Set Implicit Arguments.
Require Import Coq.Init.Nat.

Require Import BasicDefs.
Require Import FinType.
Require Import Seqs.

Open Scope string_scope.

Nondeterminisic Finite Automata


Structure NFA (X:finType) := mknfa
   { state: finType;
     transition : state -> X -> state -> Prop;
     transition_dec : forall s1 a s2, dec(transition s1 a s2);
     initial_state : state -> Prop;
     initial_state_dec : forall s, dec(initial_state s);
     final_state: state -> Prop;
     final_state_dec: forall s, dec(final_state s)
   }.

Arguments mknfa [X] [state] transition {transition_dec} initial_state {initial_state_dec} final_state {final_state_dec}.

Arguments transition [X] [aut] _ _ _ : rename.
Arguments initial_state [X] [aut] _ : rename.
Arguments final_state [X] [aut] _ : rename.
Arguments transition_dec [X] [aut] _ _ _ : rename.
Arguments initial_state_dec [X] [aut] _ : rename.
Arguments final_state_dec [X] [aut] _ : rename.

Hint Resolve final_state_dec.
Hint Resolve initial_state_dec.
Hint Resolve transition_dec.

(* Dont ask me why Coq sometimes needs this  *)
Instance transition_dec_public (X:finType)(aut:NFA X): forall s x s', dec (transition (aut:=aut) s x s').
Proof. auto. Defined.
Instance initial_dec_public (X:finType)(aut:NFA X): forall s, dec (initial_state (aut:=aut) s).
Proof. auto. Defined.
Instance final_dec_public (X:finType)(aut:NFA X): forall s, dec (final_state (aut:=aut) s).
Proof. auto. Defined.

NFA with one state allowing all transitions
Definition univ_aut {X:finType} := mknfa (fun (s:finType_unit) (x:X) (s':finType_unit) => True) (fun _ => True) (fun _ => True).

Facts for valid Strings and Sequences of NFAs

Section TransitionGraph.
  Context {X : finType}.
  Context {aut: NFA X}.

Definitions of valid runs and paths. We use sequences as runs for strings, because the length of the run is determined by the length of the string and so the length of the run is redundant.
  Definition Run := Seq (state aut).


  Implicit Types (r : Run ) (w: Seq X) (v: String X) (s: state aut) (x:X).

  Definition valid_run r w:= forall n, transition (r n) (w n) (r (S n)).
  Definition valid_path r v:= forall n, n <= |v| -> transition (r n) (v [n]) (r (S n)).

Extensionality facts

  Lemma valid_run_extensional r r' w w': valid_run r w -> r === r' -> w === w' -> valid_run r' w'.
  Proof.
    intros V R W n. now rewrite <- W, <- 2R.
  Qed.

  Lemma valid_path_extensional r r' v v': valid_path r v -> r === r' -> v == v' -> valid_path r' v'.
  Proof.
    intros V E [LE WE] n L. rewrite <-LE in L. rewrite <-WE by auto. rewrite <-!E. now apply V.
  Qed.

  Global Instance valid_run_proper : Proper (@seq_equal (state aut) ==> @seq_equal X ==> iff) valid_run.
  Proof.
    intros r r' EqR w w' EqW. split; intros V; now eapply valid_run_extensional.
  Qed.

  (* TODO seq_equal is over approx *)
  Global Instance valid_path_proper : Proper (@seq_equal (state aut) ==> strings_equal ==> iff) valid_path .
  Proof.
    intros r r' Er w w' Ew. split; intros V.
    - apply (valid_path_extensional V Er Ew).
    - symmetry in Er, Ew. apply (valid_path_extensional V Er Ew).
  Qed.

Manipulations of valid paths and runs

  Lemma valid_run_is_path_from_begin r w: valid_run r w -> forall n, valid_path r (mkstring w n).
  Proof. now intros. Qed.


  Lemma valid_path_decrease' r v n: valid_path r (mkstring v n) -> forall k, k <= n -> valid_path r (mkstring v k).
  Proof.

    intros V k' L m Lm. cbn. apply V. cbn in *. omega.
  Qed.

