=
{
assumptionType: Type;
assumption: assumptionType;
proofType: Type;
proof: proofType

Instance listInst : registered list := {|
asumptionType := V X, (X - Type) - list X - Type;
assumption @listc®;
prodType VXP, (Vx, Px)-

V xs, list® P xs;
@listProof |}

prod

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

B ~ > Y B <

Require Import String. Messages| » | Errors ~ || Jobs

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.
MetaCoq Run Scheme Elimination for nat.

Check nat case MC.

MetaCoq Run Scheme Induction for nat.

Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term_induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

B ~ > Y B <

Require Import String. Messages| || Errors. ~ || jobs ~

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCoqInductionPrinciples.|
MetaCoq Run Scheme Elimination for nat.

Check nat case MC.

MetaCoq Run Scheme Induction for nat.

Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Char: 61

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat case MC.|

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

nat_cas

Errors | Jobs »

e MC

forall p :
po->
(forall H :
forall inst

nat -> Type,

nat, p (S H))
nat, p inst

->

Line: 8 Char: 19

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.|

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

nat_ind

Errors | Jobs »

| MC

forall p :
po->
(forall H :
forall inst

nat -> Type,

nat, pH ->p (S H))
nat, p inst

->

Line: 10 Char: 18

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.

Check rtree induct'.|

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

rtree_induct'
forall p : rtree -> Type,
(forall xs : list rtree,
standardNested.is_list rtree
(fun H : rtree => p H) xs ->
p (node xs)) -> forall inst : rtree,

Line: 15 Char: 21

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives.|

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

Nested InductivesO is defined
The mode Nested Inductives was unset

Line: 17 Char.

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.

Check rtree induct'.
MetaCoq Run Unset Nested Inductives.

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

rtree_induct
forall p :
(forall xs
forall inst

rtree -> Type,
list rtree, p (node xs))
rtree, p inst

->

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o]

Errors | Jobs »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. term_induct

forall p : term -> Type,
(forall n : nat, p (tRel n)) ->
(forall i : string, p (tvar i)) ->

. (forall (n : nat) (1 : list term),
From MetaCoq.PCUIC Require Import PCUICAst. ! . . _
MetaCoq Run Scheme term induct := Induction for term. steEhiesEsilis et wrm ([© & W@ = P &)

; 1 ->p (tEvar n 1)) ->
EheckiEnIRIduGHE (forall u : Universe.t, p (tSort u)) ->

TEEEde TS 5% ¢ T2 o= (forall (na : name) (A : term),
| nil' : list' X yp pA -> forall B : term, p B -> p (tProd na A B)) ->

cons' : X -> list' X -> list' X. (forall (na : name) (A : term),
‘ . z pA->forall t : term, p t -> p (tLambda na A t)) ->
Inductive rtree' : Type := (forall (na : name) (b : term),
| Node' (Ul : list' rtree') : rtree'. pb->
forall B : term,
MetaCoq Run Scheme rtree' induct := Induction for rtree'. pB -> forall t: term, p t ->p (tletIn na b B t)) ->
Check rtree' induct. (forall u : term,

- pu->forall v: term, pv ->p (tApp u v)) ->
MetaCoq Run Derive Container for list'. (forall (k : SFrlng) (ui : list Level.t),
p (tConst k ui)) ->
MetaCoq Run Scheme rtree' induct' := Induction for rtree'. (forall (}”d :.1nduct1ve) (ui : list Level.t),
Check rtree' induct'. p (tInd ind ui)) ->
N (forall (ind : inductive) (n : nat)
(ui : list Level.t_), p (tConstruct ind n ui)) ->

(forall (indn : inductive * nat) (p® : term),
p po ->
forall c : term,
pc->

MetaCoq Run Set Nested Inductives.

File Edit View Navigation Tactics Templates Qu Tools Compile Windows Help

o]

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree_induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=

| nil"' : list' X

| cons' : X -> list' X -> list' X.
Inductive rtree' : Type :=

| Node' (1l : list' rtree') : rtree'

MetaCoq Run Scheme rtree' induct := Induction for rtree'
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.

