(* 
  Autor(s):
    Andrej Dudenhefner (1) 
  Affiliation(s):
    (1) Saarland University, Saarbrücken, Germany
*)


(* 
  Reduction from:
    Binary modified Post correspondence problem (MPCPb)
  to:
    Provability in a fixed Hilbert-style calculus (HSC_PRV)
*)


Require Import List Lia.
Import ListNotations.

Require Import ssreflect ssrbool ssrfun.

Require Import Undecidability.HilbertCalculi.HSC.
Require Import Undecidability.HilbertCalculi.Util.HSCFacts.

Require Import Undecidability.PCP.PCP.

Set Default Goal Selector "!".

Module Argument.

Local Arguments incl_cons_inv {A a l m}.
Local Arguments incl_cons {A a l m}.

Definition bullet := var 0.
(* encodes symbol true *)
Definition b2 := (arr bullet bullet).
(* encodes symbol false *)
Definition b3 := arr bullet (arr bullet bullet).

Fixpoint append_word (s: formula) (v: list bool) :=
  match v with
  | [] => s
  | a :: v =>
    if a then append_word (arr b2 s) v
    else append_word (arr b3 s) v
  end.

Definition encode_word (v: list bool) := append_word bullet v.
Definition encode_pair (s t: formula) := arr b3 (arr s (arr t b3)).

Local Notation "⟨ s , t ⟩" := (encode_pair s t).
Local Notation "⟦ v ⟧" := (encode_word v).
Local Notation "s → t" := (arr s t) (at level 50).

(* environment encoding the instance ((v, w), P) of BMPCP *)
Definition Γ v w P :=
  (encode_pair (var 1) (var 1)) ::
  (arr (encode_pair (encode_word v) (encode_word w)) a_b_a) ::
  map (fun '(v, w) => arr (encode_pair (append_word (var 2) v) (append_word (var 3) w)) (encode_pair (var 2) (var 3))) ((v, w) :: P).

Lemma arr_allowed {s t} : hsc [a_b_a] t -> hsc [a_b_a] (arr s t).
Proof.
  move=> H. apply: hsc_arr; last by eassumption.
  pose ζ i := if i is 0 then t else if i is 1 then s else var i.
  have -> : arr t (arr s t) = substitute ζ a_b_a by done.
  apply: hsc_var. by left.
Qed.

Lemma b3_allowed : hsc [a_b_a] b3.
Proof.
  pose ζ i := if i is 0 then bullet else if i is 1 then bullet else var i.
  have -> : b3 = substitute ζ a_b_a by done.
  apply: hsc_var. by left.
Qed.

(* Γ v w P is derivable from a → b → a *)
Lemma Γ_allowed {v w P} : forall r, In r (Γ v w P) -> hsc [a_b_a] r.
Proof.
  apply /Forall_forall. constructor; [|constructor; [|constructor]].
  - do 3 (apply: arr_allowed). by apply: b3_allowed.
  - apply: arr_allowed.
    have -> : a_b_a = substitute var a_b_a by done.
    apply: hsc_var. by left.
  - do 4 (apply: arr_allowed). by apply: b3_allowed.
  - apply /Forall_forall => ? /in_map_iff [[x y]] [<- _].
    do 4 (apply: arr_allowed). by apply: b3_allowed.
Qed.

Lemma encode_word_last {a v} : encode_word (v ++ [a]) = arr (if a then b2 else b3) (encode_word v).
Proof.
  rewrite /encode_word. move: (bullet) => r. elim: v r.
  { move=> r. by case: a. }
  move=> b A IH r. case: b; by apply: IH.
Qed.

Lemma encode_word_app {v x} : encode_word (v ++ x) = append_word (encode_word v) x.
Proof.
  elim: x v.
  { move=> v. by rewrite app_nil_r. }
  move=> a x IH v.
  rewrite -/(app [a] _) ? app_assoc IH encode_word_last /=.
  by case: a.
Qed.

(* unifiable words are equal *)
Lemma unify_words {v w ζ} : substitute ζ (encode_word v) = substitute ζ (encode_word w) -> v = w.
Proof.
  move: v w. elim /rev_ind.
  { elim /rev_ind; first done.
    move=> b w _. rewrite encode_word_last.
    move: b => [] /(f_equal size) /=; by lia. }
  move=> a v IH. elim /rev_ind.
  { rewrite encode_word_last.
    move: a => [] /(f_equal size) /=; by lia. }
  move=> b w _. rewrite ? encode_word_last.
  case: a; case: b; move=> /=; case.
  - by move /IH => ->.
  - move /(f_equal size) => /=. by lia.
  - move /(f_equal size) => /=. by lia.
  - by move /IH => ->.
Qed.

