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MetaCoq

based on Template-Coq1

a wealth of projects2

PCUIC for idealised syntax
plugins as Coq functions environment→ term→ term

commands for quoting and environment manipulation

1Gregory Michael Malecha. “Extensible proof engineering in intensional type theory”. PhD thesis.
Harvard University, 2015.

2Matthieu Sozeau et al. “The MetaCoq Project”. In: (2019).
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PCUIC Terms
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Nested Induction
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Nested Induction

roseTree ::= node (xs : list roseTree)

∀(P : roseTree→ P).
(∀(xs : list roseTree).
P (node xs)) →

∀(r : roseTree). P r
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Nested Induction

roseTree ::= node (xs : list roseTree)

∀(P : roseTree→ P).
(∀(xs : list roseTree).

All roseTree P xs→P (node xs)) →
∀(r : roseTree). P r

AllnilAll X P [ ]
P x All X P xs AllconsAll X P (x :: xs)
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Manual Derivation
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Related Work

Sozeau et al., “The MetaCoq Project”, 2019
Johann and Polonsky, “Deep Induction: Induction Rules for (Truly) Nested Types”,
2020
Tassi, “Deriving proved equality tests in Coq-elpi: Stronger induction principles for
containers in Coq”, 2019
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Generalisation

EroseTree : ∀(P : roseTree→ P).
(∀(xs : list roseTree).
Plist roseTree P xs→P (node xs)) →

∀(r : roseTree). P r

EroseTree := λ P Hnode.

fix f r.

match r [

node xs⇒ Hnode xs (Flist roseTree P f xs)

]
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Unary Parametricity

xs : list (X : T) := [ ] | x :: xs

listt : ∀(X : T). (X→ T) → list X→ T

nilt
listt X PX [ ]

PX x listt X PX xs
const

listt X PX (x :: xs)

(∀x. PX x) → (∀xs. listt X PX xs)

listt X PX xs→ ∀x. x ∈ xs→ PX x
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Implementation
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Comparison
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Tassi in Elpi

Embeddable λProlog interpreter
syntax manipulation with named variables

∀(A : T) (PA : A→ T) (P : list A→ T).
P [ ] →
(∀(a : A) (l : list A). PA a→ P l→ P (a :: l)) →
∀(l : list A). listt A PA l→ P l

∀(P : roseTree→ T).
(∀xs. listt roseTree P xs→P (node xs)) →
∀(r : roseTree). roseTreet r→ P r
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Isabelle - old-style

(∧
xs. P2 xs⇒ P1 (node xs)

)
⇒

P2 [ ] ⇒
(∧

y ys. P1 y⇒ P2 ys⇒ P2 (y#ys)
)
⇒

P1 ?tree

x : roseTree := node ys

xs, ys : listRoseTree := [ ] | cons x xs

(∧
xs.
(∧

t. t ∈ set xs⇒ P t
)
⇒ P (node xs)

)
⇒ P ?tree
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Isabelle - new-style

(∧
xs. P2 xs⇒ P1 (node xs)

)
⇒

P2 [ ] ⇒
(∧

y ys. P1 y⇒ P2 ys⇒ P2 (y#ys)
)
⇒

P1 ?tree

x : roseTree := node ys

xs, ys : listRoseTree := [ ] | cons x xs

(∧
xs.
(∧

t. t ∈ set xs⇒ P t
)
⇒ P (node xs)

)
⇒ P ?tree
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Lean

x : roseTree := node ys

xs, ys : listRoseTree := nil | cons x xs

f nil := [ ]

f (cons x xs) := x :: f xs

def roseTree.node : list roseTree→ roseTree :=

λ(a : list roseTree). nested.roseTree.node (f−1 a)
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Conclusion
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Verification

wf Σ Γ → wf_inductive ind→
Σ; Γ ` createElim ind : createElimType ind

verification theoretically possible
complicated in practice
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Future Work

abstraction layers

mutual induction
more control for principles
tests with QuickChick
more plugins like countability and finiteness
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Future Work

abstraction layers
mutual induction
more control for principles
tests with QuickChick3

more plugins like countability and finiteness

3Maxime Dénès et al. “QuickChick: Property-based testing for Coq”. In: The Coq Workshop. 2014.
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Future Work

abstraction layers
mutual induction
more control for principles
tests with QuickChick3

more plugins like countability and finiteness

3Dénès et al., “QuickChick: Property-based testing for Coq”.
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Conclusion

Thank you! Please ask questions.

Contributions:
command to generate induction principles
support for nested inductive types
foundation for other plugins
unfinished correctness proof

� Github: https://github.com/uds-psl/metacoq-nested-induction

https://github.com/uds-psl/metacoq-nested-induction
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Helper functions
Container

Plugin
Proof 8,057
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210

961

3,343
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