
Friedberg–Muchnik Theorem in Synthetic

Computability
Current Progress: A Brief Overview

Haoyi Zeng
Saarland University

May 16, 2024

1 Introduction

”As a result we are left completely
on the fence as to whether there
exists a recursively enumerable
set positive integers of absolutely
lower degree of unsolvability than
the complete set K, ...”

EMIL L. POST

Post’s Problem, posed by Emil Post in 1944 [9], is a significant question in
computability theory and the theory of degrees. The problem asks to prove the
existence of a recursively enumerable degree between the degree of the empty
set ∅ and the Turing jump of the empty set ∅′. Post himself made progress
on the problem, but it remained unsolved until Friedberg [5] and Muchnik [8]
independently provided a solution in 1956 and 1957, respectively.

The Friedberg–Muchnik Theorem, as a result of solving Post’s Problem, is
important because it marked a breakthrough in understanding the structure of
recursively enumerable degrees. The theorem demonstrates that there exists
an r.e. degree strictly between ∅ and ∅′, providing insight into the hierarchy
of degrees and expanding our understanding of the computability landscape.

The methods used in the proof, known as finite priority arguments, in-
volve recursive constructions with infinitely many stages and resolving con-
flicts among requirements according to a recursive scheme of priorities. This
approach was significant not only for solving Post’s Problem but also became a
fundamental technique in local degree theory. The Friedberg–Muchnik method
was later extended by other researchers, such as Lachlan, Sacks, and Yates,
contributing to the development of this area of study.

1

2 Constructive Type Theory

These are some of the basic inductive types that will be used in this thesis:

• Unit: 1 : T ::= ⋆ : 1
• Boolean: B : T ::= tt : B | ff : B
• Natural numbers: N : T ::= O : N | S : N → N
• Option types: O(T : T) : T ::= ⌜ ⌝ : T → O(T) | none : O(T)
• Lists: (T : T)∗ : T ::= nil : T ∗ | :: : T → T ∗ → T ∗

• Sum types: X +Y : T ::= injl : X → X +Y | injr : Y → X +Y

We default the capital letters X Y Z : T to arbitrary types, while p q : X → P
generally express arbitrary predicates over X.

The characteristic relation p̂ : X → B → P of a predicate p : X → P
defined by:

p̂ := λx b.

{
p x if b = tt

¬ p x if b = ff

3 Synthetic Computability

!!TODO:You can check Yannick’s thesis [1], this paper [3] about Oracle Com-
putability and also this paper [4] about Arithmetic hierarchy.

4 Limit Lemma

In the pursuit of exploring the Turing degree, the concept of limit computabil-
ity serves as a fundamental tool for investigating reducibility and the jump
operator. This notion was initially introduced by Gold [6] in 1964, although
Shoenfield’s work [10] in 1959 already proved the limit lemma.

4.1 Limit Computable

A predicate P is considered limit computable if there exists a computable and
total guessing function f(x, n) such that, for any fixing x, whether x belongs
to P or not depends on whether the function f(x, n) converges to tt or to ff.

In the context of synthetic computability, a function f : X → N → B over
arbitrary type X is employed as a uniform sequence of computable binary
function, it can also be viewed as a uniform sequence of characteristic function
of decidable sets. A uniform sequence is convergence to some value b at fixing x
is defined as follows:

∃N : N. ∀n ≥ N. f(x, n) = b

This can also be expressed as limn→∞ f(x, n) = b.

Definition 1 (Limit Computable). A given characteristic relation P̂ : X →
B → P is termed limit computable when there is a decider f s.t.:

∀x b. P̂ (x, b) ⇐⇒ lim
n→∞

f(x, n) = b

2

…f(x,0) f(x,1) f(x,2) f(x,3) f(x, n + 1) …f(x, n + 2) f (x, n + 3)f(x, n)
n

Figure 1: x is in P

Let P be a limit computable predicate defined by a function f . The de-
termination of whether x is in P can be made by inserting x into f and then
executing the function f stage by stage.

