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Partial History of First-Order Completeness

1928 +  First formal statement by Hilbert and Ackermann?!
1929 +  First proven by Godel?
1947 +  Greatly simplified by Henkin3
2016 + Constructive analysis by Herbelin and Ilik #
lAckermann and Hilbert. “Grundziige der theoretischen Logik”
2Gb'del. “Uber die Vollstindigkeit des Logikkalkiils”
3Henkin. “The Completeness of the First-Order Functional Calculus”
4

Herbelin and llik. An analysis of the constructive content of Henkin's proof of Gédel’s completeness theorem
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Definition (Syntax)
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Definition (Deduction system)
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Definition (Interpretation)

An interpretation | on a domain D consists of:

e:D f':D->D -T'N>D PP:D-D—P

Definition (Evaluation)

Given p: N — D, we extend I to t%?: D and pFy ¢ : P:

pl=|j_=J_
pE Pst= P s°ir
PRI =Y =pFIe—=pFRY
pE\ Voo =Vd:D. plx— dE ¢

AFp = Vlp.pFlA—=pkFH ¢
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Definition (Theories)
We extend the previous notions to theories 7 : F — P:

TEe:=Vlp.pET—=pE e
The:=AFpdA. ACTANAF @

Definition (Consistency)
Wecall T:F—=P
o consistent if 7 F L
o maximally consistent if 7 ¥ 1 and ¢ € T if TU{p} ¥ L
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Proof Outline

Model Existence

T 7Tk T

consistent

AEp— Al
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Quantifier-free Model Existence

Lindenbaum Herbrandt
T Q Fao
consistent maximally model for T
closed consistent
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Definition
Given a consistent 7, we fix an enumeration & and define

0, U{& n} Q,, U{& n} consistent
Q, otherwise

Q::UQn

=T Qup1=

Lemma (Lindenbaum)

Q is a maximally consistent extension of T .
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Quantifier-free Model Existence

Lindenbaum Herbrandt
T Q Fao
consistent maximally model for T
closed consistent
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Definition (Herbrandt model)

Given a theory ) we define its Herbrandt model on closed terms T¢:

e =t Plst:=PsteQ
Lemma (Model correctness)

Let Q2 be maximally consistent and ¢ be closed and quantifier-free,
then

Foy < (pEQ

Corollary (Model existence)
Let T be consistent and closed, then =q T .

11/19



Syntax, Deduction, and Semantics Model Existence Completeness Outro

0000

00000800 000 00

Lemma (Maximally consistent membership)
Let €2 be maximally consistent. Then p € Q < QF .

Lemma (Model correctness)

Let Q2 be maximally consistent and ¢ be closed and quantifier-free,
then

':QQD <~ (pGQ

Proof.
Proof per induction on the size of . There are three cases:
o Pstef)l «&» Pste
ol + QF 1L
o (e —=QQFY) & QF oS
O
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First-Order Model Existence

Lindenbaum
Henkin Herbrandt
T > H Q Fqo
consistent consistent model for T
parameter-free not closed
closed
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Definition (Henkin axioms)

Let 7 be consistent and parameter-free. Then define H as follows:

Hn U {wp SV} if & n = Va.p
Ho=T Hpt1 = with p fresh in H,

Hn otherwise
H .= U %n

Lemma (Henkin correctness)

o H is consistent
o (Vt:T. HE %) & HFEVe. o
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Proof Outline

Model Existence

T

consistent

parameter-free
closed

Fo T

AFp—> Ak
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Theorem (Strong quasi-completeness)
Let both T and ¢ be closed and parameter-free.
TEp—=—-=-TkFep

Theorem (Refutation completeness)

TrooTU{~pF1
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Theorem (Strong quasi-completeness)
Let both T and ¢ be closed and parameter-free.
TEe— Tty

Definition (Stability of I-)

Theorem (Completeness)

Assume the stability of . Let A and ¢ be closed and
parameter-free.
AFp— Ak
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Future Work

T  Establish Soundness and use AutoSubst

+  Completeness of an intuitionistic Gentzen system
+  Cut free completeness of intuitionistic ND

+  Multiple possibilities:
Cut elimination for classical ND
Game semantics
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