Require Import List Arith Lia.
From Undecidability.Shared.Libs.DLW
Require Import utils pos vec subcode sss compiler_correction.
From Undecidability.MinskyMachines.MMA
Require Import mma_defs mma_utils.
Set Implicit Arguments.
Tactic Notation "rew" "length" := autorewrite with length_db.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
Local Notation "P //ₐ s -+> t" := (sss_progress (@mma_sss _) P s t) (at level 70, no associativity).
Local Notation "P //ₐ s ->> t" := (sss_compute (@mma_sss _) P s t) (at level 70, no associativity).
Local Notation "P //ₐ s ~~> t" := (sss_output (@mma_sss _) P s t) (at level 70, no associativity).
Local Notation "P //ₐ s ↓" := (sss_terminates (@mma_sss _) P s) (at level 70, no associativity).
Section mma_sim.
Variables (n : nat).
Definition mma_instr_compile lnk (_ : nat) (ii : mm_instr (pos n)) :=
match ii with
| INCₐ k => INCₐ k :: nil
| DECₐ k j => DECₐ k (lnk j) :: nil
end.
Definition mma_instr_compile_length (ii : mm_instr (pos n)) := 1.
Fact mma_instr_compile_length_eq lnk i ii : length (mma_instr_compile lnk i ii) = mma_instr_compile_length ii.
Proof. destruct ii; simpl; auto. Qed.
Fact mma_instr_compile_length_geq ii : 1 <= mma_instr_compile_length ii.
Proof. cbv; lia. Qed.
Hint Resolve mma_instr_compile_length_eq mma_instr_compile_length_geq : core.
Hint Resolve subcode_refl : core.
Lemma mma_instr_compile_sound : instruction_compiler_sound mma_instr_compile (@mma_sss _) (@mma_sss _) eq.
Proof.
intros lnk I i1 v1 i2 v2 w1 H; revert H w1.
change v1 with (snd (i1,v1)) at 2.
change i1 with (fst (i1,v1)) at 2 3 4 6 7 8.
change v2 with (snd (i2,v2)) at 2.
change i2 with (fst (i2,v2)) at 2.
generalize (i1,v1) (i2,v2); clear i1 v1 i2 v2.
induction 1
as [ i x k | i x k v H | i x k v u H ];
simpl; intros w1 H0 ->.
+ exists (w1 [(S (w1#>x))/x]); split; auto.
mma sss INC with x.
mma sss stop; now f_equal.
+ exists w1; split; auto.
mma sss DEC zero with x (lnk k).
mma sss stop; now f_equal.
+ exists (w1[u/x]); split; auto.
mma sss DEC S with x (lnk k) u.
mma sss stop.
Qed.
Hint Resolve mma_instr_compile_sound : core.
Theorem mma_auto_compiler : compiler_t (@mma_sss n) (@mma_sss n) eq.
Proof.
apply generic_compiler
with (icomp := mma_instr_compile)
(ilen := mma_instr_compile_length); auto.
+ apply mma_sss_total_ni.
+ apply mma_sss_fun.
Qed.
Theorem mma_auto_simulator i (P : list (@mm_instr (pos n))) :
{ Q : list (@mm_instr (pos n))
| forall v,
(forall i' v', (i,P) //ₐ (i,v) ~~> (i',v') -> (1,Q) //ₐ (1,v) ~~> (length Q+1,v'))
/\ ((1,Q) //ₐ (1,v) ↓ -> (i,P) //ₐ (i,v) ↓)
}.
Proof.
exists (gc_code mma_auto_compiler (i,P) 1).
intros v; split.
+ intros i' v' H.
apply (compiler_t_output_sound' mma_auto_compiler)
with (i := 1) (w := v)
in H as (w' & H1 & <-); eauto.
rewrite Nat.add_comm; auto.
+ apply compiler_t_term_equiv; auto.
Qed.
End mma_sim.
Section mma_mma0_sim.
Variable (n i : nat) (P : list (mm_instr (pos (S n)))).
Let Q := proj1_sig (mma_auto_simulator i P).
Let HQ := proj2_sig (mma_auto_simulator i P).
Definition mma_mma0_sim := Q ++ mma_null_all _ (length Q+1) ++ mma_jump 0 pos0.
Notation R := mma_mma0_sim.
Hint Rewrite mma_null_all_length : length_db.
Theorem mma_mma0_sim_spec v : (i,P) //ₐ (i,v) ↓ <-> (1,R) //ₐ (1,v) ~~> (0,vec_zero).
Proof.
split.
+ intros ((i',v') & H).
apply HQ in H; fold Q in H.
destruct H as [ H _ ].
split; [ | simpl; lia ].
unfold R.
apply subcode_sss_compute_trans with (2 := H); auto.
apply subcode_sss_compute_trans with (2 := mma_null_all_spec _ _); auto.
apply subcode_sss_compute with (2 := mma_jump_spec _ pos0 _ _); auto.
+ intros H.
apply HQ; fold Q.
apply subcode_sss_terminates with (Q := (1,R)).
* unfold R; auto.
* exists (0,vec_zero); auto.
Qed.
End mma_mma0_sim.
Theorem mma2_simulator n i (P : list (mm_instr (pos (S n)))) :
{ Q | forall v, (i,P) //ₐ (i,v) ↓ <-> (1,Q) //ₐ (1,v) ~~> (0,vec_zero) }.
Proof. exists (mma_mma0_sim i P); apply mma_mma0_sim_spec. Qed.