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1 Löwenheim-Skolem Theorem

1.1 Definition

Definition 1 (Elementary Embedding). A injective homomorphism h from
models N to M is elementary if all formulas φ : F are preserved under this
homomorphism, formally

N ⊨ρ φ ⇐⇒ M ⊨h◦ρ φ,

where ρ is an environment assigning values to free variables.
If an elementary embedding from model N to M exists, N is an is an

elementary submodel of M, denoted as:

N ⪯h M := h is an elementary homomorphism from N to M.

Definition 2 (Henkin witness). For any formula φ under an environment ρ,
Henkin witness w defined as:

M ⊨ρ φ[w] → M ⊨ρ ∀̇φ or M ⊨ρ ∃̇φ → M ⊨ρ φ[w].

Definition 3 (The witness property). A model M satisfies the witness property
if the Henkin witness of any formula φ : F can be evaluated by a closed term
t, formally:

∃t : Tc. M ⊨ φ[t] → M ⊨ ∀̇φ.

Definition 4 (Henkin Environment). An environment ρ : N → M is called
Henkin environment if for all formulas φ : F:

(∀n : N. M ⊨ρ φ[xn]) → M ⊨ρ ∀̇φ

M ⊨ρ ∃̇φ → (∃n : N. M ⊨ρ φ[xn]).

Definition 5 (Löwenheim-Skolem Theorem (LS)). For any model M, there
exists an elementary embeddding h to a countable submodel N .

N ⪯h M

.
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1.2 Result

Theorem 1 (Löwenheim-Skolem Theorem I). For any classical and nonempty
model M with a countable signature, there is a countable syntactic model N
such that any closed formula φ : Fc satisfies

M ⊨ φ ⇐⇒ N ⊨ φ.

Theorem 2 (Löwenheim-Skolem Theorem II). For any model M with a func-
tion i : N → M, if M satifies the witness property, then there is a elementary
embedding from the syntactic model Ni to M:

Ni ⪯î M

Theorem 3 (Löwenheim-Skolem Theorem III). For any model M, if the envi-
ronment ι is Henkin, then

Nι ⪯ι̂ M,

.

2 Axiom of Dependent Choice

2.1 Definition

Axiom 1 (Blurred Drinker Paradox (BDP)).

∀A. ∀P : A → P. ∃b : N → A. (∀n. P (b n)) → ∀x. P x.

Axiom 2 (Dual form of Blurred Drinker Paradox (BDP′)).

∀A. ∀P : A → P. ∃b : N → A. (∃x. P x) → ∃n. P(b n).

Axiom 3 (Countable Choice (CC)). For any total relation R : N → A → P over
a countable set, there is a function f : N → A, s.t.

∀n. R n ( f n).

Axiom 4 (Blurred Countable Choice (BCC)). For any total relation R : N →
A → P over a countable set, there is a function f : N → A, s.t.

∀n. ∃m R n ( f m).

Axiom 5 (Dependent Choice (DC)). For any total relation R : A → A → P,

∃ f : N → A.∀n. R ( f n) ( f (n + 1)).

Axiom 6 (Blurred Dependent Choice (BDC)). For any total ternary relation
R : A → A → A → P,

∃ f : N → A.∀n m. ∃k. R ( f n) ( f m) ( f k).

Axiom 7 (Omniscient Blurred Dependent Choice (OBDC)). For any ternary
relation R : A → A → A → P,

∃ f : N → A. (∀x y. ∃z. R x y z) ⇐⇒ ∀n m. ∃k. R ( f n) ( f m) ( f k).

2



Axiom 8 (Directed Dependent Choice (DDC)). For any directed and transitive
binary relation R : A → A → P,

∃ f : N → A.∀n m. ∃k. R ( f n) ( f k) ∧ R ( f m) ( f k).

Remark.

OBDC ⇒ BDC ⇒ DDC

OBDC ⇒ BDP

OBDC ⇒ BDP′

BDC ⇒ BCC

DC ⇒ DDC+ BCC ⇐⇒ BDC

BDC+ ACN,N ⇒ DC

We can also define LBDC to be a relation R over list of any set A.