Lemma substitute_combine {ζ ξ r v x} :
  ζ 0 = ξ 0 ->
  substitute ζ r = substitute ξ (encode_word v) ->
  substitute ζ (append_word r x) = substitute ξ (encode_word (v ++ x)).
Proof.
  move=> ?. elim: x v r.
  { move=> ?. by rewrite app_nil_r. }
  move=> a x IH v r /=.
  have -> : v ++ a :: x = v ++ [a] ++ x by done.
  rewrite app_assoc. move=> ?. case: a.
  - apply: IH. rewrite encode_word_last. move=> /=. by congruence.
  - apply: IH. rewrite encode_word_last. move=> /=. by congruence.
Qed.

Lemma tau1_lastP {x y: list bool} {A} : tau1 (A ++ [(x, y)]) = tau1 A ++ x.
Proof.
  elim: A; first by rewrite /= app_nil_r.
  move=> [a b] A /= ->.
  by rewrite app_assoc.
Qed.

Lemma tau2_lastP {x y: list bool} {A} : tau2 (A ++ [(x, y)]) = tau2 A ++ y.
Proof.
  elim: A; first by rewrite /= app_nil_r.
  move=> [a b] A /= ->.
  by rewrite app_assoc.
Qed.

Lemma transparent_encode_pair {ζ s t} : ζ 0 = var 0 ->
  substitute ζ (encode_pair s t) = encode_pair (substitute ζ s) (substitute ζ t).
Proof. by move=> /= ->. Qed.

Lemma transparent_append_word {ζ s v} : ζ 0 = var 0 ->
  substitute ζ (append_word s v) = append_word (substitute ζ s) v.
Proof.
  move=> . elim: v s; first done.
  move=> a v IH s /=.
  case: a; by rewrite /b2 /b3 /bullet IH /= .
Qed.

Lemma substitute_arrP {ζ s t} : substitute ζ (arr s t) = arr (substitute ζ s) (substitute ζ t).
Proof. done. Qed.

(*
  Proof that there is a fixed Gamma (ΓPCP) with undecidable provability.
*)


(* fixed type environment encoding PCP *)
Definition ΓPCP :=
  [
    (* ((Q, P), (x, x)) *)
    encode_pair (var 1) (encode_pair (var 2) (var 2));
    (* ((P, P), ((x, v'), (y, w'))) → ((((v', w'), Q), P), ((x, •), (y, •))) *)
    arr
      (encode_pair (encode_pair (var 4) (var 4)) (encode_pair (encode_pair (var 5) (var 1)) (encode_pair (var 6) (var 2))))
      (encode_pair
        (encode_pair (encode_pair (encode_pair (var 1) (var 2)) (var 3)) (var 4))
        (encode_pair (encode_pair (var 5) bullet) (encode_pair (var 6) bullet)));
    (* ((Q, P), (x, y)) → ((((v', w'), Q), P), (x, y)) *)
    arr
      (encode_pair (encode_pair (var 2) (var 3)) (var 4))
      (encode_pair (encode_pair (encode_pair (var 1) (var 2)) (var 3)) (var 4));
    (* ((Q, P), ((x, a), v'), y) → ((Q, P), ((x, (a, v')), y) *)
    arr
      (encode_pair (var 1) (encode_pair (encode_pair (encode_pair (var 2) (var 3)) (var 4)) (var 5)))
      (encode_pair (var 1) (encode_pair (encode_pair (var 2) (encode_pair (var 3) (var 4))) (var 5)));
    (* ((Q, P), (x, ((y, a), w')) → ((Q, P), (x, (y, (a, w'))) *)
    arr
      (encode_pair (var 1) (encode_pair (var 5) (encode_pair (encode_pair (var 2) (var 3)) (var 4))))
      (encode_pair (var 1) (encode_pair (var 5) (encode_pair (var 2) (encode_pair (var 3) (var 4)))))
  ].

(* not ΓPCP ⊢ r → r → r *)
Lemma not_ΓPCP_rrr n r : not (der ΓPCP n (arr r (arr r r))).
Proof.
  elim: n r; first by move=> ? /der_0E.
  move=> n IH r /derE => [[ζ [s [k [_ [+ [+]]]]]]].
  rewrite /ΓPCP /In -/ΓPCP. case; last case; last case; last case; last case; last done.
  all: move=> <-.
  {
    case: k => [|k] /=; last by move=> /ForallE [/IH].
    move=> _ [<- _] /(f_equal size) => /=. by lia.
  }
  all: case: k => [|k] /=.
  1,3,5,7: by (move=> _; case=> _ <-; move /(f_equal size) => /=; by lia).
  all: case: k => [|k] /=.
  1,3,5,7: by (move=> _; case=> <- _; move /(f_equal size) => /=; by lia).
  all: by move=> /ForallE [_] /ForallE [/IH].
Qed.

