ARS

Abstract Reduction Systems, from Semantics Lecture at Programming Systems Lab, https://www.ps.uni-saarland.de/courses/sem-ws13/


Require Export Base.


Notation "p '<=1' q" := (forall x, p x -> q x) (at level 70).

Notation "p '=1' q" := (p <=1 q /\ q <=1 p) (at level 70).

Notation "R '<=2' S" := (forall x y, R x y -> S x y) (at level 70).

Notation "R '=2' S" := (R <=2 S /\ S <=2 R) (at level 70).


Relational composition

Definition rcomp X Y Z (R : X -> Y -> Prop) (S : Y -> Z -> Prop)
: X -> Z -> Prop :=
  fun x z => exists y, R x y /\ S y z.


Power predicates

Require Import Arith.

Definition pow X R n : X -> X -> Prop := it (rcomp R) n eq.


Section FixX.

  Variable X : Type.

  Implicit Types R S : X -> X -> Prop.

  Implicit Types x y z : X.


  Definition reflexive R := forall x, R x x.

  Definition symmetric R := forall x y, R x y -> R y x.

  Definition transitive R := forall x y z, R x y -> R y z -> R x z.

  Definition functional R := forall x y z, R x y -> R x z -> y = z.


Reflexive transitive closure

  Inductive star R : X -> X -> Prop :=
  | starR x : star R x x
  | starC x y z : R x y -> star R y z -> star R x z.


  (* Making first argument a non-uniform parameter doesn't simplify the induction principle. *)

  Lemma star_simpl_ind R (p : X -> Prop) y :
    p y ->
    (forall x x', R x x' -> star R x' y -> p x' -> p x) ->
    forall x, star R x y -> p x.

  Proof.

    intros A B.
induction 1; eauto.
  Qed.


  Lemma star_trans R:
    transitive (star R).

  Proof.

    induction 1; eauto using star.

  Qed.


Power characterization

  Lemma star_pow R x y :
    star R x y <-> exists n, pow R n x y.

  Proof.

    split; intros A.

    - induction A as [|x x' y B _ [n IH]].

      + exists 0.
reflexivity.
               + exists (S n), x'.
auto.
               - destruct A as [n A].

                 revert x A.
induction n; intros x A.
                 + destruct A.
constructor.
                 + destruct A as [x' [A B]].
econstructor; eauto.
  Qed.


  Lemma pow_star R x y n:
    pow R n x y -> star R x y.

  Proof.

    intros A.
erewrite star_pow. eauto.
  Qed.


Equivalence closure

  Inductive ecl R : X -> X -> Prop :=
  | eclR x : ecl R x x
  | eclC x y z : R x y -> ecl R y z -> ecl R x z
  | eclS x y z : R y x -> ecl R y z -> ecl R x z.


  Lemma ecl_trans R :
    transitive (ecl R).

  Proof.

    induction 1; eauto using ecl.

  Qed.


  Lemma ecl_sym R :
    symmetric (ecl R).

  Proof.

    induction 1; eauto using ecl, (@ecl_trans R).

  Qed.


  Lemma star_ecl R :
    star R <=2 ecl R.

  Proof.

    induction 1; eauto using ecl.

  Qed.


Diamond, confluence, Church-Rosser

  Definition joinable R x y :=
    exists z, R x z /\ R y z.


  Definition diamond R :=
    forall x y z, R x y -> R x z -> joinable R y z.


  Definition confluent R := diamond (star R).


  Definition semi_confluent R :=
    forall x y z, R x y -> star R x z -> joinable (star R) y z.


  Definition church_rosser R :=
    ecl R <=2 joinable (star R).


  Goal forall R, diamond R -> semi_confluent R.

  Proof.

    intros R A x y z B C.

    revert x C y B.

    refine (star_simpl_ind _ _).

    - intros y C.
exists y. eauto using star.
    - intros x x' C D IH y E.

      destruct (A _ _ _ C E) as [v [F G]].

      destruct (IH _ F) as [u [H I]].

      assert (J:= starC G H).

      exists u.
eauto using star.
  Qed.


  Lemma diamond_to_semi_confluent R :
    diamond R -> semi_confluent R.

  Proof.

    intros A x y z B C.
revert y B.
    induction C as [|x x' z D _ IH]; intros y B.

    - exists y.
eauto using star.
             - destruct (A _ _ _ B D) as [v [E F]].

               destruct (IH _ F) as [u [G H]].

               exists u.
eauto using star.
  Qed.


  Lemma semi_confluent_confluent R :
    semi_confluent R <-> confluent R.

  Proof.

    split; intros A x y z B C.

    - revert y B.

      induction C as [|x x' z D _ IH]; intros y B.

      + exists y.
eauto using star.
               + destruct (A _ _ _ D B) as [v [E F]].

                 destruct (IH _ E) as [u [G H]].

                 exists u.
eauto using (@star_trans R).
               - apply (A x y z); eauto using star.

  Qed.


  Lemma diamond_to_confluent R :
    diamond R -> confluent R.

  Proof.

    intros A.
apply semi_confluent_confluent, diamond_to_semi_confluent, A.
  Qed.


  Lemma confluent_CR R :
    church_rosser R <-> confluent R.

  Proof.

    split; intros A.

    - intros x y z B C.
apply A.
      eauto using (@ecl_trans R), star_ecl, (@ecl_sym R).

    - intros x y B.
apply semi_confluent_confluent in A.
      induction B as [x|x x' y C B IH|x x' y C B IH].

