From Undecidability.L Require Import Computability.Decidability Datatypes.LNat Datatypes.LTerm L.
Require Import Nat.
(* ** Decidabiity of closedness, boundedness and procness *)
Fixpoint boundb (k : nat) (t : term) : bool :=
match t with
| var n => negb (k <=? n)
| app s t => andb (boundb k s) (boundb k t)
| lam s => boundb (S k) s
end.
Instance term_boundb : computableTime' boundb (fun _ _ => (5,fun s _ => (size s * 31+9,tt))).
Proof.
extract. solverec.
unfold c__leb2, leb_time, c__leb. nia.
Qed.
Lemma boundb_spec k t : Bool.reflect (bound k t) (boundb k t).
Proof.
revert k. induction t;intros;cbn. simpl.
-destruct (Nat.leb_spec0 k n); simpl;constructor. intros H. inv H. lia. constructor. lia.
-specialize (IHt1 k). specialize (IHt2 k). inv IHt1;simpl.
+inv IHt2;constructor.
*now constructor.
*intros C. now inv C.
+constructor. intros C. now inv C.
-specialize (IHt (S k)). inv IHt;constructor.
+now constructor.
+intros C. now inv C.
Qed.
Definition closedb := boundb 0.
Lemma closedb_spec s : Bool.reflect (closed s) (closedb s).
Proof.
unfold closedb.
destruct (boundb_spec 0 s);constructor; rewrite closed_dcl;auto.
Qed.
Instance termT_closedb : computableTime' closedb (fun s _ => (size s * 31+15,tt)).
Proof.
change closedb with (fun x => boundb 0 x).
extract. solverec.
Qed.
Definition lambdab (t : term) : bool :=
match t with
| lam _ => true
| _ => false
end.
Instance term_lambdab : computableTime' lambdab (fun _ _ => (11,tt)).
Proof.
extract. solverec.
Qed.
Lemma lambdab_spec t : Bool.reflect (lambda t) (lambdab t).
Proof.
destruct t;constructor;[intros H;inv H;congruence..|auto].
Qed.
Lemma ldec_lambda : ldec lambda.
Proof.
apply (dec_ldec lambdab). apply lambdab_spec.
Qed.
Lemma ldec_closed : ldec closed.
Proof.
apply (dec_ldec closedb). apply closedb_spec.
Qed.
Lemma ldec_proc : ldec proc.
Proof.
apply ldec_conj. apply ldec_closed. apply ldec_lambda.
Qed.
Require Import Nat.
(* ** Decidabiity of closedness, boundedness and procness *)
Fixpoint boundb (k : nat) (t : term) : bool :=
match t with
| var n => negb (k <=? n)
| app s t => andb (boundb k s) (boundb k t)
| lam s => boundb (S k) s
end.
Instance term_boundb : computableTime' boundb (fun _ _ => (5,fun s _ => (size s * 31+9,tt))).
Proof.
extract. solverec.
unfold c__leb2, leb_time, c__leb. nia.
Qed.
Lemma boundb_spec k t : Bool.reflect (bound k t) (boundb k t).
Proof.
revert k. induction t;intros;cbn. simpl.
-destruct (Nat.leb_spec0 k n); simpl;constructor. intros H. inv H. lia. constructor. lia.
-specialize (IHt1 k). specialize (IHt2 k). inv IHt1;simpl.
+inv IHt2;constructor.
*now constructor.
*intros C. now inv C.
+constructor. intros C. now inv C.
-specialize (IHt (S k)). inv IHt;constructor.
+now constructor.
+intros C. now inv C.
Qed.
Definition closedb := boundb 0.
Lemma closedb_spec s : Bool.reflect (closed s) (closedb s).
Proof.
unfold closedb.
destruct (boundb_spec 0 s);constructor; rewrite closed_dcl;auto.
Qed.
Instance termT_closedb : computableTime' closedb (fun s _ => (size s * 31+15,tt)).
Proof.
change closedb with (fun x => boundb 0 x).
extract. solverec.
Qed.
Definition lambdab (t : term) : bool :=
match t with
| lam _ => true
| _ => false
end.
Instance term_lambdab : computableTime' lambdab (fun _ _ => (11,tt)).
Proof.
extract. solverec.
Qed.
Lemma lambdab_spec t : Bool.reflect (lambda t) (lambdab t).
Proof.
destruct t;constructor;[intros H;inv H;congruence..|auto].
Qed.
Lemma ldec_lambda : ldec lambda.
Proof.
apply (dec_ldec lambdab). apply lambdab_spec.
Qed.
Lemma ldec_closed : ldec closed.
Proof.
apply (dec_ldec closedb). apply closedb_spec.
Qed.
Lemma ldec_proc : ldec proc.
Proof.
apply ldec_conj. apply ldec_closed. apply ldec_lambda.
Qed.