Require Import List Arith Lia.

From Undecidability.Shared.Libs.DLW.Utils
  Require Import utils_tac utils_list sums php.

Set Implicit Arguments.

Local Notation "∑" := (msum plus 0).

Section nat_swap.

  Variables (i j : nat).

  Definition swap n := if eq_nat_dec n i then j else
                       if eq_nat_dec n j then i else n.

  Fact swap_spec_i : swap i = j.
  Proof. unfold swap; destruct (eq_nat_dec i i); auto; lia. Qed.

  Fact swap_spec_j : swap j = i.
  Proof.
    unfold swap.
    destruct (eq_nat_dec j i); auto.
    destruct (eq_nat_dec j j); auto; lia.
  Qed.

  Fact swap_spec n : n <> i -> n <> j -> swap n = n.
  Proof.
    unfold swap; intros.
    destruct (eq_nat_dec n i); try lia.
    destruct (eq_nat_dec n j); lia.
  Qed.

  Fact swap_involutive n : swap (swap n) = n.
  Proof.
    destruct (eq_nat_dec n i).
    { subst n; rewrite swap_spec_i, swap_spec_j; auto. }
    destruct (eq_nat_dec n j).
    { subst n; rewrite swap_spec_j, swap_spec_i; auto. }
    { do 2 (rewrite swap_spec; auto). }
  Qed.

  Fact swap_inj n m : swap n = swap m -> n = m.
  Proof.
    intros; rewrite <- (swap_involutive n), H.
    apply swap_involutive.
  Qed.

End nat_swap.

Opaque swap.

Section php_fun.

  Variable (n : nat) (f : nat -> nat) (Hf : forall i, i <= n -> f i < n).

  Theorem php_fun : exists i j, i < j <= n /\ f i = f j.
  Proof.
    destruct PHP_rel with (R := fun x y => y = f x) (l := list_an 0 (S n)) (m := list_an 0 n)
      as (a & i & b & j & c & v & H1 & H2 & H3 & H4).
    + intros x; rewrite list_an_spec; simpl; intros [ _ H ].
      exists (f x); split; auto; rewrite list_an_spec; simpl; split; try lia.
      apply Hf; lia.
    + do 2 rewrite list_an_length; auto.
    + exists i, j; split; try lia.
      generalize H1; intros G1.
      apply list_an_app_inv in G1.
      destruct G1 as (G0 & G1); simpl in G1.
      injection G1; clear G1; intros G1 G2.
      symmetry in G1; apply list_an_app_inv in G1.
      destruct G1 as (G3 & G1); simpl in G1.
      injection G1; clear G1; intros G4 G1.
      apply f_equal with (f := @length _) in H1.
      revert H1; rew length; intros H1.
      lia.
  Qed.

End php_fun.

Section split_interval.


  Variables (n i : nat) (Hi : i <= n).

  Let g j := if le_lt_dec (S n) j then j else
             if le_lt_dec i j then
             if le_lt_dec j i then n
             else j-1
             else j.
  Let h j := if le_lt_dec (S n) j then j else
             if le_lt_dec n j then i else
             if le_lt_dec i j then j+1
             else j.
  Let Hg1 : forall j, j <= n -> g j <= n.
  Proof.
    intros j Hj; unfold g.
    destruct (le_lt_dec (S n) j); try lia.
    destruct (le_lt_dec i j); try lia.
    destruct (le_lt_dec j i); lia.
  Qed.

  Let Hg2 j : n < j -> g j = j.
  Proof.
    unfold g; destruct (le_lt_dec (S n) j); intros; lia.
  Qed.

  Let Hh1 : forall j, j <= n -> h j <= n.
  Proof.
    intros j Hj; unfold h.
    destruct (le_lt_dec (S n) j); try lia.
    destruct (le_lt_dec n j); try lia.
    destruct (le_lt_dec i j); lia.
  Qed.

  Let Hh2 j : n < j -> h j = j.
  Proof.
    unfold h; destruct (le_lt_dec (S n) j); intros; lia.
  Qed.

  Ltac mydestruct H :=
    match goal with
      |- if ?c then _ else _ = _ => destruct c as [ H | H ]; try lia; auto
    end.

