
Friedberg–Muchnik Theorem in Synthetic
Computability

Current Progress: A Brief Overview

Haoyi Zeng
Saarland University

November 30, 2023

1 Introduction

"As a result we are left completely on
the fence as to whether there exists a
recursively enumerable set positive
integers of absolutely lower degree of
unsolvability than the complete set K,
..."

EMIL L. POST

Post’s Problem, posed by Emil Post in 1944 [Pos44], is a significant question
in computability theory and the theory of degrees. The problem asks to prove
the existence of a recursively enumerable degree between the degree of the
empty set ∅ and the Turing jump of the empty set ∅′. Post himself made
progress on the problem, but it remained unsolved until Friedberg [Fri57]
and Muchnik [Muc56] independently provided a solution in 1956 and 1957,
respectively.

The Friedberg–Muchnik Theorem, as a result of solving Post’s Problem, is
important because it marked a breakthrough in understanding the structure of
recursively enumerable degrees. The theorem demonstrates that there exists
an r.e. degree strictly between ∅ and ∅′, providing insight into the hierarchy
of degrees and expanding our understanding of the computability landscape.

The methods used in the proof, known as finite priority arguments, involve
recursive constructions with infinitely many stages and resolving conflicts
among requirements according to a recursive scheme of priorities. This ap-
proach was significant not only for solving Post’s Problem but also became
a fundamental technique in local degree theory. The Friedberg–Muchnik
method was later extended by other researchers, such as Lachlan, Sacks, and
Yates, contributing to the development of this area of study.

1



2 Constructive Type Theory

These are some of the basic inductive types that will be used in this thesis:

• Unit: 1 : T ::= ⋆ : 1
• Boolean: B : T ::= tt : B | ff : B

• Natural numbers: N : T ::= O : N | S : N → N

• Option types: O(T : T) : T ::= ⌜_⌝ : T → O(T) | none : O(T)
• Lists: L(T : T) : T ::= [] : L(T) | :: : T → L(T) → L(T)
• Sum types: X +Y : T ::= injl : X → X +Y | injr : Y → X +Y

We default the capital letters X Y Z : T to arbitrary types, while P Q : X → P

generally express arbitrary predicates over X.
The characteristic relation P̂ : X → B → P of a predicate P : X → P

defined by:

P̂ := λx b.

{
P x if b = tt

¬ P x if b = ff

3 Synthetic Computability

TODO: You can check Yannick’s thesis [For21], this paper [FKM23] about
Oracle Computability and also this paper [FKM24] about Arithmetic hierarchy.

4 Limit Lemma

In the pursuit of exploring the Turing degree, the concept of limit computabil-
ity serves as a fundamental tool for investigating reducibility and the jump
operator. This notion was initially introduced by Gold [Gol65] in 1964, al-
though Shoenfield’s work [Sho59] in 1959 already proved the limit lemma.

4.1 Limit Computable

A predicate P is considered limit computable if there exists a computable and
total guessing function f (x, n) such that, for any fixing x, whether x belongs
to P or not depends on whether the function f (x, n) converges to tt or to ff.

In the context of synthetic computability, a function f : X → N → B over
arbitrary type X is employed as a uniform sequence of computable binary
function, it can also be viewed as a uniform sequence of characteristic function
of decidable sets. A uniform sequence is convergence to some value b at
fixing x is defined as follows:

∃N : N. ∀n ≥ N. f (x, n) = b

This can also be expressed as limn→∞ f (x, n) = b.

Definition 1 (Limit Computable). A given characteristic relation P̂ : X → B →
P is termed limit computable when there is a decider f s.t.:

∀x b. P̂(x, b) ⇐⇒ lim
n→∞

f (x, n) = b

2



Let P be a limit computable predicate defined by a function f . The de-
termination of whether x is in P can be made by inserting x into f and then
executing the function f stage by stage.