   Lemma valid_path_decrease r v : valid_path r v -> forall k, k <= |v| -> valid_path r (drop_string_end k v).
  Proof.
    destruct v. unfold drop_string_end. cbn. intros V k L.
    apply (valid_path_decrease' V). comega.
  Qed.

  Lemma valid_run_drop r w: forall n, valid_run r w -> valid_run (drop n r) (drop n w).
  Proof.
    intros n V m. now rewrite !drop_correct, <-plus_n_Sm.
  Qed.

  Lemma valid_path_drop r v k: valid_path r v -> k <= |v| -> valid_path (drop k r) (drop_string_begin k v).
  Proof.
    intros V L n Lk. unfold drop_string_begin. cbn in *.
    rewrite !drop_correct, <-plus_n_Sm. apply V. omega.
  Qed.

  Lemma valid_run_is_path_everywhere r w: valid_run r w -> forall n m, valid_path (drop n r) (extract n m w).
  Proof.
    intros V n m k L. unfold extract. cbn.
    now apply valid_run_drop.
  Qed.

  Lemma valid_path_is_path_everywhere r v: valid_path r v -> forall n m, n < m <= S(|v|) -> valid_path (drop n r) (extract n m v).
  Proof.
    intros V n m L k L'. unfold extract. cbn in *.
    apply valid_path_drop; oauto.
  Qed.

  Lemma prepend_step_valid_path s x r v : valid_path r v -> transition s x (r 0) -> valid_path (prepend s r) (mkstring (prepend x v) (S(|v|))).
  Proof.
    intros V T n L. destruct n.
    - now rewrite !prepend_first, prepend_rest.
    - rewrite !prepend_rest. apply V. cbn in L. omega.
  Qed.

  Lemma valid_concat_paths r v r' v': valid_path r v -> r' 0 = r (S (|v|)) -> valid_path r' v' ->
                      valid_path (mkstring r (|v|) +++ r') (v ++ v').
  Proof.
   destruct v as [v k]. revert v r v' r'.
  induction k; intros w r r' w' P C P'. cbn in C.
  - apply prepend_step_valid_path; auto. rewrite C. cbn. now apply P.
  - cbn in *. rewrite concat_strings_step. apply IHk.
    + apply (valid_path_decrease' P). comega.
    + reflexivity.
    + apply prepend_step_valid_path; oauto. rewrite C. now apply P.
  Qed.

  Lemma valid_prepend_path' (r':String (state aut)) v r w : |r'| = |v| -> (forall n, n < |v| -> transition (r'[n]) (v[n]) (r' [S n]))
                                  -> transition (r'[|v|]) (v[|v|]) (r 0)-> valid_run r w->
                               valid_run ( r' +++ r) (v +++ w).
  Proof.
    intros E V C R. intros n.
    decide (n < |v|).
    - rewrite 3prepend_string_begin by omega. now apply V.
    - decide (n = |v|).
      + subst n. rewrite 2prepend_string_begin by omega. rewrite_eq (S(|v|)=S(|v|) + 0). rewrite <-E, prepend_string_rest', E. apply C.
      + rewrite 3prepend_string_rest by omega. rewrite_eq (S n - S(|r'|) = S (n - S(|r'|))). rewrite E. apply R.
  Qed.

  Lemma valid_prepend_path r' v r w : valid_path r' v -> (r 0) = (r' (S (|v|))) -> (valid_run r w) ->
                               valid_run ((mkstring r' (|v|) ) +++ r) (v +++ w).
  Proof.
    intros V C R. intros n.
    apply (valid_concat_paths (r' := r) (v := v) (r := r' ) (v' := mkstring w n)); auto.
    - now apply valid_run_is_path_from_begin.
    - comega.
  Qed.

  Lemma valid_path_cut r v i j: valid_path r v -> S i < j <= |v| -> r (S i) = r j -> valid_path (cut i j r) (cut_string i j v).
  Proof.
    intros V L E. unfold cut, cut_string.
    apply valid_concat_paths.
    - apply (valid_path_decrease' V). omega.
    - rewrite drop_correct. cbn. rewrite E. now f_equal.
    - apply valid_path_drop; oauto.
  Qed.

  Section InfConcat.

Show that the infinite concattenation of strings is valid if the runs agree on the shared state
  Variable strings: Seq (String X).
  Variable runs: Seq (String (state aut)).

