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Background



Synthetic Computability

What is computable ?

Turing machine -Calculus λ SyntheFc Computability 
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Recap

  is Decidable:P ∃f : X → 𝔹 . P x ↔ f x = 𝗍𝗍 ∧ f is computable



Synthetic Computability

∃ f : X → ℕ → 𝔹 . P x ↔ ∃n . f x n = 𝗍𝗍

∃ f : X → 𝔹 . P x ↔ f x = 𝗍𝗍

Semi-decidable

Decidable

A predicate  isP : X → ℙ

“Does a Turing machine halt 
on a given input?”

Hal<ng Problem K

K x ↔ x-th parFal funcFon halts on x
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Semi-decidable  
Predicates

Decidable  
Predicates

Post’s Problem

K

?
≺

that is strictly easier than the HalFng 
problem?”

- Post, 1944
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“Is there an undecidable,
semi-decidable predicate



Decidable  
Predicates

Semi-decidable  
Predicates

Easier than Halting Problem?

 is reducible to K P

Many-one reducFon:          K ⪯m P

Truth-table reducFon:          K ⪯tt P

Consider reducFons in the most general sense, i.e., 
Turing reducFon, which is also the problem Post leR 

open in his paper.

K
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Turing reducible
Modelling Oracle Computable (O. C.):

in syntheFc computability

 is O.C. if  described by such 
computable tree [Forster, Kirst & Mück 2023]

F F
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Turing reduc<on    is O.C.  P ⪯ Q := ∃F . F ∧ P x ↔ F Q̂ x tt
¬P x ↔ F Q̂ x ff∀x .



Low Simple Set [Lerman & Soare 1980] [Soare 1999]

Solutions to Post’s Problem

Simple Set{Finite extension 
method [Post 1944]  

in syntheFc computability 
[Forster & Jahn 2023]

Priority  
Method

Friedberg–Muchnik Theorem [Mučnik 1956] [Friedberg 1957]  {
8

Hyper Simple Set

Decidable  
Predicates

Semi-decidable  
PredicatesK
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Low Simple Set [Lerman & Soare 1980] [Soare 1999]

Lowness 

Turing jump of  is reducible to halFng problem: P P′ ⪯ KLowness 

-th oracle machine with oracle  halts on    P′ x ↔ x P x

reducible to  is difficult!"KLimit computable!”“Showing  is P



Current State



Limit Computable

A uniform sequence  is convergent to some value  if :f : ℕ → Y b

lim
n→∞

f(n) = b iff ∃n : ℕ . ∀m ≥ N . f(m) = b

A given predicate  is termed limit computable when there is a decider 
 s.t.

P
f : X → ℕ → 𝔹

P x ↔ lim
n→∞

f(x, n) = tt
∀x .

¬P x ↔ lim
n→∞

f(x, n) = ff
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in syntheFc computability
[Shoenfield 1959] [Gold 1965]



f(x,0) f(x,1) f(x,2) …f(x,3) f(x, n + 1) …f(x, n + 2) f (x, n + 3)f(x, n)

n

Fix an input ,  test whether  is in a limit computable 
predicate  by execuFng the funcFon :

x x
P f

Example

It doesn't maker what any of the runs turn out to be, we need to observe the limits
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Limit Lemma 1

Lemma 1: If a predicate  is limit computable, then both  and  are  
 predicates.

P P P̄
Σ2

Lemma 2: If both  and  are  predicates, then  is reducible to .P P̄ Σ2 P K
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P x ⟺ ∃n . ∀m ≥ n . f(x, m) = 𝗍𝗍

P̄ x ⟺ ¬P x ⟺ ∃n . ∀m ≥ n . f(x, m) = 𝖿𝖿

Proof.    Rewrite the definiFon:

Proof.    By Post’s theorem. [Forster, Kirst & Mück 2024]



Limit Lemma 2

Lemma 3: A predicate  is limit computable, if  is reducible to .P P K

Corollary: A predicate  is limit computable iff  is reducible to . P P K
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Proof.     Define a step-indexing funcFon: , 

                since  can be approximated by an accumulaFve sequence.  

                           

ΦK
e (x)[n] = ΦKn

e, n(x)

K := ∪n∈ℕ Kn

P x ⟺ lim
n→∞

ΦK
e (x)[n] = 𝗍𝗍 ¬P x ⟺ lim

n→∞
ΦK

e (x)[n] = 𝖿𝖿



Outlook



Priority Method

PosiFve Requirements Pe := We is infinite → We ∩ A ≠ ∅

NegaFve Requirements Ne := (∃∞s . ΦA
ξ e(e)[s] ↓ ) → ΦA

ξ e(e) ↓

P1 N1≺ P2 N2≺ P3 N3≺≺ ≺ …
Construct a predicate  stage by stage such that:A := ∪n∈ℕ An
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Goals

• Definition of limit computable 
• Limit lemma

We aim to show the following theorem and construction  
in synthetic computability:
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?• The priority method

• Definition of low simple predicate
• Existence of low simple predicate
• Friedberg-Muchnik Theorem
• Constructive analysis 
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Appendix A
Oracle Computable
Based on a noFon of computability of funcFonals ,  The argument 

 is to be read as the oracle relaFng quesFons  to answers ,  is the input to 
the computaFon, and  is the output,  such an  is considered (oracle)-computable if there is an 
underlying computaFon tree :

F : (Q → A → ℙ) → (I → Q → ℙ)
R : Q → A → ℙ q : Q a : A i : I

o : O F
τ : I → A* ⇀ (Q + O)

where the interrogaFon relaFon  is inducFvely defined for  as:σ; R ⊢ qs; as σ : A* ⇀ Q + O

∀R x b . F R x b ⟺ ∃qs as . τ x; R ⊢ qs; as ∧ τ x as ⊳ out b

σ ; R ⊢ []; []
σ ; R ⊢ qs; as σ as ⊳ ask q R(q, a)

σ ; R ⊢ qs@[q]; as@[a]



Appendix B
Step index  func<on

We insert this oracle  into our Turing machine by fixing a , and subsequently run . Based on 
this effecFvely computable oracle, we can define a total funcFon  as follows:

O n τ
Φ

Given that  is Turing reducible to , we obtain the 
computable tree . Building upon the step-index 
funcFon described above, we define the following 
funcFon:

P ∅
τ



Low Simple Predicate 1
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Simple predicate: 
 If a predicate  is simple, then  is semi-decidable and  P P ¬(P ⪯ ∅)

Turing jump of : 
 -th oracle machine with oracle  halts on    

P
P′ x ↔ x P x

undecidable predicate



Low Simple Predicate 2
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Showing a predicate is reducible to  is difficult!K

Low predicate: A predicate  is low, if the Turing jump of   is reducible to P P K

P′ ⪯ K ⇒ ¬(K ⪯ P)

Low Simple predicate: , where ∅ ≺ P ≺ K P ≺ Q := P ⪯ Q ∧ ¬(P ⪯ Q)

A posiFve soluFon to Post’s Problem


