
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

Generating Induction Principles for
Nested Inductive Types in MetaCoq

Author
Marcel Ullrich

Advisor
Yannick Forster

Reviewers
Prof. Dr. Smolka
Prof. Dr. Hack

Submitted: 23rd June 2020

ii

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Raguhn-Jeßnitz, 23rd June, 2020

Abstract

We implement a plugin to generate induction principles in MetaCoq. Inductive
types and their induction principles are essential components in modern depen-
dent type theory and proof assistants like Coq, where most proofs involve induc-
tion and a great deal of predicates are written in an inductive fashion.
While Coq automatically generates induction principles, these principles are too
weak for nested inductive types. Therefore, one needs to put in additional work to
get induction principles that are strong enough. It is folklore that induction prin-
ciples for nested inductive types require creativity and lots of work. Only recently
the underlying principle to generate these induction principles was discovered.
We implement a plugin in MetaCoq to automatically generate such induction prin-
ciples based on the unary parametricity translation. Furthermore, we verify the
correctness of parts of the plugin using MetaCoq.

Acknowledgements

I want to thank my advisor Yannick Forster for the helpful discussions and ideas
throughout the thesis. I also appreciate the plentiful feedback on this thesis.
I am grateful to Professor Smolka for the opportunity towrite this thesis at his chair
and introducing me to formal proofs, type theory and the proof assistants Coq. I
am thankful for his advice and support as mentor throughout my Bachelor studies.
I want to thank Professor Smolka and Professor Hack for reviewing this thesis. In
addition, I thank my friends and family for the support I received. Especially, I
would like to thank Anton, Lennard, and Philippe for proof-reading this thesis.

Contents

Abstract iii

1 Introduction 1

2 Preliminaries 5

3 MetaCoq 7
3.1 TemplateCoq and PCUIC . 8

3.1.1 Typing . 10
3.1.2 Terms and types . 12

3.2 Conversion . 25
3.3 Inductive types . 28
3.4 Execute MetaCoq commands . 29
3.5 Remarks . 37

4 Case analysis 39
4.1 Application and examples . 40

4.1.1 Natural numbers . 40
4.1.2 Disjunction . 40
4.1.3 Less or equal . 40

4.2 Theory . 41
4.2.1 Parameter-free types . 41
4.2.2 Index-free types . 42
4.2.3 Non-uniform parameter types 42
4.2.4 Indexed types . 42

4.3 Eliminator . 43
4.4 Implementation . 44
4.5 Usage example . 45

5 Induction 46
5.1 Application and examples . 46

vi Contents

5.1.1 Natural numbers . 47
5.1.2 Less or equal . 48
5.1.3 Accessibility . 48

5.2 Theory . 49
5.2.1 Non-uniform parameters . 49
5.2.2 Guarded recursion . 50

5.3 Eliminator . 51
5.4 Implementation . 52
5.5 Usage example . 53
5.6 Remarks . 54

6 Nested induction 56
6.1 Application and examples . 56

6.1.1 Rose trees . 56
6.1.2 Binary trees . 58
6.1.3 First-order terms . 58
6.1.4 TemplateCoq terms . 59

6.2 Theory . 60
6.2.1 Parametricity . 61
6.2.2 Auxiliary definitions . 63
6.2.3 Guarded recursion . 63

6.3 Eliminator . 64
6.4 Implementation . 66

6.4.1 Database . 67
6.4.2 Eliminator generation . 67
6.4.3 Adding containers . 68
6.4.4 Flags . 70

6.5 Usage example . 70
6.6 Remarks . 72

7 Correctness 74
7.1 Correctness statement . 76
7.2 Proof structure . 77

7.2.1 Auxiliary lemmas . 78
7.2.2 Lemma hierarchy . 78

7.3 Assumptions . 80
7.4 Difficulties . 80

7.4.1 MetaCoq specific . 80
7.4.2 Project specific . 82
7.4.3 Tactics . 83

7.5 Remarks . 83

Contents vii

8 Related work 85
8.1 Coq implementation . 85
8.2 Elpi . 86
8.3 Other proof assistants . 88

8.3.1 Isabelle . 88
8.3.2 Lean . 89
8.3.3 Agda . 90
8.3.4 More proof assistants . 91

8.4 MetaCoq plugins . 91

9 Conclusion 92
9.1 Plugins in MetaCoq . 92
9.2 Verification in MetaCoq . 93
9.3 Expenses . 93
9.4 Future work . 94

A Appendix 96
A.1 De Bruijn indices . 96
A.2 PCUIC to TemplateCoq . 97
A.3 Notation tricks . 97
A.4 Constructor list plugin . 98
A.5 Typing rules . 100

Bibliography 104

Chapter 1

Introduction

Induction is one of the most important techniques in modern dependent type the-
ory. In the proof assistant Coq [34] that is based on the calculus of inductive con-
structions types, predicates and functions are defined inductively, and nearly all
interesting proofs use induction or rely on lemmas that use induction. Therefore,
induction principles play an essential role in Coq andmodern dependent type the-
ory in general. It is thus all the more important for Coq-like proof assistants, like
Adga and Lean, to automatically generate induction principles.
Inductive definitions define howobjects of a type can be constructed. The definition
is done using constructors for each way instances of the type should be able to be
created. An example of an inductive definition are natural numbers:

n : N ::= O | S n

A number is either zero or the successor of another number.
Each inductive type has according induction principles. Induction principles allow
to prove statements on all elements of an inductive type. To do so, case analysis is
performed with one case for each constructor that allows to generate elements of
the type. Induction hypotheses are added for structurally smaller arguments in the
constructors of the type. The induction hypotheses state that the predicate holds
for the structurally smaller arguments. The induction principle of natural numbers
has two cases, one for the zero case and one for the successor case:

∀(P : N→ T). P O→ (∀(n : N). P n→ P (S n))→ ∀(n : N). P n

In the successor case the induction hypothesis states that P holds for n and under
this assumption P (S n) has to be shown.
Coq generates induction principles when a type is defined, but these automatically
generated principles are too weak for nested inductive types like rose trees. Rose

2 Introduction

node [node []; node [node[];node[];node[]]]

Figure 1.1: An example rose tree with a size of six and a depth of two. On the left is a
drawing of the rose tree and the Coq term is on the right. The root node has two direct
sub-trees and the right sub-tree has three direct sub-trees.

trees are defined by nodes with a list of direct sub-trees:

roseTree ::= node (xs : list roseTree)

The principle generated by Coq is:

∀P. (∀xs. P (node xs))→ ∀r. P r

This principle is too weak as it gives no assumption for the direct sub-tree list xs.
One would hope to get the assumption that P holds for every tree in xs. A better
induction principle would be:

∀P. (∀xs. (∀t.t ∈ xs→ P t)→ P (node xs))→ ∀r. P r

The generation of principles for such types is often needed and is done by hand.
There are common techniques to derive the principles if the argument is a list like in
rose trees. But for other types it ismore complicated andChlipala for example states
that "[...] it takes creativity to figure out good ways to incorporate nested uses of
different families" [5]. It was recently discovered [33, 19], that unary parametricity
can be used as an underlying theory to generate induction principles for nested
inductive types.

Lemma 1.1 (depth bound) To illustrate why the better principle is needed we prove
informally that depth t < size t holds. Here, the depth of a tree is the length of the longest
path from the root to a leaf, and size is the count of nodes in the tree (see Figure 1.1).

size (node xs) := 1+ sum (map size xs)

depth (node []) := 0

depth (node (x :: xs)) := 1+max (map depth (x :: xs))

3

To prove the statement, induction over the tree and then over the direct sub-tree list is per-
formed. The base case for an empty direct sub-tree list simplifies to 0 < 1. The goal becomes
max (1 + depth x) (depth (node xs)) < size x + size (node xs) with the induction
hypothesis IHt : ∀t. t ∈ x :: xs → depth t < size t from the better induction principle for
rose trees and IHxs : depth (node xs) < size xs.

From IHt one can get the assumption that depth x < size x and therefore 1 + depth x 6
size x which suffices to conclude the proof. The important assumption over the relation
between depth and size of the direct sub-tree x was provided by IHt.

This proof shows that the relation is provable with the stronger induction principle for rose
trees. Additionally, one can see that it is not possible to prove the statementwith the principle
provided by Coq.

Parametricity translations [26] are a technique used to express relations over ob-
jects of types. The parametricity translations are often used to derive statements
purely from the type of functions [37]. The unary parametricity translation gener-
ates the unary parametricity relation of a type. The unary parametricity relation of
an inductive type can be viewed as a predicate over elements of that type.
Weuse unary parametricity, previously explored byTassi [33], to solve this predica-
ment and derive strong induction principles for general uses of nested induction.
To implement the generation of strong induction principles one could write a Coq
plugin. But plugin development for Coq is complicated as one has has to under-
stand large parts of the 210000 lines of mostly undocumented OCaml source code
of Coq. There are multiple questions in the Coq club mailing list1 that show that it
is hard in plugin development to know how to do things properly.
Other theorem provers like Lean [11] use a metaframework to allow users to write
plugins using meta-programming in a dedicated framework more suitable than
plugins interacting directly with the source code. We use the MetaCoq project [31]
to implement a plugin for strong induction principles in Coq. MetaCoq allows to
manipulate the environment of Coq directly in Coq and therefore enables the user
to write plugins as Coq functions.
Our plugin provides an alternative of Coq’s Scheme command to derive induction
principles. The Scheme command allows to create induction principles for inductive
types and is called automatically when a new inductive type is defined. For natural
numbers the induction principle can be generated with:

Scheme N_induct := Induction for N Sort T

1 Talia Ringer, 10.04.2018: Plugins, type-checking, and universe constraints
Talia Ringer, 17.11.2017: Looking up definitions from inside an ml plugin

https://sympa.inria.fr/sympa/arc/coq-club/2018-04/msg00050.html
https://sympa.inria.fr/sympa/arc/coq-club/2017-11/msg00074.html

4 Introduction

Our MetaCoq plugin generates the induction principle for rose trees with:
MetaCoq Run Scheme rtree_induct := Induction for rtree

∀P. (∀xs. listt roseTree P xs→ P (node xs))→ ∀r. P r

listt states that the predicate P holds for all elements in xs.
In this thesis we implement the generation of induction principles for nested in-
ductive types as a MetaCoq plugin. To do so we show how to extend the theory
of induction principles to nested inductive types based on the unary parametricity
translation of inductive types as shown by Tassi [33]. We provide an overview over
the landscape including the theory behind case analysis and induction principles
for arbitrary types as well as an overview over the MetaCoq project and its capa-
bilities. Lastly, we attempt to verify the correctness of the plugin. The correctness
proof is not complete as it contains unfinished lemmas. The remaining unfinished
lemmas are technical.
This thesis is based on many areas in the field of type theory [17]. The calculus
of construction was presented in [6]. In the first presentation of the calculus of
construction inductive types were not implemented. Instead impredicative char-
acterizations with Church encodings were used. As this system is very difficult
to work with and is not strong enough to prove facts like 0 6= 1, inductive defini-
tions were added to the calculus of construction [7, 25]. Inductive definitions were
added to Coq in [22].
Other areas influencing this thesis were parametricity translations [26], MetaCoq
[31], and plugin development in Coq.
The accompanying Coq development is available at:

https://www.ps.uni-saarland.de/~ullrich/bachelor.php

The thesis introduces definitions and notation (Chapter 2), followed by an intro-
duction to theMetaCoqproject (Chapter 3). Afterwards, the theory and implemen-
tation of case analysis principles are discussed (Chapter 4) and extended to induc-
tion principles (Chapter 5). In Chapter 6 we will discuss how to extend structural
induction to cover nested inductive types like rose trees and the implementation in
MetaCoq. Lastly, the correctness of the plugin is proven in Chapter 7.

https://www.ps.uni-saarland.de/~ullrich/bachelor.php

Chapter 2

Preliminaries

In this chapter we will introduce common inductive types used in later chapters.
There is a hierarchy of universes in type theory with an impredicative universe P
for propositions. The predicative universes are written as T. Each universe is typed
in a larger universe. Predicates can be stated as inductive predicates. An example
is the disjunction predicateOr : P→ P→ P that takes two propositions and returns
a proposition that one of the argument propositions holds.
In this thesis we use the polymorphic calculus of cumulative inductive construc-
tions as implemented by the Coq proof assistant version 8.11 [34]. For the cor-
rectness proof we use version 8.9 of the Coq proof assistant. We use the MetaCoq
project for version 8.11 of Coq for the plugin and MetaCoq for version 8.9 for the
correctness proof.
We will use grammars in Backus-Naur form to describe non dependent types and
inference rules to describe dependent types.

B ::= true | false

n : N ::= O | S n

Or (X : P) (Y : P) ::= L (x : X) | R (y : Y)

xs : list X ::= [] | x :: xs

roseTree ::= node (xs : list roseTree)

Those non-dependent types are from top to bottom the boolean truth values with
true and false, the natural numbers built using zero and successors, the or predicate
for disjunctions over propositions X and Y built using a proof of either X or Y, lists
over a type X that can be empty [] or a concatenation of an element x to a list xs,
and lastly rose trees that are built from a list of direct sub-trees.
Vectors vec : T → N → T are like lists with an additional index stating how many
elements the vector contains.

6 Preliminaries

nil
vec X 0

vec X n x : X cons
vec X (Sn)

Less or equal le nm is an inductively defined predicate expressing that a number n
is less or equal tom. It is defined with two constructors predicating that a number
n is less or equal to itself, and if n is less or equal than m, n is also less or equal to
the larger number S m.

le_n
le n n

le n m
le_S

le n (Sm)

Even and odd are defined as mutual inductive predicates with three constructors.
Zero is an even number, and if a number is even the successor is odd and conversely.

evenO
even O

odd n evenS
even (S n)

even n oddS
odd (S n)

The guard predicate G n states that a function f : N→ B is true for a number larger
or equal to n. It is defined using the guard (see Section 5.2.2) f n = false, rather
than two constructors, in order to allow for large elimination.

f n = false→ G (S n)
GIG n

The accessibility predicate is used to define well-foundedness and perform well-
founded induction. Acc R x holds ifAcc R y holds for all smaller elements according
to R : X→ X→ P.

∀y. R y x→ Acc R y
AccIAcc R x

An instance of an inductive type T allows for large elimination if one can perform
a case analysis on the instance with a return type of type T. An instance of an
inductive type T : . . .→ T always allow for large elimination.
For inductive propositions T : . . .→ P the elimination over T has to be restricted in
order to preserve consistency with the impredicative universe P [15]. An inductive
instance of a proposition can be eliminated overT (perform large elimination) if the
inductive type for the proposition or predicate has at most one proof constructor
and every non-parametric argument of the constructor is a proof itself.

Chapter 3

MetaCoq

In this chapter we will discuss the basics of the MetaCoq project[31]. MetaCoq is
composed out of multiple projects like TemplateCoq together with the ability to
manipulate terms and environments, PCUIC as the specification of Coq’s calculus,
and a verified implementation and erasure procedure for Coq. Coq is often used to
model system like the calculus of constructions or System F. In theMetaCoq project
models Coq itself in Coq.
Therefore, one is able to manipulate Coq terms and environments directly in Coq.
Additionally, MetaCoqmakes it possible to state and prove lemmas over Coq terms
and the theoretic foundation of Coq. In [30] a type checker and the erasure phase
of extraction were proven correct for example.
When one models structures in Coq and proves lemmas, one often needs basic
lemmas and properties for example of inductive types.
For most properties the fundamental structure is known and it is usually easy to
derive and prove these lemmas. But it can be very tedious to do this over and over
again and be quite exhausting for large inductive types.
One can automate the repetitivework bywriting a plugin. These plugins aremainly
written in OCaml code as Coq itself is written in this language.
Programming plugins in OCaml comes with some disadvantages. To write a plu-
gin one first has to understand the implementation of Coq which is mostly un-
documented, and therefore, hard to understand. It is hard to get the plugin right
without the direct testing environment of Coq. A plugin is a large complicated pro-
gram manipulating the environments. The terms and environments are given in a
low level representation. Additionally, one can test the plugin or perform model
checking but not formally prove correctness of the plugin.
Other theorem provers come with a tailored meta-programming language [11] for
plugin development, andmany re-use their internal language asmeta-programming

8 MetaCoq

Inductive term : T :=
tApp : term → list term→ term

| tRel : N→ term
| tVar : ident → term
| tEvar : N→ list term→ term
| tSort : Universe.t → term
| tCast : term → cast_kind→ term→ term
| tProd : name → term→ term→ term
| tLambda : name → term→ term→ term
| tLetIn : name → term→ term→ term→ term
| tConst : kername → Instance.t→ term
| tInd : inductive→ Instance.t→ term
| tConstruct : inductive→ N→ Instance.t→ term
| tCase : inductive × N→ term→ term→ list (nat ×term)→ term
| tProj : projection→ term→ term
| tFix : mfixpoint term → N→ term
| tCoFix : mfixpoint term → N→ term

Figure 3.1: This inductive type in TemplateCoq represents Coq terms.

language. This is also the approach used for meta-programming in the MetaCoq
project [31]: Meta-programs can be written in Gallina.1 The meta-programming
concept has also been applied to other languages likeHaskellwith TemplateHaskell
[27] and OCaml with [32].

The MetaCoq project includes many sub-projects such as the TemplateCoq project
[21, 2] to represent Coq terms in Coq and PCUIC (Polymorphic Calculus of Cu-
mulative Inductive Constructions) for a idealised syntax.

With MetaCoq it is possible to write the meta-functions like normal Coq functions.
The transform of TemplateCoq terms needed for plugins is done as Coq functions.
The functions are then used to transform Coq terms.
3.1 TemplateCoq and PCUIC
MetaCoq is combines mutliple projects and is built on top of the TemplateCoq
project [20]. TemplateCoq introduces types to represent Coq’s syntax. OCaml rep-
resents Coq’s syntax with types. These types are reimplemented with Coq’s in-
ductive types (see Figure 3.1) to transform abstract syntax trees (short ASTs) from
OCaml’s representations of Coq terms to TemplateCoq representations. MetaCoq
extends TemplateCoq to the entire calculus of Coq including declaration structures,
inductive types and environments.

1 Gallina is the language used in Coq to write terms.

3.1. TemplateCoq and PCUIC 9

tLambda (nNamed "f")
(tProd nAnon

(tInd {| inductive_mind := "Coq.Init.Datatypes.nat";
inductive_ind := 0 |} [])

(tSort (Universe.from_kernel_repr (Level.lSet, false) [])))
(tApp (tRel 0)

[tConstruct {| inductive_mind := "Coq.Init.Datatypes.nat";
inductive_ind := 0 |} 0 []])

Figure 3.2: An example of the quoted represenation in TemplateCoq for the term
λ (f:N→ Set). f 0. The tInd construct represents the type N. The representation is ob-
tained with MetaCoq Quote quoted := (λ (f: N→ Set). f 0)

The TemplateCoq implementation is very close to the OCaml implementation of
Coq’s syntax. It has not completely the same structure as native arrays and strings
from OCaml have currently no direct counterpart in Coq. Therefore, Coq’s lists
and strings are used. Coq 8.12 might change the implementation when persistent
arrays are added.

To use TemplateCoq there are vernaculars to convert Coq terms to the Template-
Coq representation and back to Coq terms again (see Figure 3.2). Vernaculars are
commands that operate in the OCaml code of Coq. The procedure to move into
TemplateCoq is called reification or quoting and the other direction is called un-
quoting.

As already mentioned there is a second implementation of the syntax with PCUIC.
The PCUIC representation is idealised and more suitable in practice. The PCUIC
part of MetaCoq contains more theorems and functions as the proofs are easier in
the abstract representation.

The vernacular commands of MetaCoqwork on the level of TemplateCoq to ensure
the correspondence to the original Coq implementation. The correspondence also
makes argumentation and reasoning of the guarantees of MetaCoq easier as the
relationship to Coq is directly given.

Although the quoting gives TemplateCoq terms, it is possible to reason in PCUIC
with a translation procedure from TemplateCoq terms and environments to the
syntax of PCUIC (see Figure 3.3). This translation preserves typing and gives there-
fore a valid representation of the TemplateCoq terms in PCUIC.

As part of this thesis we also implemented the counterpart which is a translation
from the idealised PCUIC representation into the TemplateCoq representation en-

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.other_files.PCUICToTemplate.html#trans

10 MetaCoq

Coq TemplateCoqTemplateCoq

QuoteQuote

UnquoteUnquote

PCUIC

to_pcuicto_pcuic

from_pcuicfrom_pcuic

Figure 3.3: Relations between Coq, TemplateCoq, and PCUIC. The left quoting between
Coq and TemplateCoq is done with vernacular commands on the OCaml level whereas the
right hand translation is implemented in Coq.

suring type preservation (see Section A.2).2

3.1.1 Typing
MetaCoq further implements inductive types to represent the typing relation on
terms which enables the user to prove typing in the abstract context of reified func-
tions written in MetaCoq.
The typing predicate can be used to verify correctness properties of plugins. For
the plugin discussed in this thesis the correctness property explained in Chapter 7
states that the derivedprinciples always typecheckwith a given type corresponding
to the inductive declaration.
So MetaCoq does not only provide a representation of the syntax of Coq objects
but also gives semantics to them. This is new as there was no satisfying specifica-
tion linking Coq’s logic and semantics to the underlying type theory foundations
before. Some attempts were made such as the proof of [36]. But such proofs over
Coq’s logic are very large and difficult on paper. TheMetaCoq project makes many
proofs about the semantics of Coq easier because it allows to reason in Coq using
the interactive proof style.
This makes it possible to write a formal specification for Coq’s kernel to verify the
correctness of its implementation. These proofs are important to be able to trust
Coq and therefore be able to reliably use the proof assistant for machine checked
proofs. This was done in [30]. MetaCoq first introduced a formal specification of
Coq that went beyond inference rules like the ones given in [34, 23].
The typing predicate, written as Σ;Γ ` t : T, states that in the global environment Σ
under the local environment Γ the term t has a type T. It is mutually defined with
the predicate typing_spine. typing_spine Σ Γ a xs Tmeans that a term of type a can

2 This does not gives us the complete statement from_pcuic(to_pcuic t) = t (see Section 3.5)

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.other_files.PCUICToTemplateCorrectness.html#template_to_pcuic

3.1. TemplateCoq and PCUIC 11

typing_spine (Σ : global_env_ext) (Γ : context) : term → list term→ term→ T
:=
type_spine_nil : ∀ ty : term. typing_spine Σ Γ ty nil ty

| type_spine_cons : ∀ (hd : term) (tl : list term)
(na : name) (A B : term) (s : Universe.t)
(T B’ : term).

Σ; Γ ` tProd na A B : tSort s →
Σ; Γ ` T 6 tProd na A B →
Σ; Γ ` hd : A →
typing_spine Σ Γ (B {0 := hd}) tl B’ →
typing_spine Σ Γ T (hd :: tl) B’

Figure 3.4: The typing spine predicate as part of the typing predicate in TemplateCoq.

be applied to arguments xs and results in a term of type T.
For typing we also need substitutions. If we substitute u for the variable x in a term
t we write txu. In TemplateCoq the notation t {n := u} is used where n is the de
Bruijn index of x in t.
Typing spine
The typing spine predicate is implemented using two constructors (Figure 3.4).
The base case typing_spine_nil is without any arguments, an empty xs, where the
type a of the term is the same as the result type.
The second case typing_spine_cons is a bit more complicated: if xs has at least one
element hdwhich has a type A, the applied term should have a type T that is convert-
ible to an ∀-quantification (see Section 3.2), a tProd in MetaCoq. The argument of
this quantification should be the same type as the type of our argument and a type
B as body. If these conditions are satisfied and the ∀-quantification type is a valid
type, the result type can be recursively determined with the remaining argument
list and the new starting type B where the argument of type A is substituted with
the first argument hd.
This procedure basically substitutes every argument in the corresponding position
and checks that each argument is valid for the function type provided. In the base
case, without arguments, the type can directly be returned.
The typing_spine predicate is not needed in PCUIC as the applications are handled
without lists.
The typing predicate has a constructor for each term constructor3 and an additional
constructor for conversion.
3 The term constructors were explained in Section 3.1.2.

