
1

Intro Nested Induction Comparison Outro

Generating Induction Principles for
Nested Inductive Types in MetaCoq

Marcel Ullrich
Advisor - Yannick Forster

Supervisor - Gert Smolka

Saarland University
Programming Systems Lab

3rd July 2020

2

Intro Nested Induction Comparison Outro

MetaCoq

based on Template-Coq1

a wealth of projects2

PCUIC for idealised syntax
plugins as Coq functions environment→ term→ term

commands for quoting and environment manipulation

1Gregory Michael Malecha. “Extensible proof engineering in intensional type theory”. PhD thesis.
Harvard University, 2015.

2Matthieu Sozeau et al. “The MetaCoq Project”. In: (2019).

3

Intro Nested Induction Comparison Outro

PCUIC Terms

3

Intro Nested Induction Comparison Outro

Nested Induction

4

Intro Nested Induction Comparison Outro

Nested Induction

roseTree ::= node (xs : list roseTree)

∀(P : roseTree→ P).
(∀(xs : list roseTree).
P (node xs)) →

∀(r : roseTree). P r

4

Intro Nested Induction Comparison Outro

Nested Induction

roseTree ::= node (xs : list roseTree)

∀(P : roseTree→ P).
(∀(xs : list roseTree).
P (node xs)) →

∀(r : roseTree). P r

4

Intro Nested Induction Comparison Outro

Nested Induction

roseTree ::= node (xs : list roseTree)

∀(P : roseTree→ P).
(∀(xs : list roseTree).

All roseTree P xs→P (node xs)) →
∀(r : roseTree). P r

AllnilAll X P []
P x All X P xs AllconsAll X P (x :: xs)

5

Intro Nested Induction Comparison Outro

Manual Derivation

6

Intro Nested Induction Comparison Outro

Related Work

Sozeau et al., “The MetaCoq Project”, 2019
Johann and Polonsky, “Deep Induction: Induction Rules for (Truly) Nested Types”,
2020
Tassi, “Deriving proved equality tests in Coq-elpi: Stronger induction principles for
containers in Coq”, 2019

7

Intro Nested Induction Comparison Outro

Generalisation

EroseTree : ∀(P : roseTree→ P).
(∀(xs : list roseTree).
Plist roseTree P xs→P (node xs)) →

∀(r : roseTree). P r

EroseTree := λ P Hnode.

fix f r.

match r [

node xs⇒ Hnode xs (Flist roseTree P f xs)

]

7

Intro Nested Induction Comparison Outro

Generalisation

EroseTree : ∀(P : roseTree→ P).
(∀(xs : list roseTree).
Plist roseTree P xs→P (node xs)) →

∀(r : roseTree). P r

EroseTree := λ P Hnode.

fix f r.

match r [

node xs⇒ Hnode xs (Flist roseTree P f xs)

]

8

Intro Nested Induction Comparison Outro

Unary Parametricity

xs : list (X : T) := [] | x :: xs

listt : ∀(X : T). (X→ T) → list X→ T

nilt
listt X PX []

PX x listt X PX xs
const

listt X PX (x :: xs)

(∀x. PX x) → (∀xs. listt X PX xs)

listt X PX xs→ ∀x. x ∈ xs→ PX x

8

Intro Nested Induction Comparison Outro

Unary Parametricity

xs : list (X : T) := [] | x :: xs

listt : ∀(X : T). (X→ T) → list X→ T

nilt
listt X PX []

PX x listt X PX xs
const

listt X PX (x :: xs)

(∀x. PX x) → (∀xs. listt X PX xs)

listt X PX xs→ ∀x. x ∈ xs→ PX x

9

Intro Nested Induction Comparison Outro

Implementation

9

Intro Nested Induction Comparison Outro

Comparison

10

Intro Nested Induction Comparison Outro

Tassi in Elpi

Embeddable λProlog interpreter
syntax manipulation with named variables

∀(A : T) (PA : A→ T) (P : list A→ T).
P [] →
(∀(a : A) (l : list A). PA a→ P l→ P (a :: l)) →
∀(l : list A). listt A PA l→ P l

∀(P : roseTree→ T).
(∀xs. listt roseTree P xs→P (node xs)) →
∀(r : roseTree). roseTreet r→ P r