Definition encode_bool b := if b then b2 else b3.

Fixpoint encode_list {X: Type} (encode_X: X -> formula) (A: list X) : formula :=
  match A with
  | [] => bullet
  | a :: A => encode_pair (encode_X a) (encode_list encode_X A)
  end.

Fixpoint encode_word' (s: formula) (v: list bool) :=
  match v with
  | [] => s
  | a :: v => encode_word' (encode_pair s (if a then b2 else b3)) v
  end.

Definition encode_word_pair '(x, y) := encode_pair (encode_list encode_bool x) (encode_list encode_bool y).

(* formula encoding the given PCP instance *)
Definition PCPf P x y :=
  encode_pair
    (encode_pair (encode_list encode_word_pair P) (encode_list encode_word_pair P))
    (encode_pair (encode_pair (encode_word' bullet x) bullet) (encode_pair (encode_word' bullet y) bullet)).

Definition PCPf' Q P s t :=
    encode_pair
      (encode_pair (encode_list encode_word_pair Q) (encode_list encode_word_pair P))
      (encode_pair s t).

Lemma encode_word'_last {x a} : encode_word' bullet (x ++ [a]) = encode_pair (encode_word' bullet x) (encode_bool a).
Proof.
  move: (bullet) => s.
  elim: x s; first done.
  by move=> b x IH s /=.
Qed.

Lemma hscI {Gamma ζ s t} : In s Gamma -> t = substitute ζ s -> hsc Gamma t.
Proof. by move=> /hsc_var + ->. Qed.

Lemma ΓPCP_assoc_x {P x r v} :
  hsc ΓPCP (PCPf' P P
    (encode_pair (encode_word' bullet (x ++ v)) bullet) r) ->
  hsc ΓPCP (PCPf' P P
    (encode_pair (encode_word' bullet x) (encode_list encode_bool v)) r).
Proof.
  elim: v x.
  { move=> ?. by rewrite app_nil_r. }
  move=> a v IH x. rewrite -/(app [a] _) app_assoc. move /IH.
  rewrite encode_word'_last.
  move /(hsc_arr _ _ _ _). apply.
  evar (ζ : nat -> formula).
  instantiate (ζ := fun x => match x with | 0 => _ | 1 => _ | 2 => _ | 3 => _| 4 => _ | _ => _ end).
  apply: (hscI (ζ := ζ)).
  { rewrite /ΓPCP. do 3 right. left. by reflexivity. }
  by rewrite /ζ substitute_arrP /PCPf' ? transparent_encode_pair.
Qed.

Lemma ΓPCP_assoc_y {P r y w} :
  hsc ΓPCP (PCPf' P P r
    (encode_pair (encode_word' bullet (y ++ w)) bullet)) ->
  hsc ΓPCP (PCPf' P P r
    (encode_pair (encode_word' bullet y) (encode_list encode_bool w))).
Proof.
  elim: w y.
  { move=> ?. by rewrite app_nil_r. }
  move=> a w IH y. rewrite -/(app [a] _) app_assoc. move /IH.
  rewrite encode_word'_last.
  move /(hsc_arr _ _ _ _). apply.
  evar (ζ : nat -> formula).
  instantiate (ζ := fun x => match x with | 0 => _ | 1 => _ | 2 => _ | 3 => _ | 4 => _ | _ => _ end).
  apply: (hscI (ζ := ζ)).
  { rewrite /ΓPCP. do 4 right. left. by reflexivity. }
  by rewrite /ζ substitute_arrP /PCPf' ? transparent_encode_pair.
Qed.

Lemma ΓPCP_saturate {Q R P s t} :
  P = R ++ Q ->
  hsc ΓPCP (PCPf' Q P s t) ->
  hsc ΓPCP (PCPf' P P s t).
Proof.
  elim /rev_ind : R Q P; first by move=> Q P ->.
  move=> vw R IH Q P. rewrite -app_assoc. move=> ->.
  move=> ?.
  suff : hsc ΓPCP (PCPf' ([vw] ++ Q) (R ++ ([vw] ++ Q)) s t) by (move /IH; apply).
  apply: hsc_arr; last eassumption.
  evar (ζ : nat -> formula).
  instantiate (ζ := fun x => match x with | 0 => _ | 1 => _ | 2 => _ | 3 => _ | _ => _ end).
  apply: (hscI (ζ := ζ)).
  { rewrite /ΓPCP. do 2 right. left. by reflexivity. }
  by rewrite /ζ substitute_arrP /PCPf' ? transparent_encode_pair.
Qed.