12 MetaCoq

Well-formed environments

Most typing constructors assert the environment to be well-formed. This is done
with the predicate wf_local Σ Γ = All_local_env (lift_typing typing Σ)Γ . The state-
ment means that the type of every assumption in Γ has some universe and for every
assumption with a non empty body that the body is typed under the type of the
assumption. Therefore, wf_local ensures that all assumptions in the environment
are well-typed.

3.1.2 Terms and types

We will take a closer look at the term constructors, the syntax, and their typing
rules, the semantics. As notation we will use qX when we refer to the quoted, i.e.
TemplateCoq, representation of the Coq term X. If PCUIC differs from Template-
Coq, we will highlight the differences.

The terms use natural numbers to refer to objects in the local environment. This
concept is called de Bruijn indexing [8]. The number basically indicates howmany
binders above the current terms (in the abstract representation of a syntax tree)
have to be skipped until the correct identifier is reached. A detailed explanation is
found in Section A.1.

For typing rules the inference rule is provided followed by the corresponding con-
structor of the typing predicate.

Applications

Applications are represented with a body term, to which the arguments are ap-
plied, and a list of arguments. This is somewhat unusual as in type theory one
commonly sees application as a binary operation taking a body and one single ar-
gument returning a term. This representation was chosen in Coq’s design to have
a direct access to the body and O(1) access to the arguments with arrays.

Therefore, it can be difficult to work with applications as one cannot perform sim-
ple recursion on the inner body but rather has to use list procedures like folding.
Additionally, the proofs become harder as better induction principles are needed
and one often has to find non trivial generalisations of the statement to be able to
prove them.

3.1. TemplateCoq and PCUIC 13

t a1 . . . an =
((t a1) . . .) an

λ (f:N→ N→ N)
(g:N).
f 1 g

tApp t [a1; . . .; an] tLambda (nNamed "f")
(tProd nAnon qNat

(tProd nAnon qNat qNat))
(tLambda (nNamed "g") qNat

(tApp (tRel 1)
[tApp qS [q0]; tRel 0]))

An application of t applied with arguments l has a type t’ if the application is
well-formed, that is t is not an application itself and l is not empty. Additionally, t
has to be well-typed with a type t_ty and be able to be applied to the arguments l.
This is handled by the typing_spine predicate mentioned in Section 3.1.1.
type_App (t : term) (l : list term) (t_ty t’ : term):
Σ; Γ ` t : t_ty →
isApp t = false →
l 6= [] →
typing_spine Σ Γ t_ty l t’ →
Σ; Γ ` tApp t l : t’

Applications are presented in a more intuitive way in PCUIC with unary argu-
ments:
tLambda (nNamed "f")

(tProd nAnon qNat
(tProd nAnon qNat qNat))

(tLambda (nNamed "g") qNat
(tApp
(tApp (tRel 1) (tApp qS q0))
(tRel 0)))

Σ; Γ ` t : ∀x : A.B Σ; Γ ` u : A

Σ; Γ ` (t u) : Bx
u

In PCUIC the typing rule is simpler as the constructor is more straightforward:
type_App (t : term) (na : name) (A B u : term):
Σ; Γ ` t : tProd na A B →
Σ; Γ ` u : A →
Σ; Γ ` tApp t u : B {0 := u}

14 MetaCoq

An application t u is well-typed if the term t has the type of a quantification ∀na :

A,B and the argument u has the type A. The resulting type is Bwhere the argument
na is substituted with u. This way we also avoid the invariants of TemplateCoq
while proving lemmas.
References
References refer to variables bound in the term by quantifications, let-in-express-
ions, or lambda-expressions. The references are constructedwith tRel nwhere n: N
is the de Bruijn index representing the identifier.

Most mappings over terms like substitution and liftings manipulate the indices or
replace the whole tRel n term.

λ (x:N) (f:N→ nat). f x (tLambda (nNamed "x") qNat
(tLambda (nNamed "f")

(tProd nAnon qNat qNat)
(tApp (tRel 0) [tRel 1])))

To type a term tRel n the environment has to be well-formed and the definition
corresponding to n has to be found in the local environment Γ . This means that it is
the type of the nth binder introduced before. The type is the looked up type lifted
to the current position to accommodate for the n declarations afterwards. Visually
speaking, the environment Γ is Γ ’, dn, . . . d1, d0 and tRel n corresponds to dn. Be-
cause the type dn is typed in the environment Γ ’, it has to be lifted over d0, . . . dn to
be typed in Γ .

wf Σ Γ (x : T) ∈ Γ
Σ; Γ ` x : T

type_Rel (n : N) (decl : context_decl):
wf_local Σ Γ →
nth_error Γ n = Some decl →
Σ; Γ ` tRel n : lift0 (S n) (decl_type decl)

Variables and existentials
The tVar and tEvar constructors are skipped as we do not use these and both con-
structs currently have no semantics in MetaCoq.
Sorts
Sorts like P, Set, and Type are represented using the tSort u constructor. Hereby, u
represents the level of the universe.

3.1. TemplateCoq and PCUIC 15

P

Set

T→ T

tSort (Universe.from_kernel_repr
(Level.lP, false) [])

tSort (Universe.from_kernel_repr
(Level.lSet, false) [])

tProd nAnon
(tSort (Universe.from_kernel_repr

(Level.Level "Top.65", false) []))
(tSort (Universe.from_kernel_repr

(Level.Level "Top.66", false) []))

One can observe that the universe sort is encoded in the level type.
A sort4 constructed by tSort is typed in a higher sort if the sort level l is valid in
the global environment Σ.

wf Σ Γ
Σ; Γ ` P : Type(1)

wf Σ Γ
Σ; Γ ` Type(i) : Type(i+ 1)

type_Sort (l : LevelSet.elt):
wf_local Σ Γ →
LevelSet.In l (global_ext_levels Σ)→
Σ; Γ ` tSort (Universe.make l) : tSort (Universe.super l)

Casting
The tCast constructor takes three arguments: the term, a cast kind, and the ex-
pected type. The kind indicates the algorithm used to verify the type conversion in
the original Coq source code. The kind is currently ignored in MetaCoq.

t: A nat : Set

tCast t k A tCast qNat Cast qSet

A type cast is well-typed if the type t is well-typed with some universe type s and
the term c has the type t. The unification strategy k is ignored.
type_Cast (c : term) (k : cast_kind) (t : term) (s : Universe.t):
Σ; Γ ` t : tSort s →
Σ; Γ ` c : t →
Σ; Γ ` tCast c k t : t

4 This typing rule only applies to non-algebraic universes.

16 MetaCoq

Casts only exist in TemplateCoq. Therefore, PCUIC has no cast term or typing
constructor.
Quantification
In MetaCoq ∀-quantifications and implications, also called dependent products,
are introduced with the tProd na t1 t2 constructor. t1 is the type of the argumen-
t/premise and t2 is the term of the body/conclusion.

An implicationA→ B is semantically the same as a ∀-quantification ∀a : A.Bwhere
one ignores the name a of the argument by not using it in the conclusion B. The
first argument is a name which can either be unnamed (nAnon) for implications or
a name (nNamed id) where the identifier id is a string. Names have no semantic
meaning and are only annotations for printing.

∀ x: A. B ⊥ → ∀ (P: P). P

tProd x A B tProd nAnon q⊥
(tProd (nNamed "P")

qP
(tRel 0))

A quantification ∀n : t.b is well-typed in the larger5 universe of s1 and s2 if the type
t is typed in s1 and the body b is well-typed under the environment extended by
the assumption named n of type t with a type in s2.

Σ; Γ ` t : s1 Σ; Γ, (x : t) ` b : P
Σ; Γ ` ∀x : t.b : P

Σ; Γ ` t : Type(i) Σ; Γ, (x : t) ` b : Type(i+ 1)
Σ; Γ ` ∀x : t.b : Type(i+ 1)

type_Prod (n : name) (t b : term) (s1 s2 : Universe.t):
Σ; Γ ` t : tSort s1 →
Σ; Γ , vass n t ` b : tSort s2 →
Σ; Γ ` tProd n t b
: tSort (Universe.sort_of_product s1 s2)

λ-expressions
Abstractions can be constructed with tLambda na t1 t2. The structure is basically
the same as the one of quantifications: t1 is the argument type and t2 is the body
term.

5 This is only the case if s2 does not correspond to P due to impredicativity.

3.1. TemplateCoq and PCUIC 17

λ x:A. b λ (X:T) (f:X→ P).
∀ (x: X). f x

tLambda x A b tLambda (nNamed "X")
(tSort (Universe.from_kernel_repr

(Level.Level "Top.244", false) []))
(tLambda (nNamed "f")

(tProd nAnon (tRel 0) qP)
(tProd (nNamed "x") (tRel 1)
(tApp (tRel 1) [tRel 0])))

An abstraction λ (n:t). b is typed with the corresponding type ∀ (n: t). bty if the
argument type t is a valid type and the body b is typed with bty under the envi-
ronment extended by the assumption n: t.

Σ; Γ ` t : s Σ; Γ, n : t ` b : bty

Σ; Γ ` λn : t.b : ∀n : t.bty

type_Lambda (n : name) (t b : term)
(s1 : Universe.t) (bty : term):

Σ; Γ ` t : tSort s1 →
Σ; Γ , vass n t ` b : bty →
Σ; Γ ` tLambda n t b : tProd n t bty

Let-in expressions
Let-in expressions take a name, a term for the argument, the type of the argument,
and lastly a term for the body.

let x := t : A in b let x := 0 : N in
x

tLetIn x t A b tLetIn (nNamed "x") q0 qNat
(tRel 0)

The typing of a let-in expressions let n := b : b_ty in b’ is nearly the same as for
λ-abstractions: the type b_ty has to be well-typed, the let-in body b has to be typed
with b_ty, and the inner body b’ has to have a type b’ _ty. If the constraints are
satisfied the let-in expression has the type let n := b : b_ty in b’ _ty.

Σ; Γ ` bty : s Σ; Γ ` b : bty Σ; Γ, (x := b : bty) ` b ′ : b ′ty
Σ; Γ ` let n := b : bty in b

′ : let n := b : bty in b
′
ty

18 MetaCoq

type_LetIn (n : name) (b b_ty b’ : term)
(s1 : Universe.t) (b’ _ty : term):

Σ; Γ ` b_ty : tSort s1 →
Σ; Γ ` b : b_ty →
Σ; Γ , vdef n b b_ty ` b’ : b’ _ty →
Σ; Γ ` tLetIn n b b_ty b’ : tLetIn n b b_ty b’ _ty

Constants
The tConst k l constructor for constants takes a kernel name of the constant and a
list of universes to account for the possibility of universe polymorphism. For details
on universes and universe polymorphism see [35].

plus

0+0

tConst "Coq.Init.Nat.add" []

tApp (tConst "Coq.Init.Nat.add" [])
[q0; q0]

Constants tConst cst u, definition, lemmas and axioms in Coq, are well-typed if
they refer to a global declaration decl, determined by declared_constant. The pred-
icate declared_constant executed the lookup_env function and expects as result a
constant Some (ConstantDecl cst decl). Lastly, it is checked that the universe con-
straints are satisfied and the universe instance is substituted for the universes in the
type of the declaration.

type_Const (cst : ident) (u : Instance.t)
(decl : constant_body):

wf_local Σ Γ →
declared_constant Σ.1 cst decl →
consistent_instance_ext Σ(cst_universes decl) u →
Σ; Γ ` tConst cst u
: subst_instance_constr u (cst_type decl)

Inductive types
Inductive types are formed with the tInd ind u constructor where ind: inductive
identifies the inductive type. Like constants, inductive types also have an argu-
ment for universes. The type inductive is a record containing the kernel name
inductive_mind and an index for mutual inductive declarations inductive_ind.

3.1. TemplateCoq and PCUIC 19

nat

⊥

odd

tInd {| inductive_mind :=
"Coq.Init.Datatypes.nat";

inductive_ind := 0 |} []

tInd {| inductive_mind :=
"Coq.Init.Logic.⊥";

inductive_ind := 0 |} []

tInd {| inductive_mind :=
"Coq.Arith.Even.even";

inductive_ind := 1 |} []

Similar to constants, the inductive type is looked up in the global context and
checked with declared_inductive. Hereby, mdecl is the mutual inductive decla-
ration and idecl is the inductive body. Lastly, the universes are again checked and
substituted.
type_Ind (ind : inductive) (u : Instance.t)

(mdecl : mutual_inductive_body) (idecl : one_inductive_body):
wf_local Σ Γ →
declared_inductive Σ.1 mdecl ind idecl →
consistent_instance_ext Σ(ind_universes mdecl) u →
Σ; Γ ` tInd ind u
: subst_instance_constr u (ind_type idecl)

Constructors
The constructor terms take the same arguments as the inductive type and an ad-
ditional number n stating which constructor should be used. They are introduced
with tConstruct ind n u.

0

S

tConstruct
{| inductive_mind :=

"Coq.Init.Datatypes.nat";
inductive_ind := 0 |} 0 []

tConstruct
{| inductive_mind :=

"Coq.Init.Datatypes.nat";
inductive_ind := 0 |} 1 []

To type a constructor the inductive type has to be defined in the global environment
and a constructor corresponding to the number i has to be found. This is done

20 MetaCoq

with declared_constructorwhich itself is a conjunction of declared_inductive and
a constructor lookup with nth_error. The type is then constructed by substituting
the inductive type into the type of the constructor. This is necessary as constructors
refer to the inductive type with tRel 0.
type_Construct (ind : inductive) (i : N) (u : Instance.t)

(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(cdecl : (ident × term) × N):

wf_local Σ Γ →
declared_constructor Σ.1 mdecl idecl (ind, i) cdecl →
consistent_instance_ext Σ(ind_universes mdecl) u →
Σ; Γ ` tConstruct ind i u
: type_of_constructor mdecl cdecl (ind, i) u

Matches
Pattern matching is introduced with tCase (ind, npar) p c brs.
Here, ind: inductive is the inductive type, npars:N the number of parameter, p: term
the return typewhich takes all indices and the instance of type indwith λ-abstractions,
c: term is the object overwhich thematch is performed and lastly brs: list (N×term)
are the branches. Each branch is a pair with the number of arguments and the term
used in the match.

λ (P:N→ P)
(H0: P 0)
(HS: ∀ n, P (S n))
(n:N).
match n as m
return P m with

| 0 ⇒ H0
| S k ⇒ HS k
end

. . . (* the lambda abstractions *)
tCase
(* match type *)
({ | inductive_mind := "Coq.Init.Datatypes.nat";
inductive_ind := 0 |}, 0)

(* return type *)
(tLambda (nNamed "m") qNat

(tApp (tRel 4) [tRel 0]))

(* match object *)
(tRel 0)

[
(* O case without arguments *)
(0, tRel 2);
(* S case with one argument *)
(1, tLambda (nNamed "k") qNat
(tApp (tRel 2) [tRel 0]))

]

3.1. TemplateCoq and PCUIC 21

type_Case (indnpar : inductive × N)
(u : Instance.t) (p c : term) (brs : list (nat × term))
(args : list term)
(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(ps : Universe.t) (pty : term)
(btys : list (nat × term)):

let ind := indnpar.1 in
let npar := indnpar.2 in
declared_inductive Σ.1 mdecl ind idecl →
ind_npars mdecl = npar →
Σ; Γ ` c : mkApps (tInd ind u) args →
let params := firstn npar args in
build_case_predicate_type ind mdecl idecl params u ps = Some pty →
Σ; Γ ` p : pty →
leb_sort_family (universe_family ps) (ind_kelim idecl)→
map_option_out
(build_branches_type ind mdecl idecl params u p) = Some btys →

All2
(λ br bty : N ×term.
(br.1 = bty.1 × Σ; Γ ` br.2 : bty.2)
× Σ; Γ ` bty.2 : tSort ps) brs btys →

Σ; Γ ` tCase indnpar p c brs
: mkApps p (skipn npar args ++ [c])

Pattern matching with tCase is the most complicated typing rule. The typing con-
structor is only given for completeness.
First the inductive type and the parameter count is extracted from the first argu-
ment indnpar. It is then checked that the inductive type is declared in the environ-
ment with a mutual inductive declaration mdecl and an inductive body idcel, and
that the number of parameters of mdecl correspond to the count npar given by the
tCase constructor arguments.
The arguments args are used to verify that the match object c is an instance of the
inductive type fully applied with parameters, the first npar arguments of args, and
indices.
The return type is checked to type with a type pty computated by the function
build_case_predicate_type. This function ensures that the return type takes all
indices and the match instance and returns terms in the ps universe space. This
universe is checked to be a valid eliminationwith leb_sort_family. Therefore, large
elimination is only possible if this not prohibited by the type.
Similar to the type of the return type a list of types btys for the branches is cal-
culated using the build_branches_type function. The types are checked with the

22 MetaCoq

All2 predicate that performs a pointwise check that every branch types with the
corresponding branch type and the branch type is a valid type.

If all requirements are met, the case construct types with the return type p applied
to the arguments args and match object c.
Projections
Primitive projections are introduced when a type is declared with Record.

Records can be declared with a declaration Record T := con { p1 : t1; p2: t2 }
where the record is called T, the constructor to build is con and it has two fields,
p1 of type t1 and p2 of type t2. These arguments can be dependent. Therefore, t2
can mention p1.

The record T is basically the same as if it was declared with an inductive type
Inductive T := con (p1 : t1) (p2 : t2). Hence, a record is semantically an induc-
tive typewith one constructorwithout indices. The only difference is that Coq auto-
matically defines the projections for the arguments. These projections are functions
that extract an argument from an instance of the record type.

TheMetaCoq projections refer to primitive projections [34] Coq declares for record
types when the Set Primitive Projections option is set. Primitive projections work
the same way as normal projection functions. In Coq they are written as t.(p) or
p t where t is an instance of the record and p is the projection.

One can, for example, define rational numbers6 with a record.
Record Rat : Set := mkRat {
top : N;
bottom : N;
Rat_cond : bottom > O }.

The number 1
2 is then represented as follows:

Definition one_half : Rat.
refine (mkRat 1 2 _).
repeat constructor.

Defined.

InMetaCoqprojections are usedwith the tProj p t constructorwhere p: projection
and t: term. The type projection is a tuple of inductive and two natural numbers
representing the number of parameters of the record and the index of the argument
that is projected.

6 This representation does not admit a unique representation for numbers.

3.1. TemplateCoq and PCUIC 23

one_half.(bottom) tProj ({ | inductive_mind := "Top.Rat";
inductive_ind := 0 |}, 0, 1)

(tConst "Top.one_half" [])

First the projection p: inductive × N × N and the inductive declaration is looked up
in the global environmentwith declared_projection. Then the instance c is checked
to be a correctly applied instance of the inductive type where all parameters are
instantiated with args, ensured by #| args | = ind_npars mdecl. To determine the
resulting type, the arguments, c, and the universe are substituted for the local ref-
erences in the record type ty.
type_Proj (p : projection) (c : term)

(u : Instance.t)
(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(pdecl : ident × term)
(args : list term):

declared_projection Σ.1 mdecl idecl p pdecl →
Σ; Γ ` c : mkApps (tInd p.1.1 u) args →
#| args | = ind_npars mdecl →
let ty := pdecl.2 in
Σ; Γ ` tProj p c
: subst0 (c :: rev args) (subst_instance_constr u ty)

Fixed points
Fixed points allow for structural recursive function declarations in Coq and so form
a basic principle needed, for example, to perform induction. One usually writes
fixpoint definitions with the vernacular command Fixpoint but it is also possible
to write terms involving inlined fixed points. To allow for mutual recursion it is
possible to intertwine multiple fixed-point functions.
fix f1 (x11: X11) . . . (xn1:Xn1) {struct xk1} : A1 := t1 with
. . . with
fix fm (x1m: X1m) . . . (xnm:Xnm) {struct xkm} : Am := tm
for fi

Each function fl in the mutual fixpoint takes arguments xil of some type Xil, has
an argument that has to decrease in every recursive call xkl and returns something
of type Al in the environment with all fixpoint declarations.

InMetaCoq the fixed points are represented using tFix mfix iwith mfix:mfixpoint
and i:N as the index of the fixpoint function used, the fi in the example above. The

24 MetaCoq

type mfixpoint is list (def term) where def is a record with a type as parameter.
The def record has four fields:
• dname is the name of the definition, in this case the name of the fixpoint,
• dtype is the type, Ai in the example above,
• dbody is the body, ti, with λ-abstractions for the arguments,
• and lastly rarg is the index of the recursive argument.

