Post's Problem

and
The Priority Method
in Synthetic Computability

Haoyl Zeng

Advisors: Yannick Forster and Dominik Kirst
Supervisor: Prof. Gert Smolka
Programming Systems Lab

Background

Synthetic Computability | Recap

Pis Decidable: df : X - B.P x & f x = tt -A—F—iscomputable—

What is computable ?

Turing Machine A-Calculus Synthetic Computability

fix F:= \x. fixX fix F «
fix . =Af,F.F (\z. f f F x)

Synthetic Computability

A predicate P : X — P is

Decidable df:X->B.Pxeo fx=tt

Semi-decidable df: X>N->B.Px<o dn.fxn=tt

“Does a Turing machine halt Halting Problem H

. . ?II . .
on a given Input: H x < x-th partial function halts on x

Post’s Problem

H Semi-decidable
“Is there an undecidable, Predicates
semi-decidable predicate D
that is strictly easier than the Halting ?
problem?” Decidable
Predicates

- Post, 1944

Easier than Halting Problem?

Semi-decidable
. . H Predicates
H is reducible to P
Many-one Reduction: H=, P
Decidable
Turing Reduction: H=<,P Predicates

Consider reductions in the most general sense, i.e.,
Turing reduction, which is also the problem Post left
open in his papetr.

6

Solutions to Post’s Problem

Finite extension Semi-decidable
Simple Predicate - H -
method [post 1944] P Predicates
... After 12 years |
Decidable
Predicates

Friedberg—Muchnik Theorem

Method Low Simple Predicate
[Lerman & Soare 1980] [Soare 199N

Solutions to Post’s Problem in synthetic computability

in synthetic

] . H Semi-decidable
computability Simple Predicate - Predicates
[Forster & Jahn 2023]

Decidable
Another 12 vears ? Predicates

Low Simple Predicate \

The Priority Method

The Priority Method

vy:N* = N3N

n~ L ~bx n~ L Vr.-~yYx
0~ | n+1~x: L n—+1~ L

The Priority Method

”y()@ L) V. _'VFO] X

9, [X()] [xo]

Wad
0 1j 2"/){

Let 7Y be an extension

[X0, X1]

nlb. n~LANx &L

Y is computable and unique : P, is semi-decidable

10

Simple Extension

T ex = :EEWe:n:/\wT%(e)<x
L — PO L |
IIe == LN Wen| = ANdx.] ex we N = N* 3 N o N

Yig = Jeee<nALe IENL . ke

P, < P, < Py < Py < Py < Py oo

Let w be a wall

w is greater than 2e : P, is Simple
y

and convergent

11

Low Wall

S ™~

() == max(2-e,o"L(e)n]) N, 5. ®(e)[s] L= D2 (e) |

Py < Ny < Py < Ny < Py < Njy oo

By the Limit Lemma : Pn) s Low

Low Simple Predicate

P, is low simple predicate

Py IS a positive solution to Post’s Problem

12

Formalisation in Coq

Low Simple Predicate

lines of code: ~ 900 Sim.ple Limit Computability
Predicate
Lines of code: ~ 1000 Step indexed oracle machine

Lines of code: ~ 250 The Priority

Method Oracle Computability

Synthetic Computability

13

% : a technical lemma is missing

Goals (now)

We aim to show the following theorems and constructions
In synthetic computabillity:

® Definition of limit computable

® Limitlemma

® The priority method

® Definition of low simple predicate
® Existence of low simple predicate

® Friedberg-Muchnik Theorem
® (Constructive analysis

14

Goals (now)

We aim to show the following theorems and constructions
In synthetic computabillity:

® Definition of limit computable

® Limitlemma

® The priority method

® Definition of low simple predicate
® Existence of low simple predicate

15

References

[Forster, Kirst & Miick 2023] Yannick Forster, Dominik Kirst and Niklas Muck. Oracle

computability and Turing reducibility in the calculus of inductive constructions.
APLAS 2023

iPost 1944] Post, E. L. Recursively enumerable sets of positive integers and their decision
problems.

