(*
Autor(s):
Andrej Dudenhefner (1)
Affiliation(s):
(1) Saarland University, Saarbrücken, Germany
*)
(*
Reduction from:
Right-uniform Two-inequality Semi-unification (RU2SemiU)
to:
Left-uniform Two-inequality Semi-unification (LU2SemiU)
*)
Require Import List.
Require Import Undecidability.SemiUnification.SemiU.
From Undecidability.SemiUnification.Util Require Import Facts Enumerable.
Require Import ssreflect ssrfun ssrbool.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Module Argument.
Definition embed_var (x: nat) := atom (to_nat (x, 0)).
(* two fresh variables *)
Definition z (b: bool) := atom (to_nat (0, if b then 2 else 1)).
Section RU2SemiU_LU2SemiU.
Variables s0 s1 t: term. (* RU2SemiU instance *)
(* LU2SemiU instance *)
Definition s' := substitute embed_var (arr s0 s1).
Definition t0' := arr (substitute embed_var t) (z false).
Definition t1' := arr (z true) (substitute embed_var t).
Section Transport.
Variables φ ψ0 ψ1 : valuation.
Variable Hψ0 : substitute ψ0 (substitute φ s0) = substitute φ t.
Variable Hψ1 : substitute ψ1 (substitute φ s1) = substitute φ t.
(* LU2SemiU valuation φ from RU2SemiU valuation φ' *)
Definition φ' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (φ x)
| (0, 1) => substitute embed_var (substitute ψ0 (substitute φ s1))
| (0, 2) => substitute embed_var (substitute ψ1 (substitute φ s0))
| _ => atom x
end.
(* LU2SemiU valuations ψ from RU2SemiU valuations *)
Definition ψ0' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ0 x)
| _ => atom x
end.
Definition ψ1' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ1 x)
| _ => atom x
end.
Lemma substitute_φ'P {r: term} :
substitute φ' (substitute embed_var r) = substitute embed_var (substitute φ r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /φ' ?enumP | by rewrite /φ' ?enumP | by f_equal]. Qed.
Lemma substitute_ψ0'P {r: term} :
substitute ψ0' (substitute embed_var r) = substitute embed_var (substitute ψ0 r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /ψ0' ?enumP | by rewrite /ψ0' ?enumP | by f_equal]. Qed.
Lemma substitute_ψ1'P {r: term} :
substitute ψ1' (substitute embed_var r) = substitute embed_var (substitute ψ1 r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /ψ1' ?enumP | by rewrite /ψ1' ?enumP | by f_equal]. Qed.
(* if the given right-uniform semi-unification instance is solvable,
then so is the constructed left-uniform semi-unification instance *)
Lemma transport : LU2SemiU (s', t0', t1').
Proof using φ ψ0 ψ1 Hψ0 Hψ1.
exists φ', ψ0', ψ1'. constructor.
- rewrite /s' /t0' /=. congr arr; rewrite ?substitute_φ'P substitute_ψ0'P ?/φ' ?enumP; by congruence.
- rewrite /s' /t1' /=. congr arr; rewrite ?substitute_φ'P substitute_ψ1'P ?/φ' ?enumP; by congruence.
Qed.
End Transport.
Section Reflection.
Variables φ' ψ0' ψ1' : valuation.
Variable Hψ0' : substitute ψ0' (substitute φ' s') = substitute φ' t0'.
Variable Hψ1' : substitute ψ1' (substitute φ' s') = substitute φ' t1'.
Lemma substitute_embed_var {ξ r} :
substitute (fun x => ξ (to_nat (x, 0))) r = substitute ξ (substitute embed_var r).
Proof.
elim: r; [done | by move=> /=; congruence].
Qed.
(* if the constructed left-uniform semi-unification instance is solvable,
then so is given right-uniform semi-unification instance *)
Lemma reflection : RU2SemiU (s0, s1, t).
Proof using φ' ψ0' ψ1' Hψ0' Hψ1'.
exists (fun x => φ' (to_nat (x, 0))), ψ0', ψ1'. move: Hψ0' Hψ1'.
rewrite ?(substitute_embed_var (ξ := φ')) /s' /t0' /t1' /=.
move=> ? ?. constructor; by congruence.
Qed.
End Reflection.
End RU2SemiU_LU2SemiU.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
(* many-one reduction from right-uniform two-inequality semi-unification
to left-uniform two-inequality semi-unification *)
Theorem reduction : RU2SemiU ⪯ LU2SemiU.
Proof.
exists (fun '(s0, s1, t) => (Argument.s' s0 s1, Argument.t0' t, Argument.t1' t)).
move=> [[? ?] ?]. constructor.
- move=> [?] [?] [?] [? ?]. apply: Argument.transport; by eassumption.
- move=> [?] [?] [?] [? ?]. apply: Argument.reflection; by eassumption.
Qed.
