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Intro Nested Induction Comparison

o0

MeraCoQ

based on Template-Coq'!
a wealth of projects?
PCUIC for idealised syntax

plugins as Coq functions environment — term — term

®©® © © ®©@ ®

commands for quoting and environment manipulation

!Gregory Michael Malecha. “Extensible proof engineering in intensional type theory”. PhD thesis.
Harvard University, 2015. ||| 5 ||
2Matthieu Sozeau et al. “The MetaCoq Project”. In: (2019).



PCUIC Terms

Inductive term : Type :=

tRel : nat -> term
tVar : ident -> term
tEvar : nat -> list term -> term
tSort : Universe.t -> term
tProd : name -> term -> term -> term
tLambda : name -> term -> term -> term
tLetIn : name -> term -> term -> term -> term
tApp : term -> term -> term
tConst : kername -> Instance.t -> term
tInd : inductive -> Instance.t -> term
tConstruct : inductive -> nat -> Instance.t -> term
tCase : inductive * nat ->
term -> term -> list (nat * term) -> term
tProj : projection -> term -> term
tFix : mfixpoint term -> nat -> term
tCoFix : mfixpoint term -> nat -> term
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NEesTED INDUCTION

roseTree = node (xs : list roseTree)
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NEesTED INDUCTION

roseTree = node (xs : list roseTree)

V(P :roseTree — P).
(V(xs : list roseTree).
P (node xs)) —

V(r:roseTree). Pr



Outro

Nested Induction Comparison

900000

NEesTED INDUCTION

roseTree = node (xs : list roseTree)

V(P :roseTree — IP).
(V(xs : list roseTree).
All roseTree P xs —P (node xs)) —

V(r:roseTree). P r

Al Px  AILXPxs
AlLX P[] ™ AIl X P (x = xs) Alleons
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MaNuAL DERIVATION

Definition roseTree induct
forall P : roseTree -> Prop, -
(forall xs : list roseTree, .
ALl P xs ->
P (node xs)) ->.
forall r : roseTree, P r :=

fun PH = fix f r :=

match r with
| node xs => H xs.
((fix f' xs : ALl P xs
match xs with
| nil => All nil P
| cons y ys => All cons Py ys (fy) (f' ys)
end
) xs) .
end. H
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ReLaTED WORK

® Sozeau et al., “The MetaCoq Project”, 2019

® Johann and Polonsky, “Deep Induction: Induction Rules for (Truly) Nested Types”,
2020

® Tassi, “Deriving proved equality tests in Cog-elpi: Stronger induction principles for
containers in Coq”, 2019
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(GENERALISATION

EroseTree : V(P :ToseTree — P).
(V(xs : list roseTree).
Plist roseTree P xs —P (node xs)) —

V(r:roseTree). Pr
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(GENERALISATION

EroseTree : V(P :ToseTree — P).
(V(xs : list roseTree).
Plist roseTree P xs —P (node xs)) —

V(r:roseTree). Pr

EroseTree == A P Hpode-
fix fr.

matchr [

node xs = Hpnode X8 (Frist ToseTree P f xs)
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UNARY PARAMETRICITY

xs:list (X:T):=[]|xzxs

list' :V(X:T). (X = T) = list X — T

nilt Px x listt X Px xs
list® X Px (x = xs)

t

listt X Px [] cons
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UNARY PARAMETRICITY

xs:list (X:T):=[]|xzxs

list' :V(X:T). (X = T) = list X — T

nitt Px x listt X Px xs
list® X Px (x = xs)

t

listt X Px [] cons

(Vx. Px x) — (Vxs. list® X Px xs)

list' X Px xs — Vx. x € xs — Px x
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IMPLEMENTATION

Class registered {X:Type} (ty:X) :=
{
assumptionType: Type;
assumption: assumptionType;
proofType: Type;
proof: proofType

Instance listInst : registered list := {|
asumptionType := V X, (X - Type) - list X - Type;
assumption @listc®;
prodType VXP, (Vx, Px)-

V xs, list® P xs;
@listProof |}

prod
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Require Import String. Messages| » | Errors ~ || Jobs

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.
MetaCoq Run Scheme Elimination for nat.

Check nat case MC.

MetaCoq Run Scheme Induction for nat.

Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term_induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.
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Require Import String. Messages| || Errors. ~ || jobs ~

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCoqInductionPrinciples.|
MetaCoq Run Scheme Elimination for nat.

Check nat case MC.

MetaCoq Run Scheme Induction for nat.

Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Char: 61
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Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat case MC.|

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

nat_cas

Errors | Jobs »

e MC

forall p :
po->
(forall H :
forall inst

nat -> Type,

nat, p (S H))
nat, p inst

->

Line: 8 Char: 19
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Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.|

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

nat_ind

Errors | Jobs »

| MC

forall p :
po->
(forall H :
forall inst

nat -> Type,

nat, pH ->p (S H))
nat, p inst

->

Line: 10 Char: 18



File Edit View Navigation Tactics Templates Queries Tools Compile Windows Help

o] <

Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.