Next, we can execute this function up to some stage n. However, whether
f(x, n) returns tt (expressed in green) or ff (expressed in red) does not provide
a means to determine whether x satisfies P . All that can be known about
limit computable is that there exists a sufficiently large n such that, for any
subsequent stage, the function always returns tt if and only if P x, with the
opposite being ff for the negative case.

4.2 Limit Lemma 1

Limit computable is intuitively well-understood, while the limit lemma po-
sitions limit computable within the arithmetic hierarchy, specifically closely
linked to the concept of a ∆2-predicate. This lemma acts as a connection
between computable approximations and the arithmetic hierarchy, playing a
pivotal role in the examination of degrees of unsolvability and other areas
within mathematical logic and recursion theory.

Lemma 1. For any predicate P , if P is limit computable, then both P and
P are Σ2-predicates.

Proof. Examining the definition of limit computable, we can express it as
follows:

P x ⇐⇒ ∃n. ∀m ≥ n. f(x,m) = tt

¬P x ⇐⇒ ∃n. ∀m ≥ n. f(x,m) = ff

This shows that the limit computable predicate P is a Σ2 predicate, and its
complement is also Σ2 predicate.

Review the Post’s Theorm that will be used.

Theorem 1 (Post’s Theorem). For any Σ2-predicate P , P is semi-decidable
in ∅′.

P ∈ Σ2 ⇒ S∅′(P)

Under the classical assumption LEMΣ1 :

SQ(P) ∧ SQ(P̄) ⇒ P ⪯ Q

Proof. Reading this paper [4].

Lemma 2 (Limit Lemma 1). For any predicate P , if P is limit computable,
then P is Turing reducible to ∅′ by assuming LEMΣ1 .

3

Proof. Limit computable P and its complements are Σ2 according to the
Lemma 1.

By applying a lemma from the arithmetic hierarchy, a Σ2 predicate is oracle
semi-decidable in the ∅′, leading to reducibility to the ∅′ under the classical
assumption LEMΣ1 .

4.3 Limit Lemma 2

Before proving the other direction, it’s worth noting that semi-decidable pred-
icates can all be expressed as limit computable. Furthermore, we can establish
an accumulative computable sequence, defined as follows.

Definition 2 (Σ1 Approximation). For any semi-decidable predicate, there
exists a Σ1 approximation, indicating the presence of an accumulative sequence
f : X → N → B such that:

P (x) ⇐⇒ ∃n. f(x, n) = tt

The concept of accumulation means that for any n and x:

f(x, n) = tt ⇒ ∀m ≥ n. f(x,m) = tt

Proof. The proof can be executed straightforwardly by running the semi-
decider for n iterations and gathering the outcomes of all terminations. For
instance, in the halting problem, it can be defined as the assessment of the
program for n steps of termination.

The Σ1 approximation of predicate p is also denoted by p[n], which is a
family of decidable predicate such that f(x, n) = tt ⇐⇒ p[n] x.

This offers a fundamentally different perspective. Instead of examining
a predicate statically, we approach it dynamically. That is, there exists a
computable process to approximate its behavior, and we can straightforwardly
derive a fact as follows.

Fact 2. In the context of a Σ1 approximation f , for any given list of problems
l, a sufficiently large number n such that for larger m, there consistently exists
the same result within this list:

∃n. ∀m ≥ n. ∀x ∈ l. f(x,m) = f(x, n)

Proof. By definition.

Now, let’s see how to execute the Turing machine with an Oracle. When
dealing with synthetic computability, envisioning the execution of a Turing
machine for n steps, i.e., running the corresponding partial function for n
steps, is not challenging.

However, in the more complicate of Oracle computable, the computation
of a Turing machine with an oracle is defined by a partial computable tree τ .
Consequently, a step-index function that precisely indexes the steps of this
function is not straightforward. Nevertheless, we can provide the following
definition.

