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Abstract

First-order logic stands out among systems of similar expressivity as its deduction
systems can be shown to be complete with regards to naive semantic accounts of
validity. A deduction system is complete if it can prove every semantically valid
formula. Historically, many proofs of first-order completeness have relied on non-
constructive reasoning principles. In this thesis, we analyze multiple completeness
theorems for variants of Gentzen’s natural deduction and sequent calculus with
regards to model and game semantics for first-order logic to determine which non-
constructive principles are required to prove them.

In the first half of this thesis, we constructively analyze completeness theorems for
the ∀,→,⊥-fragment of first-order logic with regards to different notions of Tarski
and Kripke models. We show that Veldman exploding models, which treat ⊥ pos-
itively, and minimal models, which treat ⊥ as an arbitrary logical constant, admit
fully constructive completeness proofs. We also demonstrate the non-constructivity
of completeness with regards to standard Tarski and Kripke models by relating
them to the stability of provability. We derive tight characterizations of the require-
ments for multiple variants of standard completeness by identifying the principle
of double-negation elimination and two different formulations of Markov’s princi-
ple with the stability of provability restricted to different classes of theories.

The second half of the thesis is concerned with dialogue game semantics for full
intutionistic first-order logic. We first give generic and fully constructive complete-
ness proofswith regards to formal intuitionistic E- andD-dialogues. We thenderive
the completeness of the full intuitionistic sequent calculus with regards to formal
first-order dialogues from this general result.

The analyses of this thesis are carried out in the calculus of inductive constructions
and have been formalized in the interactive proof assistant Coq.



Acknowledgements

Iwant to thank both advisors ofmy thesis, DominikKirst andYannick Forster. They
let me explore the topic on my own accord, entertaining all of my whims and ideas
while always acting as a voice of reason whenever I was at risk of losing sight of
the thesis’ direction. I want to thank Dominik in particular for making me realize
that formal and philosophical inquiry do not have to be at odds with each other.

I also want to thank Professor Smolka for supervising this thesis. The courses and
seminars offered by his chairmade up formost of the electives ofmyundergraduate
education and with good reason: The passion he displays for each aspect of the
subjects he lectures on are both admirable and inspiring.

I thank Professor Finkbeiner whowas my academic advisor duringmy undergrad-
uate studies. His wealth of academic experience and willingness to critically ques-
tion decisions I was about to make has helped me tremendously throughout these
three years. I also thank him for agreeing to be the second reviewer of my thesis.

Further, I want to thankmy family and friends. In particular, I want to thank Simon
Spies for sharingmy passion for logic and type theory. I alsowant to thankmy fam-
ily for their unwavering support of my academic aspirations, including graciously
financing my studies in Saarbrücken. They were always there to cheer me on and
back me up when I felt stuck or lost.

Lastly, I thankDominik, Yannick and Simon for proof-reading this thesis and giving
such helpful suggestions.



Contents

Abstract iii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 On Constructive Type Theory . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 9
2.1 Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Synthetic Computability Theory . . . . . . . . . . . . . . . . . . . . . 10
2.3 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 De Bruijn Formulas and Substitutions . . . . . . . . . . . . . . 13
2.3.3 Contexts and Theories . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Fresh Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Natural Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Constructive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Double-Negation Elimination . . . . . . . . . . . . . . . . . . . 21
2.5.3 Synthetic Markov’s principle . . . . . . . . . . . . . . . . . . . 22
2.5.4 Object Markov’s principle . . . . . . . . . . . . . . . . . . . . . 24

3 Tarski Semantics 26
3.1 An Overview of Henkin’s Proof . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Generalized Theory Extension . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Exploding Theories . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Henkin Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Maximal Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Constructive Analysis of Completeness Theorems . . . . . . . . . . . 36
3.3.1 Tarski Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



vi Contents

3.3.2 Standard Models . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Exploding Models . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Extending the Completeness Results . . . . . . . . . . . . . . . . . . . 45
3.4.1 Finite Completeness . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Full Strong Completeness . . . . . . . . . . . . . . . . . . . . . 47

3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Kripke Semantics 52
4.1 Kripke Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Normal Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Constructive Analysis of Completeness Theorems . . . . . . . . . . . 57

4.3.1 Exploding and Minimal Models . . . . . . . . . . . . . . . . . 57
4.3.2 Standard Models . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Semantic Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Dialogue Semantics 66
5.1 An Overview of Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Material Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Formal Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Generalized Intuitionistic E-Completeness . . . . . . . . . . . . . . . . 72
5.2.1 Generalized Intuitionistic E-Dialogues . . . . . . . . . . . . . . 72
5.2.2 Dialogical Sequent Calculus . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Soundness and Completeness . . . . . . . . . . . . . . . . . . . 77

5.3 Full Intuitionistics First-Order Completeness . . . . . . . . . . . . . . 78
5.3.1 Full Intuitionistic Sequent Calculus . . . . . . . . . . . . . . . 79
5.3.2 Translating between LJ and LJD . . . . . . . . . . . . . . . . . 80

5.4 Generalized Intuitionistic D-Completeness . . . . . . . . . . . . . . . 85
5.4.1 Generalized Intuitionistic D-Dialogues . . . . . . . . . . . . . 85
5.4.2 Soundness and Completeness . . . . . . . . . . . . . . . . . . . 87

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Discussion 96
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 104



Chapter 1

Introduction

First-order logic has undoubtedly established itself as the canonical language of for-
malmathematical arguments. To give an example, Zermelo-Fraenkel set theory, the
mathematical foundation most mathematicians and computer scientists work in, is
traditionally formalized as a first-order theory. Even in fields outside the mathe-
matical realm, such as linguistics and analytic philosophy, first-order logic enjoys
widespread use. This predominant position is certainly not without basis as first-
order logic is sufficiently expressive for most of mathematics while still having an
extremely simple syntax.

The intrigue of logics originates in their semantics. A semantics is any formal or
informalmethod of imbuing the formulas of a logical languagewithmeaning. This
is usually done by giving conditions for a formula A to be considered valid, which
we denote by � A. As an example, a possible account of � A → B would be
“in any universe in which A holds, B holds as well”. When regarded only as a
source of meaning, semantics should be simple and grant an immediate intuitive
grasp on domain of the language they describe. However, this singular focus on
the elegant characterization of a formula’s meaning often leaves them unable to
clarify another important aspect of logic: proof. Take as an example the semantic
account of � A→ B from above. Knowing that A→ B means that B holds in any
universe in which A holds unambiguously characterizes A → B, but how would
one go about proving that A→ B holds in the first place? This question cannot be
answered on the basis of our semantic account without appeals to mathematical
intuition.

Deduction systems are designed to give an unambiguous answer to this question.
At first glance, deduction systems are a formalization of our intuitive understand-
ing of valid mathematical arguments. They thus consist of multiple rules, each
describing a valid argumentative step. A proof in a deduction system then con-
sists of a finite chain of its rules, originating in axioms that are taken to always be
evidently true and leading to the desired statement. Such deductive arguments
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usually establish that a finite list of formulas Γ “entails” a formula A, meaning that
evidence for A can be deductively obtained from Γ. This fact is usually denoted by
Γ ` A. An example of a deduction rule is given below.

Γ, A ` B
Γ ` A→ B

This rule expresses A → B can be deduced from Γ if B can be deduced from the
list Γ extended with A. On its own, this rule isn’t any more illuminating than the
semantic account of � A → B. However, all rules of a deduction system taken
together give a clear account of what constitutes a proof of Γ, A ` B. In fact, this
notion of proof does not rely on any mathematical intuition, as the correctness of a
deductive argument can be verified by simply checking if each of its deductive steps
is in line with its rules. For this reason, deduction systems are often said to give a
“purely syntactic” account of a logic. Of course, deduction systems are not com-
pletely detached from semantic accounts of validity, as their construction if often
guided by a more intuitive semantics that serves as a heuristic for the admissibility
of its rules.

Both semantics and deduction systems can be, and often are, specified in terms of
an already existing mathematical framework. In that case, the underlying frame-
work is called the “meta-logic” and the system that is being defined the “object-
logic”. If a deduction system Γ ` A and a semantics Γ � A are defined in a meta-
logic, their relationship can be analyzed formally. The two properties always con-
sidered in such analyses are soundness and completeness. A deduction system is
said to be “sound” with regards to a semantics if everything that can be syntacti-
cally deduced in the system also holds semantically (Γ ` A implies Γ � A). This
can be taken as the assertion that the deduction systemmaintains the validity char-
acterized by the semantics: From valid sentences, only further valid sentences can
be deduced. The opposite property is called “completeness”. That is, a deduc-
tion system is complete with regards to a semantic account if everything that is
semantically valid can be deduced (Γ � A implies Γ ` A). Note that soundness
or completeness on their own each are fairly weak properties. For example, a de-
duction system that can not deduce anything is sound, while a deduction system
that can deduce everything is complete. If, however, a deduction system is both
sound and complete with regards to a semantics then the deduction system gives
an accurate, purely syntactic characterization of the semantics’ notion of validity.
First-order logic is unique among systems of similar expressivity as its deduction
systems can be shown to be both sound and complete with regards to rather naive
(and thus very intuitive) semantic accounts.
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In this thesis, we carry out multiple constructive analyses of completeness proofs
for first-order logic. Constructivism is a philosophical position on what constitutes
a convincing mathematical argument. Although the precise accounts of construc-
tivism vary, they all agree on the demand that the witnesses of existential proofs
should always be computable. This stands in opposition to the orthodox account of
mathematical argument which allows existential statements to be derived from the
impossibility of non-existence. As the constructivist demand on existential proof
is thus not guaranteed by the classical systems usually employed in mathematics,
constructivists work in systems of their own. These systems are often arrived at
by removing deduction rules, such as the principle of the excluded middle, from
classical systems. As a result, they can prove fewer theorems, which is often con-
sidered an indication of constructive systems being “weaker” than their classical
counterparts. However, the opposite case can be made as well: While the construc-
tive system may prove fewer formulas, the formulas it does prove have stronger
epistemological backing, as all existential proofs that were made to arrive at them
have explicit witnesses one can point to, thus making the system stronger. This line
of argument can be taken even further: some statements that can be proven both
classically and constructively are arguably only meaningful in a constructive set-
ting. Examples of this can even be found in this thesis: In later chapters, we prove
that certain completeness statements entail the classical principle of double nega-
tion elimination. In a classical system, such proofs are a triviality as the principle
is already asserted by the system itself. However, in our constructive setting where
these classical principles are not present, these proofs are an expression of the in-
herent classicality of these variants of first-order completeness and thusmuchmore
meaningful. As constructive systems always constitute subsystems of classical sys-
tems, one may be lead to believe that they are badly suited to expressing inherently
classical concepts, such as semantic accounts of classical logics. However, this is
not the case. For example, we give a very natural constructive account of a classical
semantics in Chapter 3.

There are two distinct mathematical undertakings that are commonly deemed a
“constructive analysis”. The first one can be seen as a consequence of the close link
between proof and computation in constructive settings: All constructive proofs
have “computational content”. That is, there always is an algorithm underlying the
structure of constructive mathematical arguments. The resulting type of construc-
tive analysis is an inquiry into these underlying programs, which can give further
insight into constructively valid theorems. The second kind of mathematical un-
dertaking is “constructive reverse mathematics” [34]. Reverse mathematics [60] is
a broad field of mathematics that aims to find the minimal assumptions required
to prove important mathematical theorems. If carried out from a constructivist
perspective, the assumptions under scrutiny tend to be non-constructive reasoning
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principles, such as the principle of excluded middle or Markov’s principle. While
both approaches tend to come from a constructivist perspective, the analysis of
computational content is concerned with constructive proofs, while constructive
reverse mathematics usually works with non-constructive proofs. The notion of
constructive analysis we adhere to in this thesis is closer to that of constructive re-
verse mathematics, although we use a different mathematical foundation than the
second-order arithmetic usually employed by that community. More specifically,
we analyze the minimal non-constructive assumptions required for various first-
order completeness theorems.

The history of first-order completeness is rich enough to warrant its textbook. We
thus restrict ourselves to a partial account, only covering proofs relating directly
to the completeness theorems discussed in this thesis. The first proof of classi-
cal first-order completeness was given by Kurt Gödel in 1929 [23]. His proof was
highly syntactic andmade use of classical reasoning principles. 20 years later, Leon
Henkin gave a revised, but still partially classical, account of first-order complete-
ness [28], which has since become the standard presentation of this result due to its
elegance. Saul Kripke proposed his model semantics for modal logic as a suitable
semantics for intuitionistic first-order logic in 1965 [41]. In the same paper, he gave
a classical proof of completenesswith regards toKripke semantics. A great advance
in constructive completeness proofs was made byWim Veldman in 1976, who gave
a proof with regards to Kripke models which “treat negation positively” [65] that
did not rely on the principle of excluded middle. However, his proof still required
the use of the non-constructive fan theorem to handle ∨ and ∃. Jean-Louis Krivine
applied this insight to classical first-order logic in 1996 [42], resulting in a proof of
completeness for a similarly modified classical first-order semantics. As ∃ and ∨ do
not have to be handled explicitly in classical settings, his proof was fully construc-
tive.

We also consider dialogues as an intuitionistic semantics in this thesis. In his PhD
thesis of 1961, Kuno Lorenz was the first to prove completeness with regards to
various dialogue semantics for first-order logic [46], including one for intuitionistic
logic. Walter Felscher later gave a modernized, constructive account of first-order
completeness with regards to intuitionistic dialogues in 1985 [15], which has since
become the canonical variant of this proof.

1.1 Contributions
The contents of this thesis can be split into two distinct halves. The first half ana-
lyzes completeness theorems for the ∀,→,⊥-fragment of first-order logic with re-
gards to various notions of Tarski and Kripke models. In that half

• we perform a unified analysis of the constructivity of Tarski and Kripke com-
pleteness for standard, exploding andminimal models. We thereby relate the



1.2. Overview 5

various known results [29, 30, 38, 53, 4, 59] and highlight the symmetries of
said results between the two semantics.

• we describe a constructive, Henkin-style theory extension procedure that is
suitable for notions of validity with or without⊥, based on previous work by
Herbelin and Ilik [29] and Schumm [59].

• we reframe the constructive analysis in terms of the stability of provability,
thereby more clearly separating the non-constructivity of the completeness
theorems from the specific formulations of the non-constructive principles
(such as Markov’s principle) we relate it to.

The second half is concerned with completeness proofs for intuitionistic dialogue
semantics. In that half

• we present a novel way of formalizing dialogues as state transition systems
which is better suited for type-theoretic settings than the traditional account
of dialogues and thus allow for simpler proofs.

• we adopt the generalized completeness proofs for classical E-dialogues with
finite rule sets by Sørensen and Urzyczyn [61] to intuitionistic E-dialogues
with infinite rule sets

• we demonstrate how to derive the completeness of the full sequent calculus
with regards to intuitionistic first-order E-dialogues from the general com-
pleteness result.

• we give a constructive proof of the equivalence of generalized intuitionistic
E- and D-dialogues with enumerable rule sets based on a clear intuition in
terms given by our formalization of dialogues as state transition systems.

The results of this thesis have been formalized in the interactive proof assistant Coq.
The an explorable version of the source code of the formalization can be viewed
online under https://www.ps.uni-saarland.de/~wehr/bachelor/coq/toc.html.
To aid the exploration of the formalization, each definition and theorem is linked
to its formalized counterpart.

1.2 Overview
We now remark on the structure of the remaining thesis. After closing this chapter
with a brief overview of constructive type theory as a foundation of mathematics,
we proceed by giving preliminary definitions in Chapter 2. These definitions cover
central concepts of synthetic computability theory (Section 2.2), the syntax and a
natural deduction system for first-order logic (Sections 2.3 and 2.4), and elabora-
tions on the stability of provability and its relation to non-constructive principles
(Section 2.5).

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/toc.html
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The main chapters of this thesis can be split into two halves. In the first half (Chap-
ters 3 and 4), we constructively analyze completeness theorems for the ∀,→,⊥-
fragment of first-order logic with regards to different notions of Tarski and Kripke
models, beginning with Tarski models in Chapter 3. For this, we give a generalized
variant of Henkin’s theory extension procedure in Section 3.2. We then construc-
tively analyze completeness theorems with regards to different notions of Tarski
models. We demonstrate the non-constructivity of completeness with regards to
standard models by relating it to the stability of provability in Section 3.3.2. We
then show that Veldman exploding models (Section 3.3.3), which treat ⊥ posi-
tively, and minimal models (Section 3.3.4), which treat ⊥ as an arbitrary logical
constant, admit fully constructive completeness proofs. In Chapter 4, we derive
symmetric results for Kripke models, meaning that exploding andminimal Kripke
models allow for constructive completeness proofs (Section 4.3.1), while standard
Kripke completeness can be related to the stability of provability (Section 4.3.2). We
close the chapter by demonstrating that, as the Kripke completeness results were
in terms of a normal sequent calculus, one can use them to derive a semantic proof
normalization procedure in Section 4.4.

The second half of the thesis is concernedwith dialogue semantics. We first present
a novel way of formalizing dialogues and use it to give a completeness proof with
regards to formal intuitionistic E-dialogues (Section 5.2). We then derive the com-
pleteness of the full intuitionistic sequent calculuswith regards to formal first-order
E-dialogues from this general result (Section 5.3). Further, we prove the com-
pleteness of generalized intuitionistic D-dialogues with enumerable rule sets (Sec-
tion 5.4), which entails the equivalence between such E- and D-dialogues and the
completeness of the full intuitionistic sequent calculus with regards to first-order
D-dialogues.

We close the thesis in Chapter 6 by discussing our results (Section 6.1) as well as
related and future work (Sections 6.2 and 6.3). We also remark on the Coq formal-
ization that was developed alongside this thesis (Section 6.4).

1.3 On Constructive Type Theory
Type theories, such asMartin-Löf type theory [51] or the calculus of inductive con-
structions (CIC) [10], can be used as constructive foundations for mathematics.
More precisely, they embody the strictest notion of constructivity, championed by
mathematicians such as Heyting [32] and Bishop [6]. We also adapt this notion
of constructivism for this thesis. As such, phrases like “constructive” and “non-
constructive” should always be understood accordingly. The constructive analyses
in this thesis are carried out in the calculus of inductive constructions. The remain-
der of this section gives an introduction to constructive type theory sufficient to
enable a reader unfamiliar with type theory to understand the rest of this thesis.
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At the heart of type theory is the concept of types. As an example, the natural
numbers can be defined as the type given below.

N : T := 0 | S n (n : N)

This definition establishes that the expression 0 is a member of the type of natural
numbers N, which is usually denoted by 0 : N. Additionally, the constructor S can
be applied to an expression n : N to obtain another natural number S n : N. This
way of defining the natural numbers corresponds to that of Peano arithmetic, 0 : N
representing the number 0 and S : N → N denoting the successor function. The
number 3, for example, is represented as S (S (S 0)).

Another important feature of type theory are its built-in notions of function and
computation. Functions can be defined in terms of λ-abstractions: the expression
(λn. n + n) : N → N defines the function that doubles a natural number. The
computational behavior of terms is defined by reduction rules. For example, β-
reduction describes the computation step of “inserting” arguments into functions.
For instance, β-reduction allows (λn. n+ n)m to be reduced tom+m.

Constructive type theory radically differs from other mathematical foundations,
such as ZF set theory, by representing its propositions as types, just as it does
with the objects that are reasoned about. The idea behind this approach is often
called the “Curry-Howard-Isomorphism” and is summed up by the popular slo-
gan “Proofs are Programs; Propositions are Types!”. A simple example of a propo-
sition represented as a type is that of the disjunction: Given two types A and B

representing propositions, one can define a type representing their disjunction as
below.

A ∨B : P := La | Rb (a : A, b : B)

A proposition-as-a-type is proven by giving an expression of that type. In the case
of A ∨ B, that can be done whenever a member (proof) of type A or B is already
known. This exactly corresponds to the usual introduction rules for disjunctions
found in natural deduction systems.

The attentive reader will have noticed a small difference between the definitions of
N and A ∨B. The type of N is given as T, whereas A ∨B : P. These types of types
are usually called type universes. Slightly simplifying, CIC has two universes: the
impredicative universe of propositions P and the predicative universe of computa-
tional types T. While there are important technical reasons for this distinction, it
also improves the readability of type signatures. For example, the type of predi-
cates on natural numbers is N→ P, that is, functions mapping natural numbers to
propositions. An example for such a predicate is λn. n < 10 : N→ P.

Types in CIC are not restricted to be parametric over other types. Types can also
be defined dependent on terms (this is usually called “dependent types”). For
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example, the type corresponding to the existential quantifier can only be defined
as a dependent type.

∃p : P := E xH (p : X → P, x : X,H : p x)

The type ∃p is defined in terms of a predicate p : X → P. It can only be proven
using the functionE, which takes as arguments the witness x : X as well as a proof
H : p x that x indeed satisfies the predicate p. More complicated propositions, such
as equality or eveness of a number, can be represented as inductive types by using
even more advanced features of type theory.

Function types take on a new role when interpreting types as propositions as well.
If A and B are propositions, then A→ B is the type corresponding to the proposi-
tion “A impliesB”. Thus, a proof ofA→ B is a function that takes a proof ofA and
transforms it into a proof of B. CIC and other powerful type theories like it have
a second kind of function: dependent functions. As demonstrated in the previous
paragraph, types can depend on terms. It can therefore be useful to be able to refer
to arguments that have already been passed in when giving a function type. As an
example, consider the function type ∀x : X, x = x for a suitably defined predicate
(=) : X → X → P. This dependent function type describes a function that takes
a value x : X as an argument and returns a value (proof) of the type x = x. Thus,
if we had a function of that type r : ∀x : X, x = x, we could obtain a proof of
x′ = x′ for a specific x′ : X with the expression r x′. As the notation we have used
for dependent functions already suggests, they are the type-theoretic equivalent to
the universal quantification. Note also that dependent functions cannot be defined
inductively in CIC, such as A ∨B or ∃p, but are primitives of the calculus instead.



Chapter 2

Preliminaries

Before we begin the analyses, we establish some preliminary notions. After briefly
remarking on the type theory we use in Section 2.1, we elaborate on synthetic com-
putability theory (Section 2.2) which we employ in Chapters 3 and 4. We then give
the syntax of first-order logic (Section 2.3) and a natural deduction system for its
∀,→,⊥-fragment (Section 2.4). We close this chapter by connecting the stability
of deduction to various non-constructive principles (Section 2.5), which forms the
basis for the constructive analysis in subsequent chapters.

2.1 Type Theory
All results of this thesis have been formalized using the interactive proof assistant
Coq. Coq’s logic is based on a constructive type theory called the “calculus of in-
ductive constructions” (CIC) [10]. Matching the formalization, we assume a type
theoretic framework in our writing.

The calculus of inductive constructions distinguishes between two kinds of uni-
verses. The impredicative universe P and an infinite hierarchy of predicative uni-
verses T0 ⊆ T1 ⊆ · · · . For the sake of readability, we usually omit the index on T.
Traditionally, types representing propositions are defined asmembers ofPwhereas
the types representing computational data are placed somewhere in the hierarchy
of T. Thus, predicates are functions of type X1 → · · · → Xn → P with Xi : T.

Throughout this thesis, we make use of multiple types that are well known in the
type-theory community. Their definitions are given in Fig. 2.1. The boolean truth
values true and false are represented by the type B. The type N contains natural
numbers in the usual Peano representation with S : N → N taking the role of the
successor function. Tuples of fixed size are represented by product types of the
form X1 × · · · × Xn. The sum type X + Y may either contain a value of type X
or a value of type Y . Lists of values of type X are represented by the type L(X).
For the sake of readability, we write [x1, ..., xn] for x1 :: ... :: xn :: []. The opera-
tion of concatenating two lists xs and ys is be denoted by xs ++ ys. We also use a
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list-comprehension, denoted by [ f x1 ... xn | x ∈ xs1, ..., xn ∈ xsn, p x1 ... xn ], yield-
ing a list containing f x1 ... xn for all combinations of elements xi ∈ xsi such that
the boolean test p x1 ... xn holds. The type O(X) denotes optional values, either
containing a value x : X , denoted by pxq, or nothing at all, denoted by ∅. The
type {x : X | p x}, often referred to as a Σ-type in the literature, can be seen as the
subtype of type X which contains all values x satisfying the predicate p : X → P.

B : T := true | false
N : T := 0 | S n (n : N)

X1 × · · · ×Xn : T := (x1, . . . , xn) (x1 : X1, . . . , xn : Xn)

X + Y : T := Lx | Ry (x : X, y : Y )

L(X) : T := x :: xs | [] (x : X,xs : L(X))

O(X) : T := pxq | ∅ (x : X)

{x : X | p x} : T := E xH (x : X, p : X → P, H : p x)

Figure 2.1: Type definition

While sets are not primitive to type theory, they can be represented as predicates.
For example, sets of natural numbers are represented by predicates X : N → P. A
number n : N is considered amember of such a setX ifX n holds. To ease readabil-
ity, we write n ∈ X in for X n and 2N for the type N→ P when treating predicates
as sets. Defining the usual set-theoretic operations on them is straightforward: The
union of two setsX∪Y is given by (λx. x ∈ X∨x ∈ Y ) and their intersectionX∩Y
by (λx. x ∈ X ∧ x ∈ Y ). Further, a function f : A→ B can be applied to a set X as
f X := (λb. ∃a. b = f a ∧ a ∈ X).

2.2 Synthetic Computability Theory
The results of computability theory have traditionally been established in terms
of formalized models of computation, such as Turing machines or the λ-calculus.
However, working in such models in a strict formal setting such as Coq can be te-
dious: They usually operate on a very low level of abstraction which means most
interesting results can only be established after proving many intermediate results
that one would simply gloss over on paper. Constructive foundations offer an at-
tractive alternative to this approach: As any function that can be defined construc-
tively is computable, many results of computability theory can be established in
terms of these intrinsic computations. Thus, the computability of a certain func-
tion can be proven by simply giving an implementation of it in CIC. This approach
is often called “synthetic computability theory” [56, 3]. We use this section to intro-
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duce core concepts of synthetic computability theory as adapted to CIC by Forster,
Kirst and Smolka [20].

The first notion are concerned with are decidable predicates. That is, predicates
which can be decided by a boolean function. We have mentioned previously that
constructive settings such as CIC do not allow unrestricted classical reasoning.
However, instances of classical principles such as that of the excluded middle can
still be derived for any decidable predicate. Thus decidability of predicates be-
comes of great interest even in works not directly concerned with computability
theory, such as ours.

Definition 2.1 (Decidable predicates) A predicate P : X → P is called decidable if
there exists a boolean decider d : X → B such that d x = true iff P x for every x.

Fact 2.1 Let P : X → P be a decidable predicate. Then either P x or ¬P x can be derived
for any x.

Typeswith decidable equality are called discrete types. They are of interest asmany
important properties, such as list membership, are decidable for all discrete types.

Definition 2.2 (Discrete types) A type X is called discrete if the predicate there is a
boolean decider for the predicate λ (x, y). x = y : X ×X → P

Along with decidablity, (recursive) enumerability also constitutes a standard con-
cept of computability theory. A predicate / problem is said to be enumerable if
there exists a possibly divergent procedure that outputs all values for which the
predicate holds. However, the calculus of inductive constructions does not allow
functions to diverge as this would cause inconsistencies in its notion of provabil-
ity. Hence, the synthetic adaption of this notion is slightly different: Instead of a
continuously running procedure, the enumeration is performed by a step-indexed
enumerator e : N → L(X) which generates a growing list. This means, e n is re-
quired to be a prefix of e (S n). Intuitively, these enumerators map a number n to
all the values that would have been output if the procedure “ran for n steps”. This
notion can be extended to types, which are considered enumerable if all of their
values can be enumerated.

Definition 2.3 (Enumerability)

1. A function e : N→ L(X) is called an enumeration if ∀n. ∃xs. e (S n) = e n++xs.

2. A predicateP : X → P is called enumerable if there is an enumeration e : N→ L(X)

with (∃n. x ∈ e n) iff P x for every x : X .

3. A type X is called enumerable if there exists an enumeration e : N → L(X) such
that for every x : X there is an n with x ∈ e n.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.DecidableEnumerable.html#decidable
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.DecidableEnumerable.html#decidable_iff
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.DecidableEnumerable.html#discrete
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.DecidableEnumerable.html#enum
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.DecidableEnumerable.html#enumT
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2.3 First-Order Logic
2.3.1 Syntax

The syntax of first-order logic is split into two categories, each represented as a
type. The terms T represent the objects that are being reasoned about. They usu-
ally consist of function applications and constant symbols as well as the variables
bound by the quantifiers. The formulas F contain the first-order statements. These
are built up from the logical connectives, the first-order quantifiers, the logical con-
stants, and the predicates. The predicates are applied to terms, connecting the two
categories.

While the selection of connectives and quantifiers in first-order languages is largely
consistent throughout the literature, the choices of atomic formulas and term lan-
guage can differ wildly. For example, the language of ZF set theory has a term lan-
guage consisting entirely of variables while Peano arithmetic requires a constant 0,
the successor function S and two binary functions + and ·. However, the complete-
ness proofs we explore in this thesis are unaffected by the concrete choices made
in these matters. We therefore use a syntax that is generalized over signatures Σ.
A signature (F ,P, | − |) consists of a type of function symbols F , a type of predi-
cate symbols P and a function |− | assigning an arity to each function- or predicate
symbol. Term constants and logical constants are represented by 0-ary functions
and predicates, respectively.

Definition 2.4 (First-order syntax)

t : T ::= x | f t1 ... t|f | f : F , x : N terms
ϕ,ψ : F ::= >̇ | ⊥̇ | P t1 ... t|P | | ϕ →̇ψ | ϕ ∧̇ψ | ϕ ∨̇ψ | ∀̇ϕ | ∃̇ϕ P : P formulas

The syntactic elements of the formulas are topped by a dot, making it easier to dis-
tinguish them from their meta-logical counterparts. As the syntax does not contain
negation, we write ¬̇ϕ to denote ϕ →̇ ⊥̇.

The majority of the proofs in this thesis are only concerned with a fragment FF of
first-order logic. While the terms remain unchanged, the formulas are restricted to
∀̇, →̇ , and ⊥̇ as well as the predicates.

