(*
Autor(s):
Andrej Dudenhefner (1)
Affiliation(s):
(1) Saarland University, Saarbrücken, Germany
*)
(*
Reduction from:
Simple Semi-unification (SSemiU)
to:
Right-uniform Two-inequality Semi-unification (RU2SemiU)
*)
Require Import List.
Require Import Undecidability.SemiUnification.SemiU.
From Undecidability.SemiUnification.Util Require Import Facts Enumerable.
Require Import ssreflect ssrfun ssrbool.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Module Argument.
Definition embed_var (x: nat) := atom (to_nat (x, 0)).
Definition ρ (i a b: bool) (x y: nat) :=
match i, a, b with
| false, true, _ => atom (to_nat (y, 1))
| true, false, _ => atom (to_nat (y, 1))
| _, _, false => arr (embed_var x) (atom (to_nat (y, 2)))
| _, _, true => arr (atom (to_nat (y, 3))) (embed_var x)
end.
(* simple constraints to two inequality lhs for i = false and i = true *)
Definition σ (i: bool) (p: list constraint) : term :=
fold_right (fun '((a, x), (y, b)) s => arr (ρ i a b x y) s) (atom (to_nat (0, 4))) p.
(* simple constraints to two identical inequality rhs *)
Definition τ (p: list constraint) : term :=
fold_right (fun '((a, x), (y, b)) t => arr (embed_var y) t) (atom (to_nat (0, 4))) p.
Definition src (t: term) := if t is arr s t then s else atom 0.
Definition tgt (t: term) := if t is arr s t then t else atom 0.
(* U2SemiU valuation φ from SSemiU valuation φ' *)
Definition φ (φ' : valuation) : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (φ' x)
| _ => atom x
end.
(* U2SemiU valuation ψ from SSemiU valuations φ' and ψ' *)
Definition ψ (φ' ψ' : valuation) : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ' x)
| (x, 1) => substitute embed_var (φ' x)
| (x, 2) => substitute embed_var (tgt (φ' x))
| (x, 3) => substitute embed_var (src (φ' x))
| _ => atom x
end.
Lemma substitute_ψP {φ' ψ': valuation} {t: term} :
substitute (ψ φ' ψ') (substitute embed_var t) = substitute embed_var (substitute ψ' t).
Proof. elim: t => [x | *] /=; [by rewrite /ψ ?enumP | by f_equal]. Qed.
(* if the given simple semi-unification instance is solvable,
then so is the constructed right-uniform semi-unification instance *)
Lemma transport {p: list constraint} : SSemiU p -> RU2SemiU (σ false p, σ true p, τ p).
Proof.
move=> [φ'] [ψ0'] [ψ1'] /Forall_forall Hp. exists (φ φ'), (ψ φ' ψ0'), (ψ φ' ψ1').
suff: forall i, substitute (ψ φ' (if i then ψ1' else ψ0')) (substitute (φ φ') (σ i p)) =
substitute (φ φ') (τ p) by (move=> H; rewrite (H false) (H true)).
move=> i. elim: p Hp.
- by move: i => [|] _ /=; rewrite /φ ?enumP /= /ψ ?enumP /=.
- move=> [[a x] [y b]] p IH /=. rewrite Forall_norm /=.
move => [+ /IH <-]. move Hφ'y: (φ' y) => φ'y. case: φ'y Hφ'y; first done.
move=> s t Hφ'y Hst {IH}. move: i a b Hst Hφ'y => [|] [|] [|] -> Hφ'y;
by rewrite /= /φ ?enumP /= /ψ ?enumP /= Hφ'y ?substitute_ψP.
Qed.
(* if the the constructed right-uniform semi-unification instance is solvable,
then so is given simple semi-unification instance *)
Lemma reflection {p: list constraint} : RU2SemiU (σ false p, σ true p, τ p) -> SSemiU p.
Proof.
move=> [φ] [ψ0] [ψ1] [Hψ0 Hψ1].
exists (fun x => φ (to_nat (x, 0))), ψ0, ψ1. rewrite -Forall_forall.
elim: p Hψ0 Hψ1; first done.
move=> [[a x] [y b]] p IH /= [Hψ0 ?] [Hψ1 ?]. rewrite Forall_norm /=.
constructor; [| by apply: IH].
by move: a Hψ0 Hψ1 => [_ <-| <- _]; move: b => [|].
Qed.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
(* many-one reduction from simple semi-unification to right-uniform two-inequality semi-unification *)
Theorem reduction : SSemiU ⪯ RU2SemiU.
Proof.
exists (fun p => (Argument.σ false p, Argument.σ true p, Argument.τ p)).
intro p. constructor.
- exact Argument.transport.
- exact Argument.reflection.
Qed.