Lemma ΓPCP_step {P x y v w} :
  In (v, w) P ->
  hsc ΓPCP (PCPf' P P
    (encode_pair (encode_word' bullet x) (encode_list encode_bool v))
    (encode_pair (encode_word' bullet y) (encode_list encode_bool w))) ->
  hsc ΓPCP (PCPf P x y).
Proof.
  move /(@in_split _ _) => [R [Q ?]] ?.
  have : hsc ΓPCP (PCPf' ((v, w) :: Q) P
    (encode_pair (encode_word' bullet x) bullet)
    (encode_pair (encode_word' bullet y) bullet)).
  { apply: hsc_arr; last eassumption.
    evar (ζ : nat -> formula).
    instantiate (ζ := fun x => match x with | 0 => _ | 1 => _ | 2 => _ | 3 => _ | 4 => _ | 5 => _ | _ => _ end).
    apply: (hscI (ζ := ζ)).
    { rewrite /ΓPCP. do 1 right. left. by reflexivity. }
    by rewrite /ζ substitute_arrP /PCPf' ? transparent_encode_pair. }
  move /ΓPCP_saturate. apply. by eassumption.
Qed.

Lemma ΓPCP_soundness_ind {v w P A} :
  incl A ((v, w) :: P) ->
  hsc ΓPCP (PCPf ((v, w) :: P) (v ++ (tau1 A)) (w ++ (tau2 A))) ->
  hsc ΓPCP (PCPf ((v, w) :: P) v w).
Proof.
  elim /rev_ind : A.
  { move=> _ /=. by rewrite ? app_nil_r. }
  move=> [x y] A IH /incl_app_inv [/IH] + /incl_cons_inv [? _].
  rewrite tau1_lastP tau2_lastP ? app_assoc.
  move=> + ?; apply.
  apply: ΓPCP_step; first by eassumption.
  apply: ΓPCP_assoc_x. apply: ΓPCP_assoc_y.
  by assumption.
Qed.

(* if BMPCP has a solution, then the formula (PCPf ((v, w) :: P) v w) is derivable from ΓPCP *)
Lemma ΓPCP_soundness {v w P} : MPCPb ((v, w), P) -> hsc ΓPCP (PCPf ((v, w) :: P) v w).
Proof.
  move=> [A [/ΓPCP_soundness_ind]]. move=> + H.
  rewrite {}H. apply.
  evar (ζ : nat -> formula).
  instantiate (ζ := fun x => match x with | 0 => _ | 1 => _ | _ => _ end).
  apply: (hscI (ζ := ζ)); first by left.
  by rewrite /ζ /PCPf transparent_encode_pair.
Qed.

Lemma encode_bool_injective {a b} : encode_bool a = encode_bool b -> a = b.
Proof. case: a b; by case. Qed.

Lemma encode_word'_injective {x y} : encode_word' bullet x = encode_word' bullet y -> x = y.
Proof.
  move: x y.
  elim /rev_ind => [|a x IHx].
  all: elim /rev_ind => [|b y IHy].
  all: rewrite ? encode_word'_last.
  all: try done.
  by move=> [] /IHx <- /encode_bool_injective <-.
Qed.

Lemma encode_list_injective {x y} : encode_list encode_bool x = encode_list encode_bool y -> x = y.
Proof.
  elim: x y=> [|a x IH]; case=> //=.
  by move=> b y [] /encode_bool_injective => <- /IH <-.
Qed.

Lemma substitute_pairP {ζ s t s' t'} : (substitute ζ (encode_pair s t) = encode_pair s' t') <-> ζ 0 = bullet /\ substitute ζ s = s' /\ substitute ζ t = t'.
Proof.
  constructor; first by case.
  by move=> [+ [+ +]] /= => -> -> ->.
Qed.