…f(x,0) f(x,1) f(x,2) f(x,3) f(x, n + 1) …f(x, n + 2) f (x, n + 3)f(x, n)
n

Figure 1: x is in P

Next, we can execute this function up to some stage n. However, whether
f (x, n) returns tt (expressed in green) or ff (expressed in red) does not provide
a means to determine whether x satisfies P. All that can be known about
limit computable is that there exists a sufficiently large n such that, for any
subsequent stage, the function always returns tt if and only if P x, with the
opposite being ff for the negative case.

4.2 Limit Lemma 1

Limit computable is intuitively well-understood, while the limit lemma po-
sitions limit computable within the arithmetic hierarchy, specifically closely
linked to the concept of a ∆2-predicate. This lemma acts as a connection be-
tween computable approximations and the arithmetic hierarchy, playing a
pivotal role in the examination of degrees of unsolvability and other areas
within mathematical logic and recursion theory.

Lemma 1. For any predicate P, if P is limit computable, then both P and P are
Σ2-predicates.

Proof. Examining the definition of limit computable, we can express it as
follows:

P x ⇐⇒ ∃n. ∀m ≥ n. f (x, m) = tt

¬P x ⇐⇒ ∃n. ∀m ≥ n. f (x, m) = ff

This shows that the limit computable predicate P is a Σ2 predicate, and its
complement is also Σ2 predicate.

Review the Post’s Theorm that will be used.

Theorem 1 (Post’s Theorem). For any Σ2-predicate P, P is semi-decidable in
∅′.

P ∈ Σ2 ⇒ S∅′(P)

Under the classical assumption LEMΣ1 :

SQ(P) ∧ SQ(P̄) ⇒ P ≤T Q

Proof. Reading this paper [FKM24].

3



Lemma 2 (Limit Lemma 1). For any predicate P, if P is limit computable, then
P is Turing reducible to ∅′ by assuming LEMΣ1 .

Proof. Limit computable P and its complements are Σ2 according to the
Lemma 1.

By applying a lemma from the arithmetic hierarchy, a Σ2 predicate is oracle
semi-decidable in the ∅′, leading to reducibility to the ∅′ under the classical
assumption LEMΣ1 .

4.3 Limit Lemma 2

Before proving the other direction, it’s worth noting that semi-decidable pred-
icates can all be expressed as limit computable. Furthermore, we can establish
an accumulative computable sequence, defined as follows.

Definition 2 (Σ1 Approximatiom). For any semi-decidable predicate, there ex-
ists a Σ1 approximation, indicating the presence of an accumulative sequence
f : X → N → B such that:

P(x) ⇐⇒ ∃n. f (x, n) = tt

The concept of accumulation means that for any n and x:

f (x, n) = tt ⇒ ∀m ≥ n. f (x, m) = tt

Proof. The proof can be executed straightforwardly by running the semi-
decider for n iterations and gathering the outcomes of all terminations. For
instance, in the halting problem, it can be defined as the assessment of the
program for n steps of termination.

This offers a fundamentally different perspective. Instead of examining
a predicate statically, we approach it dynamically. That is, there exists a
computable process to approximate its behavior, and we can straightforwardly
derive a fact as follows.

Fact 2. In the context of a Σ1 approximation f , for any given list of problems l,
a sufficiently large number n such that for larger m, there consistently exists
the same result within this list:

∃n. ∀m ≥ n. ∀x ∈ l. f (x, m) = f (x, n)

Proof. By definition.

Now, let’s see how to execute the Turing machine with an Oracle. When
dealing with synthetic computability, envisioning the execution of a Turing
machine for n steps, i.e., running the corresponding partial function for n
steps, is not challenging.

However, in the more complicate of Oracle computable, the computation
of a Turing machine with an oracle is defined by a partial computable tree τ.
Consequently, a step-index function that precisely indexes the steps of this
function is not straightforward. Nevertheless, we can provide the following
definition.

4



Definition 3 (Step-Index Function). For some computable F, there exists a
corresponding computable tree τ. Let’s consider a computable sequence O :
N → X → P, or the corresponding characteristic function χO : N → X → B.

