Completeness and Decidability Results for CTL in Coq
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (732 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (18 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (2 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (58 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (310 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (68 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (41 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (25 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (21 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (154 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Global Index
A
aAR [constructor, in tab_def]aAR_inU [lemma, in tab_dec]
aAU [constructor, in tab_def]
aAU_inU [lemma, in tab_dec]
aAXR [constructor, in tab_def]
aAXR_inU [lemma, in tab_dec]
aAXU [constructor, in tab_def]
aAXU_inU [lemma, in tab_dec]
afn1 [lemma, in tab_translation]
afp1 [lemma, in tab_translation]
af1n [lemma, in tab_translation]
af1p [lemma, in tab_translation]
AG [projection, in modular_hilbert]
AG_mor [instance, in modular_hilbert]
And [definition, in modular_hilbert]
andAAU [lemma, in modular_hilbert]
andU [lemma, in modular_hilbert]
and_sub [lemma, in modular_hilbert]
And_mor [instance, in modular_hilbert]
Annot [module, in tab_def]
annot [inductive, in tab_def]
annot_CountType [definition, in tab_def]
annot_choiceType [definition, in tab_def]
annot_choiceMixin [definition, in tab_def]
annot_countMixin [definition, in tab_def]
annot_eqType [definition, in tab_def]
annot_eqMixin [definition, in tab_def]
annot_request [lemma, in tab_translation]
Annot.pickle [definition, in tab_def]
Annot.pickleP [lemma, in tab_def]
Annot.unpickle [definition, in tab_def]
aR [definition, in tab_def]
AR [projection, in modular_hilbert]
ARb [definition, in CTL_def]
ARH_sound [lemma, in tab_translation]
arP [lemma, in CTL_def]
ARs [definition, in tab_dec]
ARs [constructor, in CTL_def]
AR_mor [instance, in modular_hilbert]
AR_shift [lemma, in tab_dec]
AR_strengthen [lemma, in CTL_def]
AR0 [constructor, in CTL_def]
As [definition, in tab_dec]
AsAR [lemma, in tab_dec]
AsAU [lemma, in tab_dec]
AsAXR [lemma, in tab_dec]
AsAXU [lemma, in tab_dec]
AsV [lemma, in tab_dec]
AsX [lemma, in tab_dec]
AsX' [lemma, in tab_dec]
AU [projection, in modular_hilbert]
AUb [definition, in CTL_def]
AUb [section, in CTL_def]
AUb.e [variable, in CTL_def]
AUb.p [variable, in CTL_def]
AUb.q [variable, in CTL_def]
AUb.T [variable, in CTL_def]
AUH_sound [lemma, in tab_translation]
auP [lemma, in CTL_def]
AUs [definition, in tab_dec]
AUs [constructor, in CTL_def]
AU_mor [instance, in modular_hilbert]
AU_shift [lemma, in tab_dec]
AU_mono [lemma, in CTL_def]
AU_fun [definition, in CTL_def]
AU_ind [constructor, in CTL_def]
AU_strengthen [lemma, in CTL_def]
AU_lift [lemma, in demo]
AU_this [lemma, in demo]
AU_M [definition, in demo]
AU_ [definition, in tab_translation]
AU0 [constructor, in CTL_def]
aVoid [constructor, in tab_def]
AX [projection, in modular_hilbert]
axAA [lemma, in modular_hilbert]
axABBA [lemma, in modular_hilbert]
axAC [lemma, in modular_hilbert]
axAcase [lemma, in modular_hilbert]
axADr [lemma, in modular_hilbert]
axAEl [lemma, in modular_hilbert]
axAEr [lemma, in modular_hilbert]
axAGEl [projection, in modular_hilbert]
axAGEr [projection, in modular_hilbert]
axAGI [lemma, in modular_hilbert]
axAGN [projection, in modular_hilbert]
axAI [lemma, in modular_hilbert]
axARE [projection, in modular_hilbert]
axARE [constructor, in CTL_def]
axAReq [lemma, in modular_hilbert]
axARu [projection, in modular_hilbert]
axARu [constructor, in CTL_def]
axAsT [lemma, in modular_hilbert]
axATs [lemma, in modular_hilbert]
axAUAEr [lemma, in modular_hilbert]
axAUAw [lemma, in modular_hilbert]
axAUEGF [lemma, in modular_hilbert]
axAUERF [lemma, in modular_hilbert]
axAUf [projection, in modular_hilbert]
axAUf [constructor, in CTL_def]
axAUHu [lemma, in tab_translation]
axAUI [projection, in modular_hilbert]
axAUI [constructor, in CTL_def]
axAUu [lemma, in modular_hilbert]
axB [lemma, in modular_hilbert]
axBAAB [lemma, in modular_hilbert]
axBE [lemma, in modular_hilbert]
axBT [lemma, in modular_hilbert]
axC [lemma, in modular_hilbert]
axContra [lemma, in modular_hilbert]
axDBD [lemma, in modular_hilbert]
axDF [lemma, in modular_hilbert]
axDN [lemma, in modular_hilbert]
axDN [constructor, in CTL_def]
axDNI [lemma, in modular_hilbert]
axDN' [projection, in modular_hilbert]
axDup [lemma, in modular_hilbert]
axEEl [lemma, in modular_hilbert]
axEEr [lemma, in modular_hilbert]
axEI [lemma, in modular_hilbert]
axERu [lemma, in modular_hilbert]
axEUeq [lemma, in modular_hilbert]
axEUEr [lemma, in modular_hilbert]
axEUI [lemma, in modular_hilbert]
axEUI2 [lemma, in modular_hilbert]
axEUw [lemma, in modular_hilbert]
axEXAEl [lemma, in modular_hilbert]
axI [lemma, in modular_hilbert]
axIO [lemma, in modular_hilbert]
axK [lemma, in modular_hilbert]
axK [constructor, in CTL_def]
axK' [projection, in modular_hilbert]
AXn [definition, in tab_complete]
axN [projection, in modular_hilbert]
axN [constructor, in CTL_def]
axOC [lemma, in modular_hilbert]
axOE [lemma, in modular_hilbert]
axOF [lemma, in modular_hilbert]
axOIl [lemma, in modular_hilbert]
axOIr [lemma, in modular_hilbert]
axRot [lemma, in modular_hilbert]
AXR_shift [lemma, in tab_dec]
axS [lemma, in modular_hilbert]
axS [constructor, in CTL_def]
axsT [lemma, in modular_hilbert]
axS' [projection, in modular_hilbert]