[Forster & Jahn 2023] Yannick Forster and Felix Jahn. Constructive and Synthetic Reducibility
Degrees: Post’s Problem for Many-one and Truth-table Reducibility in Coq.
CSL 2023

References

Friedberg 1957] Richard M. Friedberg. Two recursively enumerable sets of incomparable
degrees of unsolvability (solution of Post's problem, 1944). Proceedings of the

National Academy of Sciences of the United States of America. Vol. 43, no. 2.
pp. 236—238.

lLerman & Soare 1980] LERMIAN, M., AND SOARE, R. d-simple sets, small sets, and degree
classes. Pacific Journal of Mathematics 87, 1 (1980), 135-155.

isoare 1999] SOARE, R. Recursively enumerable sets and degrees: A study of computable
functions and computably generated sets. Springer Science & Business Media, 1999.

https://en.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America
https://en.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America

References

Muénik 1956] Mucnik Albert Abramovich On the unsolvability of the problem of
reducibility in the theory of algorithms. Doklady Akademii Nauk SSSR. 108: 194-197.

[Forster, Kirst & Miick 2024] Yannick Forster, Dominik Kirst and Niklas Muck. The kleene-post
and post’s theorem in the calculus of inductive constructions CSL

'shoenfield 1959] Shoenfield, J. R. On degrees of unsolvability. Annals of mathematics 69, 3
(1959), 644—-653.

(Gold 1965] Gold, E. M. Limiting recursion. The Journal of Symbolic Logic 30, 1 (1965),28-
48.

https://en.wikipedia.org/wiki/Doklady_Akademii_Nauk_SSSR

Appendix A

Oracle Computable
Based on a notion of computability of functionals F': (0 - A - P) - (I - O — P), The argument

R : (0 — A — Pistoberead as the oracle relating questions g : J toanswersa : A, 1 : lis the input to

the computation, and o : O is the output, such an F'is considered (oracle)-computable if there is an
underlying computationtreet : [- A* —= (0O + O):

VRxb.FRxb < dgsas.tx;RFgs,as ANt x as> out b

where the interrogation relation o; R = gs; as is inductively defined foro : A* = QO + O as:

oc.,RFqgs;as ocas>ask g R(qg,a)
o ,RFqgs@|qg];as@|a]

o ;R [];1]

Turing redUCible in synthetic computability

Synthetic notation of Oracle Computable

(0. C.):
/611 4 493 ---

Fis O.C. is capturing by some underlying
computable object [Forster, Kirst & Miick 2023]

7 Properties of Turing Reducibility

Oracle Computability and Turing Reducibility
We continue with similarly standard properties of Turing reducibility. Again,

. . . *
in the Calculus of Inductive Constructions all proofs are concise but precise. As a preparation, we first note that Turing
reducibility can be characterised without the relational layer.

. 00028676 Lemma 20. p <7 g if and only if there is T such that for all & and b we have
Yannick FOK'SY/CI'I[ODDB 00028676 9819]’

Dominik Kirst2-3(0000-0003-4126-6975] ' anq pab <> Igsas. T ; g gs ; as A Tz asbout b,
Niklas Miick3[0009-0006-9622-0762]

Now to begin, we show that Turing reducibility is a preorder.

1 Inria, LS2N, Université Nantes, France
yannick.forster@inria.fr

Theorem 21. Turing reducibility is refleive and transitive.

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel Proof. Reflexivity follows directly by the identity functional being computable
kirstGcs.bgu.ac.il via Lemma 4. Transitivity follows with Lemma 8. o
3 S . .
Saarland University and MPI-SWS, Saarland Informatics Campus, Saarbriicker In fact, Turing reducibility is an upper semilattice:
Germany
s8nimuec@stud.uni-saarland.de Theorem 22. Let p: X—P and ¢:Y 5P. Then there is_a lowest upper bound
p+g: X +YP wrt 21 Let (p+q ‘We define oracle computability by observing that a terminating computation
P+ q is the join of p and g w.rt <1 ith les h ial form: i Fth b)
p=rr and g=<1r then p+ q=1r. with oracles has a sequential form: in any step of the sequence, the oracle compu-
tation can ask a question to the oracle, return an output, or diverge. Informally,
. . . Proof. The first two claims follow by nf h tial behavi b P that t inati
Abstract. We develop synthetic notions of oracle computability and let F, reduce p to r and be computed Wwe can enlorce such sequential behaviour Dy requiring that every terminating
Turing reducibility in the Calculus of Inductive Constructions (CIC), 2. Define computation FRio can be described by (finite, possibly empty) lists gs: @* and
the constructive type theory underlying the Coq proof assistant. As usual . as: A* such that from the input 7 the output o is eventually obtained after a
in synthetic approaches, we employ a definition of oracle computations FiRzo ifz=inlz B
. . FRzo:= . X finite sequence of steps, during which the questions in gs are asked to the oracle
based on meta-level functions rather than object-level models of compu- FRzo ifz=inry T 4 A : . :
tation, relying on the fact that in constructive systems such as CIC all one-by-one, yielding corresponding answers in as. This computational data can
definable functions are computable by construction. Such an approach 7 computes F, and F reduces p + ¢ tf be captured by a partial® function of type I—A*—Q + O, called the (compu-
lends itself well to f"“h‘“_e'ChEd‘ed proofs, which we carry out in Cog. We continue by establishing pro tation) tree of F, that on some input and list of previous answers either returns
There is a tension in finding a good synthetic rendering of the higher- oracle semi-decidability discussed in the next question to the oracle, returns the final output, or diverges.