Coq:
fix add (n m:N) {struct m} : N :=
match m with
| O ⇒ n
| S m’ ⇒ S (add n m’)
end

TemplateCoq7:
tFix [{|
dname := nNamed "add";
dtype := tProd (nNamed "n") qNat

(tProd (nNamed "m") qNat qNat);
dbody := tLambda (nNamed "n") qNat

(tLambda (nNamed "m") qNat
(tCase (qNat’,0)

(tLambda (nNamed "m") qNat qNat)
(tRel 0)
[(0, tRel 1);
(1, tLambda (nNamed "m’") qNat

(tApp (tConstruct qNat’ 1 [])
[tApp (tRel 3) [tRel 2; tRel 0]]))]));

rarg := 1 |}] 0

The fixed point should be structurally recursive, stated by fix_guard, but this condi-
tion is currently not implemented. Next, the selected function has to be in the mu-
tual fixpoint construction, checked with nth_error. Afterwards, the type context
with all fixpoints and assumptions is generated and checked for well-formedness.
The main statement checks that the body of every fixpoint is a function and has a
type dtype d that is valid in the environment Γ extended with the fixpoint declara-
tions types.
type_Fix (mfix : mfixpoint term) (n : N) (decl : def term):

fix_guard mfix →
nth_error mfix n = Some decl →

7 qNat’ is the inductive part (without universe list) of qNat

3.2. Conversion 25

let types := fix_context mfix in
wf_local Σ (Γ , types)→
All
(λ d : def term.
Σ; Γ , types ` dbody d : lift0 #| types | (dtype d)
× isLambda (dbody d) = true) mfix →

Σ; Γ ` tFix mfix n : dtype decl

Co-fixed points
Co-fixed points are defined analogously to fixed points with the tCoFix constructor
taking the same arguments. Co-fixed points are typed nearly the same as fixed
points except that the fix_guard is left out. The productivity criterion is currently
not checked.
Conversion
To prove that a term t has a type B one can always use conversion (see Section
3.2) to transform the type B into a convertible type A and prove that t has type A
instead. Additionally, B has to be a valid type in the environment and needs to be
well-formed.
type_Conv t A B :
Σ; Γ ` t : A →
isWfArity typing Σ Γ B +
(Σ s : Universe.t, Σ; Γ ` B : tSort s) →
Σ; Γ ` A 6 B →
Σ; Γ ` t : B

3.2 Conversion
Two terms t and u are convertible if the cumul predicate, written as written as Σ; Γ `
t 6 u, holds both ways. The relation cumul Σ Γ t u holds if the terms are the same
under the leq_term predicate or one of the terms can be reduced to a term v using
the red1 predicate, and this term is checked recursively with the other term. The
leq_term predicate checks that two terms are congruent up to universes. If two
terms are convertible, they can be reduced to α-convertible terms.
The one step reduction red1 has constructors for congruence rules, that is reduction
in subterms, for each constructor. Quantification, for example, has two rules:
prod_red_l (na : name) (M1 M2 N1 : term):
red1 Σ Γ M1 N1 →
red1 Σ Γ (tProd na M1 M2) (tProd na N1 M2)

prod_red_r (na : name) (M2 N2 M1 : term):
red1 Σ (Γ , vass na M1) M2 N2 →
red1 Σ Γ (tProd na M1 M2) (tProd na M1 N2)

26 MetaCoq

The first rule allows for reduction in the argument, and the second rule allows to
perform reduction under the quantification.
The remaining rules are the usual conversion rules known from Coq’s type theory.
β-reduction
red_beta (na : name) (t b a : term) (l : list term):

red1 Σ Γ (tApp (tLambda na t b) (a :: l))
(mkApps (b {0 := a}) l)

β-reduction is the evaluation of an application to a function expression, an expres-
sion with a λ-abstraction at its head. The first applied argument is consumed and
substituted for the argument na.
(λ(x : t).b)a bxa

ζ-reduction
red_zeta (na : name) (b t b’ : term):
red1 Σ Γ (tLetIn na b t b’) (b’ {0 := b})

The reduction of let-in expressions is called ζ reduction and allows to insert the
body b for na in b’ .8

let x := b : t in b’ b’xb
Unfold
red_rel (i : N) (body : term):
option_map decl_body (nth_error Γ i) = Some (Some body) →
red1 Σ Γ (tRel i) (lift0 (S i) body)

The unfold reduction allows to lookup a relation in the local environment and use
the body instead of the relation if one is found. This corresponds to ζ-reduction
when the let-in expression was already introduced in the local environment Γ . The
lifting is necessary to compensate for the new assumptions added to Γ after the
let-in.
ι-reduction
red_iota (ind : inductive) (pars c : N)

(u : Instance.t) (args : list term)
(p : term) (brs : list (nat × term)):

red1 Σ Γ
(tCase (ind, pars) p (mkApps (tConstruct ind c u) args) brs)
(iota_red pars c args brs)

8 This coincides with the understanding that let x := b : t in b’ is semantically the same as
(λ x:t. b’) b.

3.2. Conversion 27

iota_red (npar c : N) (args : list term) (brs : list (nat × term)) =
mkApps (nth c brs (0, tDummy)).2 (skipn npar args)

When a match is performed over a constructor of the inductive type, ι-reduction
can be used to select the corresponding branch. This selection is done with the
iota_red function that chooses the corresponding branch and forwards the argu-
ments without parameters.

match C a b with
| . . .⇒ . . .

| C x y ⇒ H x y
| . . .⇒ . . .

end

 H a b

Fixed point unfolding
red_fix (mfix : mfixpoint term) (idx : N)

(args : list term) (narg : N) (fn : term):
unfold_fix mfix idx = Some (narg, fn) →
is_constructor narg args = true →
red1 Σ Γ (tApp (tFix mfix idx) args) (tApp fn args)

Fixed point functions also can be unfolded by reduction like λ-abstractions. How-
ever, there is an additional constraint that the recursive argument in position narg
has to be a constructor to prevent infinite unfolding.

Co-fixed point unfolding
red_cofix_case (ip : inductive × N)

(p : term) (mfix : mfixpoint term)
(idx : N) (args : list term)
(narg : N) (fn : term) (brs : list (nat × term)),

unfold_cofix mfix idx = Some (narg, fn) →
red1 Σ Γ
(tCase ip p (mkApps (tCoFix mfix idx) args) brs)
(tCase ip p (mkApps fn args) brs)

red_cofix_proj (p : projection) (mfix : mfixpoint term)
(idx : N) (args : list term)
(narg : N) (fn : term),

unfold_cofix mfix idx = Some (narg, fn) →
red1 Σ Γ (tProj p (mkApps (tCoFix mfix idx) args))
(tProj p (mkApps fn args))

Co-fixed points can be unfolded if they appear in amatch or projection. These cases

28 MetaCoq

are handled by red_cofix_case and red_cofix_proj.
δ-reduction
red_delta (c : ident) (decl : TemplateEnvironment.constant_body)

(body : term) (u: Instance.t):
declared_constant Σ c decl →
cst_body decl = Some body →
red1 Σ Γ (tConst c u) (subst_instance_constr u body)

δ-reduction is unfolding of constants. A constant can be looked up in the environ-
ment and substituted for the body with instantiated universes.
Projection unfolding
red_proj (i : inductive) (pars narg : N)

(args : list term) (k : N) (u : Instance.t)
(arg : term):

nth_error args (pars + narg) = Some arg →
red1 Σ Γ
(tProj (i, pars, narg) (mkApps (tConstruct i k u) args)) arg

A projection of an applied constructor can be unfolded to the corresponding argu-
ment.

(C a b).(first) a

Conversion in PCUIC
The cumul predicate in PCUIC has two additional constructors for η-conversion.
These constructors allow to perform η-expansion on both terms. The η-expansion
of a term t: A → B is λ (x:A). t x.
3.3 Inductive types
Every inductive declaration is represented by a mutual_inductive_body construct
(Figure 3.5). This construct represents the whole mutual inductive definition with
the individual inductive types as a list in ind_bodies.
As the parameters are constant across all inductive types in the mutual inductive
declaration they are stored in the field ind_params of mutual_inductive_body in re-
verse order and their number is stored in ind_npars (see Figure 3.6). The parame-
ters have to be uniform in the conclusion of every constructor but can vary in the
arguments mentioning one of the types. In the case that they are the same in every
instance of the type they are called uniformparameters and nonuniformotherwise,
like the last parameter called x in Figure 3.6.9

9 There is currently no indication which parameters are uniform. Therefore, we implemented a
syntactic check to determine this property which we need later on.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.non_uniform.html#getPCount

3.4. Execute MetaCoq commands 29

Record mutual_inductive_body : T := Build_mutual_inductive_body
{ ind_finite : recursivity_kind;
ind_npars : N;
ind_params : context;
ind_bodies : list one_inductive_body;
ind_universes : universes_decl;
ind_variance : option (list Variance.t) }

Record one_inductive_body : T := Build_one_inductive_body
{ ind_name : ident;
ind_type : term;
ind_kelim : sort_family;
ind_ctors : list ((ident × term) × N);
ind_projs : list (ident × term) }

Figure 3.5: Mutual and one inductive body declarations from MetaCoq.

Other than that, the mutual_inductive_body also has a field for the universe con-
straints ind_universes and ind_variance to handle variances for polymorphic cu-
mulative inductive types.
Every single inductive type is represented by an object of type one_inductive_body.
It has a name in ind_name and a type ind_type which quantifies all parameters and
indices. The possible elimination is stored in ind_kelim and all constructors are
represented in ind_ctors. ind_ctors is a list with the name, type and number of
arguments. Lastly there is the field ind_projswhich contains a list of possible pro-
jections (see Section 3.1.2) of the inductive type.
3.4 Execute MetaCoq commands
Vernacular commands are instructions on the toplevel of Coq that invoke OCaml
code. Some examples are Print, Definition, Fixpoint, or Fail. MetaCoq imple-
ments a set of vernacular commands and a set ofmonadic functionswhich allow for
easy manipulation of the environments of Coq (Figure 3.7). These commands al-
low to implement general plugins in Coq as plugins are transformations on the syn-
tax and environments of Coq terms. A program consists of individual commands
chained with monadic operations to build a complex algorithm. The commands
are monadic operations, reification commands to quote and unquote objects, and
useful general purpose commands.
The monadic aspect of the TemplateMonad programs mean that it is possible to com-
bine the commands into larger programs. To do so one can use the tmBind con-
structor with a convenient notation common for monadic programs: if one wants
to execute a command A and then another command B using the result a of A, one

30 MetaCoq

Inductive Acc (A : T) (R : A → A→ P)(x : A) : P :=
Acc_I : (∀ y : A, R y x → Acc R y) → Acc R x

{|
ind_finite := Finite;
ind_npars := 3;
ind_params := [{| decl_name := nNamed "x";

decl_body := None;
decl_type := tRel 1 |};

{| decl_name := nNamed "R";
decl_body := None;
decl_type := tProd nAnon (tRel 0)

(tProd nAnon (tRel 1) qP) |};
{| decl_name := nNamed "A";

decl_body := None;
decl_type := qType |}];

ind_bodies := [{|
ind_name := "Acc";
ind_type := tProd (nNamed "A") qType

(tProd (nNamed "R")
(tProd nAnon (tRel 0)

(tProd nAnon (tRel 1) qP))
(tProd (nNamed "x") (tRel 1) qP));

ind_kelim := InType;
ind_ctors := [

("Acc_I",
tProd (nNamed "A") qType
(tProd (nNamed "R")

(tProd nAnon (tRel 0)
(tProd nAnon (tRel 1) qP))

(tProd (nNamed "x")
(tRel 1)
(tProd nAnon

(tProd (nNamed "y")
(tRel 2)
(tProd nAnon

(tApp (tRel 2) [tRel 0; tRel 1])
(tApp (tRel 5) [tRel 4; tRel 3; tRel 1])))

(tApp (tRel 4) [tRel 3; tRel 2; tRel 1])))),
1)];

ind_projs := [] |}];
ind_universes := Monomorphic_ctx (of_list [], ConstraintSet.empty);
ind_variance := None |}

Figure 3.6: The type Acc and its quoted TemplateCoq representation below.

3.4. Execute MetaCoq commands 31

can simply write a ← A; B or in a short notation A >>=(λ a. B). This notation is short
for tmBind A (λ a. B). The other monadic constructor is tmReturn which takes any
object and transports it into the TemplateMonad space.
A program can then be executed with the MetaCoq Run vernacular functioning as an
interpreter for programs using the TemplateMonad. These commands and the ver-
nacular are implemented in OCaml as a traditional Coq plugin where the under-
lying functions are mostly simple transformations from the OCaml types to Tem-
plateCoq. Hereby, one usually executes programs of the type TemplateMonad unit
and uses the side effects of the commands. Side effects are modification to the envi-
ronment of Coq and include the addition of declarations and definitions or printing
messages to the output.
Most of the TemplateMonad commands also have a vernacular command associated
with them:

command10 Vernacular meaning
tmQuote t MetaCoq Quote Returns the representation of t

in TemplateCoq
tmQuoteRec t MetaCoq Quote Returns the representation of t

and all declarations needed for
t

tmQuoteInductive kn MetaCoq Quote Returns the declaration of the
inductive type kn

tmQuoteUniverses Returns a quoted representa-
tion of the universes in the cur-
rent environment

tmQuoteConstant kn b MetaCoq Quote Returns the declaration of the
constant kn. The boolean b
indicates whether the opacity
should be ignored to get the
body

tmMkInductive d MetaCoq Unquote Declares an inductive repre-
sented by d

tmUnquote tm MetaCoq Unquote Returns a type A and a term
with the type A and syntax tm

tmUnquoteTyped A tm MetaCoq Unquote Returns a term with the syntax
tm and checks the type to be A

tmPrint x Print Prints an object x
tmMsg msg Print Prints a string message

32 MetaCoq

tmFail msg Fail Fails with an error message
msg

tmEval red t Eval Evaluates t with the strategy
red 11

tmLemma id A Lemma Creates an obligation of type
A for the user and returns the
constant id afterwards

tmDefinitionRed_
b ident red x Definition Generates a definition named

ident with the body x. Be-
fore the definition is created
the reduction strategy red is
performed (if one is given).
The boolean b determines
whether the definition should
be transparent (false) or
opaque (true).

tmAxiomRed ident red X Axiom Reduces Xwith red and creates
an axiom named ident

tmFreshName ident Generates a fresh name from
ident which does not occur in
the environment. Hereby ident
already has to be in the correct
format of identifiers.

tmAbout id About If id is a constant in the envi-
ronment a global reference is
returned

tmCurrentModPath () Returns the current prefix of
modules. Therefore, this com-
mand in a module A would re-
turn "Top.A".

tmExistingInstance ident Existing Instance Adds the object identified by
ident to the type class.

tmInferInstance red X Performs reduction with red
and tries to infer an instance of
type X.

As the quoting function is used very often there are some other variants to call
10See Figure 3.7 for types.
11Possible strategies are cbn, cbv, hnf, all, unfold or lazy

3.4. Execute MetaCoq commands 33

Inductive TemplateMonad@{t u} : T→ P:=
(* monadic commands *)
tmReturn : ∀ A : T. A → TemplateMonad A

| tmBind : ∀ A B : T.
TemplateMonad A → (A→ TemplateMonad B)→ TemplateMonad B

(* Reification Commands *)
| tmQuote : ∀ A : T. A → TemplateMonad Ast.term
| tmQuoteRec : ∀ A : T. A → TemplateMonad Ast.program
| tmQuoteInductive : qualid → TemplateMonad Ast.mutual_inductive_body
| tmQuoteUniverses : TemplateMonad ConstraintSet.t
| tmQuoteConstant : qualid → bool→ TemplateMonad Ast.constant_body
| tmMkInductive : Ast. mutual_inductive_entry→ TemplateMonad unit
| tmUnquote : Ast. term → TemplateMonad typed_term
| tmUnquoteTyped : ∀ A : T. Ast. term → TemplateMonad A

(* informational commands *)
| tmPrint : ∀ A : T. A → TemplateMonad unit
| tmMsg : string → TemplateMonad unit
| tmFail : ∀ A : T. string → TemplateMonad A
| tmEval : reductionStrategy→ ∀ A : T. A → TemplateMonad A
| tmLemma : ident → ∀ A : T. TemplateMonad A
| tmDefinitionRed_ : bool → ident→ option reductionStrategy→

∀ A : T. A → TemplateMonad A
| tmAxiomRed : ident → option reductionStrategy→

∀ A : T. TemplateMonad A
| tmFreshName : ident → TemplateMonad ident
| tmAbout : qualid → TemplateMonad (option global_reference)
| tmCurrentModPath : unit → TemplateMonad string
| tmExistingInstance : qualid → TemplateMonad unit
| tmInferInstance : option reductionStrategy→

∀ A : T. TemplateMonad (option A)

Figure 3.7: The inductive types containing all MetaCoq commands that can be chained in
a monadic fashion.

34 MetaCoq

it. It is possible to write <% X%> to quote X inline. Additionally, there is the
quote_term t (λ x. T) tactic which quotes the object t and then performs the tac-
tic T.
Supplementary to the commandsmentioned in Figure 3.7 theMetaCoq project also
has other commands built on top of the basic TemplateMonad ones for easier use. An
example is the tmDefinition command that creates a transparent definitionwithout
reduction and therefore simply calls tmDefinitionRed_ with the first and third ar-
gument already specified. Another example is tmMkDefinitionwhich takes a term,
quotes it, evaluates the result, and then creates a definition.
Let us look at two small mini-plugins to get familiar with the TemplateMonad pro-
grams.
Contraposition
The first plugin takes an implication P → Q or a definition of an implication and
adds the contraposition ¬ Q → ¬P as an axiom to the environment.
We start with the main part of our mini-plugin:

1. check if the argument is an implication,
2. extract the assumption and conclusion,
3. unquote both,
4. construct the contraposition,
5. add the axiom.

Theoretically the steps three and four could be exchanged so that the contraposition
is constructed in the quoted representation and then is unquoted. We choose this
order to have a better understandable function and better failure messages if the
user inputs an implicationwhere one side is not a proposition. We explicitly require
propositions to use the propositional not function of Coq.12

Definition computeContrapos (t:term) (name:ident) : TemplateMonad unit :=
match t with
| tProd nAnon t1 t2 ⇒
na ← tmFreshName name;
q1 ← tmUnquoteTyped P t1;
q2 ← tmUnquoteTyped P t2;
let q := ¬q2 → ¬q1 in
(
tmAxiomRed na None q;
tmPrint q;

12It would easily be possible to generalize this function to arbitrary implications in Type.

3.4. Execute MetaCoq commands 35

tmMsg (append "was added to the environment as axiom " na)
)

| tProd _ _ _ ⇒ tmFail "A non dependent implication is expected"
| _ ⇒ tmFail "Invalid argument: Implication expected."
end.

Wefirstmatch the term to checkwhether it is an implication, that is tProdwhere the
assumption is unnamed (nAnon), in other cases the function fails with an informa-
tive message. In the tProd nAnon case we generate a fresh name for the axiom from
the given name and unquote the assumption and conclusion with P as expected
type. When we have both propositions as Coq termwe can construct the contrapo-
sition q. Lastly, the axiom is constructed with tmAxiomRed and a success message is
displayed.

Because it is inconvenient to give the implication explicitly, we extend our plugin to
recognize if a definition is given and call the computeContrapos function accordingly.
Definition addContrapos (H: P) (name:ident) : TemplateMonad unit :=
p ← tmQuote H;
match p with
| tConst qual _ ⇒
q ← tmQuoteConstant qual false;
match Ast. cst_body q with
| Some t ⇒ computeContrapos t name
| None ⇒ tmFail "a constant with an empty body is not a valid argument"
end

| _ ⇒ computeContrapos p name
end.

The first step of the main function is to quote the argument. Next, we compare the
argument and unfold the constant in case of a definition. This is simply done with
tmQuoteConstant.

The plugin then can be called with MetaCoq Run (addContrapos (⊥ → >)"Contra"),
or MetaCoq Run (addContrapos H "Contra") if H is a definition containing the impli-
cation, creating the axiom Contra : ¬ > → ¬⊥.
Constructor list
As inductive types are a large focus in later chapters we also take a look at another
mini-plugin creating a list with the types of the constructors of an inductive type.
For example the plugin should return [nat; nat → N] for the type nat.

To do this we have to get the abstract representation of the type, extract the con-
structors, and then unquote all constructor types and write them in a list.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.implication.html#computeContrapos
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.implication.html#addContrapos

36 MetaCoq

We first quote the type with tmQuote to extract the kernel name and quote the in-
ductive typewith tmQuoteInductive. Afterwards, we can inspect the inductive body
and operate on the constructor list ind_ctors. The details of the implementation are
found in Section A.4.
The plugin can be executed with MetaCoq Run (getCtors or) for the type or, and
MetaCoq Run (getCtors sig) for the type sig. The results, with the addition of the
constructors, are:
or_ctors =
[(∀ A B : P, A → A ∨ B; or_introl);
(∀ A B : P, B → A ∨ B; or_intror)]

sig_ctors =
[(∀ (A : T) (P : A → P)(x : A),
P x → {x : A | P x}; exist)]

Interactive commands
Two commands useful for interactive plugins are the tmLemma and tmInferInstance
commands.
With tmInferInstance it is possible to automatically fill holes by inference of miss-
ing instances of types.
In Coq one can declare objects as an instance of a class and these instances then can
be automatically inferred in definitions and proofs.
Existing Class >.
Existing Instance I.

(* for definitions *)
Definition inferTest : > := _.

(* in a proof *)
Goal >.
Proof.
refine (_).

Qed.

The same concept is available in MetaCoq with the TemplateMonad commands:
MetaCoq Run (tmExistingInstance "I").
MetaCoq Run (tmInferInstance None > >>=tmPrint).

The second command prints Some I as result which means that the instance I of
type >was found.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.constructorList.html#getCtors

3.5. Remarks 37

The lemma command tmLemma id T asks the user for an object of type T and creates
an object id with that instance.
MetaCoq Run (n ← tmLemma "nat_inst" N;

e ← tmEval all n;
tmPrint e).

Next Obligation.
exact (40+2).

Defined.

This program creates an obligation [28] for the user to provide a natural number
and after the instance is provided, creates nat_inst, evaluate it and prints the num-
ber. An obligation is a goal that has to be closed for the definition. After the corre-
sponding obligation for a tmLemma commands is closed the execution of the program
continues.
3.5 Remarks
To conclude this introduction to MetaCoq we want to reflect if MetaCoq meets the
ideals of the project. Therefore, we take a close look at the guarantees of MetaCoq
and what a user has to trust.
Translation guarantees
Due to ongoing development and changes in TemplateCoq and PCUIC, some lem-
mas, for example, the main statement of the correctness of the two translations
between the syntaxes, are admitted. Nevertheless, one can manually look at the
transformations and proofs and see that the transformations are correct and only
mostly intuitive statements are admitted. But formally the correctness is not fully
proven yet.
The correctness of the translation is stated as typing preservation instead of a bi-
jection. This is due to the two factors that, first, the second half of the translation,
fromPCUIC back to TemplateCoq, was only recently added. And, second, there are
some problems with the statement as PCUIC does not contain casts, and therefore,
there is no need to create TemplateCoq casts which leads to being non-surjective.
A possible solution to mitigate this would be to invent an equality relation and
prove that every term converted to PCUIC and back satisfies this relation. But in
the end, this equality is morally the same as to say that types behave the same in
possible contexts which itself is already covered by the typing preservation.
MetaCoq guarantees
The trust in MetaCoq relies in part on the trust in Coq. The underlying trust is
strengthened by the papers [31, 30] that use MetaCoq itself to create a formal spec-
ification of the type theory used by Coq and implement a trusted type checker for
the kernel of Coq. The other part is the modelling of the syntax and semantic.

38 MetaCoq

One has to make the same assumptions one usually makes when working with
Coq, that is, that the kernel works correctly, Coq parses and executes the proofs in
a proper way and Coq is a faithful implementation of the underlying type theory.
To work with MetaCoq one has to also trust the conversion from OCaml to Tem-
plateCoq, that the translations produce the right terms, and that the type system
implemented in MetaCoq is the type system that was meant in the implementation
of Coq’s kernel. The TemplateCoq syntax implementation is trusted because there
are rather simple functions from the OCaml types into TemplateCoq.
In the current state of the development one might have to check used typing lem-
mas by hand to be safe as the complete code has as of today over 75 admitted lem-
mas and over 140 todo comments.
A big advantage is that the source code is under active development and improve-
ment. But this also means that many aspects are expected to change.
A big step to improve the trustwould be an extensivewell commented test suite and
a comprehensive documentation. These tests would show that the functions and
commands work in practice and how to use them. The tests should include use
cases of the vernacular commands, example lemmas for typing and automation
tactics, and some mini-plugins.

Chapter 4

Case analysis

Every inductive type has a case analysis principle that scrutinises an instance of
the inductive type and allows proving statements on all elements by looking at
each way to construct an instance instead of a general unknown instance.
A case analysis principle is used to perform case analysis on elements of inductive
types. This corresponds to the behaviour of the destruct tactic in a proof.1 If we
want to prove a statement of the form ∀(n : N). P n over all natural numbers n, we
can perform case analysis and prove the statement for 0 and for S m with m : N.
The same strategy applies for inductively defined proposition like ∧, ∨ and 6.
An example is the case analysis principle for natural numbers (see Example 4.1.1):

EN : ∀(p : N→ T). p O→ (∀m. p(S m))→ ∀x. p x

The proof of a case analysis principle or induction principle is called an eliminator.
The eliminators for case analysis principles is non recursive. Later on, we will see
that the eliminators for induction principles use recursion.
Every inductive type has a case analysis principle similar to the induction principle
without induction hypotheses and therefore without recursion in the eliminator.
A way to generate the case analysis principle in Coq is the Scheme command which
generates a proof for the case analysis principle of an inductive type T.
Scheme T_case := Elimination for T Sort U.