Definition 3 (Step-Index Function). For some computable F , there exists a
corresponding computable tree τ . Let’s consider a semi-decidable predicate p,
and the corresponding characteristic function χp : N → X → B.

4

We insert this oracle p into our oracle machine by fixing a n, and subse-
quently run τ . Based on this effectively computable oracle, we can define a
total function Φ as follows:

Φp[n]
τ x i j :=


⌜out o⌝ if (τ x nil)⇝j out o

⌜ask q⌝ if (τ x nil)⇝j ask q and i = 0

Φ
p[i′]
λr. τ x χp(q,n)::r

x i′ j if (τ x nil)⇝j ask q and i = S i′

none otherwise

where the notation is defined as x ⇝j o := seval x j = ⌜o⌝, means to
perform the partial function within j steps.

This function is grounded in the intuition that, given our computable tree
being partial, i represents the maximum depth that can be explored, and j is
the maximum number of steps allowed to run at each node.

In short we want to encapsulate this function and give some of the prop-
erties we need.

Fact 3 (Monotonicity). For any semi-decidable predicate p, the step-indexed
function Φ is monotonic with respect to the arguments step i and deepth j:

Φp[n]
τ x i j = ⌜s⌝⇒ ∀j′ ≥ j. Φp[n]

τ x i j′ = ⌜s⌝

Φp[n]
τ x i j = ⌜out o⌝⇒ ∀i′ ≥ i. Φp[n]

τ x i′ j = ⌜out o⌝

A similar property holds for the oracle when it is a cumulative computable
sequence, implying that the oracle is semi-decidable. For any successive oracle,
it will consistently be closer to the predicate it is approximating than the
previous one. In other words, if the oracle has a Σ1 approximation, then the
index of this approximation is also monotonic.

These observed monotonic indicate that these parameters can jointly ap-
proximate the expected output. Hence, we define a shorthand, also known as
Lachlan notation [14]:

Φp
τ (x)[n] := Φp[n]

τ x n n

The step-indexed oracle machine’s completeness property can then be ex-
pressed as follows when taking a semi-decidable predicate as oracle.

Lemma 3. Let p be a semi-decidable predicate, p[n] is the n-th Σ1-approximation
of p.

Ξe p̂ x ⋆ → lim
n→∞

Φp
e(x)[n] = ⌜⋆⌝

Now, we can set aside the definition of Φ while retaining its properties to
finalize the proof of the Limit Lemma.

Lemma 4 (Limit Lemma 2). A predicate P is limit computable when P ⪯ ∅′

by assuming LEMΣ1 and P is logical decidable.

Proof. Given that P is Turing reducible to ∅′, we obtain the computable
tree τ . Building upon the step-index function described earlier, we define the
following function:

χP (s, x) :=

{
b if ΦK

τ (x)[s] = ⌜b⌝

tt otherwise

5

We show that:
∀x b. P̂ x b ⇐⇒ lim

s→∞
χP (s, x) = b

If the Turing machine terminates with output o, then there exists a sufficiently
accurate approximation of the oracle through continuous modules. This en-
sures that the machine terminates within a large enough number s of steps,
guaranteeing that ΦK

τ (x)[s] converges to o.
Due to the logical decidability of P , we ascertain that χP (s, x) cannot

simultaneously converge to both tt and ff. Therefore, if χP (s, x) converges to
b, it implies the fact that P̂ (x, b).

5 Low Simple Set

5.1 Introdution to Post’s Problem

The concept of Turing degree, introduced by Post [9], plays a important role in
clarifying undecidable problem. We commonly use the symbol ∅ to represent
all decidable problems. Any problem P that is in the same degree as the
halting problem K is denoted as Turing jump of decidable problem:

∅′ := {P | P ≡ K}

where P ≡ Q := P ⪯ Q ∧ Q ⪯ P is denoted Turing reducible between the
problem P and Q.

Particular attention is given to the degree that lies between ∅ and ∅′, also
known as the local Turing degree [11]. Naturally, Post raises the question: Is
there any semi-decidable problem Q strictly between ∅ and ∅′, i.e.,

∅ ≺ Q ≺ K.