Autor(s):
Andrej Dudenhefner (1)
Affiliation(s):
(1) Saarland University, Saarbrücken, Germany
*)
(*
Reduction from:
Simple Semi-unification (SSemiU)
to:
Right-uniform Two-inequality Semi-unification (RU2SemiU)
*)
Require Import List.
Require Import Undecidability.SemiUnification.SemiU.
From Undecidability.SemiUnification.Util Require Import Facts Enumerable.
Require Import ssreflect ssrfun ssrbool.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Module Argument.
Definition embed_var (x: nat) := atom (to_nat (x, 0)).
Definition ρ (i a b: bool) (x y: nat) :=
match i, a, b with
| false, true, _ => atom (to_nat (y, 1))
| true, false, _ => atom (to_nat (y, 1))
| _, _, false => arr (embed_var x) (atom (to_nat (y, 2)))
| _, _, true => arr (atom (to_nat (y, 3))) (embed_var x)
end.
(* simple constraints to two inequality lhs for i = false and i = true *)
Definition σ (i: bool) (p: list constraint) : term :=
fold_right (fun '((a, x), (y, b)) s => arr (ρ i a b x y) s) (atom (to_nat (0, 4))) p.
(* simple constraints to two identical inequality rhs *)
Definition τ (p: list constraint) : term :=
fold_right (fun '((a, x), (y, b)) t => arr (embed_var y) t) (atom (to_nat (0, 4))) p.
Definition src (t: term) := if t is arr s t then s else atom 0.
Definition tgt (t: term) := if t is arr s t then t else atom 0.
(* U2SemiU valuation φ from SSemiU valuation φ' *)
Definition φ (φ' : valuation) : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (φ' x)
| _ => atom x
end.
(* U2SemiU valuation ψ from SSemiU valuations φ' and ψ' *)
Definition ψ (φ' ψ' : valuation) : valuation := fun x =>
match of_nat x with
| (x, 0) => substitute embed_var (ψ' x)
| (x, 1) => substitute embed_var (φ' x)
| (x, 2) => substitute embed_var (tgt (φ' x))
| (x, 3) => substitute embed_var (src (φ' x))
| _ => atom x
end.
Lemma substitute_ψP {φ' ψ': valuation} {t: term} :
substitute (ψ φ' ψ') (substitute embed_var t) = substitute embed_var (substitute ψ' t).
Proof. elim: t => [x | *] /=; [by rewrite /ψ ?enumP | by f_equal]. Qed.
(* if the given simple semi-unification instance is solvable,
then so is the constructed right-uniform semi-unification instance *)
Lemma transport {p: list constraint} : SSemiU p -> RU2SemiU (σ false p, σ true p, τ p).
Proof.
move=> [φ'] [ψ0'] [ψ1'] /Forall_forall Hp. exists (φ φ'), (ψ φ' ψ0'), (ψ φ' ψ1').
suff: forall i, substitute (ψ φ' (if i then ψ1' else ψ0')) (substitute (φ φ') (σ i p)) =
substitute (φ φ') (τ p) by (move=> H; rewrite (H false) (H true)).
move=> i. elim: p Hp.
- by move: i => [|] _ /=; rewrite /φ ?enumP /= /ψ ?enumP /=.
- move=> [[a x] [y b]] p IH /=. rewrite Forall_norm /=.
move => [+ /IH <-]. move Hφ'y: (φ' y) => φ'y. case: φ'y Hφ'y; first done.
move=> s t Hφ'y Hst {IH}. move: i a b Hst Hφ'y => [|] [|] [|] -> Hφ'y;
by rewrite /= /φ ?enumP /= /ψ ?enumP /= Hφ'y ?substitute_ψP.
Qed.
(* if the the constructed right-uniform semi-unification instance is solvable,
then so is given simple semi-unification instance *)
Lemma reflection {p: list constraint} : RU2SemiU (σ false p, σ true p, τ p) -> SSemiU p.
Proof.
move=> [φ] [ψ0] [ψ1] [Hψ0 Hψ1].
exists (fun x => φ (to_nat (x, 0))), ψ0, ψ1. rewrite -Forall_forall.
elim: p Hψ0 Hψ1; first done.
move=> [[a x] [y b]] p IH /= [Hψ0 ?] [Hψ1 ?]. rewrite Forall_norm /=.
constructor; [| by apply: IH].
by move: a Hψ0 Hψ1 => [_ <-| <- _]; move: b => [|].
Qed.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
(* many-one reduction from simple semi-unification to right-uniform two-inequality semi-unification *)
Theorem reduction : SSemiU ⪯ RU2SemiU.
Proof.
exists (fun p => (Argument.σ false p, Argument.σ true p, Argument.τ p)).
intro p. constructor.
- exact Argument.transport.
- exact Argument.reflection.
Qed.