We want to generate eliminators for the case analysis principles given a represen-
tation of an inductive type. For the generation, we use the MetaCoq project. Our
main goal is to replicate the case analysis scheme command:
MetaCoq Run Scheme T_case := Elimination for T.
1 The destruct tactic generated the case analysis principle on the fly when applied.

40 Case analysis

The case analysis principle has to handle the replacement and instantiation of in-
dices, quantification of variables like the m above and additional hypotheses as
would be the case for less or equal (see Example 4.1.3).
4.1 Application and examples
In the following examples we show the constructed lemmas and use cases.
4.1.1 Natural numbers

N : T
n : N ::= O | S n

EN : ∀(p : N→ T). p O→ (∀m. p(S m))→ ∀x. p x

For natural numbers the case analysis principle, also called non recursive elimina-
tor, is quite simple: There is one case without arguments and a second case with a
natural number as argument. There are no parameters or indices.
4.1.2 Disjunction

∨ : P→ P→ P
L : ∀(A : P) (B : P). A→ A∨ B

R : ∀(A : P) (B : P). B→ A∨ B

Disjunction is an inductive type with two parameters A and B.
A L

A∨ B
B R

A∨ B

E∨ : ∀A B. ∀(p : A∨ B→ P).
(∀(a : A). p (L A B a))→
(∀(b : B). p (R A B b))→
∀(x : A∨ B). p x

The two parameters A and B are quantified at the beginning. There are two cases,
one for eachway the disjunction can be proven. In both cases the proof of the propo-
sition, either A or B, is quantified as argument and used to construct the instance
of the disjunction for the predicate p.
4.1.3 Less or equal

le : ∀(n : N). N→ P

Less or equal has one parameter, the first argument, and one index, the second
argument.

4.2. Theory 41

le_n
le n n

le n m
le_S

le n (Sm)

Ele : ∀(n : N). ∀(p : ∀m. le n m→ P).
p n (le_n n)→
(∀m (h : le n m). p (S m) (le_S n m h))→
∀m (x : le n m). p m x

In the first case the index is instantiated with the parameter n and the constructor
has no additional arguments. In the second case the constructor takes a natural
number m and the statement le n m as arguments. The index is instantiated with
S m and all arguments are provided to the constructor. The indices are taken di-
rectly from the constructor.
4.2 Theory
Let T be an inductive Type. In general the case analysis principle of T applies to a
statement ∀(x : T). p xwhere x is an instance of type T . By applying the case analysis
principle x gets instantiated with a concrete application of the constructors. This
generates one case for each constructor.
T can have arguments like disjunction (see Example 4.1.2) or less or equal (see
Example 4.1.3). An argument is called a parameter if the instantiation is the same
across all calls to T in the constructors and an index if the instantiation varies.
Parameters are quantified in front of the principle (see Example 4.2.2). In order to
deal with the indices the predicate p does not only take the instance but also the
indices (see Example 4.2.4) as arguments.
4.2.1 Parameter-free types

T : T
ET : ∀(p : T → P). p c0 → . . .→ (∀a0 . . . an. p (cm a0 . . . an))→ ∀(x : T). p x

An example of a parameter-free type is the type of natural numbers N (see Exam-
ple 4.1.1).
If the inductive type T does not have any parameters and indices, then the case
analysis principle ET has one case for each constructor with quantification over all
arguments of the constructor. In this example the constructor c0 takes no argument,
like O for natural numbers, and cm takes n arguments called a0 to an.
The result of ET is the statement that p holds for every instance x of T if it holds in
each possible way to construct x. The result type of p depends on T and p can be of
type T → T if T allows for large elimination (see Section 2).

42 Case analysis

4.2.2 Index-free types

T : TP0
→ . . .→ TPk

→ T
ET : ∀P0 . . . Pk. ∀(p : T P0 . . . Pk → P).

p (c0 P0 . . . Pk)→ . . .→ (∀a0 . . . an. p (cm P0 . . . Pk a0 . . . an))→
∀(x : T P0 . . . Pk). p x

TPi
is the type of the i-th parameter.

An example of an index-free type is the disjunction (see Example 4.1.2).
If the inductive type T has parameters P0, . . . Pk but no indices, quantifications for
the parameters have to be added. As the parameters are the same across the whole
lemma, they are quantified first. For typing the parameters need to be applied to
the constructors.
4.2.3 Non-uniform parameter types
Non-uniform parameters are parameters which can have different instantiations
in recursive occurrences of T . They can be handled like normal parameters for
case analysis principles but are seen more like indices. This also means that they
are quantified in the cases and instantiated in the proof. This special treatment
is to make the case analysis principles compatible to the induction principles. In
Section 5.2.1 we will see in detail why this special treatment is necessary.
4.2.4 Indexed types

T : TP0
→ . . .→ TPk

→ TI0 → . . .→ TIk → T
ET : ∀P0 . . . Pk.∀(p : ∀I0 . . . Il.T P0 . . . Pk I0 . . . Il → P).

p i0 . . . il (c0 P0 . . . Pk)→ . . .→
(∀a0 . . . an.p i0 . . . il (cm P0 . . . Pk a0 . . . an))→
∀I0 . . . Il.∀(x : T P0 . . . Pk I0 . . . Il).p I0 . . . Il x

TIi is the type of the ith index.
An example of an indexed type is less or equal (see Example 4.1.3).
In the most general case T can have parameters P0, . . . Pk and indices I0, . . . Il as
well. As the instantiation of the indices can change in each constructor, the indices
need to be provided to p and therefore p quantifies over indices and the instance of
the inductive type T .
In each case the indices are instantiated with i0 . . . il as they were in the construc-
tor case. Here i0 . . . il can be some terms possibly involving the parameters and
arguments a0 . . . an of the case.

4.3. Eliminator 43

E6 := λ (n : N)
(p : ∀ m : N. n 6 m → P)
(Hle_n : p n (le_n n))
(Hle_S : ∀ (m : N) (H : n 6 m). p (S m) (le_S n m H))⇒
fix f (m : N) (x : n 6 m) {struct x} : p m x :=
match x as y in (_ 6 m) return (p m y) with
| @le_n _ ⇒ Hle_n
| @le_S _ m x ⇒ Hle_S m x
end

Listing 4.1: fully annotated case analysis principle proof term for 6

The conclusion of the principle is that pholds for every instance x of T with arbitrary
indices I0 to Il if it holds for every way to construct instances of T .
4.3 Eliminator

ET := λP0 . . . Pk. (4.1)
λ(p : ∀I0 . . . Il.T P0 . . . Pk I0 . . . Il → P). (4.2)
λH0 . . . Hm. (4.3)
fix f I0 . . . Il (x : T P0 . . . Pk I0 . . . Il). (4.4)
match x return p I0 . . . Il xwith (4.5)
ci a0 . . . an ⇒ Hi a0 . . . an (4.6)
. . . (4.7)

The proof of the case analysis principles follows the type of the case analysis prin-
ciple closely (compare Listing 4.1). To construct the case analysis principle, it is
enough to construct the proof term and infer the type.
Parameters, the principle p and the branches for the constructors are dealt with
λ-abstractions (4.1-4.3), an intro call in proof scripts.
The quantification over the indices and the instance is handled by a fixpoint declara-
tion (4.4) as this allows us to use recursion later on. Currently, this is not necessary
because case analysis does not use induction hypotheses.
Themain proof is done using amatch on the instance x (4.5) with application of the
corresponding case in each constructor case (4.6). The arguments are forwarded
from the constructor to the case.
Using type inference it suffices to provide the type of p, x and the return type of the
match.

44 Case analysis

fold (λ t param⇒ lambda param.name param.type t) params

Listing 4.2: Pseudocode of parameter quantification

4.4 Implementation
Our implementation follows the strategy outlined in Section 4.3 except the type
inference of arguments cannot be used.

First, the mutual inductive body and the one inductive body of the specific type
T are extracted. The mutual inductive body contains the parameters and the in-
ductive types, which can be more than one in case of a mutual inductive defini-
tion. The one inductive body contains the name, type, elimination possibilities
and constructors of T . Each constructor is represented by a number of arguments,
a name and a type.

Afterwards, information for the later implementation is gathered like the types of
the indices, the number of constructors and indices and some preparation on the
type is done.

Step (4.1): The parameters are taken using fold over the parameter list. For each
parameter a λ abstraction is nested around the proof term starting with the remain-
ing proof (see Listing 4.2). The parameter list needs to be reversed as it is stored in
reverse order in the inductive body.

Step (4.2): The next step is to take p. We can directly adopt the index quantifi-
cation inside the type of the predicate from the inductive type without parameter
quantification.

Step (4.3): Next, the cases for the constructors are taken. The main problem in this
step is to construct the type according to the constructor type, remove parameters
and construct the corresponding call to p with the constructor at the end. The in-
stantiation of the indices is acquired from the original term by replacing T with p,
removing the parameters in the application and appending a call of the constructor
with all arguments to construct an element of T for p.

Step (4.4): The main step happens in the fixpoint declaration. For the type of the
fixed point all indices and the instance are quantified as they are in the type of p.
The quantification is changed to λ abstractions for the body of the fixed point to
take each argument. Here we need to lift each parameter access additionally by
one in comparison to the type as we have the recursive binder for f in front.

Step (4.5): The same λ abstractions are needed inside the return type of the match
for the indices andmatch instance. Our result is again the application to p as it was

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#createElim
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#quantifyCases
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#generateInductiveAssumptions

4.5. Usage example 45

in the result of our fixed point.
Step (4.6): Finally, the match cases are generated where each constructor ci calls
the corresponding case hypothesis Hi and provides the arguments a from the con-
structor. This is done with a mapping on the constructor types and is nearly the
same as in the cases above with different lifting for the parameters and application
of the case instead of p.
4.5 Usage example
The program to generate a case analysis principle for type T can be called using the
command MetaCoq Run Scheme T_case := Elimination for T.
To derive the case analysis principle for B one can execute the command:

MetaCoq Run Scheme bool_case := Elimination for bool Sort T.

The resulting case analysis principle is

∀(p : B→ T). p true→ p false→ ∀(b : B). p b

Similarly MetaCoq Run Scheme N_case := Elimination for NSort P. generates the case
analysis principle for natural numbers:

∀(p : N→ P). p O→ (∀(m : N). p (S m))→ ∀(n : N). p n

For less or equal the case analysis principle is a bit more complicated due to the
parameter and index:

MetaCoq Run Scheme le_case := Elimination for le Sort P.

∀(n : N) (p : ∀m. n 6 m→ P).
p n (len n)→
(∀(m : N) (h : n 6 m). p (S m) (leS n m h))→
∀(m : N) (h : n 6 m). p m h

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#generateInductiveAssumptions
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#runElim

Chapter 5

Induction

In Chapter 4 the case analysis principles for inductive types were shown. Those
principles allow to inspect how an instance of an inductive type is constructed.
But if one wants to prove statements over all elements of an inductive type, case
analysis principles are often not strong enough. In each constructor case one can
assume that the predicate already holds for the structurally smaller arguments of
inductive type in the constructor.

The knowledge that the predicate holds for the structurally smaller instances is
expressed by the fact that additional assumptions are added in the cases of the
principles. The assumptions are introduced for every recursive argument of the
inductive type for which we construct the principle. One usually calls these new
assumptions induction hypotheses.

Structural induction principles generate induction hypotheses for directly struc-
turally smaller instances. These instances are given as argument to the constructor.
For the constructor S of natural numbers the argument m is such an argument for
which an induction hypothesis is added. Besides structural induction, there is also
complete induction. In the complete induction principle for a type T , the assump-
tion is that the principle holds for all smaller instances of the type T . In this thesis
we will only look at structural induction.

The hypotheses get more involved when the type of the argument is not the induc-
tive type but rather a construct involving the inductive type. We will look at these
cases in Section 5.2.2 and Chapter 6.
5.1 Application and examples
One normally defines functions with recursive specification directly with recur-
sion using fixed points. Alternatively, one could also use recursive eliminators as
the cases of the predicate are a case analysis and provide the recursive result as
induction hypotheses. Additionally, the eliminators can be used in a logical con-

5.1. Application and examples 47

text to prove statements by induction. Recall that an eliminator ET for a type T is
the proof of an induction principle and as such describes a function that takes a
predicate, case assumptions, an instance of T and returns a proof of the predicate
applied with the instance.
We look again at the examples from Chapter 4 and see how the inductive hypothe-
ses change the principles. Wewill use blue colour to indicate differences compared
to case analysis. From this chapter on, we will identify the recursive eliminator for
the induction principle of a type T with ET .
5.1.1 Natural numbers

N : T
n : N ::= O | S n

EN : ∀(p : N→ T).p O→ (∀m.p m→ p(S m))→ ∀x.p x

The base case O has no recursive argument of type N and therefore stays the same
compared to the case analysis principle. As the successor has a recursive argument
m : N we gain an additional assumption p m stating that p holds for m. This usu-
ally makes it much easier to prove p (S m) or in some cases is what makes it even
possible.

Lemma 5.1 (Addition with zero) We are now able to prove lemmas like ∀n. n+0 = n.
If we apply the induction principle, we get two cases.

The base case 0+ 0 = 0 is trivially provable with conversion.

In the successor case S m + 0 = 0 we get the additional assumption IH : p m which is
m + 0 = m for this proof. With conversion the goal is transformed into a state where we
have to solve the original problemm+0 = m but now on the instancemwhich is structurally
smaller than n (because n = S m). This can be solved with the induction hypothesis IH
which directly gives us the needed statement form.

Additionally, we can use the eliminator to write functions for natural numbers: If
we want to write the even : N→ B function determining whether a number is even,
we have the base case that zero is even and the successor case where we negate the
result of the even check for the number below. The boolean negation is handled
with the function negb : B→ B.

even O := true

even (S m) := negb(even m)

48 Induction

We can transform the basic equations for each case into an application of the elim-
inator.

even n := EN (λ_. B) true (λm h. negb h) n

5.1.2 Less or equal
Less or equal is a predicate with a parameter and an index. Recall that predicates
can only be eliminated over propositions (see Section 2).

le_n
le n n

le n m
le_S

le n (Sm)

Ele : ∀(n : N).∀(p : ∀m. le n m→ P).
p n (le_n n)→
(∀m (h : le n m). p m h→ p (S m) (le_S n m h))→
∀m (x : le n m). p m x

As with natural numbers we have a recursive occurrence in the argument h in the
leS constructor. The statement p m h takes the argument h as instance and extracts
the indices from the type of h. This is necessary as the indices can be different in
recursive calls and therefore need to be specified for p.
5.1.3 Accessibility
Accessibility is an inductive predicate with two uniform parameters A and R and
one non-uniform parameter a.

∀y. R y x→ Acc R y
AccIAcc R x

EAcc : ∀(A : T) (R : A→ A→ P) (p : ∀(a : A). Acc R a→ T)
(∀(a : A) (h : ∀(y : A). R y a→ Acc R y).

(∀(y : A) (g : R y a). p y (h y g))→
p a (AccI a h))→
∀(a : A) (x : Acc R a). p a x

The non-uniform parameter a is treated as an index in the induction principle. The
case for the constructor AccI has a recursive argument h for which an induction
hypothesis is added. As the argument h is guarded recursive, additional quantifi-
cation have to be added (see Section 5.2.2). From h a structurally smaller instance
is generated with the application h y g and used in the induction hypothesis as
instance of Acc for the predicate p.

5.2. Theory 49

C : (h : T a i0)→ T a i1

HC : (h : T a i0)→ (IHh : P i0 h)→ P a i1 (C h)

Figure 5.1: The first line shows the constructor C of the Type T with one parameter and one
index. In the second line we have the case HC taking the same arguments. If an argument
h is recursive, mentions the type T , an induction hypothesis IHh is added. The type of IHh

is the type of h where the type application is replaced with a call to the predicate P. The
instance of the type T is h itself for the predicate call in IHh and the index instantiation is
taken from h.

G 42 GSG n

Figure 5.2: An inductive type G with a non-uniform parameter n. n is the same in all
conclusions but is instantiated with 42 in GS. Therefore, the predicate should be p : ∀n :

N. G n→ T and the induction hypothesis p 42 h when the argument is named h.

If the second argument of p is ignored, one can see the structural induction princi-
ple for Acc as well-founded induction principle over elements of type A with R as
well-founded relation: p a holds if p y holds for all elements that are smaller than
a in the relation R.
5.2 Theory
The differences to case analysis principles are that we have to augment the cases
with the induction hypotheses and generate their proofs in the eliminator. To gen-
erate the induction hypotheses we iterate over all arguments and if an argument
mentions the inductive type, we copy it and replace the type with the predicate of
the principle. The call to the principle uses the same index instantiation as the type
occurrence in the argument and the argument is the instance (see Figure 5.1).
5.2.1 Non-uniform parameters
Recall that a non-uniform parameter is the same across all conclusions of the con-
structors but can vary in the arguments (see Figure 5.2, Section 4.2.3). The separate
handling of non-uniform parameters becomes important for induction principles.
The recursive calls to the predicate are for instances with other instantiations of the
non-uniform parameter and have a different type. Therefore, we have to treat the
non-uniformparameters likewe treat indices and quantify the non-uniformparam-
eters in the predicate type. This also means that we have to extract the parameter
instantiations from calls to the inductive type and apply them to the predicate in
induction hypothesis.

50 Induction

f n = F→ G (S n)
GIG n

EG : ∀(f : N→ B)(p : ∀n. G f n→ T).
(∀n (h : f n = F→ G f (S n)). (∀(g : f n = F). p (S n) (h g))→ p n (GI f n h))→
∀n (x : G f n).→ p n x

EG f p HGI
n (GI _ _ h) := HGI

n h (λg. EG p f HGI
(S n) (h g))

Figure 5.3: G is an inductive type with a uniform parameter f : N → B, a non-uniform
parameter n : N, and guarded recursion in GI. We can observe that we treat n like an index
for themost parts as it is a non-uniform parameter. The guarded recursion is in the argument
h of GI. We only get the structurally smaller instance G f (S n) if f n is false. Therefore,
the induction hypothesis only gives a proof of p if f n is false. Structurally the induction
hypothesis is the same as the argument hwhereGwas replaced by p and the instance derived
from h with h g was added to p. The proof works similar: we take g : f n = F and use it to
derive an instance with h which can be used to recursively call EG.

5.2.2 Guarded recursion
With guarded recursion we mean an argument where the recursion is "guarded"
under quantifications. An example is the constructor C : (f n = F → T) → T . The
first argument of type f n = F → T employs guarded recursion with the guard
f n = F. This means that the first argument is a function returning a structurally
smaller instance of T when supplied with an argument f n = F.
The use cases of guarded recursion are limited to strictly positive occurrences [34].
An occurrence of a type T in an argument is strictly positive only if it appears in the
conclusion of that argument. Therefore, arguments with guarded recursion always
take the form A0 → . . .→ An → T where A0, . . . An do not mention T .
If one would allow negative recursion, the type D : T with the constructor DI :

(D→ ⊥)→ Dwould be valid. One then could write the function
Definition g (d: D) : ⊥ := match d with DI f ⇒ f d end

The function call g (DI g) : ⊥ results in infinite recursionwithout termination. This,
in turn, would diminish the trust in Coq as non-termination can be used to prove
anything.
If we generate the induction principle for a type T and have an argumentH : nat→
T , we get an instance of T if it is applied to a natural number. And, as we have a
proof of the predicate for structurally smaller instances, the induction hypothesis

5.3. Eliminator 51

reflects this knowledge. The hypothesis IH : ∀(n : nat), p(Hn) states that for every
natural number the predicate holds for the instance constructed by Hwith n.
In general, the induction hypothesis for an argument H with guarded recursion
can be obtained by changing the conclusion of H with an application to p with H
applied to all arguments of H as instance for the inductive type. This procedure
can be viewed as an iteration over the type of H replacing the occurrence of the
inductive type with an application of the predicate (see Figure 5.3). The view of
the iteration unifies guarded recursion with normal recursive arguments and the
construction of the case type.
The proofs of guarded induction hypotheses are analogous to their type where the
call to the predicate p is replaced with a call to the recursive function f.
5.3 Eliminator
For the eliminator we have to generate a proof of the new assumptions in each case.
For example we can look at the proof of EN:

EN p (HO : p O) (HS : ∀m. p m→ p (S m)) O := HO

EN p (HO : p O) (HS : ∀m. p m→ p (S m)) (S n) := HS n (EN H0 HS n)

We can observe that the proofs of induction hypotheses are recursive calls to the
eliminator. This corresponds to the intuition that the induction hypothesis states
that our predicate holds for the structurally smaller instance.
Similar to the construction of the hypothesis itself the proof transfers the indices
from the argument type to the recursive function of our principle and applies the
argument as instance of our type.
The proof is valid as the fixed point of our proof is only applied to structurally
smaller arguments. Therefore, the eliminator terminates and returns a proof for
the given instance.
Termination
To create the eliminator we apply a fixed point function recursively to generate
the proofs for the induction hypotheses. Therefore, we need to make sure that
the eliminator terminates in order to derive a valid function. Basically, Coq only
supports structural recursion. This means that a fixed point can only be applied to
arguments that are structurally directly smaller than the given ones.
This condition is satisfied for the eliminators ET because we only call the recur-
sive function on arguments of the constructors of the type T . Such constructor ar-
guments are by definition structurally smaller than the instance derived from the
constructor because the constructor took the argument to create the instance [7].

52 Induction

C : . . .→ T p0 . . . pk pk+1 . . . pn i0 . . . im ⇒ p pk+1 . . . pn i0 . . . im (C . . .)

Figure 5.4: An example constructor C for a type T with k uniform parameter p0, . . . pk and
some non-uniform parameter pk+1, . . . pn as well as with indices i0, . . . im is transformed
into the type of the case assumption for the induction principle.

Therefore, the termination criterion for fixed points is trivially satisfied by the elim-
inators.
5.4 Implementation
The eliminators are implemented much the same way as the ones for case analysis.
We only extend the function for the cases 4.3 and proofs 4.6.
We have seen that the generation of the type for the constructor cases and the proof
term is similar in structure. Therefore, wewrite one functionmapping a constructor
to first generate the case type and secondly create the proof term in the match.
The function needs to know whether induction hypotheses should be added, the
case type or proof term is generated, the de Bruijn index of the predicate p, the
recursive function f (only for the proof term), and the de Bruijn index to identify
the recursive call to the inductive type. Additionally, a body, an application term
and an application list is needed as we will see.
We will take a closer look how to construct the assumptions and proofs for differ-
ent terms by case analysis on the type of the constructor. The important cases are
references tRel n and ∀-quantifications tProd x A b. Recall that the constructor S
of natural numbers has the quoted type tProd nAnon (tRel 0) (tRel 1). Here, both
tRel terms point to the inductive type N itself, and therefore, indicate recursion.
tRel n
Constructor branches: The base case is a termof the form tRel n or tApp (tRel n) . . .1
which simply is transformed to a call of p if n is equal to the recursive position of
the inductive type (see Figure 5.4). The predicate has to be applied with the non-
uniform parameters and indices and lastly the application object. The application
object is the constructor and the application list are the arguments encountered in
the constructor.
Proof terms: For the proof term we need a case distinction whether we generate
the proof term for an argument or for the whole constructor.

1 With this we mean an application with a tRel body. In PCUIC the body might be hidden under
additional application terms.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#generateInductiveAssumptions
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#generateInductiveAssumptions

5.5. Usage example 53

Constructor S : N→ N
Case Assumption HS : ∀(n : N).p n→ p (S n)

Proof PS : λ(n : N).HS n (f n)

Figure 5.5: The case assumption and proof term for the successor constructor of natural
numbers. For the main proof of p (S n) (after we took all arguments), we can apply the
case assumption HS and supply all arguments. For each argument mentioning N we have
to supply a proof for the newly added induction hypothesis. This is done with the recursive
proof f.