The notation is defined as P ≺ Q := P ⪯ Q∧P ̸≡ Q, implying that, even Q
as an oracle, cannot be used to solve the halting problem.

In Post’s paper, he partially addressed this problem by constructing simple
sets and hypersimple sets to answer the problem in the m-degree and truth-
table degree, respectively. For discussions on synthetic computability, refer to
the paper [2].

It wasn’t until the 1950s that Friedberg [5] and Muchnik [8] independently
provided a solution Post’s Problem to Turing degrees using a new method
called finite injury priority method. Subsequently, the finite injury priority
method and it variants became one of the most important techniques in com-
putability theory, widely employed in proving various theorems[12].

Moving forward, we aim to discuss the solution to Post’s Problem in syn-
thetic computability using the finite injury priority method and formalize it.
This is a complex proof, posing a challenge in the field of mathematics formal-
ization. Nevertheless, it marks a significant milestone, providing foundational
techniques for exploring more advanced results in synthetic computability.

5.2 Finite Injuru Priority Method

We begin with a simplified version of the solution, constructing a low simple
set. This construction, initially employed by Lerman and Soare in their paper
[7], was later modified to become an example in standard textbooks [13, 14]

6

and is considered one of the simplest solutions to Post’s Problem using the
finite injury priority method. Therefore, it can be used as a first step in how
the finite injury priority method works and how powerful it is.

The idea of the priority method is to build the semi-decidable predicate
step by step, adding a at most one element to the predicate at each step
through a computable process that carries the information of current step, the
constructed predicate should then be verified to meet a priority-ordered list of
requirements.

We start from the way how a predicate be cosntructed. The semi-decider
can be defined as a function f : X → N → B, which gives rise to the perspective
that the priority method in synthetic computability is building a semi-decider
recursively on the step index.

To make the proof simpler, we want to build and prove the predicate
in a modular fashion, making it possible to construct a complex proof step
by step. The inductive type ⇝ is employed by abstracting the extension
γ : N∗ → N → N → P.

0⇝ []

n⇝ L γLn x

n+ 1⇝ x :: L

n⇝ L ∀x. ¬ γLn x

n+ 1⇝ L

The predicate n⇝ L simply checks at each stage n whether a new element x
can enter the L by asking the extension γ; if not, proceed to the next stage
without changing the L; otherwise, concatenate x to the L.

In order for the L being accepted at each stage n to be decidable and
unique, the extension must also be decidable and unique.

Definition 4 (Extension). As long as the conditions below are met, we call
the γ : N∗ → N → N → P an extension.

(Σx. γLn x) + (∀x. ¬ γLn x)

∀x y. γLn x → γLn y → x = y

Fact 4. For any extension γ, the following properties of n⇝L hold.

• Unique: ∀n L1 L2. n⇝ L1 → n⇝ L2 → L1 = L2

• Monotonic: For any stage n,m, if n⇝ L1 and n⇝ L2 for n ≤ m, then
L1 ⊆ L2.

• Inversion: If n⇝ x :: L at some stage n, then there must be some stage
m, such that m⇝ L and γLm x hold.

The predicate Pγ that is constructed over γ is defined by:

x ∈ Pγ := ∃n L. n⇝ L ∧ x ∈ L

Lemma 5. For any extension γ, Pγ is semi-decidable, and there is a function
Γ : N → N∗ such that:

x ∈ Pγ ⇐⇒ ∃n. x ∈ Γn

Notice that x ∈ Γn is a Σ1-approximation of Pγ .

We have the fact that any predicate constructed with any extension γ is
semi-decidable. This is the first layer of the construction, which we can turn
into the construction of the extension. As we do in this section, we begin with
a simple property, literally ”simple”.