  Theorem split_interval : { g : nat -> nat & { h | (forall j, j <= n -> g j <= n)
                                                 /\ (forall j, j <= n -> h j <= n)
                                                 /\ (forall j, g (h j) = j)
                                                 /\ (forall j, h (g j) = j)
                                                 /\ g i = n } }.
  Proof.
    exists g, h.
    split; [ | split; [ | split; [ | split ] ] ]; auto.
    + intros j; unfold h.
      destruct (le_lt_dec (S n) j) as [ | H1 ]; auto.
      destruct (le_lt_dec n j) as [ H2 | H2 ].
      { unfold g.
        destruct (le_lt_dec (S n) i); try lia.
        destruct (le_lt_dec i i); lia. }
      destruct (le_lt_dec i j) as [ H3 | H3 ].
      { unfold g.
        destruct (le_lt_dec (S n) (j+1)); try lia.
        destruct (le_lt_dec i (j+1)); try lia.
        destruct (le_lt_dec (j+1) i); lia. }
      { unfold g.
        destruct (le_lt_dec (S n) j); try lia.
        destruct (le_lt_dec i j); try lia. }
    + intros j; unfold g.
      destruct (le_lt_dec (S n) j) as [ | H1 ]; auto.
      destruct (le_lt_dec i j) as [ H2 | H2 ].
      destruct (le_lt_dec j i) as [ H3 | H3 ].
      { unfold h.
        destruct (le_lt_dec (S n) n); try lia.
        destruct (le_lt_dec n n); lia. }
      { unfold h.
        destruct (le_lt_dec (S n) (j-1)); try lia.
        destruct (le_lt_dec n (j-1)); try lia.
        destruct (le_lt_dec i (j-1)); lia. }
      { unfold h.
        destruct (le_lt_dec (S n) j); try lia.
        destruct (le_lt_dec n j); try lia.
        destruct (le_lt_dec i j); lia. }
    + unfold g.
      destruct (le_lt_dec (S n) i); try lia.
      destruct (le_lt_dec i i); lia.
  Qed.

End split_interval.

Definition find_max_fun n f : { i | i <= n /\ forall j, j <= n -> f j <= f i }.
Proof.
  revert f; induction n as [ | n IHn ]; intros f.
  + exists 0; split; auto.
    intros [ | ]; auto; lia.
  + destruct (IHn f) as (i & H1 & H2).
    destruct (le_lt_dec (f i) (f (S n))) as [ H | H ].
    * exists (S n); split; auto.
      intros j Hj.
      destruct (le_lt_dec j n) as [ H0 | H0 ].
      - apply le_trans with (2 := H); auto.
      - replace j with (S n); auto; lia.
    * exists i; split; auto.
      intros j Hj.
      destruct (le_lt_dec j n) as [ H0 | H0 ]; auto.
      replace j with (S n); auto; lia.
Qed.

Section sum_bounded_permutation.

  Let sigma_sum_split i n f : i < n -> (S n) f = f i + f n + i f + (n-S i) (fun j => f (S i+j)).
  Proof.
    intros Hi.
    replace (S n) with (i+1+(n- S i)+1) by lia.
    repeat (rewrite msum_plus; auto).
    do 2 rewrite msum_S, msum_0.
    repeat rewrite <- plus_assoc.
    rewrite (plus_comm).
    repeat rewrite <- plus_assoc.
    f_equal.
    { f_equal; lia. }
    simpl.
    rewrite (plus_comm).
    repeat rewrite <- plus_assoc.
    f_equal.
    { f_equal; lia. }
    f_equal.
    apply msum_ext.
    intros; f_equal; lia.
  Qed.

  Let sum_permutation_1 n i j g f :
            i < j < n
         -> g i = j
         -> g j = i
         -> (forall k, k <> i -> k <> j -> k < n -> g k = k)
         -> n f = n (fun i => f (g i)).
  Proof.
    revert i j g; induction n as [ | n IHn ]; intros i j g (H1 & H2) H3 H4 H5.
    + do 2 rewrite msum_0; auto.
    + destruct (eq_nat_dec j n) as [ H7 | H7 ].
      * rewrite H7 in *; clear j H7 H2.
        do 2 rewrite sigma_sum_split with (1 := H1).
        rewrite H3, H4; f_equal; [ f_equal | ]; try lia;
          apply msum_ext; intros; symmetry; f_equal; apply H5; lia.
      * do 2 (rewrite msum_plus1; auto); f_equal.
        - apply IHn with i j; auto; split; auto; lia.
        - symmetry; f_equal; apply H5; lia.
  Qed.