axT [lemma, in modular_hilbert]
AXU_shift [lemma, in tab_dec]
axW [lemma, in modular_hilbert]
AX_mor [instance, in modular_hilbert]
ax_contraNN [lemma, in modular_hilbert]
ax_contra [lemma, in modular_hilbert]
ax_case [lemma, in modular_hilbert]
ax_serial [constructor, in CTL_def]
a_cond [definition, in demo]
B
bigABBA [lemma, in modular_hilbert]bigAdrop [lemma, in modular_hilbert]
bigAdup [lemma, in modular_hilbert]
bigAE [lemma, in modular_hilbert]
bigAI [lemma, in modular_hilbert]
BigAnd [section, in modular_hilbert]
BigAnd.pS [variable, in modular_hilbert]
bigAUA [lemma, in modular_hilbert]
bigA1 [lemma, in modular_hilbert]
bigA1E [lemma, in modular_hilbert]
bigOE [lemma, in modular_hilbert]
bigOI [lemma, in modular_hilbert]
body [definition, in CTL_def]
Bot [projection, in modular_hilbert]
bounded_step [lemma, in tab_dec]
box_request [lemma, in tab_translation]
C
CanonicalDemo [section, in tab_complete]CanonicalDemo.F [variable, in tab_complete]
CanonicalDemo.Jumps [section, in tab_complete]
CanonicalDemo.Jumps.A [variable, in tab_complete]
CanonicalDemo.Jumps.C_inU [variable, in tab_complete]
CanonicalDemo.Jumps.C_cons [variable, in tab_complete]
CanonicalDemo.sfc_F [variable, in tab_complete]
CanonicalDemo.Support [section, in tab_complete]
CanonicalDemo.Support.C [variable, in tab_complete]
CanonicalDemo.Support.con_in_U [variable, in tab_complete]
CanonicalDemo.Support.E [variable, in tab_complete]
CanonicalDemo.Support.suppP [variable, in tab_complete]
cAR [inductive, in CTL_def]
cAR_cEU [lemma, in CTL_def]
cAU [inductive, in CTL_def]
cAU_eq [lemma, in CTL_def]
cAU_cER [lemma, in CTL_def]
cAX [definition, in CTL_def]
cER [inductive, in CTL_def]
cert_dec_method [lemma, in result]
cEU [inductive, in CTL_def]
cEU_eq [lemma, in CTL_def]
cEX [definition, in CTL_def]
Characterizations [section, in CTL_def]
Characterizations.e [variable, in CTL_def]
Characterizations.X [variable, in CTL_def]
clause [definition, in CTL_def]
closed_sfc [lemma, in tab_dec]
completeness [lemma, in result]
connect_restrict [lemma, in dags]
consistent [definition, in tab_complete]
cons_lcons [lemma, in tab_complete]
Cs [definition, in tab_dec]
ctab1 [lemma, in tab_complete]
ctab2 [lemma, in tab_complete]
ctlSystem [record, in modular_hilbert]
CTLSystem [constructor, in modular_hilbert]
CTLTheory [section, in modular_hilbert]
CTLTheory.cS [variable, in modular_hilbert]
CTL_def [library]
D
D [definition, in tab_complete]dags [library]
dag_D [lemma, in demo]
dag_R [lemma, in demo]
DC [definition, in demo]
decidability [lemma, in result]
demo [definition, in demo]
Demo [section, in demo]
demo [library]
DemoTrees [section, in tab_complete]
DemoTrees.LL [variable, in tab_complete]
DemoTrees.L0 [variable, in tab_complete]
DemoTrees.t [variable, in tab_complete]
Demo.D [variable, in demo]
Demo.Dl [variable, in demo]
Demo.F [variable, in demo]
Demo.sfc_F [variable, in demo]
determined [definition, in CTL_def]
DF [definition, in demo]
dgraph [definition, in demo]
Disjoint [section, in dags]
disjointness [lemma, in result]
Disjoint.G [variable, in dags]
Disjoint.I [variable, in dags]
Disjoint.L [variable, in dags]
Dl [definition, in tab_complete]
dmA [lemma, in modular_hilbert]
dmAi [lemma, in modular_hilbert]
dmAR [lemma, in modular_hilbert]
Dmatrix [definition, in demo]
DmatrixP [lemma, in demo]
dmat_ev_cond [lemma, in demo]
dmAU [lemma, in modular_hilbert]
dmAUH [lemma, in tab_translation]
dmAUi [lemma, in modular_hilbert]
dmAX [lemma, in modular_hilbert]
dmER [lemma, in modular_hilbert]
dmERi [lemma, in modular_hilbert]
dmI [lemma, in modular_hilbert]
dmO [lemma, in modular_hilbert]
D_sub_Dl [lemma, in tab_complete]
E
edge [projection, in dags]EF [definition, in modular_hilbert]
Eqi [definition, in modular_hilbert]
EqiPrv [definition, in modular_hilbert]
EqiTheoryBase [section, in modular_hilbert]
EqiTheoryBase.pS [variable, in modular_hilbert]
EqiTheoryBase.s [variable, in modular_hilbert]
EqiTheoryBase.t [variable, in modular_hilbert]
eqi_induced_symmety [instance, in modular_hilbert]
eq_annot_dec [lemma, in tab_def]
eq_form_dec [lemma, in CTL_def]
ER [definition, in modular_hilbert]
erel [definition, in dags]
ERs [constructor, in CTL_def]
ER_mor [instance, in modular_hilbert]
ER_strengthen [lemma, in CTL_def]
ER0 [constructor, in CTL_def]
EU [definition, in modular_hilbert]
EU [definition, in CTL_def]
EUb [definition, in CTL_def]
euP [lemma, in CTL_def]
EUs [constructor, in CTL_def]
EU_ind [lemma, in modular_hilbert]
EU_mor [instance, in modular_hilbert]
EU_mono [lemma, in CTL_def]
EU_fun [definition, in CTL_def]
EU_strengthen [lemma, in CTL_def]
EU_lift [lemma, in demo]
EU_this [lemma, in demo]
EU_M [definition, in demo]
EU_ [definition, in tab_translation]
EU0 [constructor, in CTL_def]
eval [definition, in CTL_def]
evalb [definition, in CTL_def]
evalP [lemma, in CTL_def]
ev_cond [definition, in demo]
EX [definition, in modular_hilbert]
EX_mor [instance, in modular_hilbert]
F
fAR [constructor, in CTL_def]fAU [constructor, in CTL_def]
fAX [constructor, in CTL_def]
fF [constructor, in CTL_def]
fImp [constructor, in CTL_def]
finite [inductive, in CTL_def]
finiteI [constructor, in CTL_def]
FiniteModels [section, in CTL_def]
FiniteModels.e [variable, in CTL_def]
FiniteModels.l [variable, in CTL_def]
FiniteModels.serial_e [variable, in CTL_def]
FiniteModels.T [variable, in CTL_def]
fin_finite [lemma, in CTL_def]
fin_model [definition, in CTL_def]
fin_modelP [lemma, in CTL_def]
fin_sts [definition, in CTL_def]