7

5.3 The Simple Extension

The simple predicate was defined and constructed by Post to demonstrate the
existence of an m-incomplete, semi-decidable, and undecidable predicate. As
an initial attempt at addressing Post’s problem, the simple predicate provide
a foundation by showing that such predicates are undecidable. The simple
predicate we will construct, following Post’s approach, is m-incomplete and
Turing-complete. While we haven’t solved Post’s problem, this construction
provides a framework that can be adjusted to create a Turing-incomplete sim-
ple predicate. Now, let’s explore how to construct the extension γ so that Pγ

is clear.

Definition 5 (Simple Predicate). A predicate P is simple if p is semi-decidable,
the complement of p, i.e. p̄ is non-finite, and for any semi-predicate q, q is not
a sub-predicate of p̄.

simple P := E p ∧ X (p̄) ∧ ¬∃q. E q ∧ q ⊆ p

where the notation q ⊆ p is defined as ∀x. q x → p x.

Theorem 5. Simple predicate is are undecidable and m-incomplete.

In this section, we will reuse some of the findings from this work [2], where
a simple predicate was established synthetically by explicitly defining it and
verifying its simpleness. Instead of presenting the predicate directly, we’ll
build it withing the priority method using the following extension.

Definition 6 (Simple Extension). The extension primarily follows Soare’s de-
sign. At any stage n and for any list L, the extension checks whether L
intersects with the first n elements of the e-th enumerator We[n] or not. If
there is such e and x such that x ∈ We[n] and 2e < x, we pick the least e
and the corresponding least x as the next element to add to the predicate.
Since the priority method always receives the list Γn, the extension extends
the predicate at stage n by verifying all entries in Pγ before stage n.

πL
n e x := x ∈ We[n] ∧ 2e < x

ΠL
n e := L ∩We[n] = ∅ ∧ ∃x. πL

n e x

γLn x := ∃e. e < n ∧ L e. ΠL
n ∧ L x. πL

n e

The notation L x. p denotes that x is the least element that satisfies the
predicate p as follows:

L x. p := p x ∧ ∀y < x. ¬p y

Fact 6. The predicate γ defined above is an extension.

To prove that the predicate Pγ is simple, we must prove three properties
listed in the definition of the simple predicate. Because we construct the Pγ

by instantiating γ, Pγ is semi-decidable.

Pe := We is infinite → We ∩A ̸= ∅

Lemma 6 (Verification). The predicate Pγ satisfies the requirements Pe.

Fact 7 (Correctness). P̄γ is non-finite.

Fact 8 (Correctness). For any semi-decidable predicate q, q is not a sub-
predicate of P̄γ .

8

If we carefully examine the definition of extension, the requirement that
the element x must exceed 2 · e to progress to the next stage is actually aimed
at ensuring that P̄γ remains non-finite. This condition can be generalized to
any function.

πL
n e x := x ∈ We[n] ∧ ωL

n (e) < x

Definition 7 (Wall Function). The wall function is defined as a function
ω : N → N∗ → N → N that meet the following conditions:

2 · e ≤ ωΓn
n (e)

∃b. lim
n→∞

ωΓn
n (e) = b

where the second condition be relaxed to:

¬¬∃b. lim
n→∞

ωΓn
n (e) = b

Lemma 7. For any wall function ω, the predicate Pγ is simple by instantiating
the simple extension γ within ω.

5.4 The low wall

To construct a low simple predicate, we must define a concrete wall function.
In this section, the wall function is defined as the maximum of the function 2·e
and the use function. The definition of the use function involves the model of
the oracle machine.

The use function, φA
e (x)[n], captures the highest question asked during

the computation of ΦA
e (x)[n]. A critical feature of this function is that if an

element greater than φA
e (x)[n] is added to the predicate A, it does not alter

the outcome of the computation ΦA
e (x)[n].

Lemma 8 (Completeness). Let k = φA
e (e)[n], the use function must satisfy

the following condition:

Φp
e(e)[n] = ⌜⋆⌝→ ∀q. q ≡k p[n] → Ξe q̂ e ⋆

Lemma 9 (Monotonic). The intuition behind this property is that any ele-
ment that does not affect the computation (i.e., is greater than the output of
the use function) also does not alter the use function itself.

