ZF set theory with Skolem function symbols

Axiomatisations


Require Import Undecidability.FOL.Util.Syntax.
Require Import Undecidability.FOL.Util.FullTarski.
Require Import Undecidability.FOL.Util.FullDeduction.
Import Vector.VectorNotations.
Require Import List.



Existing Instance falsity_on.

Inductive ZF_Funcs : Type :=
| eset : ZF_Funcs
| pair : ZF_Funcs
| union : ZF_Funcs
| power : ZF_Funcs
| om : ZF_Funcs.

Definition ZF_fun_ar (f : ZF_Funcs) : nat :=
  match f with
  | eset => 0
  | pair => 2
  | union => 1
  | power => 1
  | om => 0
  end.

Inductive ZF_Preds : Type :=
| elem : ZF_Preds
| equal : ZF_Preds.

Definition ZF_pred_ar (P : ZF_Preds) : nat :=
  match P with _ => 2 end.

Instance ZF_func_sig : funcs_signature :=
  {| syms := ZF_Funcs; ar_syms := ZF_fun_ar; |}.

Instance ZF_pred_sig : preds_signature :=
  {| preds := ZF_Preds; ar_preds := ZF_pred_ar; |}.


Notation "x ∈ y" := (atom _ ZF_pred_sig elem ([x; y])) (at level 35) : syn.
Notation "x ≡ y" := (atom (Σ_preds := ZF_pred_sig) equal ([x; y])) (at level 35) : syn.

Notation "∅" := (func ZF_func_sig eset ([])) : syn.
Notation "'ω'" := (func ZF_func_sig om ([])) : syn.
Notation "{ x ; y }" := (func ZF_func_sig pair ([x; y])) (at level 31) : syn.
Notation "⋃ x" := (func ZF_func_sig union ([x])) (at level 32) : syn.
Notation "'PP' x" := (func ZF_func_sig power ([x])) (at level 31) : syn.

Notation "x ∪ y" := ( {x; y}) (at level 32) : syn.
Notation "'σ' x" := (x {x; x}) (at level 32) : syn.

Definition sub x y :=
   $0 x`[] ~> $0 y`[].

Notation "x ⊆ y" := (sub x y) (at level 34) : syn.

Definition ax_ext :=
   $1 $0 ~> $0 $1 ~> $1 $0.

Definition ax_eset :=
   ¬ ($0 ).

Definition ax_pair :=
   $0 {$1; $2} <~> $0 $1 $0 $2.

Definition ax_union :=
   $0 $1 <~> $0 $2 $1 $0.

Definition ax_power :=
   $0 PP $1 <~> $0 $1.

Definition inductive x :=
   x $0 x`[] ~> σ $0 x`[].

Definition ax_om1 :=
  inductive ω.

Definition ax_om2 :=
   inductive $0 ~> ω $0.

Definition ax_sep phi :=
   $0 $1 <~> $0 $2 phi[$0.: Nat.add 3 >> var].

Definition fun_rel phi :=
   phi[$2 .: $1 .: Nat.add 3 >> var] ~> phi[$2 .: $0 .: Nat.add 3 >> var] ~> $1 $0.

Definition ax_rep phi :=
  fun_rel phi ~> $0 $1 <~> $0 $3 phi[$0 .: $1 .: Nat.add 4 >> var].


Definition ZF' :=
  ax_ext :: ax_eset :: ax_pair :: ax_union :: ax_power :: ax_om1 :: ax_om2 :: nil.


Inductive Z : form -> Prop :=
| Z_base phi : In phi ZF' -> Z phi
| Z_sep phi : Z (ax_sep phi).


Inductive ZF : form -> Prop :=
| ZF_base phi : In phi ZF' -> ZF phi
| ZF_sep phi : ZF (ax_sep phi)
| ZF_rep phi : ZF (ax_rep phi).

Definition ax_refl :=
   $0 $0.

Definition ax_sym :=
   $1 $0 ~> $0 $1.

Definition ax_trans :=
   $2 $1 ~> $1 $0 ~> $2 $0.

Definition ax_eq_elem :=
   $3 $1 ~> $2 $0 ~> $3 $2 ~> $1 $0.


Definition ZFeq' :=
  ax_refl :: ax_sym :: ax_trans :: ax_eq_elem :: ZF'.


Inductive Zeq : form -> Prop :=
| Zeq_base phi : In phi ZFeq' -> Zeq phi
| Zeq_sep phi : Zeq (ax_sep phi).


Inductive ZFeq : form -> Prop :=
| ZFeq_base phi : In phi ZFeq' -> ZFeq phi
| ZFeq_sep phi : ZFeq (ax_sep phi)
| ZFeq_rep phi : ZFeq (ax_rep phi).


Notation extensional M :=
  (forall x y, @i_atom _ ZF_pred_sig _ M equal ([x; y]) <-> x = y).


Definition entailment_ZFeq' phi :=
  forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi ZFeq' -> sigma psi) -> rho phi.


Definition entailment_ZF' phi :=
  forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi ZF' -> sigma psi) -> rho phi.


Definition entailment_Z phi :=
  forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, Z psi -> sigma psi) -> rho phi.


Definition entailment_ZF phi :=
  forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, ZF psi -> sigma psi) -> rho phi.


Definition deduction_ZF' phi :=
  ZFeq' I phi.


Definition deduction_Z phi :=
  Zeq TI phi.


Definition deduction_ZF phi :=
  ZFeq TI phi.