form [inductive, in CTL_def]
formChoice [module, in CTL_def]
formChoice.pickle [definition, in CTL_def]
formChoice.pickleP [lemma, in CTL_def]
formChoice.unpickle [definition, in CTL_def]
form_CountType [definition, in CTL_def]
form_ChoiceType [definition, in CTL_def]
form_choiceMixin [definition, in CTL_def]
form_countMixin [definition, in CTL_def]
form_eqType [definition, in CTL_def]
form_eqMixin [definition, in CTL_def]
fV [constructor, in CTL_def]
f_weight [definition, in tab_complete]
G
ge_cond [definition, in demo]glabels_from [definition, in demo]
glocal [definition, in dags]
graph [record, in dags]
Graph [constructor, in dags]
GraphOf [section, in dags]
GraphOf.L [variable, in dags]
GraphOf.t [variable, in dags]
GraphTheory [section, in dags]
GraphTheory.L [variable, in dags]
GraphTheory.p [variable, in dags]
graph_of_tree [definition, in dags]
graph_of_rootP [lemma, in dags]
graph_of_root [definition, in dags]
graph_of_rel [definition, in dags]
graph_of_label [definition, in dags]
graph_of_type [definition, in dags]
graph_of [projection, in dags]
graph_has [lemma, in tab_complete]
graph_of_labels [lemma, in tab_complete]
H
Hilbert [section, in CTL_def]hilbert_soundness [lemma, in tab_translation]
_ ---> _ [notation, in CTL_def]
hist [definition, in tab_translation]
histU [lemma, in tab_translation]
hist0 [lemma, in tab_translation]
Hs [definition, in tab_dec]
I
Imp [projection, in modular_hilbert]Imp_mor [instance, in modular_hilbert]
Imp_op [definition, in modular_hilbert]
InducedSym [record, in induced_sym]
InducedSym [inductive, in induced_sym]
induced_eqi [instance, in modular_hilbert]
induced_mor_np [instance, in induced_sym]
induced_mor_pn [instance, in induced_sym]
induced_mor_pp [instance, in induced_sym]
induced_mor_n [instance, in induced_sym]
induced_mor_p [instance, in induced_sym]
induced_mor_iff2 [lemma, in induced_sym]
induced_mor_iff [lemma, in induced_sym]
induced_eqi [lemma, in induced_sym]
induced_sub [instance, in induced_sym]
induced_iff [projection, in induced_sym]
induced_iff [constructor, in induced_sym]
induced_sym [library]
interp [definition, in CTL_def]
interp_a [definition, in tab_translation]
isBox [definition, in CTL_def]
isBoxP [lemma, in CTL_def]
isBox_false [constructor, in CTL_def]
isBox_true [constructor, in CTL_def]
isBox_spec [inductive, in CTL_def]
isDia [definition, in CTL_def]
isDiaP [lemma, in CTL_def]
isDia_false [constructor, in CTL_def]
isDia_true [constructor, in CTL_def]
isDia_spec [inductive, in CTL_def]
J
JCs [definition, in tab_complete]JC_inD [lemma, in tab_complete]
JC_inhab [lemma, in tab_complete]
JC_rcond [lemma, in tab_complete]
JC_scond [lemma, in tab_complete]
j_tree_for [lemma, in tab_complete]
j_tree_r_cond [lemma, in tab_complete]
j_tree [definition, in tab_complete]
j_leafs [definition, in tab_complete]
K
ksort [projection, in modular_hilbert]ksort' [projection, in modular_hilbert]
ksSystem [record, in modular_hilbert]
KSSystem [constructor, in modular_hilbert]
KStarTheory [section, in modular_hilbert]
KStarTheory.ksS [variable, in modular_hilbert]
kSystem [record, in modular_hilbert]
KSystem [constructor, in modular_hilbert]
KTheory [section, in modular_hilbert]
KTheory.kS [variable, in modular_hilbert]
L
label [projection, in dags]label [projection, in CTL_def]
labels_leaf [lemma, in tab_complete]
labels_from [definition, in tab_complete]
label_F [lemma, in demo]
label_lcon [lemma, in demo]
label_Dl [lemma, in demo]
label_root [lemma, in demo]
label_DF [lemma, in demo]
lcons [definition, in demo]
lcons_void [lemma, in tab_complete]
leaf [definition, in dags]
leaf_root' [lemma, in demo]
leaf_root [lemma, in demo]
leaf_root_aux [lemma, in demo]
liftE [lemma, in dags]
lift_connect [lemma, in dags]
lift_eqn [lemma, in dags]
lift_eq [lemma, in dags]
lift_edge [definition, in dags]
literal [definition, in demo]
literalC [definition, in demo]
M
MD [definition, in demo]mImpPrv [definition, in modular_hilbert]
mImpPrv_rel [instance, in modular_hilbert]
mImpPrv_trans [lemma, in modular_hilbert]
mImpPrv_refl [definition, in modular_hilbert]
MLabel [definition, in demo]
model [record, in CTL_def]
Model [constructor, in CTL_def]
ModelConstruction [section, in demo]
ModelConstruction.D [variable, in demo]
ModelConstruction.DD [variable, in demo]
ModelConstruction.Dl [variable, in demo]
ModelConstruction.Dl_cond [variable, in demo]
ModelConstruction.D_cond [variable, in demo]
ModelConstruction.F [variable, in demo]
ModelConstruction.sfc_F [variable, in demo]
modelP [projection, in CTL_def]
model_existence [lemma, in demo]
modular_hilbert [library]
mono_step [lemma, in tab_dec]
mprv [projection, in modular_hilbert]
mprv_mor [instance, in modular_hilbert]
mp2 [lemma, in modular_hilbert]
MRel [definition, in demo]
MRel_D [lemma, in demo]
MRel_R [lemma, in demo]
msort [projection, in modular_hilbert]
mSystem [record, in modular_hilbert]
MSystem [constructor, in modular_hilbert]
MTheory0 [section, in modular_hilbert]
MTheory0.mS [variable, in modular_hilbert]
MType [definition, in demo]
N
Neg [definition, in modular_hilbert]negative [definition, in CTL_def]
negatives [definition, in CTL_def]
negE [lemma, in CTL_def]
Neg_mor [instance, in modular_hilbert]
O
Or [definition, in modular_hilbert]or_sub [lemma, in modular_hilbert]
Or_mor [instance, in modular_hilbert]
P
plainP [lemma, in tab_dec]plain_inU [lemma, in tab_dec]
plain_soundness [lemma, in tab_translation]
posE [lemma, in CTL_def]
positive [definition, in CTL_def]