11

Intro Nested Induction Comparison Outro

Isabelle - old-style

(∧
xs. P2 xs⇒ P1 (node xs)

)
⇒

P2 [] ⇒
(∧

y ys. P1 y⇒ P2 ys⇒ P2 (y#ys)
)
⇒

P1 ?tree

x : roseTree := node ys

xs, ys : listRoseTree := [] | cons x xs

(∧
xs.
(∧

t. t ∈ set xs⇒ P t
)
⇒ P (node xs)

)
⇒ P ?tree

11

Intro Nested Induction Comparison Outro

Isabelle - new-style

(∧
xs. P2 xs⇒ P1 (node xs)

)
⇒

P2 [] ⇒
(∧

y ys. P1 y⇒ P2 ys⇒ P2 (y#ys)
)
⇒

P1 ?tree

x : roseTree := node ys

xs, ys : listRoseTree := [] | cons x xs

(∧
xs.
(∧

t. t ∈ set xs⇒ P t
)
⇒ P (node xs)

)
⇒ P ?tree

12

Intro Nested Induction Comparison Outro

Lean

x : roseTree := node ys

xs, ys : listRoseTree := nil | cons x xs

f nil := []

f (cons x xs) := x :: f xs

def roseTree.node : list roseTree→ roseTree :=

λ(a : list roseTree). nested.roseTree.node (f−1 a)

12

Intro Nested Induction Comparison Outro

Conclusion

13

Intro Nested Induction Comparison Outro

Verification

wf Σ Γ → wf_inductive ind→
Σ; Γ ` createElim ind : createElimType ind

verification theoretically possible
complicated in practice

14

Intro Nested Induction Comparison Outro

Future Work

abstraction layers

mutual induction
more control for principles
tests with QuickChick
more plugins like countability and finiteness

14

Intro Nested Induction Comparison Outro

Future Work

abstraction layers
mutual induction

more control for principles
tests with QuickChick
more plugins like countability and finiteness

14

Intro Nested Induction Comparison Outro

Future Work

abstraction layers
mutual induction
more control for principles

tests with QuickChick
more plugins like countability and finiteness

14

Intro Nested Induction Comparison Outro

Future Work

abstraction layers
mutual induction
more control for principles
tests with QuickChick3

more plugins like countability and finiteness

3Maxime Dénès et al. “QuickChick: Property-based testing for Coq”. In: The Coq Workshop. 2014.

14

Intro Nested Induction Comparison Outro

Future Work

abstraction layers
mutual induction
more control for principles
tests with QuickChick3

more plugins like countability and finiteness

3Dénès et al., “QuickChick: Property-based testing for Coq”.

15

Intro Nested Induction Comparison Outro

Conclusion

Thank you! Please ask questions.

Contributions:
command to generate induction principles
support for nested inductive types
foundation for other plugins
unfinished correctness proof

� Github: https://github.com/uds-psl/metacoq-nested-induction

https://github.com/uds-psl/metacoq-nested-induction

1

References

References I

Anand, Abhishek et al. “Towards certified meta-programming with typed
Template-Coq”. In: International Conference on Interactive Theorem Proving. Springer. 2018.

Dénès, Maxime et al. “QuickChick: Property-based testing for Coq”. In: The Coq Workshop.
2014.

Johann, Patricia and Andrew Polonsky. “Deep Induction: Induction Rules for (Truly)
Nested Types”. In: International Conference on Foundations of Software Science and
Computation Structures. Springer, Cham. 2020, pp. 339–358.

Malecha, Gregory Michael. “Extensible proof engineering in intensional type theory”.
PhD thesis. Harvard University, 2015.

Sozeau, Matthieu et al. “The MetaCoq Project”. In: (2019).
Tassi, Enrico. “Deriving proved equality tests in Coq-elpi: Stronger induction principles
for containers in Coq”. In: ITP 2019 - 10th International Conference on Interactive Theorem
Proving. Portland, United States, Sept. 2019. doi: 10.4230/LIPIcs.CVIT.2016.23.

https://doi.org/10.4230/LIPIcs.CVIT.2016.23

2

References

Lines of Code

Tests

PCUIC to TemplateCoq

Helper functions
Container

Plugin
Proof 8,057

516

420

210

961

3,343

Σ : 13507

	Intro
	Nested Induction
	Comparison
	Outro
	Appendix
	References