Definition 2.5 (∀̇, →̇ , ⊥̇-fragment)

ϕ,ψ : FF ::= ⊥̇ | P t1 ... t|P | | ϕ →̇ψ | ∀̇ϕ P : P formulas

Many definitions and lemmas concernedwith the syntax of formulas do not distin-
guish between the concrete connectives occurring in them. To enhance readability

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSyntax.html#term
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSyntax.html#form
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Syntax.html#form
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of these kinds of statements, we employ a notation to abstract over similar syntac-
tic elements: we write ϕ �̇ψ to denote any of the binary connectives →̇ , ∧̇ , ∨̇ . ∇̇ϕ
means either of the quantifiers ∀̇ or ∃̇. Finally, ∓̇ denotes any of the logical constants
⊥̇ and >̇.

Discreteness and enumerability extend from Σ to the first-order languages. As we
make use of both properties throughout this thesis, we fromnowon always assume
that the signature Σ is discrete and enumerable. Further, an enumeration of type
N → F is often be more convenient than the enumeration e : N → L(F). Such an
enumeration can be defined in terms of e as ϕn := nthn (e n) and we make use of
it throughout this thesis.

Fact 2.2

1. If F and P are discrete, so are F and FF .

2. If F and P are enumerable, so are F and FF .

2.3.2 De Bruijn Formulas and Substitutions

The attentive reader might have already noticed the peculiar lack of a binding vari-
able for both ∀̇ and ∃̇. This stems from the fact that we employ de Bruijn binders
instead of the more common named binders. In the late 1960s, de Bruijn developed
a machine-checkable formal system for mathematics called AUTOMATH [11]. He
originally put forward de Bruijn binders as a machine-friendly representation of
the terms of the typed λ-calculus of AUTOMATH [12]. Because of its machine-
friendliness, this paradigm is well suited for the formal treatment of syntax with
binders in general. For this reason, we have chosen to employ de Bruijn binders in
our formalization as well.

In de Bruijn formulas, variables are represented by natural numbers instead of the
usual strings of characters. In a closed formula, these numbers denote how many
quantifiers have to be skipped to arrive at their binding quantifier (see Fig. 2.2 for a
visual example). If a variable exceeds the amount of quantifiers in the formula, it is
taken to refer to a free variable identified with the remainder of that number. In the
formula ∀̇P 1 →̇ ∀̇P 2, for example, 1 and 2 refer to the same free variable identified
with the number 0.

∀̇ P 0 →̇ ∃̇ R 1 0

Figure 2.2: A de Bruijn formula

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#dec_form
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#enumT_form
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When using de Bruijn binders, many technical problems that usually arise when
workingwith syntax containing binders are greatly simplified or even outright triv-
ialized. For instance, α-equivalence, the fact that ∀x. Rx z and ∀y. R y z are equiv-
alent but ∀x. Rx z and ∀x. Rx y are not, requires reasoning about bound and free
occurrences of variables when working with named binders. However, all mem-
bers of an α-equivalence class are represented by the same de Bruijn formula. For
example, both ∀x. Rx z and ∀y. R y z are translated to ∀̇R 0n for some fixed n corre-
sponding to z. Thus reasoning about α-equivalence is reduced to reasoning about
syntactic equality in a de Bruijn setting.

Another syntactic problem resolved by employing de Bruijn binders is that of a
capture-free substitution. Consider the valid statement about natural numbers
∀n. ∃m. n 6= m. When naively instantiating this formula with the free variable
m, one arrives at ∃m. m 6= m. The term that took the place of n now refers to the
variable m bound by the existential quantifier instead of the free variable m, lead-
ing to an invalid statement. This phenomenon is called “variable capture” and can
lead to inconsistencies in a deduction system as we just demonstrated.

The most convenient way of avoiding capture is working with a capture-free sub-
stitution, a notion of substitution that makes variable capture impossible. Defining
a capture-free substitution for de Bruijn formulas turns out to be very simple. First,
let us reexamine what leads to the capture in the previous example. The seemingly
harmless term m that was supposed to replace n turned into a capturing formula
when “moving below” ∃m. One way of resolving this would be to rename the
binder of ∃m and all of its bound variables to something different, such as ∃x. This
method is usually called “α-renaming” and would leadm to not be captured. It is
much more obvious how to handle substitutions moving below a universal quanti-
fier in a de Bruijn setting. As stated previously, each variable “counts” the number
of universal quantifiers one has to skip to arrive at their binder. Hence, when mov-
ing below a binder, every variable occurring in a substitution has to be increased
by one to account for the additional binder introduced “above it”. If this is done,
all references made by variables in substitutions are always maintained, thereby
avoiding variable capture. The formal definition of substitution based on this idea
is given below.

Definition 2.6 (De Bruijn substitution)

1. A substitution is a function σ : N→ T mapping the free variables to terms.

2. A term t is instantiated with a substitution σ, denoted t[σ], as follows:

x[σ] := σ x (f t1 ... t|f |)[σ] := f (t1[σ]) ... (t|f |[σ])

3. We denote the shifting substitution λx. S x by ↑. We write ↑ t instead of t[↑]. This

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSyntax.html#subst_term
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSyntax.html#up_term_term
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operation is lifted to the level of substitutions with (↑σ)x := ↑(σ x).

4. A substitution σ can be extended by a term t, denoted by (t, σ), as follows:

(t, σ)x :=

{
t if x = 0

σ y if x = S y

5. A formula ϕ is instantiated with a substitution σ, denoted ϕ[σ], as follows:

(P t1 ... t|P |)[σ] := P (t1[σ]) ... (t|P |[σ]) ∓̇[σ] := ∓̇

(ϕ �̇ψ)[σ] := ϕ[σ] �̇ψ[σ] (∇̇ϕ)[σ] := ∇̇(ϕ[0, ↑σ])

6. We denote the identity substitution λx. x with ι. In a slight abuse of notation, we
write s[t] or ϕ[t] for the single term substitution (t, ι).

This definition of substitutions avoids capture, as references to free variables are
always “corrected” by the lifting operation ↑when moving below quantifiers. For
an example, take the formula ∀n. ∃m. n 6= mwe used to illustrate variable capture.
The formula can be represented in the syntax of our object logic by ∀̇∃̇ ¬̇E 1 0. The
de Bruijn analogue of instantiating ∃m. n 6= m with n an application of the sin-
gle term substitution (∃̇ ¬̇E 1 0)[0]. Evaluating this yields ∃̇ ¬̇E 1 0 again, thereby
avoiding variable capture. A detailed evaluation of this example can be seen below.

(∃̇ ¬̇E 1 0)[0] = (∃̇ ¬̇E 1 0)[0, ι] = ∃̇ (¬̇E 1 0)[0, ↑(0, ι)] = ∃̇ (¬̇E 1 0)[0, 1, ↑ι] = ∃̇ ¬̇E 1 0

2.3.3 Contexts and Theories

When defining deduction systems or semantics, one often deals with collections of
formulas which are assumed to already hold. Usually, these collections are guar-
anteed to be finite, in which case they are called contexts. We represent them as
members of the type of lists of formulas L(F) and denote them with Γ. However,
we also need collections of potentially infinite size in Chapter 3. We call these the-
ories and denote them by T . They are represented by sets of formulas of the type
2F. We write X ⊆ Y whenever ϕ ∈ Y for all ϕ ∈ X , regardless of whether X and
Y , respectively, are a context or a theory.
2.3.4 Fresh Variables

The notion of fresh variables and closed formulas has proven useful when reason-
ing about formulas and substitutions. A variable x is called fresh for term t or
formula ϕ, denoted by x#t and x#ϕ, if the variable x is never referred to in t and
ϕ. A formula ϕ or term t is considered to be closed if no it doesn’t refer to any
free variables. The formal definitions of these notions is given below. Note that
quantifiers again induce a variable shift to maintain the correct notion of reference.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.unscoped.html#scons
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSyntax.html#subst
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.unscoped.html#ids
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Definition 2.7 (Fresh variables)

1. The variable x being fresh for the term t is characterized inductively by x#t:

UT
y

x 6= y

x#y
UT

f

x#t1 ... x#t|f |

x#f t1 ... t|f |

2. The variable x being fresh for the formula ϕ is characterized inductively by x#ϕ:

UF

∓̇ x#∓̇
UF

�̇

x#ϕ x#ψ

x#ϕ �̇ψ
UF

∇̇

S x#ϕ

x#∇̇ϕ

UF
P

x#t1 ... x#t|n|

x#P t1 ... t|n|

3. The variable x being fresh for the context Γ is defined as x#Γ := ∀ϕ ∈ Γ. x#ϕ.

As any formula or context can only reference a finite amount of variables, one can
always compute a boundary above which no variable is referenced by the formula
or context.

Fact 2.3 For any formula ϕ and context Γ, one can find a variable x such that any variable
y ≥ x is fresh for ϕ or Γ.

An important operation on formulas is closing them by capturing their free vari-
ables with universal quantifiers. We write ∀̇n ϕ for the formula ϕ prefixed by n
universal quantifiers. This operation captures all references to the free variables up
to n and decreases all other references to free variables by n respectively. This is
formalized by the fact below. When applied with an n found by the procedure of
Fact 2.3, this formula transformation can be used to close terms. We denote this
closing operation by ∀̇∗ ϕ.

Fact 2.4 For any formula ϕ and variable x such that any variable y ≥ x is fresh for ϕ, any
variable z ≥ x− n is fresh for ∀̇n ϕ.

A common problem one encounters when working with substitutions is having to
prove that two seemingly different substitutions σ1 and σ2 result in the same for-
mula when applied to a certain formula ϕ. As the initial formula ϕ can only refer
to a finite amount of free variables, it suffices to show that the two substitutions
σ1 and σ2 agree on those variables to deduce that the resulting formulas are equal
overall. This intuition is made formal by Fact 2.5 below, which is formulated in a
very generic manner using a decidable predicate distinguishing between the fresh
and the “relevant” variables. By specializing it to appropriate predicates, one ar-
rives at Corollary 2.6, which gives the specific instances that we require throughout
this thesis.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#unused_term
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#unused
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#unused_L
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#find_unused
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FOL.html#capture_captures


2.4. Natural Deduction 17

Fact 2.5 Let p be a decidable predicate, ϕ a formula and σ1, σ2 substitutions, such that
¬p x→ σ1 x = σ2 x and p x→ x#ϕ. Then ϕ[σ1] = ϕ[σ2].

Corollary 2.6 Let ϕ be a formula and σ1, σ2 be substitutions. Then

1. If x#ϕ and σ1 y = σ2 y for all y 6= x then ϕ[σ1] = ϕ[σ2],

2. If all x ≤ y are fresh for ϕ and σ1 z = σ2 z for all z < x then ϕ[σ1] = ϕ[σ2],

3. If ϕ is closed then ϕ[σ1] = ϕ[σ2].

Sometimes one has to prove that a variable is fresh for the result of a substitution
instantiation. With similar reasoning as above, it suffices to show that the variable
is fresh for all of the terms that the free variables referenced by the formula map to.

Fact 2.7 Let ϕ be a formula, σ a substitution and y a variable such that x#ϕ or y#σ x for
all x. Then y#ϕ[σ].

2.4 Natural Deduction
We work with multiple different deduction systems throughout this thesis. As
multiple interesting considerations go into defining these systems, we elaborate on
some of the decisions we made in these matters with the example of the deduction
system that is employed in Chapter 3.

Ctx
ϕ ∈ Γ

Γ ` ϕ II
Γ, ϕ ` ψ

Γ ` ϕ →̇ψ
IE

Γ ` ϕ →̇ψ Γ ` ϕ
Γ ` ψ AllI

↑Γ ` ϕ
Γ ` ∀̇ϕ

AllE
Γ ` ∀̇ϕ
Γ ` ϕ[t]

Exp
Γ `E ⊥̇
Γ `E ϕ

Peirce
Γ `C ((ϕ →̇ψ) →̇ϕ) →̇ϕ

Figure 2.3: Natural deduction

The system we define is a variant of Gentzen’s natural deduction [21, 22] on the
syntactic fragment FF . Its rules are given in Fig. 2.3. As we require different vari-
ants of natural deduction in the course of this thesis, we parameterize the system
over two flags S and B. These parameters restrict the usage of the rules (Exp) and
(Peirce). The first flag S characterizes the system’s classicality: if it is C, the clas-
sical (Peirce) rule may be used, otherwise it is intuitionistic, which is denoted by
an I . The second flag B describes how the system treats ⊥̇. If it is E, the system
incorporates the (Exp) rule, otherwise ⊥̇ is treated as a logical constant, denoted by
L. Many properties hold for any choice of S and B or only depend on the choice
of one of them. To reduce visual clutter in such situations, we do not specify any

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#subst_unused_form
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#subst_unused_single
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#subst_unused_range
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullFOL.html#subst_unused_closed
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FOL.html#unused_after_subst
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.ND.html#prv
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of the components that can be freely chosen, such as in `C and `E in the (Peirce)
and (Exp) rules below.

The rules of ` are straight-forward: Any assumed formula can be deduced (Ctx).
An implication holds if its conclusion can be deduced when assuming its premise
(II) and can be used to deduce its conclusion whenever its premise holds (IE). A
universally quantified property can be proven by demonstrating that it holds in a
context in which the binding variable does not occur (AllI) and can be used to
derive that property for any term t (AllE). If a contradiction ⊥̇ can be deduced,
everything else can be deduced as well (Exp). The classical axiom (Peirce) states
that any formula, which holds whenever it implies another formula, holds. While
this is a somewhat uncommon method of ensuring classicality, it does not rely on
⊥̇ being contradictory and therefore allows for the classicality of the system and its
treatment of ⊥̇ to be specified separately.

While ` is defined in terms of finite contexts Γ, we also need to be able to rea-
son about provability in terms of possibly infinite theories T . Instead of defining
a separate deduction system for theories, we define provability under theories in
terms of provability under finite contexts. We extend the usage of the specifying
parameters SB to this notion of provability.

Definition 2.8 (Provability under theories) A formula ϕ is provable under a theory
T , written as T ` ϕ, if there exists a finite context Γ ⊆ T with Γ ` ϕ.

This definition captures the notion of provability under theories: Consider a natural
deduction system for possibly infinite theories. It will still only admit finite deriva-
tions as valid proofs. However, a finite derivation can only make use of finitely
many formulas from the theory T under which it was derived. This finite collec-
tion of formulas can be regarded as a contextΓ ⊆ T , thus yielding a proof according
to the above definition.

The rules of deduction systems can usually be lifted to the level of provability under
theories. We need two such lifted rules in Chapter 3.

Fact 2.8 The following rules can be proven admissible for `.

II
T ∪ {ϕ} ` ψ
T ` ϕ →̇ψ

Cut
T ∪ {ϕ} ` ψ T ` ϕ

T ` ψ

There are two kinds of weakening properties which all deduction systems dis-
cussed in this thesis posses. The first kind is weakening under assumption exten-
sion: A proof remains valid under assumptions that subsume the proof’s original

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.ND.html#tprv
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.ND.html#prv_T_impl
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.ND.html#prv_T_remove
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assumptions. The second kind is weakening under substitution: A proof remains
valid if a substitution is applied to its context and claim.

Fact 2.9 The following rules can be proven admissible for `.

Weak
Γ′ ` ϕ Γ′ ⊆ Γ

Γ ` ϕ WeakT
T ′ ` ϕ T ′ ⊆ T

T ` ϕ WeakS
Γ ` ϕ

Γ[σ] ` ϕ[σ]

Most of the rules of ` can be found identically throughout the literature. A note-
worthy exception to this is (AllI), as there aremultiple equally viable formulations
of this rule for systems with de Bruijn binders. We call the variant we chose the “de
Bruijn” version. It uses a context shift in the premise ↑Γ ` ϕ to ensure that the vari-
able originally bound by the universal quantifier does not refer to any free variables
in the context. An alternative, especially popular in the programming languages
community, is called “locally nameless” [2]. Here, the bound variable is replaced
by a variable x in the premise Γ ` ϕ[x]. The variable x must be fresh for Γ and ∀̇ϕ
to rule out variable capture. Generally, there is no clearly superior variant of the
(AllI) rule. Our decision in this matter is motivated by a fairly technical reason:
The proofs of the weakening properties in Fact 2.9 are simpler with the de Bruijn
version. However, the locally nameless variant proves essential in a few other sit-
uations throughout this thesis. The following lemma allows us to freely switch
between these two variants as needed.

Lemma 2.10 Let Γ be a context, ϕ a formula and x a variable fresh for Γ and ∀̇ϕ. Then

↑Γ ` ϕ iff Γ ` ϕ[x]

Proof

→ Using Fact 2.9.3 with the substitution [x] as (↑Γ)[x] = Γ.

← Using Fact 2.9.3 with the substitution σ y :=

{
0 if x = y

↑y otherwise
. �

A property of ` that is crucial for the analysis is its enumerability. Both provability
under arbitrary finite contexts and provability under enumerable theories can be
enumerated. This proof also serves as an example how to prove enumerability of
inductive predicates, such as deduction systems.

Lemma 2.11 Let Γ be a context and T be an enumerable theory.

1. The predicate λϕ. Γ `SB ϕ is enumerable

2. The predicate λϕ. T `SB ϕ is enumerable
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Proof We prove this by giving enumerations e : N→ L(FF ).

1. We simultaneously define enumerations eΓ of λϕ. Γ `SB ϕ for each Γ simul-
taneously. For the sake of readability, we refer to both the enumeration of
terms and formulas as e.

eΓ 0 := Γ

eΓ (S n) := eΓ n ++

[ϕ →̇ψ | ϕ ∈ e n, ψ ∈ e(Γ,ϕ) n ] ++

[ψ | ψ ∈ e n, ϕ ∈ eΓ n, (ϕ →̇ψ) ∈ eΓ n ] ++

[ ∀̇ϕ | ϕ ∈ e(↑Γ) n ] ++

[ϕ[t] | ∀̇ϕ ∈ eΓ n, t ∈ e n ] ++

[ ((ϕ →̇ψ) →̇ϕ) →̇ϕ | S = C,ϕ ∈ e n, ψ ∈ e n ] ++

[ϕ | B = E,⊥ ∈ eΓ n, ϕ ∈ e n ]

These enumerations have one clause per rule of `SB in the recursive case.
For example, the second clause corresponds to the (IE)-rule. It generates a
list of all those ψ that have been enumerated by the formula enumeration
e n and for which there is some ϕ such that ϕ and ϕ →̇ψ have already been
enumerated by eΓ n, meaning that Γ `SB ϕ and Γ `SB ϕ →̇ψ have already
been established.

2. We assume an enumeration eT : N → L(FF ) which enumerates all formulas
in T . Using eT , one can construct an enumeration e′ : N → L(L(FF )) which
enumerates all contexts Γ ⊆ T . Then the predicate λϕ. T `SB ϕ can be
enumerated by the following enumeration:

e 0 := [] e (S n) := e n++ concat [ [ϕ | ϕ ∈ eΓ n ] | Γ ∈ e′ n ]

�

2.5 Constructive Analysis
This thesis is concernedwith constructively analyzing various first-order complete-
ness results. More precisely, our goal is finding the non-constructive principles that
are required to prove first-order completeness. This places our work into the field
of constructive reverse mathematics, the inquiry into the proving principles neces-
sary to establish noteworthy theorems. The standard techniques for such analyses
have already been established: To show that a completeness theorem requires a cer-
tain principle, one proves that one can deduce the principle from the theorem. One
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can obtain an even tighter characterization of the relationship between the theorem
and the principle by proving their equivalence.

Our analysis proceeds by relating completeness results to the stability of `CE with
regards to theories. The stability of `CE can in turn be identified with different
non-constructive proving principles, based onwhich classes of theories it is defined
for. In this section, we give a class-based account of the stability of `CE as well as
making precise its relation to the non-constructive principles we consider in this
thesis.

2.5.1 Stability

In constructive settings, such as CIC, the classical principle of double negation elim-
ination is not generally valid. However, specific instances of it are still provable. A
proposition for which the principle of double negation elimination can be proven
is called stable.

Definition 2.9 (Stability) A proposition P is stable if ¬¬P → P holds.

Stability is transported along equivalences. That is, if two propositions are equiva-
lent, their stability is as well.

Fact 2.12 Let P and Q be equivalent. Then P is stable if and only if Q is.

As our analysis reveals, standard completeness with regards to different classes of
theories requires different non-constructive principles to be proven. To match this
insight, we define the notion ofC-stability as the stability of`CE with regards to the
class of theories C. This allows for very fine-grained analyses of the completeness
results.

Definition 2.10 (C-stability) Let C : 2FF → P be a class of theories. C-stability states
that for any theory T for which C T holds, the proposition T `CE ϕ is stable for any choice
of ϕ.

For some of the analyses, we consider theory classes which are closed under certain
operations.

Definition 2.11 (Closed C-stability) A C-stability is closed under an operation f :

FF → FF if for every T in C, f T is in C as well.

2.5.2 Double-Negation Elimination

The strongest non-constructive principle which we consider for our analysis is that
of double negation elimination (DN). When CIC is extended with this principle, it
behaves almost like a traditional classical system.
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Definition 2.12 (Double-Negation elimination) The principle of double-negation elim-
ination states that any proposition P is stable.

TheDNprinciple is equivalent to the stability of `CE on all theories, whichwe refer
to as U -stability.

Lemma 2.13 DN and U -stability are equivalent.

Proof DN trivially entails the stability of any T `CE ϕ. We show that the inverse
holds as well. Assume that T `CE ϕ is stable for any choice of T and ϕ. We have
to show that any proposition P is stable. For this, consider TP := (λϕ. ϕ = ⊥̇ ∧ P ),
which is a theory that contains ⊥̇ if P holds and is empty otherwise. By Fact 2.12,
it suffices to show that TP `CE ⊥̇ is equivalent to P to deduce the stability of P .
Certainly, TP = {⊥̇} if P holds, which means TP `CE ⊥̇ can be derived. Now
assume that TP `CE ⊥̇. Per definition, this means there is a Γ ⊆ TP such that
Γ `CE ⊥̇. We prove that P holds by case distinction on the emptiness of Γ. It
cannot be the case that Γ is empty, as this would mean `CE ⊥̇, which is impossible
by the consistency of `CE which we prove in Lemma 3.42. Thus Γ contains at least
one formula. Per definition of TP , this can only be ⊥̇. However, ⊥̇ ∈ TP already
implies that P holds. �

2.5.3 Synthetic Markov’s principle

CIC requires all functions which can be defined in it to be total. This is important
to ensure it gives rise to a sensible notion of proof: Consider a variant of CIC which
allowed for partial function definitions. As implications are functions in type theo-
retic foundations, one could prove A→ B for any propositions A and B by simply
giving a function that is undefined on all arguments. Clearly, this would make the
type theory inconsistent.

The CIC ensures this totality by requiring all recursive definitions to be structurally
recursive. For example, when defining a function per recursion on a natural num-
ber Sn, one may only recurse on values that are “contained within” Sn, such as
n. Notably, this means that the notion of computability in the calculus of induc-
tive constructions is slightly more restricted than that posed by the Church-Turing
thesis.

A very common procedure that is impacted by this restriction on functions is un-
bounded search. For example, when considering some function f : N → B for
which it is already known that ∃n. fn = true, some non-trivial ideas are required
to prove that a linear searching function similar to

g n := if f n then n else g (S n)
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may be defined because the knowledge of ∃n. f n = true guarantees that it termi-
nates eventually.

One variant of Markov’s principle, the synthetic Markov’s principle (SMP), is also
concerned with such unbounded search procedures. Intuitively, it states that clas-
sical evidence ¬¬∃n. f n = true for the termination of such a search procedure is
already sufficient to be allowed to perform the search in CIC. This variant is called
synthetic because it directly influences the notion of computation inside CIC by
allowing more functions to be definend and thus computed.

Definition 2.13 (Synthetic Markov’s principle) The syntheticMarkov’s principle states
that for any function f : N→ B, the proposition ∃n. f n = true is stable.

If CIC is not extended with additional axioms, SMP cannot be proven in it [50, 55].
This is not surprising as the principle is unconstructive: It allows for the derivation
of existential proofs without giving an explicit witness. It should be noted, how-
ever, that some schools of intuitionistic thought still regard Markov’s principle as
intuitionistically valid.

The stability asserted by the synthetic Markov’s principle can be extended to all
enumerable predicates on discrete types.

Lemma 2.14 Let X be discrete and P : X → P enumerable. Under the synthetic
Markov’s principle, P x is stable for any x : X .

Proof Let P : X → P be enumerated by e : N → L(X). As X is discrete, the
function f := λn. x ∈ e n can be defined and has a true point if and only if P x
holds. Given ¬¬P x, we have to deduce P x. For this, it suffices to show that f has
a true point. By applying the synthetic Markov’s principle, this can be deduced
by showing that f does not consist solely of false points. But if f was the constant
false-function, ¬P x would follow, leading to a contradiction with the assumption
¬¬P x. �

The synthetic Markov’s principle is equivalent toE-stability, the stability of `CE on
enumerable theories. It is easy to prove that SMP entails E-stability.

Corollary 2.15 Under the synthetic Markov’s principle, the proposition T `CE ϕ is sta-
ble for any enumerable T .

Proof Follows by Lemma 2.14 and the enumerability of T `CE ϕ (Lemma 2.11).�

The proof that E-stability entails SMP is analogous to the proof that U -stability
entails DN. However, to be able to apply E-stability, we also have to establish that
the theory we construct is enumerable.
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Lemma 2.16 Under the stability of T `CE ϕ for enumerable theories T , the proposition
∃n. f n = true is stable for every function f : N→ B.

Proof Fix such a function f : N → B. We define the theory Tf which contains ⊥̇
whenever f has a true point and is empty otherwise as (λϕ. ∃n. f n = true∧ϕ = ⊥̇).

Certainly, Tf is enumerable by the following enumerator ef : N→ L(FF ).

ef 0 := [] ef (S n) := if f n then ef n++ [⊥̇] else ef n

Thus, by Fact 2.12, it suffices to show that Tf `CE ⊥̇ is equivalent to ∃n. f n = true.
As ⊥̇ ∈ Tf whenever ∃n. f n = true, Tf `CE ⊥̇ can be derived when knowing a true
point of f . Now assume Tf `CE ⊥̇. Per definition, this means there is a Γ ⊆ Tf with
Γ `CE ⊥̇. We perform a case distinction on Γ. If Γ = [], this means that `CE ⊥̇,
which is impossible because `CE is consistent as we later prove in Lemma 3.42.
Thus there is a ϕ ∈ Γ and as Γ ⊆ Tf , also ϕ ∈ Tf , whereby ∃n. f n = true. �

2.5.4 Object Markov’s principle

The synthetic Markov’s principle was defined in terms of the innate notion of com-
putation in CIC. The computational power of the calculus of inductive construc-
tions is not completely fixed as it may be modified by additional assumptions. For
example, it is consistent to assume the existence of a function that can decide any
semi-decidable problem, such as the halting problem. From the inside of CIC, one
can thus not clearly reason about the limits of computability within it.

A more definite notion of computation can be obtained by formalizing a model of
computation, such as the lambda calculus or Turing machines, inside of CIC. As
is the case for deduction systems, such models would be called object models of
computation to demarcate between it and the meta-notion of computation of CIC.

Markov’s principle can also be formulated in terms of such an object model of com-
putation. As an example, assume a variant of Church’s lambda calculus formalized
in CIC, that of Forster and Smolka [18]. Markov’s principle for this lambda calculus
could be formulated as the stability of term normalization. For Turing machines,
Markov’s principle could be phrased as the stability of halting.

We call Markov’s principle in terms of such a object Church-Turing notion of com-
putation the object Markov’s principle. Similarly to the synthetic Markov’s princi-
ple, the object Markov’s principle entails the stability of every predicate that can
be enumerated in the object model of computation. As such an object model of
computation is much more definite than that intrinsic to CIC, its termination or
normalization can be encoded into a finite first-order theory [16]. One can thus
prove that the object Markov’s principle is equivalent to the stability of `CE on fi-
nite theories.
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We did not formalize the object Markov’s principle as the formalization of a suffi-
ciently powerful model of computation together with a proof that its termination
can be encoded as a finite first-order theory is outside the scope of this thesis. We
thus simply employF -stability, the stability of `CE on finite theories, as a substitute
for a fully formalized object Markov’s principle.

Definition 2.14 (Object Markov’s principle) The objectMarkov’s principle states that
the proposition T `CE ϕ is stable for any theory for which there exists a finite context Γ

with ψ ∈ Γ iff ψ ∈ T for every ψ.

The object Markov’s principle is a weaker non-constructive axiom than the syn-
thetic principle. This is because provability under finite contexts is enumerable
according to Lemma 2.11 and its stability is thus entailed by synthetic Markov’s
principle. We strongly believe that the inverse direction does not hold as the syn-
thetic Markov’s principle implicitly depends on the computational power of CIC,
which might be impossible to capture in the object model of computation. Note
however, that most enumerable predicates that do not depend on the computa-
tional power of CIC can still be enumerated in any Church-Turing object model of
computation.

Corollary 2.17 The synthetic Markov’s principle entails object Markov’s principle.

Proof Follows by Lemma 2.14 and the enumerability of Γ ` ϕ (Lemma 2.11). �
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Chapter 3

Tarski Semantics

The first proof of first-order completeness was given by Gödel in 1929 [23]. Its
highly technical nature has lead to it being superseded by an alternative proof given
by Henkin in 1949 [28]. Henkin’s proof presents a much more elegant argument
via maximally consistent theories. This chapter introduces a unified framework for
a constructive analysis of multiple variants of his proof. Much of this chapter is
based on a similar analysis by Herbelin and Ilik [29] and Schumm’s proof of the
completeness for a minimal implicational predicate logic [59].

We begin this chapter by giving a brief overview of the strategy of Henkin’s proof
of first-order completeness in Section 3.1. We then proceed by giving a detailed ac-
count of a generalization of Henkin’s theory extension construction in Section 3.2.
Using this construction, we analyze the constructivity of a Henkin-style complete-
ness proof for three different notions of Tarski models in Section 3.3. We close the
chapter by demonstrating some extensions of these completeness results in Sec-
tion 3.4 and proving the soundness of the natural deduction systems with regards
to the semantics discussed in chapter in Section 3.5.