positives [definition, in CTL_def]
pr [definition, in tab_def]
PredC [definition, in CTL_def]
prV [lemma, in tab_def]
prv [inductive, in CTL_def]
prv_ctlSystem [definition, in CTL_def]
prv_kSystem [definition, in CTL_def]
prv_pSystem [definition, in CTL_def]
prv_mSystem [definition, in CTL_def]
pr_inCs [lemma, in tab_dec]
pr' [definition, in tab_def]
psort [projection, in modular_hilbert]
pSystem [record, in modular_hilbert]
PSystem [constructor, in modular_hilbert]
PTheory [section, in modular_hilbert]
PTheoryBase [section, in modular_hilbert]
PTheoryBase.pS [variable, in modular_hilbert]
PTheory.pS [variable, in modular_hilbert]
R
R [definition, in CTL_def]rAG_ind [projection, in modular_hilbert]
rAI [lemma, in modular_hilbert]
rApply [lemma, in modular_hilbert]
rApply2 [lemma, in modular_hilbert]
rApply3 [lemma, in modular_hilbert]
rAR_ind [projection, in modular_hilbert]
rAR_ind [constructor, in CTL_def]
rAUw [lemma, in modular_hilbert]
rAU_ind_weak [lemma, in modular_hilbert]
rAU_ind [projection, in modular_hilbert]
rDup [lemma, in modular_hilbert]
RE [lemma, in CTL_def]
relT [definition, in tab_complete]
request_cond [definition, in tab_complete]
rER_ind_weak [lemma, in modular_hilbert]
rER_ind [lemma, in modular_hilbert]
respects [definition, in dags]
restrict [definition, in dags]
result [library]
rEXn [lemma, in modular_hilbert]
rGraph [record, in dags]
RGraph [constructor, in dags]
rgraph_of_respects [lemma, in dags]
rgraph_of_acyclic [lemma, in dags]
rgraph_of_local [lemma, in dags]
rgraph_of [definition, in dags]
rgraph_of_root [lemma, in tab_complete]
rHyp [lemma, in modular_hilbert]
rHyp1 [lemma, in modular_hilbert]
rIntro [lemma, in modular_hilbert]
RinU [lemma, in tab_dec]
Rl [definition, in tab_complete]
rlab [definition, in dags]
RlconU [lemma, in tab_complete]
Rljmp [lemma, in tab_complete]
RlR [lemma, in tab_complete]
rMP [lemma, in modular_hilbert]
rMP [constructor, in CTL_def]
rMP' [projection, in modular_hilbert]
rNec [projection, in modular_hilbert]
rNec [constructor, in CTL_def]
rNecS [lemma, in modular_hilbert]
rNorm [lemma, in modular_hilbert]
rNormS [lemma, in modular_hilbert]
root [projection, in dags]
rootP [projection, in dags]
root_internal [lemma, in demo]
Rpos [lemma, in CTL_def]
rRev [lemma, in modular_hilbert]
rRev1 [lemma, in modular_hilbert]
rRot [lemma, in modular_hilbert]
RU [lemma, in CTL_def]
r_cond [definition, in demo]
R0 [lemma, in CTL_def]
R1 [lemma, in CTL_def]
S
scomplete [definition, in tab_complete]segerberg [lemma, in modular_hilbert]
SeqSubConnect [section, in dags]
SeqSubConnect.e [variable, in dags]
SeqSubConnect.sub_closed [variable, in dags]
SeqSubConnect.T [variable, in dags]
SeqSubConnect.xs [variable, in dags]
serial [projection, in CTL_def]
serial_relT [lemma, in tab_complete]
serial_MRel [lemma, in demo]
sfc [definition, in tab_dec]
sfcU [lemma, in CTL_def]
sfc_bigcup [lemma, in tab_dec]
sfc_ssub [lemma, in CTL_def]
sform [definition, in CTL_def]
sf_AR [lemma, in tab_dec]
sf_AU [lemma, in tab_dec]
sf_ssub [lemma, in CTL_def]
sf_closed'_mon [lemma, in CTL_def]
sf_closed [definition, in CTL_def]
sf_closed' [definition, in CTL_def]
simple_tree_rect [lemma, in dags]
simple_tree [lemma, in tab_complete]
SN [constructor, in dags]
sn [inductive, in dags]
sn_restrict [lemma, in dags]
sn_edge [lemma, in demo]
soundness [lemma, in CTL_def]
ssub [definition, in CTL_def]
ssub_refl [lemma, in CTL_def]
ssub' [definition, in CTL_def]
ssub'_refl [lemma, in CTL_def]
stable [definition, in CTL_def]
star [inductive, in dags]
StarL [constructor, in dags]
Star0 [constructor, in dags]
state [projection, in CTL_def]
step [definition, in tab_dec]
stepP [lemma, in tab_dec]
step_jmp [definition, in tab_dec]
step_annot [definition, in tab_dec]
step_plain [definition, in tab_dec]
step_plain_cases [definition, in tab_dec]
sts [record, in CTL_def]
STS [constructor, in CTL_def]
sts_of [projection, in CTL_def]
subCs [lemma, in tab_dec]
subtrees [definition, in dags]
subtrees_trans [lemma, in dags]
subtrees_refl [lemma, in dags]
subtrees1 [lemma, in dags]
subU [lemma, in tab_dec]
sub_behead [lemma, in modular_hilbert]
sub_sfc [lemma, in tab_dec]
successors [definition, in tab_complete]
succ_CinU [lemma, in tab_complete]
supp [definition, in demo]
suppC [definition, in demo]
suppCD [lemma, in demo]
suppCU [lemma, in demo]
suppCWL [lemma, in demo]
suppC_sub [lemma, in demo]
suppC1 [lemma, in demo]
suppF [lemma, in demo]
support [definition, in tab_complete]
supportT [lemma, in tab_complete]
support_aux [lemma, in tab_complete]
suppxx [lemma, in demo]
supp_suppCr [lemma, in tab_complete]
supp_suppCl [lemma, in tab_complete]
supp_suppC [lemma, in tab_complete]
supp_U [lemma, in tab_complete]
supp_lit [lemma, in tab_complete]
supp_con [lemma, in tab_complete]
supp_eval [lemma, in demo]
supp_edge [lemma, in demo]
supp_mon [lemma, in demo]
supp' [definition, in demo]
sweight_lit [lemma, in tab_complete]
s_weight [definition, in tab_complete]
s_cond [definition, in demo]
T
T [projection, in modular_hilbert]tab [inductive, in tab_def]
tabU_aAXR [lemma, in tab_dec]
tabU_foc' [lemma, in tab_dec]
tabU_ARhr [lemma, in tab_dec]
tabU_ARhl [lemma, in tab_dec]
tabU_ARnr [lemma, in tab_dec]
tabU_ARnl [lemma, in tab_dec]
tabU_ARpr [lemma, in tab_dec]
tabU_ARpl [lemma, in tab_dec]
tabU_ufoc [lemma, in tab_dec]
tabU_jmp [lemma, in tab_dec]
tabU_AUhr [lemma, in tab_dec]
tabU_AUhl [lemma, in tab_dec]
tabU_foc [lemma, in tab_dec]
tabU_AUnr [lemma, in tab_dec]