  Lemma concat_inf_is_valid'':
        (forall n, |strings n| = |runs n| /\ (forall k, k < |strings n| -> transition ((runs n)[k])((strings n)[k])((runs n)[S k])) /\ transition ((runs n)[|runs n|]) ( (strings n) [|runs n|]) ((runs (S n)) [0]))
        -> valid_run (concat_inf runs) (concat_inf strings).
  Proof.
    intros V n. unfold concat_inf.
    rewrite (concat_inf_index_equal (f:= strings) (g:= runs)) by apply V.
    destruct (concat_inf_indices runs n) as [wi ni] eqn:H.
    destruct (concat_inf_index_step_correct H) as [H' | [H'1 H'2]].
    - rewrite H'. simpl. apply V.
      rewrite <-(concat_inf_index_equal (f:= strings) (g:= runs)) in H' by apply V.
      pose (concat_inf_index_in_bounds H'). omega.
    - rewrite H'1, H'2. simpl.
      destruct (V wi) as [L [V' B]].
      apply B.
  Qed.

  Lemma concat_inf_is_valid:
        (forall n, |strings n| = |runs n| /\ valid_path (seq(runs n)) (strings n) /\ transition ((runs n)[|runs n|]) ( (strings n) [|runs n|]) ((runs (S n)) [0]))
        -> valid_run (concat_inf runs) (concat_inf strings).
  Proof.
    intros V. apply concat_inf_is_valid''; auto.
    intros n. specialize (V n). destruct V as [V1 [V2 V3]]. repeat split; auto.
    intros k L. apply V2. omega.
  Qed.

  Lemma concat_inf_is_valid':
        (forall n, |strings n| = |runs n| /\ valid_path (seq(runs n)) (strings n) /\ ((runs n)[S(|runs n|)]) = ((runs (S n)) [0]))
        -> valid_run (concat_inf runs) (concat_inf strings).
  Proof.
    intros V. apply concat_inf_is_valid.
    intros n. destruct (V n) as [L [P E]]. repeat split; auto.
    rewrite <-E. apply P. omega.
  Qed.

  End InfConcat.

Reachability in NFA


  Definition path r v s s' := valid_path r v /\ r 0 = s /\ r (S (|v|)) = s'.
  Definition reachable s s' := exists r v, path r v s s'.

  Lemma path_extensional r v v' s s': path r v s s' -> v == v' -> path r v' s s'.
  Proof.
    intros [V [B E]] Ev.
    repeat split; auto; now rewrite <-Ev.
  Qed.

  Global Instance path_proper r : Proper (strings_equal ==> eq ==> eq ==> iff) (path r).
  Proof.
    intros v v' Ev s_1 s_1' E_1 s_2 s_2' E_2. subst s_1' s_2'.
    split; intros P; apply (path_extensional P); [assumption | now symmetry].
  Qed.


Facts about Reachability

  Lemma valid_run_reachable r w: valid_run r w -> forall n m, n < m -> reachable (r n) (r m).
  Proof.
    intros V n m L. exists (drop n r); exists (extract n m w). split.
    - now apply valid_run_is_path_everywhere.
    - split; rewrite drop_correct; f_equal; comega.
  Qed.

  Lemma valid_path_reachable r v: valid_path r v -> forall i j, i < j <= S(|v|) -> reachable (r i) (r j).
  Proof.
   intros V i j L. exists (drop i r), (extract i j v). split.
   - now apply valid_path_is_path_everywhere.
   - split; rewrite drop_correct; f_equal; comega.
  Qed.

  Lemma concat_paths r r' v v' s s'' s': path r v s s'' -> path r' v' s'' s' -> path (mkstring r (|v|) +++ r') (v ++ v') s s'.
  Proof.
    intros [V [B E]] [V'[B' E']]. repeat split.
    - apply valid_concat_paths; auto. now rewrite B',E.
    - now rewrite prepend_string_begin by omega.
    - rewrite prepend_string_rest by comega. rewrite <-E'. f_equal. comega.
  Qed.

