Require Import List Lia.
Import ListNotations.

Require Import Undecidability.PCP.PCP.
Require Import Undecidability.PCP.Util.Facts.

Require Import Undecidability.Synthetic.Definitions.

(* ** PCP reduces to BPCP *)

(* natural numbers n to bitstrings of the form 1^n *)

Definition to_bitstring (n : nat) : string bool := Nat.iter n (cons true) [].

Lemma bitstring_false a : ~ false el to_bitstring a.
Proof.
  induction a; cbn; firstorder congruence.
Qed.

(* strings of natural numbers to bitstrings,  n1, ... n2  |-> 1^n1 0 ... 1^n2 0 *)
Fixpoint f_s (x : string nat) : string bool :=
  match x with
  | nil => nil
  | a :: x => to_bitstring a ++ [false] ++ f_s x
  end.

Lemma f_s_app x y : f_s (x ++ y) = f_s x ++ f_s y.
Proof.
  induction x; cbn.
  - reflexivity.
  - rewrite IHx. now rewrite <- app_assoc.
Qed.

(* extension to cards and stacks *)
Definition f_c '(x,y) := (f_s x, f_s y).
Definition f (P : stack nat) : stack bool :=
  map f_c P.

Lemma tau1_f A : tau1 (f A) = f_s (tau1 A).
Proof.
  induction A as [ | (x,y) ]; cbn.
  - reflexivity.
  - unfold f in IHA. now rewrite IHA, f_s_app.
Qed.

Lemma tau2_f A : tau2 (f A) = f_s (tau2 A).
Proof.
  induction A as [ | (x,y) ]; cbn.
  - reflexivity.
  - unfold f in IHA. now rewrite IHA, f_s_app.
Qed.

(* interpretation of a bitstring as list of natural numbers *)
Fixpoint g_s' (x : string bool) (n : nat) : string nat :=
  match x with
  | nil => nil
  | true :: x' => g_s' x' (S n)
  | false :: x' => n :: g_s' x' 0
  end.

Lemma g_s'_app n x y :
  g_s' (f_s x ++ y) n = match x with nil => g_s' y n | m :: x => n + m :: x ++ g_s' y 0 end.
Proof.
  revert n y. induction x as [ | m]; intros; cbn in *.
  - reflexivity.
  - revert n; induction m; intros; cbn in *.
    + destruct x.
      * do 2 f_equal. lia.
      * rewrite IHx. f_equal. lia.
    + rewrite IHm. f_equal. lia.
Qed.

Definition g_s x := g_s' x 0.

Lemma f_g_s'_inv x : g_s (f_s x) = x.
Proof.
  unfold g_s. setoid_rewrite <- app_nil_r at 2. rewrite g_s'_app.
  destruct x; eauto. cbn. now rewrite app_nil_r.
Qed.

(* extension to cards and stacks *)
Definition g_c '(x,y) := (g_s x, g_s y).
Definition g (P : stack bool) : stack nat :=
  map g_c P.

(* Invariants *)

Lemma tau1_g A B : A <<= f B -> tau1 (g A) = g_s (tau1 A).
Proof.
  induction A as [ | (x,y)]; cbn.
  - reflexivity.
  - unfold g in IHA. intros. rewrite !IHA.
    assert ( (x, y) el map f_c B) as ((x',y') & ? & ?) % in_map_iff by firstorder; inv H0.
    rewrite g_s'_app. destruct x'.
    + cbn. reflexivity.
    + rewrite f_g_s'_inv. cbn. reflexivity.
    + firstorder.
Qed.

Lemma tau2_g A B : A <<= f B -> tau2 (g A) = g_s (tau2 A).
Proof.
  induction A as [ | (x,y)]; cbn.
  - reflexivity.
  - unfold g in IHA. intros. rewrite !IHA.
    assert ( (x, y) el map f_c B) as ((x',y') & ? & ?) % in_map_iff by firstorder; inv H0.
    rewrite g_s'_app. destruct y'.
    + cbn. reflexivity.
    + rewrite f_g_s'_inv. cbn. reflexivity.
    + firstorder.
Qed.

Lemma f_subset B A : A <<= B -> f A <<= f B.
Proof.
  induction A in B |- *; intros H; cbn.
  * firstorder.
  * intros ? [| H0]; subst.
    - unfold f. eapply in_map_iff. exists a.
      constructor; eauto.
      apply H; simpl; auto.
    - eapply IHA in H0; eauto.
      intros ? ?; apply H; simpl; auto.
Qed.

Lemma f_g_subset B A : A <<= f B -> g A <<= B.
Proof.
  revert B; induction A; intros B H; cbn.
  * firstorder.
  * assert (a el f B) by firstorder.
    unfold f in H0. eapply in_map_iff in H0 as ((x,y) & ? & ?). inv H0.
    intros ? [|]; subst. cbn. now rewrite !f_g_s'_inv. firstorder.
Qed.

Theorem reduction : PCP PCPb.
Proof.
  exists f. intros B. split.
  - intros (A & HP & He & H). exists (f A). repeat split.
    + now eapply f_subset.
    + destruct A; cbn; congruence.
    + unfold f, f_c, f_s. setoid_rewrite tau1_f. setoid_rewrite tau2_f. now rewrite H.
  - intros (A & HP & He & H). exists (g A). repeat split.
    + eapply f_g_subset; eauto.
    + destruct A; cbn; congruence.
    + erewrite tau1_g, tau2_g, H; eauto.
Qed.