tabU_AUnl [lemma, in tab_dec]
tabU_AUpr [lemma, in tab_dec]
tabU_AUpl [lemma, in tab_dec]
tabU_AXn [lemma, in tab_dec]
tabU_aR [lemma, in tab_dec]
tabU_in [lemma, in tab_dec]
tabU_ipr [lemma, in tab_dec]
tabU_ipl [lemma, in tab_dec]
tab_aAXR [constructor, in tab_def]
tab_rep' [constructor, in tab_def]
tab_ARh [constructor, in tab_def]
tab_foc' [constructor, in tab_def]
tab_ARn [constructor, in tab_def]
tab_ARp [constructor, in tab_def]
tab_jmp [constructor, in tab_def]
tab_rep [constructor, in tab_def]
tab_AUh [constructor, in tab_def]
tab_foc [constructor, in tab_def]
tab_AUn [constructor, in tab_def]
tab_AUp [constructor, in tab_def]
tab_AXn [constructor, in tab_def]
tab_In [constructor, in tab_def]
tab_Ip [constructor, in tab_def]
tab_p [constructor, in tab_def]
tab_F [constructor, in tab_def]
tab_plain_complete [lemma, in tab_complete]
tab_demo [lemma, in tab_complete]
tab_dec [lemma, in tab_dec]
tab_decF [lemma, in tab_dec]
tab_closure.sfc_F [variable, in tab_dec]
tab_closure.F [variable, in tab_dec]
tab_closure [section, in tab_dec]
tab_complete [library]
tab_translation [library]
tab_dec [library]
tab_def [library]
terminates [definition, in dags]
tlocal [definition, in dags]
tlocalE [lemma, in dags]
tlocal_sub [lemma, in dags]
Top [definition, in modular_hilbert]
tpickle [definition, in dags]
tpickleK [lemma, in dags]
trans [projection, in CTL_def]
Tree [constructor, in dags]
tree [inductive, in dags]
TreeCountType [section, in dags]
TreeCountType.T [variable, in dags]
TreeRel [section, in dags]
TreeRel.L [variable, in dags]
tree_rel_sn [lemma, in dags]
tree_rooted [lemma, in dags]
tree_rel [definition, in dags]
tree_countType [definition, in dags]
tree_choiceType [definition, in dags]
tree_eqType [definition, in dags]
tree_countMixin [definition, in dags]
tree_rect' [lemma, in dags]
tree_demo [lemma, in tab_complete]
tree_AR [lemma, in tab_complete]
tree_ARH [lemma, in tab_complete]
tree_AU [lemma, in tab_complete]
tree_AUH [lemma, in tab_complete]
tree_for_cons [lemma, in tab_complete]
tree_forI [lemma, in tab_complete]
tree_for_0 [lemma, in tab_complete]
tree_for_and [definition, in tab_complete]
tree_for' [definition, in tab_complete]
tree_for [definition, in tab_complete]
trespects [definition, in dags]
trespectsE [lemma, in dags]
trespects_leaf [lemma, in dags]
trivial [definition, in tab_complete]
tunpickle [definition, in dags]
t_has [definition, in tab_complete]
U
U [definition, in tab_dec]unit_model [definition, in tab_complete]
u_cond [definition, in demo]
V
var [definition, in CTL_def]vertex [projection, in dags]
W
weight [definition, in tab_complete]weightS [lemma, in tab_complete]
weight0 [lemma, in tab_complete]
other
_ <--> _ [notation, in modular_hilbert]_ :\/: _ [notation, in modular_hilbert]
_ :/\: _ [notation, in modular_hilbert]
_ ---> _ [notation, in modular_hilbert]
_ ^+ [notation, in CTL_def]
_ ^- [notation, in CTL_def]
_ =p _ [notation, in CTL_def]
_ |> _ [notation, in demo]
EG _ [notation, in modular_hilbert]
[ af _ ] [notation, in tab_translation]
\and_ ( _ \in _ ) _ [notation, in modular_hilbert]
\and_ ( <- _ ) [notation, in modular_hilbert]
\and_ ( _ <- _ ) _ [notation, in modular_hilbert]
\or_ ( _ \in _ ) _ [notation, in modular_hilbert]
\or_ ( <- _ ) [notation, in modular_hilbert]
\or_ ( _ <- _ ) _ [notation, in modular_hilbert]
~~: _ [notation, in modular_hilbert]
Notation Index
H
_ ---> _ [in CTL_def]other
_ <--> _ [in modular_hilbert]_ :\/: _ [in modular_hilbert]
_ :/\: _ [in modular_hilbert]
_ ---> _ [in modular_hilbert]
_ ^+ [in CTL_def]
_ ^- [in CTL_def]
_ =p _ [in CTL_def]
_ |> _ [in demo]
EG _ [in modular_hilbert]
[ af _ ] [in tab_translation]
\and_ ( _ \in _ ) _ [in modular_hilbert]
\and_ ( <- _ ) [in modular_hilbert]
\and_ ( _ <- _ ) _ [in modular_hilbert]
\or_ ( _ \in _ ) _ [in modular_hilbert]
\or_ ( <- _ ) [in modular_hilbert]
\or_ ( _ <- _ ) _ [in modular_hilbert]
~~: _ [in modular_hilbert]
Module Index
A
Annot [in tab_def]F
formChoice [in CTL_def]Variable Index
A
AUb.e [in CTL_def]AUb.p [in CTL_def]
AUb.q [in CTL_def]
AUb.T [in CTL_def]
B
BigAnd.pS [in modular_hilbert]C
CanonicalDemo.F [in tab_complete]CanonicalDemo.Jumps.A [in tab_complete]
CanonicalDemo.Jumps.C_inU [in tab_complete]
CanonicalDemo.Jumps.C_cons [in tab_complete]
CanonicalDemo.sfc_F [in tab_complete]
CanonicalDemo.Support.C [in tab_complete]
CanonicalDemo.Support.con_in_U [in tab_complete]
CanonicalDemo.Support.E [in tab_complete]
CanonicalDemo.Support.suppP [in tab_complete]
Characterizations.e [in CTL_def]
Characterizations.X [in CTL_def]
CTLTheory.cS [in modular_hilbert]
D
DemoTrees.LL [in tab_complete]DemoTrees.L0 [in tab_complete]
DemoTrees.t [in tab_complete]
Demo.D [in demo]
Demo.Dl [in demo]
Demo.F [in demo]
Demo.sfc_F [in demo]
Disjoint.G [in dags]
Disjoint.I [in dags]
Disjoint.L [in dags]
E
EqiTheoryBase.pS [in modular_hilbert]EqiTheoryBase.s [in modular_hilbert]
EqiTheoryBase.t [in modular_hilbert]
F
FiniteModels.e [in CTL_def]FiniteModels.l [in CTL_def]
FiniteModels.serial_e [in CTL_def]
FiniteModels.T [in CTL_def]
G
GraphOf.L [in dags]GraphOf.t [in dags]
GraphTheory.L [in dags]
GraphTheory.p [in dags]
K
KStarTheory.ksS [in modular_hilbert]KTheory.kS [in modular_hilbert]
M
ModelConstruction.D [in demo]ModelConstruction.DD [in demo]
ModelConstruction.Dl [in demo]
ModelConstruction.Dl_cond [in demo]
ModelConstruction.D_cond [in demo]
ModelConstruction.F [in demo]
ModelConstruction.sfc_F [in demo]
MTheory0.mS [in modular_hilbert]
P
PTheoryBase.pS [in modular_hilbert]PTheory.pS [in modular_hilbert]