  Lemma split_path r u v s s' :path r (u ++ v) s s' -> exists s'', path r u s s'' /\ path (drop (S(|u|)) r) v s'' s'.
  Proof.
    intros [V [B E]]. exists (r (S(|u|))). repeat split;auto.
    - rewrite revert_concat_first with (v0 := v).
      apply valid_path_decrease; cbn; oauto.
    - rewrite (revert_concat_second u v).
      apply valid_path_drop; cbn ; oauto.
    - rewrite drop_correct. f_equal. omega.
    - rewrite drop_correct. now rewrite <-E.
  Qed.

  Lemma cycle_omega_is_valid_run r v s: path r v s s -> valid_run ((mkstring r (|v|)) to_omega) (v to_omega).
  Proof.
    intros [V [R0 RSk]].
    unfold omega_iteration.
    apply concat_inf_is_valid'. intros _. repeat split; auto.
    cbn. now rewrite R0.
  Qed.

End TransitionGraph.

Arguments Run [X] _.

Decidability of Reachability in NFAs

I do not claim that this is the nicest possibility (no, I am sure, it is not), but this is a well known fact and so not so interessting per se.
Section DecConnected.

  Context {X: finType}.
  Context {aut : NFA X}.

  Implicit Types (r: Run aut) (w: Seq X) (v: String X) (s: state aut).

Show that the maximum path length needed to connect two states is bounded


  Notation PathTriple := (prod (prod nat (Run aut)) (Seq X) : Type).
  Notation run T := (snd (fst T)).
  Notation len T := (fst (fst T)).
  Notation str T := (snd T).
  Notation valid_triple Z := (valid_path (run Z) (mkstring (str Z) (len Z))).

  Definition cut_loop (Z: PathTriple) : PathTriple := match Z with (k, r, w) =>
      match (can_find_duplicate k r) with
      | inleft (existT _ n1 (existT _ n2 _)) => match n1 with
              | 0 => (k - n2, drop n2 r, drop n2 w)
              | S n1' => (k - n2 + n1, cut (pred n1) (n2) r, cut (pred n1) (n2) w)
               end
      | _ => (k,r, w)
   end end.

  Fixpoint rem_loops' k Z := match k with
     | 0 => Z
     | S k => cut_loop (rem_loops' k Z)
  end.
  Definition rem_loops r v := rem_loops' (|v|) (|v|,r, seq v).

  Lemma cut_loop_valid Z: valid_triple Z -> valid_triple (cut_loop Z).
  Proof.
    destruct Z as [[k r] w]. intros V. cbn in V. simpl.
    destruct (can_find_duplicate (k) r) as [[i [j [O E]]] | _].
    - destruct i eqn:Ei.
      + cbn. apply (valid_path_drop (k:=j) V). comega.
      + rewrite_eq (pred (S n) = n). rewrite_eq (k - j + S n = S k - j + n).
        rewrite !pair_proj1, !pair_proj2, <-cut_string_cut by omega.
        now apply (valid_path_cut ).
    - assumption.
  Qed.

  Lemma cut_loop_decrease Z: len (cut_loop Z) < len Z \/ len (cut_loop Z) <= Cardinality (state aut) .
  Proof.
   destruct Z as [[k r] w]. unfold cut_loop. destruct (can_find_duplicate) as [ [[|i] [j[L _]]]|D].
   - left. comega.
   - left. comega.
   - now right.
  Qed.

  Lemma cut_loop_preserves_first_state Z: run (cut_loop Z) 0 = run Z 0.
  Proof.
    destruct Z as [[k r] w]. unfold cut_loop. destruct (can_find_duplicate k r) as [[[|i] [ j [ L E]]]|D]; simpl.
    - rewrite drop_correct. now rewrite_eq (j + 0= j).
    - now rewrite cut_front by oauto.
    - reflexivity.
  Qed.

  Lemma cut_loop_preserves_last_state Z: run (cut_loop Z) (S (len (cut_loop Z))) = run Z (S (len Z)).
  Proof.
    destruct Z as [[k r] w]. unfold cut_loop. destruct (can_find_duplicate k r) as [[[|i] [ j [ L E]]]|D]; simpl.
    - rewrite drop_correct. f_equal. omega.
    - rewrite_eq (S(k - j + S i) = S i + (S k - j)). rewrite cut_rest. f_equal. omega.
    - reflexivity.
  Qed.

