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Introduction

Downward Löwenheim-Skolem Theorem
For any infinite model M over a countable signature, there exists a countable
submodel.

• Skolem (1920) : Axiom of Choice (AC) implies LS↓

• Bunn (1984); Boolos et al. (1989): Axiom of Dependent Choice (DC) equivalent
to LS↓.

• This talk: Reexamine this equivalence from the perspective of constructive reverse
mathematics.
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Introduction

Downward Löwenheim-Skolem Theorem
For any infinite model M over a countable signature, there exists a countable
submodel.

• Skolem (1920) : Axiom of Choice (AC) implies LS↓

• Bunn (1984); Boolos et al. (1989): Axiom of Dependent Choice (DC) equivalent
to LS↓.

• This talk: Over constructive logic assuming DC, LS↓ is equivalent to a Blurred
form of Drinker Paradox (BDP).
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Overview

PART A
• Weaker conclusions
• Stronger assumptions
• DC + BDP → LS↓

PART B
• Reversing the direction

PART C
• Remarks on BDP
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First Order Logic

Definition (Syntax, c.f. Kirst et al. (2022))
Represented as inductive type over signature (FΣ,PΣ), symbols f : FΣ and P : PΣ.

t : T ::= xn | f ~t (n : N)
ψ, ϕ : F ::= ⊥̇ | P ~t | ψ→̇ϕ | ∀̇ϕ (Fragment Syntax)
ψ, ϕ : F∗ ::= ⊥̇ | P ~t | ψ→̇ϕ | ∀̇ϕ | ψ∧̇ϕ | ψ∨̇ϕ | ∃̇ϕ (Full Syntax)

Note: Fc and Tc represent all closed terms and formulas respectively.
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First Order Logic

Definition (Semantics)
A (Tarski) model M over a domain M is a family of functions

fM :M |f | →M PM :M |P | → P

Definition (Environment)
Environment ρ : N → M are recursively extended to term evaluations ρ̂ : T → M.

Substitution:
ϕ[t] by t : T ϕ[w] by w : M

Satisfiable:
M � ϕ := ∀ρ.M �ρ ϕ
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PART A
Weaker conclusions

7



Weaker conclusions

Skolem (1922): Proof of LS↓ that do not rely on any choice principle.

Recap: The Henkin-proof of completeness theorem, c.f Henkin (1949); Herbelin and
Ilik (2016); Forster et al. (2021):
There is a syntactic model N for any consistent theory.
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Weaker conclusions

• Terms type T is countable if signature is.
• The theory of classical model Th(M) is a consistent theory.
• Syntactic model N is a countable model that has the same theory as M.

Löwenheim-Skolem Theorem I
For any classical model M with a countable signature, there is a countable syntactic
model N such that any closed formula ψ : Fc satisfies

M � ψ ⇐⇒ N � ψ.

This version of the LS↓ theorem is preferred in most mechanized proofs (e.g. Mizar Caminati
(2010) and Isabelle/HOL Blanchette and Popescu (2013)).
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PART A
Stronger assumptions
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Stronger assumptions

Syntactic model
For all ψ : Fc

N � ψ ⇐⇒ M � ψ.

Syntactic elementary model
There is an embedding h : N → M, such that for all ϕ : F:

N �ρ ϕ ⇐⇒ M �h◦ρ ϕ

denote by:
N �h M
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Stronger assumptions

Henkin witness
A point w : M is called (universal) Henkin witness for ϕ if:

M �ρ ϕ[w] → M �ρ ∀x. ϕ x

Definition (The witness property)
A model M satisfies the witness property if the Henkin witness of any formula ϕ : F
can be denoted by a closed term t, formally:

∃t : Tc.M � ϕ[t] → M � ∀x. ϕ x.

12



Stronger assumptions

Definition (Syntactic Model)
For any function i : N → M, the syntactic model Ni is defined by

fNi ~t := f ~t PNi ~t := M �i P ~t.

Theorem (Löwenheim-Skolem Theorem II)
For any model M with a function i : N → M, if M satifies the witness property, then
there is a elementary embedding from the syntactic model Ni to M:

Ni �î M

This is a standard result, e.g. in textbook Smullyan (1996). Similarly, there is a proof based on
stronger assumptions in mathlib of Lean, where the existence of the Skolem function is assumed.
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Stronger assumptions

When the witness property fails:
• Skolemization: Expand the submodel until all Henkin witnesses are there
• Henkinization: Expand the signature until the witness property is established
• Our approach: Expand the environment
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PART A
DC + BDP → LS↓
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Henkin Environment

The environment that includes all Henkin witnesses.

Definition (Henkin Environment)
An environment ρ : N → M is called Henkin environment if for all formulas ϕ : F:

(∀n : N.M �ρ ϕ[xn]) → M �ρ ∀x. ϕ x.

Theorem (Löwenheim-Skolem Theorem III)
For any model M, if the environment ι is Henkin, then

Nι �ι̂ M,

.
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Construction

How to construct a Henkin environment?
• Begin: An initial environment ρ0.
• For any formulas ϕ, figure out the Henkin witness wϕ.
• Add these wϕ to the environment to get the new environment ρ1.
• Based on the new environment ρ1, collect all the Henkin witnesses w′

ϕ again.
• Add these w′

ϕ to the environment to get the new environment ρ2.
• Describes an infinite process to construct ρn.
• Iterate until reaching a fixed environment that incorporate all the Henkin

witnesses!
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Construction

Take an arbitrary formula ϕ, how to get the Henkin witness w, s.t.