Autor(s):
Andrej Dudenhefner (1)
Affiliation(s):
(1) Saarland University, Saarbrücken, Germany
*)
(*
Reduction from:
Right-uniform Two-inequality Semi-unification (RU2SemiU)
to:
Left-uniform Two-inequality Semi-unification (LU2SemiU)
*)
Require Import List.
Require Import Undecidability.SemiUnification.SemiU.
From Undecidability.SemiUnification.Util Require Import Facts Enumerable.
Require Import ssreflect ssrfun ssrbool.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Module Argument.
Definition embed_var (x: nat) := atom (to_nat (x, 0)).
(* two fresh variables *)
Definition z (b: bool) := atom (to_nat (0, if b then 2 else 1)).
Section RU2SemiU_LU2SemiU.
Variables s0 s1 t: term. (* RU2SemiU instance *)
(* LU2SemiU instance *)
Definition s' := substitute embed_var (arr s0 s1).
Definition t0' := arr (substitute embed_var t) (z false).
Definition t1' := arr (z true) (substitute embed_var t).
Section Transport.
Variables φ ψ0 ψ1 : valuation.
Variable Hψ0 : substitute ψ0 (substitute φ s0) = substitute φ t.
Variable Hψ1 : substitute ψ1 (substitute φ s1) = substitute φ t.
(* LU2SemiU valuation φ from RU2SemiU valuation φ' *)
Definition φ' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (φ x)
| (0, 1) => substitute embed_var (substitute ψ0 (substitute φ s1))
| (0, 2) => substitute embed_var (substitute ψ1 (substitute φ s0))
| _ => atom x
end.
(* LU2SemiU valuations ψ from RU2SemiU valuations *)
Definition ψ0' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ0 x)
| _ => atom x
end.
Definition ψ1' : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ1 x)
| _ => atom x
end.
Lemma substitute_φ'P {r: term} :
substitute φ' (substitute embed_var r) = substitute embed_var (substitute φ r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /φ' ?enumP | by rewrite /φ' ?enumP | by f_equal]. Qed.
Lemma substitute_ψ0'P {r: term} :
substitute ψ0' (substitute embed_var r) = substitute embed_var (substitute ψ0 r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /ψ0' ?enumP | by rewrite /ψ0' ?enumP | by f_equal]. Qed.
Lemma substitute_ψ1'P {r: term} :
substitute ψ1' (substitute embed_var r) = substitute embed_var (substitute ψ1 r).
Proof. elim: r => [[| ?] | *] /=; [by rewrite /ψ1' ?enumP | by rewrite /ψ1' ?enumP | by f_equal]. Qed.
(* if the given right-uniform semi-unification instance is solvable,
then so is the constructed left-uniform semi-unification instance *)
Lemma transport : LU2SemiU (s', t0', t1').
Proof using φ ψ0 ψ1 Hψ0 Hψ1.
exists φ', ψ0', ψ1'. constructor.
- rewrite /s' /t0' /=. congr arr; rewrite ?substitute_φ'P substitute_ψ0'P ?/φ' ?enumP; by congruence.
- rewrite /s' /t1' /=. congr arr; rewrite ?substitute_φ'P substitute_ψ1'P ?/φ' ?enumP; by congruence.
Qed.
End Transport.
Section Reflection.
Variables φ' ψ0' ψ1' : valuation.
Variable Hψ0' : substitute ψ0' (substitute φ' s') = substitute φ' t0'.
Variable Hψ1' : substitute ψ1' (substitute φ' s') = substitute φ' t1'.
Lemma substitute_embed_var {ξ r} :
substitute (fun x => ξ (to_nat (x, 0))) r = substitute ξ (substitute embed_var r).
Proof.
elim: r; [done | by move=> /=; congruence].
Qed.
(* if the constructed left-uniform semi-unification instance is solvable,
then so is given right-uniform semi-unification instance *)
Lemma reflection : RU2SemiU (s0, s1, t).
Proof using φ' ψ0' ψ1' Hψ0' Hψ1'.
exists (fun x => φ' (to_nat (x, 0))), ψ0', ψ1'. move: Hψ0' Hψ1'.
rewrite ?(substitute_embed_var (ξ := φ')) /s' /t0' /t1' /=.
move=> ? ?. constructor; by congruence.
Qed.
End Reflection.
End RU2SemiU_LU2SemiU.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
(* many-one reduction from right-uniform two-inequality semi-unification
to left-uniform two-inequality semi-unification *)
Theorem reduction : RU2SemiU ⪯ LU2SemiU.
Proof.
exists (fun '(s0, s1, t) => (Argument.s' s0 s1, Argument.t0' t, Argument.t1' t)).
move=> [[? ?] ?]. constructor.
- move=> [?] [?] [?] [? ?]. apply: Argument.transport; by eassumption.
- move=> [?] [?] [?] [? ?]. apply: Argument.reflection; by eassumption.
Qed.