      + exists x.
eauto using star.
               + destruct IH as [z [D E]].
exists z. eauto using star.
               + destruct IH as [u [D E]].

                 destruct (A _ _ _ C D) as [z [F G]].

                 exists z.
eauto using (@star_trans R).
  Qed.


  (* End Semantics Library *)


Uniform confluence and parametrized confluence

  Definition uniform_confluent (R : X -> X -> Prop ) := forall s t1 t2, R s t1 -> R s t2 -> t1 = t2 \/ exists u, R t1 u /\ R t2 u.


  Lemma pow_add R n m (s t : X) : pow R (n + m) s t <-> rcomp (pow R n) (pow R m) s t.

  Proof.

    revert m s t; induction n; intros m s t.

    - simpl.
split; intros. econstructor. split. unfold pow. simpl. reflexivity. eassumption.
      destruct H as [u [H1 H2]].
unfold pow in H1. simpl in *. subst s. eassumption.
    - simpl in *; split; intros.

      + destruct H as [u [H1 H2]].

        change (it (rcomp R) (n + m) eq) with (pow R (n+m)) in H2.

        rewrite IHn in H2.

        destruct H2 as [u' [A B]].
unfold pow in A.
        econstructor.

        split.
econstructor. repeat split; repeat eassumption. eassumption.
      + destruct H as [u [H1 H2]].

        destruct H1 as [u' [A B]].

        econstructor.
split. eassumption. change (it (rcomp R) (n + m) eq) with (pow R (n + m)).
        rewrite IHn.
econstructor. split; eassumption.
  Qed.


  Lemma rcomp_eq (R S R' S' : X -> X -> Prop) (s t : X) : (R =2 R') -> (S =2 S') -> (rcomp R S s t <-> rcomp R' S' s t).

  Proof.

    intros A B.

    split; intros H; destruct H as [u [H1 H2]];
    eapply A in H1; eapply B in H2;
    econstructor; split; eassumption.

  Qed.


  Lemma eq_ref : forall (R : X -> X -> Prop), R =2 R.

  Proof.

    split; intros s t; tauto.

  Qed.


  Lemma rcomp_1 (R : X -> X -> Prop): R =2 pow R 1.

  Proof.

    split; intros s t; unfold pow in *; simpl in *; intros H.

    - econstructor.
split; eauto.
    - destruct H as [u [H1 H2]]; subst u; eassumption.

  Qed.


  Lemma parametrized_semi_confluence (R : X -> X -> Prop) (m : nat) (s t1 t2 : X) :
    uniform_confluent R ->
    pow R m s t1 ->
    R s t2 ->
    exists k l u,
      k <= 1 /\ l <= m /\ pow R k t1 u /\ pow R l t2 u /\ m + k = S l.

  Proof.

    intros unifConfR; revert s t1 t2; induction m; intros s t1 t2 s_to_t1 s_to_t2.

    - unfold pow in s_to_t1.
simpl in *. subst s.
      exists 1, 0, t2.

      repeat split; try omega.

      econstructor.
split; try eassumption; econstructor.
    - destruct s_to_t1 as [v [s_to_v v_to_t1]].

      destruct (unifConfR _ _ _ s_to_v s_to_t2) as [H | [u [v_to_u t2_to_u]]].

      + subst v.
eexists 0, m, t1; repeat split; try omega; eassumption.
      + destruct (IHm _ _ _ v_to_t1 v_to_u) as [k [l [u' H]]].

        eexists k, (S l), u'; repeat split; try omega; try tauto.

        econstructor.
split. eassumption. tauto.
  Qed.


  Lemma rcomp_comm R m (s t : X) : rcomp R (it (rcomp R) m eq) s t <-> rcomp (it (rcomp R) m eq) R s t.

  Proof.

    split; intros H;
    [rewrite (rcomp_eq s t (rcomp_1 R) (eq_ref _)) in H;
      rewrite (rcomp_eq s t (eq_ref _) (rcomp_1 R)) |
     rewrite (rcomp_eq s t (eq_ref _) (rcomp_1 R)) in H;
       rewrite (rcomp_eq s t (rcomp_1 R) (eq_ref _))];
    change ((it (rcomp R) m eq)) with (pow R m) in *;
    try rewrite <- pow_add in *;
    rewrite plus_comm; eassumption.

  Qed.


  Lemma parametrized_confluence (R : X -> X -> Prop) (m n : nat) (s t1 t2 : X) :
    uniform_confluent R ->
    pow R m s t1 ->
    pow R n s t2 ->
    exists k l u,
      k <= n /\ l <= m /\ pow R k t1 u /\ pow R l t2 u /\ m + k = n + l.

  Proof.

    revert n s t1 t2; induction m; intros n s t1 t2 unifConR s_to_t1 s_to_t2.

    - unfold pow in s_to_t1.
simpl in s_to_t1. subst s.
      exists n, 0, t2.
repeat split; try now omega. eassumption.
    - unfold pow in s_to_t1.
simpl in *.
      destruct s_to_t1 as [v [s_to_v v_to_t1]].

      destruct (parametrized_semi_confluence unifConR s_to_t2 s_to_v) as
          [k [l [u [k_lt_1 [l_lt_n [t2_to_u [v_to_u H]]]]]]].

      destruct (IHm _ _ _ _ unifConR v_to_t1 v_to_u) as
          [l'[k'[u'[l'_lt_l [k'_lt_m [t1_to_u' [u_to_u' H2]]]]]]].

      exists l', (k + k'), u'.

      repeat split; try omega.
eassumption.
      rewrite pow_add.

      econstructor; split; eassumption.

  Qed.


End FixX.