M �ρ ϕ[w] → M �ρ ∀x. ϕ x

Drinker paradox!
There is a person (w), such that if this person is drinking (P w), then everyone drinks
(∀x. P x).
For any type A and predicate P over A.

∃w.P w → ∀x. Px.
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Construction

Assuming the Drinker paradox, there is a Henkin witness w.

But, we only need w to be hidden inside our environment, i.e., w is included inside a
countable blur: N → M.
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Construction

Therefore, we only need a Blurred form of the Drinker Paradox, which we believe to be
strictly weaker than the full drinker paradox.

Axiom (Blurred Drinker Paradox)

∀A. ∀P : A→ P. ∃b : N → A. (∀n. P (b n)) → ∀x. P x.
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Construction

Definition ( )
Define the relation  : (N → M) → (N → M) → P.

ρ ρs := ∀ϕ. (∀m.M �ρ ϕ[ρ̂s m]) → M �ρ ∀̇ϕ ∧ ρ ⊆ ρs

If an environment ρ is a fixed point of  , s.t. ρ ρ, then ρ is Henkin.
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Construction

DC is a principle in mathematical logic that is strictly weaker than the Axiom of Choice.

Axiom (Dependent Choice (DC))
For any binary total relation R : A→ A→ P,

∃f : N → A.∀n. R (f n) (f (n+ 1)).

Countable Choice can be obtained from DC.

Definition (Countable Choice (ACω))
For any total relation R : N → A→ P over a countable set, there is a function
f : N → A, s.t.

∀n. R n (f n).
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Construction

Theorem (Totality of  )
For any environment ρ, there is an environment ρs, s.t.

ρ ρs

For any environment ρ:
• A blurred function h′ : N → M for formula ϕ by BDP
• A function h : F → N → M exhaust all formulas by ACω

Since F is countable:
h : N → N → M
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Construction

Theorem (Totality of  )
For any environment ρ, there is an environment ρs, s.t.

ρ ρs

Proof.
We can then obtain a function h : N → N → T that incorporates the Henkin witnesses
using the ACω and BDP.

ρs(2n) = ρ(n)

ρs(2n+ 1) = h(π1 n, π2 n)

As a result, ∃ρs. ρ ρs.
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Construction

Applying DC on this total relation, we have a sequence of compatible environments
ρn : N → M for all natural numbers n.
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Construction

Let F : N → N → M be the function obtained from DC on relation  .
Define an environment

ι(x) := F (π1 x, π2 x)

Theorem (Fixed point of  )
There is an environment ι : N → M obtained from DC and BDP that satisfies:

ι ι

As a consequence, we obtain that ι is Henkin.

Theorem (Löwenheim-Skolem Theorem IV)
DC + BDP → LS↓.
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PART B
Reversing the direction
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Reversing the direction

We largely follow Karagila (2014), and we are now working under the setting of full
syntax.

LS↓ → DC

For any total binary relation R : A→ A→ P.

Idea: Define a model A over A with only one binary predicate symbol R, and
RA := R.
Let M � ∀x. ∃y. R(x, y), therefore, we have Nι �ι̂ ∀x. ∃y. R(x, y).

Assuming R is decidable, we can search over N, therefore, there is a (computable)
sequence of witnesses w1, w2, . . ., s.t.

∀n. R(wn, wn+1)
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Reversing the direction

LS↓ → BDP

Idea: For any predicate P : A→ P, let M �ρ ∀̇P ⇐⇒ Nι �ι̂◦ρ ∀̇P .

∀w : T. N � P [w] → ∀x. Px.

The drinker hiding in the countable domain T.
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PART C
Remarks on BDP
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Blurred form of drinker paradox

Definition (BDPB
A and BDP′B

A )
General blurred form of Drinker Paradox BDPB

A over types A and B is defined by:

∀R : B → P. ∃f : A→ B. (∀a. P (f a)) → ∀x. P x

Let BDPA := ∀B. BDPB
A , then BDP = BDPN.

Also, the dual form BDP′B
A is defined as follow:

∀R : B → P. ∃f : A→ B. (∃x. P x) → ∃a. P (f a).

For any type A, there is

BDPA + BDPA
I ⇐⇒ DP ⇐⇒ LEM

BDP′
A + BDP′A

I ⇐⇒ DP′ ⇐⇒ LEM,
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More about BDP

Limited Principle of Omniscience (LPO)

∀f : N → B. (∀x. fx = false) ∨ (∃x. fx = true)

Independence of Premise (IP)

∀(P : A→ P)(Q : P). A→ (Q→ ∃x. Px) → ∃x. Q→ P x.

LEM ⇐⇒ BDPN + BDPN
I ⇐⇒ BDPN + LPO ⇐⇒ IP

BDPN
I → LPO

1
1More results: Blurred form of the IP ⇐⇒ BDP′, omniscient DC implies BDP’. etc..
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Conclusion

The final table presents our results and compares them with those obtained in classical
proofs:

Cardinality Classical Logic Constructive Logic
ℵ0 DC ⇐⇒ LS↓ DC + BDP → LS↓ LS↓ → BDP

Additional, there are following facts about DC in constructive logic:

LS↓ ∧R is decidable → DC on R
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Conclusion

Contributions
• Complementing the connection to DC with a weak classical principle BDP
• A new approach to proving LS↓ without expanding the model or signature
• To the best of our knowledge, first mechanization of complete proof from DC to

LS↓ and including the reverse logical analysis (and the facts about BDP)

Mechanization 2500 LOC overall based on FOL library (Kirst et al. (2022))
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