We insert this oracle O into our Turing machine by fixing a n, and subse-
quently run τ. Based on this effectively computable oracle, we can define a
total function Φ as follows:

ΦO(n)
τ x i j :=


⌜out o⌝ if (τ x [])⇝j out o

⌜ask q⌝ if (τ x [])⇝j ask q and i = 0

ΦO(n)
τ@[χO n q] x i′ j if (τ x [])⇝j ask q and i = S i′

none otherwise

where the notation is defined as x ⇝j o := seval x j = ⌜o⌝, means to
perform the partial function within j steps.

This function is grounded in the intuition that, given our computable tree
being partial, i represents the maximum depth that can be explored, and j is
the maximum number of steps allowed to run at each node.

In short we want to encapsulate this function and give some of the prop-
erties we need, and it is not hard to see that this function is momotonic with
respect to the arguments i and j:

Fact 3 (Monotonicity).

ΦO(n)
τ x i j = ⌜s⌝⇒ ∀j′ ≥ j. ΦO(n)

τ x i j′ = ⌜s⌝

ΦO(n)
τ x i j = ⌜out o⌝⇒ ∀i′ ≥ i. ΦO(n)

τ x i′ j = ⌜out o⌝

A similar property holds for the oracle when it is a cumulative computable
sequence, implying that the oracle is semi-decidable. For any successive
oracle, it will consistently be closer to the predicate it is approximating than
the previous one. In other words, if the oracle has a Σ1 approximation, then
the index of this approximation is also monotonic.

Lemma 3. If σ x ; (λxb. f x = b) ⊢ qs; ans and σ x ans ▷ o, then for any function
g such that σ x ; (λxb. gx = b) ⊢ qs; ans, there is some i, j:

Φ(λxb. gx=b)
τ x i j = ⌜o⌝

These observed monotonic indicate that these parameters can jointly ap-
proximate the expected output. Hence, we define a shorthand, also known as
Lachlan notation [Soa16]:

ΦO
τ (x)[n] := ΦO(n)

τ x n n

Now, we can set aside the definition of Φ while retaining its properties to
finalize the proof of the Limit Lemma.

TODO: More convenient lemma about Φ!

Lemma 4 (Limit Lemma 2). A predicate P is limit computable when P ≤T ∅′

by assuming LEMΣ1 and P is logical decidable.

5



Proof. Given that P is Turing reducible to ∅′, we obtain the computable tree
τ. Building upon the step-index function described earlier, we define the
following function:

χP(s, x) :=

{
b if ΦK

τ (x)[s] = ⌜b⌝

tt otherwise

We show that:
∀x b. P̂ x b ⇐⇒ lim

s→∞
χP(s, x) = b

If the Turing machine terminates with output o, then there exists a sufficiently
accurate approximation of the oracle through continuous modules. This
ensures that the machine terminates within a large enough number s of steps,
guaranteeing that ΦK

τ (x)[s] converges to o.
Due to the logical decidability of P, we ascertain that χP(s, x) cannot

simultaneously converge to both tt and ff. Therefore, if χP(s, x) converges to
b, it implies the fact that P̂(x, b).

5 Low Simple Set

5.1 Introdution to Post’s Problem

The concept of Turing degree, introduced by Post [Pos44], plays a important
role in clarifying undecidable problem. We commonly use the symbol ∅ to
represent all decidable problems. Any problem P that is in the same degree as
the halting problem K is denoted as Turing jump of decidable problem:

∅′ := {P | P ≡ K}

where P ≡ Q := P ⪯ Q ∧ Q ⪯ P is denoted Turing reducible between the
problem P and Q.

Particular attention is given to the degree that lies between ∅ and ∅′, also
known as the local Turing degree. Naturally, Post raises the question: Is there
any semi-decidable problem Q strictly between ∅ and ∅′, i.e.,

∅ ≺ Q ≺ K.