φp
e(x)[n] = k → p[n] ≡k p[n+ 1] → φp

e(x)[n+ 1] = k

Definition 8 (Low Wall). The low wall function is defined as following:

ωL
n (e) := max(2 · e, φx∈L

e (e)[n])

Fact 9. The low wall function ω is convergent:

¬¬∃b. lim
n→∞

ωΓn
n (n)(e) = b

Proof. TODO

The requirements of lowness claim that the e-th oracle machine with oracle
A terminates on e if it terminates on infinitely many approximations.

Ne := ∃∞s. ΦA
e (e)[s] ↓→ ΦA

e (e) ↓

Theorem 10 (Verification). The predicate Pγ satisfies the requirements Ne.

Theorem 11 (Correctness). Any predicate that satisfies both Pe and Ne is
both low and simple.

9

5.5 Solution to Post’s Problem

Since a simple predicate is undecidable yet semi-decidable, and because any
predicate of lowness cannot be reduced from the halting problem, therefore,
the low simple predicate provides an answer to Post’s Problem, offering a
positive solution.

6 Friedberg–Muchnik Theorem

!!TODO:The first solution to Post’s problem independently proved by Fried-
berg and Muchnik

7 Conclusion

In this project, we formalise the construction of the low simple predicate in
constructive type theory and mechanise our results in the Coq proof assistant,
which give the first formalisation of the solution to Post’s Problem.

References

1. Forster, Y. Computability in constructive type theory.

2. Forster, Y., and Jahn, F. Constructive and synthetic reducibility
degrees: Post’s problem for many-one and truth-table reducibility in coq.
In CSL 2023-31st EACSL Annual Conference on Computer Science Logic
(2023).

3. Forster, Y., Kirst, D., and Mück, N. Oracle computability and
turing reducibility in the calculus of inductive constructions. ArXiv
abs/2307.15543 (2023).

4. Forster, Y., Kirst, D., and Mück, N. The kleene-post and post’s
theorem in the calculus of inductive constructions.

5. Friedberg, R. M. Two recursively enumerable sets of incomparable
degrees of unsolvability (solution of post’s problem, 1944). Proceedings of
the National Academy of Sciences 43, 2 (1957), 236–238.

6. Gold, E. M. Limiting recursion. The Journal of Symbolic Logic 30, 1
(1965), 28–48.

7. Lerman, M., and Soare, R. d-simple sets, small sets, and degree
classes. Pacific Journal of Mathematics 87, 1 (1980), 135–155.

8. Muchnik, A. A. On the unsolvability of the problem of reducibility in
the theory of algorithms. In Dokl. Akad. Nauk SSSR (1956), vol. 108,
pp. 194–197.

9. Post, E. L. Recursively enumerable sets of positive integers and their
decision problems.

10. Shoenfield, J. R. On degrees of unsolvability. Annals of mathematics
69, 3 (1959), 644–653.

10

11. Simpson, S. G. Degrees of unsolvability: a survey of results. In Studies
in Logic and the Foundations of Mathematics, vol. 90. Elsevier, 1977,
pp. 631–652.

12. Soare, R. I. The infinite injury priority method1. The Journal of Sym-
bolic Logic 41, 2 (1976), 513–530.

13. Soare, R. I. Recursively enumerable sets and degrees: A study of com-
putable functions and computably generated sets. Springer Science & Busi-
ness Media, 1999.

14. Soare, R. I. Turing computability. Theory and Applications of Com-
putability. Springer (2016).

11

	Introduction
	Constructive Type Theory
	Synthetic Computability
	Limit Lemma
	Limit Computable
	Limit Lemma 1
	Limit Lemma 2

	Low Simple Set
	Introdution to Post's Problem
	Finite Injuru Priority Method
	The Simple Extension
	The low wall
	Solution to Post's Problem

	Friedberg–Muchnik Theorem
	Conclusion