Lemma ΓPCP_completeness_ind {Q P x y v w n} : incl Q P ->
  der ΓPCP n (PCPf' Q P
    (encode_pair (encode_word' bullet x) (encode_list encode_bool v))
    (encode_pair (encode_word' bullet y) (encode_list encode_bool w))) ->
  exists A, incl A P /\ x ++ v ++ tau1 A = y ++ w ++ tau2 A.
Proof.
  elim: n Q x y v w; first by move=> > _ /der_0E.
  move=> n IH Q x y v w HQ /derE.
  move=> [ζ [s [k [_ [+ [+]]]]]].
  have Hu (r) : r = arr r (arr r r) -> False.
  { move /(f_equal size) => /=. by lia. }
  rewrite /ΓPCP /In -/ΓPCP. case; last case; last case; last case; last case; last done.
  all: move=> <-.
  { case: k=> [|k] /=; last by move=> /ForallE [/not_ΓPCP_rrr].
    move=> _. case. do 7 (move=> _). move=> ->.
    case=> /encode_word'_injective + /encode_list_injective.
    move=> -> ->. do 6 (move=> _). exists []. by constructor. }
  all: case: k=> [|k].
  1,3,5,7: move=> _ /=; case=> <- *; exfalso; apply: Hu; by eassumption.
  all: case: k=> [|k].
  2,4,6,8: by move=> /= /ForallE [_] /ForallE [/not_ΓPCP_rrr].
  all: rewrite substitute_arrP /arguments /target.
  all: move=> /ForallE [Hder _]; rewrite ? substitute_pairP.
  (* step case *)
  {
    move=> [H0] [[_ [H123 H4]]] [_] [[_ [H5 Hv]]] [_ [H6 Hw]].
    move: H123 HQ. case: Q; first done.
    move=> [v' w'] Q. rewrite /encode_list -/encode_list /encode_word_pair -/encode_word_pair.
    rewrite ? substitute_pairP.
    move=> [_ [[_ [H1 H2]] H3]].
    move: Hder. rewrite ? transparent_encode_pair //.
    rewrite H1 H2 H4 H5 H6. move /IH. move /(_ ltac:(done)).
    move=> [A [HAP HxyA]].
    move /(_ (v', w')). move /(_ ltac:(by left)) => ?.
    move: v w Hv Hw => [|? ?] [|? ?].
    { exists ((v', w') :: A).
      constructor; [by apply /incl_cons | by assumption]. }
    all: by rewrite /= H0.
  }
  (* cons case *)
  {
    move=> [H0] [[_ [H12 H3]]] H4.
    move: H12 HQ. case: Q; first done.
    move=> ? Q. rewrite /encode_list -/encode_list ? substitute_pairP. move=> [_ [_ H2]].
    move=> /incl_cons_inv [_ HQ].
    move: Hder. rewrite ? transparent_encode_pair => //.
    rewrite H2 H3 H4. move /IH. by apply.
  }
  (* assoc x case *)
  {
    move=> [H0] [H1] [_] [[_ [H2]]] H34 H5.
    move: H34. case: v; first done.
    move=> a v. rewrite /encode_list -/encode_list substitute_pairP.
    move=> [_ [H3 H4]].
    move: Hder. rewrite ? transparent_encode_pair => //.
    rewrite H1 H2 H3 H4 H5 -encode_word'_last. move /IH.
    rewrite -/(app [a] v). move /(_ ltac:(done)) => [A [?]].
    rewrite - ? app_assoc => ?. by exists A.
  }
  (* assoc y case *)
  {
    move=> [H0] [H1] [_] [H5] [_ [H2 H34]].
    move: H34. case: w; first done.
    move=> a w. rewrite /encode_list -/encode_list substitute_pairP.
    move=> [_ [H3 H4]].
    move: Hder. rewrite ? transparent_encode_pair => //.
    rewrite H1 H2 H3 H4 H5 -encode_word'_last. move /IH.
    rewrite -/(app [a] w). move /(_ ltac:(done)) => [A [?]].
    rewrite - ? app_assoc => ?. by exists A.
  }
Qed.

(* if the formula (PCPf ((v, w) :: P) v w) is derivable from ΓPCP, then BMPCP has a solution *)
Lemma ΓPCP_completeness {v w P} : hsc ΓPCP (PCPf ((v, w) :: P) v w) -> MPCPb ((v, w), P).
Proof.
  move /hsc_der => [n].
  have -> : PCPf ((v, w) :: P) v w =
    PCPf' ((v, w) :: P) ((v, w) :: P)
      (encode_pair (encode_word' bullet v) (encode_list encode_bool []))
      (encode_pair (encode_word' bullet w) (encode_list encode_bool [])) by done.
  move /ΓPCP_completeness_ind. by apply.
Qed.

End Argument.

Require Import Undecidability.Synthetic.Definitions.

(* Reduction from BMPCP to HSC_PRV *)
Theorem reduction : MPCPb (HSC_PRV Argument.ΓPCP).
Proof.
  exists (fun '((v, w), P) => (Argument.PCPf ((v, w) :: P) v w)).
  intros [[v w] P]. constructor.
  - exact Argument.ΓPCP_soundness.
  - exact Argument.ΓPCP_completeness.
Qed.