In the first case, we can directly adapt the procedure for the branch type by simply
substituting f for p where f is the recursive function for the proof.

The second case is the main case where we want to generate the proof term that
the predicate holds for the current constructor. Here we cannot apply f because f is
only applicable to structurally smaller instances. Instead we call the corresponding
case H, given as application object, and supply the constructor arguments which
were collected in the application list during construction (see Figure 5.5).
tProd x A b
The other case of our function are terms of the form tProd x A bwhich correspond
to ∀(x : A).b. We first try to generate an induction hypothesis / proof term for x : A.

Constructor branches: If A is suitable to be augmented into an induction hypoth-
esis we add the hypothesis after the quantification of x : A and lift the remaining
term accordingly. Otherwise, we only add the quantification for x : A. Afterwards,
we continue with b.

Proof term: For the proof term we also take a look at x : A with a recursive call.
If a proof term is generated, we add the proof term as additional application term
into the application list for the call to b together with a call to the current argument
x. Then, we compute the proof term for b and return a λ-abstraction taking the
argument x : A and returning the recursively generated proof term (see Figure 5.6)
5.5 Usage example
To generate the induction principle for a type T the plugin can be invoked with
MetaCoq Run Scheme T_induct := Induction for T.

For natural numbers the induction principle is generated with

MetaCoq Run Scheme N_induct := Induction for N.

54 Induction

Constructor C : ∀(x : T). . . .
Case Assumption HC : ∀(x : T). IHx → . . .

Proof PC : λ(x : T). HC x Px . . .

Figure 5.6: For the case assumption of C we add the recursively generated induction hy-
pothesis IHx. For the proof term we don’t change the λ-expression taking the arguments but
only add a recursively generated proof term Px to the call of HC.

∀(p : N→ T). p O→ (∀(n : N). p n→ p (S n))→ ∀n. p n

For less or equal the index instantiation for the induction hypothesis is taken from
the recursive argument.

MetaCoq Run Scheme le_induct := Induction for le.

∀(n : N) (p : ∀m. n 6 m→ P).
p n (len n)→
(∀(m : N) (h : n 6 m). p m h→ p (S m) (leS n m h))→
∀(m : N) (h : n 6 m). p m h

The induction principle of Acc is more complicated as it involved guarded recursion
and a non uniform parameter x: X. The recursive call is generated by the instantia-
tion H y g of the argument that involves guarded recursion.

MetaCoq Run Scheme Acc_induct := Induction for Acc.

∀(X : T) (R : X→ X→ P) (p : ∀(x : X). Acc R x→ T).
(∀(x : X) (h : ∀(y : X). R y x→ Acc R y).

(∀(y : X) (g : R y x). p y (H y g))→
p x (Accintro x H)

)→
∀(x : X) (h : Acc R x). p x h

5.6 Remarks
An interesting development was that the function started very involved and dif-
ficult. We first generated the case types and proof terms separately with nested

5.6. Remarks 55

folding and mapping where some parts of the terms were replaced manually. The
induction hypotheses, for example, were first constructed by an indexed filter and
mapping operation over the collected arguments which was hard to understand
and debug, and not at all extensible to guarded recursion.
As we added guarded induction, nested induction, and moved to PCUIC, our in-
duction principles were not only more general and useful but the functions became
simpler and more structured over time. We were able to unify the different aspects
of induction, develop a general mapping over the constructors and combine the
type function with the proof term function into one function.
At first, the induction hypotheses were added after all arguments as this leads to
overall easier lifting behaviour and was implemented using mapping. But as the
function developed, we switched to a recursive approach with much easier sub-
taskswhich also caused the induction hypotheses to be directly after the arguments
as it is usual in Coq.
In Section 5.3 wementioned that the recursion has to be structural in order to guar-
antee termination. This is checked when the eliminator is unquoted into Coq by
the Coq kernel but cannot be checked by the typing predicate in MetaCoq as this
condition is currently not implemented in MetaCoq.

Chapter 6

Nested induction

Induction principles enable proving statements on all elements of inductive types.
To achieve this, the principle provides additional assumptions, the induction hy-
potheses, for recursive occurrences of the type in the constructors. Section 5.2.2
showed that the occurrence can be guarded in function calls. Moreover, the occur-
rence can also be nested in other inductive types like lists.
In the following chapterwewill discuss how to derive stronger induction principles
and eliminators for such inductive types. We will first see a generalization of the
hypotheses followed by the mathematical theory and implementation in MetaCoq.
We call types like lists that depend on other types container types, because in-
stances of list X, for example, contain elements of the argument type X. An argu-
mentH of a constructorC of the type T is called nested recursive [5] if the recursive
occurrence of T in H is an argument of a container type. An example is the argu-
ment H in this constructor C : (H : list T)→ T .
6.1 Application and examples
Nested inductive types often are used when complex structures are needed. Such
cases are rose trees, trees with arbitrary many direct sub-trees, or types represent-
ing the syntax of languages.
6.1.1 Rose trees
A nested recursive argument is used for roseTree:

roseTree ::= node (xs : list roseTree)

The argument of node is a list of sub-trees. Coq generates the following principle
that only performs a case analysis and provides no further information about the
list of trees xs:

∀P. (∀xs. P (node xs))→ ∀r. P r

6.1. Application and examples 57

But one can write a stronger principle that provides P for all trees in the list xs [5].
∀P. (∀xs. (∀x. x ∈ xs→ P x)→ P (node xs))→ ∀r. P r

The eliminator of the stronger principle is the same as the eliminator of Coq’s prin-
ciple except that one has to provide a proof for the new assumption.

λP H. fixf (r : roseTree) : P r :=
match rwith
node xs⇒ H xs (F∈list roseTree P f xs)

end
The function F∈list generates the proof of the new assumption for the list xs. We call
such a function proof function.
This principle is useful for most applications in proofs. For example, relations over
the depth and size of rose trees are provable. But this principle cannot be used
computationally.
The stronger principle for roseTree is not strong enough to define a size function
on roseTree. The size function size : roseTree → N maps rose trees to the number
of nodes in the tree. The size of a rose tree is one more than the sum of the sizes
of the direct sub-trees. Therefore, the size is computed using the sizes of all direct
sub-trees. With the eliminator generated by Coq it is not possible to compute such
a function because no results for the direct sub-trees are calculated.
Evenwith the stronger principle provided here one cannot define the size function.
On the one hand, the eliminator does no allow for large elimination due to the
definition of ∈. On the other hand, the structure of the list xs is lost in the predicate
and therefore, one cannot sum up the sizes of the direct sub-trees in xs.

Allnil
All X P []

P x All X P xs
Allcons

All X P (x :: xs)

The construction of All follows the structure of list and the Allcons constructor
guarantees that every element x : X in the list satisfies P. Intuitively All X P xs is
equivalent to the existence of a list ys : list (Σx P x) such that map π1 ys = xs. In
Section 6.2.1 we will discuss how this constructor can be generalized for arbitrary
container types. With the new predicate the assumption becomesAll roseTree P xs
and hence the eliminator is strong enough to define a size function with induction
over the All predicate.

∀P. (∀xs. All roseTree P xs→ P (node xs))→ ∀r. P r

This principle is strong enough even for computation of functions. But this ap-
proach does not generalize to arbitrary container types other than list.

58 Nested induction

A general approach is to use unary parametricity for the new assumptions. We
will discuss the general approach with unary parametricity in Section 6.2.1. The
principle with the unary parametricity translation as assumption is

∀P. (∀xs. listt roseTree P xs→ P (node xs))→ ∀r. P r

Here, listt is basically the same as All.
6.1.2 Binary trees
Another example for nested induction are binary trees defined with pairs:

bTree ::= leaf | bnode (h : bTree× bTree)

For this definition of bTree the bnode constructor takes an argument with nested
recursive occurrences in the pair container type. Like for roseTree the induction
principle generated by Coq gives no additional assumptions in the case of bnode:

∀(P : bTree→ P), P leaf→ (∀(h : bTree× bTree), P (bnode h))→ ∀b, P b

Like with lists, an assumption with an element predicate ∈× can be added:

x ∈× (p1, p2) := (x = p1 ∨ x = p2)

∀(P : bTree→ P). P leaf→
(∀(h : bTree× bTree). (∀x.x ∈× h→ P x)→ P (bnode h))→
∀b. P b

For an even stronger induction principle one can add the assumption P x× P y for
the argument (x, y) : bTree× bTree:

∀(P : bTree→ P). P leaf→
(∀(h : bTree× bTree). p (π1 h) × p (π2 h)→ P (bnode h))→
∀b. P b

It is not obvious how to generalize the principle, but again it will turn out that this
assumption is basically the same as the unary parametricity translation of products.
6.1.3 First-order terms
First-order terms over signatures can be variables identified by natural numbers
and function applications. For the function applications the correct numbers of
first-order terms have to be applied to the function. Therefore, the constructor takes
as argument a vector.

foterm := var (n : N) | func (f : X) (a : vec foterm (arity f))

6.1. Application and examples 59

The type X is the spaces of functions. The principle generated by Coq does not
provide any assumptions about the terms that are applied to the function in the
func constructor.

∀(P : foterm→ T).
(∀(n : N). P (var n))→
(∀(f : X) (a : vec foterm (arity f)).

P (func f a))→
∀(f : foterm). P f

With the correct function for the induction hypothesis assumptions one gets the
principle

∀(P : foterm→ T).
(∀(n : N). P (var n))→
(∀(f : X) (a : vec foterm (arity f)).

vect foterm P (arity f) a→
P (func f a))→
∀(f : foterm). P f

In this principle, vect T P n t states that P holds for all elements of type T in t : vec T n.

6.1.4 TemplateCoq terms
The term type from TemplateCoq (see Section 3.1) is also a type with many nested
recursive arguments. Therefore, the induction principle that is generated by Coq is
too weak for many applications as important assumptions are missing.

The constructor tApp takes a list of terms as argument, the tCase constructor has an
argument of type list (nat × term), and tFix and tCoFix take an argument of type
mfixpoint term. Therefore, the types list, prod, and the type definition mfixpoint
are used as containers. The function mfixpoint X = list (def X) is a nesting of two
container types. With the generalization of container types to arbitrary container
definitions, it is possible to add a induction hypotheses for all of the container def-
initions in the term type.

The term type also shows, that our plugin is able to derive induction principles
for types with nested containers, arguments where the type is a container inside
another container like list (nat × term) and list (def term).

60 Nested induction

Because the principle is quite long, we will only look at the important changes:

. . .

(∀(f : term) (args : list term). P f→ P (tApp f args))→
(∀ ip (t : term) (d : term) (b : list (N× term)).

P t→ P d→
P (tCase ip t d b))→
(∀(mfix : mfixpoint term) (idx : N). P (tFix mfix idx))→
. . .

In the strong principle induction hypotheses are added for all recursive arguments:

. . .

(∀(f : term) (args : list term). P f→
listt term P args→

P (tApp f args))→
(∀ ip (t : term) (d : term) (b : list (N× term)).

P t→ P d→
listt (N× term) (λ(h : N× term). >× p (π2 h)) b→

P (tCase ip t d b))→
(∀(mfix : mfixpoint term) (idx : N).
listt (def term) (λ(x : def term). p (dtype x)× p (dbody x))mfix→

P (tFix mfix idx))→
. . .

Before, the induction principles for TemplateCoq terms were written and proven
by hand. As the term type is large, it is tedious to even state the principle. it is
tedious to even state the principle. For the proof of the principle good bookkeeping
is required and such it takes a long time to do the proof by hand.
6.2 Theory
One can observe that the structure of the induction hypotheses for nested recur-
sive occurrences depends on the container type used. We call the predicates used
to generate the induction hypotheses of nested recursive arguments assumption
functions, the applications of these functions are marked blue above. We call the
corresponding functions providing the proof terms proof functions.
The proof function is used in the eliminator to derive the proof term for the new
induction hypotheses involving the assumption functions. In the following part of

6.2. Theory 61

the eliminator EroseTree for roseTree the recursive function is f and Flist is the proof
function:

. . . node xs⇒ Hnode xs (Flist roseTree P f xs) . . .

For roseTree an assumption function for list is needed. In general these assumption
functions Plist for list have the type ∀X (P : X→ T). list X→ T. The proof functions
then are required to have the type ∀X (P : X→ T) (f : ∀x. P x) (xs : list X). Plist X P xs,
where f is the recursive function used to generate proof for the smaller instances in
the container type.

A straightforward assumption function is Plist X P xs := ∀(x : X). x ∈ xs → P x.
This function simply states that every element in the list satisfies the predicate.1
The generated induction principle is the first one from above.
6.2.1 Parametricity
To generate induction hypotheses for arbitrary container types a general concept is
needed. Tassi shows that the unary parametricity translation of a container type
can be used to create the induction hypotheses [33].

Parametricity translations [26] are a technique used to express relations over ob-
jects of types. The parametricity translation is commonly used to derive statements
from the type of a function alone [37]. The unary parametricity translation of an
inductive type can be viewed as a predicate over elements of that type.

Following the idea fromTassi [33]we use the unary parametricity translation of the
container types to generate assumption functions. We show how the parametricity
translation fits the definition of assumption functions. The connection between in-
duction principles and unary parametricity is also seen in [19]. The parametricity
translation is implemented in MetaCoq [1].

In the following Tt is the unary parametricity translation of T .

We will first look at the translation for the container type list.

nilt
listt X PX []

PX x listt X PX xs
const

list X PX (x :: xs)

The translation adds a second parameter PX for the type parameter X. The unary
parametricity translation of list can be seen as a predicate over lists which states
that all elements in the list satisfy PX. Therefore, the predicate listt X PX xs over the
list xs states that every element in xs satisfies PX and also preserves the structure of
lists in its own structure.
1 This is also how Isabelle [24] generates nested induction principles (see Section 8).

62 Nested induction

The specification for listt states that if PX holds for every element x, then listt XPX xs
for the list xs can be constructed with proofs of PX for every element in the list:

(∀x. PX x)→ (∀xs.listt X PX xs)

This implication is also the type of the proof function Flist. On the other hand,
listt X PX xs also ensures that PX holds for all elements in xs.

listt X PX xs→ ∀x. x ∈ xs→ PX x

The translation listt : ∀(X : T) (PX : X→ T). list X→ T already has the correct type
for an assumption function. One also can observe that All and listt are equal up
to α-renaming. Therefore, listt can directly be used as an assumption function in
induction principles for nested inductive types.

One can also derive the unary parametricity translation for non-container types like
N. But we will not need the parametricity translation of these types.

Ot

Nt O
Nt n

StNt (S n)

The translation can be seen as a predicate over natural numbers that is satisfied for
every number.

∀(n : N). Nt n

Hereby, Nt follows exactly the structure of N itself.

Some problems emerge for container types with additional arguments with a type
that is not T like vec : ∀(A : T) (n : N). T.

nilt
vect X PX O O

t (nil X)
PX x vect X PX n n

t xs
const

vec X PX (S n) (St n nt) (cons X x n xs)

The translation vect adds an additional argument of type Nt that does not fit in
our general concept of assumption functions. These arguments cause problems as
described in Section 6.4 and 6.6.

In general, the unary parametricity adds an additional argument for every argu-
ment. For a type argument A : T the argument At : A → T is added. For every
argument t with type T other than T, a new argument with the unary parametric-
ity of T applied to t is created. As example, a : A is translated to h : At a, n : N to
h : Nt n, and xs : list A to h : listt A At xs.

6.2. Theory 63

6.2.2 Auxiliary definitions
The assumption function PTC

for the container type TC needs to know the argument
type X and the corresponding predicate p. In general, the assumption function for
a type with n type arguments andm other parameters or indices has the type

∀X1 (PX1
: X1 → T) . . . Xn (PXn

: Xn → T) p1 . . . pm. TC X1 . . . Xn p1 . . . pm

The structure becomes clear if one looks at pairs prod : ∀(A : T) (B : T). T that have
two type arguments, and vectors vec : ∀(A : T) (n : N). Twhich have an index that is
not a type. The types of the assumption functions will be Pprod : ∀(A : T) (PA : A→
T) (B : T) (PB : B→ T). A×B→ T and Pvec : ∀(X : T) (PX : X→ T) (n : N). vec X n→
T respectively. This style makes it easier to use the assumption functions in the
induction principle because it is possible to go through all arguments and add the
generated principle if one is generated.
In contrast to implications of arguments, it is not possible to ignore assumptions
that do not generate induction hypotheses because the assumption function has to
be instantiated. If an argument in the constructor C of the type T has the type T×N,
only an induction hypothesis for the first argument T can be generated but not for
N.
One possibility would be to have assumption functions depending on how many
recursive arguments are provided but this procedure leads to 2n different assump-
tion functions for a type with n type arguments.
The induction hypothesis for h : T × N is IHh : Pprod T p N ? h, where the question
mark has to be instantiated with a predicate over natural numbers. But there is no
meaningful predicate for the induction hypotheses. Therefore, a dummy predicate
PD : ∀(X : T) (x : X). > is used and thus the induction hypothesis becomes IHh :

Pprod T p N (PD N) h.
With the assumption function Pprod X PX Y PY (x, y) := PX x× PY y the hypothesis
is P (π1h)×>.
6.2.3 Guarded recursion
Nested recursion guarded in arguments like H : X → list T in a constructor for a
type T can be handled as described in Section 5.2.2. This can be done by deriving
an instance list T from H and generating the induction hypothesis with Plist for
that instance.
But if the argument H has the type list (X → T), a predicate of type (X → T) → T
for the type X → T is needed for Plist. The induction hypothesis can be generated
as Plist (X → T) (λ(h : X → T) (g : X). p (h g)) H by using η-conversion. With
η-conversion PX can be transformed to λx.PX x; and from there the instance x can

64 Nested induction

EroseTree := λ(P : roseTree→ T)
(Hnode : ∀(xs : list roseTree).Plist roseTree P xs→ P (node xs))

fix f (x : roseTree) : P x.

match x [

node xs⇒ Hnode xs (Flist roseTree P f xs)

]

Figure 6.1: The eliminator for roseTreewith the assumption function Plist and proof func-
tion Flist. Plist takes the same arguments as list but for the type argument an additional
predicate P and lastly the instance xs. Flist takes the same arguments as list with an addi-
tional argument f for the type argument. f is used by Flist to generate the proof terms for
the elements in xs.

be replaced by functions calls. In general, the predicate is generated by taking all
guard arguments of H with λ-abstraction and using them to generate an instantia-
tion for P.
6.3 Eliminator
As already mentioned, the proof function takes for each type argument X not only
the predicate PX : X → T but also a function FX : ∀(x : X). PX x and returns a proof
of the corresponding assumption function PX.
The proof function is instantiated like the assumption function to generate the proof
terms for the nested induction hypotheses. For the functions FX the proof term
is generated recursively. Recall that the proof term for an argument H : T in the
eliminator of T is a function call to the recursive function f.
For rose trees the eliminator needs the assumption function Plist and the proof
function Flist.

EroseTree := λ(P : roseTree→ T)
(Hnode : ∀(xs : list roseTree).Plist roseTree P xs→ P (node xs))

fix f (x : roseTree) : P x.

match x [

node xs⇒ Hnode xs (Flist roseTree P f xs)

]

Plist takes the same arguments as list but for the type argument an additional pred-
icate P and lastly the instance xs. Flist takes the same arguments as listwith an ad-

6.3. Eliminator 65

induction xs.
− constructor.
− constructor.
+ apply FX.
+ apply IHxs.

Figure 6.2: The proof of Flist : ∀(X : T) (PX : X → T) (FX : ∀(x : X). PX x) (xs :

list X). listt X PX xs. After induction over xs one has to prove listt X PX [] and
listt X PX (x :: xs). The first case is handled by the constructor nilt. In the second
case the const constructor needs a proof of PX x which is generated by FX and a proof
for listt X PX xs which is exactly the induction hypothesis IHxs.

ditional argument f for the type argument. In the application of Flist the recursive
function f is used to generate the proof terms for the elements in xs.

The proof function of a type T is constructed by induction over the instance of type T
followed by calls to the constructor (see Figure 6.2). Afterwards, the goals remain-
ing are the recursive calls which are exactly the induction hypotheses as well as
the statements that the predicates PY holds for every element in the container type.
The proofs of PY can be generated by the provided functions stating ∀(y : Y). PY y.
Termination
For Coq to accept the eliminator it has to recognize structural recursion in order to
make sure the eliminator always terminates.

The termination of a function f is checked with a structural guard performing a
check that every application of f is in a match of the recursive argument and is
applied to an argument of the constructor [16]. The check is recursivewhich allows
to nest multiple matches and even functions.

The proof functions FC are terminating as they are defined as standalone functions.
Therefore, we only have tomake sure that the applications of the recursive function
f that is provided to the proof function are allowed by the termination check of Coq
(see Figure 6.3). It is required for the proof functions to be defined transparently
for Coq to perform the termination check.

For the first assumption function for list, namely Plist XP xs = ∀(x : X). x ∈ xs→ P x,
a valid proof function can be constructed in the following manner: First induction
on xs is performed, deriving a contradiction with x ∈ [] in the base case. For the
successor case a case analysis with subsequent rewriting is performed on x ∈ xs,
followed by an application of f : ∀(x : X). P x. This is a valid proof function because f
is only applied to arguments in the list xs and thus smaller arguments than node xs.

66 Nested induction

EroseTree := . . .

fix f (r : roseTree) : P r.

match x [

node xs⇒ Hnode xs

(fix F (xs ′ : list roseTree).

match xs ′ [

. . .

| y :: ys⇒ const . . . (f y) ys (F ys)

]) xs

]

Figure 6.3: The eliminator for roseTree with Flist unfolded to highlight the recursion.
The function f is terminating because it is only applied to smaller arguments. As xs :

list roseTree is a constructor argument it is smaller than the argument r. In F a match
over the argument xs is performed leading to the smaller argument y : roseTree to which f
is applied. Therefore, f is only applied to arguments that are smaller than the argument r.

In contrast, a naive approach might be to ignore x ∈ xs and directly apply fX to P x.
This is a valid proof for the statement but does not showat allwhy fX is only applied
to smaller instances because in principle the x might be completely unrelated to
node xs. Therefore, this proof function cannot be used to generate the eliminator
for roseTree.

A wrong application of the argument f is avoided if the parametricity translation is
used as assumption function. The translation encases the proofs for the contained
elements in the original structure of the container type and therefore only exposes
proof goals on obviously smaller instances. Hence, a valid proof providing a proof
term for the assumption function is always an accepted proof function.

Therefore, the parametricity translation for assumption functions ensures that Coq
accepts the use of the proof functions in the eliminator because all function calls
are on smaller arguments.
6.4 Implementation
For the implementation of the nested induction it is important to have access to
the assumption and proof function for all container types in the inductive type.
The functions generating the eliminator have a nesting function as argument that
looks up the container types and returns the assumption and proof function. The

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#createElim

6.4. Implementation 67

nesting function needs to be constructed for each inductive type.
6.4.1 Database
The nesting function is constructed by iteration over all arguments of all construc-
tors filtering the types suited for induction used in these arguments.
A type class registered is introduced to manage all possible container types that
have a corresponding assumption and proof function.
From the list of container types the nesting function is generated by a TemplateMonad
program that tries to get a registered instance for each one. If no entry is found,
it is tested whether the type is even a container type or if it should be discarded.
This distinction is necessary as for an argument of type T × N both prod and N are
added, but N obviously is not a container type. If the type is a container type but
not found, a human-readable warning with instructions how to add the container
to the database is displayed.
If an entry in the registered type class is found, the assumption and proof function
are quoted and added to the nesting function.
The registered database is implemented using a type class [29] named registered.
Class registered {X:T} (ty:X) :=
{
assumptionType: T;
assumption: assumptionType;
proofType: T;
proof: proofType

}.

