(* * Natural Deduction *)

From Undecidability Require Import FOL.Util.Tarski FOL.Util.Syntax.
Import FragmentSyntax.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
Local Set Implicit Arguments.

Ltac comp := repeat (progress (cbn in *; autounfold in *)).

Inductive peirce := class | intu.
Existing Class peirce.

Section ND_def.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.

  Reserved Notation "A ⊢ phi" (at level 61).

  (* ** Definition *)

  Implicit Type p : peirce.
  Implicit Type ff : falsity_flag.

  Inductive prv : forall (ff : falsity_flag) (p : peirce), list form -> form -> Prop :=
  | II {ff} {p} A phi psi : phi::A psi -> A phi --> psi
  | IE {ff} {p} A phi psi : A phi --> psi -> A phi -> A psi
  | AllI {ff} {p} A phi : map (subst_form ) A phi -> A phi
  | AllE {ff} {p} A t phi : A phi -> A phi[t..]
  | Exp {p} A phi : prv p A falsity -> prv p A phi
  | Ctx {ff} {p} A phi : phi el A -> A phi
  | Pc {ff} A phi psi : prv class A (((phi --> psi) --> phi) --> phi)
  where "A ⊢ phi" := (prv _ A phi).

  Arguments prv {_} _ _.

  Context {ff : falsity_flag}.
  Context {p : peirce}.

  Lemma impl_prv A B phi :
    (rev B ++ A) phi -> A (B ==> phi).
  Proof.
    revert A; induction B; intros A; cbn; simpl_list; intros.
    - firstorder.
    - eapply II. now eapply IHB.
  Qed.

  Theorem Weak A B phi :
    A phi -> A <<= B -> B phi.
  Proof.
    intros H. revert B.
    induction H; intros B HB; try unshelve (solve [econstructor; intuition]); try now econstructor.
  Qed.

End ND_def.

Local Hint Constructors prv : core.

Arguments prv {_ _ _ _} _ _.
Notation "A ⊢ phi" := (prv A phi) (at level 30).
Notation "A ⊢C phi" := (@prv _ _ _ class A phi) (at level 30).
Notation "A ⊢I phi" := (@prv _ _ _ intu A phi) (at level 30).
Notation "A ⊢M phi" := (@prv _ _ falsity_off intu A phi) (at level 30).

Section Soundness.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.

  Lemma soundness {ff : falsity_flag} A phi :
    A I phi -> valid_ctx A phi.
  Proof.
    remember intu as p.
    induction 1; intros D I rho HA; comp.
    - intros Hphi. apply IHprv; trivial. intros ? []; subst. assumption. now apply HA.
    - now apply IHprv1, IHprv2.
    - intros d. apply IHprv; trivial. intros psi [psi'[<- H' % HA]] % in_map_iff.
      eapply sat_comp. now comp.
    - eapply sat_comp, sat_ext. 2: apply (IHprv Heqp D I rho HA (eval rho t)). now intros [].
    - apply (IHprv Heqp) in HA. firstorder.
    - firstorder.
    - discriminate.
  Qed.

  Lemma soundness' {ff : falsity_flag} phi :
    [] I phi -> valid phi.
  Proof.
    intros H % soundness. firstorder.
  Qed.

End Soundness.