S
SeqSubConnect.e [in dags]SeqSubConnect.sub_closed [in dags]
SeqSubConnect.T [in dags]
SeqSubConnect.xs [in dags]
T
tab_closure.sfc_F [in tab_dec]tab_closure.F [in tab_dec]
TreeCountType.T [in dags]
TreeRel.L [in dags]
Library Index
C
CTL_defD
dagsdemo
I
induced_symM
modular_hilbertR
resultT
tab_completetab_translation
tab_dec
tab_def
Lemma Index
A
aAR_inU [in tab_dec]aAU_inU [in tab_dec]
aAXR_inU [in tab_dec]
aAXU_inU [in tab_dec]
afn1 [in tab_translation]
afp1 [in tab_translation]
af1n [in tab_translation]
af1p [in tab_translation]
andAAU [in modular_hilbert]
andU [in modular_hilbert]
and_sub [in modular_hilbert]
annot_request [in tab_translation]
Annot.pickleP [in tab_def]
ARH_sound [in tab_translation]
arP [in CTL_def]
AR_shift [in tab_dec]
AR_strengthen [in CTL_def]
AsAR [in tab_dec]
AsAU [in tab_dec]
AsAXR [in tab_dec]
AsAXU [in tab_dec]
AsV [in tab_dec]
AsX [in tab_dec]
AsX' [in tab_dec]
AUH_sound [in tab_translation]
auP [in CTL_def]
AU_shift [in tab_dec]
AU_mono [in CTL_def]
AU_strengthen [in CTL_def]
AU_lift [in demo]
AU_this [in demo]
axAA [in modular_hilbert]
axABBA [in modular_hilbert]
axAC [in modular_hilbert]
axAcase [in modular_hilbert]
axADr [in modular_hilbert]
axAEl [in modular_hilbert]
axAEr [in modular_hilbert]
axAGI [in modular_hilbert]
axAI [in modular_hilbert]
axAReq [in modular_hilbert]
axAsT [in modular_hilbert]
axATs [in modular_hilbert]
axAUAEr [in modular_hilbert]
axAUAw [in modular_hilbert]
axAUEGF [in modular_hilbert]
axAUERF [in modular_hilbert]
axAUHu [in tab_translation]
axAUu [in modular_hilbert]
axB [in modular_hilbert]
axBAAB [in modular_hilbert]
axBE [in modular_hilbert]
axBT [in modular_hilbert]
axC [in modular_hilbert]
axContra [in modular_hilbert]
axDBD [in modular_hilbert]
axDF [in modular_hilbert]
axDN [in modular_hilbert]
axDNI [in modular_hilbert]
axDup [in modular_hilbert]
axEEl [in modular_hilbert]
axEEr [in modular_hilbert]
axEI [in modular_hilbert]
axERu [in modular_hilbert]
axEUeq [in modular_hilbert]
axEUEr [in modular_hilbert]
axEUI [in modular_hilbert]
axEUI2 [in modular_hilbert]
axEUw [in modular_hilbert]
axEXAEl [in modular_hilbert]
axI [in modular_hilbert]
axIO [in modular_hilbert]
axK [in modular_hilbert]
axOC [in modular_hilbert]
axOE [in modular_hilbert]
axOF [in modular_hilbert]
axOIl [in modular_hilbert]
axOIr [in modular_hilbert]
axRot [in modular_hilbert]
AXR_shift [in tab_dec]
axS [in modular_hilbert]
axsT [in modular_hilbert]
axT [in modular_hilbert]
AXU_shift [in tab_dec]
axW [in modular_hilbert]
ax_contraNN [in modular_hilbert]
ax_contra [in modular_hilbert]
ax_case [in modular_hilbert]
B
bigABBA [in modular_hilbert]bigAdrop [in modular_hilbert]
bigAdup [in modular_hilbert]
bigAE [in modular_hilbert]
bigAI [in modular_hilbert]
bigAUA [in modular_hilbert]
bigA1 [in modular_hilbert]
bigA1E [in modular_hilbert]
bigOE [in modular_hilbert]
bigOI [in modular_hilbert]
bounded_step [in tab_dec]
box_request [in tab_translation]
C
cAR_cEU [in CTL_def]cAU_eq [in CTL_def]
cAU_cER [in CTL_def]
cert_dec_method [in result]
cEU_eq [in CTL_def]
closed_sfc [in tab_dec]
completeness [in result]
connect_restrict [in dags]
cons_lcons [in tab_complete]
ctab1 [in tab_complete]
ctab2 [in tab_complete]
D
dag_D [in demo]dag_R [in demo]
decidability [in result]
disjointness [in result]
dmA [in modular_hilbert]
dmAi [in modular_hilbert]
dmAR [in modular_hilbert]
DmatrixP [in demo]
dmat_ev_cond [in demo]
dmAU [in modular_hilbert]
dmAUH [in tab_translation]
dmAUi [in modular_hilbert]
dmAX [in modular_hilbert]
dmER [in modular_hilbert]
dmERi [in modular_hilbert]
dmI [in modular_hilbert]
dmO [in modular_hilbert]
D_sub_Dl [in tab_complete]
E
eq_annot_dec [in tab_def]eq_form_dec [in CTL_def]
ER_strengthen [in CTL_def]
euP [in CTL_def]
EU_ind [in modular_hilbert]
EU_mono [in CTL_def]
EU_strengthen [in CTL_def]
EU_lift [in demo]
EU_this [in demo]
evalP [in CTL_def]
F
fin_finite [in CTL_def]fin_modelP [in CTL_def]
formChoice.pickleP [in CTL_def]
G
graph_of_rootP [in dags]graph_has [in tab_complete]
graph_of_labels [in tab_complete]
H
hilbert_soundness [in tab_translation]histU [in tab_translation]
hist0 [in tab_translation]
I
induced_mor_iff2 [in induced_sym]induced_mor_iff [in induced_sym]
induced_eqi [in induced_sym]
isBoxP [in CTL_def]
isDiaP [in CTL_def]
J
JC_inD [in tab_complete]JC_inhab [in tab_complete]
JC_rcond [in tab_complete]
JC_scond [in tab_complete]
j_tree_for [in tab_complete]
j_tree_r_cond [in tab_complete]
L
labels_leaf [in tab_complete]label_F [in demo]
label_lcon [in demo]
label_Dl [in demo]
label_root [in demo]
label_DF [in demo]
lcons_void [in tab_complete]
leaf_root' [in demo]
leaf_root [in demo]
leaf_root_aux [in demo]
liftE [in dags]
lift_connect [in dags]
lift_eqn [in dags]
lift_eq [in dags]
M
mImpPrv_trans [in modular_hilbert]model_existence [in demo]
mono_step [in tab_dec]
mp2 [in modular_hilbert]
MRel_D [in demo]
MRel_R [in demo]
N
negE [in CTL_def]O
or_sub [in modular_hilbert]P
plainP [in tab_dec]plain_inU [in tab_dec]
plain_soundness [in tab_translation]
posE [in CTL_def]
prV [in tab_def]
pr_inCs [in tab_dec]
R
rAI [in modular_hilbert]rApply [in modular_hilbert]
rApply2 [in modular_hilbert]
rApply3 [in modular_hilbert]
rAUw [in modular_hilbert]
rAU_ind_weak [in modular_hilbert]
rDup [in modular_hilbert]
RE [in CTL_def]
rER_ind_weak [in modular_hilbert]
rER_ind [in modular_hilbert]
rEXn [in modular_hilbert]
rgraph_of_respects [in dags]
rgraph_of_acyclic [in dags]
rgraph_of_local [in dags]