  Lemma rem_loops'_valid k Z: valid_triple Z -> valid_triple (rem_loops' k Z).
  Proof.
    intros V. induction k; cbn; auto using cut_loop_valid.
  Qed.

  Lemma rem_loops_valid r v : valid_path r v -> valid_triple (rem_loops r v).
  Proof.
    intros P. unfold rem_loops. apply rem_loops'_valid. cbn. apply P.
  Qed.

  Lemma rem_loops'_length k Z : len (rem_loops' k Z) <= max ( len Z - k) (Cardinality (state aut)).
  Proof.
    induction k; cbn.
    - apply max_le_left. omega.
    - destruct (cut_loop_decrease (rem_loops' k Z)).
      + destruct (max_le IHk) as [D|D].
        * apply max_le_left. omega.
        * apply max_le_right. omega.
      + now apply max_le_right.
  Qed.

  Lemma rem_loops_length r v: len (rem_loops r v) <= Cardinality(state aut ).
  Proof.
    unfold rem_loops.
    pose (L := rem_loops'_length (| v |) (| v |, r, seq v)). cbn in *.
    rewrite_eq ((|v|)-(|v|) = 0) in L. now rewrite Nat.max_0_l in L.
  Qed.

  Lemma rem_loops'_preserves_ends k Z: run (rem_loops' k Z) 0 = run Z 0 /\ run (rem_loops' k Z) (S (len (rem_loops' k Z))) = run Z (S (len Z)).
  Proof.
    induction k.
    - cbn. tauto.
    - cbn in *. destruct IHk as [H1 H2]. split.
      + now rewrite cut_loop_preserves_first_state, H1.
      + now rewrite cut_loop_preserves_last_state, H2.
  Qed.

  Lemma rem_loops_preserves_ends r v: run (rem_loops r v) 0 = r 0 /\ run (rem_loops r v) (S (len (rem_loops r v))) = r (S (|v|)).
  Proof.
    unfold rem_loops. apply rem_loops'_preserves_ends.
  Qed.

  Lemma path_length_bounded s s': (exists r v, |v| <= (Cardinality (state aut)) /\ path (aut:=aut) r v s s') <-> reachable s s'.
  Proof.
    split.
    - firstorder.
    - intros [r [v [V [B E]]]].
      exists ( run (rem_loops r v)), (mkstring (str (rem_loops r v)) (len (rem_loops r v))). split.
      + cbn. apply rem_loops_length.
      + split.
        * now apply rem_loops_valid.
        * rewrite <- B, <-E. apply rem_loops_preserves_ends.
  Qed.

  Global Instance dec_valid_path r v: dec(valid_path (aut:= aut) r v).
  Proof.
    auto. (*by bounded forall *)
  Qed.

Now show that we can decide connectivity for the bounded paths

  Lemma bounded_run_is_valid_path r v s s':
    path r v s s' -> path (to_seq(to_bounded ( m:= S (|v|)) r)) v s s'.
  Proof.
    intros V. split.
    - intros k L. cbn in *. rewrite !bounded_unchanged by omega. now apply V.
    - rewrite !bounded_unchanged by comega. apply V.
  Qed.

  Lemma bounded_path_iff_path s s':
    (exists n, n <= Cardinality (state aut) /\ exists (b_r : ConstLengthString (S n)) (b_w: ConstLengthString n), path (to_seq b_r) (mkstring (to_seq b_w) n) s s')
    <-> (exists r v, |v| <= (Cardinality (state aut)) /\ path r v s s').
  Proof.
    split.
    - intros [n [L [R [W P]]]]. exists (to_seq R), (mkstring (to_seq W) n). split; cbn; oauto.
    - intros [r [[w n] [L P]]]. exists n. split; cbn in L.
      + omega.
      + exists (to_bounded r), (to_bounded w). apply bounded_run_is_valid_path; oauto.
        now rewrite <-bounded_unchanged_string.
  Qed.

  Global Instance dec_connected s s' : dec (reachable s s').
  Proof.
    apply (dec_prop_iff (path_length_bounded s s')).
    apply (dec_prop_iff (bounded_path_iff_path s s')).
    auto.
  Qed.

End DecConnected.