(**************************************************************)
(*   Copyright Dominique Larchey-Wendling *                 *)
(*                                                            *)
(*                             * Affiliation LORIA -- CNRS  *)
(**************************************************************)
(*      This file is distributed under the terms of the       *)
(*         CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT          *)
(**************************************************************)

Require Import List Arith.

From Undecidability.Synthetic
  Require Import Definitions
                 ReducibilityFacts
                 InformativeDefinitions
                 InformativeReducibilityFacts.

From Undecidability.Shared.Libs.DLW.Utils
  Require Import utils_tac utils_list finite.

From Undecidability.Shared.Libs.DLW.Vec
  Require Import pos vec.

From Undecidability.TRAKHTENBROT
  Require Import notations utils decidable discernable
                 fol_ops fo_sig fo_terms fo_logic
                 fo_sat fo_sat_dec

                 red_utils

                 Sig_Sig_fin
                 Sig_rem_props
                 Sig_rem_constants
                 Sig0
                 Sig1
                 Sig1_1
                 Sig_discernable.

Set Implicit Arguments.

Local Infix "≢" := discernable (at level 70, no associativity).

(* * Collection of high-level synthetic decidability results *)

Section Sig_MONADIC_Sig_11.

  Variable (Σ : fo_signature)
           (HΣ1 : forall s, ar_syms Σ s <= 1)
           (HΣ2 : forall r, ar_rels Σ r <= 1).

  Theorem FSAT_FULL_MONADIC_FSAT_11 : FSAT Σ ⪯ᵢ FSAT (Σ11 (syms Σ) (rels Σ)).
  Proof.
    apply ireduces_transitive with (Q := FSAT (Σno_props Σ)).
    + exists (Σrem_props HΣ2 0); intros A.
      apply exists_equiv; intro; apply Σrem_props_correct.
    + assert (forall s, ar_syms (Σno_props Σ) s <= 1) as H1.
      { simpl; auto. }
      exists (Σrem_constants H1 0); intros A.
      apply exists_equiv; intro; apply Σrem_constants_correct.
  Qed.

End Sig_MONADIC_Sig_11.

Section Sig_MONADIC_PROP.

  (* FSAT Σ(X,Y) and FSAT Σ(ø,Y) are inter-reducible
     is the arities on rels/Y are all 0, ie Propositional case 

     Σ0 maps Σ into a signature with no function symbols and
     the same relation symbols, all of arity 0
   *)


  Variable (Σ : fo_signature)
           ( : forall r, ar_rels Σ r = 0).

  Theorem FSAT_PROP_FSAT_x0 : FSAT Σ ⪯ᵢ FSAT (Σ0 Σ).
  Proof. exists (@Σ_Σ0 Σ); exact (Σ_Σ0_correct ). Qed.

  Theorem FSAT_x0_FSAT_PROP : FSAT (Σ0 Σ) ⪯ᵢ FSAT Σ.
  Proof. exists (Σ0_Σ ); exact (Σ0_Σ_correct ). Qed.

End Sig_MONADIC_PROP.

(* Check FSAT_FULL_MONADIC_FSAT_11.
Print Assumptions FSAT_FULL_MONADIC_FSAT_11. *)


Section FSAT_MONADIC_DEC.

  (* No variables and uniform arity of 1 is decidable 
      Signature must be discrete  *)


  Variable (F P : Type)
           (H1 : F -> False)
           (H2 : discrete P)
           (A : fol_form (Σ11 F P)).

  Theorem FSAT_MONADIC_DEC : decidable (FSAT _ A).
  Proof.
    destruct Sig_discrete_to_pos with (A := A)
      as (n & m & i & j & B & HB).
    + simpl; intros s; destruct (H1 s).
    + apply H2.
    + assert (n = 0) as ->.
      { destruct n; auto.
        destruct (H1 (i pos0)). }
      simpl in *.
      destruct FSAT_ΣP1_dec with (V := pos 0) (A := B)
        as [ H | H ].
      * intros p; invert pos p.
      * left; apply HB; auto.
      * right; rewrite HB; auto.
  Qed.

End FSAT_MONADIC_DEC.

Section FSAT_MONADIC_11_FSAT_MONADIC_1.

  Variable (n : nat) (Y : Type) (HY : finite_t Y).