The notation is defined as P ≺ Q := P ⪯ Q ∧ P ̸≡ Q, implying that, even Q
as an oracle, cannot be used to solve the halting problem.

In Post’s paper, he partially addressed this problem using the priority
method, constructing simple sets and hypersimple sets to answer Post’s Prob-
lem in the m-degree and truth-table degree, respectively. For discussions on
synthetic computability, refer to the paper [FJ23].

It wasn’t until the 1950s that Friedberg [Fri57] and Muchnik [Muc56]
independently provided a solution to Turing degrees using a new method
called finite injury priority method. Subsequently, the finite injury priority
method and it variants became one of the most important techniques in
computability theory, widely employed in proving various theorems[Soa76].

Moving forward, we aim to discuss the solution to Post’s Problem in syn-
thetic computability using the finite injury priority method and formalize it.

6



This is a complex proof, posing a challenge in the field of mathematics formal-
ization. Nevertheless, it marks a significant milestone, providing foundational
techniques for exploring more advanced results in synthetic computability.

5.2 Finite Injuru Priority Method

We begin with a simplified version of the solution, constructing a low simple
set. This construction, initially employed by Lerman and Soare in their paper
[LS80], was later modified to become an example in standard textbooks [Soa99,
Soa16] and is considered one of the simplest solutions to Post’s Problem using
the finite injury priority method. Therefore, it can be used as a first step in
how the finite injury priority method works and how powerful it is.

6 Friedberg–Muchnik Theorem

TODO: The first complete solution to Post’s problem independently by Fried-
berg and Muchnik

7 Conclusion

TODO

References

FJ23. Yannick Forster and Felix Jahn. Constructive and synthetic reducibil-
ity degrees: Post’s problem for many-one and truth-table reducibility
in coq. In CSL 2023-31st EACSL Annual Conference on Computer Science
Logic, 2023.

FKM23. Yannick Forster, Dominik Kirst, and Niklas Mück. Oracle computabil-
ity and turing reducibility in the calculus of inductive constructions.
ArXiv, abs/2307.15543, 2023.

FKM24. Yannick Forster, Dominik Kirst, and Niklas Mück. The kleene-post
and post’s theorem in the calculus of inductive constructions. 2024.

For21. Yannick Forster. Computability in constructive type theory. 2021.

Fri57. Richard M Friedberg. Two recursively enumerable sets of incom-
parable degrees of unsolvability (solution of post’s problem, 1944).
Proceedings of the National Academy of Sciences, 43(2):236–238, 1957.

Gol65. E Mark Gold. Limiting recursion. The Journal of Symbolic Logic,
30(1):28–48, 1965.

LS80. Manuel Lerman and Robert Soare. d-simple sets, small sets, and
degree classes. Pacific Journal of Mathematics, 87(1):135–155, 1980.

7



Muc56. Albert A Muchnik. On the unsolvability of the problem of reducibil-
ity in the theory of algorithms. In Dokl. Akad. Nauk SSSR, volume
108, pages 194–197, 1956.

Pos44. Emil L Post. Recursively enumerable sets of positive integers and
their decision problems. 1944.

Sho59. Joseph R Shoenfield. On degrees of unsolvability. Annals of mathe-
matics, 69(3):644–653, 1959.

Soa76. Robert I Soare. The infinite injury priority method1. The Journal of
Symbolic Logic, 41(2):513–530, 1976.

Soa99. Robert I Soare. Recursively enumerable sets and degrees: A study of
computable functions and computably generated sets. Springer Science &
Business Media, 1999.

Soa16. Robert I Soare. Turing computability. Theory and Applications of
Computability. Springer, 2016.

8


	Introduction
	Constructive Type Theory
	Synthetic Computability
	Limit Lemma
	Limit Computable
	Limit Lemma 1
	Limit Lemma 2

	Low Simple Set
	Introdution to Post's Problem
	Finite Injuru Priority Method

	Friedberg–Muchnik Theorem
	Conclusion