  Inductive bounded_permut n (i j : nat) g : Prop :=
    | in_nat_perm :
          i < n -> j < n -> g i = j -> g j = i
       -> (forall k, k <> i -> k <> j -> k < n -> g k = k)
       -> bounded_permut n i j g.

  Hint Resolve swap_spec_i swap_spec_j swap_spec : core.

  Fact swap_bounded_permut n i j : i < n -> j < n -> bounded_permut n i j (swap i j).
  Proof. constructor; auto. Qed.

  Inductive composed_permutation n g : Prop :=
    | in_cp_0 : (forall i, i < n -> g i = i) -> composed_permutation n g
    | in_cp_1 : forall i j f h,
                                bounded_permut n i j f
                             -> composed_permutation n h
                             -> (forall i, i < n -> g i = h (f i))
                             -> composed_permutation n g.

  Fact composed_permutation_ext n f g :
       (forall i, i < n -> f i = g i) -> composed_permutation n f -> composed_permutation n g.
  Proof.
    intros H1 H2; revert H2 g H1.
    induction 1 as [ f Hg | f i j p q H1 H2 IH2 H3 ]; intros g H4.
    + constructor 1; intros; rewrite <- H4; auto.
    + constructor 2 with i j p q; auto.
      intros; rewrite <- H4; auto.
  Qed.

  Let flat n f i := if le_lt_dec n i then n else f i.

  Let flat_left n f i : i < n -> flat n f i = f i.
  Proof. unfold flat; intro; destruct (le_lt_dec n i); auto; lia. Qed.

  Let flat_right n f i : n <= i -> flat n f i = n.
  Proof. unfold flat; intro; destruct (le_lt_dec n i); auto; lia. Qed.

  Fact composed_permutation_extends n f g :
         (forall i, i < n -> f i = g i) -> g n = n -> composed_permutation n f -> composed_permutation (S n) g.
  Proof.
    intros H1 H2 H3; revert H3 g H1 H2.
    induction 1 as [ f Hg | f i j p q H1 H2 IH2 H3 ]; intros g H4 H5.
    + constructor 1; intros j Hj.
      destruct (eq_nat_dec j n); subst; auto.
      rewrite <- H4, Hg; auto; lia.
    + constructor 2 with i j (flat n p) (flat n q).
      * destruct H1 as [ G1 G2 G3 G4 G5 ]; constructor; try lia.
        - rewrite flat_left; auto; lia.
        - rewrite flat_left; auto; lia.
        - intros k ? ? ?.
          destruct (eq_nat_dec k n); subst.
          ++ rewrite flat_right; auto.
          ++ rewrite flat_left, G5; lia.
      * apply IH2.
        - intros l Hl; rewrite flat_left; auto.
        - rewrite flat_right; lia.
      * intros k Hk.
        destruct (eq_nat_dec k n); subst.
        - rewrite (flat_right p), flat_right; lia.
        - rewrite (flat_left p); try lia.
          rewrite flat_left, <- H4; try lia.
          ++ apply H3; lia.
          ++ destruct H1 as [ G1 G2 G3 G4 G5 ].
             destruct (eq_nat_dec k i).
             { subst; auto. }
             destruct (eq_nat_dec k j).
             { subst k; lia. }
             rewrite G5; lia.
  Qed.

  Fact composed_permutation_S n g : g n = n -> composed_permutation n g -> composed_permutation (S n) g.
  Proof. intro; apply composed_permutation_extends; auto. Qed.

  Inductive bounded_injective n f : Prop :=
    | in_bounded_inj : (forall i, i < n -> f i < n)
                    -> (forall i j, i < n -> j < n -> f i = f j -> i = j)
                    -> bounded_injective n f.