  Theorem FSAT_MONADIC_11_FSAT_MONADIC_1 :
            FSAT (Σ11 (pos n) Y) ⪯ᵢ FSAT (Σ11 Empty_set (list (pos n)*Y + Y)).
  Proof.
    apply ireduces_dependent, Σ11_Σ1_reduction; auto.
  Qed.

End FSAT_MONADIC_11_FSAT_MONADIC_1.

Section FSAT_Σ11_DEC.

  Variable (n : nat)
           (P : Type)
           (HP1 : finite_t P)
           (HP2 : discrete P)
           (A : fol_form (Σ11 (pos n) P)).

  Theorem FSAT_Σ11_DEC : decidable (FSAT _ A).
  Proof.
    destruct FSAT_MONADIC_11_FSAT_MONADIC_1 with (n := n) (1 := HP1)
      as (f & Hf).
    specialize (Hf A).
    destruct FSAT_MONADIC_DEC with (A := f A) as [ H | H ]; simpl; auto; try easy.
    + left; revert H; apply Hf.
    + right; contradict H; revert H; apply Hf.
  Qed.

End FSAT_Σ11_DEC.

Section FSAT_FULL_Σ11_DEC.

  Variable (F P : Type) (HF : discrete F) (HP : discrete P)
           (A : fol_form (Σ11 F P)).

  Hint Resolve finite_t_pos : core.

  Theorem FSAT_FULL_Σ11_DEC : decidable (FSAT _ A).
  Proof.
    destruct Sig_discrete_to_pos with (A := A)
      as (n & m & i & j & B & HB); auto.
    destruct FSAT_Σ11_DEC with (A := B) as [ H | H ]; auto.
    + left; apply HB; auto.
    + right; contradict H; apply HB; auto.
  Qed.

End FSAT_FULL_Σ11_DEC.

Section FSAT_FULL_MONADIC_DEC.

  (* We can be (a bit) more general here, see discernable.v 
     However, decidable discernability is required 
     for showing FSAT is decidable *)


  Variable (Σ : fo_signature)
           (H1 : discrete (syms Σ))
           (H2 : discrete (rels Σ))
           (H3 : forall s, ar_syms Σ s <= 1)
           (H4 : forall r, ar_rels Σ r <= 1).

  Theorem FSAT_FULL_MONADIC_DEC A : decidable (FSAT Σ A).
  Proof.
    destruct FSAT_FULL_MONADIC_FSAT_11 with Σ as (f & Hf); auto.
    destruct FSAT_FULL_Σ11_DEC with (A := f A) as [ H | H ]; auto.
    + left; apply Hf, H.
    + right; contradict H; apply Hf, H.
  Qed.

  (* The case where ar_rels Σ r = 0 for any r also gives
     decidability regardless of syms arities because formulas
     contain no terms *)


End FSAT_FULL_MONADIC_DEC.

(* Check FSAT_FULL_MONADIC_DEC.
Print Assumptions FSAT_FULL_MONADIC_DEC. *)


Section FSAT_PROP_ONLY_DEC.

  Variable (Σ : fo_signature)
           (H1 : discrete (rels Σ))
           (H2 : forall r, ar_rels Σ r = 0).

  Theorem FSAT_PROP_ONLY_DEC A : decidable (FSAT Σ A).
  Proof.
    destruct (FSAT_PROP_FSAT_x0 H2) as (f & Hf).
    destruct FSAT_FULL_MONADIC_DEC with (A := f A)
      as [ H | H ]; auto.
    + intros [].
    + left; revert H; apply Hf; auto.
    + right; contradict H; revert H; apply Hf; auto.
  Qed.

End FSAT_PROP_ONLY_DEC.

(* Check FSAT_PROP_ONLY_DEC.
Print Assumptions FSAT_PROP_ONLY_DEC. *)


Theorem FULL_MONADIC (Σ : fo_signature) :
          { _ : discrete (syms Σ) &
          { _ : discrete (rels Σ)
              | (forall s, ar_syms Σ s <= 1)
             /\ (forall r, ar_rels Σ r <= 1) } }
        + { _ : discrete (rels Σ)
              | forall r, ar_rels Σ r = 0 }
       -> forall A, decidable (FSAT Σ A).
Proof.
  intros [ (H1 & H2 & H3 & H4) | (H1 & H2) ].
  + apply FSAT_FULL_MONADIC_DEC; auto.
  + apply FSAT_PROP_ONLY_DEC; auto.
Qed.