3.1 An Overview of Henkin’s Proof

We only consider the ∀̇, →̇ , ⊥̇-fragment FF on a discrete and enumerable signa-
ture Σ. Note that this can already be considered a full completeness proof, as any
connective of F can be defined in terms of ∀̇, ⊥̇ and →̇ in a classical setting.

The semantics are provided by Tarski models. An interpretation I on a domain D
provides a predicate interpretation P I : D|P | → P for every P : P and a function
interpretation fI : D|f | → D for every f : F . Each interpretation, together with
an assignment ρ : N → D, gives rise to a term interpretation −ρ : T → D. A
formula being satisfied by this interpretation under an assignment ρ is defined by
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the translation into the meta-logic ρ � ϕ given below.

� : (N→ D)→ FF → P

ρ � ⊥̇ := ⊥
ρ � P t1 ... t|P | := P I t1

ρ ... tρ|P |

ρ � ϕ →̇ψ := ρ � ϕ→ ρ � ψ

ρ � ∀̇ϕ := ∀d : D. d, ρ � ϕ

We extend this notion to contexts ρ � Γ and theories ρ � T , meaning that each
formula contained in them is satisfied. A formula is called valid under a theory,
written as T � ϕ, if ρ � T → ρ � ϕ for every I and ρ. We say that a theory T has a
model if there are I and ρ such that ρ � T under I.

Central to Henkin’s proof is the model existence theorem. That is, the fact that ev-
ery closed theory T which is consistent (formally T 0 ⊥̇) has a model. Deducing
completeness from it is straightforward, which we demonstrate below. Note, how-
ever, that the proof relies on the classical principle of proof by contradiction and is
therefore not constructive.

Theorem 3.1 For any closed T and ϕ, T � ϕ→ T ` ϕ.

Proof Let T � ϕ. Proof by contradiction: Assume T 0 ϕ. This is equivalent to
T ∪ {¬̇ϕ} 0 ⊥̇ as ` is a classical deduction system. Then, by the model existence
theorem, there exist I and ρ with ρ � T ∪ {¬̇ϕ}. But ρ � ϕ holds as well, as T � ϕ,
a contradiction. �

The remainder of this section is dedicated to proving the model existence theorem,
which constitutes the majority of Henkin’s original proof as well. The approach for
this is to extend the initial theory T into a consistent theory Ω with the properties
that ϕ →̇ψ ∈ Ω iff ϕ ∈ Ω → ψ ∈ Ω and ∀t. ϕ[t] ∈ Ω iff ∀̇ϕ ∈ Ω for all formulas
ϕ and ψ. The model I and ρ such that ρ � T can then be obtained from Ω in a
straightforward manner.

The construction of Ω proceeds in two steps, each helping to establish one of the
properties stated above. The first step of the construction is the addition of the
so called Henkin axioms to the theory T , yielding a new theory H :=

⋃
n∈NHn.

These formulas have the shape of the locally nameless (AllI) rule ϕ[x] →̇ ∀̇ϕ and
assert that if ϕ[x] holds for a variable x which is fresh for the theory, the statement
∀̇ϕ holds as well. In the definition of H below, ϕn : N → FF denotes a function
enumerating all formulas.

H0 := T Hn+1 := Hn ∪ {ϕn[x] →̇ ∀̇ϕn} with x fresh forHn
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These axioms assist in proving that (∀t. ϕ[t] ∈ Ω) → ∀̇ϕ ∈ Ω for all ϕ. The reason
why the initial theory T is required to be closed lies with this construction, as it
guarantees the unlimited supply of fresh variables that is needed for the axioms.

In the second step, we extendH into a maximal consistent theory. That is, a consis-
tent theory Ω with the property that any formula that could be added to Ω without
leading to an inconsistency is a member of Ω already (formally, that ϕ ∈ Ω for any
ϕ with Ω ∪ {ϕ} 0 ⊥̇). The technique for creating this theory is very simple: The
construction scans through all of the formulas using the enumeration ϕ− and adds
all those that maintain the theory’s consistency, yielding a theory Ω :=

⋃
n∈N Ωn.

Ω0 = H Ωn+1 =

{
Ωn ∪ {ϕn} if Ωn ∪ {ϕn} 0 ⊥̇
Ωn otherwise

AsH is consistent and only formulas maintaining its consistency were added, Ω is
consistent overall. Ω is maximal as well: any formula ϕ consistent with Ω is also
consistent with the partial Ωn when ϕn = ϕ. Therefore it has already been added
to Ω. The maximal consistency imbues Ω with another important property: it is
closed under `. That is, if Ω ` ϕ then ϕ ∈ Ω. Using this fact, one can deduce that
ϕ →̇ψ ∈ Ω iff ϕ ∈ Ω→ ψ ∈ Ω. By making use of the Henkin axioms added during
the previous step, ∀t. ϕ[t] ∈ Ω iff ∀̇ϕ ∈ Ω can be proven as well.

The model for the initial theory T is given by the identity assignment ι x := x and
the interpretation I on the domain of terms T. Its term interpretation −ρ is the
same as −[ρ] and predicates hold under it whenever they are in Ω. This kind of
model is called a syntactic model.

tρ = t[ρ] P I t1 ... t|P | := P t1 ... t|P | ∈ Ω

One can now show that satisfaction in the model ι � ϕ and membership in Ω pre-
cisely coincide. This implies that T is indeed satisfied by the model, as T ⊆ Ω.
Examination of the proof of the above equivalence also reveals the reason why the
initial theory T is required to be consistent: It involves showing that ⊥̇ /∈ Ω, which
is derived from the consistency of Ω, in turn stemming from the consistency of T .

Note that this whole proof of model existence has been constructive. Hence, the
only part of this proof calling for closer constructive analysis is that of completeness
in Theorem 3.1. This is done in Section 3.3.

3.2 Generalized Theory Extension
In Section 3.3, we present and analyze three completeness proofs with regards to
different notions of Tarski model. This section lays out a method for constructing
maximal theories that is be central to each of these three proofs.
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There is one significant difference to the extension outlined in Section 3.1: We do
not require the deduction system to have the (Exp) rule. To allow for this, we assign
the role of ⊥̇ to an arbitrary closed formula ⊥̃. While this change impacts many of
the extension’s details, its overall structure is still similar to that in Section 3.1.

In generalizing ⊥̇ to ⊥̃ we are also forced to adjust our notion of consistency. A
generalization of consistency suitable for the proofs of this chapter is consistent
extension.

Definition 3.1 (Consistent extension) A theory T ′ is a consistent extension of a the-
ory T , written as T ⊆⊥̃ T

′, if T ⊆ T ′ and T ′ `C ⊥̃ entails T `C ⊥̃.

Therefore, any theory T ′ is a consistent extension of a theory T if it adds new for-
mulas to T but does not introduce any inconsistencieswith regards to ⊥̃whichwere
not already present in T . This can be viewed as a generalization of the traditional
theory extension procedure we gave in Section 3.1, which extends any consistent
theory T into a consistent theory Ω, thus T ⊆⊥̇ Ω

The final result of the constructions we give in this section is a theory Ω with prop-
erties similar to those of Ω in Section 3.1. Namely, given a closed theory T and a
closed formula ⊥̃, we construct a theory T ⊆⊥̃ Ω such that

• It is closed under deduction: If Ω `C ϕ then ϕ ∈ Ω

• Membership distributes over implication: ϕ →̇ψ ∈ Ω iff ϕ ∈ Ω→ ψ ∈ Ω

• Membership distributes over universal quantification: ∀t. ϕ[t] ∈ Ω iff ∀̇ϕ ∈ Ω

The steps of the theory extension procedure always take the shape of a union over
a family of theories indexed by the natural numbers.

Definition 3.2 (Union) Let T− : N→ 2F be given. Then
⋃
n:N
Tn := λϕ. ∃n. ϕ ∈ Tn.

The theory families of the unions used in the theory extension procedure are al-
ways cumulative. That is, Tn ⊆ Tm for any n ≤ m. This is because they represent
the “limits” of iterative processes continuously adding formulas to a theory. Two
properties exhibited by all such limits are crucial to the proofs of this section. First
of all, anything provable under a limit is already provable under the result of a finite
number of steps. Secondly, to prove that the limit constitutes a consistent extension
of the starting theory, it suffices to show that each iterative step does not change the
consistency.
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Lemma 3.2 Let T : N→ 2F be such a cumulative theory family.

1. If
⋃
n:N Tn ` ϕ then there is an n such that Tn ` ϕ

2. It suffices to show that Tn ⊆⊥̃ TS n to deduce that T0 ⊆⊥̃
⋃
n:N Tn

Proof

1. Assume
⋃
n:N Tn ` ϕ. Thus there is a Γ ⊆

⋃
n:N Tn with Γ ` ϕ. Per definition

of the union operation, for each ψ ∈ Γ, there is a step i such that ψ ∈ Ti. Let
m be the maximum of those steps. Then Γ ⊆ Tm as T− is cumulative and thus
Tm ` ϕ.

2. Assume that Tn ⊆⊥̃ TS n for all n. We know that T0 ⊆
⋃
n:N Tn per definition

of the union operation. We thus assume
⋃
n:N Tn `CL ⊥̃ to deduce T0 `CL ⊥̃.

With 1., there is an n such that Tn `C ⊥̃. From this, we can deduce T0 `C ⊥̃
inductively by using our initial assumption. �

3.2.1 Exploding Theories

The generalized theory extension requires onemore construction step than its usual
presentation. We already stated that ⊥̃ is supposed to take the place of ⊥̇. However,
⊥̃ currently lacks the explosion principle, which is required throughout in later
parts of the proof. The first construction step thus turns the input theory into an
exploding theory.

Definition 3.3 (Exploding theory) We call a theory T exploding, if (⊥̃ →̇ ∀̇∗ ϕ) ∈ T
for all ϕ.

Thus, a theory is exploding if it contains all closed instances of the explosion prin-
ciple. This means one can treat ⊥̃ as a normal⊥when proving something under an
exploding theory, as one can take the needed instances of the explosion principle
as part of the starting context Γ. It is worth noting that the closing of the conclusion
of the explosion axioms via ∀̇∗ is what allows the instances to be used even after
an application of the (AllI) rule. This is because the axioms exhibit the property
↑(⊥̃ →̇ ∀̇∗ ϕ) = ⊥̃ →̇ ∀̇∗ ϕ.

The construction used to extend the initial theory T into an exploding theory is
based on a similar construction found in Schumm’s proof of completeness for a
minimal implicational predicate logic [59]. For each formula ϕ, the explosion ax-
iom ⊥̃ →̇ ∀̇∗ ϕ is added to the theory. An important difference between his construc-
tion and ours is that we additionally close all of the conclusions of the explosion
axioms as Construction 3.2 requires its input theory to be closed.
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Construction 3.1 (Exploding ET ) Given a theory T and a formula ⊥̃, we construct

E0 := T ES n := En ∪ {⊥̃ →̇ ∀̇∗ (ϕn)} ET :=
⋃
n:N
En

The constructed ET is exploding and remains closed, which is crucial as we want
to use it as the input for Construction 3.2, which only accepts closed inputs.

Fact 3.3 Let T be a theory and ⊥̃ a formula. Then ET is exploding and closed whenever
T is closed.

The construction ET constitutes a consistent extension of T . This stems from the
fact that the explosion axioms can only be used if ⊥̃ has already been proven, which
means provability of ⊥̃ itself is not affected by their addition.

Lemma 3.4 Let T be a theory and ⊥̃ a formula. Then ET is a consistent extension of T .

Proof We prove this using Lemma 3.2.2. Hence we only have to show En ⊆⊥̃ ES n
for all n. Assume ES n `C ⊥̃. As ES n := En ∪ {⊥̃ →̇ ∀̇∗ (ϕn)}, there exists a Γ ⊆ En
with Γ `C ¬̇(⊥̃ →̇ ∀̇∗ (ϕn)) by (II). With (Peirce), we can conclude Γ `C ⊥̃ and
hence En `C ⊥̃. �

As ⊥̃ now serves its purpose as a replacement for ⊥̇, a fewwell knownproving prin-
ciples and connectives which originally relied on a ⊥̇ can be recovered. We from
now on write ¬̃ϕ for ϕ →̇ ⊥̃ and ∃̃ϕ for ¬̃∀̇¬̃ϕ. The principles are listed below. No-
tably, the first principle does not not require a exploding ⊥̃, however it guarantees
that the explosion axioms work as characterized in the second principle. As explic-
itly stating exactlywhich concrete explosion axioms are used in a proof quickly gets
out of hand, we from now on only point out when explosion axioms are required,
leaving the specific selection to the formalization.

Fact 3.5 Let Γ be a context with ⊥̃ →̇ ∀̇∗ ϕ ∈ Γ. The following rules can be shown.

GClose
Γ ` ∀̇∗ ϕ

Γ ` ϕ GExp
Γ ` ⊥̃
Γ ` ϕ GDN

Γ, ¬̃ϕ ` ⊥̃
Γ ` ϕ

GExE
Γ `C ∃̃ψ ↑Γ, ψ `C↑ϕ

Γ `C ϕ
GExI

Γ ` ψ[t]

Γ ` ∃̃ψ

GXM
Γ, ϕ `C ψ Γ, ¬̃ϕ `C ψ

Γ `C ψ
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3.2.2 Henkin Theories

The second step of the generalized theory extension procedure corresponds to the
first step of the procedure from Section 3.1. It extends E into a Henkin theory.

Definition 3.4 (Henkin theory) We call a theory T Henkin if from (∀t. T ′ ` ϕ[t]) one
can deduce T ′ ` ∀̇ϕ for any T ⊆ T ′ and ϕ.

The necessity of Henkin theories can only be explained in a satisfactory manner
once maximal theories have been introduced. We therefore postpone this discus-
sion until Definition 3.5. We also note that the theory T ′ in Definition 3.4 is required
to ensure that being aHenkin theory ismonotonous. That is, for all theories T ⊆ T ′,
T ′ is Henkin whenever T is.

The rendition of the Henkin construction we present here stems fromHerbelin and
Ilik [29]. For each formula ϕ, the Henkin axiom ϕ[n] →̇ ∀̇ϕ for some variable n is
added to the theory. Intuitively, the Henkin axioms state that if ϕ[x] can be proven
for a variable x which is fresh for the theory, ∀̇ϕ can be derived as well. Note that
in the definition below, we simply use n as the fresh variable x as we assume the
initial theory T to be closed and ϕ− to be constructed in such a way, that ϕn only
refers to variables strictly smaller than n.

Construction 3.2 (HenkinHT ) Given a theory T , we construct

H0 := T HS n := Hn ∪ {ϕn[n] →̇ ∀̇ϕn} HT :=
⋃
n:N
Hn

Although their name would lead one to believe otherwise, this rendition of the
Henkin axioms originates from Herbelin and Ilik, not Henkin. We choose to main-
tain their terminology by referring to them as Henkin axioms. While Henkin em-
ploys a similar construction, the axioms he uses would correspond more closely to
(∃̃ϕn) →̇ϕn[n] in our setting. That is, instead of designating witnesses for univer-
sal statements, he generates concrete witnesses for each valid existential statement.
While there is very little difference between the two choices of axioms, Herbelin’s
variant leads to a slightly more elegant proof of thatHT is indeed Henkin.

Lemma 3.6 HT is Henkin for any T .

Proof Let HT ⊆ T ′ and ∀t.T ′ ` ϕ[t]. As ϕ− is an enumeration, there is an n with
ϕn = ϕ. Then ϕ[n] →̇ ∀̇ϕ ∈ HT ⊆ T ′. Thus T ′ ` ∀̇ϕ can be deduced. �

Additionally, HT is a consistent extension of the input theory T . Recall the locally
nameless variant of the (AllI) rule.

AllI’
Γ ` ϕ[x] x#Γ, ∀̇ϕ

Γ ` ∀̇ϕ

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.GenConstructions.html#is_Henkin
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.GenConstructions.html#Henkin
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.GenConstructions.html#Henkin_is_Henkin


3.2. Generalized Theory Extension 33

The Henkin axioms ϕn[n] →̇ ∀̇ϕn can be seen as the (AllI’) rule lifted to the level
of theories. As the (AllI’) rule is admissible in a finite setting, it should not be
surprising that adding Henkin axioms to a closed theory does not introduce any
new inconsistencies either. While this constitutes an intuitive explanation of why
HT is a consistent extension of T , the proof is of a very different, more technical,
nature. However, it still takes advantage of the correspondence between the de
Bruijn and locally nameless approach as characterized in Lemma 2.10.

Lemma 3.7 Let T be a closed, exploding theory. ThenHT is a consistent extension of T .

Proof We prove this using Lemma 3.2.2. Assume HS n `C ⊥̃. By Fact 2.8.1, this
implies that Hn `C ¬̃(ϕn[n] →̇ ∀̇ϕn). Then there exists a context Γ ⊆ Hn such
that Γ `C ¬̃(ϕn[n] →̇ ∀̇ϕn). When extending Γ into Γ′ by adding suitable explosion
axioms and noting that ¬̃(ϕn[n] →̇ ∀̇ϕn) = (¬̃(ϕn →̇ ↑(∀ϕn)))[n], we can deduce:

DP
Γ′ `C ∃̃ϕn →̇ ↑(∀̇ϕn)

Ctx ↑Γ, ψ `C ψ

Γ `C (¬̃(ϕn →̇ ↑(∀ϕn)))[n]
Lemma 2.10↑Γ `C ¬̃(ϕn →̇ ↑(∀ϕn))

Weak↑Γ′, ϕn →̇ ↑(∀ϕn) `C ¬̃(ϕn →̇ ↑(∀ϕn))
IE

↑Γ′, ϕn →̇ ↑(∀ϕn) `C ⊥̃
∃̃E

Γ′ `C ⊥̃

This proof makes use of a crucial property of the formula enumeration ϕn: One can
define it in such a way that for n ≤ x, x is fresh for ϕn. As the proof of this is fairly
technical, we have chosen to not explicitly include it in this thesis. However, it has
been formalized in Coq. This property allows for the use of Lemma 2.10 as n is still
fresh for Γ and ϕn. Additionally, the formula Γ′ `C ∃̃ϕn →̇ ↑(∀̇ϕn), which is being
eliminated at the bottom of the proof tree, is the well known classical tautology of
the drinker’s paradox. �

3.2.3 Maximal Theories

The final step of the extension process completesH into amaximal theory. Maximal
theories are thosewhich contain all formulas that do not alter their consistencywith
regards to ⊥̃.

Definition 3.5 (Maximal theories) We call a theory T maximal, if T ⊆⊥̃ T ∪ {ϕ}
implies that ϕ ∈ T .

Maximal theories exhibit one crucial property: they are closed under deduction.
That is, maximal theories contain exactly those formulas ϕ that can be deduced
under them. We make use of this fact to establish that membership in the theory
resulting from the extension procedure does indeed distribute over implication and
universal quantification, as we claimed at the beginning of this section.
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Lemma 3.8 Let T be maximal. Then ϕ ∈ T iff T `C ϕ.

Proof We only consider the← direction as the inverse is trivial. Let T `C ϕ. We
deduce ϕ ∈ T from the maximality of T . Assume T ∪ {ϕ} `C ⊥̃. Then T `C ⊥̃
follows via (Cut). �

Having defined maximal theories, we now explain the necessity of the HT phase.
Recall that we require the membership of Ω, the result of the extension procedure,
to distribute over universal quantification. That is, that ∀̇ϕ ∈ Ω whenever ϕ[t] ∈
Ω for all t. This property cannot be concluded by virtue of the maximality of Ω

alone, as there exist maximal theories whose membership does not distribute over
universal quantification. Indeed, ϕ[t] ∈ Ω for every term t and ¬̇∀̇ϕ ∈ Ω do not
give rise to an inconsistency. Intuitively, this is because not all of the members of a
domain described by a formula have to correspond to a term. As a slightly informal
example, take ϕ to be the property “is described by a term”.

Careful analysis of Construction 3.3 could rule out the possibility of such contrary
theories being constructed. However, establishing this fact would require an ex-
ceeding amount of effort and a very deliberate choice of ϕ−. Compared to that,
the HT construction is a much simpler way of ensuring the desired outcome by
essentially “stacking the theory in our favor” without affecting its consistency.

The followingmaximality construction is based on the consistent union operation∪?
which is defined below. This is a rendition of the constructively dubious condition
“if Ωn ∪ {ϕn} 0 ⊥̇” from Section 3.1 into constructive type theory. The crucial idea
behind its constructivity is that it places the onus of asserting that T ⊆⊥̃ T ∪ {ϕ}
on anyone trying to prove that ϕ ∈ T ∪? {ϕ} instead of on the construction process
itself.

Definition 3.6 (Consistent union) Let T be a theory and ϕ be a formula. We define
consistent union as:

T ∪? {ϕ} := λψ. ψ ∈ T ∨ (T ⊆⊥̃ T ∪ {ϕ} ∧ ψ = ϕ)

Ω can now easily be defined in terms of the consistent union. Note that as opposed
to the previous two phases, the result of this constructions is dependent on the
order in which the formulas are enumerated by ϕ−, with different choices of ϕ−
leading to different Ω.

Construction 3.3 (Maximal ΩT ) Let T be a theory. We define

Ω0 := T ΩS n := Ωn ∪? {ϕn} ΩT :=
⋃
n:N

Ωn
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We begin by proving that ΩT constitutes a consistent extension of T as this is
required in the proof of its maximality. Differing from the previous consistency
proofs, this deduction relies on a property of the consistent union instead of the
shape of the formulas added by the construction.

Lemma 3.9 Let T be a theory.

1. If T ∪? {ϕ} `C ψ then T ` ψ or T ⊆⊥̃ T ∪ {ϕ}.

2. ΩT constitutes a consistent extension of T .

Proof

1. Let Γ ⊆ T ∪? {ϕ} with Γ `C ψ. We prove Γ ⊆ T or T ⊆⊥̃ T ∪ {ϕ} per
induction on Γ. The case Γ = [] is resolved by [] ⊆ T . Hence let Γ = Γ′, θ. If
the inductive hypothesis yields T ⊆⊥̃ T ∪{ϕ}, we are done. Hence let Γ′ ⊆ T .
As θ ∈ T ∪? {ϕ}, either θ ∈ T or T ⊆⊥̃ T ∪ {ϕ}, the claim follows.

2. Proof using Lemma 3.2.2. Hencewe have to deduceΩn `C ⊥̃ fromΩS n `C ⊥̃.
Then the claim follows in either case of 1. �

The fact that ΩT constitutes a consistent extension of T directly implies its maxi-
mality.

Lemma 3.10 ΩT is a maximal theory.

Proof Letϕ be a formula such thatΩT ⊆⊥̃ ΩT ∪{ϕ}. There exists an nwithϕn = ϕ.
It suffices to show that ϕ ∈ ΩS n ⊆ ΩT . Per definition, this is the case whenever
Ωn ⊆⊥̃ Ωn ∪ {ϕ}. Hence, let Ωn ∪ {ϕ} `C ⊥̃. As T ⊆ Ωn, it suffices to show that
T `C ⊥̃ per (WeakT). As T ⊆⊥̃ ΩT ⊆⊥̃ ΩT ∪ {ϕ}, we can show ΩT ∪ {ϕ} `C ⊥̃ to
prove this. This follows from Ωn ∪ {ϕ} `C ⊥̃ using (WeakT). �

Themaximality ofΩT andLemma3.8 allows giving a precise characterization of the
conditions for formulas of the shapes ∀̇ϕ andϕ →̇ψ to bemembers ofΩT . These are
crucial for proving the correctness of the syntactic models we define in Section 3.3.

Lemma 3.11 If T is Henkin, then ∀t. ϕ[t] ∈ ΩT if and only if ∀̇ϕ ∈ ΩT .

Proof

→ This follows from Lemma 3.8 and the Henkin property of T .

← By Lemma 3.8, it suffices to show ΩT `C ϕ[t]. This follows via (AllE). �
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Lemma 3.12 For any ϕ and ψ, ϕ →̇ψ ∈ ΩT if and only if ϕ ∈ ΩT → ψ ∈ ΩT .

Proof

→ This follows from Lemma 3.8 and (IE).

← We prove this using the maximality of ΩT . By (IE) we can assume a Γ ⊆ ΩT
with Γ `C ¬̃(ϕ →̇ψ). This allows us to deduce ΩT `C ⊥̃ by proving Γ `C ϕ

as this implies ΩT `C ψ per assumption. This is proven as follows:

Γ, ¬̃ϕ,ϕ `C ⊥̃Exp
Γ, ¬̃ϕ,ϕ `C ψII

Γ, ¬̃ϕ `C ϕ →̇ψ

Γ `C ¬̃(ϕ →̇ψ)
Weak

Γ, ¬̃ϕ `C ¬̃(ϕ →̇ψ)
IE

Γ, ¬̃ϕ `C ⊥̃DN
Γ `C ϕ

3.2.4 Summary

Having established these characterizations, we can deduce the full generalized the-
ory extension theorem. It follows by combining all of the constructions and lemmas
of this section.

Theorem 3.13 Let T be a closed theory, ⊥̃ a closed formula. Then one can construct a
theory Ω such that

1. T ⊆⊥̃ Ω

2. ϕ ∈ Ω for all ϕ with Ω `C ϕ

3. ∀t. ϕ[t] ∈ Ω if and only if ∀̇ϕ ∈ Ω for all ϕ

4. ϕ →̇ψ ∈ Ω if and only if ϕ ∈ Ω→ ψ ∈ Ω for all ϕ,ψ

3.3 Constructive Analysis of Completeness Theorems
This section encompasses the constructive analysis of the completeness theorems.
After laying out the variant of Tarski semantics we use, we begin by showing that
completeness with regards to standardmodels is equivalent to stability of provabil-
ity, from which we derive equivalences between different completeness theorems
and non-constructive principles from Section 2.5. We then present two alternative
notions of model which allow for constructive proofs of completeness.
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3.3.1 Tarski Models

We first make precise the notion of interpretation that is necessary to define any
Tarski semantics. An interpretation on some domain D fixes a way of translating
the terms into values ofD and describes the truth conditions for first-order formu-
las in that setting.

Definition 3.7 (Generalized interpretation) For a given signature Σ, a generalized
interpretation I on a domain D consists of a function interpretation fI : D|f | → D for
every function symbol f : F , a predicate interpretation P I : D|P | → P for every predicate
symbol P : P and a ⊥̇ interpretation ⊥I : P.

An interpretation I, together with an assignment ρ : N→ D, gives rise to a term interpre-
tation −ρ : T→ D.

xρ := ρ x (f t1 ... t|f |)
ρ := fI tρ1 ... t

ρ
|f |

The conditions of a formula ϕ being satisfied by an interpretation I under an assignment
ρ are given by the recursively defined translation ρ � ϕ.

ρ � ⊥̇ = ⊥I

ρ � P t1 ... t|P | = P I tρ1 ... t
ρ
|P |

ρ � ϕ →̇ψ = ρ � ϕ→ ρ � ψ

ρ � ∀̇ϕ = ∀d : D. d, ρ � ϕ

This definition of interpretations differs significantly from that sketched in Sec-
tion 3.1 and those usually found throughout the literature. Instead of ⊥̇ always
being interpreted as ⊥, each interpretation can choose its own ⊥-interpretation
⊥I . This means validity defined in terms of all interpretations is different from
the usual notion of validity, as interpretations in which ⊥I holds are considered as
well. To offset this, we define a constrained of notion validity, which only consid-
ers interpretations satisfying a given constraint predicate. This provides a unified
framework for reasoning about various notions of validity.

Definition 3.8 (Constrained validity)

1. A theory T or context Γ is said to be satisfied by an interpretation I under an assign-
ment ρ, written as ρ � T or ρ � Γ respectively, if ∀ϕ ∈ T . ρ � ϕ or ∀ϕ ∈ Γ. ρ � ϕ.

2. A formula ϕ is said to be valid under a theory T or context Γ and under a constraint
X : I → P if ρ � T → ρ � ϕ or ρ � Γ→ ρ � ϕ for any interpretation I satisfying
X and assignment ρ. This is written as T �X ϕ or Γ �X ϕ respectively.
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This granular definition of validity lends itself well to comparing different notions
of validity: Oftentimes, the relationship between two notions of validity can be
arrived at by analyzing their characterizing constraints. One inter-constraint rela-
tionship of special significance is constraint subsumption. We say a constraint X
subsumes another constraint Y , if every interpretation satisfying Y also satisfiesX .
Whenever a constraint is subsumed by another constraint, their associated validi-
ties subsume each other as well.

Lemma 3.14 Let X subsume Y . Then T �X ϕ→ T �Y ϕ for any T and ϕ.

Proof Assume T �X ϕ. Given an interpretation I satisfying Y and an assignment
ρwith ρ � T , we have to show ρ � ϕ. This follows per assumption, as I also satisfies
X because Y subsumes Y . �

3.3.2 Standard Models

We begin with a constructive analysis of the completeness proof outlined in Sec-
tion 3.1. As noted earlier, unconstrained validity differs from the notion of validity
employed in that proof. Therefore, we use validity constrained to standard models
as defined below, which we denote by �S .

Definition 3.9 (Standard models)

1. An interpretation I is said to be classical if ρ � (((ϕ →̇ψ) →̇ϕ) →̇ϕ) holds for all
formulas ϕ and ψ and assignments ρ.

2. An interpretation I is said to have a standard ⊥̇ if ⊥I entails ⊥.

3. An interpretation is said to constitute a standard model if it is classical and has a
standard ⊥̇.

By requiring standard models to have a standard ⊥̇, the standard notion of validity
�S is equivalent to the more common definition of validity that always interprets
⊥̇ as ⊥, such as the one from Section 3.1.

The restriction to classical interpretations in our definition of standard models is a
very important detail. As it stands, validity translates from a classical object logic
into a constructive meta-logic. That means that soundness, the fact that any for-
mula that can be deduced is indeed valid, cannot be established if the notion of
validity simply considers all interpretations, as the classical reasoning of the object
logic will not translate into some of them. However, this problem can be resolved
by restricting the interpretations considered for validity to those which allow for
classical reasoning. Note that this restriction is not required for the proof of com-
pleteness. However, it is desirable that the deduction systems we consider are both
sound and complete with regards to the semantics discussed in this chapter, which
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is whywe chose to implement this restriction. We give a unified proof of soundness
with regards to all notions of model examined in this chapter in Section 3.5.