The argument ty identifies the container type. The implicit type X would be for
example T→ T for list. The field assumption and proof are the assumption and
proof functions with the corresponding types assumptionType and proofType. For
lists, an instance might be {| assumption := listt; proof := . . . |} : registered list.
6.4.2 Eliminator generation
The main algorithm stays the same except that every function needs the nesting
function to pass it along. Additionally, the generation function (see Sections 5.44.4)
for the proofs and assumptions gets a Boolean parameter stating whether dummy
predicates and their proof terms should be generated. The dummy predicates are
needed to guarantee a full application of the assumption and proof functions. If no
induction hypothesis can be generated, the dummy predicate simply is λ(X : T) (x :
X). > and the proof term is λ(X : T) (x : X). I.
The changes to the generation function can be viewed in two cases:

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.helperGen.html#createFunction
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.helperGen.html#registered
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.helperGen.html#isAugmentable
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#createElim
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#generateInductiveAssumptions
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#trivialPred

68 Nested induction

Constants and inductive types are looked up in the nesting function. If the hypoth-
esis is generated, the assumption function is returned and for the eliminator the
proof function is returned. If the type is not a container type, a dummy result is
returned if required.
For applications to constants and inductive types it is tested if a recursive occur-
rence is in the arguments. Otherwise, a dummy result is returned if needed because
no induction hypothesis can be generated.
For the term b x the hypothesis / proof for b is generated first. The result is then
applied to the argument x, the recursively generated predicate for x, and the proof
term of x if the eliminator is generated.
For the outermost application the recursively generated hypothesis / proof term,
that is an application of the assumption function or proof function, also needs to be
applied with the argument of the container type on which this hypothesis is based.
For example, an application of Flist X PX FX xs takes the type X, the predicate or
induction hypothesis PX for X, the proof term for elements of X FX, and lastly the
argument of type list X xs.
6.4.3 Adding containers
The dummy proofs and arguments are only generated for the type arguments of
the container type. For vec X n only an hypothesis for X : T but not for n : N
is generated. The lack of predicates for other arguments is the reason why the
parametricity translation cannot be used directly for the assumption functions.
Although Nt is true for every number and a proof of Nt n could theoretically be
given to vect, such additional arguments are not feasible in practice. For one, the
generation of the proof functions becomes much harder as involved dependent
elimination is needed for the proof function. And secondly, the type of the term
Nt n depends on the type of the argument of the container type in contrast to the
type arguments like X that always have a type T. This type is not annotated in the
term representation of the argument; and thus, the generation would be very dif-
ficult to implement.2 For vec T n the hypothesis would be vect T P n ? where the
question mark is a proof of Nt n dependent on n.
To generate the assumptions needed for non type arguments, knowledge about all
types in the arguments of the constructors is required. Therefore, these typeswould
need to be collected and quoted with MetaCoq Programs. Additionally, the book-
keeping would be tedious because the position of the arguments would need to
be associated with their types and additional predicates. Moreover, it would no
longer be possible to automatically generate the proof functions.
2 The type inference function [30] might be able to infer the type.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.destruct_lemma.html#trivialProof

6.4. Implementation 69

vect : ∀(X : T) (PX : X→ T) (n : N) (Pn : Nt n). vec X n→ T
nilvec : vect X PX 0 0

t (nilvec X)

consvec : ∀(x : X) (Hx : PX x) (n : N) (Hn : Nt n) (H : vec X n).

vect X PX n Hn H→ vect X PX (S n) (St n nt) (consvec X x n H)

vect2 : ∀(X : T) (PX : X→ T) (n : N). vec X n→ T
niltvec : vect2 X PX 0 (nilvec X)

constvec : ∀(x : X) (Hx : PX x) (n : N) (H : vec X n).

vect2 X PX n H→ vect2 X PX (S n) (consvec X x n H)

Figure 6.4: The parametricity translation vect is used to derive the type vect2 that can be
used as assumption function. All additional arguments, added by the parametricity trans-
lations, that do not correspond to type arguments are removed. Therefore, the arguments
Pn in vect and Hn in consvec are removed together with the instantiations of Pn. This
procedure makes the usage of vect2 much easier as one does not need to care about the proofs
of Nt involving the constructors Ot and St.

Although the assumption function cannot be the unary parametricity translation
directly, the translation can be used to derive the assumption function.

For the container type X the parametricity translation Xt is derived first. Then all
freshly added parameters that do not correspond to a type argument are removed
as these can not contribute to elements in the container type and therefore are not
important for induction hypotheses. The procedure is repeated for all inductive
bodies in the mutual inductive definition and for all of their constructors. After-
wards, a new inductive type is generated (see Figure 6.4).

Lastly, the proof function type is computed from the type of X and an obligation
[28] prompting the user to provide the proof is opened. After the obligation is
solved, the container together with the assumption and proof function is added in
the registered database.

As alreadymentioned in Section 6.3, the proof function is usually proved by induc-
tion on the instance followed by constructor calls and application of assumptions.
Therefore, an ltac tactic [9] is provided performing induction on the innermost
argument of quantifications. This tactic is set as the obligation tactic of Coq to au-
tomatically solve the obligation for the proof function.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.removeNonAug.html#cleanInd
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.addContainer.html#addType
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.MetaCoqInductionPrinciples.html#ind_on_last

70 Nested induction

6.4.4 Flags
To toggle the generation of nested induction hypotheses we implemented a flag
system similar to the Coq flags with Set and Unset in MetaCoq.
A type class Class mode (s: string) := state: bool that takes a string flag as argu-
ment is used to represent the flags. To set or unset a flag f one can simply add an
instance of mode fwith the desired value for state. The flag can be changed because
new instances overwrite old ones and therefore only the newest instance is used.
Accompanying the type class the functions and notations to get, set, and unset flags
were also implemented.
With the flag system it is possible to switch the generation of induction hypothe-
ses for nested argument on and off with MetaCoq Run Set Nested Inductives and
MetaCoq Run Unset Nested Inductives.
6.5 Usage example
In this section we will discuss the application of the plugin from the view of an
end-user.
The plugin can be included with a single import. The obligation tactic is overwrit-
ten to generate proof functions automatically.
Require Import MetaCoq.Induction.MetaCoqInductionPrinciples.

The plugin can be invoked similar to the Scheme command in Coq with MetaCoq Run
as prefix. It subsumes the functionality of the Scheme command and therefore can
also derive case analysis and induction principles for types without nested recur-
sion.
MetaCoq Run Scheme Elimination for N.
Check N_case_MC.
(* ∀ P, P 0 → (∀ n, p (S n)) → ∀ x, p x *)
MetaCoq Run Scheme Induction for N.
Check N_ind_MC.
(* ∀ P, P 0 → (∀ n, p n → p (S n)) → ∀ x, p x *)

MetaCoq Run Scheme list_induct := Induction for list.
Check list_induct.
(* ∀ X p, p [] → (∀ x xs, p xs → p (x::xs)) → ∀ inst, p inst *)

MetaCoq Run Scheme vec_induct := Induction for VectorDef.t.
Check vec_induct.
(* ∀ A (p : ∀ H : N, vec A H → T),

p 0 (nil A) →
(∀ (h : A) (n : N) (H : vec A n),
p n H → p (S n) (cons A h n H)) →

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.Modes.html#Mode
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.Modes.html#changeMode

6.5. Usage example 71

∀ (H : N) (inst : vec A H), p H inst *)

With the Set and Unset command the user can toggle whether induction hypothe-
ses for nested recursive arguments should be generated. With nested induction
disabled the generated principle is the same as the one from Coq.
MetaCoq Run Unset Nested Inductives.

Inductive rtree A : T :=
| Leaf’ (a : A)
| Node’ (l : list (rtree A)).

MetaCoq Run Scheme rtree_induct := Induction for rtree.
Check rtree_induct.
(* prints the induction lemma Coq would generate for rtee’ *)
(* ∀ (A : T) (p : rtree A → T),

(∀ a : A, p (Leaf’ A a)) →
(∀ l : list (rtree A), p (Node’ A l)) →
∀ inst : rtree A, p inst

*)

If the nested induction hypotheses are enabled, the generated principle includes a
hypothesis for the direct-subtree list of rose trees.
MetaCoq Run Set Nested Inductives.
(* activate generation of induction hypotheses for nested types *)

MetaCoq Run Scheme rtree_induct’ := Induction for rtree.
Check rtree_induct’.
(* prints the right induction principle for rtree *)
(* ∀ (A : T) (p : rtree A → T),

(∀ a : A, p (Leaf’ A a)) →
(∀ l : list (rtree A),
listt (rtree A) p l →
p (Node’ A l)) → ∀ inst : rtree A, p inst

*)

The plugin can even be used to generate an induction principle for PCUIC terms
(see Section 3.1). The induction hypotheses for nested recursion are generated for
the types list term, list (nat×term) and mfixpoint term for the term type.
From MetaCoq.PCUIC Require Import PCUICAst.
MetaCoq Run Scheme term_induct := Induction for term.

For new container types like list’ in the following example, the assumption and
proof functions are not in the database. Therefore, no induction hypothesis for the

72 Nested induction

nested recursive argument is generated and the user is alerted that list’ is not a
registered container and informed how to add list’ to the container database.
Inductive list’ X : T :=
| nil’ : list’ X
| cons’ : X → list’ X → list’ X.

Inductive rtree’ A : N→ T:=
| Leaf’’ (a : A) : rtree’ A 0
| Node’’ (n : N) (l : list’ (rtree’ A n)) : rtree’ A (S n).

MetaCoq Run Scheme rtree’_induct := Induction for rtree’.
Check rtree’_induct.
(* prints the induction principle Coq would generate for rtree’ *)

After the registration of list’ to the database with the Derive Container command,
the correct induction principle for rtree’ is generated.
MetaCoq Run Derive Container for list’.
(* adds list’ to the database for container types *)

MetaCoq Run Scheme rtree’_induct’ := Induction for rtree’.
Check rtree’_induct’.
(* ∀ (A : T) (p : rtree’ A → T),

(∀ a : A, p (Leaf’’ A a)) →
(∀ l : list’ (rtree’ A),
list’t (rtree’ A) p l →
p (Node’’ A l)) → ∀ inst : rtree’ A, p inst

*)

6.6 Remarks
With nested induction we extended the plugin beyond the capabilities of Coq’s
automatically derived induction schemes. The question how to derive induction
principles for nested inductive types has been often asked both in published work
[5, 14] and on the Coq club mailing list 3 with the answer that the induction princi-
ples have to be constructed by hand and require creativity for other containers than
list. Only recently was the unary parametricity translation as underlying principle
discovered [33, 19]. The generation of these induction principles can be done with
our plugin.

One can see induction hypotheses with guarded and nested induction as general-
ized induction on all functors, container types, as well as quantifications.

3 Benoît Viguier, 07.02.2016: How to prove an inductive property on trees
Ethan Aubin, 18.09.2007: rose tree equality

https://coq-club.inria.narkive.com/SVh9Iqsk/how-to-prove-an-inductive-property-on-trees
https://coq-club.inria.narkive.com/ceTPbXFX/rose-tree-equality

6.6. Remarks 73

The reason why also definitions are allowed in nested induction is because they be-
have similarly to inductive types and can also be polymorphic and therefore act as
container types. An example seen in Section 3.1 ismfixpoint in the tFix constructor
of term which is defined asmfixpoint X = list (def X). The assumption and proof
functions are simply the composition of the ones from def and list.
In the current state of MetaCoq it is necessary to compute the type of the assump-
tion function separately from the parametricity translation as the unquoting com-
mand has difficulties adding new universes to the environment. Moreover, the
practical application for complicated types is inhibited by problems with the para-
metricity translationwhich cannot unquote types involving container types. There-
fore, one is not able to automatically derive the assumption function for roseTree
or All and has to define it manually if these types should be used as a container.

Chapter 7

Correctness

Besides modelling the syntax of Coq terms, MetaCoq also provides conversion and
typing relations, as explained in Section 3.1.1. Recall that MetaCoq plugins are Coq
functions of type term→ term. Therefore, one is able to state and prove properties
of plugins.
The correctness of plugins is proven to ensure that the plugin behaves as expected.
The correctness result might be that wanted outcomes are produced or simply that
the plugin never fails to generate an output.
The system of Coq consists of the kernel and the remaining code. The kernel is
relatively small and needs to be trusted. It is the core of Coq’s implementation of
dependent type theory and performs all type checks. Therefore, the kernel enforces
guarantees that no ill-typed terms are allowed for example. One can add wrong
assumptions with axioms to Coq but these axioms are transparent to the users and
can be inspected using commands.
The majority of Coq’s code, including plugins, is untrusted and the results of plug-
ins for example are checked by the kernel. Therefore, a wrong plugin cannot intro-
duce inconsistencies to Coq. But nevertheless the correctness of plugins strength-
ens the trust in the plugin and is a bonus.
There are multiple ways to define correctness for the case analysis and induction
plugin.
The simplest specification is that the generated eliminator has a type. For natural
numbers with the generated term of the eliminator ÊN this specification is

∃(T : term). Σ; Γ ` ÊN : T

The specificationwith typing guarantees that the output of the plugin is well-typed
and therefore it never fails to generate a valid principle. One needs to only trust
MetaCoq to accept the guarantees of this correctness statement. But on the other

75

hand the statement is very weak as it does not provide guarantees about what the
generated term means.
A more sophisticated specification is that the type is the expected induction prin-
ciple for the given type. For natural numbers this judgement is

Σ; Γ ` ÊN : 〈∀(P : N→ T). P O→ (∀(m : N). P m→ P (S m))→ ∀(n : N). P n〉

The brackets 〈t〉 are used to indicate that the quoted representation of t is used. This
specification is more complicated than the previous one. The statement guarantees
that the computed eliminator really performs a case analysis and provides a valid
eliminator. Therefore, this specification proves soundness of the plugin. To get the
guarantees, one has to trust the function computing the resulting type to be correct.
As this function is relatively short it is doable to read and understand the function.
Additionally, this specification also has the guarantees of the previous one.
The most complicated but also strongest specification is the functional correctness
with respect to reductions. This correctness statement can be expressedusingdefin-
ing equations. For the natural numbers the equations are the following:

EN P HO HS O := HO

EN P HO HS (S m) := HS m (EN P HO HS m)

This specification is more complicated and therefore difficult to state formally. The
statement guarantees that the eliminator behaves correctly and does exactly what
a user expects the eliminator to do. Therefore, the specification is nearly the same
as the actual implementation. The specification is as complicated as the plugin
itself. Thus, there is no gain in proving the plugin correct under this specification
as the specification is as complicated as the plugin to prove correct. Therefore, this
specification has the strongest guarantees but also needs much trust and is very
complicated to state.
In this thesis we chose the second specification as correctness statement for the
plugin as it gives strong enough guarantees for most use cases and needs only little
trust. Additionally, the second specification is even simpler to prove than the first
one because one does not need to invent structure during the proof as would be the
case for the existence of a type.
The current development of the correctness statement contains unfinished lemmas.
The unfinished lemmas are on a technical side. The proof was very difficult due to
numerous reasons.
The underlying type theory of Coq has complicated typing rules as can be seen in
the rule for dependent matches (see Section 3.1.2). Even on paper and in a non-
abstract setting like the concrete typing judgement for Ele the proof is complicated.

76 Correctness

One needs the same hierarchy of lemmas and it is infeasible to even prove that the
eliminator of less or equal is correct.
The MetaCoq implementation of Coq’s semantics is not ideal for proofs that terms
type-check. For example the typing rules are defined using functions instead of
predicates and involve tail-recursive functions like rev and fold_left which make
proofs difficult.
Lastly, the typing proofs have to be done on a low level as no abstraction layers have
been found so far for the semantics provided by MetaCoq.
7.1 Correctness statement
On a high level view the correctness statement says that the generated eliminator
type-checks with a type computed for the induction principle. Therefore, the plu-
gin is guaranteed to produce well-typed terms for well-formed inductive types.
To state the correctness inMetaCoq we use the createElim function that is the main
part of the plugin and computes the eliminator, aswell as a function createElimType
that computes the type of the induction principle for a given inductive type. The
requirement for correct operation is a well-formed inductive type ind in a mutual
inductive declaration.
The concrete correctness statement is the following:
wf Σ Γ →
on_ind_body mind mind_body ind ind_body →
declared_inductive Σ mind_body ind ind_body →
∀ T t name,
createElim ind = Some (t, name) →
createElimType ind = Some T →
Σ ; Γ ` t : T.

This statement means that under a well-formed local environment Γ in the global
environmentΣ the computed eliminator t is typedwith the type T for awell-formed
inductive type with a mutual inductive declaration mind_body and single inductive
declaration ind_body.
The indirection with Some is needed to account for the extraction of the inner body
in the mutual inductive declaration. It is proven that the functions always return
Some for a well-formed inductive type. Therefore, the direct formulation would be
possible to state but ismuch longer and less readable because the functions creating
the eliminator and it’s type would need to be unfolded.
The createElimType function has the same structure as createElim up to the fixed
point where all λ-abstractions are replaced by ∀-quantification (see Figure 7.1). In-
stead of the fixed point function a quantification over the indices and instance of

https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#Main2

7.2. Proof structure 77

E6 := λ (n:N)
(p: ∀ (m:N). n 6 m → P)
(HleB

: p n (leB n))
(HleS

: ∀ (m:N) (h:n 6 m).
p (S m) (leS n m h)).

fix f (m:N) (x:n 6 m) : p m x :=
match x as y return p m y with
| leB ⇒ HleB

| leS m h⇒ HleS
m h

end

E6 : ∀ (n:N)
(p: ∀ m:N. n 6 m → P)
(HleB

: p n (leB n))
(HleS

: ∀ (m:N) (h:n 6 m).
p (S m) (leS n m h)).

∀ (m:N) (x:n 6 m). p m x

Figure 7.1: On the left is the eliminator for less or equal with the type on the right. The
type is exactly the principle where the λ-abstractions are replaced by ∀-quantifications up
to the fixed point. The whole fixed point is replaced by quantifications over the arguments
with the predicate as conclusion.

the inductive type is constructed with the applied predicate as body. Therefore,
the createElimType function exactly generates the term representing the induction
principle type whereas createElim generates the eliminator. Due to the simpler
structure createElimType is much shorter.
7.2 Proof structure
The proof of the correctness statement first unfolds the functions and resolves the
option results from createElim and createElimType. This is possible because both
functions are guaranteed to return Some t for a term t. Afterwards, the proof aligns
with the structure of the eliminator. The steps are as follows:

1. introduction of parameters and the predicate P,
2. typing of the predicate,
3. introduction of all cases,
4. resolution of the fixed point,
5. proof that the environment is well-formed,
6. simplification of the term and type,
7. introduction of the indices and instance,
8. typing of the instance,
9. simplification steps for the case analysis,

10. η-Conversion,1
11. case analysis typing

The first three steps introduce the λ-abstractions from the term to the context. Those
steps are mostly straightforward as the computed type is exactly the term of the

1 The conversion rules were taken from PCUIC.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#pType
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#fixEnvWf
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#rewriteCaseEnv
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#rewriteCaseEnvType
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#caseEnvHasType
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#matchTypeSimpl

78 Correctness

eliminator where the λ-abstractions are replaced by ∀-quantifications. The predi-
cate type has to be proven to be a valid type as it is introduced directly with the
typing rule of λ-abstractions (see Section 3.1.2) which requires that the type of an
argument is a valid type itself.
Step four to six are concerned with the well-formedness of the environments up
to and including the fixed point. Afterwards, the arguments of the fixed point are
introduced. Lastly, in steps nine to eleven the term and type are transformed to fit
the typing rule for case analysis (see Section 3.1.2).
The most complicated steps are the last three steps. The other steps also take a few
hundred lines in the proof but could be shortened with a rewriting of the plugin
or are sub-tasks of the last step. Therefore, one can see that the typing overall is
difficult but most problems are posed by dependent matches.
7.2.1 Auxiliary lemmas
As most steps are complicated and need a hierarchy of auxiliary lemmas, the steps
are relocated into separate lemmas that are applied in a chain in the correctness
proof. Especially the last step for case analysis typing is complicated. Therefore,
six auxiliary lemmas for the assumptions of the typing rule are needed.
Tomake the individual lemmas a bit easier andmore modular, more auxiliary lem-
mas are introduced:
• function specification and usages of functions,
• lemmas about theMetaCoq framework and constructions like inductive types
and definitions,
• typing derivations of parts of the eliminator construction and the types used
in the other lemmas,
• proofs that the environments are well-formed and objects are well-formed in
relation to the environments,
• and equations for simplification.