Theorem Σ11_discernable_dec_FSAT X Y :
          (forall u v : X, decidable (u v))
       -> (forall u v : Y, decidable (u v))
       -> forall A, decidable (FSAT (Σ11 X Y) A).
Proof.
  intros H0 H1 A.
  destruct (Sig_discernable_dec_to_discrete H0 H1 A)
    as (DX & DY & ? & ? & ? & ? & B & HB); auto.
  destruct FSAT_FULL_MONADIC_DEC with (A := B); simpl; auto.
  + left; tauto.
  + right; tauto.
Qed.

Section FSAT_FULL_MONADIC_discernable.

  Variable (Σ : fo_signature)
           (H1 : forall u v : syms Σ, decidable (u v))
           (H2 : forall u v : rels Σ, decidable (u v))
           (H3 : forall s, ar_syms Σ s <= 1)
           (H4 : forall r, ar_rels Σ r <= 1).

  Theorem FSAT_FULL_MONADIC_discernable A : decidable (FSAT Σ A).
  Proof.
    destruct (FSAT_FULL_MONADIC_FSAT_11 H3 H4) as (f & Hf).
    destruct (Σ11_discernable_dec_FSAT H1 H2 (f A)) as [ H | H ].
    + left; apply Hf; auto.
    + right; contradict H; apply Hf; auto.
  Qed.

End FSAT_FULL_MONADIC_discernable.

Section FSAT_PROP_ONLY_discernable.

  Variable (Σ : fo_signature)
           (H1 : forall u v : rels Σ, decidable (u v))
           (H2 : forall r, ar_rels Σ r = 0).

  Theorem FSAT_PROP_ONLY_discernable A : decidable (FSAT Σ A).
  Proof.
    destruct (FSAT_PROP_FSAT_x0 H2) as (f & Hf).
    destruct FSAT_FULL_MONADIC_discernable with (A := f A)
      as [ H | H ]; auto.
    + intros [].
    + left; revert H; apply Hf; auto.
    + right; contradict H; revert H; apply Hf; auto.
  Qed.

End FSAT_PROP_ONLY_discernable.

Theorem FULL_MONADIC_discernable (Σ : fo_signature) :
          { _ : forall u v : syms Σ, decidable (u v) &
          { _ : forall u v : rels Σ, decidable (u v)
              | (forall s, ar_syms Σ s <= 1)
             /\ (forall r, ar_rels Σ r <= 1) } }
        + { _ : forall u v : rels Σ, decidable (u v)
              | forall r, ar_rels Σ r = 0 }
       -> forall A, decidable (FSAT Σ A).
Proof.
  intros [ (H1 & H2 & H3 & H4) | (H1 & H2) ].
  + apply FSAT_FULL_MONADIC_discernable; auto.
  + apply FSAT_PROP_ONLY_discernable; auto.
Qed.

(* For a monadic signature Σ (arity 0 or 1) with at least one unary relation,

   FSAT is decidable iff both syms and rels have decidable discernability 
*)


Theorem FULL_MONADIC_discernable_dec_FSAT_dec_equiv Σ r :
            ar_rels Σ r = 1
         -> (forall s, ar_syms Σ s <= 1)
         -> (forall r, ar_rels Σ r <= 1)
         -> ( (forall u v : syms Σ, decidable (u v))
            * (forall u v : rels Σ, decidable (u v)) )
           forall A, decidable (FSAT Σ A).
Proof.
  intros Hr H1 H2.
  split.
  + intros (? & ?); apply FSAT_FULL_MONADIC_discernable; auto.
  + intros H3; split.
    * apply FSAT_dec_implies_discernable_syms_dec with r; auto.
    * apply FSAT_dec_implies_discernable_rels_dec; auto.
Qed.

(* For a signature with only constant relations (arity 0),
   FSAT is decidable iff relations have decidable discernability *)


Theorem MONADIC_PROP_discernable_dec_FSAT_dec_equiv (Σ : fo_signature) :
            (forall r, @ar_rels Σ r = 0)
        -> (forall u v : rels Σ, decidable (u v))
           forall A, decidable (FSAT Σ A).
Proof.
  intros H; split.
  + intros; apply FULL_MONADIC_discernable; eauto.
  + intros H1.
    assert (forall A, decidable (FSAT (Σ0 Σ) A)) as H2.
    { revert H1; apply ireduction_decidable, FSAT_x0_FSAT_PROP; auto. }
    exact (FSAT_dec_implies_discernable_rels_dec H2).
Qed.