Check rtree induct'.|

MetaCoq Run Unset Nested Inductives

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

rtree_induct'
forall p : rtree -> Type,
(forall xs : list rtree,
standardNested.is_list rtree
(fun H : rtree => p H) xs ->
p (node xs)) -> forall inst : rtree,

Line: 15 Char: 21
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Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.
Check rtree induct'.

MetaCoq Run Unset Nested Inductives.|

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

Nested InductivesO is defined
The mode Nested Inductives was unset

Line: 17 Char.
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Require Import String.

Inductive rtree := node (xs:list rtree).

Require Import MetaCoq.Induction.MetaCogqInductionPrinciples.

MetaCoq Run Scheme Elimination for nat.
Check nat_case MC.

MetaCoq Run Scheme Induction for nat.
Check nat_ind MC.

MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct' := Induction for rtree.

Check rtree induct'.
MetaCoq Run Unset Nested Inductives.

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Errors | Jobs »

rtree_induct
forall p :
(forall xs
forall inst

rtree -> Type,
list rtree, p (node xs))
rtree, p inst

->
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Errors | Jobs »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. term_induct

forall p : term -> Type,
(forall n : nat, p (tRel n)) ->
(forall i : string, p (tvar i)) ->

. (forall (n : nat) (1 : list term),
From MetaCoq.PCUIC Require Import PCUICAst. ! . . _
MetaCoq Run Scheme term induct := Induction for term. steEhiesEsilis et wrm ([ © & W@ = P &)

; 1 ->p (tEvar n 1)) ->
EheckiEnIRIduGHE (forall u : Universe.t, p (tSort u)) ->

TEEEde TS 5% ¢ T2 o= (forall (na : name) (A : term),
| nil' : list' X yp pA -> forall B : term, p B -> p (tProd na A B)) ->

cons' : X -> list' X -> list' X. (forall (na : name) (A : term),
‘ . z pA->forall t : term, p t -> p (tLambda na A t)) ->
Inductive rtree' : Type := (forall (na : name) (b : term),
| Node' (Ul : list' rtree') : rtree'. pb->
forall B : term,
MetaCoq Run Scheme rtree' induct := Induction for rtree'. pB -> forall t: term, p t ->p (tletIn na b B t)) ->
Check rtree' induct. (forall u : term,

- pu->forall v: term, pv ->p (tApp u v)) ->
MetaCoq Run Derive Container for list'. (forall (k : SFrlng) (ui : list Level.t ),
p (tConst k ui)) ->
MetaCoq Run Scheme rtree' induct' := Induction for rtree'. (forall (}”d :.1nduct1ve) (ui : list Level.t ),
Check rtree' induct'. p (tInd ind ui)) ->
N (forall (ind : inductive) (n : nat)
(ui : list Level.t_), p (tConstruct ind n ui)) ->

(forall (indn : inductive * nat) (p® : term),
p po ->
forall c : term,
pc->

MetaCoq Run Set Nested Inductives.
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MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree_induct.

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=

| nil"' : list' X

| cons' : X -> list' X -> list' X.
Inductive rtree' : Type :=

| Node' (1l : list' rtree') : rtree'

MetaCoq Run Scheme rtree' induct := Induction for rtree'
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.

Errors | Jobs »

(forall (ind : inductive) (ui : list Level.t_),
p (tInd ind ui)) ->
(forall (ind : inductive) (n : nat)
(ui : list Level.t_ ), p (tConstruct ind n ui)) ->
(forall (indn : inductive * nat) (p0 : term),
p po ->
forall c : term,
pc->
forall brs : list (nat * term),
standardNested.is_list (nat * term)
(fun H : nat * term =>
let (_, y) :=H in (True * p y)%type) brs ->
p (tCase indn p0® c brs)) ->
(forall (p0 : inductive * nat * nat) (c : term),
pc->p (tProj pé c)) ->
(forall mfix : list (def term),
standardNested.is_list (def term)
(fun x : def term =>
(p (let (_, dtype, _, _) := x in dtype) *
p (let (, , dbody, ) := x in dbody))%type)
mfix -> forall idx : nat, p (tFix mfix idx)) ->
(forall mfix : list (def term),
standardNested.is_list (def term)
(fun x : def term =>
(p (let (_, dtype, , ) := x in dtype) *
p (let (, , dbody, ) := x in dbody))%type)
mfix -> forall idx : nat, p (tCoFix mfix idx)) ->
forall inst : term, p inst
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Messages | || Errors| » || jobs| »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Tieek Firee AT, list' is not a registered container and won't generate nested

inductive hypothesis.