The first proof of completeness we analyze is for the deduction system `CE . That
is, natural deduction with both the classical principle of (Peirce) and the standard
notion of ⊥̇ expressed by (Exp). These two properties combined give rise to the
classical principle of double negation elimination Γ `CE ¬̇¬̇ϕ →̇ϕ, which imbues
the system with the property of refutation completeness. This property is crucial
in the proof of completeness.

Fact 3.15 It suffices to show T ∪ {¬̇ϕ} `CE ⊥̇ to prove T `CE ϕ.

We begin our analysis by proving the model existence theorem. This property is
classically equivalent to the traditional statement of completeness. Model existence
can be proven constructively using the generalized theory extension from the pre-
vious section. It states that every closed, consistent theory T has a model. That is,
a standard model I and a substitution ρ such that ρ � T under I. The model we
construct is a syntactic model. That is, a model based on an interpretation whose
domain are the terms T of first-order logic.

Definition 3.10 (Syntactic interpretation) Let T be a closed theory. Further, let Ω be
the theory constructed using Theorem 3.13 with ⊥̃ = ⊥̇. The syntactic interpretation of T
denoted IT , is given by:

fIT t1 ... t|f | := f t1 ... t|f | P IT t1 ... t|P | := P t1 ... t|P | ∈ Ω ⊥IT := ⊥̇ ∈ Ω

The syntactic model has the property the formula satisfaction in IT for consistent
T exactly coincides with membership of Ω. This fact relies on the fact that the
assignments in IT are substitutions and the distributivity of membership in Ω.

Lemma 3.16 Let T be closed. Then σ � ϕ iff ϕ[σ] ∈ Ω under IT for any substitution σ.

Proof By induction on ϕ. We distinguish four cases:

P t ... t|P |: P tσ1 ... tσ|P | ∈ Ω is equivalent to (P t1 ... t|P |)[σ] ∈ Ω as sσ = s[σ] for all s.

ϕ →̇ψ: Using the inductive hypothesis, this is exactly Theorem 3.13.3.

∀̇ϕ: Note that ∀t. t, σ �S ϕ is equivalent to ∀t. σ �S ϕ[t]. Then, using the inductive
hypothesis, this is exactly Theorem 3.13.4.

⊥̇: We have to prove ⊥̇ ∈ Ω iff ⊥̇ ∈ Ω. This holds trivially. �
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This result enables us to establish themodel existence theorem for standardmodels.

Theorem 3.17 Let T be closed and consistent. Then there is a standard model I and an
assignment ρ such that ρ �S T .

Proof We choose IT as I and the identity assignment ι x := x as ρ. It remains to
show that IT is indeed a standard model and ι �S T . The latter directly follows
from Lemma 3.16 as T ⊆ Ω by Theorem 3.13.1. To show that IT is a standard
model, we have to prove two properties.

• IT is classical. That is, ρ � (((ϕ →̇ψ) →̇ϕ) →̇ϕ) for any ρ, ϕ and ψ. This again
follows by Lemma 3.16 and Theorem 3.13.2 as (Peirce) is an axiom of `CE .

• IT has a standard ⊥̇. We have to prove that ⊥̇ ∈ Ω leads to a contradiction.
Certainly, it implies Ω `CE ⊥̇. But as T ⊆⊥̃ Ω, this means T `CE ⊥̇ as well,
contradicting the consistency of T . �

The proofs from Section 3.2 onward have been fully constructive. However, de-
ducing the traditional statement of completeness from the model existence theo-
rem requires a non-constructive reasoning principle. This insight is encoded in the
statement below, which is nearly identical to that of traditional completeness, save
for the doubly-negated conclusion, thereby admitting a constructive proof.

Theorem 3.18 For any closed theory T and closed formula ϕ, T �S ϕ entails T `CE ϕ.

Proof Assuming T �S ϕ and T 0CE ϕ, we have to prove ⊥. By Fact 3.15, our
second assumption is equivalent to T ∪{¬̇ϕ} 0CE ⊥̇, the consistency of T ∪{¬̇ϕ}. As
ϕ and T are closed, so is T ∪{¬̇ϕ}. Hence Theorem 3.17 grants us a standardmodel
I and an assignment ρ such that ρ � T ∪ {¬̇ϕ}. Then ρ � ϕ as ρ � T ⊆ T ∪ {¬̇ϕ}.
This is a contradiction to ρ � ¬̇ϕ! �

Strong completeness, that is completeness on theories, can thus be derived for any
theory class C which is stable under `CE .

Corollary 3.19 Under C-stability, T �S ϕ→ T `CE ϕ can be derived for any closed ϕ
and closed T for which C T holds.

Having established that C-stability entails strong completeness, we can thus de-
duce different completeness theorems in terms of the non-constructive principles
of Section 2.5 based on their characterizations as C-stabilities.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.GenCompleteness.html#model_bot_standard
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.GenCompleteness.html#semi_completeness_standard


3.3. Constructive Analysis of Completeness Theorems 41

Corollary 3.20 Let T and ϕ be closed.

1. Under double-negation elimination, T �S ϕ→ T `CE ϕ holds.

2. Under synthetic Markov’s principle, T �S ϕ→ T `CE ϕ holds if T is enumerable.

3. Under object Markov’s principle, T �S ϕ→ T `CE ϕ holds if T is finite.

We now prove that the inverse holds as well. That is, that strong completeness
implies the stability of `CE . To prove this, we first establish another important fact:
the stability of �S . Recall that this notion of validity is defined solely in terms of
standard models. Formula satisfaction in a standard model is stable by virtue of
its classicality. The following lemma establishes that this property is propagated to
the level of validity.

Lemma 3.21 For any T and ϕ, ¬¬T �S ϕ→ T �S ϕ.

Proof Assume ¬¬T �S ϕ. We have to show ρ � ϕ for any standard model I and
assignment ρ such that ρ � T . As I is classical, ρ �S ((ϕ →̇ ⊥̇) →̇ϕ) →̇ϕ holds.
Hence it suffices to deduce ρ �S ϕ from ¬ρ �S ϕ as I has a standard ⊥̇. This
follows per explosion, as ¬ρ �S ϕ implies ¬T �S ϕ. �

This proof is an application of McCarty’s more general result in [53]. Intuitively,
the stability of `CE is entailed by completeness because `CE and �S are equivalent
by soundness and completeness, meaning that the stability of �S is extended to
`CE . This proof makes use of the soundness of `CE and �S , which we prove in
Section 3.5. Note also that this proof assumes completeness for open theories and
formulas. We show in Section 3.4 how to extend the current completeness result to
also cover open theories.

Lemma 3.22 T �S ϕ→ T `CE ϕ entails the stability of T `CE ϕ for any T .

Proof Assume completeness and ¬¬T `CE ϕ. Per assumption, it suffices to show
T �S ϕ. Using Lemma 3.21, this can be achieved by proving ¬¬T �S ϕ. Assume
¬T �S ϕ. Per assumption, it suffices to contradict T `CE ϕ. Using Lemma 3.39,
this implies T �S ϕ, which is a contradiction. �

With this, we have established that strong completeness with regards to `CE and
stability of `CE are equivalent. This gives rise to multiple characterizations of the
requirements of strong completeness.

Corollary 3.23

1. T �S ϕ→ T `CE ϕ for any T entails double-negation elimination

2. T �S ϕ→ T `CE ϕ for any enumerable T entails the synthetic Markov’s principle

3. T �S ϕ→ T `CE ϕ for any finite T entails the object Markov’s principle
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3.3.3 Exploding Models

While we have demonstrated that the traditional phrasing of completeness for first-
order logic is inherently unconstructive, we have not yet established why this is the
case. Careful analysis allows us to pin down the cause of this unconstructiveness:
the consistency requirement in the model existence theorem. As consistency of a
theory is undecidable, it is not constructively stable. The reason why consistency
is required is very singular as well: It is only used to show that the syntactic inter-
pretation gives rise to a standard model in Theorem 3.17. Roughly speaking, this
means that the root cause of the non-constructivity is “the way standard models
treat ⊥̇”.

If this analysis is accurate, one would hope that a fully constructive proof could be
obtained if the notion of model is changed to treat ⊥̇ differently. In the remainder
of this and the next section, we show that this is indeed the case by presenting two
alternative notions of model that allow for a constructive completeness proof.

The first alternative notion of model we consider is a generalization of standard
models. This variant of Tarski models was first presented by Krivine [42] based
on a similar variation on Kripke models by Veldman [65]. Instead of requiring ⊥I
to imply ⊥, we restrict our notion of validity to those models that still admit the
explosion principle. We call these models “exploding models”.

Definition 3.11 (Exploding models)

1. An interpretation I is said to have an exploding ⊥̇ if ⊥I → P I t1 ... t|P | for all
t1, ..., t|P |.

2. An interpretation is said to constitute an exploding model if it is classical and has an
exploding ⊥̇.

We denote the notion of validity restricted to exploding models with �E . Note that
this allows for models where⊥I ↔ > as long as P It1 ... t|P | holds for any t1, ..., t|P |.
As claimed above, all exploding models indeed admit the explosion principle.

Fact 3.24 Let I be an interpretation with an exploding ⊥̇ and ρ an assignment. Then for
any formula ϕ, ρ � ⊥̇ →̇ϕ.

Exploding models are a slight variation of the standard notion of models. Indeed,
these two notions of model are classically equivalent. More precisely, T �E ϕ

constructively entails T �S ϕ, while the contrary only holds non-constructively.
This mismatch should not be considered disappointing. Rather, if these notions of
model were constructively equivalent, completeness with regards to them would
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be as well, extinguishing all hope for a constructive completeness proof with re-
gards to �E . Indeed, we later show that the translation from �S to �E is equivalent
to the stability of `CE as well.

As might be expected from the similarities between �S and �E , the completeness
proofs with regards to them do not differ much either. We first prove model exis-
tence and then deduce strong completeness from that. The interpretation we chose
for model existence is exactly the same as for standard models.

Theorem 3.25 Let T be closed. Then there is an exploding model I and an assignment ρ
such that ρ � T holds.

Proof Most of this proof is completely analogous to Theorem 3.17. The only dif-
ference is that it suffices to show that IT has an exploding ⊥̇ to deduce that it con-
stitutes a model. Hence let ⊥̇ ∈ Ω. We have to show that P s t ∈ Ω for any terms s
and t. Per Theorem 3.13.2, this is the case whenever Ω `CE P s t, which follows by
(Exp) as ⊥̇ ∈ Ω. �

As Theorem 3.25 does not require the theory T to be consistent, the statement of
completeness does not need to be doubly-negated. This allows us to prove strong
exploding completeness fully constructively.

Theorem 3.26 For any closed theory T and closed formula ϕ, T �E ϕ entails T `CE ϕ.

Proof By Fact 3.15, it suffices to prove T ∪ {¬̇ϕ} `CE ⊥̇. As ϕ and T are closed, so
is T ∪ {¬̇ϕ}. Hence Theorem 3.25 grants us an interpretation I and an assignment
ρ such that ρ � T ∪ {¬̇ϕ}. Then ρ � ϕ as ρ � T ⊆ T ∪ {¬̇ϕ}. Together with ρ � ϕ,
this entails ρ � ⊥̇. Then T ∪ {¬̇ϕ} `CE ⊥̇. �

Establishing strong exploding completeness allows for a very elegant characteri-
zation of the relationship between �S and �E . As stated previously, �E trivially
entails �S . However, one can show that being able to translate �S into �E is equiv-
alent to the stability of `CE . Intuitively, this is because such a translation would
allow deriving completeness for �S from that of �E .

Lemma 3.27 Let T be a theory and ϕ a formula.

1. T �E ϕ entails T �S ϕ

2. T �S ϕ→ T �E ϕ is equivalent to stability of `CE for closed T and ϕ

Proof

1. Per Lemma 3.14, it suffices to show that any standard model is an explod-
ing model. This is the case as any standard ⊥̇ constitutes an exploding ⊥̇ by
explosion in the meta-logic.
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2. We prove this by showing that it is equivalent to strong standard complete-
ness.

→ If T �S ϕ→ T �E ϕ, thenwe can conclude T `CE ϕ fromTheorem 3.26.

← If `CE is stable, then per Theorem 3.18 T �S ϕ → T `CE ϕ. Then per
Lemma 3.39, we can conclude T �E ϕ. �

3.3.4 Minimal Models

As exploding models allow for models which satisfy ⊥̇, they constitute a non-
standard semantics. While this difference is classically insignificant, it does make a
difference constructively. This difference might impede ones willingness to whole-
heartedly call Theorem 3.26 a “real” completeness theorem.

The second alternative notion of model does not share this shortcoming. However,
it is much more radical. It does not impose any restrictions on ⊥I at all. That is to
say, this notion of models treats ⊥̇ as simply another logical constant, stripping it
of the explosion principle. This notion of models is called “minimal models”. We
denote validity restricted to minimal models by �M .

Definition 3.12 (Minimal models) An interpretation is said to constitute a minimal
model if it is classical.

Minimal models are a radical departure from the previous two notions of model.
As ⊥̇ has lost its explosion principle, their notions of validity do not align anymore.
More precisely, whenever T �M ϕ it follows that T �S ϕ and T �E ϕ. However,
the converse is not the case: consider ⊥̇ →̇Q. As �S and �E share the explosion
principle, the formula is valid under both notions of model. However, �M does
not validate this formula. For an example of a minimal model in which it does not
hold, take an interpretation with ⊥I = > and QI = ⊥.

Lemma 3.28 Let T be a theory and ϕ a formula. If T �M ϕ then T �S ϕ and T �E ϕ.

Proof This follows by Lemma 3.14 as standard models and exploding models also
constitute minimal models as they are classical. �

As opposed to exploding models, minimal models constitute the canonical model
notion for a first-order logic restricted to the connectives →̇ and ∀̇. While the name
of the 0-ary predicate ⊥̇ might be slightly misleading, this alone is no reason for
disconcern. Consequently, the theorem of completeness for minimal models ought
to be considered “real”.

We have already established that validity under �M differs from that of �S . This
means that the deduction system for which we can prove completeness changes
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as well: As ⊥̇ has been demoted to a logical constant, the proof uses `CL as its
deduction system. As this system is not refutation complete, the proof strategy sig-
nificantly differs as well. Overall, it is a constructive variant of Schumm’s classical
proof of completeness of minimal implicational predicate logic [59].

The differences between the proof strategies for �S and �M start with the construc-
tion of the syntactic interpretation. As �M does not guarantee an exploding ⊥̇, it
is not immediately clear which formula to choose for ⊥̃ in the application of The-
orem 3.13. Ultimately, this role will be taken by the semantically valid formula ϕ
that should be deduced in `CL. For this reason, the choice of ⊥̃ is left open in the
definition of the interpretation.

Definition 3.13 (Syntactic interpretation) Let T be a closed theory and ⊥̃ a closed
formula. Further, let Ω be the theory constructed using Theorem 3.13. The syntactic inter-
pretation of T , denoted IT ,⊥̃, is given by:

f
IT ,⊥̃ t1 ... t|f | := f t1 ... t|f | P

IT ,⊥̃t1 ... t|P | := P t1 ... t|P | ∈ Ω ⊥IT ,⊥̃ := ⊥̇ ∈ Ω

As before, we can prove a correspondence between � and membership in Ω, as
well as the model existence theorem. Both proofs are analogous to those for the
explodingmodels, as the only difference between the two syntactic interpretations,
the choice of ⊥̃, does not matter for them.

Fact 3.29 Let T be closed. Then σ � ϕ iff ϕ[σ] ∈ Ω under IT ,⊥̃.

Fact 3.30 Let T and ϕ be closed. Then there is a minimal model I and an assignment ρ
such that ρ � T holds.

Using model existence, we can deduce strong minimal completeness. This proof
crucially relies on the fact that ⊥̃ is chosen as ϕ.

Theorem 3.31 For any closed theory T and closed formula ϕ, T �M ϕ entails T `CL ϕ.

Proof Assume T �M ϕ. By Fact 3.30, there exists an interpretation I and an as-
signment ρwith ρ � T . Then ρ � ϕ as ρ � T and hence ϕ ∈ Ω. As T ⊆ϕ Ω, T `CL ϕ
follows. �

3.4 Extending the Completeness Results
In the previous section, we have derived three different completeness results. How-
ever, these results differed from the more traditional statements of completeness as
they were restricted to closed formulas and theories. This section demonstrates
how to lift this restriction. We begin by deriving completeness for arbitrary finite
contexts. After that, we give a brief account of how to extend the previous results
to open theories and formulas.
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3.4.1 Finite Completeness

We prove completeness with regards to finite contexts by reducing it to complete-
ness of a closed formula under the empty context. The latter can be derived from
the completeness results of Section 3.3. The reduction steps can be seen in Fig. 3.1.
A context Γ and formula ϕ are first transformed into a single, equivalent formula
Γ →̇ϕ, which is then closed using the closing operator ∀̇∗ from Section 2.3.4. After
proving its completeness, its unfolded version Γ ` ϕ is deduced.

Γ �X ϕ �X Γ →̇ϕ �X ∀̇∗ (Γ →̇ϕ)

` ∀̇∗ (Γ →̇ϕ)` (Γ →̇ϕ)Γ ` ϕ

Figure 3.1: Deriving finite completeness

The definition of the operation Γ →̇ϕ as well as the properties needed to prove the
correctness of this reduction are given below.

Definition 3.14 (Context reduction) Let Γ be a context and ϕ a formula. We define

[] →̇ϕ := ϕ (Γ, ψ) →̇ϕ := ψ →̇ (Γ →̇ϕ)

Fact 3.32 Let Γ be a context and ϕ a formula.

1. Γ �X ϕ → �X Γ →̇ϕ

2. �X ϕ→�X ∀̇∗ ϕ
3. ` ∀̇∗ ϕ→` ϕ
4. ` Γ →̇ϕ → Γ ` ϕ

Using these properties, we derive completeness for finite contexts. Notably, as this
only requires completeness in terms of the empty context, which is finite, the object
Markov’s principle suffices for the proof of completeness.

Corollary 3.33 (Finite completeness) Let Γ be a context and ϕ a formula.

1. Under the object Markov’s principle, Γ �S ϕ entails Γ `CE ϕ

2. Γ �E ϕ entails Γ `CE ϕ

3. Γ �M ϕ entails Γ `CL ϕ

Indeed finite completeness and the translation from finite validity in �S to finite
validity in �E can be proven equivalent to objectMarkov’s principle. The proofs are
completely analogous to those for general theories in Section 3.3.2 and Section 3.3.3.

Corollary 3.34

1. If ∀Γϕ. Γ �S ϕ→ Γ `CE ϕ then `CE is stable under finite contexts.

2. If ∀Γϕ. Γ �S ϕ→ Γ �E ϕ then `CE is stable under finite contexts.
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3.4.2 Full Strong Completeness

Having derived finite completeness, we nowmove on to deriving strong complete-
ness for open theories. A very elegant method for this is demonstrated by Herbelin
and Ilik [29]. They also define their Henkin construction in terms of free variables
which means their proof is restricted to theories T and formulas ϕ with infinitely
many fresh variables. They solve this by doubling every free variable occurring
in open T and ϕ, thereby guaranteeing that every uneven variable is fresh for the
resulting theory and formula. As this transformation does not affect validity or
provability, their result is thus extended to open theories and formulas.

While the same method can be used to extend our completeness results for stan-
dard and exploding models to open settings, it will not work for the minimal mod-
els. Recall that in their proof of completeness, we chose the formula ϕ as the ⊥̇
replacement ⊥̃. It is important that ⊥̃ is truly closed to ensure that the explosion
axioms are not affected by variable shifts ↑(⊥̃ →̇ ∀̇∗ ψ) = ⊥̃ →̇ ∀̇∗ ψ, meaning mere
shifting of the free variables in ϕ does not suffice. We therefore follow a different
approach, outlined in Fig. 3.2. Recall that the fragment FF was generalized over a
signature Σ. We extend this signature by an infinite family of new constants cn, ar-
riving at the signature Σc. We then lift T andϕ to Σc and close them by substituting
every free variable n with cn. After deducing the completeness of the modified T
and ϕ, we revert them back their original form in Σ by replacing every cn with the
free variable n. As these transformation steps all maintain validity and provability,
strong completeness can be deduced for open theories and formulas.

T �X ϕ ⇑T �X⇑ϕ (⇑T )[c−] �X (⇑ϕ)[c−]

(⇑T )[c−] ` (⇑ϕ)[c−]⇓((⇑T )[c−]) `⇓((⇑ϕ)[c−])T ` ϕ =

Figure 3.2: Deriving full strong completeness

The definitions of the operations ⇑ and ⇓ are given below. Because ⇓ is supposed
tomap every cn to the free variable n, it is defined carrying an indexm that denotes
how many universal quantifiers have to be skipped to arrive at the level of the free
variables. Thus, ⇓mmaps cn to the variable n+m. However, we shorten ⇓0 to ⇓ to
aid readability.
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Definition 3.15 (Lifting and dropping)

⇑ : TΣ → TΣc ⇓ : N→ TΣc → TΣ

⇑x := x ⇓mx := x

⇑(f t1 ... t|f |) := fc (⇑t1 ... ⇑t|f |) ⇓m (fc t1 ... t|f |) := f (⇓m t1 ... ⇓m t|f |)
⇓mcn := n+m

⇑ : FΣ
F → FΣc

F ⇓ : N→ FΣc
F → FΣ

F

⇑⊥̇ := ⊥̇ ⇓m ⊥̇ := ⊥̇
⇑(P t1 ... t|P |) := P ⇑t1 ... ⇑t|P | ⇓m (P t1 ... t|P |) := P ⇓m t1 ... ⇓m t|P |
⇑(ϕ →̇ψ) :=⇑ϕ →̇ ⇑ψ ⇓m (ϕ →̇ψ) :=⇓mϕ →̇ ⇓mψ
⇑(∀̇ϕ) := ∀̇(⇑ϕ) ⇓m (∀̇ϕ) := ∀̇(⇓Smϕ)

The following facts are required to deduce full strong completeness. Note that their
proofs are non-trivial spanning over 450 lines of Coq. However, due to their tech-
nical nature, we have decided to solely state them here.

Fact 3.35 Let T be a theory, ϕ a formula and X ∈ {S,E,M}.

1. T �X ϕ→⇑T �X⇑ϕ

2. T ` ϕ→ (⇑T )[λn. cn] �X (⇑ϕ)[λn. cn]

3. ⇓((⇑ϕ)[λn. cn]) = ϕ

Using the facts from above, we can deduce the full strong completeness results.
For standard models, the C-stability has to be closed under the lifting operation
(⇑−)[λn. cn] as the completeness proof from Section 3.3.2 is applied to the theory
(⇑T )[λn. cn] to derive this result.

Fact 3.36 Let T be a theory and ϕ a formula.

1. Under any (⇑−)[λn. cn] closed C-stability, T �S ϕ→ T `CE ϕ for any C T

2. T �E ϕ entails T `CE ϕ

3. T �M ϕ entails T `CL ϕ

As all stability notionswe singled out in Section 2.5.1 are closed under (⇑−)[λn. cn],
we can derive the exact characterizations of strong completeness.
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Corollary 3.37

1. T �S ϕ→ T `CE ϕ for any T is equivalent to double negation elimination

2. T �S ϕ → T `CE ϕ for any enumerable T is equivalent to the synthetic Markov’s
principle

3. T �S ϕ→ T `CE ϕ for any finite T is equivalent to the object Markov’s principle

3.5 Soundness
In Section 3.3, we introduced three different notions of validity. We now give a
unified proof of soundness covering all of them. In the context of completeness, a
proof of soundness can be seen as a guarantee that the notions ofmodel and validity
were chosen correctly, thereby establishing its legitimacy.

We first establish an important fact about the interaction between assignments and
substitution under formula satisfaction. Substitutions in the term under �X can
always be moved into the assignment instead.

Fact 3.38 LetX be a constraint, I an interpretation, ρ an assignment and σ a substitution.
Then ρ �X ϕ[σ] iff (λx. (σ x)ρ) �X ϕ for any ϕ.

Proof We first prove ∀ρ1, ρ2. ρ1 �X ϕ iff ρ2 �X ϕ and use this to prove this lemma.
Both proves are per formula induction of ϕ. �

Using this fact, one can now deduce soundness. As there are many similarities
between the different variants of`, all possible soundness statements can be proven
at once. We require the models satisfying the constraint with regards to which
soundness is being proven to fulfill certain properties representing the “features”
of the deduction system `SB .

Lemma 3.39 LetX be a constraint and SB a ND-variant such that all models satisfying
X are classical if S = C and all models satisfyingX have exploding ⊥̇s ifB = E. Further,
let Γ be a context, T a theory and ϕ a formula.

1. Γ `SB ϕ→ Γ �X ϕ

2. T `SB ϕ→ T �X ϕ

Proof

1. Proof per induction on Γ `SB ϕ. We only cover the more involved cases.

(Exp): As (Exp) requires B = E, we know any model satisfying X has an ex-
ploding ⊥̇. The claim then follows with Fact 3.24.

(Peirce): As (Peirce) requires S = C, the claim follows per assumption.
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(AllI): Given an interpretation I and an assignment ρ, we have to show that
d, ρ �X ϕ for arbitrary d. Per inductive hypothesis ↑ Γ �X ϕ. Hence
it suffices to show that d, ρ �X↑ Γ. For a given ↑ φ ∈↑ Γ, we know that
d, ρ �X↑φ iff ρ �X φ per Fact 3.38, the latter of which holds per assump-
tion as φ ∈ Γ.

(AllE): Given an interpretation I and an assignment ρ, we have to show that
ρ �X ϕ[t] for arbitrary t. By Fact 3.38, this is equivalent to tρ, ρ �X ϕ,
which holds per inductive hypothesis.

2. If T `SB ϕ then there is Γ ⊆ T with Γ `SB ϕ. Using 1., this means Γ �X ϕ,
which implies T �X ϕ as Γ ⊆ T . �

The specific statements of soundness corresponding to the statements of complete-
ness proven in the previous section can easily be deduced.

Corollary 3.40 Let T be a theory and ϕ a formula.

1. T `CE ϕ entails T �S ϕ

2. T `CE ϕ entails T �E ϕ

3. T `CL ϕ entails T �M ϕ

An important consequence of soundness with regards to standard models is the
consistency of `. This proof is slightly more complicated than in other presenta-
tions of Tarski semantics, as we first need to establish the existence of a standard
model.

Lemma 3.41 There exists a standard model.

Proof Consider the interpretation I defined on the domain of type 1 whose only
member is ?.

fI t1 ... t|f | := ? P I t1 ... t|P | := > ⊥I := ⊥

Per definition of⊥I , it has a standard ⊥̇. Further, one can prove per induction on ϕ
that ρ � ϕ ∨ ¬ρ � ϕ for any formula ϕ and assignment ρ. One can thus prove that
all instances of (((ϕ →̇ψ) →̇ϕ) →̇ϕ) are satisfied under any assignment ρ. Thus I
is classical and therefore a standard model. �

Lemma 3.42 There is no derivation of ` ⊥̇.

Proof Assume there was a derivation of ` ⊥̇. By Lemma 3.39, this means that
�S ⊥̇. When instantiated with the standard model from Lemma 3.41, this yields a
contradiction. �
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3.6 Conclusion
In this chapter, we have analyzed the completeness of Tarski semantics for three
different notions of models: standard, exploding and minimal. To this end, we
have given a theory extension procedure Theorem 3.13, generalized from that of
Henkin, which could be used in the model existence proofs for all three model no-
tions. Based on this, we were able to establish that the completeness with regards
to �S cannot be deduced constructively, as it is equivalent to certain C-stabilities,
among them the principle of double-negation elimination as well as the synthetic
and object Markov’s principle. The two non-standard notions of models allow for
constructive completeness proof. These results can be summed up by Fig. 3.3. Nor-
mal arrows denote the usual implication, while dashed arrows are implications
which are equivalent to the stability of `CE .
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Figure 3.3: Results for classical completeness



Chapter 4

Kripke Semantics

In the previous chapter, we carried out a constructive analysis of completenesswith
regards to Tarski model semantics. This chapter will do the same for the canonical
model semantics for intuitionistic first-order logic: Kripke models. Kripke models
were originally developed to give a semantics to modal logic [40]. While a transla-
tion of intuitionistic logic intomodal logic was already known, the first explicit ren-
dering of Kripke models as a semantics for intuitionistic first-order logic, including
a non-constructive completeness proof, was given byKripke in 1965 [41]. However,
Kreisel had already proven that the completeness of negative intuitionistic first-
order logic (first-order logic restricted to results of Gödel’s double-negation trans-
lation [25]) entails the non-constructive Markov’s principle in 1962 [38]. As the
notion of validity he uses in that proof is very general, the result extends to Kripke
semantics as well. In 1976, Veldman proved that the non-constructive fan theorem
suffices to prove completeness with regards to exploding Kripke models[65]. In
this chapter, we carry out a constructive analysis of the completeness of multiple
variants of Kripke semantics on the ∀̇, →̇ , ⊥̇-fragment FF of first-order predicate
logic, based on a proof of the same by Herbelin and Lee [30].

We begin this chapter by defining Kripke models (Section 4.1) and the normal se-
quent calculus (Section 4.2), the deduction system employed in this chapter. We
then conduct the constructive analysis of the completeness proofs in Section 4.3,
first giving a constructive proof forminimal and explodingmodels and thendemon-
strating that completeness with regards to standard models requires the stability
of `CE . We close the chapter by showing how to use the constructive completeness
results for a syntactic normalization procedure in Section 4.4.

4.1 Kripke Models
Kripke models are a generalization of Tarski models that is suitable as the basis
of semantics for modal and intuitionistic first-order logic. Instead of defining just
one satisfaction relation ρ � ϕ for the whole model, Kripke models are defined in



4.1. Kripke Models 53

terms of a type W of possible worlds, each world w : W giving rise to a separate
forcing relation ρ w ϕ. The worlds are not completely independent from each
other. Instead, a world w can be reachable from a world v, denoted by v 4 w. The
forcing relation is monotonous with regards to 4: every formula which holds in v
also holds in w.