order notion of oracle computability. On the one hand, it has to be in-
formative enough to prove central results, ensuring that all notions are So more formally, we call F: (Q—A—P)—(I—0—P) an (oracle-)computable

a a ° ° ° faithfully captured. On the other hand, it has to be restricted enough functional if there is a tree 7: I—+A*—Q + O such that
to benefit from axioms for synthetic computability, which usually con-

the non-relativised notion of decidabi

cern first-order objects. Drawing inspiration from a definition by Andrej VRio. FRio <+ 3gs as. 7i; RFgs;as A Tiasbout o
Bauer based on continuous functions in the effective topos, we use a no-

i f ial inui h: i lid 1 ions.
tion of sequential continuity to characterise valid oracle computations with the interrogation relation o; R I- gs; as being defined inductively by

]
r I M h I n As main technical results, we show that Turing reducibility forms an
upper ilattice, transports decidability, and is strictly more expressive . .
than truth-table reducibility, and prove that whenever both a predicate o;Rbgs;as oasbask ¢ Rqa

p and its complement are semi-decidable relative to an oracle g, then p o R[] o ; R-gs+t[q] ; as++[a
Turing-reduces to g.

where A* is the type of lists over a, [+’ is list concatenation, where we use the
suggestive shorthands ask ¢ and out o for the respective injections into the sum
type Q@ + O, and where o: A*—Q + O denotes a tree at a fixed input 4.

* Yannick Forster received funding from the European Union’s Horizon 2020 research To provide some further intuition and visualise the usage of the word “tree”,

and innovation programme under the Marie Sktodowska-Curie grant No. we discuss the following example functional in more detail:
101024493. Dominik Kirst is supported by a Minerva Fellowship of the Minerva

Stiftung Gesellschaft fuer die Forschung mbH. F : (N 5B]P) N (N 5B IP’)
FRio := o=true AVq <i.Rqtrue

Keywords: Type theory - Logical foundations - Synthetic bility
theory - Coq proof assistant

Pxo FQxtt

Turing reduction P< 0O :=3F. FisO.C. A A
g <0 Vx.ﬂPXHFQXﬁA

22

Appendix B

Step index function

We insert this oracle O into our Turing machine by fixing a n, and subsequently run 7. Based on
this effectively computable oracle, we can define a total function ® as follows:

“out o™ if (T x []) ~»jouto
HOM) . 7 Task g if (Tx []) ~»jaskgand i =0
Xij = -
‘ / @S@E)T;an]xi’j if (Tx []) ~»jaskgand i =S 7
none otherwise

Given that P is Turing reducible to &, we obtain the

computable tree 7. Building upon the step-index xp(s,x) = {b if ¢¥(x) s|="b"
function described above, we define the following tt otherwise
function:

Low Simple Predicate 1

undecidable predicate
Simple predicate: >
If a predicate P is simple, then P is semi-decidable and —(P < @)

Turing jump of P:
P’ x & x-th oracle machine with oracle P halts on x

24

Low Simple Predicate 2

Low predicate: A predicate P is low, if the Turing jump of P is reducible to K
P'< K= ~(K < P)

Low Simple predicate: @ < P < K, whereP<Q:=P<QA-(P<0Q)

_

Showing a predicate is reducible to K is difficult!

A positive solution to Post’s Problem

25

Use Function

Let k = o(e)[n]
PP(e)n| ="x1"—=>Vq. ¢ = pln] — = § e *

oP(x)|n] =k = pnl =L pn+1] - L(z)n+1] =k

26