Errors | Jobs »

(forall (ind : inductive) (ui : list Level.t_),
p (tInd ind ui)) ->
(forall (ind : inductive) (n : nat)
(ui : list Level.t_), p (tConstruct ind n ui)) ->
(forall (indn : inductive * nat) (p0 : term),
p po ->
forall c : term,
pc->
forall brs : list (nat * term),
standardNested.is_list (nat * term)
(fun H : nat * term =>
let (_, y) :=H in (True * p y)%type) brs ->
p (tCase indn p0® c brs)) ->
(forall (p0 : inductive * nat * nat) (c : term),
pc->p (tProj pé c)) ->
(forall mfix : list (def term),
standardNested.is_list (def term)
(fun x : def term =>
(p (let (_, dtype, _, _) := x in dtype) *
p (let (, , dbody,) := x in dbody))%type)
mfix -> forall idx : nat, p (tFix mfix idx)) ->
(forall mfix : list (def term),
standardNested.is_list (def term)
(fun x : def term =>
(p (let (_, dtype, ,) := x in dtype) *
p (let (, , dbody,) := x in dbody))%type)
mfix -> forall idx : nat, p (tCoFix mfix idx)) ->
forall inst : term, p inst

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o]

Messages | || Errors| » || jobs| »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Tieek Firee AT, list' is not a registered container and won't generate nested

inductive hypothesis.

Use "MetaCoq Run Derive Container for list'® to register list'
as container.

created rtree' induct

rtree' induct is defined

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o]

»||Errors ~ | Jobs ~

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. rtree' induct

forall p : rtree' -> Type,
(forall 1 : list' rtree', p (Node' 1)) ->

MetaCoq Run Set Nested Inductives. roralllinstl Jirtreed dp nst

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=

| nil' : list' X

| cons' : X -> list' X -> list' X.
Inductive rtree' : Type :=

| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o]

Errors | Jobs »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. | T S

"Translating test.list'"%string
list't is defined
list'® rect is defined
list't ind is defined
list'® rec is defined
list't sind is defined
"test.list' has been translated."%string
list'*0 is defined
list'®0_rect is defined
list'*0 _ind is defined
list't*0_rec is defined
list'*0 _sind is defined
Fresh universe MetaCoq.Induction.addContainer.173 was added to
the context.
Fresh universe MetaCoq.Induction.addContainer.170 was added to
the context.
Please provide a proof for the predicate.
(forall (X : Type) (XP : X -> Type),
(forall x : X, XP x) ->
MetaCoq Run Scheme rtree' induct' := Induction for rtree'. forall H : list' X, list't0@ X XP H)
Check rtree' induct'. B list'_proof has type-checked, generating 1 obligation
- Solving obligations automatically...
list' proof obligation 1 is defined
No more obligations remaining
list' proof is defined
list' inst is defined
New instance list' inst was created

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree' induct'.

Messages | || Errors| » || jobs| »

rtree' induct'

forall p : rtree' -> Type,
(forall 1 : list' rtree',
list't@ rtree' (fun H : rtree' =>p H) 1 ->

p (Node' 1))

-> forall inst

rtree', p inst

Line: 41 Char.

Comparison

[e]e]e]

Comparison

d Induction

Comparison
[Jele}

Outro

Tasst N ELp1

® Embeddable AProlog interpreter

® syntax manipulation with named variables

V(A:T) (Pa:A—T)(P:lUstA —T).

P[] —
(V(a:A)(L:listA).PAa—Pl—=P(az:l)) —
V(1:list A). listt APA1—=P1

V(P :roseTree — T).

