From Undecidability.L Require Import L Tactics.LTactics LBool.
Class eqbClass X (eqb : X -> X -> bool): Type :=
_eqb_spec : forall (x y:X), reflect (x=y) (eqb x y).
#[export] Hint Mode eqbClass + -: typeclass_instances.
Definition eqb X eqb `{H:eqbClass (X:=X) eqb} := eqb.
Arguments eqb {_ _ _}: simpl never.
Lemma eqb_spec {X} {f : X -> X -> bool} {_:eqbClass f}:
forall (x y:X), reflect (x=y) (eqb x y).
Proof.
intros. eapply _eqb_spec.
Qed.
#[global]
Instance eqbBool_inst : eqbClass Bool.eqb.
Proof.
intros ? ?. eapply iff_reflect. rewrite eqb_true_iff. reflexivity.
Qed.
Lemma dec_reflect_remove {P Y} (d:dec P) b (H:reflect P b) (y y' : Y):
(if d then y else y') = (if b then y else y').
Proof.
destruct H,d;easy.
Qed.
Lemma eqDec_remove {X Y eqb} {H:eqbClass (X:=X) eqb} x x' (d:dec (x=x')) (a b : Y):
(if d then a else b) = (if eqb x x' then a else b).
Proof.
apply dec_reflect_remove. eapply eqb_spec.
Qed.
Class eqbComp X {R:encodable X} eqb {H:eqbClass (X:=X) eqb} :=
{ comp_eqb : computable eqb }.
Arguments eqbComp _ {_ _ _}.
#[export] Hint Mode eqbComp + - - -: typeclass_instances.
#[global]
Existing Instance comp_eqb.
#[global]
Instance eqbComp_bool : eqbComp bool.
Proof.
constructor. unfold Bool.eqb.
extract.
Qed.
Class eqbClass X (eqb : X -> X -> bool): Type :=
_eqb_spec : forall (x y:X), reflect (x=y) (eqb x y).
#[export] Hint Mode eqbClass + -: typeclass_instances.
Definition eqb X eqb `{H:eqbClass (X:=X) eqb} := eqb.
Arguments eqb {_ _ _}: simpl never.
Lemma eqb_spec {X} {f : X -> X -> bool} {_:eqbClass f}:
forall (x y:X), reflect (x=y) (eqb x y).
Proof.
intros. eapply _eqb_spec.
Qed.
#[global]
Instance eqbBool_inst : eqbClass Bool.eqb.
Proof.
intros ? ?. eapply iff_reflect. rewrite eqb_true_iff. reflexivity.
Qed.
Lemma dec_reflect_remove {P Y} (d:dec P) b (H:reflect P b) (y y' : Y):
(if d then y else y') = (if b then y else y').
Proof.
destruct H,d;easy.
Qed.
Lemma eqDec_remove {X Y eqb} {H:eqbClass (X:=X) eqb} x x' (d:dec (x=x')) (a b : Y):
(if d then a else b) = (if eqb x x' then a else b).
Proof.
apply dec_reflect_remove. eapply eqb_spec.
Qed.
Class eqbComp X {R:encodable X} eqb {H:eqbClass (X:=X) eqb} :=
{ comp_eqb : computable eqb }.
Arguments eqbComp _ {_ _ _}.
#[export] Hint Mode eqbComp + - - -: typeclass_instances.
#[global]
Existing Instance comp_eqb.
#[global]
Instance eqbComp_bool : eqbComp bool.
Proof.
constructor. unfold Bool.eqb.
extract.
Qed.