During the proof, it is required at many positions to prove that some terms have a
type, the environment is well-formed, and new assumptions are well-formed in the
previous environment. Those lemmas are built on top of the previous statements
and are extended piece by piece for new environments. The lemmas also mutu-
ally depend on each other because proofs for well-formed environments need the
typing derivation of the terms in the environment and typing derivations need the
proofs that the environment is well-formed.
7.2.2 Lemma hierarchy
The structure of the groups can be seen with the well-formedness lemmas for envi-
ronments. Every time the environment is updated the well-formedness needs to be

7.2. Proof structure 79

extended to accommodate the newassumptions. Additionally, thewell-formedness
proofs depend on the well-formedness of sub-environments and therefore build a
hierarchy.
Thewell-formedness of environments is statedwith the wf_localpredicate(see Sec-
tion 3.1.1). An environment is a list of assumptions. The predicate wf_local Σ Γ
states that every assumption in the environment Γ has a valid universe and the body
of the assumption is typed with the type of the assumption. Therefore, wf_local
expresses that all assumptions in the environment are well-typed.
wfLocal: wf_local Σ Γ
wfLocalIndicesMin: wf_local Σ (params,indices)
wfLocalRelIndicesMin: wf_local_rel Σ (Γ , params) indices
wfParams : wf_local_rel Σ Γ params
wfLocalParamsMinMin: wf_local Σ params
wfLocalParamsMin: wf_local Σ (Γ , params)
wfLocalParams: wf_local Σ (Γ , uniformParams)
wfLocalRelIndices2: wf_local_rel Σ (Γ , uniformParams)

(nonUniformParams, indices)

wfLocalParamsP: wf_local Σ (Γ , params, p)
wfLocalRelCshapeArgs newCase: wf_local_rel Σ (Γ , params, p, cases) newCase
wfLocalRelCases: wf_local_rel Σ (Γ , params, p) cases
wfLocalQuantifyCases: wf_local Σ (Γ , params, p, cases)
wfLocalRelIndices: wf_local_rel Σ (Γ , params, p, cases) (lifted indices)
wfLocalFixEnv: wf_local Σ (Γ , params, p, cases, lifted indices, inst)
wfLocalRelCasesF: wf_local_rel Σ (Γ , params, p, cases) [f]
wfLocalCaseEnvEnv: wf_local Σ (Γ , params, p, cases, f, lifted indices)
wfLocalMatchObjEnv: wf_local Σ (Γ , params, p, cases, f, lifted indices, inst)

wfLocalMatchTypeEnv: wf_local Σ (Γ , params, p, cases, f,
lifted indices, inst, lifted indices)

wfLocalIndInst: wf_local Σ (Γ , params, p, cases, f,
lifted indices, inst, lifted indices, inst)

The first lemma group establishes that the parameters and indices are well-formed
under any local environment Γ and global environment Σ. Afterwards, the lemmas
are extended according to the terms introduced during the proof. An assumption
here is that only uniform parameters occur.
The lemma wfLocalRelCshapeArgs is an auxiliary lemma used in an induction step
to prove that all cases can be introduced and lead to a well-formed environment.
The last two lemmas are needed to prove that the type of the inner case analysis is
well-typed and has a well-formed environment.
There are similar lemma groups for the typing and typing_spine predicate.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#wfLocalRelCshapeArgs

80 Correctness

7.3 Assumptions
We use the axiom that the fixed point used in the plugin always terminates, be-
cause the fixpoint guard predicate is not implemented in MetaCoq and was there-
fore assumed. This assumption is valid as the fixed point basically behaves like a
λ-abstraction in the case analysis part of the plugin, because it is never called. With
the fixed point formulation of the plugin, this axiom is needed as the typing only
could be proven if the complete semantic of fixed point guards would be imple-
mented in MetaCoq.
We use a fixed point in the plugin as this way the already written plugin can be
used and no new plugin function has to be written just for the correctness proof.
The eliminator plugin is called in a way such that we restrict it to case analysis.
If the primary goal of the thesis would be the correctness proof, the procedure
could be improved. The plugin could be rewritten for the correctness proof. For
example the fixed point could be replaced with a λ-abstraction and the terms could
be constructed to inline more with the type constructors. We conjecture that the
rewriting would ease some technical parts but overall the correctness proof would
still remain very large and difficult.
Properties of inductive definitions that are not stated explicitly in MetaCoq were
assumed. Such properties include that the assumptions in parameters and indices
have empty bodies. Also, lemmas ranging over universe sorts and η-conversion are
admitted due to ongoing changes in MetaCoq.
Some of the basic lemmas and function specifications are admitted due to time
constraints.
The assumption was made that all parameters are uniform. This assumption is
valid for case analysis principles as all non-uniform parameters can be treated as
uniform parameters.
7.4 Difficulties
There were many difficulties both in the ability of MetaCoq to prove typing deriva-
tions for large scale terms as well as in the proof details specific to the case analysis
plugin.
7.4.1 MetaCoq specific
The typing rules (see Section 3.1.2) use functions like fold_left, mapi or revwhich
makes proofs, especially inductive proofs, quite difficult. For example the function
build_case_predicate_type ind mdecl idecl params u ps that is used in the typing
rule of tCase to compute the type of the return type for dependent matches is un-
folded into:
(X ←

7.4. Difficulties 81

match
instantiate_params_subst

(rev (map (map_decl (subst_instance_constr u)) (ind_params mdecl)))
params []
(subst_instance_constr u (ind_type idecl))

with
| Some (s, ty) ⇒ Some ((subst0 s) ty)
| None ⇒ None
end;
X0 ← destArity [] X;
ret

(fold_left

(λ (acc : TemplateTerm.term) (d : context_decl)⇒
mkProd_or_LetIn d acc)

(X0.1,
{|
decl_name := nNamed (ind_name idecl);
decl_body := None;
decl_type := mkApps (tInd ind u) (map (lift0 #| X0.1 |) params

++to_extended_list X0.1) |})
(tSort ps)))

One can observe that the function is defined with many mappings and reversed
arguments.

MetaCoqhasmany intricate definitions andnotations. For example, cons and append
are redefined using definitions that are used in notations. These definitions and
notations make it more difficult to apply lemmas and keep an overview over the
lemmas and goals.

The ongoing development of MetaCoq refines some lemmas and typing rules and
makes some proofs easier on the one hand. But on the other hand, the changes also
mean that entire parts of the proof like the case analysis typing and η-conversion
are subject to change.

Additionally, there is currently no documentation outlining what functions and
lemmas exist and how to use them. The missing documentation also made it quite
hard to find the implicitly stated properties of inductive types. For example, one
would need a statement that guarantees cetain invariants for every inductive type
which is unquoted with the command tmQuoteInductive. Such invariants should
be that the number of parameters are the same as the parameter-count in the induc-
tive body or that the inductive type can be applied to the parameters and indices
resulting in a well-typed term.

82 Correctness

Some lemmas are only available in PCUIC but not in TemplateCoq. These lemmas
were copied and admitted if they were needed.
In theory the typing proofs should be quite schematic. Therefore, one would hope
for good automation tactics to assist in the proofs. Currently, there is a tactic for
inference of closed terms but this is not applicable in the context of this plugin as
the proofs are on abstract terms and involve variables bound in the environment.
7.4.2 Project specific
The bookkeeping of liftings of de Bruijn indices, especially for the indices of the
inductive type, was quite difficult to get correct. We will denote the lifting of a
term t by n for de Bruijn indices larger thanm by ↑nm t.
The application of lemmas was difficult due to intricate definitions, notations, and
the failure of unification.
As an example one can take the following code section:

Σ; Γ, params, p, cases, ↑1+|ctors| indices `
ind

(↑1+|ctors|
|indices| ↑

|indices| mkRel params++

↑1+|ctors|
|indices| mkRel indices) :

tSort u

The assumption that is already proven is that the inductive type applied with pa-
rameters and indices has a type u, stated with the typing_spine predicate.

Σ; Γ, params, p, cases, f, ↑2+|ctors| indices `
↑ ind

(↑2+|ctors|+|indices|
|indices| mkRel params++

↑1+|ctors|
|indices| mkRel indices) :

tSort ?s

The goal is to prove that the inductive type applied with parameters and indices
still has a type if an argument f is added to the environment and everything is lifted
accordingly.

Σ; Γ, xs ` t x : T →
Σ; Γ, ys, ↑|ys| xs ` t

(
↑|ys|
|xs|

x
)
:↑|ys|
|xs|

T

7.5. Remarks 83

apply typing_spine_lifting.
apply H.

The idea would be to state a lemma typing_spine_lifting stating that one can add
new assumptions to the environment and the typing stays the same except for lift-
ings.
In practice it is more difficult because one first has to make the two terms syntacti-
cally equal by moving liftings to the top level, unfolding notations, simplifying of
the terms, and transforming applications of functions. Therefore, the application
of the lemma is 80 lines long.
Another difficulty is that the goals change frequently in appearance such that it is
not possible to hide parts in definitions effectively. Therefore, the goals often were
quite large ranging from 150 to 500 lines in length. The long goals as well as the
many intricate definitions prevent the Search vernacular of Coq to work properly.
Altogether, this dysfunction led tomore workwhen lemmas are applied and some-
times caused duplicate proofs of two statements that were basically the same but
with different notations.
7.4.3 Tactics
New tactics are added to make some parts of the proofs easier. The tactics mainly
group tactics that are often used.
The most important new tactics help to prove the equalities of typing statements
of the form Σ1; Γ1 ` t1 : T1 = Σ2; Γ2 ` t2 : T2 and equalities of well-formedness of
environments like wf_local Σ1 Γ1 = wf_local Σ2 Γ2. These two tactics are specific
applications of the f_equal tactic in cases where f_equal fails. Another tactic helps
to prove A→ Bwhere A and B are the same and only rewriting is required.
Other tactics perform reordering of lists and case analysis with subsequent congru-
ence and lemma calls.
7.5 Remarks
The approach of using a specific function to compute the type instead of only stating
that there is a type for the generated eliminator was originally not motivated by the
stronger guarantees. Instead this approach was chosen as it is much easier to prove
the concrete typing derivation without the need to instantiate existentials or infer
the instantiation.
The difficulties of the proof seem to not only lie in the abstract context for all in-
ductive types with arbitrary parameters, non-uniform parameters, and indices, but
also in the complexity of the Coq’s type system. We showed this with an attempt
to prove typing for a concrete eliminator like the one of less or equal without the

https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#typingSpineLifting
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#typingSpineInstInstf
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#f_equal_typing
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#f_equal_wf_local
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#f_equal_wf_local
https://ps.uni-saarland.de/~ullrich/bachelor/coq/typing.html#uniapply

84 Correctness

type inference tactic resulting in several hundred lines of code with similar auxil-
iary lemma structures as the abstract proof. Therefore, the correctness proofs are
even on paper infeasible.
To be able to prove large scale typing derivations it is necessary for MetaCoq to
have good automation tactics and hint databases to unify and apply typing con-
structors. Additionally, the terms need to be constructed with knowledge of how
the semantics of MetaCoq is constructed in order to take advantage of the typing
system. Therefore, an extensive documentation is needed.

Chapter 8

Related work

Induction principles for nested inductive types are often used but are commonly
derivedmanually using known tricks [5]. Often special principles only suitable for
lists are written or thewhole container type is inlined to performmutual induction.
Only recently attempts were made to generalize induction to arbitrary container
types [18, 19] and develop plugins for the generation of induction principles for
nested inductive types, for example by Tassi in Elpi [33]. Johann and Polonsky in-
troduce a formalmethod to generate induction principles for nested inductive types
[18]. They show how all structured data in constructors can be used for induction
hypotheses by using the semantic of nested types as fixed points of accessible func-
tors on locally presentable categories. We will look at the other implementations
and realizations of induction principles in other proof assistants.
8.1 Coq implementation
The original design of Coq did not support inductive definitions. Instead inductive
types were handled by impredicative characterizations which involve higher-order
quantifications. These characterization are very complicated to work with and it is
not possible to prove simple facts like 0 6= 1. Therefore, inductive definitions were
added in 1993 [22].
The original implementation of the generation of induction principles is written in
OCaml .1

The problemwith this implementation is that it generates too weak induction prin-
ciples and has no guarantees about correctness. Especially, the generation could
diverge without generating a principle. The MetaCoq plugin is a Coq function,
and therefore, is guaranteed to terminate because all Coq functions are total.
In our view the OCaml code is more complicated than the MetaCoq plugin code.
1 https://github.com/coq/coq/blob/fb7292570380e0490d7c74db1718725149996ffd/

pretyping/indrec.ml

https://github.com/coq/coq/blob/fb7292570380e0490d7c74db1718725149996ffd/pretyping/indrec.ml
https://github.com/coq/coq/blob/fb7292570380e0490d7c74db1718725149996ffd/pretyping/indrec.ml

86 Related work

With around 600 lines the OCaml code is also longer and has nearly no comments.
Our plugin is documented and is 317 lines long.
8.2 Elpi
Elpi is the embeddable λProlog interpreter. Therefore, it is an implementation of
a dialect of λProlog, a language that can be used to manipulate syntax trees. Pro-
log is a logic programming language where programs are expressed as constraints
and relations. λProlog is an extension to Prolog with higher-order quantification,
polymorphic types, higher-order unification, and simple typed λ-terms. There is
an interface to use Elpi to implement commands and tactics.
Tassi implements induction principles for nested inductive types in Elpi [33] us-
ing the unary parametricity translation. Our work is influenced by Tassi and we
also use the idea of parametricity for assumption functions in induction principles.
Tassi implemented induction principles by an extension of the induction princi-
ples to include predicates for elements of other types in the principle. For lists, for
example, a predicate for the type A is added:

∀(A : T) (PA : A→ T) (P : list A→ T).
P []→
(∀(a : A) (l : list A). PA a→ P l→ P (a :: l))→
∀(l : list A). is_list A PA l→ P l

In the case for cons, an additional assumption PA a is added. Additionally, the
predicate is_list A PA l has to be fulfilled in order to provide the new assumptions.
Here, is_list is the unary parametricity translation of the list type.
The unary parametricity translation of container types is used for assumptions of
nested recursive arguments as can be seen for rose trees with labeled leaves:

rtree (A : T) := Leaf (a : A) | Node (l : list (rtree A))

∀(A : T) (PA : A→ T) (P : rtree A→ T).
(∀(a : A). PA a→ P (Leaf A a))→
(∀(l : list (rtree A)). is_list (rtree A) P l→ P (Node A l))→
∀(t : rtree A). is_rtree A PA t→ P t

Again, a predicate PA for the leaf elements of typeA is added, and the is_rtreepred-
icate in the conclusion. The induction hypothesis for l is stated using the unary
parametricity translation of list, and therefore, coincides with the induction hy-
pothesis generated by our plugin.

8.2. Elpi 87

In our tests we found some types where the plugin from Tassi could not generated
the correct principles. For each problem we will provide a problematic example
together with an explanation.

DN ::= C(xs : list(list(list DN)))

When deriving the principle for deeply nested arguments like the one in DN the
Elpi plugin takes several minutes2 to compute the principle.

CZZero 0

For typeswith indices likeZero the derivation fails to generate some auxiliary func-
tions, namelyZero_is_Zero_full andZero_is_Zero_trivial, resulting in unreadable
inductive principle although they seem to be correct. For Zero the generated induc-
tion principle is

∀P : ∀_elpi_ctx_entry_1_ : N,
nat_is_nat _elpi_ctx_entry_1_→ Zero _elpi_ctx_entry_1_→ T,

P 0 nat_is_O C_Z→
∀(_elpi_ctx_entry_1_ : N)(P_ : nat_is_nat _elpi_ctx_entry_1_)

(s1 : Zero _elpi_ctx_entry_1_),
Zero_is_Zero _elpi_ctx_entry_1_P_ s1 → P _elpi_ctx_entry_1_ P_ s1

The principle is basically the same as the one generated by Coq with additional
assumptions for n:

∀(P : ∀n. Zero n→ T). P 0 CZ → ∀n (z : Zero n). P n z

typeTree ::= Ctt (X : T) (vec X 0× typeTree)

For types that quantify over types in the constructors like typeTree the plugin fails
to generate the induction principle.

nestGuard ::= Cng (list (N→ nestGuard))

While outer guarded induction poses no problems, the plugin cannot generate in-
duction principles when the guarded recursion is the type argument in nested in-
duction.
2 Around six minutes in our test.

88 Related work

For inductive predicates, types of type . . . → P, the plugin fails to generate the
induction principle and sometimes even terminates the derivation process.
Lastly, the implementation in Elpi uses the unary parametricity translation directly
and therefore adds additional predicates for all parameters as well as assumptions
for every argument. For non-container types like N these arguments are equivalent
to> and therefore not useful. The additional predicates prevent a direct application
with the elim or induction tactic.
In comparison to our MetaCoq implementation a reader needs knowledge of Elpi
to understand the code3. For our MetaCoq plugin this is less an issue as the plugin
itself is a function in Coq. Therefore, a Coq user is already familiar with the syntax.
The code is similar in length but has the advantage that no calculations of de Bruijn
indices are necessary. On the other hand, one cannot prove correctness.
8.3 Other proof assistants
As already mentioned, weak induction principles are a common problem. There-
fore, other proof assistants implement other solutions to generate induction princi-
ples for nested types.
8.3.1 Isabelle
Isabelle [24] has two possibilities to generate induction principles for nested induc-
tive types [4].
The legacy version can be invoked by registering a datatype as an old-style datatype
with datatype_compat. The principles for old-style datatypes inline the container
type and build a mutual inductive principle. For the principle the nested type is
viewed as a mutual inductive type. For rose trees the mutual type for the principle
would be

x : roseTree := node ys

xs, ys : listRoseTree := [] | cons x xs

The generated principle is

∀(P1 : roseTree→ T) (P2 : listRoseTree→ T).
(∀xs : listRoseTree. P2 xs→ P1 (node xs))→
P2 []→ (∀x : roseTree.P1 x→ ∀xs : listRoseTree. P2 xs→ P2 (cons x xs))→
∀r : roseTree. P1 r

The principle takes a predicate P1 for the rose trees and a predicate P2 for lists of
rose trees stating that P1 holds for every tree in the list.
3 https://github.com/LPCIC/coq-elpi/blob/master/derive/induction.elpi

https://github.com/LPCIC/coq-elpi/blob/master/derive/induction.elpi

8.3. Other proof assistants 89

The generated principle compat_roseTree.induct in Isabelle syntax is(∧
xs. P2 xs⇒ P1 (node xs)

)
⇒

P2 []⇒
(∧

y ys. P1 y⇒ P2 ys⇒ P2 (y#ys)
)
⇒

P1 ?tree

The induction predicate of new-style datatypes is simpler but does not preserve the
structure of the container type.(∧

xs.
(∧

t. t ∈ set xs⇒ P t
)
⇒ P (nodexs)

)
⇒ P ?tree

For new-style datatypes Isabelle generates a set function for the container types
collecting all elements and states that every element in the set satisfies the predicate
P. Therefore, the induction principles for new-style datatypes are a special case of
the principles generated by our plugin where the assumption function forgets the
structure of the container type. The weak assumption functions with set are not
problematic in Isabelle because the induction principles are only used logically and
not computationally in Isabelle.
8.3.2 Lean
The Lean proof assistant handles nested inductive type in a similar fashion as the
old-style datatypes in Isabelle. But in contrast to Isabelle, where the mutual induc-
tive type is only generated to create the induction principle, Lean’s kernel does not
support nested inductive types. Whenever a nested type is defined in Lean, it is
compiled into a mutual inductive type together with the container types. There-
fore, Lean directly converts the definition of rose trees into the following mutual
inductive type:

x : roseTree := node ys

xs, ys : listRoseTree := nil | cons x xs

Afterwards, isomorphisms between the included container types and their coun-
terparts are created and used to define the constructors [3]. Therefore, the mutual
type is not visible to the user and the constructors as well as the induction prin-
ciple appear to be the ones of the nested type. For rose trees the isomorphism
f : listRoseTree → list roseTree is between the inlined version of lists listRoseTree
and list roseTree:

f nil := []

f (cons x xs) := x :: f xs

90 Related work

The constructor node is defined using the inverse isomorphism f−1 and an internal
constructor nested.roseTree.node:

def roseTree.node : list roseTree→ roseTree :=

λ(a : list roseTree). nested.roseTree.node (f−1 a)

8.3.3 Agda
For Agda there is, as for Coq, no default mechanism to generate induction princi-
ples for nested inductive types. But there is a general procedure to derive induction
principle for arbitrary typeswith implementation in Agda [18]. A semantically jus-
tification for the induction principles is given using category theory. In this paper
Johann and Polonsky even state “[. . .] the phenomenon of deep induction has not
previously even been identified, let alone studied.”
The principles involve additional predicates for involved container types like the
principles by Tassi [33]. A justification for the added predicates is not only given
by the derivation but also in the fact that these predicates allow to prove statements
over special instances of the type. In the case of lists this allows to prove statements
over lists only containing prime numbers for example. In the following principleQ
is the predicate satisfied by all element of the list:

∀(A : T) (P : list A→ P) (Q : A→ P).
P nil→ (∀(y : A) (ys : list A). Q y→ P ys→ P (cons y ys))→
∀(xs : list A). listt A Q xs→ P xs

It seems like the principles of our plugin are able to replicate this use case. For
example for the induction principle for lists, one can choose P to be Σa Q a. With
this instantiation, each y in the constructor carries the proof Q x and xs carries the
proof of listt.

∀(A : T) (P : list (Σa Q a)→ P).
P nil→ (∀(y : Σa Q a) (ys : list (Σa Q a)). P ys→ P (cons y ys))→
∀(xs : list (Σa Q a)). P xs

Currently the theory of Johann and Polonsky does not include dependent types
and indexed containers. But the procedure can be applied to non-strictly-positive
types that cannot be defined in Coq like this bush type:

Bush (A : T) := BNil | BCons (a : A) (h : Bush (Bush A))

8.4. MetaCoq plugins 91

8.3.4 More proof assistants
Most other proof assistants have similar methods as the ones discussed here.
In F* the induction is handled with the transitive closure of the subterm relation.
Therefore, it is possible to recurse under nested occurrences.
Abella performs induction over inductive predicates instead of the inductive type
itself. Recursion is permitted on smaller derivations of the predicate. Therefore,
one can use nested induction with strong enough predicates.
InCedille types have to be definedwith their Church encoding and induction prin-
ciples are stated by hand. Therefore, no induction principles are derived automat-
ically.
Twelf also uses the subterm relation for termination check and therefore nested
recursion can be used.
In Beluga induction is also handled by recursive calls instead of induction hypothe-
ses and these recursive calls are checked to obey the subterm relation.
8.4 MetaCoq plugins
MetaCoq has been used before to implement plugins. Example plugins are given
in [31] like a plugin to add constructors to an inductive type and a plugin for syn-
tactic translations. The translation plugin is used to define the parametricity trans-
lation [1].
Furthermore, MetaCoq was used to define an extraction from Coq terms to weak-
call-by-value λ-calculus [12]. In [30] a safe type-checker for Coq was generated
using verified extraction.

Chapter 9

Conclusion

We have implemented a plugin in MetaCoq that generates strong induction princi-
ples for nested inductive types. To do so, a technique to enhance induction princi-
ples with additional assumptions using unary parametricity was introduced.

The generation function for simple induction principles for types where recursive
calls are neither guarded nor nested can be called recursively to generate the induc-
tion hypotheses for more complex arguments. Therefore, the simple generation of
induction principles is extended to arbitrary functors including the special case of
implications for guarded induction and the case of container types for nested induc-
tion. Only slight modifications are then needed to construct the correct hypotheses
from the recursive results.

We also made an attempt to prove the correctness of the plugin. We managed to
verify parts of the generation of case analysis principles.

9.1 Plugins in MetaCoq
As we have seen, the MetaCoq project is suited to develop plugins for Coq. The
feature to write plugins directly in Coq makes testing easier and simplifies the in-
troduction to plugin development.

The development is on a low-level representation and the functions become more
complicated for complex plugins as the programmer has to keep an overview over
the de Bruijn indices of the variables. The development of these functions is also
difficult due to the lack of documentation of MetaCoq.

Thus, one needs to become familiar with MetaCoq and organize the development,
but overall it has become much easier to write new plugins for Coq with MetaCoq
compared to OCaml plugins.

9.2. Verification in MetaCoq 93

9.2 Verification in MetaCoq
Verification with type check of plugins, on the other hand, is not feasible in the
current state of MetaCoq. This is rooted in many different factors from which the
most prominent are the following: there is little to no automation to prove essential
statements like typing in an abstract context. Basic lemmas of core functions are not
available or at least not available in TemplateCoq. Therefore, correctness proofs
should be done in PCUIC.

We did the proof in TemplateCoq as it is closer to Coq and the quoting and un-
quoting moves terms between Coq and TemplateCoq. Additionally, the translation
from PCUIC to TemplateCoq was only developed in this thesis and therefore was
not available at the time when we did the verification.

The problems are amplified by the missing documentation on which functions are
already available inMetaCoq, what theymean, and how to use them. Currently, the
typing statement is on a very low level with much work left to the user. Therefore,
it would be interesting to search for suitable abstraction layers.

Additionally, an explicit statement on guarantees and well-formedness properties,
for example of inductive types created by the quoting mechanism, are hard to find.
One would expect MetaCoq to give guarantees, for example what statements are
satisfied by a well-typed inductive type or term, what properties a quoted term
satisfies, and what guarantees hold if typed term is unquoted.

As some parts of the MetaCoq project were adapted from the OCaml implementa-
tion, they are designed with a programmer’s intent in mind rather than the one of
a logician who wants to prove statements. This leads to intricate definitions with
unpleasant functions like rev, mapi and fold_left or functional statements instead
of inductive predicates. Also, some functions used in the typing statement generate
an option result despite being used as a predicate.

In conclusion, verification is very difficult and the model of MetaCoq is not useable
for verification in the current state. The difficulty perhaps lies in the complexity of
Coq’s logic itself.