(Vxs. list" roseTree P xs —P (node xs)) —

Y(r:roseTree). roseTree' 1 — Pr

d Induction Comparison

[e] 1o}

[SABELLE - OLD-STYLE

(/\xs. P> xs = P71 (node xs)) =

P[] = (/\y ys.Pry=Prys="~P, (y#ys)) =

P1 ?tree

x :Toselree := node ys

xs,ys : listRoseTree := [] | cons x xs

Induction Comparison

Outro

[e] 1o}

ISABELLE - NEW-STYLE

(/\xs. P> xs = P71 (node xs)) =

P[] = (/\y ys.Pry=Prys="~P, (y#ys)) =

P1 ?tree

x :Toselree := node ys

xs,ys : listRoseTree := [] | cons x xs

(/\xs. </\t t € setxs = Pt> = P (node xs)) = P ?tree

Comparison
00®

Intro ed Induction

LeaN

x :roseTree := node ys

xs,ys : listRoseTree := nil | cons x xs

fnil =[]

f (cons xxs) :=x:fxs

def roseTree.node : list roseTree — roselree :=

A(a : list roseTree). nested.roseTree.node (f~' a)

1duction Comparison Outro

[e]e]e]

Conclusion

ested Induction Comparison Outro

@00

VERIFICATION

wf X2 T' —» wf_inductive ind —

X; T+ createElim ind : createElimType ind

® verification theoretically possible

® complicated in practice

Outro
(o] le}

Future WoRrk

® abstraction layers

Outro
(o] le}

Future WoRrk

® abstraction layers

@® mutual induction

Induction Comparison Outro

(o] 1o}

Future WoRrk

® abstraction layers
® mutual induction

@® more control for principles

ested Induction Comparison Outro

(o] 1o}

Future WoRrk

abstraction layers

mutual induction

more control for principles
tests with QuickChick3

®©® ®©® © ®

3Maxime Dénés et al. “QuickChick: Property-based testing for Coq”. In: The Cog Workshop. 2014.

ested Induction Comparison Outro

(o] 1o}

Future WoRrk

abstraction layers

mutual induction

more control for principles
tests with QuickChick3

more plugins like countability and finiteness

®©® ©@ ©@ ®©@ ®©

SDénes et al., “QuickChick: Property-based testing for Coq”.

CoNcLUSION

Thank you! Please ask questions.

Require Import MetaCoq.Induction.MetaCogInductionPrinciples.
MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

Contributions:
® command to generate induction principles
® support for nested inductive types
® foundation for other plugins
@® unfinished correctness proof
O Github: https://github.com/uds-psl/metacog-nested-induction |||@]‘§||

https://github.com/uds-psl/metacoq-nested-induction

[©]

REFERENCES [

Anand, Abhishek et al. “Towards certified meta-programming with typed
Template-Coq”. In: International Conference on Interactive Theorem Proving. Springer. 2018.

Déneés, Maxime et al. “QuickChick: Property-based testing for Coq”. In: The Cog Workshop.
2014.

Johann, Patricia and Andrew Polonsky. “Deep Induction: Induction Rules for (Truly)
Nested Types”. In: International Conference on Foundations of Software Science and
Computation Structures. Springer, Cham. 2020, pp. 339-358.

Malecha, Gregory Michael. “Extensible proof engineering in intensional type theory”.
PhD thesis. Harvard University, 2015.

Sozeau, Matthieu et al. “The MetaCoq Project”. In: (2019).

Tassi, Enrico. “Deriving proved equality tests in Cog-elpi: Stronger induction principles

for containers in Coq”. In: ITP 2019 - 10th International Conference on Interactive Theorem
Proving. Portland, United States, Sept. 2019. por: 10.4230/LIPIcs.CVIT.2016.23 |||@"1©||

https://doi.org/10.4230/LIPIcs.CVIT.2016.23

References
°

Lines or CoDE

Proof | | 8,057
Plugin [] 516
Container [] 420
Helper functions] 210
PCUIC to TemplateCoq [] 961
Tests . 13,343
X : 13507

	Intro
	Nested Induction
	Comparison
	Outro
	Appendix
	References