  Fact injective_composed_permutation n f : bounded_injective n f
                                         -> composed_permutation n f.
  Proof.
    intros [ H1 H2 ].
    revert f H1 H2; induction n as [ | n IHn ]; intros f H1 H2.
    + constructor 1; intros; lia.
    + destruct (find_max_fun n f) as (i & H3 & H4).
      destruct (le_lt_dec n (f i)) as [ C | C ].
      - assert (f i = n) as Hf1.
        { apply le_antisym; auto; apply le_S_n, H1; lia. }
        assert (forall j, j <= n -> j <> i -> f j < n) as Hf2.
        { intros j G1 G2.
          destruct (eq_nat_dec (f j) n).
          + contradict G2; apply H2; lia.
          + specialize (H1 j); lia. }
        specialize (IHn (fun x => f (swap i n x))).
        spec in IHn.
        { intros j Hj.
          destruct (eq_nat_dec j i).
          + subst j; rewrite swap_spec_i; apply Hf2; lia.
          + rewrite swap_spec; try lia; apply Hf2; lia. }
        spec in IHn.
        { intros u v G1 G2 G3.
          apply H2 in G3.
          + revert G3; apply swap_inj.
          + destruct (eq_nat_dec u i).
            - subst; rewrite swap_spec_i; lia.
            - rewrite swap_spec; lia.
          + destruct (eq_nat_dec v i).
            - subst; rewrite swap_spec_i; lia.
            - rewrite swap_spec; lia. }
        apply composed_permutation_S in IHn.
        2: rewrite swap_spec_j, Hf1; auto.
        generalize (@swap_bounded_permut (S n) i n); intros G.
        do 2 (spec in G; try lia).
        constructor 2 with (1 := G) (2 := IHn).
        intros; rewrite swap_involutive; auto.
      - destruct (@php_fun n f) as (u & v & G1 & G2).
        { intros; apply le_lt_trans with (2 := C); auto. }
        apply H2 in G2; lia.
  Qed.

  Theorem sum_bounded_permutation n i j g f : bounded_permut n i j g -> n f = n (fun i => f (g i)).
  Proof.
    intros [ H1 H2 H3 H4 H5 ].
    destruct (lt_eq_lt_dec i j) as [ [ G1 | G1 ] | G1 ].
    + apply sum_permutation_1 with i j; auto; split; auto.
    + apply msum_ext; rewrite <- G1 in *; clear j G1.
      intros j Hj; f_equal.
      destruct (eq_nat_dec j i); subst; auto.
      rewrite H5; auto.
    + apply sum_permutation_1 with j i; auto; split; auto.
  Qed.

  Theorem sum_composed_permutation n f g : composed_permutation n g -> n f = n (fun i => f (g i)).
  Proof.
    induction 1 as [ g Hg | g i j p q H1 H2 IH2 H3 ].
    + symmetry; apply msum_ext; intros; f_equal; apply Hg; auto.
    + rewrite IH2, sum_bounded_permutation with (1 := H1).
      symmetry; apply msum_ext; intros; f_equal; auto.
  Qed.

  Theorem sum_injective n f g : bounded_injective n g -> n f = n (fun i => f (g i)).
  Proof.
    intros; apply sum_composed_permutation, injective_composed_permutation; trivial.
  Qed.

End sum_bounded_permutation.

Section sum_bijection.

  Inductive bijection n g h : Type :=
    | in_bij : (forall i, i < n -> g i < n)
            -> (forall i, i < n -> h i < n)
            -> (forall i, i < n -> g (h i) = i)
            -> (forall i, i < n -> h (g i) = i)
           -> bijection n g h.

  Theorem sum_bijection n f g h : bijection n g h -> n f = n (fun i => f (g i)).
  Proof.
    intros [ H1 H2 H3 H4 ].
    apply sum_injective.
    constructor; auto.
    intros i j G1 G2 G3; rewrite <- (H4 i), G3; auto.
  Qed.

  Inductive triangle_bijection n k g h : Prop :=
    | in_tb : (forall i j, j < i < n -> h (i,j) < k /\ g (h (i,j)) = (i,j))
           -> (forall q, q < k -> snd (g q) < fst (g q) < n /\ h (g q) = q)
           -> triangle_bijection n k g h.


End sum_bijection.