9.3 Expenses
In this table the length of the development grouped by topics is listed.1

1 The line count was estimated using cloc(https://github.com/AlDanial/cloc).

https://github.com/AlDanial/cloc

94 Conclusion

Tests

PCUIC to TemplateCoq

Helper functions

Container

Plugin

Proof 8,057

516

420

210

961

3,343

In total the development consists of 13507 lines of code. The most time was spent
on the correctness proof.
9.4 Future work
The generation of assumption functions and proof functions for container types
depend on the parametricity translations. We also needed functions to transform
the parametricity translation into a form that is applicable for our use cases.
Currently, there are problems in the parametricity translation of nested inductive
types as well as in the unquoting of universes. Therefore, the assumption function
for nested inductive container types can not be generated automatically in practice.
In theory, the generation could be handled the same way as for simpler container
types.
For the proof functions of nested inductive container types the stronger induc-
tion principle is needed. The generation of the proof functions therefore needs a
database of the induction principles generated by the plugin. To implement such a
database, the problem of universe unquoting needs to be solved.
Another line of work is to extend the plugin to mutual inductive types and to add
more options, for example using the presentedMetaCoq flagmechanism, to control
exactly what principles should be generated. An option could be used to control
whether the generated principles are dependent.
The proof shown in Chapter 7 states the correctness for the case analysis part of the
plugin and contains unfinished lemmas. In the end, onewould hope for a complete
correctness proof of the plugin. To do so, the proof probably needs to be moved
from TemplateCoq to PCUIC to make the reasoning easier. Automation and math-
ematical abstraction is required tomake reasoning about the typing judgement and
therefore the mentioned proofs feasible. An option to increase trust in the plugin
is to use QuickChick [10] for property-based testing on the eliminator generation

9.4. Future work 95

function.
The generation of proof functions uses the unary parametricity translation and syn-
tactically manipulated the resulting type to fit the needs. For a cleaner approach,
a dedicated version of unary parametricity should be derived from translation al-
ready implemented in MetaCoq.
Finally, the work of this thesis provides the means to write more plugins working
on inductive types. Plugins like show and size functions can use the strong induc-
tion principles and extend from there on as they map elements of inductive types
to either strings or numbers. Other plugins like equality deciders, finiteness and
countability predicates and selectors also benefit from the induction principle and
can use the structure of a general mapping of inductive types that was used towrite
the induction principle plugin.

Appendix A

Appendix

A.1 De Bruijn indices
Terms like λx. λy. y x are easily readable for humans, but are difficult to work with
formally. Formally, the equivalence of terms with named variables always needs
the notion of α-equivalence. Two terms are α-equivalent if they are the same up to
renaming. For example, λx y. f x y is the same as λy x. f y x up to renaming.

A represention of terms that works around these problems are de Bruijn terms[8].
De Bruijn terms do not use named variables. Instead references are constructed
with indices using natural numbers. An index n : N represents the binder that is n
binders above in the abstract syntax tree. Therefore, the index indicates howmany
binders have to be skipped to reach the corresponding binder.

Examples for the de Bruijn representation of terms are:

λx. λy. x y λ λ 0 1

λf. f (λx. f x (λy. f y x)) λ 0 (λ 1 0 (λ 2 0 1))

λf. λg. g (λx. f f g x) λ λ 0 (λ 2 2 1 0)

As it can happen easily in an abstract context that one computes wrong de Bruijn
indices, we implemented a printing function that generates strings of terms in a
humanly-readable format. On the one hand, the resulting string is more readable
than the large terms of the syntax in PCUIC as the string is closer to the commonno-
tation in math. On the other hand, the printing functions preserves the de Bruijn
indices and therefore helps debugging wrong indices when the unquoting com-
mands fail due to invalid indices. To inspect the names of inductive types and their
constructors, the printing function is written as TemplateMonad program. There-
fore, quoting and unquoting can be performed when such terms occur.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.de_bruijn_print.html#bruijn_print

A.2. PCUIC to TemplateCoq 97

A.2 PCUIC to TemplateCoq
The translation from PCUIC to TemplateCoq is for most parts straightforward as
all terms except applications and casts have a direct counter part in both syntaxes.
In contrast to TemplateCoq, PCUIC does not have terms for casting. Therefore, this
case poses no problems. For applications tApp u v the TemplateCoq function mkApp
that generates an application with a single argument or extend an already existing
application can be used. Additionally, translation functions for environments and
definitions like inductive bodies have to be defined.
The correctness proof of the translation is more complicated. The main statement
is that for well-formed global environments Σ the typing judgement can be trans-
ferred through the translation:

wf Σ→
Σ; Γ ` t : T
(trans Σ); (trans Γ) ` (trans t) : (trans T)

The proof is performed by induction on the typing predicate. Here, a handcrafted
inductionprinciplewith assumptions for the nested inductive assumptions is needed.
Most cases are proven using auxiliary lemmas for translation under functions. The
cases formatches, fixed points, and co-fixed points needmorework due to the com-
plexity of the typing rule. Additionally, the typing rule of matches also mentions
applications, and therefore, needs the equations for the conversion of applications.
The main difference, the typing rule of applications, is solved with auxiliary lem-
mas relating the typing of applications to the typing_spine predicate. As the proof
involved auxiliary lemmas for most functions used in the typing predicate, one di-
rectly gets correctness proofs of the translation for most use cases.
A.3 Notation tricks
Coq allows to define notations for convenience. For example, the function creating
the eliminators is runElimwith Boolean arguments to determine whether an induc-
tion principle or case analysis principle should be generated. Additional arguments
determine the elimination type, the type of which the eliminator is generated, and
the name. Therefore the induction principle for natural numbers would be gener-
ated with the command
MetaCoq Run (runElim N true true None None)

But this command is not very user friendly because one does not know what the
individual arguments do and also the notation with parentheses is inconvenient.
The follow notation defined a short command for induction principles such that
the user only has to specify the type.

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.other_files.PCUICToTemplate.html#trans
https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.other_files.PCUICToTemplateCorrectness.html#template_to_pcuic

98 Appendix

Notation "’Scheme’ ’Induction’ ’for’ T" := (runElim T true true None None)

MetaCoq Run Scheme Induction for N

But with Coq’s Scheme command it is also possible for the user to provide names for
the principles that are generated. The name argument has to be a string argument
but one does not want to always have to give a string with quotes when a new
principle should be generated.
A clever trick [13] is to use MetaCoq to extract names from notations and convert
the names into strings. Given an identifier n in a notation, the same identifier can
be used to construct a λ-abstraction λ(n : N). n. This abstraction then can be quoted
with MetaCoq commands and from the quoted term the name can be extracted as
string.
Definition getName (x : N→ N):=
x ← tmEval cbv x;;
t ← tmQuote x;;
match t with
| Ast. tLambda (nNamed na) _ _ ⇒ tmReturn na
| _ ⇒ tmReturn ""
end.

The getName function takes a function N → N and, if the provided function is a
λ-abstraction, extract the name of the argument. This trick is used to define the
MetaCoq Run Scheme commands such that they can be used analogously to Coq’s
Scheme command.
A.4 Constructor list plugin
We have described a plugin to list all constructor types of a type. For natural num-
bers and disjunction the result should be:
nat_ctors =

[N;
N→ N]

or_ctors =
[∀ A B : P, A → A ∨ B;
∀ A B : P, B → A ∨ B]

To get get constructors one first has to quote the given type and get the inductive
definition with tmQuoteInductive. Afterwards, the constructors can be extracted
from the body and mapped with the monad_map function because the unquoting
needed for each constructor is a TemplateMonad command.
Definition getCtors {A} (ind: A) : TemplateMonad unit :=

https://ps.uni-saarland.de/~ullrich/bachelor/coq/MetaCoq.Induction.MetaCoqInductionPrinciples.html#getName

A.4. Constructor list plugin 99

tm ← tmQuote ind;
match tm with
| tInd (mkInd kername idx as induct) _ ⇒

mbody ← tmQuoteInductive kername;
match nth_error mbody.(ind_bodies) idx with
| Some ibody ⇒

ctors ← monad_map
(λ ’(na,t, count)⇒
tmUnquoteTyped T (subst10 tm t)

)
ibody.(ind_ctors);

tmPrint ctors
| None ⇒ tmFail "the mutual inductive index was wrong"

(* this cannot happen when a correct inductive is provided *)
end

| _ ⇒ tmFail "argument has to be an inductive type"
end.

It is easy to implement these steps in MetaCoq. 1 We first quote the argument and
check that it is an inductive type which we then quote with tmQuoteInductive. Af-
terwards, we extract the correct inductive type from themutual inductive definition
mbody and name it ibody.
Themain step is the extraction of the constructors and their unquoting. This is done
with amonadicmappingusing monad_map over the constructor list ibody.(ind_ctors).
The mapping allows us to execute monadic operation to the whole list.
Beforeweunquote the constructor typewefirst have to substitute the inductive type
for the tRel 0 in the constructors as the self-reference is handled by tRel references.
This of course has to change as the type stands by itself in our list. The subst10 tm t
call substitutes every occurrence of the reference zero, and the lifted ones under
quantifications, let-ins and abstractions, in a term t by tm.
Lastly, we print the resulting list.
We can easily extend this plugin to also contain the constructor itself when we
change the mapping. The idea is to generate a list of type list (Σ (T:T), T) which
contains dependent pairs of the constructor type and the constructorwith this type.
For natural numbers this would be the list [(nat; 0); (nat → N; S)].
This is the new code for the mapping:
ctors ← monad_map_i
(λ i ’(na, t, count).
ctorType ← tmUnquoteTyped T (subst10 tm t);

1 For general use this code has to be changed to handle the universe constraints for the list properly.

100 Appendix

ctor ← tmUnquoteTyped ctorType (tConstruct induct i []);
tmEval lazy ((ctorType;ctor):Σ T : T, T)

)
ibody.(ind_ctors);

tmDefinition (append ibody.(ind_name) "_ctors") ctors;
tmPrint ctors

The difference is thatwe nowuse an indexedmapping function and unquote a term
representing the ith constructor for each constructor type. We also perform a cast to
the dependent pair type to indicate which type our resulting list has. Additionally
to the printing, we also create a definition for our constructor list using the name
of our inductive type extended with the suffix "_ctors".
We now can run the plugin and look at the result for or and sig.
or_ctors =
[(∀ A B : P, A → A ∨ B; or_introl);
(∀ A B : P, B → A ∨ B; or_intror)]

sig_ctors =
[(∀ (A : T) (P : A → P)(x : A),
P x → {x : A | P x}; exist)]

A.5 Typing rules
In the following, the typing rules are presented for quick reference.
Applications in TemplateCoq
type_App (t : term) (l : list term) (t_ty t’ : term):
Σ; Γ ` t : t_ty →
isApp t = false →
l 6= [] →
typing_spine Σ Γ t_ty l t’ →
Σ; Γ ` tApp t l : t’

Applications in PCUIC
type_App (t : term) (na : name) (A B u : term):
Σ; Γ ` t : tProd na A B →
Σ; Γ ` u : A →
Σ; Γ ` tApp t u : B {0 := u}

References
type_Rel (n : N) (decl : context_decl):
wf_local Σ Γ →
nth_error Γ n = Some decl →
Σ; Γ ` tRel n : lift0 (S n) (decl_type decl)

A.5. Typing rules 101

Sorts
type_Sort (l : LevelSet.elt):
wf_local Σ Γ →
LevelSet.In l (global_ext_levels Σ)→
Σ; Γ ` tSort (Universe.make l) : tSort (Universe.super l)

Casting (only TemplateCoq)
type_Cast (c : term) (k : cast_kind) (t : term) (s : Universe.t):
Σ; Γ ` t : tSort s →
Σ; Γ ` c : t →
Σ; Γ ` tCast c k t : t

Quantification
type_Prod (n : name) (t b : term) (s1 s2 : Universe.t):
Σ; Γ ` t : tSort s1 →
Σ; Γ , vass n t ` b : tSort s2 →
Σ; Γ ` tProd n t b
: tSort (Universe.sort_of_product s1 s2)

λ-expression
type_Lambda (n : name) (t b : term)

(s1 : Universe.t) (bty : term):
Σ; Γ ` t : tSort s1 →
Σ; Γ , vass n t ` b : bty →
Σ; Γ ` tLambda n t b : tProd n t bty

Let-in epxression
type_LetIn (n : name) (b b_ty b’ : term)

(s1 : Universe.t) (b’ _ty : term):
Σ; Γ ` b_ty : tSort s1 →
Σ; Γ ` b : b_ty →
Σ; Γ , vdef n b b_ty ` b’ : b’ _ty →
Σ; Γ ` tLetIn n b b_ty b’ : tLetIn n b b_ty b’ _ty

Constant
type_Const (cst : ident) (u : Instance.t)

(decl : constant_body):
wf_local Σ Γ →
declared_constant Σ.1 cst decl →
consistent_instance_ext Σ(cst_universes decl) u →
Σ; Γ ` tConst cst u

: subst_instance_constr u (cst_type decl)

Inductive types

102 Appendix

type_Ind (ind : inductive) (u : Instance.t)
(mdecl : mutual_inductive_body) (idecl : one_inductive_body):

wf_local Σ Γ →
declared_inductive Σ.1 mdecl ind idecl →
consistent_instance_ext Σ(ind_universes mdecl) u →
Σ; Γ ` tInd ind u
: subst_instance_constr u (ind_type idecl)

Constructors
type_Construct (ind : inductive) (i : N) (u : Instance.t)

(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(cdecl : (ident × term) × N):

wf_local Σ Γ →
declared_constructor Σ.1 mdecl idecl (ind, i) cdecl →
consistent_instance_ext Σ(ind_universes mdecl) u →
Σ; Γ ` tConstruct ind i u
: type_of_constructor mdecl cdecl (ind, i) u

Matches
type_Case (indnpar : inductive × N)

(u : Instance.t) (p c : term) (brs : list (nat × term))
(args : list term)
(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(ps : Universe.t) (pty : term)
(btys : list (nat × term)):

let ind := indnpar.1 in
let npar := indnpar.2 in
declared_inductive Σ.1 mdecl ind idecl →
ind_npars mdecl = npar →
Σ; Γ ` c : mkApps (tInd ind u) args →
let params := firstn npar args in
build_case_predicate_type ind mdecl idecl params u ps = Some pty →
Σ; Γ ` p : pty →
leb_sort_family (universe_family ps) (ind_kelim idecl)→
map_option_out
(build_branches_type ind mdecl idecl params u p) = Some btys →

All2
(λ br bty : N ×term.
(br.1 = bty.1 × Σ; Γ ` br.2 : bty.2)
× Σ; Γ ` bty.2 : tSort ps) brs btys →

Σ; Γ ` tCase indnpar p c brs
: mkApps p (skipn npar args ++ [c])

A.5. Typing rules 103

Projections
type_Proj (p : projection) (c : term)

(u : Instance.t)
(mdecl : TemplateEnvironment.mutual_inductive_body)
(idecl : TemplateEnvironment.one_inductive_body)
(pdecl : ident × term)
(args : list term):

declared_projection Σ.1 mdecl idecl p pdecl →
Σ; Γ ` c : mkApps (tInd p.1.1 u) args →
#| args | = ind_npars mdecl →
let ty := pdecl.2 in
Σ; Γ ` tProj p c
: subst0 (c :: rev args) (subst_instance_constr u ty)

Fixed points
type_Fix (mfix : mfixpoint term) (n : N) (decl : def term):

fix_guard mfix →
nth_error mfix n = Some decl →
let types := fix_context mfix in
wf_local Σ (Γ , types)→
All
(λ d : def term.
Σ; Γ , types ` dbody d : lift0 #| types | (dtype d)
× isLambda (dbody d) = true) mfix →

Σ; Γ ` tFix mfix n : dtype decl

Conversion
type_Conv t A B :
Σ; Γ ` t : A →
isWfArity typing Σ Γ B +
(Σ s : Universe.t, Σ; Γ ` B : tSort s) →
Σ; Γ ` A 6 B →
Σ; Γ ` t : B

Bibliography

[1] Abhishek Anand and Greg Morrisett. Revisiting parametricity: inductives
and uniformity of propositions. arXiv preprint arXiv:1705.01163, 2017.

[2] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas
Tabareau. Towards certifiedmeta-programmingwith typed Template-Coq. In
International Conference on Interactive Theorem Proving, pages 20–39. Springer,
2018.

[3] Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem proving in
lean, 2015.

[4] Julian Biendarra, Jasmin Christian Blanchette, Martin Desharnais, Lorenz
Panny, Andrei Popescu, and Dmitriy Traytel. Defining (Co) datatypes and
Primitively (Co) recursive Functions in Isabelle/HOL. URL http://www.cl.
cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/datatypes.pdf.

[5] Adam Chlipala. Certified programming with dependent types, 2019.
[6] Thierry Coquand andGerardHuet. The calculus of constructions. Information

and Computation, 76(2-3):95–120, 1988.
[7] Thierry Coquand and Christine Paulin. Inductively defined types. P. Martin-

Löf and G. Mints, editors, COLOG-88, LNCS 417, 1990.
[8] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dum-

mies, a tool for automatic formula manipulation, with application to the
church-rosser theorem. In IndagationesMathematicae (Proceedings), volume 75,
pages 381–392. North-Holland, 1972.

[9] David Delahaye. A tactic language for the system coq. In International Confer-
ence on Logic for Programming Artificial Intelligence and Reasoning, pages 85–95.
Springer, 2000.

[10] Maxime Dénès, Catalin Hritcu, Leonidas Lampropoulos, Zoe
Paraskevopoulou, and Benjamin C Pierce. Quickchick: Property-based
testing for coq. In The Coq Workshop, 2014.

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/datatypes.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/datatypes.pdf

Bibliography 105

[11] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo
de Moura. A metaprogramming framework for formal verification. Proceed-
ings of the ACM on Programming Languages, 1(ICFP):1–29, 2017.

[12] Yannick Forster and Fabian Kunze. A certifying extraction with time bounds
from coq to call-by-value lambda calculus. In 10th International Conference
on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

[13] Yannick Forster and Kathrin Stark. Coq à la carte: a practical approach to
modular syntax with binders. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, pages 186–200, 2020.

[14] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems
for first-order logic analysed in constructive type theory. In International Sym-
posium on Logical Foundations of Computer Science, pages 47–74. Springer, 2020.

[15] Herman Geuvers. Inconsistency of classical logic in type theory. Unpublished
notes, 2001.

[16] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In
International Workshop on Types for Proofs and Programs, pages 39–59. Springer,
1994.

[17] WA Howard. Per Martin-Löf. Intuitionistic type theory. Studies in proof the-
ory. Bibliopolis, Naples1984, ix+ 91 pp. 1986.

[18] Patricia Johann and Andrew Polonsky. Deep induction: Induction rules for
(truly) nested types. In International Conference on Foundations of Software Sci-
ence and Computation Structures, pages 339–358. Springer, Cham, 2020.

[19] Ambrus Kaposi and András Kovács. A syntax for higher inductive-inductive
types. In 3rd International Conference on Formal Structures for Computation and
Deduction (FSCD 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[20] Gregory Malecha and Jesper Bengtson. Extensible and efficient automation
through reflective tactics. In European Symposium on Programming, pages 532–
559. Springer, 2016.

[21] GregoryMichaelMalecha. Extensible proof engineering in intensional type theory.
PhD thesis, Harvard University, 2015.

[22] Christine Paulin-Mohring. Inductive definitions in the system coq rules and
properties. In International Conference on Typed Lambda Calculi and Applications,
pages 328–345. Springer, 1993.

106 Bibliography

[23] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. In Bruno Woltzenlogel Paleo and David Delahaye, editors, All
about Proofs, Proofs for All, volume 55 of Studies in Logic (Mathematical logic
and foundations). College Publications, January 2015.

[24] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer
Science & Business Media, 1994.

[25] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in
the calculus of constructions. In International Conference on Mathematical Foun-
dations of Programming Semantics, pages 209–228. Springer, 1989.

[26] John C Reynolds. Types, abstraction and parametric polymorphism. In IFIP
congress, volume 83, 1983.

[27] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. In Proceedings of the 2002 Haskell Workshop, Pittsburgh, pages 1–16,
October 2002.

[28] Matthieu Sozeau. Subset coercions in coq. In International Workshop on Types
for Proofs and Programs, pages 237–252. Springer, 2006.

[29] Matthieu Sozeau and Nicolas Oury. First-class type classes. In International
Conference on Theorem Proving in Higher Order Logics, pages 278–293. Springer,
2008.

[30] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo
Winterhalter. Coq Coq Correct! Verification of Type Checking and Erasure
for Coq, in Coq. Proc. ACM Program. Lang., 4(POPL), December 2019. doi:
10.1145/3371076.

[31] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Win-
terhalter. The MetaCoq Project. Journal of Automated Reasoning, pages 1–53,
2020.

[32] Walid Taha, Cristiano Calcagno, LiwenHuang, and Xavier Leroy. Metaocaml:
A compiled, type-safe multi-stage programming language. Available online
from http: // www. cs. rice. edu/ taha/ MetaOCaml , 2001.

[33] Enrico Tassi. Deriving proved equality tests in Coq-elpi: Stronger induction
principles for containers in Coq. In ITP 2019 - 10th International Conference
on Interactive Theorem Proving, Portland, United States, September 2019. doi:
10.4230/LIPIcs.CVIT.2016.23.

http://www.cs.rice.edu/taha/MetaOCaml

Bibliography 107

[34] The CoqDevelopment Team. The Coq Proof Assistant, version 8.11.0, January
2020. URL https://doi.org/10.5281/zenodo.3744225.

[35] Amin Timany and Bart Jacobs. First steps towards cumulative inductive types
in cic. In International Colloquium on Theoretical Aspects of Computing, pages
608–617. Springer, 2015.

[36] Amin Timany and Matthieu Sozeau. Consistency of the Predicative Calculus
of Cumulative InductiveConstructions (pCuIC). CoRR, abs/1710.03912, 2017.
URL http://arxiv.org/abs/1710.03912.

[37] Philip Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture, pages
347–359, 1989.

https://doi.org/10.5281/zenodo.3744225
http://arxiv.org/abs/1710.03912

	Abstract
	Introduction
	Preliminaries
	MetaCoq
	TemplateCoq and PCUIC
	Typing
	Terms and types

	Conversion
	Inductive types
	Execute MetaCoq commands
	Remarks

	Case analysis
	Application and examples
	Natural numbers
	Disjunction
	Less or equal

	Theory
	Parameter-free types
	Index-free types
	Non-uniform parameter types
	Indexed types

	Eliminator
	Implementation
	Usage example

	Induction
	Application and examples
	Natural numbers
	Less or equal
	Accessibility

	Theory
	Non-uniform parameters
	Guarded recursion

	Eliminator
	Implementation
	Usage example
	Remarks

	Nested induction
	Application and examples
	Rose trees
	Binary trees
	First-order terms
	TemplateCoq terms

	Theory
	Parametricity
	Auxiliary definitions
	Guarded recursion

	Eliminator
	Implementation
	Database
	Eliminator generation
	Adding containers
	Flags

	Usage example
	Remarks

	Correctness
	Correctness statement
	Proof structure
	Auxiliary lemmas
	Lemma hierarchy

	Assumptions
	Difficulties
	MetaCoq specific
	Project specific
	Tactics

	Remarks

	Related work
	Coq implementation
	Elpi
	Other proof assistants
	Isabelle
	Lean
	Agda
	More proof assistants

	MetaCoq plugins

	Conclusion
	Plugins in MetaCoq
	Verification in MetaCoq
	Expenses
	Future work

	Appendix
	De Bruijn indices
	PCUIC to TemplateCoq
	Notation tricks
	Constructor list plugin
	Typing rules

	Bibliography