Axiom 9 (List Blurred Dependent Choice (LBDC)). For any total relation R :
L(A) → A → P,

∃ f : N → A.∀ l : L(A). ∃m. R ( f̂ l) ( f m).

There is:

LBDC ⇒ BDC

LS ⇒ LBDC

But now it’s not very important. Additional, there are following facts about
DC in constructive logic:

LS∧ R is decidable → DC on R

LS∧ R is definite → DCprop on R

2.2 Result

Theorem 4 (Equivalent to LS I).

DDC+ BCC+ BDP+ BDP′ ⇐⇒ LS

Theorem 5 (Equivalent to LS II).

BDC+ BDP+ BDP′ ⇐⇒ LS

Theorem 6 (Equivalent to LS III).

OBDC ⇐⇒ LS

Theorem 7 (Equivalent to LS IV).

DC+ BDP+ BDP′ + ACN,N ⇐⇒ LS+ ACN,N
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2.3 About BDP and BDP′

Definition 6 (DPB
A and DP′B

A ). General blurred form of Drinker Paradox DPB
A

over types A and B is defined by:

∀R : B → P. ∃ f : A → B. (∀a. P ( f a)) → ∀x. P x

Let DPA := ∀B. DPB
A, then DP = DPN.

Also, the dual form DP′B
A is defined as follow:

∀R : B → P. ∃ f : A → B. (∃x. P x) → ∃a. P ( f a).

Fact 8.

BDPA + BDPA
I ⇐⇒ BDP ⇐⇒ LEM

BDP′
A + BDP′A

I ⇐⇒ BDP′ ⇐⇒ LEM,

Definition 7 (Limited Principle of Omniscience (LPO)).

∀ f : N → B. (∀x. f x = false) ∨ (∃x. f x = true)

Definition 8 (Independence of Premise (IP)).

∀(P : A → P)(Q : P). A → (Q → ∃x. Px) → ∃x. Q → P x.

Fact 9.

LEM ⇐⇒ BDPN + BDPN
I ⇐⇒ BDPN + LPO ⇐⇒ IP

BDPN
I ⇒ LPO

3 General Remarks

Without considering any axioms, we can either strengthen the requirements
or weaken the results under constructive logic. In summary we have:

M is classical ⇒ weak form of LS

M satisfies the witness property ⇒ LS

We now consider the constructive logic equipped with the countable choice
axiom (which can be weakened to ACN,N):

DC+ BDP+ BDP′ ⇐⇒ LS

Removing the countable choice axiom gives:

BDC+ BDP+ BDP′ ⇐⇒ LS

DDC+ BCC+ BDP+ BDP′ ⇐⇒ LS

OBDC ⇐⇒ LS
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DC

BDP

OBDC LBDC BDC BCC+DDC LS

BDP′

ACN,N classical

All proofs except BDC → LBDC are verified in Coq. (The 3 dashed lines
mean that they together have the strength of LS)

Remark (Upward LS). With respect to the upward LS, since we do not require
first-order theories to contain equivalent symbols, this means that no quo-
tient of the model is required. Thus we have a trivial upward part of the
Löwenheim-Skolem theorem, i.e., copying some element makes the model
have an arbitrarily large cardinality. (The model quotient by equivalence
relation would cause these elements to collapse to a single element).

One thing is that in addition to our results, the approach of our proof is
also a little bit novel (as far as I know). We avoid any modification of the model
and signature by iterating over the domain of the environment and mapping
the values to free variables, thus directly obtaining an elementary syntactic
model, which also restricts us to discussing only on countable models.

(Comment: There are similar ways of proving this, such as in the Wiki entry
for the LS theorem, which does not explicitly get an environment like this, but
also gets a countable set via the Skolem function (which is non-constructive),
which is then added to the signature at the end.)
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4 Conclusion

Finally, why does constructive math tell us more? As the figure shows, under
the ground, i.e., in a world without the LEM, DC and LS are not equivalent.

Figure 1: LS: Under the ground
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