Definition 4.1 (Kripke models) AKripkemodelK on a domainD consists of a typeW
of worlds preordered by a reachability relation 4:W →W → P, a function interpretation
fK : D|f | → D for every f : F , a predicate interpretation PK− :W → D|P | → P for every
P : P and a ⊥̇ interpretation ⊥K− :W → P.

The predicate and ⊥̇ interpretations are required to be monotonous with regards to 4. That
is PKv d1 ... d|P | → PKw d1 ... d|P | and ⊥Kv → ⊥Kw for every v 4 w.

Analogously to Tarski models (Definition 3.7), a Kripke model K, together with an assign-
ment ρ : N→ D, gives rise to a term interpretation −ρ : T→ D:

xρ := ρ x (f t1 ... t|f |)
ρ := fK tρ1 ... t

ρ
|f |

The conditions of a formula ϕ being forced in the world v of a Kripke model K under an
assignment ρ are given by the recursively defined translation into the meta-logic ρ v ϕ:

ρ v ⊥̇ := ⊥Kx
ρ v P t1 ... t|P | := PKv tρ1 ... t

ρ
|P |

ρ v ϕ →̇ψ := ∀v 4 w. ρ w ϕ→ ρ w ψ

ρ v ∀̇ϕ := ∀d : D. d, ρ v ϕ

Fact 4.1 The forcing relation of any Kripke model K is monotonous with regards to 4.
That is, for any ρ and ϕ, ρ v ϕ implies ρ w ϕ whenever v 4 w.

Kripke models are usually generalized even further by allowing each world u : W
to choose its own domain Dw with the requirement that Dv ⊆ Dw for all v 4 w.
Kripke models defined in this way require a slightly more complicated definition
of the forcing relation for ∀̇ϕ:

ρ v ∀̇ϕ iff ∀d : Dv, v 4 w. d, ρ w ϕ

However, we have chosen to only consider Kripke models of constant domains D,
allowing for the simpler definition of the forcing relation given in Definition 4.1.
This suffices as the models constructed for the completeness proofs have constant
domains. The completeness proofs can easily be adapted to Kripke models with
varying domains.
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Similar to the Tarski models of Chapter 3, our notion of Kripke models differs from
that found throughout the literature. The forcing relation is usually defined as
always interpreting ⊥̇ as ⊥, whereas under our definition, each model can choose
its own interpretation of ⊥̇ by means of ⊥K−.

As this chapter covers completeness proofs with regards to different notions of
Kripke models, we define validity in terms of constraintsX : K → P onmodels. As
with constrained Tarski validity, subsumption of constraints implies subsumption
of their associated notions of validity. These notions also extend to finite contexts
Γ, as these can be treated as finite theories.

Definition 4.2 (Constrained Kripke validity)

1. A theory T is said to be satisfied by a Kripke model interpretationK at worldw under
an assignment ρ, written as ρ w T , if ∀ϕ ∈ T . ρ w ϕ.

2. A formula ϕ is said to be valid under a theory T and under a constraintX : K → P
if ρ w T → ρ w ϕ holds for any Kripke model K satisfying X , any world w and
assignment ρ. This is written as T X ϕ.

Fact 4.2 Let C subsume C ′. Then, for any ϕ and T , T C ϕ entails T C′ ϕ.

The three notions ofKripkemodelswe consider are analogous to those ofChapter 3.
However, we do not require the models to be classical as we did for the Tarski
models, because we now discuss semantics for intuitionistic first-order logic.

Definition 4.3 (Relevant notions of Kripke models)

1. A Kripke model K constitutes a standard model if ⊥Ku → ⊥ for all u :W . We denote
standard validity by S .

2. A Kripke model K constitutes an exploding model if ⊥Ku → PKu d1 ... d|P | for any
P, d1, ..., d|P | and any u. We denote exploding validity by E .

3. Any Kripke model is a minimal model. We denote minimal validity by M .

Fact 4.3 For any exploding K, ρ w ϕ holds for any ρ and ϕ in any w with ⊥Kw ,

The intuitionistic variants of the natural deduction system defined in Section 2.4
are sound with regards to the constrained Kripke semantics as defined above. If
the natural deduction system allows for the use of the (Exp) rule, validity has to be
constrained to at least only consider exploding models.

Theorem 4.4 Let X be a constraint and and IB an ND-variant such that all models
satisfying X are exploding if B = E. Then ∀ T ϕ. T `IB ϕ→ Γ X ϕ.
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4.2 Normal Sequent Calculus
The completeness proofs of this section do not result in derivations in natural de-
duction but instead in sequents of the sequent calculus LJT, a normal variant of
Gentzen’s intuitionistic sequent calculus LJ [21, 22].

The rules of LJT can be seen in Fig. 4.1. There are two different kinds of derivations.
Derivations with traditional conclusion Γ ⇒ ϕ show that ϕ can be deduced from
the context Γ. Secondly, the derivations resulting in conclusions with a focused
formula Γ ;ϕ ⇒ ψ show that ψ can be proven under the context Γ by using the
focused formula ϕ. The distinction between conclusions with and without focused
formula is only necessary to ensure the proofs derived in LJT are normal, a fact
which we discuss further in Section 4.4. The rules are divided into left and right
rules, depending on which side of⇒ they act on. Formulas in focus can be trans-
formed by the left rules, either by instantiating universal quantifierswith (AllL) or
by removing premises of implications with (IL). The right rules, (IR) and (AllR),
correspond to the introduction rules (II) and (AllI) of the natural deduction sys-
tem. The only way of bringing formulas into focus and discharging them again are
the (Ctx) and (Ax) rules, respectively.

As with the natural deduction system, LJT is parameterized over a flag B, indicat-
ing whether the (Exp) rule may be used or not. We write Γ⇒ ϕ in the statements
of lemmas and definitions whenever the choice of B is irrelevant.

Ax
Γ ;ϕ⇒ ϕ

Ctx
Γ ;ϕ⇒ ψ ϕ ∈ Γ

Γ⇒ ψ
IL

Γ⇒ ϕ Γ ;ψ ⇒ θ

Γ ;ϕ →̇ψ ⇒ θ

IR
Γ, ϕ⇒ ψ

Γ⇒ ϕ →̇ψ
AllL

Γ ;ϕ[t]⇒ ψ

Γ ; ∀̇ϕ⇒ ψ
AllR

↑Γ⇒ ϕ

Γ⇒ ∀̇ϕ
Exp

Γ⇒E ⊥̇
Γ⇒E ϕ

Figure 4.1: Normal Sequent Calculus LJT

LJT exhibits the same weakening properties as the natural deduction system from
Section 2.4. That is, provability is maintained under context extensions and sub-
stitutions. Furthermore, one can always switch between the de Bruijn- and locally
nameless variants of the (AllR) rule.

Fact 4.5 ] The following rules can be shown admissible.

Weak
Γ′ ⇒ ϕ Γ′ ⊆ Γ

Γ⇒ ϕ
WeakS

Γ⇒ ϕ

Γ[σ]⇒ ϕ[σ]

Fact 4.6 Let x be fresh for Γ and ∀̇ϕ. Then ↑Γ⇒ ϕ if and only if Γ⇒ ϕ[x].

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Gentzen.html#sprv
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Gentzen.html#seq_Weak
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Gentzen.html#seq_subst_Weak
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Gentzen.html#seq_nameless_equiv


56 Kripke Semantics

The notions of deduction can be extended to theories T in a similar manner to `.

Definition 4.4 (Provability under theories)

1. We write T ⇒ ϕ to mean that there is a Γ ⊆ T with Γ⇒ ϕ.

2. We write T ;ϕ⇒ ψ to mean that there is a Γ ⊆ T with Γ ;ϕ⇒ ψ.

The deduction predicates of⇒ are enumerable. The enumeration procedures for
this are completely analogous to that of the proofs in `SB in Lemma 2.11.

Fact 4.7

1. The predicate (λϕ. Γ⇒ ϕ) is enumerable for any Γ.

2. The predicate (λϕ. T ⇒ ϕ) is enumerable for enumerable T .

Proof We prove this by giving enumerations e : N→ L(FF ).

1. We simultaneously define mutually recursive enumerations eΓ and eΓ;ϕ for
λψ. Γ ⇒ ψ and λψ. Γ ;ϕ ⇒ ψ, respectively. For the sake of readability, we
refer to both the enumeration of terms and formulas as e.

eΓ 0 := Γ

eΓ (S n) := eΓ n ++

[ψ | ϕ ∈ Γ, ψ ∈ eΓ;ϕ n ] ++

[ϕ →̇ψ | ϕ ∈ e n, ψ ∈ e(Γ,ϕ) n ] ++

[ ∀̇ϕ | ϕ ∈ e(↑Γ) n ] ++

[ϕ | B = E,⊥ ∈ eΓ n, ϕ ∈ e n ]

eΓ;ϕ 0 := [ϕ ]

eΓ;ϕ→ψ (S n) := eΓ;ϕ n++ [ τ | τ ∈ eΓ;ψ n, ϕ ∈ eΓ n ]

eΓ;∀̇ϕ (S n) := eΓ;ϕ n++ [ψ | t ∈ e n, ψ ∈ eΓ;ϕ[t] n ]

eΓ;ϕ (S n) := eΓ;ϕ n++

As with the enumerations for ` in Lemma 2.11, each clause of the recursive
cases of the enumerations corresponds to a deduction rule of ⇒. Notably,
the behavior of the enumerations for focused derivations eΓ;ϕ depends on the
shape of ϕ.

2. We assume an enumeration eT : N → L(FF ) which enumerates all formu-
las in T . Using eT , one can construct an enumeration e′ : N → L(L(FF ))
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which enumerates all contexts Γ ⊆ T . Then the predicate λϕ. T ⇒ ϕ can be
enumerated by the following enumeration:

e 0 := [] e (S n) := e n++ concat [ [ϕ | ϕ ∈ eΓ n ] | Γ ∈ e′ n ]

�

4.3 Constructive Analysis of Completeness Theorems
This section contains the constructive analysis of the completeness theorems with
regards to Kripke models based on the proofs by Herbelin and Lee [30]. Similar to
them, we only give completeness proofs in terms of finite contexts and explain how
to modify those to obtain completeness for arbitrary theories. We begin by analyz-
ing the slightly simpler proofs for exploding and minimal models. We then con-
tinue by giving a proof for the completeness of standardmodels as a slight variation
on the previous proof. We close this section by demonstrating that completeness
for standard models entails the stability of `CE .
4.3.1 Exploding and Minimal Models

The overall approach of these proofs is very different to that of completeness with
regards to Tarski models. While both construct a suitable syntactic models (mod-
els whose domain are the terms T), the proof of classical completeness requires
the construction of different models, depending on the theory and formula under
scrutiny, whereas the proof for Kripkemodels only needs onemodel, called the uni-
versal Kripke model. To construct it, one simply chooses the contexts as the worlds
W and then defines PK and ⊥K in terms of provability under them. Importantly,
this model is applicable to both variants of LJT,⇒L and⇒E .

Definition 4.5 (Universal model) The universal Kripke model U is a syntactic model.
Its worldsW are the contexts L(FF ) with reachability 4 being defined as ⊆. Furthermore

PUΓ t1 ... t|P | := Γ⇒ P t1 ... t|P | ⊥UΓ := Γ⇒ ⊥̇

The proof of completeness with regards to minimal or normal Kripke models now
proceeds by proving a characteristic lemma about the universal Kripkemodel. This
proof constitutes the majority of the completeness proof. It consists of two prop-
erties of the universal model, shown by simultaneous induction. Intuitively, these
two statements allow one to convert between a formula being forced and the same
formula being provable (1) and back (2).
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Lemma 4.8 Let Γ be a context, σ a substitution and ϕ a formula. In the universal Kripke
model U the following hold.

1. σ Γ ϕ→ Γ⇒ ϕ[σ]

2. (∀Γ′ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ ψ → Γ′ ⇒ ψ)→ σ Γ ϕ

Proof We prove the following generalizations simultaneously by induction on ϕ.

1. ∀Γσ. σ Γ ϕ→ Γ⇒ ϕ[σ]

2. ∀Γσ. (∀Γ′ ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ ψ → Γ′ ⇒ ψ)→ σ Γ ϕ

Case ⊥̇ and P t1 ... t|P |:

1. In syntactic models, tσ = t[σ]. Thus σ Γ ϕ iff Γ ⇒ ϕ[σ] in U for ϕ = ⊥̇ or
ϕ = P t1 ... t|P |.

2. From (∀Γ′ ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ ψ → Γ′ ⇒ ψ) for ϕ = ⊥̇ or ϕ = P t1 ... t|P |,
one can deduce Γ ⇒ ϕ[σ] by choosing Γ′ = Γ and ψ = ϕ[σ] since Γ′ ;ϕ[σ] ⇒
ϕ[σ] by the (Ax) rule. This is equivalent to σ Γ ϕ as in 1.

Case ϕ →̇ψ:

1. Assuming ∀Γ′. Γ ⊆ Γ′ → σ Γ′ ϕ → σ Γ′ ψ, one has to derive that
Γ⇒ (ϕ→ ψ)[σ]. Per (IR) and inductive hypothesis 1. forψ it suffices to show
σ Γ,ϕ[σ] ψ. Applying the inductive hypothesis 2. for ϕ and the assumption,
it suffices to show ∀Γ′ θ. Γ, ϕ[σ] ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ ψ[σ]→ Γ′ ⇒ ψ[σ], which
holds per (Ctx).

2. Assuming ∀Γ′ θ. Γ ⊆ Γ′ → Γ′ ; (ϕ →̇ψ)[σ] ⇒ θ → Γ′ ⇒ θ one has to deduce
∀Γ′. Γ ⊆ Γ′ → σ Γ′ ϕ→ σ Γ′ ψ. Because of the inductive hypothesis 2. for
ψ it suffices to show ∀Γ′′ θ. Γ′ ⊆ Γ′′ → Γ′′ ;ψ[σ] ⇒ θ → Γ′′ ⇒ θ. By applying
using the assumption, Γ′′ ⇒ θ reduces to Γ′′ ; (ϕ →̇ψ)[σ]⇒ θ. This follows by
(IL), as the assumption σ Γ′ ϕ implies Γ′′ ⇒ ϕ[σ] per inductive hypothesis
1 and (Weak).

Case ∀̇ϕ:

1. Assuming ∀t. t, σ Γ ϕ, one has to deduce Γ ⇒ (∀̇ϕ)[σ]. By (AR), it suffices
to show ↑Γ⇒ ϕ[0, ↑σ]. By Fact 4.6, this is equivalent to showing Γ⇒ ϕ[x, σ]

for a variable x which is fresh for Γ and ∀̇ϕ. This follows from the initial
assumption and inductive hypothesis 1.

2. Assuming ∀Γ′ ψ. Γ ⊆ Γ′ → Γ′ ; (∀̇ϕ)[σ] ⇒ ψ → Γ′ ⇒ ψ, one has to deduce
t, σ Γ ϕ for every term t. Per inductive hypothesis 2, it suffices to show
∀Γ′ ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[t, σ]⇒ ψ → Γ′ ⇒ ψ. Using the assumption, Γ′ ⇒ ψ

reduces to Γ′ ; (∀̇ϕ)[σ]⇒ ψ, which can be derived via (AL). �
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The lemma and its proof exhibit the structure of normalization by evaluation, a
method mainly employed in the study of programming languages and type sys-
tems [5, 13]: Given a language L and a computational denotational semantics D,
one defines the mutually recursive functions reflect ↑: Ln → D and reify ↓: D → Ln

which translate between the denotational semantics and the normal terms of the
language. In the case of this lemma, the language consists of the derivation of⇒,
the denotational semantics is given by the model U and the two statements 1. and
2. correspond to the functions ↑ and ↓, respectively.

Using the lemma to derive the completeness of ⇒L with regards to M is fairly
straightforward.

Theorem 4.9 For any context Γ and formula ϕ, Γ M ϕ→ Γ⇒L ϕ.

Proof Assume Γ M ϕ. Then ι Γ Γ → ι Γ ϕ in U with ι x = x. Then, by
Lemma 4.8.1, it suffices to show ι Γ Γ to deduce Γ⇒L ϕ. With Lemma 4.8.2, this
can be achieved by proving ∀Γ′ θ. Γ ⊆ Γ′ → Γ′ ;ψ ⇒L θ → Γ′ ⇒L θ for all ψ ∈ Γ,
which holds by (Ctx). �

Proving the completeness of⇒E with regards to E requires one additional step:
proving that U is an exploding model when defined in terms of ⇒E . This is re-
quired to instantiate Γ E ϕwith U in the proof of completeness.

Lemma 4.10 The universal Kripke model for⇒E is an exploding model.

Proof Per definition of U , we have to show that Γ ⇒E ⊥̇ → Γ ⇒E P t1 ... t|P | for
arbitrary Γ. This follows by the (Exp) rule. �

Theorem 4.11 For any context Γ and formula ϕ, Γ E ϕ→ Γ⇒E ϕ.

Proof Completely analogous to Theorem 4.9. �

4.3.2 Standard Models

The approach of the previous section does not cover standardmodels as U is a non-
standard model. Recall that standard models have the property that ⊥Ku → ⊥ in
every world u. This is not the case in U . For example, ⊥U

[⊥̇]
= [⊥̇] ⇒ ⊥̇ can be

derived and is therefore not contradictory. The completeness proof with regards to
standard models thus uses a slight variation of the universal model U : instead of
taking theworlds to be all contexts, we restrict theworlds to the consistent contexts,
thereby forcing ⊥UΓ to be a contradiction for any world Γ.
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Definition 4.6 (Consistent model) The consistent Kripkemodel C is a syntacticmodel.
Its worlds W are the consistent contexts {Γ : L(F) | Γ 6⇒E ⊥̇} with reachability being
defined as ⊆. Furthermore

P CΓ t1 ... t|P | := Γ⇒E P t1 ... t|P | ⊥CΓ := Γ⇒E ⊥̇

Fact 4.12 C constitutes a standard model.

Similar to standard Tarski models, this proof of completeness requires the stabil-
ity of ⇒E . Whereas one application of stability was sufficient to prove standard
completeness with regards to Tarski models, the proof for standard Kripke models
requires it to be used multiple times. However, these applications always take the
shape of the same principle, given below.

Lemma 4.13 Under the stability of ⇒E for finite theories, when proving Γ ⇒E ϕ, one
may assume the consistency of Γ.

Proof Assume that Γ 6⇒E ⊥̇ → Γ ⇒E ϕ. As⇒E is stable, it thus suffices to show
Γ⇒E ϕ under the assumption that Γ 6⇒E ϕ. From Γ 6⇒E ϕ it follows that Γ 6⇒E ⊥̇,
as Γ⇒E ϕ could be derived by (Exp) otherwise. Thus Γ⇒E ϕ per assumption. �

All of the non-constructive principles we consider in our constructive analysis can
be used to deduce this lemma. For the principle of double negation elimination,
this is trivial. The synthetic Markov’s principle can derive it as we have shown in
Fact 4.7 that ⇒E is enumerable and thus stable under it. As the enumeration we
gave in Fact 4.7 can be adapted to any Church-Turing model of computation, the
object Markov’s principle can deduce it as well.

Using this principle, one can deduce the same two properties about the consistent
Kripke model C as before.

Lemma 4.14 Let Γ be a consistent context, σ a substitution and ϕ a formula. Under the
object Markov’s principle, the consistent Kripke model C has the following properties.

1. σ Γ ϕ→ Γ⇒ ϕ[σ]

2. (∀Γ′ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ ψ → Γ′ ⇒ ψ)→ σ Γ ϕ

Proof We prove the following generalizations simultaneously by induction on ϕ.

1. ∀Γσ. σ Γ ϕ→ Γ⇒E ϕ[σ]

2. ∀Γσ. (∀Γ′ ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒E ψ → Γ′ ⇒E ψ)→ σ Γ ϕ

Most cases are completely analogous to those in Lemma 4.8. We only prove the
case that requires an application of Lemma 4.13.
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Case ϕ →̇ψ:

1. Assuming ∀Γ′. Γ ⊆ Γ′ → σ Γ′ ϕ → σ Γ′ ψ, one has to derive that
Γ⇒ (ϕ→ ψ)[σ]. Per (IR), it suffices to show that Γ, ϕ[σ]⇒E ψ[σ], for which
one can assume Γ, ϕ[σ] 6⇒E ⊥̇ per Lemma 4.13. This allows for the applica-
tion of inductive hypothesis 1. for ψ, leaving one having to show σ Γ,ϕ[σ] ψ.
Applying the inductive hypothesis 2. for ϕ and the assumption, it suffices to
show ∀Γ′ θ. Γ, ϕ[σ] ⊆ Γ′ → Γ′ ;ϕ[σ] ⇒ ψ[σ] → Γ′ ⇒ ψ[σ], which holds per
(Ctx). �

Deriving completeness from the lemma above is fairly straightforward. However,
another application of Lemma 4.13 is required to do so.

Theorem 4.15 Under the stability of⇒E , ∀Γϕ. Γ S ϕ→ Γ⇒E ϕ.

Proof Assume Γ S ϕ. We may also assume Γ 6⇒E ⊥̇ to prove Γ ⇒E ϕ by
Lemma 4.13. As Γ is consistent, ι Γ Γ → ι Γ ϕ in C with ι x = x. Then, by
Lemma 4.14.1, it suffices to show ι Γ Γ to deduce Γ ⇒E ϕ. With Lemma 4.14.2,
this can be achieved by proving ∀Γ′ θ. Γ ⊆ Γ′ → Γ′ ;ψ ⇒E θ → Γ′ ⇒E θ for all
ψ ∈ Γ, which holds by (Ctx). �

We have so far only presented this completeness proof in terms of finite contexts.
However, it can be modified to prove completeness for C-theories under any C-
stability which is closed under finite theory extensions and substitutions. For this,
the universal Kripkemodel’swroldswould have to be chosen to be the consistentC-
theories. The proof would then proceed analogously to the proof for finite contexts
with one important modification: The proof can only be applied to theories with
“enough” free variables. Consider the case of statement 1. for the universal quan-
tifier. One has to prove that T ⇒E ∀̇ϕ[σ] under the assumption that T ⇒E ϕ[σ′]

for any substitution σ′. Here, one has to choose σ′ as x, σ for a variable x which
is fresh for ϕ[σ] and T . However, many theories use every single variable, thus
making this step impossible. The easiest way of avoiding this is to prove complete-
ness only for theories with an infinite amount of fresh variables and then deriving
the completeness for all C-theories by generating fresh variables in the theories in
questions using the substitution [λx. 2 ∗ x].

We have shown that by assuming the object Markov’s principle, one can prove the
completeness of LJT with regards to standard Kripke models and explained how
to extend this to C-theories when assuming a suitable C-stability. We now go on
to demonstrate that these assumptions are necessary. That is, that completeness
entails the stability of `CE .
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Theproof of this entailment employs a double-negation translation procedure. Such
a procedure translates classically provable formulas into intuitionistically provable,
classically equivalent formulas. While there existmultiple different variants of such
procedures throughout the literature, we have chosen to use the version that was
originally given by Gödel [25] for this proof.

Definition 4.7 (Double-Negation Translation) We define the double-negation trans-
lation of a formula ϕN as follows:

(P t1 ... t|P |)
N := ¬̇¬̇P t1 ... t|P | ⊥̇N := ⊥̇ (ϕ →̇ψ)N := ϕN→̇ψN (∀̇ϕ)N := ∀̇ϕN

Fact 4.16 For any formula ϕ and theory T , T `CE ϕ iff T N `IE ϕN .

The proof of the equivalence also makes use of the fact that proofs in ⇒B can be
translated into proofs in `IB , which we prove in the next section in Lemma 4.19.

Theorem 4.17 Let C be a theory class closed under theory −N . Then standard Kripke
completeness T S ϕ→ T ⇒E ϕ for all C-theories entails C-stability.

Proof Assume Kripke completeness for all C-theories and ¬¬T `CE ϕ for a C T .
We prove T `CE ϕ by applying the object double-negation in `CE and double-
negation translation, thus being left with proving T N `IE ¬̇¬̇ϕN . As proofs in⇒E

can be translated into proofs in `IE (Corollary 4.20) and ⇒E is complete for T N
per assumption, it suffices to show T N S ¬̇¬̇ϕN . Thus, letK be a standard Kripke
model on some domainD, ρ an environment inD and w a world of K. We assume
ρ w T N and ρ w ¬̇ϕN to prove ⊥ as K is a standard model. As we are deriving
a contradiction, ¬¬T `CE ϕ gives us T `CE ϕ and by double-negation translation
and soundness of `IE (Theorem 4.4) ρ w ϕN . This is a contradiction to ρ w ¬̇ϕN
as K is a standard model. �

This can again be used to derive precise statements of different variants of standard
Kripke completeness.

Corollary 4.18

1. T S ϕ→ T ⇒E ϕ for arbitrary T entails double-negation elimination

2. T S ϕ→ T ⇒E ϕ for enumerable T entails the synthetic Markov’s principle

3. T S ϕ→ T ⇒E ϕ for finite T entails the object Markov’s principle
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4.4 Semantic Normalization
Normal proofs are of great interest to proof theory, as they exhibit a very regular
structure thatmakes analyzing themmuch simpler. This section demonstrates how
to employ the completeness proofs of the previous section to define a semantic
normalization procedure for proofs Γ `IB ϕ.

A proof is considered normal if it does not contain any eliminations of proofs end-
ing in an introduction rule. Through the lens of the Curry-Howard isomorphism,
this means that the term-representation of the proof is in a normal-form and can
thus not be reduced further.

Definition 4.8 (Normal proofs in `) A proof Γ ` ϕ is considered normal if it does
not contain an application of an introduction rule, followed by an application of the corre-
sponding elimination rule, that is, if it doesn’t contain a subderivation of the shapes

...
Γ, ψ ` ϕ

II
Γ ` ψ →̇ϕ

...
Γ ` ψ

IE
Γ ` ϕ

...
↑Γ ` ϕ

AllI
Γ ` ∀̇ϕ

AllE
Γ ` ϕ[t]

An important property of LJT is that it only allows for normal proofs. Recall that it is
divided between derivations with conclusions of the shapes Γ⇒ ϕ and Γ ;ψ ⇒ ϕ.
The left rules, which correspond to the elimination rules of the ND system, can
only be applied to the focused formula of derivations Γ ;ψ ⇒ ϕ. However, as the
only way of bringing a formula into focus is by taking it from the context Γ, no
application of a left rule will ever be preceded by a right rule.

Because all proofs in⇒ are inherently normal, they can be transformed into proofs
in ` which are normal as well.

Lemma 4.19 For every proof Γ⇒ ϕ there exists a normal proof Γ ` ϕ.

Proof Weprove this by defining twomutually recursive proof transformation func-
tions f : Γ⇒ ϕ→ Γ ` ϕ and g : Γ ;ψ ⇒ ϕ→ Γ ` ψ → Γ ` ϕ.

f

[
Ctx

Γ ;ϕ⇒ ψ ϕ ∈ Γ

Γ⇒ ψ

]
:= g [ Γ ;ϕ⇒ ψ ]

[
Ctx

ϕ ∈ Γ

Γ ` ϕ

]

f

[
IR

Γ, ϕ⇒ ψ

Γ⇒ ϕ →̇ψ

]
:= II

f [ Γ, ϕ ` ψ ]

Γ ` ϕ →̇ψ

f

[
AllR

↑Γ⇒ ϕ

Γ⇒ ∀̇ϕ

]
:= AllI

f [ ↑Γ ` ϕ ]

Γ ` ∀̇ϕ
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f

[
Exp

Γ⇒E ⊥̇
Γ⇒E ϕ

]
:= Exp

f [ Γ `IE ⊥̇ ]

Γ `IE ϕ

g

[
Ax

Γ ;ϕ⇒ ϕ

]
[ Γ ` ϕ ] := Γ ` ϕ

g

[
IL

Γ⇒ ϕ Γ ;ψ ⇒ θ

Γ ;ϕ →̇ψ ⇒ θ

]
[ Γ ` ϕ →̇ψ ] := g[ Γ ;ψ ` θ ]

[
IE

Γ ` ϕ →̇ψ f [ Γ⇒ ϕ ]

Γ ` ψ

]

g

[
AllL

Γ ;ϕ[t]⇒ ψ

Γ ; ∀̇ϕ⇒ ψ

]
[ Γ ` ∀̇ϕ ] := g [ Γ ;ϕ[t]⇒ ψ ]

[
AllE

Γ ` ∀̇ϕ
Γ ` ϕ[t]

]

The proofs produced by these functions are normal. Applications of the (IE) and
(AllE) rules are only produced by the function g when applied to the (IL) and
(AllL) rules, respectively. However, those applications are always preceded by
the proof passed in as the second argument of g, which only consist of application
of the (AllE, IE) and (Ctx) rules. Thus no application of an elimination rule will
be preceded by a matching introduction rule, meaning all proofs produced by f
are normal. �

Corollary 4.20 For every proof T `IB ϕ, there is a proof T ⇒B ϕ.

The first normalization procedure was given by Gentzen [21, 22] and took the
shape of a direct manipulation of derivation trees. The translation procedure we
have given above, together with the completeness proofs of Section 4.3 give rise to
a normalization procedure as well. Contrasting Gentzen’s syntactic approach, this
procedure is considered a semantic normalization procedure, as the normalization
takes place in the (semantic) completeness proofs of Section 4.3.

Corollary 4.21 For any proof Γ `IB ϕ, there is a normal proof Γ `IB ϕ.

Proof Let Γ `IB ϕ. Then per Theorem 4.4, Γ C ϕ with C = E if B = E and
C = BL if B = L. With Theorem 4.9 or Theorem 4.11, Γ ⇒B ϕ can be derived.
Thus, with Lemma 4.19, one arrives at a normal proof of Γ `IB ϕ. �

The translation procedure from Lemma 4.19 can also be used to derive the sound-
ness of⇒B from the soundness of `IB with regards to Kripke models.

Corollary 4.22 Let C be a constraint and and B a LJT-variant such that all models satis-
fying C are exploding if B = E. Then Γ⇒B ϕ→ Γ C ϕ for all Γ and ϕ.