rgraph_of_root [in tab_complete]
rHyp [in modular_hilbert]
rHyp1 [in modular_hilbert]
rIntro [in modular_hilbert]
RinU [in tab_dec]
RlconU [in tab_complete]
Rljmp [in tab_complete]
RlR [in tab_complete]
rMP [in modular_hilbert]
rNecS [in modular_hilbert]
rNorm [in modular_hilbert]
rNormS [in modular_hilbert]
root_internal [in demo]
Rpos [in CTL_def]
rRev [in modular_hilbert]
rRev1 [in modular_hilbert]
rRot [in modular_hilbert]
RU [in CTL_def]
R0 [in CTL_def]
R1 [in CTL_def]
S
segerberg [in modular_hilbert]serial_relT [in tab_complete]
serial_MRel [in demo]
sfcU [in CTL_def]
sfc_bigcup [in tab_dec]
sfc_ssub [in CTL_def]
sf_AR [in tab_dec]
sf_AU [in tab_dec]
sf_ssub [in CTL_def]
sf_closed'_mon [in CTL_def]
simple_tree_rect [in dags]
simple_tree [in tab_complete]
sn_restrict [in dags]
sn_edge [in demo]
soundness [in CTL_def]
ssub_refl [in CTL_def]
ssub'_refl [in CTL_def]
stepP [in tab_dec]
subCs [in tab_dec]
subtrees_trans [in dags]
subtrees_refl [in dags]
subtrees1 [in dags]
subU [in tab_dec]
sub_behead [in modular_hilbert]
sub_sfc [in tab_dec]
succ_CinU [in tab_complete]
suppCD [in demo]
suppCU [in demo]
suppCWL [in demo]
suppC_sub [in demo]
suppC1 [in demo]
suppF [in demo]
supportT [in tab_complete]
support_aux [in tab_complete]
suppxx [in demo]
supp_suppCr [in tab_complete]
supp_suppCl [in tab_complete]
supp_suppC [in tab_complete]
supp_U [in tab_complete]
supp_lit [in tab_complete]
supp_con [in tab_complete]
supp_eval [in demo]
supp_edge [in demo]
supp_mon [in demo]
sweight_lit [in tab_complete]
T
tabU_aAXR [in tab_dec]tabU_foc' [in tab_dec]
tabU_ARhr [in tab_dec]
tabU_ARhl [in tab_dec]
tabU_ARnr [in tab_dec]
tabU_ARnl [in tab_dec]
tabU_ARpr [in tab_dec]
tabU_ARpl [in tab_dec]
tabU_ufoc [in tab_dec]
tabU_jmp [in tab_dec]
tabU_AUhr [in tab_dec]
tabU_AUhl [in tab_dec]
tabU_foc [in tab_dec]
tabU_AUnr [in tab_dec]
tabU_AUnl [in tab_dec]
tabU_AUpr [in tab_dec]
tabU_AUpl [in tab_dec]
tabU_AXn [in tab_dec]
tabU_aR [in tab_dec]
tabU_in [in tab_dec]
tabU_ipr [in tab_dec]
tabU_ipl [in tab_dec]
tab_plain_complete [in tab_complete]
tab_demo [in tab_complete]
tab_dec [in tab_dec]
tab_decF [in tab_dec]
tlocalE [in dags]
tlocal_sub [in dags]
tpickleK [in dags]
tree_rel_sn [in dags]
tree_rooted [in dags]
tree_rect' [in dags]
tree_demo [in tab_complete]
tree_AR [in tab_complete]
tree_ARH [in tab_complete]
tree_AU [in tab_complete]
tree_AUH [in tab_complete]
tree_for_cons [in tab_complete]
tree_forI [in tab_complete]
tree_for_0 [in tab_complete]
trespectsE [in dags]
trespects_leaf [in dags]
W
weightS [in tab_complete]weight0 [in tab_complete]
Constructor Index
A
aAR [in tab_def]aAU [in tab_def]
aAXR [in tab_def]
aAXU [in tab_def]
ARs [in CTL_def]
AR0 [in CTL_def]
AUs [in CTL_def]
AU_ind [in CTL_def]
AU0 [in CTL_def]
aVoid [in tab_def]
axARE [in CTL_def]
axARu [in CTL_def]
axAUf [in CTL_def]
axAUI [in CTL_def]
axDN [in CTL_def]
axK [in CTL_def]
axN [in CTL_def]
axS [in CTL_def]
ax_serial [in CTL_def]
C
CTLSystem [in modular_hilbert]E
ERs [in CTL_def]ER0 [in CTL_def]
EUs [in CTL_def]
EU0 [in CTL_def]
F
fAR [in CTL_def]fAU [in CTL_def]
fAX [in CTL_def]
fF [in CTL_def]
fImp [in CTL_def]
finiteI [in CTL_def]
fV [in CTL_def]
G
Graph [in dags]I
induced_iff [in induced_sym]isBox_false [in CTL_def]
isBox_true [in CTL_def]
isDia_false [in CTL_def]
isDia_true [in CTL_def]
K
KSSystem [in modular_hilbert]KSystem [in modular_hilbert]
M
Model [in CTL_def]MSystem [in modular_hilbert]
P
PSystem [in modular_hilbert]R
rAR_ind [in CTL_def]RGraph [in dags]
rMP [in CTL_def]
rNec [in CTL_def]
S
SN [in dags]StarL [in dags]
Star0 [in dags]
STS [in CTL_def]
T
tab_aAXR [in tab_def]tab_rep' [in tab_def]
tab_ARh [in tab_def]
tab_foc' [in tab_def]
tab_ARn [in tab_def]
tab_ARp [in tab_def]
tab_jmp [in tab_def]
tab_rep [in tab_def]
tab_AUh [in tab_def]
tab_foc [in tab_def]
tab_AUn [in tab_def]
tab_AUp [in tab_def]
tab_AXn [in tab_def]
tab_In [in tab_def]
tab_Ip [in tab_def]
tab_p [in tab_def]
tab_F [in tab_def]
Tree [in dags]
Inductive Index
A
annot [in tab_def]C
cAR [in CTL_def]cAU [in CTL_def]
cER [in CTL_def]
cEU [in CTL_def]
F
finite [in CTL_def]form [in CTL_def]
I
InducedSym [in induced_sym]isBox_spec [in CTL_def]
isDia_spec [in CTL_def]
P
prv [in CTL_def]S
sn [in dags]star [in dags]
T
tab [in tab_def]tree [in dags]
Projection Index
A
AG [in modular_hilbert]AR [in modular_hilbert]
AU [in modular_hilbert]
AX [in modular_hilbert]
axAGEl [in modular_hilbert]
axAGEr [in modular_hilbert]
axAGN [in modular_hilbert]
axARE [in modular_hilbert]
axARu [in modular_hilbert]
axAUf [in modular_hilbert]
axAUI [in modular_hilbert]
axDN' [in modular_hilbert]
axK' [in modular_hilbert]
axN [in modular_hilbert]
axS' [in modular_hilbert]
B
Bot [in modular_hilbert]E
edge [in dags]G
graph_of [in dags]I
Imp [in modular_hilbert]induced_iff [in induced_sym]
K
ksort [in modular_hilbert]ksort' [in modular_hilbert]
L
label [in dags]label [in CTL_def]
M
modelP [in CTL_def]mprv [in modular_hilbert]
msort [in modular_hilbert]
P
psort [in modular_hilbert]R
rAG_ind [in modular_hilbert]rAR_ind [in modular_hilbert]
rAU_ind [in modular_hilbert]
rMP' [in modular_hilbert]
rNec [in modular_hilbert]
root [in dags]
rootP [in dags]
S
serial [in CTL_def]state [in CTL_def]
sts_of [in CTL_def]
T
T [in modular_hilbert]trans [in CTL_def]
V
vertex [in dags]Section Index
A
AUb [in CTL_def]B
BigAnd [in modular_hilbert]C
CanonicalDemo [in tab_complete]CanonicalDemo.Jumps [in tab_complete]
CanonicalDemo.Support [in tab_complete]
Characterizations [in CTL_def]