Use "MetaCoq Run Derive Container for list'® to register list'
as container.

created rtree' induct

rtree' induct is defined

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.
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»||Errors ~ | Jobs ~

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. rtree' induct

forall p : rtree' -> Type,
(forall 1 : list' rtree', p (Node' 1)) ->

MetaCoq Run Set Nested Inductives. roralllinstl Jirtreed dp nst

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=

| nil' : list' X

| cons' : X -> list' X -> list' X.
Inductive rtree' : Type :=

| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree'_induct'.
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Errors | Jobs »

MetaCoq Run Scheme rtree induct := Induction for rtree.

Check rtree induct. | T S

"Translating test.list'"%string
list't is defined
list'® rect is defined
list't ind is defined
list'® rec is defined
list't sind is defined
"test.list' has been translated."%string
list'*0 is defined
list'®0_rect is defined
list'*0 _ind is defined
list't*0_rec is defined
list'*0 _sind is defined
Fresh universe MetaCoq.Induction.addContainer.173 was added to
the context.
Fresh universe MetaCoq.Induction.addContainer.170 was added to
the context.
Please provide a proof for the predicate.
(forall (X : Type) (XP : X -> Type),
(forall x : X, XP x) ->
MetaCoq Run Scheme rtree' induct' := Induction for rtree'. forall H : list' X, list't0@ X XP H)
Check rtree' induct'. B list'_proof has type-checked, generating 1 obligation
- Solving obligations automatically...
list' proof obligation 1 is defined
No more obligations remaining
list' proof is defined
list' inst is defined
New instance list' inst was created

MetaCoq Run Set Nested Inductives.

From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term induct := Induction for term.
Check term_induct.

Inductive list' X : Type :=
| nil' : list' X
| cons' : X -> list' X -> list' X.

Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.
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Inductive rtree' : Type :=
| Node' (1 : list' rtree') : rtree'.

MetaCoq Run Scheme rtree' induct := Induction for rtree'.
Check rtree' induct.

MetaCoq Run Derive Container for list'.

MetaCoq Run Scheme rtree' induct' := Induction for rtree'.
Check rtree' induct'.

Messages | || Errors| » || jobs| »

rtree' induct'

forall p : rtree' -> Type,
(forall 1 : list' rtree',
list't@ rtree' (fun H : rtree' =>p H) 1 ->

p (Node' 1))

-> forall inst

rtree', p inst

Line: 41 Char.
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Tasst N ELp1

® Embeddable AProlog interpreter

® syntax manipulation with named variables

V(A:T) (Pa:A—T)(P:lUstA —T).

P[] —
(V(a:A)(L:listA).PAa—Pl—=P(az:l)) —
V(1:list A). listt APA1—=P1

V(P :roseTree — T).

(Vxs. list" roseTree P xs —P (node xs)) —

Y(r:roseTree). roseTree' 1 — Pr
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[SABELLE - OLD-STYLE

(/\xs. P> xs = P71 (node xs)) =

P[] = (/\y ys.Pry=Prys="~P, (y#ys)) =

P1 ?tree

x :Toselree := node ys

xs,ys : listRoseTree := [] | cons x xs
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ISABELLE - NEW-STYLE

(/\xs. P> xs = P71 (node xs)) =

P[] = (/\y ys.Pry=Prys="~P, (y#ys)) =

P1 ?tree

x :Toselree := node ys

xs,ys : listRoseTree := [] | cons x xs

(/\xs. </\t t € setxs = Pt> = P (node xs)) = P ?tree
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Intro ed Induction

LeaN

x :roseTree := node ys

xs,ys : listRoseTree := nil | cons x xs

fnil =[]

f (cons xxs) :=x:fxs

def roseTree.node : list roseTree — roselree :=

A(a : list roseTree). nested.roseTree.node (f~' a)
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Conclusion
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@00

VERIFICATION

wf X2 T' —» wf_inductive ind —

X; T+ createElim ind : createElimType ind

® verification theoretically possible

® complicated in practice
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Future WoRrk

® abstraction layers
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Future WoRrk

® abstraction layers

@® mutual induction
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Future WoRrk

® abstraction layers
® mutual induction

@® more control for principles
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Future WoRrk

abstraction layers

mutual induction

more control for principles
tests with QuickChick3

®©® ®©® © ®

3Maxime Dénés et al. “QuickChick: Property-based testing for Coq”. In: The Cog Workshop. 2014.
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Future WoRrk

abstraction layers

mutual induction

more control for principles
tests with QuickChick3

more plugins like countability and finiteness

®©® ©@ ©@ ®©@ ®©

SDénes et al., “QuickChick: Property-based testing for Coq”.



CoNcLUSION

Thank you! Please ask questions.

Require Import MetaCoq.Induction.MetaCogInductionPrinciples.
MetaCoq Run Set Nested Inductives.

MetaCoq Run Scheme rtree induct := Induction for rtree.
Check rtree induct.

Contributions:
® command to generate induction principles
® support for nested inductive types
® foundation for other plugins
@® unfinished correctness proof
O Github: https://github.com/uds-psl/metacog-nested-induction |||@]‘§||


https://github.com/uds-psl/metacoq-nested-induction
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