Proof Let Γ ⇒B ϕ. Per Lemma 4.19, this means Γ `IB ϕ. Thus, by Theorem 4.4,
Γ C ϕ. �
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4.5 Conclusion
In this chapter, we have analyzed the completeness of the normal sequent calcu-
lus LJT with regards to Kripke semantics with three different notions of models:
standard, exploding and minimal. We have proven completeness with regards to
exploding models E and minimal models M in a constructive manner. Further,
we have demonstrated that completeness with regards to standard Kripke mod-
els S cannot be proven constructively by showing that it entails the stability of
`CE . Lastly, we have demonstrated how proofs of⇒B can be translated into nor-
mal proofs in `IB , thereby extracting a semantic normalization procedure from the
constructive completeness proofs. The results are summed up by Fig. 4.2. Normal
arrows denote the usual implication, while dashed arrows are implications which
are equivalent to the stability of `CE .
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Figure 4.2: Results for Kripke completeness



Chapter 5

Dialogue Semantics

So far, we have analyzed two kinds of semantics: Tarski and Kripke model seman-
tics. We showed that neither of their canonical formulations, the validity with re-
gards to standard models, admit a constructive proof of completeness. In this sec-
tion, we present a game semantics that does admit a constructive completeness
proof for full intuitionistic first-order logic.

We begin this chapter with a rather informal overview of dialogues in Section 5.1.
We then proceed by giving a formal account of abstract intuitionistic E-dialogues
in the style of Sørensen and Urzyczyn [61], which we prove sound and complete
in Section 5.2. Based on this abstract result, we deduce the completeness for full
intuitionistic first-order logic from this abstract result (Section 5.3). We close the
chapter by proving the soundness and completeness of enumerable abstract intu-
itionistic D-dialogues in Section 5.4.

5.1 An Overview of Dialogues
As dialogue semantics are not as well known as the semantics we have analyzed
previously, we begin this chapter with an overview of their origins in Lorenzen’s
material dialogues as well as their contemporary presentation as formal dialogues.

5.1.1 Material Dialogues

Material dialogueswere introduced byPaul Lorenzen in his talks “Logik undAgon”
(“Logic and contest”) of 1958 [48] and “EindialogischesKonstruktivitätskriterium”
(“A dialogical criterion of constructivity”) of 1959 [49]. They were originally de-
veloped to give a new, more understandable justification of intuitionistic validity.

He begins “Logik und Agon” by tracing back the origins of logic to the necessity
of imposing rules on debates to withstand sophistic methods of argument. These
rules transformed free debates into proper contests of wit (greek “agon” = struggle
or contest). He contrasts these agonistic roots with the modern conception of logic
as systems of rules describing how to derive true sentences from true sentences. He
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posits that these logical rules are viewed as a gift from god toman, thus eliminating
the necessity of justifying them. However, he points out that Brouwer’s critiques of
classical logic have revealed that, curiously, god seems to have given different sets
of these rules to different people. He deems the explanations of this phenomenon
that had been provided at the time insufficient, blaming this state on the modern
conception of logic as an unjustifiable gift from god. He thus puts forward his own
justification of the intuitionistic conception of validity.

We follow Lorenzen’s lead by giving a very informal dialogic account of logic. The
contents of the following section are synthesized from both talks. A more formal
presentation of dialogues is deferred to Section 5.1.2.

At the basis of his conception of intuitionistic logic, Lorenzen posits games whose
outcomes can be observed and agreed upon. The example he gives is the derivabil-
ity of sentences of a grammar as witnessed by derivations. However, he notes that
any games with operational content (“operative Bedeutung”), even physical ex-
periments, can take on this role. These observable games correspond to the atomic
formulas of the logic (such as the predicates of first-order logic).

He then gives his justification of intuitonistic validity in terms of a contest between
two players, the proponent P and the opponent O, which he calls the metagame.
This contest always begins with P making some sort of claim. The most basic ex-
ample of such a claim would be P claiming to be able to win one of the underlying
games, for example by claiming that she can derive a specific sentence in the gram-
mar. O can now challenge her on that claim, resulting in P winning the metagame
if the outcome of that underlying game is in her favor.

Lorenzen now goes on to characterize the meaning of the logical connectives in
terms of rules of the metagame. Consider the claim ϕ→ ψ. If P makes this claim,
O can only challenge this claim by claiming ϕ herself. P now has two ways of
responding to this. She may defend her original claim by claiming ψ or she can
challengeO’s claim of ϕ. For amore concrete example, consider the claim ` s→` t
where ` s stands for s being derivable in a certain grammar. If P claims ` s→` t,
Owill challenge her by claiming ` s herself. P can now respond by challengingO’s
claim, thereby forcing her to present a derivation of the sentence s in the grammar.
Now P is forced to defend her claim of ` t. However, she can use the derivation of
s that O presented her with to do this. The dialogic explanation of ϕ → ψ is thus
the claim of “if ϕ is demonstrated to me, I can demonstrate ψ”.

The dialogic accounts of the other connectives are similar. Claiming ¬ϕ means
claiming ϕ→ ⊥ where ⊥ is some underlying game that both players agree cannot
be won. If one of the players of the metagame claims ∀x. ϕ[x], her opponent may
challenge ϕ[t] for any object t of the domain of the underlying game. Dually, if a
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player claims ∃x. ϕ[x], she can choose which object t she wants to defend the claim
ϕ[t] with once being challenged. The rules for ϕ ∧ ψ and ϕ ∨ ψ are analogous to
those of ∀x. ϕ[x] and ∃x. ϕ[x].

In “Ein dialogisches Konstruktivitätskriterium”, Lorenzen also gives a dialogic ac-
count of inductive sets. Given a set X inductively defined by

ϕ[x]→ x ∈ X x ∈ X ∧ ψ[x, y]→ y ∈ X

the claim of z ∈ X can either be defended by claiming ϕ[z] or by choosing some x
and claiming x ∈ X∧ψ[x, z]. If a player chooses to do the latter, she is also required
to fix some natural number n, limiting how many times she is allowed to appeal to
the inductive definition to prove her claim, thereby guaranteeing the justification
of z ∈ X to be well-founded.

Having given an account of all of the logical connectives, Lorenzen now moves
on to justifying the intuitionistic position from the dialogical standpoint. For this,
he introduces the concept of generally admissible claims (“allgemein-zulässig”).
Generally admissible claims can be seen as claim-schemata which can be defended
regardless of the choice of the specific claims as well as the underlying game. An
example of a generally admissible claim is (ϕ→ ψ)→ (ψ → θ)→ (ϕ→ θ).

Lorenzen now goes on to explain why the classical principle of double negation
elimination ¬¬ϕ→ ϕ is not generally admissible. For this, he considers P claiming
the scheme for an underlying game ϕ for which only O knows how to win it. An
example of such a gamewould be a sentence s ofwhich onlyO knows how to derive
it in the grammar. O thus challenges her by claiming ¬¬ϕ. As P does not know
how to win ϕ, she can only challengeO by claiming ¬ϕ. However, asO knows how
to win ϕ, she can defend against P ’s challenge, leaving P in a losing position as she
would now have to win the unwinnable ⊥.

This explanation relies on an important rule of the metagame that Lorenzen never
fully makes explicit in these two talks: A player may only ever defend against the
last challenge that was leveled against her which she has not yet defended herself
against. If one was to lift this restriction, P could win the previous metagame:
Once O demonstrates how to win ϕ, P once again defends her original claim that
¬¬ϕ → ϕ by winning ϕ. As this leaves O without anything to challenge, P has
thus won the metagame of ¬¬ϕ→ ϕ. Indeed, classical and intuitionistic dialogical
accounts differ precisely by the absence or presence of this rule, respectively.

For amore indepth account of the history of dialogue semantics, we refer the reader
to Krabbe’s excellent essay on this topic [36].
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5.1.2 Formal Dialogues

Formal dialogues were introduced by Lorenzen’s student Kuno Lorenz in his PhD
thesis of 1961 [46]. They differ from material dialogues as their claims are purely
syntactical formulas, without atoms being represented by an underlying game. We
now give a formal account of formal dialogues in the style that is found throughout
the literature as exemplified by Felscher [15]. The definitions of this section have
not been formalized in Coq, as we use a different presentation of dialogues in the
completeness proofs of the next sections.

We begin by formally definingwhich attacks can be leveled against which formulas
and how a player can defend against each of those attacks. These definitions are
often referred to as the “local rules” in the literature. This should be viewed as
more formal rendering of the account given in Section 5.1.1. Formally, attacks are
members of the type A defined as below.

A : T := A⊥̇ | A →̇ ϕ | AL | AR | A ∨̇ | At ϕ | A∃̇ (ϕ : F, t : T)

Which formula can be attacked bywhich attack is defined by the three-place attacks
relation B : F → A → O(F) → P. When a |ψ B ϕ, we say a is an attack on ϕ and
call ψ the admission. For each attack a, we define which formulas can be admitted
to defend against a as a set of formulas Da : 2F called a’s defense set. If ϕ ∈ Da,
we say ϕ is a defense against a. The attack relation and defense sets are specified
in Fig. 5.1. For the sake of readability, we write aB ϕ for a | ∅B ϕ.

A⊥̇ B ⊥̇ DA⊥̇ = {}
A →̇ ψ | pϕq B ϕ →̇ψ DA →̇ ψ = {ψ}

AL B ϕ ∧̇ψ DAL
= {ϕ}

AR B ϕ ∧̇ψ DAR
= {ψ}

A ∨̇ B ϕ ∨̇ψ DA ∨̇ = {ϕ,ψ}
At ϕB ∀̇ϕ DAt ϕ = {ϕ[t]}
A∃̇ B ∃̇ϕ DA∃̇ = {ϕ[t] | t : T}

Figure 5.1: Attack relation and defense sets

Formal dialogues can be viewed as a two-player game between the proponent P
and the opponent O. As in the material dialogues, P initially makes some claim ϕ.
The goal ofO is to attack the claim in such a way that P will be unable to defend it.
P on the other hand aims to make O admit that ϕ does indeed hold.
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Dialogues are formalized as sequences of player moves L((A+ F)× N). Here, the
value (La, n) represents a player attacking an admission made at position n and
(Rϕ, n) represents a player defending against an attack made against her at posi-
tion n. As dialogues are turn-taking games, every even positionwill be a proponent
move and every odd position will be an opponent move.

To define which sequences constitute dialogues, we first have to define what it
means to admit a formula. There are two situations in which we say that a for-
mula ϕ is admitted at position n of a dialogue: Firstly, if the value at position n is
(Rϕ,m) for some m, meaning a player defended against an attack at position m
by admitting ϕ. Secondly, if it is (La,m) where ψ is admitted at position m and
a | pϕq B ψ, meaning that ϕwas admitted by a player in the course of attacking ψ.

A sequence constitutes a dialogue if it fulfills the following three properties:

1. It begins with a tuple (Rϕ, 0), representing the proponent’s initial claim of
the non-atomic formula ϕ.

2. Every attack move attacks an admission made by the other player. Formally:
If the value at position n is (La,m) then a formula ϕ is admitted at position
mwith a |ψ B ϕ for some ψ. Further,m and n are of different parity.

3. Every defense move (except the proponent’s initial claim) defends against an
attack made by the other player. Formally: If the value at non-zero position
n is (Rϕ,m) then the value at position m is (La, k) with ϕ ∈ Da. Further, m
and n are of different parity.

This account of dialogues alone does not yield a proper semantics of of first-order
logic. We thus introduces different variants of dialogues, which further restrict
what constitutes a valid move. The first of these variants we define are the classical
D-dialogues. A dialogue is a classical D-dialogue if

(CD1) P may only admit an atomic formula after O has already admitted it. That
is, if the atomic formula ϕ is admitted at the even position n, then there is an
odd positionm < n at which ϕ is admitted as well.

(CD2) Any attack may be defended against at most once. That is, if the value at
position n is (Rϕ,m), then there is no position n′ < nwith the value (Rψ,m).

(CD3) Any admission made by P may only be attacked once. That is, if the value at
an odd position n is (La,m), then there is no position n′ < n with the value
(La,m).

The rule (CD1) is required as formal dialogues are not based on underlying games.
Instead, theP ’s goal in a dialogue is now tomakeO admit her initial claim. Thus, P
may only admit the atomic formulas that O already admitted to hold. Rule (CD2)
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means that players have to “commit” on their defenses. For example, a player de-
fending the claim ϕ ∨̇ψ has to decide which side of the disjunction to choose and
cannot go back on that choice one she announced it. The rule (CD3) only makes
sense when considering the winning condition of dialogues: A dialogue is con-
sidered to be won by P if it ends in a move by P and O can’t make any further
moves. Thus, rule (CD3) is in place to guarantee that O cannot stall the dialogues
indefinitely by repeatedly attacking the same admission made by P .

Intuitionistic D-dialogues can be defined in terms of classical D-dialogues. For this,
one simply has to extend the rule set with the rule discussed at the end of the pre-
vious section.

(ID4) A playermay only ever defend against the last attack she has not yet defended
against. That is, if position n is (Rϕ,m) there exists no position m < m′ of
opposite parity of n with value (La, k) for which there exists no n′ < n with
value (Rψ,m′).

The concrete formulation of the rule is very technical. A more intuitive account of
this rule is that the open attacks against a player are stored in a stack. New attacks
leveled against the player are pushed at the top of the stack. Under this rule, players
may only defend against the attack at the top of the stack, thereby popping them.

In addition to the D-dialogues we have already defined, there is a second general
variant of dialogues that also plays an important role in the study of formal di-
alogues: E-dialogues. Essentially, E-dialogues are D-dialogues with a harsh re-
striction placed upon the opponent: She can only react to the proponent’s previ-
ous move. Maybe somewhat surprisingly, E-dialogues are not “easier” than D-
dialogues: being able to win E- and D-dialogues is equivalent. The relationship
between E- andD-dialogues is similar to that between arbitrary and cut-free deriva-
tions in derivation systems. AsE-dialogues exhibit a simpler structure,meta-logical
results, such as soundness and completeness, tend to be proven only for E-dialogues
and then extended to D-dialogues on the basis of their equivalence. An E-dialogue
can be defined in terms of D-dialogues, both classical and intuitionistic, by adding
one more rule.

(E5) The opponent may only react to the proponent’s previous move. That is, the
value at any uneven position n has to be (La, n− 1) or (Rϕ, n− 1).

We have now laid out all common variants of dialogues. We thus move on to dis-
cuss how to define the validity of a formula in terms of them. We have already
defined what it means to win a dialogue. However, simply being able to win some-
times is not sufficient for a formula to be valid. Consider the formula >̇ ∧̇ ⊥̇. Cer-
tainly, the proponent canwin this dialogue: After she claims the formula,O attacks
with AL, to which P responds with admitting >̇, leavingO without any further re-
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course, thus winning the dialogue. However, it is obvious that P was only able to
win asOwas not playing “smart”. HadO attacked withAR instead, P would have
lost. To avoid these situations, we require P to be able to win regardless of the ac-
tions taken byO. This possibility to always win is formally defined as the existence
of a winning strategy.

A winning strategy is usually represented as a tree of moves A + F. Every node
at which the proponent has to make the next move, meaning every node on an
odd level, has exactly one subtree. This means that the player has to choose and
commit to whichmove she wants to perform in any situation that the opponent can
force her into. Every node on an even level, meaning those in which the opponent
makes the nextmove, have one subtree for every possiblemove the opponent could
make at that point in the dialogue. For such a tree to constitute a winning strategy,
every full path has to be a dialogue (of the specified variant) which is won by P .
Thus, such a winning strategy can only be constructed if P can always react to any
possible move of O in such a way that she can still win the dialogue.

Overall, we define intuitionistic validity of a formula ϕ as the existence of a win-
ning strategy consisting of intuitionistic E-dialogues (or equivalently D-dialogues)
which starts with P claiming ϕ. Classical validity is defined analogously.

5.2 Generalized Intuitionistic E-Completeness
Instead of giving a direct proof of the soundness and completeness of full intu-
itionistic first-order logic with regards to dialogues, we introduce an intermediate
step inspired by work of Sørensen and Urzyczyn [61]. They prove soundness and
completeness between classical E-dialogues generalized over the local rules and
two special sequent calculi LKD and LKd. The central insight behind this proof
strategy is that E-dialogues and sequent calculi share a lot of structure.

We begin this section by giving a formal account of dialogues that makes better
use of the strengths of constructive type theory than the usual presentation in Sec-
tion 5.2.1. We then continue by defining the dialogical sequent calculus LJD which
is similar to the LKD of Sørenzen andUrzyczyn in Section 5.2.2. We end this section
by proving that LJD is sound and complete with regards to generalized intuition-
istic E-dialogues.

5.2.1 Generalized Intuitionistic E-Dialogues

The local rules of a dialogue are the rules that govern which formula may be at-
tacked by which attack and which formula can be used to defend against which
attack. We are going to define intuitionistic E-dialogues which are generalized over
the specific choice of local rules.

We begin by defining rule sets. The rules for first-order logic we introduced in
Section 5.1.2 can be seen as one such rule set. Notably, the set F∗ for first-order
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logic is the set of predicate formulas {P t1 ... t|P | | P : P, t1, ..., t|P | : T}.

Definition 5.1 (Rule set) A rule set (F,F∗,A, (Da)a∈A,B) of local rules consists of a
type of formulae F, a set of formulae F∗ considered atomic, a type of attacks A, the defenses
D− : A → 2F, a family of sets of formulae indexed by the attacks, and the attacks relation
C : F→ A→ O(F)→ P.

Whenever a |ψ B ϕ, we say “a is an attack on ϕ” and call ψ the admission. If ϕ ∈ Da, we
call ϕ a defense against a.

We have outlined how formal dialogues are usually defined in the literature in Sec-
tion 5.1.2. However, that presentation is not very well-suited for a formalization in
Coq. Take, as an example, its reliance on accessing finite sequences by natural num-
ber indexes, a partial operation. AsCoq only allows the definition of total functions,
this could only be formalized through one of the many renditions of sequence in-
dexing as a total function, for example by returning option values. However, this
would introduce a considerable overhead, both in the statements of definitions and
lemmas as well as the proofs.

To avoid these complications, we have opted for a presentation of dialogues that
is better suited to a type theoretical setting. Instead of representing dialogues as
sequences of moves, we formalize them as state transition systems. The type of
states is L(F)×A, the type of pairs of the list of the opponent’s admissions and the
last attack the opponent made (the opponent’s challenge). Note that this simple
state representation can only be used when defining E-dialogues as D-dialogues
require more information to determine which moves are valid.

The proponent’s moves are represented by the type P . Its values are either PAa,
denoting the proponent attacking one of the opponent’s admissions with attack a,
or PDϕ, denoting the proponent defending against the opponent’s last attack. We
denote by s p m that the proponent may perform movem in the state s.

Definition 5.2 (Proponent move)

1. The type P describing the proponent’s last move is defined as follows

P : T := PAa | PDϕ (a : A, ϕ : F)

2. A formulaϕ is justified under opponent admissionsAo ifϕ ∈ F∗ → ϕ ∈ Ao. we take
“justified Ao ϕ” for ϕ : O(F) to mean “justified Ao ψ” if ϕ = pψq and ⊥ otherwise.

3. The proponent’s move relation p: L(F) ×A → P → P is defined by an inference
system as follows

PA
ϕ ∈ Ao a |ψ B ϕ justified Ao ψ

(Ao, c) p PAa
PD

ϕ ∈ Dc justified Ao ϕ
(Ao, c) p PDϕ

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#rule_set
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#epmove
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#justified
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#epmove
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Recall that in formal dialogues, the proponent may only admit atomic formulas if
the opponent has admitted them already. Thus, we define the notion of justified
formulas in such a way that non-atomic formulas are justified regardless of the
opponent’s admissions and atomic formulas are only justified if the opponent has
already admitted them.

With this in mind, the definition of  p is fairly intuitive. The rule (PA) means
the proponent may attack any opponent admission ϕ as long as the admission of
that attack is justified. The rule (PD) allows the proponent to defend against the
opponent’s challenge by admitting a formula, so long as that formula is justified.

In E-dialogues, the opponent’s moves are restricted to reactions to the proponent’s
previous move. We denote by the relation s ; m o s

′ that the opponent may react
to the proponent movem by transforming the current state s into the next state s′.

Definition 5.3 (Opponent move) The following inference system defines the opponent’s
move relation o: L(F)×A → P → L(F)×A → P

OA
c′ |ψ B ϕ

(Ao, c) ;PDϕ o (ψ :: Ao, c
′)

OD
ϕ ∈ Da

(Ao, c) ;PAa o (ϕ :: Ao, c)

OC
a | pψq B ϕ c′ | θ B ψ

(Ao, c) ;PAa o (θ :: Ao, c
′)

In a slight abuse of notation, ∅ :: Ao , Ao and pϕq :: Ao , ϕ :: Ao.

If the proponent has just defended herself, the rule (OA) prescribes that the oppo-
nent may only react by attacking that defense. This replaces the challenge with that
just issued by the proponent and also potentially extends the opponents admissions
by the admission of that attack. If the proponent’s last move was an attack on one
of the opponent’s admissions, the opponent can react in two different ways. She
may defend herself against that attack by admitting a formula from the attack’s de-
fense set as described in rule (OD). According to (OC), if the proponent has made
an admission along with her attack, the opponent may also counter by challenging
that admission. The effects of a counter on the state are analogous to those of (OA),
as both moves issue a new challenge.

Putting the definition of p and o together, it becomes clear that these definitions
constitute a state transition system. Each round of the game constitutes one state
transition. That is, starting in a state s, the proponent first chooses her move m
according to s  p m. The opponent then reacts to her move via s ; m  o s

′, thus
inducing transition from state s to state s′.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#eomove
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This conception of dialogues as state transition systems admits an elegant defini-
tion of winning state. Intuitively, a state s is winning if the proponent can choose a
movem such that any state s′which the opponent can transition into via s ; m o s

′

is still winning. Vacuously, this definition means that any state in which the propo-
nent can perform a move to which the opponent cannot respond is winning. This
definition of winning states is a slight variation of the notion of strongly normaliz-
ing states in state transition systems: A state s is considered strongly normalizing
if any state s′ with s s′ is strongly normalizing.

Definition 5.4 (Winning states) A state s is winning if Win s can be derived in the
following inference system

s p m ∀s′. s ;m o s
′ →Win s′

Win s

In the usual presentation of dialogues of Section 5.1.2, the proponent’s initial chal-
lenge did not fit in neatly with the other moves of the game, as exemplified by
the first and third dialogue conditions. This does not change if dialogues are for-
malized as state transition systems. Hence, we treat the first round of a dialogue
differently in our definition of validity.

Definition 5.5 (E-Validity) A formula ϕ is E-valid, denoted by�E ϕ, if it is not atomic
and for any attack c |ψ B ϕ on it, the resulting state ([ψ], c) is winning.

That this definition aligns with the dialogues as defined in Section 5.1.2 requires
some further elaboration. E-valid formulas cannot be atomic, just as the initial
claim of the traditional account is required to be non-atomic. Now consider the
winning criterion: In the traditional account, the first move by the opponent can
only be an attack on the proponent’s initial claim, as the proponent has not yet
made any attack against the opponent that she could defend herself against. Thus
any state corresponding to the sequence describing only the first round of the dia-
logue would be of the shape ([ψ], c) where c is the opponent’s attack on the claim
and [ψ] might be the first admission the opponent is forced to make in the course
of launching c.

5.2.2 Dialogical Sequent Calculus

The most remarkable aspect of the work by Sørensen and Urzyczyn [61] is the se-
quent calculus LKD they use in their soundness and completeness proofs. It is de-
fined in such a way that a proof of a formula ϕ is exactly isomorphic to a winning
strategy for the dialogue with the claim of ϕ. As their LKD is designed to easily
facilitate completeness and soundness proofs for classical propositional logic, it is
not directly suited for our proof. We thus adopt their sequent calculus into an intu-
itionistic version LJDwhich is suitable for first-order dialogues. Notably, it loses the

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#ewin_strat
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#evalid
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usual finitary character of deduction systems, as winning strategies for first-order
dialogues are often infinitely branching and thus a deduction system that aims to
be isomorphic to them will have to be the same.

Deductions in LJD are defined by the inference system ⇒D: L(F) → 2F → P as
given below in Fig. 5.2. Notably, the conclusions of these derivations are sets of for-
mulas 2F which could possibly be infinite. It thus differs strongly from the usual
intuitionistic sequent calculus LJ whose characteristic property is its restriction to
a conclusion of at most one formula. The system LJD has only two deduction rules
(L) and (R). However, applications of these rules can have very different charac-
teristics as LJD is defined in terms of a local rule set, just as the E-dialogues.

L
ϕ ∈ Γ justified Γψ a |ψ B ϕ ∀ θ ∈ Da. Γ, θ ⇒D ∆ ∀a′ | τ B ψ. Γ, τ ⇒D Da′

Γ⇒D ∆

R
ϕ ∈ ∆ justified Γϕ ∀a |ψ B ϕ. Γ, ψ ⇒D Da

Γ⇒D ∆

Figure 5.2: System LJD

When instantiated with a logic’s rule set, for example that for first-order logic, LJD
is still very close to the traditional rules of the sequent calculus for that logic. For
an example, consider the instantiations of the (R) rule for universal quantification
and of the (L) rule for implications in Fig. 5.3. The (RAll) rule states that a claim
set ∆ containing a universal quantifier ∀̇ϕ can be proven by proving the set {ϕ[t]}
for every term t. While this rule differs from its usual finitary representation, it
still captures well what it means to prove a universal quantifier. Analogously, the
(LI) states that one may use an assumption of ϕ →̇ψ, as long as the premise ϕ is
justified and can be defended (which is intuitively the same as being able to prove
{ϕ}), which leaves one proving the original claim under the additional assumption
of the implication’s conclusion.

RAll
∀̇ϕ ∈ ∆ ∀t. Γ⇒D {ϕ[t]}

Γ⇒D ∆

LI
ϕ →̇ψ ∈ Γ justified Γϕ Γ, θ ⇒D ∆ ∀a′ | τ B ϕ. Γ, τ ⇒D Da′

Γ⇒D ∆

Figure 5.3: Instantiated LJD

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#Dprv
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As already stated, the derivations of LJD are isomorphic to winning strategies of
E-dialogues. More precisely, each application of a derivation rule corresponds to
one round of a winning strategy, or put another way, one application of the rule
of the Win s derivation system. When regarded from the perspective of dialogues,
the context Γ of LJD corresponds to the opponent’s admissions and the set ∆ corre-
sponds to the defense set of the opponent’s challenge. Thus, each of the derivation
rules corresponds to one sort of proponent move. The (L) rule corresponds to the
proponent attacking. The first three conditions of that rule are exactly the same as
those of (PA) of the p relation. The other two conditions essentially represent the
proponent’s ability to win after any possible opponent reaction, the fourth condi-
tion corresponding to the opponent defending via the (OD) rule and the fifth to
an opponent’s counter according to the (OC) rule. Analogously, the (R) rule cor-
responds to the proponent defending against the current challenge. Thus, she has
to be able to win after the opponent issued a new challenge via (OA), as stated by
the third condition of that rule.

5.2.3 Soundness and Completeness

Proving the soundness and completeness of LJD with regards to the generalized
E-dialogues is fairly straight forward because of the isomorphism lined out in the
previous section. Both proofs are essentially a more formal variant of the explana-
tion given there.

Theorem 5.1 For any formula ϕ,⇒D {ϕ} entails �E ϕ.

Proof As the context of⇒D {ϕ} is empty, its bottom-most rule application can only
be of (R). Thus we know that ϕ is non-atomic, as it is justified under the empty
context, and that [ψ] ⇒D Da for any c |ψ B ϕ. To prove �E ϕ, it thus remains to
show that Win ([ψ], c) for any c |ψ B ϕ. We prove this by showing

∀Γ,∆. Γ⇒D ∆→ ∀c. ∆ ⊆ Dc →Win (Γ, c)

per induction on the derivation Γ⇒D ∆.

(L) We have to show that for a challenge cwith ∆ ⊆ Dc, Win (Γ, c). We are given
some ϕ ∈ Γ and attack a |ψ B ϕ where ψ is justified. We know per the in-
ductive hypotheses that ∀θ ∈ Da. Win (θ :: Γ, c) and ∀c′ | τ B ψ. Win (τ ::

Γ, c′). We thus choose (Γ, c)  p PAa as the proponent’s move in construct-
ing Win (Γ, c). Let (Γ, c) ; PAa  o s be an opponent response. We prove
Win s by case distinction on that response.

(OD) Thus s = (θ :: Γ, c) for some θ ∈ Da. Per the first inductive hypothesis,
we can conclude Win s.

(OC) Thus s = (τ :: Γ, c′) for some c′ | τ Bψ. Per the second inductive hypoth-
esis, we can conclude Win s.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#esoundness
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(R) Wehave to show that for a challenge cwith∆ ⊆ Dc, Win (Γ, c). We are given a
justified ϕ ∈ ∆. Per inductive hypothesis, we know ∀c′ |ψBϕ.Win (ψ :: Γ, c′).
We thus choose (Γ, c) p PDϕ as the proponent’s move. Let the opponent’s
response be (Γ, c) ; PDϕ o s. We know that this has to be an application of
(OA) and thus s = (ψ :: Γ, c′) for some c′ |ψ B ϕ. We therefore have to show
Win (ψ :: Γ, c′), which holds per inductive hypothesis. �

Theorem 5.2 For any formula ϕ, �E ϕ entails⇒D {ϕ}.
Proof Per definition of�E ϕ, we know thatϕ is not atomic and that for every attack
c |ψ B ϕ, Win ([ψ], c) holds. We prove⇒D {ϕ} with an application of the (R) rule.
As ϕ is justified by virtue of being non-atomic, it remains to show that ψ ⇒D Dc
for all c |ψ B ϕ. We prove this by showing

∀Ao, c.Win (Ao, c)→ Ao ⇒D Dc
per induction on the winning strategy Win (Ao, c).

We are given a proponent move (Ao, c)  p m and know per inductive hypothesis
that A′o ⇒D Dc′ for every (Ao, c) ; m  o (A′o, c

′). We perform a case distinction on
(Ao, c) p m.

