From Undecidability.Synthetic Require Import Undecidability ReducibilityFacts.
Require Import Undecidability.LambdaCalculus.Lambda.
From Undecidability.LambdaCalculus.Reductions Require
HaltLclosed_to_wCBNclosed
KrivineMclosed_HALT_to_SNclosed.
Require Undecidability.L.Reductions.HaltL_to_HaltLclosed.
Require Import Undecidability.L.L_undec.
Require Import Undecidability.LambdaCalculus.Krivine_undec.
Theorem wCBNclosed_undec : undecidable wCBNclosed.
Proof.
apply (undecidability_from_reducibility HaltL_undec).
apply (reduces_transitive HaltL_to_HaltLclosed.reduction).
exact HaltLclosed_to_wCBNclosed.reduction.
Qed.
Check wCBNclosed_undec.
Theorem SNclosed_undec : undecidable SNclosed.
Proof.
apply (undecidability_from_reducibility KrivineMclosed_HALT_undec).
exact KrivineMclosed_HALT_to_SNclosed.reduction.
Qed.
Check SNclosed_undec.