CTLTheory [in modular_hilbert]
D
Demo [in demo]DemoTrees [in tab_complete]
Disjoint [in dags]
E
EqiTheoryBase [in modular_hilbert]F
FiniteModels [in CTL_def]G
GraphOf [in dags]GraphTheory [in dags]
H
Hilbert [in CTL_def]K
KStarTheory [in modular_hilbert]KTheory [in modular_hilbert]
M
ModelConstruction [in demo]MTheory0 [in modular_hilbert]
P
PTheory [in modular_hilbert]PTheoryBase [in modular_hilbert]
S
SeqSubConnect [in dags]T
tab_closure [in tab_dec]TreeCountType [in dags]
TreeRel [in dags]
Instance Index
A
AG_mor [in modular_hilbert]And_mor [in modular_hilbert]
AR_mor [in modular_hilbert]
AU_mor [in modular_hilbert]
AX_mor [in modular_hilbert]
E
eqi_induced_symmety [in modular_hilbert]ER_mor [in modular_hilbert]
EU_mor [in modular_hilbert]
EX_mor [in modular_hilbert]
I
Imp_mor [in modular_hilbert]induced_eqi [in modular_hilbert]
induced_mor_np [in induced_sym]
induced_mor_pn [in induced_sym]
induced_mor_pp [in induced_sym]
induced_mor_n [in induced_sym]
induced_mor_p [in induced_sym]
induced_sub [in induced_sym]
M
mImpPrv_rel [in modular_hilbert]mprv_mor [in modular_hilbert]
N
Neg_mor [in modular_hilbert]O
Or_mor [in modular_hilbert]Definition Index
A
And [in modular_hilbert]annot_CountType [in tab_def]
annot_choiceType [in tab_def]
annot_choiceMixin [in tab_def]
annot_countMixin [in tab_def]
annot_eqType [in tab_def]
annot_eqMixin [in tab_def]
Annot.pickle [in tab_def]
Annot.unpickle [in tab_def]
aR [in tab_def]
ARb [in CTL_def]
ARs [in tab_dec]
As [in tab_dec]
AUb [in CTL_def]
AUs [in tab_dec]
AU_fun [in CTL_def]
AU_M [in demo]
AU_ [in tab_translation]
AXn [in tab_complete]
a_cond [in demo]
B
body [in CTL_def]C
cAX [in CTL_def]cEX [in CTL_def]
clause [in CTL_def]
consistent [in tab_complete]
Cs [in tab_dec]
D
D [in tab_complete]DC [in demo]
demo [in demo]
determined [in CTL_def]
DF [in demo]
dgraph [in demo]
Dl [in tab_complete]
Dmatrix [in demo]
E
EF [in modular_hilbert]Eqi [in modular_hilbert]
EqiPrv [in modular_hilbert]
ER [in modular_hilbert]
erel [in dags]
EU [in modular_hilbert]
EU [in CTL_def]
EUb [in CTL_def]
EU_fun [in CTL_def]
EU_M [in demo]
EU_ [in tab_translation]
eval [in CTL_def]
evalb [in CTL_def]
ev_cond [in demo]
EX [in modular_hilbert]
F
fin_model [in CTL_def]fin_sts [in CTL_def]
formChoice.pickle [in CTL_def]
formChoice.unpickle [in CTL_def]
form_CountType [in CTL_def]
form_ChoiceType [in CTL_def]
form_choiceMixin [in CTL_def]
form_countMixin [in CTL_def]
form_eqType [in CTL_def]
form_eqMixin [in CTL_def]
f_weight [in tab_complete]
G
ge_cond [in demo]glabels_from [in demo]
glocal [in dags]
graph_of_tree [in dags]
graph_of_root [in dags]
graph_of_rel [in dags]
graph_of_label [in dags]
graph_of_type [in dags]
H
hist [in tab_translation]Hs [in tab_dec]
I
Imp_op [in modular_hilbert]interp [in CTL_def]
interp_a [in tab_translation]
isBox [in CTL_def]
isDia [in CTL_def]
J
JCs [in tab_complete]j_tree [in tab_complete]
j_leafs [in tab_complete]
L
labels_from [in tab_complete]lcons [in demo]
leaf [in dags]
lift_edge [in dags]
literal [in demo]
literalC [in demo]
M
MD [in demo]mImpPrv [in modular_hilbert]
mImpPrv_refl [in modular_hilbert]
MLabel [in demo]
MRel [in demo]
MType [in demo]
N
Neg [in modular_hilbert]negative [in CTL_def]
negatives [in CTL_def]
O
Or [in modular_hilbert]P
positive [in CTL_def]positives [in CTL_def]
pr [in tab_def]
PredC [in CTL_def]
prv_ctlSystem [in CTL_def]
prv_kSystem [in CTL_def]
prv_pSystem [in CTL_def]
prv_mSystem [in CTL_def]
pr' [in tab_def]
R
R [in CTL_def]relT [in tab_complete]
request_cond [in tab_complete]
respects [in dags]
restrict [in dags]
rgraph_of [in dags]
Rl [in tab_complete]
rlab [in dags]
r_cond [in demo]
S
scomplete [in tab_complete]sfc [in tab_dec]
sform [in CTL_def]
sf_closed [in CTL_def]
sf_closed' [in CTL_def]
ssub [in CTL_def]
ssub' [in CTL_def]
stable [in CTL_def]
step [in tab_dec]
step_jmp [in tab_dec]
step_annot [in tab_dec]
step_plain [in tab_dec]
step_plain_cases [in tab_dec]
subtrees [in dags]
successors [in tab_complete]
supp [in demo]
suppC [in demo]
support [in tab_complete]
supp' [in demo]
s_weight [in tab_complete]
s_cond [in demo]
T
terminates [in dags]tlocal [in dags]
Top [in modular_hilbert]
tpickle [in dags]
tree_rel [in dags]
tree_countType [in dags]
tree_choiceType [in dags]
tree_eqType [in dags]
tree_countMixin [in dags]
tree_for_and [in tab_complete]
tree_for' [in tab_complete]
tree_for [in tab_complete]
trespects [in dags]
trivial [in tab_complete]
tunpickle [in dags]
t_has [in tab_complete]
U
U [in tab_dec]unit_model [in tab_complete]
u_cond [in demo]
V
var [in CTL_def]W
weight [in tab_complete]Record Index
C
ctlSystem [in modular_hilbert]G
graph [in dags]I
InducedSym [in induced_sym]K
ksSystem [in modular_hilbert]kSystem [in modular_hilbert]
M
model [in CTL_def]mSystem [in modular_hilbert]
P
pSystem [in modular_hilbert]R
rGraph [in dags]S
sts [in CTL_def]Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (732 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (18 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (2 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (58 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (310 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (68 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (41 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (25 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (21 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (154 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
This page has been generated by coqdoc