(PA) We know that m = PAa for some a |ψ B ϕ where ϕ ∈ Ao and ψ is justified.
We thus apply the (L) rule. This leaves us with proving Ao, θ ⇒D Dc for
any defense θ ∈ Da and Ao, τ ⇒D Dc′ for any counter c′ | τ B ψ. Both fol-
low per inductive hypothesis, as (Ao, c) ; PAa  o (θ :: Ao, c) per (OD) and
(Ao, c) ; PAa o (τ :: Ao, c

′) per (OC).

(PD) We know that m = PDϕ for a justified ϕ ∈ Dc. We thus apply the (R) rule.
This leaves uswith provingAo, ψ ⇒D Dc′ for any attack c′ |ψBϕ. This follows
per inductive hypothesis, as (Ao, c) ; PDϕ o (ψ :: Ao, c

′) per (OA). �

5.3 Full Intuitionistics First-Order Completeness
The goal of this chapter is to demonstrate a constructive proof of completeness for
the full syntax of intuitionistic first-order logic. In the previous section, we proved
soundness and completeness of LJD with regards to generalized intuitionistic E-
dialogues. When specializing said result to the local rules of first-order logic, one
indeed obtains a proof of completeness of LJD for full intuitionistic first-order logic.
However, this result is not fully satisfactory, as LJD does not exhibit the finitary
character of “real deduction systems”. In this section, we demonstrate how to trans-
late between LJD and the intuitionistic sequent calculus LJ, thereby extending the
soundness and completeness with regards to E-dialogues to a finitary deduction
system.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#ecompleteness
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5.3.1 Full Intuitionistic Sequent Calculus

The deduction system we use in these translations is a variant of the intuitionistic
sequent calculs LJ. Importantly, the systemLJ is cut-free, which allows translation to
and from the cut-free LJD without first having to prove a cut-elimination theorem.
The rules of the system LJ are given in Fig. 5.4.

Ax
Γ, ϕ⇒J ϕ

Contr
Γ, ϕ, ϕ⇒J ψ

Γ, ϕ⇒J ψ
Weak

Γ⇒J ψ

Γ, ϕ⇒J ψ

Perm
Γ, ψ, ϕ,Γ′ ⇒J θ

Γ, ϕ, ψ,Γ′ ⇒J θ
Exp

Γ⇒J ⊥̇
Γ⇒J ϕ

TR
Γ⇒J >̇

IL
Γ⇒J ϕ Γ, ψ ⇒J θ

Γ, ϕ →̇ψ ⇒J θ
IR

Γ, ϕ⇒J ψ

Γ⇒J ϕ →̇ψ
AL

Γ, ϕ, ψ ⇒J θ

Γ, ϕ ∧̇ψ ⇒J θ

AR
Γ⇒J ϕ Γ⇒J ψ

Γ⇒J ϕ ∧̇ψ
OL

Γ, ϕ⇒J θ Γ, ψ ⇒J θ

Γ, ϕ ∨̇ψ ⇒J θ
ORl

Γ⇒J ϕ

Γ⇒J ϕ ∨̇ψ

ORr
Γ⇒J ψ

Γ⇒J ϕ ∨̇ψ
AllL

Γ, ϕ[t]⇒J ψ

Γ, ∀̇ϕ⇒J ψ
AllR

↑Γ⇒J ϕ

Γ⇒J ∀̇ϕ

ExL
↑Γ, ϕ⇒J↑ψ
Γ, ∃̇ϕ⇒J ψ

ExR
Γ⇒J ϕ[t]

Γ⇒J ∃̇ϕ

Figure 5.4: Full Sequent Calculus LJ

The management of the assumptions Γ by the system LJ differs from that exhibited
by the other systems employed in this thesis. LJ contains the rules (Contr), (Weak)
and (Perm) to explicitly drop, duplicate and move the formulas in Γ. These rules
are required as the L-rules of LJ act by consuming the outermost formula of the
context, which means it must be possible to move a copy of any assumption into
this position to be able to properly deduce claims. Of course, this maneuver can be
formalized, thus allowing to not further concern ourselves if explicit assumption
management.

Fact 5.3 One can prove the following rule admissible in the system LJ.

Ctx
ϕ ∈ Γ Γ, ϕ⇒J ψ

Γ⇒J ψ

Just as the previous two deduction systems, LJ exhibits under context extension
and substitution.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.FullSequent.html#fprv
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Fact 5.4 One can prove the following rules admissible in the system LJ.

Weak’
Γ′ ⇒J ϕ Γ′ ⊆ Γ

Γ⇒J ϕ
WeakS

Γ⇒J ϕ

Γ[σ]⇒J ϕ[σ]

While the (AllR) and (ExL) rules of LJ are given in the de Bruijn style, their locally
nameless variants are admissible as well.

Lemma 5.5 Let x a variable fresh for Γ, ψ and ∇̇ϕ.

1. ↑Γ⇒J ϕ if and only if Γ⇒J ϕ[x]

2. ↑Γ, ϕ⇒J↑ψ if and only if Γ, ϕ[x]⇒J ψ

5.3.2 Translating between LJ and LJD

Before we begin with the translations, recall the rule-set for full first-order logic.

Definition 5.6 (First-order local rules) The local rules of first-order logic are given by
(F,F∗,A,D−,C). The set of atomic formulas F∗ is defined as

{P t1 ... t|P | | P : P, t1, ..., t|P | : T}

The type of attacks A as well as the attacks relation C and the defense sets D− are given
below.

A : T := A⊥̇ | A →̇ ϕ | AL | AR | A ∨̇ | At ϕ | A∃̇ (ϕ : F, t : T)

A⊥̇ B ⊥̇ DA⊥̇ = {}
A →̇ ψ | pϕq B ϕ →̇ψ DA →̇ ψ = {ψ}

AL B ϕ ∧̇ψ DAL
= {ϕ}

AR B ϕ ∧̇ψ DAR
= {ψ}

A ∨̇ B ϕ ∨̇ψ DA ∨̇ = {ϕ,ψ}
At ϕB ∀̇ϕ DAt ϕ = {ϕ[t]}
A∃̇ B ∃̇ϕ DA∃̇ = {ϕ[t] | t : T}

Webegin by proving that derivations in LJ can be translated into derivations of LJD.
In the course of this translation, we make use of multiple properties exhibited by
LJD which are analogous to those of finitary deduction systems.
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Fact 5.6 The following rule can be shown admissible for the system LJD.

Weak
Γ′ ⊆ Γ Γ′ ⇒D ∆′ ∆′ ⊆ ∆

Γ⇒D ∆

The first property is the usual weakening property of sequent calucli, allowing
more formulas to be added on either side of the⇒D of a derivation without chang-
ing deducability.

Fact 5.7

1. If Γ⇒D {ϕ} then Γ, ψ ⇒D Da for all a |ψ B ϕ

2. If Γ ⇒D {ϕ} then Γ ⇒D ∆ can be deduced for any ∆ such that Γ′ ⇒D ∆ follows
for any Γ ⊆ Γ′ with ϕ justified in Γ′ and ∀a |ψ B ϕ. Γ′, ψ ⇒D Da

To understand these two properties, recall the R-rule of LJD:

R
ϕ ∈ ∆ justified Γϕ ∀a |ψ B ϕ. Γ, ψ ⇒D Da

Γ⇒D ∆

Now consider an LJD derivation for a singleton set. To prove this claim, there are
two possibilities for every path of the derivation: Either, it at some point applies
the R-rule, thus “defending” the formula, or it proceeds by only ever applying the
L-rule, thus being able to prove an claim ∆, not just the singleton set. With this in
mind, consider the second property which states that when a singleton set can be
deduced, a defense in Da against each attack a against it can be deduced as well.
This directly follows from the previous consideration as any singleton derivation
will, on every of its paths, either apply the R-rule and thus be able to prove Da or
never apply the R-rule and thus prove any ∆, including Da. The third property is
based on similar reasoning. Intuitively, it states that when any point at which the
derivation applies the R-rule can also be continued with a derivation of ∆, ∆ can
be deduced overall.

Fact 5.8 Assume a well-founded relation< on formulas such that for any attack a |ψBϕ,
ψ < ϕ and θ < ϕ for any θ ∈ Da. Then Γ ⇒D ∆ whenever there is a ϕ with ϕ ∈ Γ and
ϕ ∈ ∆.

This last property is the LJD equivalent of the (Ax) rule. It states that Γ⇒D ∆ can
be deduced if Γ and ∆ have a common element ϕ. When considered as a dialogue
strategy, this property seems very obvious: The proponent can just attack the op-
ponent’s admission of ϕ and then mimic her actions until she has won. However,
this only works for rule sets where attacks and defenses lead to “smaller” formu-
las for some well-founded notion of smaller. For a counter example, consider the
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rules-set on the formulas containing only the symbol ∗ with the only attack being
a B ∗ and its defense Da = {∗}. Here, the proponent cannot win the game state
([∗], a). If she were to attack ∗, the opponent could simply respond by admitting ∗,
leading to the state ([∗, ∗], a), which is essentially the same as ([∗], a), thus leaving
the proponent “stuck”. This restriction can thus be viewed as a result of the asyn-
chronous winning conditions of our formalization of dialogues: The opponent can
win by forcing a dialogue to continue on forever, while the proponent can only win
if the dialogue is finite.

Having established these properties, we can now prove that derivations of LJ can
be transformed into derivations of LJD for the first-order rule-set.

Theorem 5.9 Whenever Γ⇒J ϕ can be derived, Γ⇒D {ϕ} can be derived as well.

Proof We prove the generalized statement

∀σ. Γ⇒J ϕ→ Γ[σ]⇒D {ϕ[σ]}

per induction on the derivation Γ ⇒J ϕ. The cases for the L- and R-rules of the
connectives are all very similar. We thus only give explicit proofs for →̇ and ∃̇. For
the sake of readability, we also leave out the substitution σ in all cases where it is
not used.

(Ax) We have to prove that Γ, ϕ ⇒D {ϕ}. This follows from Fact 5.8, as the first-
order rule-set is ordered by the subformula relation.

(Contr), (Weak), (Perm) All of these cases follow directly from (Weak).

(Exp) From Γ ⇒D {⊥̇} we have to derive Γ ⇒D {ϕ}. As {⊥̇} is a singleton, we
know by Fact 5.7.1 andA⊥̇B⊥̇ that Γ⇒D DA⊥̇ . AsDA⊥̇ is empty we can thus
conclude Γ⇒D {ϕ} by (Weak).

(TR) We have to derive Γ ⇒D >̇. This follows by an application of the R-rule, as
there are no attacks on >̇.

(IL) We assume Γ ⇒D {ϕ} and Γ, ψ ⇒D {θ} to show Γ, ϕ →̇ψ ⇒D {θ}. Per
(Weak), Γ ⇒D {ϕ} entails Γ, ϕ →̇ψ ⇒D {ϕ}. By Fact 5.7.2, it thus suffices
to show that Γ′ ⇒D {θ} for any (Γ, ϕ →̇ψ) ⊆ Γ′ with ∀a | τ B ϕ. Γ′, τ ⇒D Da
and ϕ justified in Γ′, to deduce Γ, ϕ →̇ψ ⇒D {θ}. We prove Γ′ ⇒D {θ} by
an application of the L-rule on the ϕ →̇ψ ∈ Γ′. As ϕ is justified in Γ′ and
∀a | τ B ϕ. Γ′, τ ⇒D Da, this leaves us with proving Γ′, ψ ⇒D {τ}, which
follows per assumption and (Weak).

(IR) We assume Γ, ϕ ⇒D {ψ} to prove Γ ⇒D ϕ →̇ψ. This follows by an applica-
tion of the R-rule.
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(ExL) We assume ∀σ. (↑ Γ, ϕ)[σ] ⇒D {(↑ ψ)[σ]} to prove Γ, ∃̇ϕ ⇒D ψ. We thus
apply the L-rule to ∃̇ϕ, which leaves us proving Γ, ϕ[t] ⇒D ψ for arbitrary
terms t. This follows per assumption with the substitution σ = [t].

(ExR) We assume Γ ⇒D {ϕ[t]} to prove Γ ⇒D {∃̇ϕ}. We thus apply the R-rule.
This leaves us proving Γ ⇒D {ϕ[s] | s : T}, which follows per assumption
and (Weak). �

Corollary 5.10 If ⇒J ϕ then �E ϕ under first-order rules.

We now turn our attention to transforming proofs in LJD into derivations in LJ.
Between the two transformations of this section, this proof is the more interesting
one as it converts infinitary derivations into finitary evidence.

The idea behind this proof is encoded in the statement we prove per induction:

Γ⇒D ∆→ ∀ϕ. (∀ψ ∈ ∆,Γ ⊆ Γ′. Γ′ ⇒J ψ → Γ′ ⇒J ϕ)→ Γ⇒J ϕ

To understand this statement, recall the disjunction elimination rule (OE) of natu-
ral deduction systems.

OE
Γ ` ϕ ∨̇ψ Γ, ϕ ` θ Γ, ψ ` θ

Γ ` θ

The statementΓ⇒D ∆ can be understood as “the disjunction over all formulas in∆

can be proven under Γ”. The statement we prove per induction can thus be viewed
as an adoption of the rule (OE) to the infinite disjunction over ∆: Any formula that
can be derived from a proof for each element of ∆ can be derived overall.

Before proving the full statement, we first prove a lemma.

Lemma 5.11 Whenever ∀ψ. (∀θ ∈ Da, (Γ, τ) ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ψ) → Γ ⇒J ψ

can be derived for all attacks a | τBϕ for a Γ in which ϕ is justified, Γ⇒J ϕ can be derived.

Proof Per case analysis on ϕ. Most cases are very similar, so we do not cover all of
them.

ϕ = ⊥̇ : Per the first assumption, we can conclude Γ⇒J ⊥̇ by showing the vacuous
statement ∀θ ∈ DA⊥̇ ,Γ ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ⊥̇.

ϕ = P t1 ... t|P | : As P t1 ... t|P | ∈ Γ, as it is justified in Γ, the claim follows with the
(Ctx) and (Ax) rules.

ϕ = ψ →̇ θ : We apply the (IR) rule and are left proving Γ, ψ ⇒J ϕ. This follows
directly by applying the assumption with A →̇ ψ.
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ϕ = ∀̇ψ : After applying the (AR) and Lemma 5.5, we are left proving Γ ⇒J ϕ[x]

with x free in Γ and ∀̇ϕ. This follows directly by applying the assumption
with Ax ϕ. �

Using this lemma, we can now derive the full translation theorem.

Theorem 5.12 Whenever Γ⇒D {ϕ} can be derived, Γ⇒J ϕ can be derived as well.

Proof We prove the generalized statement

Γ⇒D ∆→ ∀ϕ. (∀ψ ∈ ∆,Γ ⊆ Γ′. Γ′ ⇒J ψ → Γ′ ⇒J ϕ)→ Γ⇒J ϕ

by induction on the derivation Γ⇒D ∆.

(R) There thus is aϕ ∈ ∆which is justifiedunderΓ. Per induction, wemay assume
∀ψ. (∀θ ∈ Da, (Γ, τ) ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ψ) → Γ ⇒J ψ holds for
any attack a | τ B ϕ. We have to show that for any ψ with the property that
∀θ ∈ ∆,Γ ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ψ, one can derive Γ ⇒J ψ. We do this by
applying said property for the ϕ ∈ ∆, which leaves us proving that Γ ⇒J ϕ.
This follows form Lemma 5.11.

(L) There thus is a ϕ ∈ Γ and an attack a |ψ B ϕ with ψ being justified in Γ. Per
induction, we may also assume that

1. For any τ ∈ Da and any ψ with ∀θ ∈ ∆, (Γ, τ) ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ψ

one can deduce Γ⇒J ψ

2. For any counter c | τ B ψ one can deduce Γ ⇒J ν for any ν such that
∀θ ∈ Dc, (Γ, θ) ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ν

We have to prove that for any ν such that ∀θ ∈ ∆,Γ ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ν

one can deduce ν. We proceed per case distinction on ϕ. As the cases for
many connectives are very similar, we do not cover all of them.

ϕ = ⊥̇ : We know that ⊥̇ ∈ Γ. Then Γ ⇒J ν follows by the (Exp), (Ctx) and
(Ax) rules.

ϕ = >̇, ϕ = P t1 ... t|P | : Both follow per meta-exfalso, as the assumed attack
on them cannot exist.

ϕ = ϕ →̇ψ : We know that the attack a has to beA →̇ ψ | pϕqBϕ →̇ψ. Apply-
ing the (Ctx) and (IL) rules leaves us proving Γ ⇒J ϕ and Γ, ψ ⇒J ν.
The first claim follows as Lemma 5.11 applies by the second inductive
hypothesis. The second claim follows by the first inductive hypothesis
and the fact that ∀θ ∈ Dc, (Γ, θ) ⊆ Γ′. Γ′ ⇒J θ → Γ′ ⇒J ν.
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ϕ = ∃̇ϕ: We know that a has to be the attackA∃̇B ∃̇ϕ. applying the (Ctx) and
(EL) rules as well as Lemma 5.5, we are left proving Γ, ϕ[x]⇒J ν for an
xwhich is fresh for Γ, ∃̇ϕ and ν. As ϕ[x] ∈ DA∃̇ , this claim follows by the
first inductive hypothesis and the fact that ∀θ ∈ Dc, (Γ, θ) ⊆ Γ′. Γ′ ⇒J

θ → Γ′ ⇒J ν. �

5.4 Generalized Intuitionistic D-Completeness
In Section 5.2, we have given an account of generalized, formal E-dialogues and
showed them sound and complete, based on prior work by Sørensen and Urzy-
czyn [61]. In this section, we extend this approach to D-dialogues.

Recall that E- and D-dialogues differ in which moves the opponent is allowed to
make. In E-dialogues, the opponent may only react to the proponent’s previous
move, while D-dialogues allow the opponent to react to moves made by the propo-
nent in previous rounds. Intuitively, D-dialogues are “fairer” than E-dialogues as
the moves the proponent and opponent may perform are more similar. It is thus
slightly surprising that E- and D-dialogues are equivalent. That is, the proponent
has awinning E-strategy if and only if she haswinningD-strategy. This equivalence
allows formal treatments of dialogues to focus only on the structurally simpler E-
dialogues as most results can be extended to D-dialogues along this equivalence.

The distinction between E- and D-dialogues, although with different terminology,
was first made by Lorenz [47]. In this paper, he already acknowledges the equiv-
alence and gives a proof of it, although it’s correctness is somewhat controver-
sial [36]. Indeed, the proof of this equivalence is considered very complicated
and thus appears relatively rarely in the literature, noteworthy exceptions being
Felscher’s [15] and Krabbe’s [35] very formal renditions of it.

In the following section, we give a formal account of generalized intuitionistic D-
dialogues (Section 5.4.1) and their equivalence to E-dialogues of the same nature
(Section 5.4.2). For this, we prove the soundness and completeness of LJD with
regards to D-dialogues on enumerable rule sets. We have chosen this approach, as
opposed to direct translation of winning strategies, as it to leads to more intuitive
proofs.

5.4.1 Generalized Intuitionistic D-Dialogues

Similarly to the formal E-dialogues of Section 5.2.1, we express formal D-dialogues
in terms a state transition system. The symmetric nature of the rules of D-dialogues
results in a very symmetric type for the state space: L(F) × L(A) × L(F) × L(A).
The first two components of these quadruples represent the proponent’s open ad-
missions (those, which the opponent may still attack) and the challenges issued by
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the opponent against her, which she has yet to defend herself against. The third
and fourth components represent the same for the opponent.

As opposed to the formulation of proponent and opponent moves of Section 5.2.1,
in which the proponent put forward a move and the opponent simply reacted to it,
the move formulations for D-dialogues exhibit a stronger symmetry: The moves of
both players are represented as binary relations on the state space.

We denote by s p s
′ that the proponent may perform a move in state s, leading to

a new state s′.

Definition 5.7 (Proponent moves) The following inference system defines the propo-
nent’s move relation p: L(F)×L(A)×L(F)×L(A)→ L(F)×L(A)×L(F)×L(A)→ P

PD
ϕ ∈ Dc justified Ao ϕ

(Ap, c :: Cp, Ao, Co) p (ϕ :: Ap, Cp, Ao, Co)

PA
ϕ ∈ Ao justified Ao ψ a |ψ B ϕ

(Ap, Cp, Ao, Co) p (ψ :: Ap, Cp, Ao, a :: Co)

The (PD) rule states that the proponent may defend against the most recent open
challenge by admitting a justified defense formula. This restriction of defenses to
themost recent challenge ensures that the dialogues remain intuitionistic. The (PA)
rule states that the proponent may attack any admission made by the opponent,
possibly by admitting to a justified formula ψ herself if the attack a calls for it.

The legal opponent moves, given by the o relation, are very similar to those of the
proponent.

Definition 5.8 (Opponent moves) The following inference system defines the oppo-
nent’s move relation o: L(F)×L(A)×L(F)×L(A)→ L(F)×L(A)×L(F)×L(A)→ P

OD
ϕ ∈ Da

(Ap, Cp, Ao, a :: Co) o (Ap, Cp, ϕ :: Ao, Co)

OA
c |ψ B ϕ

(Ap ++ϕ :: A′p, Cp, Ao, Co) o (Ap ++A′p, c :: Cp, ψ :: Ao, Co)

The rule (OD) governing the opponent’s defensemoves is nearly symmetric to that
for the proponent. The only difference is that the opponent does not need any justi-
fications for the formulas she admits, as any admission she makes already benefits
the proponent. The (OA) rule, describing when and how she may attack the pro-
ponent’s admissions. This rule differs from that of the proponent, as the attacked
admission is removed from the list of the proponent’s admissions, thereby assur-
ing that every proponent admission is attacked at most once. This asymmetry in

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#dpmove
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#domove


5.4. Generalized Intuitionistic D-Completeness 87

the rules balances out another rule asymmetry: The proponent can only win finite
dialogues, which means the opponent has to be prevented from stalling a dialogue
by repeatedly attacking the same proponent admission.

The definitions of winning states and the resulting D-validity are completely anal-
ogous to those for E-dialogues.

Definition 5.9 (Winning states) A state s is winning if Win s can be derived in the
following inference system

s p s
′ ∀s′′. s′  o s

′′ →Win s′′

Win s
Definition 5.10 (D-Validity) A formula ϕ is D-valid, denoted by �D ϕ, if it is not
atomic and for any attack c |ψ B ϕ on it, the resulting state ([], [c], [ψ], []) is winning.

5.4.2 Soundness and Completeness

We now prove the soundness and completeness of LJD with regards to generalized
D-dialogues. As the LJD is also sound and complete with regards to generalized
E-dialogues, this entails the E-D-equivalence.

We begin with completeness. We thus have to translate winning D-strategies into
LJD derivations. Completeness is very easy to prove: As LJD derivations are iso-
morphic to winning E-strategies, this essentially constitutes a translation of a strat-
egy suitable for a stronger opponent into a strategy suitable for a strictly weaker
opponent. The proof is thus completely analogous to that of the E-completeness of
LJD.

Theorem 5.13 For any formula ϕ, �D ϕ entails⇒D {ϕ}.

Proof Per definition of �D ϕ, we know that ϕ is not atomic and that for every
attack c |ψ B ϕ, Win ([], [c], [ψ], []) holds. We prove⇒D {ϕ} with an application of
the (R) rule. As ϕ is justified by virtue of being non-atomic, it remains to show that
ψ ⇒D Dc for all c |ψ B ϕ. We prove this by showing

∀Ao, c.Win (Ap, c :: Cp, Ao, Co)→ Ao ⇒D Dc

per induction on the winning strategy Win (Ap, c :: Cp, Ao, Co).

We are given a proponent move (Ap, c :: Cp, Ao, Co)  p s and know per inductive
hypothesis that A′o ⇒D Dc′ for every s o (A′p, c

′ :: C ′p, A
′
o, C

′
o). We perform a case

distinction on (Ap, c :: Cp, Ao, Co) p s.

(PD) We know that s = (ϕ :: Ap, Cp, Ao, Co) for a justified ϕ ∈ Dc. We thus
apply the (R) rule. This leaves us with proving Ao, ψ ⇒D Dc′ for any attack
c′ |ψ B ϕ. This follows from the inductive hypothesis, as per the (OA) rule
(ϕ :: Ap, Cp, Ao, Co) o (Ap, c

′ :: Cp, ψ :: Ao, Co).
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(PA) We know that s = (ψ :: Ap, c :: Cp, Ao, a :: Co) for some a |ψ B ϕ where
ϕ ∈ Ao and ψ is justified. We thus apply the (L) rule. This leaves us with
proving Ao, θ ⇒D Dc for any defense θ ∈ Da and Ao, τ ⇒D Dc′ for any
possible counter c′ | τ B ψ. Both follow per inductive hypothesis, as per the
(OD) (ψ :: Ap, c :: Cp, Ao, a :: Co)  o (ψ :: Ap, c :: Cp, θ :: Ao, a :: Co) and
(ψ :: Ap, c :: Cp, Ao, a :: Co) o (ψ :: Ap, c

′ :: c :: Cp, τ :: Ao, a :: Co) per (OC).
�

The direction of soundness, converting LJD derivations into winning D-strategies,
is much more complicated. Its strategy analogue, translating E-strategies into D-
strategies, is why the proof of the E-D-equivalence is often considered very in-
volved.

We start by giving an intuition why one should believe such a transformation is
possible in the first place. For this, consider the following derivation in LJD.

ϕ →̇ψ ∈ Γ justified Γϕ (1) ∀a | θ B ϕ. Γ, θ ⇒D Da (2) Γ, ψ ⇒D ∆
(L)

Γ⇒D ∆

As the derivation startswith an application of the (L) rule, any strategy that itmight
be translated into should start the round with the proponent attacking ϕ→ ψ ∈ Γ

accordingly. This leaves us with explaining how the proponent should react to the
opponent moves following this attack. For the sake of simplicity, let us assume
the state resulting from the proponent’s attack is ([ϕ], [c],Γ, [A→ ψ]) for some open
challenge c. This leaves room for two possible opponent moves: As the proponent
has admitted ϕ, the opponent may choose to challenge her on that claim by attack-
ing it with a | θ B ϕ. The proponent should now react by playing according to the
translated strategy obtained from the proof (1). If the opponent instead chooses
to defend against the attack by admitting ψ, the proponent should react according
to the strategy obtained from (2). So far, this is no different from the translation
of LJD derivations into E-strategies. However, consider again the case in which
the defends against the proponent’s attack on ϕ →̇ψ. The state resulting from that
opponent move is ([ϕ], [c],Γ, []), the proponent admission ϕ still remaining in the
state. That means that at any point in the future of this dialogue, the opponentmay,
instead of reacting to the preceding proponent move, choose to attack ϕ. However,
this is not a problem to the proponent: She can just react according to (1). This is
the crucial different between translating derivations into E- andD-strategies. As the
E-opponent may only react to the previous proponent move, all “unused” deriva-
tions can be “forgotten” at the end of the round. This is not the case forD-dialogues:
The unused derivations have to be remembered to be able to react to the opponent
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choosing to perform another reaction to the current proponent move later on in the
dialogue.

For the proof of soundness, we introduce a new variant of dialogues we call S-
dialogues (“S” for stack). These dialogues essentially represent the kinds of win-
ning strategies for D-dialogues that can be obtained from the considerations of the
previous paragraph and can thus be viewed as a “subset of D-dialogues”. The
state space of S-dialogues is given by the type L(F)×L(F)×L(A×A). As with the
D-dialogues, the first two components represent the proponent’s and opponent’s
open admissions respectively. The important change from the D-dialogues is the
last component, a list of pairs of attacks, which is a combination of the list ofCp and
Co of open challenges of the D-dialogues into a stack of D of “deferred moves”.

Another important change is that S-dialogues are not symmetric anymore. How-
ever, this time it is the proponent that has to react to the opponent’s last challenge.
The legal proponent moves in a state s reacting to the opponent challenge c is rep-
resented by the relation s ; c p s

′.

Definition 5.11 (Proponent moves) The following inference system defines the propo-
nent’s move relation p: L(F)×L(F)×L(A×A)→ A→ L(F)×L(F)×L(A×A)→ P

PD
ϕ ∈ Dc justified Ao ϕ

(Ap, Ao, D) ; c p (ϕ :: Ap, Ao, D)

PA
ϕ ∈ Ao justified Ao ψ a |ψ B ϕ

(Ap, Ao, D) ; c p (ψ :: Ap, Ao, (a, c) :: D)

Here, the (PD) rule allows the proponent to defend against the opponent’s last chal-
lenge under the usual side conditions. The (PA) rule exemplifies the idea behind
the deferred moves D: If the proponent chooses to attack one of the opponent’s
admissions with an attack a, the proponent’s attack and the opponent’s last chal-
lenge c are put on the stack together. This encodes an observation about the strate-
gies derived from derivations with the translation we described previously: If the
derivation Γ⇒D Dc starts with an application of the (L) rule, meaning the propo-
nent attacks an opponent admissionwith the attack a, the proof that explains to her
how to continue defending against the current challenge c is ∀θ ∈ Da. Γ, θ ⇒D Dc.
Thus, she will only be able to “use” this information once the opponent has admit-
ted some defense θ ∈ Da. In S-dialogues, the proponent thus puts (a, c) on the stack
of deferred moves, thereby signaling: “Only once the opponent defends against a
will I be able to continue fending off c”.

The opponent’s moves thus signify her posing a challenge to c in a new state s′ to
the proponent, denoted by s o s

′ ; c.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#spmove
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Definition 5.12 (Opponent moves) The following inference system defines the oppo-
nent’s move relation o: L(F)×L(F)×L(A×A)→ L(F)×L(F)×L(A×A)→ A→ P

OD
ϕ ∈ Da

(Ap, Ao, (a, c) :: D) o (Ap, ϕ :: Ao, D) ; c

OA
c |ψ B ϕ

(Ap ++ϕ :: A′p, Ao, D) o (Ap ++A′p, ψ :: Ao, D) ; c

There are two ways the opponent may pose the challenge. If she defends against
the last attack a the proponent made against her via the (OD) rule, she reposes
the challenge that was deferred alongside the attack a. If she instead chooses to
attack one of the proponent’s open admissions, this new attack is posed as the new
challenge instead. To prevent the opponent from stalling the dialogue indefinitely
by repeatedly attacking the same proponent admission, any proponent admission
is removed once it has been attacked once.

The definitions of winning states of the transition system and S-validity are com-
pletely analogous to those E- and D-dialogues.

Definition 5.13 (Winning states) A state s ; c is winning if Win s ; c can be derived in
the following inference system

s ; c p s
′ ∀s′′c′. s′  o s

′′ ; c′ →Win s′′ ; c′

Win s ; c

Definition 5.14 (S-Validity) A formulaϕ is S-valid, denoted by�S ϕ, if it is not atomic
and for any attack c |ψ B ϕ on it, the resulting state ([], [ψ], []) ; c is winning.

As stated earlier, S-dialogues constitute a restricted variant of D-dialogues. Thus,
D-validity subsumes S-validity.

Lemma 5.14 Any S-valid formula ϕ is also D-valid.

Proof Per definition, ϕ is atomic. Thus it remains to show that for any challenge
c |ψ B ϕ, Win ([], [ψ], []) ; c entails Win ([], [c], [ψ], []). We show this by proving the
generalized statement

Win (Ap, Ao, D) ; c→Win (Ap, c :: π1D,Ao, π2D)

per induction on Win (Ap, Ao, D) ; c. As this proof is completely analogous to the
other proofs of this chapter, we do not go into further detail. �

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#somove
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#swin_strat
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#svalid
https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.Sorensen.html#swin_dwin
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We now prove the soundness of LJD with regards to S-dialogues. The informal
account of the translation from derivations into winning strategies is formalized by
the statement we prove by induction:

∀AP , Ao, D, c. (1)(∀ϕ ∈ Ap, a |ψ B ϕ. Ao, ψ ⇒D Da)→
(2)(∀(a, c) ∈ D, θ ∈ Da. Ao, θ ⇒D Dc)→
(3)Ao ⇒D Dc →Win (Ap, Ao, D) ; c

Intuitively, this states that the state (Ap, Ao, D) ; c is winning if

(1) For every proponent admission ϕ ∈ Ap and attack a |ψ B ϕ against it, the
proponent has remembered a derivation Ao, ψ ⇒D Da which explains how
to defend the admission ϕ against said attack a

(2) For every deferredmove (a, c) ∈ D and every defense against the proponent’s
attack θ ∈ Da, the proponent has remembered a derivation Ao, θ ⇒D Dc
which explains how to continue fending off the deferred challenge c once the
opponent defends against a by admitting θ

(3) The proponent knows a derivation Ao ⇒D Dc, telling her which move to
make next in fending off the current challenge c

Wewill only be able to derive this translation for enumerable rule sets. That is, rule
sets for which the attacks on any formula and the defenses against any attack can
be enumerated.

Definition 5.15 (Enumerable rule-set) A rule-set (F,F∗,A, (Da)a∈A,B) is enumer-
able if there exist enumerations

ea : ∀ϕ. N→ L({(a, ψ) | a |ψ B ϕ}) and eD : ∀a. N→ L({ψ | ψ ∈ Da})

While the proof proceeds by an inductive argument, there exists no obvious object
to whose structure the argument follows. Intuitively, the proof is well-founded as
each step of the induction removes one rule from the remembered derivation for c
and only remembers newderivations obtained from that rule removal. For now, we
do not concern ourselves further with this issue and just give the proof, assuming
a suitable induction principle. Afterwards, we demonstrate how such an induction
principle can be obtained.

Theorem 5.15 Under any enumerable rule-set,⇒D ϕ implies �S ϕ.

Proof As the context of⇒D ϕ is empty, it can only start with an application of the
(R) rule. Thus, we know that ϕ is non-atomic and for any attack c |ψBϕ, ψ ⇒D Dc.

https://www.ps.uni-saarland.de/~wehr/bachelor/coq/Completeness.SDialogues.html#s_sound
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We derive Win ([], [ψ], []) ; c from this via the generalized statement

∀AP , Ao, D, c. (∀ϕ ∈ Ap, a |ψ B ϕ. Ao, ψ ⇒D Da)→
(∀(a, c) ∈ D, θ ∈ Da. Ao, θ ⇒D Dc)→
Ao ⇒D Dc →Win (Ap, Ao, D) ; c

which we prove per suitable induction.

We proceed by case distinction on Ao ⇒D Dc.

(R) Then there is a ϕ ∈ Dc which is justified underAo and for which we know that
∀a |ψBϕ. Ao, ψ ⇒D Da. The proponent thus defends against the opponent’s
challenge, yielding (Ao, Ap, D) ; c  p (Ao, ϕ :: Ap, D) by (PD). We proceed
with a case distinction on the opponent’s response (Ao, ϕ :: Ap, D) o s ; c′.

(OD) Thus the opponent responds by defending against the last proponent
attack a with (Ao, ϕ :: Ap, (a, c

′) :: D′)  o (θ :: Ao, ϕ :: Ap, D) ; c′ by
admitting a θ ∈ Da for D = (a, c′) :: D′, thereby reposing the deferred
challenge c′.

Per assumption, there is a derivation Ao, θ ⇒D Dc′ . As all assumed
derivations, including that of ∀a |ψ B ϕ. Ao, ψ ⇒D Da, can be lifted to
the contextAo, θ by (Weak), the state (θ :: Ao, ϕ :: Ap, D) ; c′ can be won
per inductive hypothesis.

(OA) Thus the opponent responds by attacking one of the admissions ψ by
(Ao, A

′
p++ψ :: A′′p, D) o (τ :: Ao, A

′
p++A′′p, D) ; c′with an attack c′ | τBψ

where ϕ :: Ap = A′p ++ψ :: A′′p .

Per assumption, there is a derivation Ao, τ ⇒D Dc′ . As all assumed
derivations, including that of ∀a |ψ B ϕ. Ao, ψ ⇒D Da, can be lifted to
the context Ao, θ by (Weak), the state (τ :: Ao, A

′
p ++A′′p, D) ; c′ can be

won per inductive hypothesis.

(L) Then there is a ϕ ∈ Ao and an attack a |ψ B ϕ such that ψ is justified under
Ao and ∀θ ∈ Da. Ao, θ ⇒D Dc as well as Ao, τ ⇒D Dc′ for any c′ | τ B ψ. The
proponent thus attacks one of the opponents admissions, yielding the state
transition (Ao, Ap, D) ; c p (Ao, ψ :: Ap, (a, c) :: D). We proceed with a case
distinction on the opponent’s response (Ao, ψ :: Ap, (a, c) :: D) o s ; c′.

(OD) Thus the opponent responds by defending against the last proponent
attack a with (Ao, ψ :: Ap, (a, c)) o (θ :: Ao, ϕ :: Ap, D) ; c by admitting
a θ ∈ Da, thereby reposing the deferred original c.

Per assumption, there is a derivation Ao, θ ⇒D Dc′ . As all assumed
derivations, including that of ∀c′ | τ B ψ. Ao, τ ⇒D Dc′ , can be lifted
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to the context Ao, θ by (Weak), the resulting state (θ :: Ao, ϕ :: Ap, D) ; c

can be won per inductive hypothesis.

(OA) Thus the opponent responds by attacking one of the admissions ν by
(Ao, A

′
p ++ ν :: A′′p, (a, c) :: D)  o (τ :: Ao, A

′
p ++A′′p, (a, c) :: D) ; c′ with

an attack c′ | τ B ν where ψ :: Ap = A′p ++ ν :: A′′p .

Per assumption, there is a derivation Ao, τ ⇒D Dc′ . As all assumed
derivations, including ∀c′ | τ B ψ. Ao, τ ⇒D Dc′ and ∀θ ∈ Da. Ao, θ ⇒D

Dc, can be lifted to the context Ao, τ by applying (Weak), the resulting
state (τ :: Ao, A

′
p ++A′′p, (a, c) :: D) ; c′ can be won per inductive hypoth-

esis. �

Corollary 5.16 Under any enumerable rule set,⇒D ϕ entails �D ϕ.

We now show how to derive a suitable induction principle for the proof above. Re-
call, that we claimed that the argument was well-founded as each inductive step
removes one rule of one of the remembered derivations and only remembers new
derivations obtained through that rule-removal. Intuitively, the argument thus pro-
ceeds per induction on the size of all of the remembered derivations. However, an
LJD derivationmay be of unbounded depth as our definition of rule sets in terms of
possibly infinite defense sets allows for infinite branching. The size of LJD deriva-
tions thus needs to be measured in ordinal numbers, which allow going beyond
finite numbers.

Because of time constraints, we were not able to formalize a type of ordinal num-
bers. We thus simply assume a type with suitable operations and properties. Note
that such ordinals have already been formalized in Coq by Grimm [26]. However,
technical reasons prevented us from integrating his work into our formalization.

Definition 5.16 (Ordinal numbers) We assume a type O of ordinal numbers. This
type possesses

• An element O : O and a successor function S : O→ O

• An addition operation + : O→ O→ O

• A well-founded preorder <: O→ O→ P

• A countable supremum sup : (N→ O)→ O such that f n < sup f for all n

For rule sets in which the attacks and defense sets are enumerable, we can thus
provide a suitable size function.
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Lemma 5.17 For any enumerable rule set one can define a size function on derivations
suitable prove Theorem 5.15 by well-founded induction on the size of all remembered deriva-
tions.

Proof With some slight abuses of notation, we define a size function σ as follows.

σ [] := 0 σ (H :: A) := S (σH + σ A)

σ (H : ∀a |ψ B ϕ. Γ, ψ ⇒D Da) := sup (λn. σ (H (ea ϕn)))

σ (H : ∀θ ∈ Da. Γ, θ ⇒D Dc) := sup (λn. σ (H (eD an)))

σ

[
L

H1 : ∀ θ ∈ Da. Γ, θ ⇒D ∆ H2 : ∀a′ | τ B ψ. Γ, τ ⇒D Da′
Γ⇒D ∆

]
:= S (σH1+σH2)

σ

[
R

H : ∀a |ψ B ϕ. Γ, ψ ⇒D Da
Γ⇒D ∆

]
:= S (σH)

By carefully studying the proof of Theorem 5.15, one can convince oneself that this
induction can be seen as a well-founded size induction on σ AwhereA contains all
remembered proofs. �

As the rule set of first-order logic is enumerable, one can derive the soundness and
completeness of the full sequent calculus LJwith regards to first-order intuitionistic
D-dialogues.

Corollary 5.18

1. For all ϕ, �D ϕ entails⇒J ϕ

2. For all ϕ,⇒J ϕ entails �D ϕ

5.5 Conclusion
In this chapter, we discussed dialogues as a semantics for first-order logic. To this
end, we gave a generalized completeness result for intuitionistic E-dialogues in the
style of Sørensen and Urzyczyn [61]. We then derived the completeness for the
full intuitionistic sequent calculus LJ with regards to intuitionistic first-order E-
dialogues from said abstract result. We also proved a generalized completeness
result for intuitionistic D-dialogues with enumerable rule sets, thereby proving the
equivalence of E- and D-dialogues with enumerable rule sets and thus the com-
pleteness of the full intuitionistic sequent calculus LJ with regards to intuitionistic
first-order D-dialogues. The results of this chapter, specialized to the rule set of
first-order logic, are summed up by Fig. 5.5.

An interesting difference to the results of Chapter 3 and Chapter 4 is that formal
dialogues, as we analyzed them in this chapter, admit constructive completeness
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Figure 5.5: Results for Intuitionistic Dialogues

proofs, even on the full fragment of first-order logic, with regards to their canonical
formulation. This is due to their syntactic nature: The notion of validity established
by formal dialogues does not make any reference to domains and interpretations.
Indeed, wehave demonstrated in Section 5.2 thatwinning strategies for E-dialogues
are isomorphic to derivations in the dialogical sequent calculus LJD. In that sense,
formal dialogues can be thought of as “being less of a model semantics and more
of a deduction system”, which explains why it is easier to extract deductions from
them and thus prove their completeness.



Chapter 6

Discussion

We close this thesis by summing up our results in a brief conclusion in Section 6.1.
We then elaborate on related (Section 6.2) and future work (Section 6.3). We end
the chapterwith some remarks on the formalizationwhichwe developed alongside
this thesis (Section 6.4).

6.1 Conclusion
In Chapter 3, we analyzed the constructivity of various completeness results for
the ∀̇, →̇ , ⊥̇-fragment of classical first-order logic with regards to Tarski models.
We showed that for standard models, in which ⊥̇ is never satisfied, completeness
is equivalent to the stability of classical provability T `CE ϕ for certain classes of
theories. From this, we deduced in particular that Tarski completeness

• on finite theories is equivalent to the object Markov’s principle,

• on enumerable theories is equivalent to the synthetic Markov’s principle

• on arbitrary theories is equivalent to double-negation elimination

As the theories mathematicians work with in practice are usually enumerable, the
first two equivalences are the most interesting among the three. The third one
should be regarded as hard statement on the infeasibility of completeness for arbi-
trary theories in any remotely constructive setting.

The non-constructivity of completeness stems from the requirement that no model
may satisfy ⊥̇. We thus presented two ways of altering the strict notion of model
which enable fully constructive completeness proofs. Exploding models, analo-
gous to those introduced by Veldman [65], allow for models which satisfy ⊥̇ as
long as they still satisfy all instances of the principle of explosion ⊥̇ →̇ϕ. Minimal
models simply do away with the special role ⊥̇ all-together, treating it like an ar-
bitrary logical constant. It should be noted that the absence of ⊥̇means deduction
systems featuring the (Exp) rule are not sound with regards to minimal models.
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In Chapter 4, we arrived at analogous results for Kripke models. Standard com-
pleteness for Kripke semantics also entails the stability of T `CE ϕ. In particular,
Kripke completeness

• on finite theories is equivalent to the object Markov’s principle

• on enumerable theories entails the synthetic Markov’s principle

• on arbitrary theories entails double-negation elimination

We did not formally prove the inverse directions of the last two statements, as we
only presented a proof of completeness on finite theories. However, the proof could
easily be modified to entail the other two equivalences as well. Similarly to Tarski
semantics, Kripke semantics admit constructive completeness proofs if the notion
of models is weakened to exploding or minimal models.

In Chapter 5, we analyzed completeness proofs for intuitionistic dialogue seman-
tics, a game semantics modeling a debate about the validity of a formula. For this,
we demonstrated a fully constructive proof of the completeness of full intuitionistic
first-order logic with regards to both E- and D-dialogues. It might seem surprising
that standard dialogues admit a constructive completeness proof for the full frag-
mentwhile this is impossible for standardmodel semantics, such as Kripkemodels,
even on smaller syntactical fragments. However, this can be traced back to the fact
that winning strategies for dialogues are structurally very similar to deductions in
the sequent calculus. One could interpret this as dialogues being “less of a model
semantics and more of a deduction system”.

6.2 Related Work
PriorWork Before discussing various works that have explored some of the same
topics as this thesis, we want to begin by crediting the works on which this thesis’
contents are directly based.

The adaption of synthetic computability theory to the calculus of inductive con-
structionswe employ throughout this thesis is due to Forster, Kirst and Smolka [20].
In that paper, they formalize the undecidability ofmultiple variants of the Entschei-
dungsproblem in Coq. One of the points of future work they mention is the anal-
ysis of various completeness proofs, which has lead to this thesis. The formaliza-
tion they developed alongside the paper also served as the starting point for our
formalization. However, as we switched from the named binders they use to de
Bruijn syntax, very little code is actually shared between the two formalizations.

Chapter 3 draws much of its content from the constructive account of Henkin’s
proof of first-order completeness by Herbelin and Ilik [29]. They show how to de-
fine classical Tarski semantics in a constructive setting by only considering classical
models and give a clear, constructive account of the model existence theorem for
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systems with ⊥̇. They further demonstrate how to derive standard completeness
for enumerable theories fromMarkov’s principle and how to constructively obtain
completeness for exploding models. Schumm’s [59] classical completeness proof
for the minimal predicate logic consisting only of predicates and implications are
the source of the E-construction and inspired the presentation of the model con-
struction as multiple separate steps.

All completeness proofs aswell as parts of the semantic normalization procedure of
Chapter 4 stem fromHerbelin and Lee’s [30] discussion of semantic cut elimination
for the ∀̇, →̇ , ⊥̇-fragment of first-order logic. They also already formalized their
results in Coq, although we did not reuse any parts of their formalization.

The two presentations of dialogues we offer in Chapter 5 are of course based on
the respective works by Lorenzen [48, 49] and Felscher [15]. The remarks on the
historical background of dialogues we make in the rest of the chapter are informed
by Krabbe’s historical overview [36]. The approach of the generalized dialogue
completeness proofs is based onwork by Sørenzen andUrzyczyn [61] inwhich they
present a generalized completeness proof of the classical finitary sequent calculus
LKd logic with regards to E-dialogues.

Formalized completeness Because of its historical significance, the completeness
of first-order logic has been formalized in many interactive theorem provers such
as Isabelle/HOL [7, 57, 58], NUPRL [9, 64], Mizar [8], Lean [27] and Coq [30, 33].
We only go into detail for those which formalize constructive completeness proofs.

Constable and Bickford [9] give a constructive proof of completeness for the BHK-
realizers of full intuitionistic first-order logic in NUPRL. For this, they represent
the realizer of a formula ϕ as an intersection type of satisfaction over all models⋂
M M � ϕ which is inhabited by terms t which can be typed as t : M � ϕ for any

modelM . Their proof is fully constructive when realizers are restricted to be nor-
mal terms. To prove completeness without this restriction, Brouwer’s fan theorem
is required to first normalize the realizers.

In his PhD thesis [33], Ilik formalizes multiple constructive proofs of first-order
completeness in Coq. His main focus in these proofs is analyzing their compu-
tational content to obtain normalization procedures. In Chapter 1, he gives a con-
structive completeness proof of explodingBooleanmodels for the ∀̇, →̇ , ⊥̇-fragment
of classical first-order logic, very similar to that we give in Chapter 3. In Chapters
2 and 3, he proposes very non-standard, exploding Kripke models for full clas-
sical and intuitionistic first-order logic. As opposed to the traditional rendering
of forcing as a recursive embedding into the meta-logic, Ilik defines it in terms of
non-refutation and restricted non-refutation for classical and intuitionistic seman-
tics, respectively. While these notions of model are far removed from their tradi-
tional accounts, they allow for constructive completeness proofs on the full syntax
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of first-order logic.

Constructive analysis of first-order model completeness Kreisel attributes the
first proof that the standard completeness of intuitionistic first-order logic implies
Markov’s principle to Gödel in [37]. This proof is explained to be based on the
reduction of primitive recursive relations to the provability of first-order formulas
he developed as part of his first incompleteness proof [24]. However, Gödel never
published this result.

The first published proof of this result is given four years later by Kreisel in [38],
which he describes as an adoption of the proof relayed to him by Gödel simpli-
fied with several suggestions by Kleene. Notably, he uses a very general notion
of semantic validity that also captures Kripke models, even though they are only
introduced as an intuitionistic semantics in 1965. He proves two variants of the
theorem. The first states that intuitonistic completeness on full first-order logic
entails the stability of ∀α.∃n. A(n, α) for any primitive recursive relation A(n, α)

between natural numbers and free choice sequences. For this, he essentially en-
codes ∃α.∀n.¬A(n, α) as a first-order formula ϕA and shows that ¬¬∀α.∃n. A(n, α)

implies � ¬̇ϕA. He obtains a derivation of ` ¬̇ϕA per completeness and extracts
the information for ∀α.∃n. A(n, α) from it by means of Herbrand’s theorem [31],
more specifically a variant Kreisel proves in [37]. The second theorem he proves is,
that when the primitive recursive relation A(n) is restricted to be only on the natu-
ral numbers, the completeness of the negative formulas (those with all predicates
under double-negation and without ∃̇ or ∨̇ ) still entails the stability of ∃n.A(n).
The crucial insight of this proof is that the formula ϕA can be reduced to a negative
formula ϕNA via Gödel’s double-negation translation [25], while still maintaining
the property that ¬¬∃n. A(n) implies � ¬̇ϕNA .

The proof of the Kreisel-Gödel theorem in [38] has since inspired a range of works
deriving related non-constructivity results for different kinds of completeness. Es-
pecially noteworthy among these results are the Church-Turing thesis entailing that
the set of intuitionistically valid first-order formulas in not enumerable [39, 45], the
Church-Turing thesis and Markov’s principle entailing that it is not arithmetically
definable [52], the Church-Turing thesis entailing that pure intuitionistic first-order
logic is incomplete [54] and a much more general result about the unprovability of
regular logics in intuitionistic meta-theories [53].

By almost exclusively focusing our analysis on the completeness of the ∀̇, →̇ , ⊥̇-
fragment of first-order logic, we were able to pinpoint how ⊥̇ prevents the con-
structivity of the result. However, we did not further concern ourselves with anal-
ysis of what ∃̇ and ∨̇ contribute to the non-constructivity of full completeness.
Krivtsov [43, 44] does the exact opposite: He analyzes completeness with regards
to exploding Tarski and Beth models, for full classical and intuitionistic first-order
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logic, respectively. His analysis reveals both completeness results to be equivalent
to theweak fan theorem, thereby tightly characterizing the type of non-constructivity
introduced when considering ∨̇ and ∃̇ for completeness. Espindola offers a simi-
lar, more abstract, result by showing that an abstract version of the model existence
theorem for full first-order logic is equivalent to the boolean prime ideal theorem
over intuitionistic ZF set theory [14].

Our approach to constructive analysis of completeness differs from that usually
taken as we consider very specific notions of model, whereas these are often left
more abstract in other works [38, 53, 14]. A very noteworthy work in this line of
abstract analysis of completeness is that by Berardi [4]. He adopts a very general
notion of models and interpretations to analyze which variants allow for construc-
tive completeness proofs of classical first-order logic. He concludes that one needs
to interpret ¬̇ and →̇ in ways stronger than intuitonistic ¬ and→ as well as ∨̇ and
∃̇ in ways weaker than the intuitonistic ∨ and ∃.

Completeness of first-order dialogues Thefirst completeness proofswith regards
to dialogues was given by Lorenz in PhD thesis [46]. These proofs were construc-
tive and used the tableaux systems as deduction systems. Later, noteworthy con-
structive proofs of first-order completeness with regards to dialogues were given
by Stegmüller [63], Felscher [15] and Krabbe [36]. Notably, Felscher and Krabbe
prove completeness with regards to both E- and D-dialogues.

6.3 Future Work
Some of the results in this thesis were only discussed informally or not formalized
fully. In particular, the equivalence between F -stability and the object Markov’s
principle as discussed in Section 2.5.4, the proof that a C-stability closed under
substitution and extension entails Kripke completeness for theories of C we dis-
cuss after the proof of Theorem 4.15 and the ordinal number arithmetic involved in
the proof of S-soundness of LJD in Section 5.4.2. It is of course desirable to formalize
these results as well. Formalizing the extended Kripke completeness result should
be straightforward, as it only constitutes a slight variation of the result in Chap-
ter 4. Doing the same for the equivalence between F -stability and object Markov’s
principle, on the other hand, would certainly be more involved but could be eased
by relying on previous work by Forster and Kunze [17]. Suitable ordinal numbers
have already been formalized in Coq by Grimm [26]. Integrating his formaliza-
tion into ours would be difficult, as he uses the ssreflect framework and we do not.
However, it should be possible to adopt his approach to standard Coq.

This thesis focuses on the role of ⊥̇ in completeness proofs for the ∀̇, →̇ , ⊥̇-fragment
of first-order logic. As mentioned in the previous section, Krivtsov [43, 44] has fo-
cused on the other difficulty of completeness: ∨̇ and ∃̇. He proves that various
exploding completeness results for the full fragment are equivalent to the weak fan
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theorem. It would thus be of interest to try and connect these two results. Indeed,
we conjecture that standard Tarski or Kripke completeness on a theory class C is
equivalent precisely to C-stability and the weak fan theorem taken together. If this
was the case, it would constitute a very insightful characterization of the require-
ments of completeness in a constructive setting.

In Section 5.1, we introduce material and formal dialogues. However, we then go
on to only formally analyze the completeness of formal dialogues. The conclusion
we arrived at based on that analysis was that formal dialogues lend themselves to
a constructive completeness proof in their canonical formulation as they are struc-
turally very close to sequent calculi. Material dialogues, however, seem to be much
closer to model semantics. Recall that material dialogues were defined in terms
of an underlying game, claims of the atomic formulas representing claims of “be-
ing able to win” certain constellations of said game. These underlying games can
be formalized as a domain of game objects D together with a function interpreta-
tion fI : D|f | → D for every f : F . Which game constellations are claimed to be
winnable by claiming a certain atomic formula would then be defined by a predi-
cate interpretation P I : D|P | → P for every predicate P : P . If defined with this
notion of underlying game, material dialogues seem to be much more similar to
regular model semantics, such as Tarski or Kripke models, than formal dialogues.
This insight leads us to conjecture that their completeness proofs should thus ex-
hibit the same constructivity properties as other model semantics. That is, stan-
dard material dialogue completeness should be equivalent to C-stability, while ex-
ploding and minimal completeness should be provable fully constructively on the
∀̇, →̇ , ⊥̇-fragment of first-order logic.

As we have mentioned already, the results of this thesis are very specific as we al-
ways reason about very concrete notions of model. Note, however, that the proofs
of the fact that standard completeness entails stability are both very generic. In-
deed, as laid out byMcCarty [53], the proof we give for standard Tarski models can
be generalized to arbitrary notions of semantic validity as long as they are sound
and stable. Analogously, the proof we give for standard Kripke models can be ex-
tended to any sound notion of semantic validity with the property that  ¬̇ϕ iff
¬  ϕ. In this vein, it would be interesting to explore how far other results of this
thesis can be generalized. An especially interesting question in this direction is if
one can define a generalized notion of intuitionistic validity that is abstract enough
to covermultiple intuitionistic semantics (such as Kripkemodels, Bethmodels, ma-
terial dialogues) while still being specific enough to allow for a unified complete-
ness proof in the style of that given in Chapter 4. This could yield a very insightful
characterization of the non-constructivity of intuitionistic completeness.
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6.4 Formalization
In this section we remark on the noteworthy aspects of the formalization that was
developed alongside this thesis.

Synthetic computability theory has already been studied extensively in Coq. A
lot of this work originates with a project by Forster et al. [19], which is mainly
focused on deriving undecidability results by means of many-one reductions. As
part of this ongoing project, a framework for synthetic computability theory has
been developed which we also employ in our formalization. It contains common
definitions, including those in Section 2.2, as well as lemmas and tactics that ease
working with them.

As we explained in Section 2.3.1, the syntax we use is defined in terms of a signa-
ture Σ. As wewant the signature to be inferred automatically, it is defined as a type
class in Coq. The production rules of functions and predicates are represented by
constructors taking a vector of terms to allow for the arities to be fixed by the signa-
ture. For example, the constructor for function application in the term language is
Func : ∀Σ(f : FΣ). vectorTΣ |f | → TΣ. As Coq is unable to automatically generate a
useful induction principle for nested inductive types, we had to provide and prove
one manually. The variant for terms that has proven to be the most useful is given
below.

∀Σ(p : TΣ → P). (∀(f : FΣ)(v : T
|f |
Σ ). (∀t. t ∈ v → p t)→ p (Func f v))→

(∀x : N. p x)→ ∀t. p t

Stark et al. [62] have developed a tool called “AutoSubst 2” that eases working with
de Bruijn syntax in Coq. Given a specification in higher-order abstract syntax, it
generates the corresponding inductive types with de Bruijn binders. Additionally,
it defines suitable substitution functions, proves that it constitutes a σ-calculus [1]
and offers tactics that allow for automatic simplifications of expressions containing
substitutions. We have used this tool to generate our syntax, including the gener-
alization over signatures and the vector arguments. However, the facts about fresh
variables and their interaction with substitutions can currently not be generated by
AutoSubst2 and were therefore proven manually.

A related, important decision we made in the design of our first-order languages
was to not formalize them as scoped syntax, even though AutoSubst2 could gen-
erate suitable code for this. Instead of allowing arbitrary free variables to occur in
any term, scoped syntax limits the variables that may occur in a term to stay be-
low a certain bound. In a type theory, this can be expressed with an index in the
type of terms indicating the chosen bound. For example, T0 would represent the
closed terms, as only variables strictly less than 0 are allowed to occur in values of
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that type. A scoped first-order language could be very useful. For example, the ax-
iom of replacement of ZF set theory is defined in terms of binary relations ϕ(x, y),
represented by formulas ϕwith two free variables. With scoped syntax, this could
simply be represented by requiring that ϕ : F2. There are two reasons for our de-
cision against scoped syntax. First, recall the construction of the theory Ω for the
Tarski completeness proofs. One of its steps, the Henkin construction H, results
in a theory which contains a free occurrence of every variable. Representing this
with a scoped syntax is not impossible but would certainly introduce many com-
plications. The second reason is that scoped syntax, in combination with the term
signatures Σ, introduce the possibility of the term language being empty: simply
choose a signature without function constants and formulas of scope 0. This is no
problem for deduction systems, as the (AllI) rule raises the scope of all formulas
in the subsequent deduction by one. However, as dialogue games are played on
a fixed type of formulas, formulas like ¬̇(∀̇⊥̇) would not be dialogically valid on
these languages without terms, as the universal quantifier could not be attacked
anymore, introducing a mismatch between deduction systems and semantics.

The proof of Tarski completeness requires many derivations in the object natural
deduction system. To ease this type of proof, we developed a domain specific tactics
language to work in the natural deduction system, inspired by that of Coq. An
example, a proof of the drinker’s paradox, in that language is given below.
Lemma DP {Sigma: Signature} phi:

[] `CE ∃̇ (phi →̇ (∀̇ phi)[↑]).
Proof.

oxm (∃̇ ¬̇ phi).
− odestruct 0. oexists (var_term 0). ointros . oexfalso . oapply 1. ctx .
− oexists (var_term 0). ointros . oindirect . oapply 2. oexists (var_term 0). ctx .

Qed.

The line count of the files of the formalization associated with each chapter is given
below. It should be noted that the code associated with the Preliminaries was not
fully written by us, but also contains syntax generated by AutoSubst 2 and parts
of the library for synthetic computability theory developed by Forster, Kirst and
Smolka in the course of [20], which accounts for about 1600 lines of code.

Chapter Specification Proofs
Preliminaries 1723 1606
Tarski Semantics 572 668
Kripke Semantics 321 202
Dialogue Semantics 467 532
Total 3083 3008
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