Require Import Coq.Vectors.Vector.

Local Notation vec := t.

From PostTheorem Require Export FOL.Syntax.Core.

Set Default Proof Using "Type".

Local Set Implicit Arguments.
Local Unset Strict Implicit.



Section Subst.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.
  Context {ops : operators}.

  Lemma subst_term_ext (t : term) sigma tau :
    (forall n, sigma n = tau n) -> t`[sigma] = t`[tau].
  Proof.
    intros H. induction t; cbn.
    - now apply H.
    - f_equal. now apply map_ext_in.
  Qed.

  Lemma subst_term_id (t : term) sigma :
    (forall n, sigma n = var n) -> t`[sigma] = t.
  Proof.
    intros H. induction t; cbn.
    - now apply H.
    - f_equal. now erewrite map_ext_in, map_id.
  Qed.

  Lemma subst_term_var (t : term) :
    t`[var] = t.
  Proof.
    now apply subst_term_id.
  Qed.

  Lemma subst_term_comp (t : term) sigma tau :
    t`[sigma]`[tau] = t`[sigma >> subst_term tau].
  Proof.
    induction t; cbn.
    - reflexivity.
    - f_equal. rewrite map_map. now apply map_ext_in.
  Qed.

  Lemma subst_term_shift (t : term) s :
    t`[]`[s..] = t.
  Proof.
    rewrite subst_term_comp. apply subst_term_id. now intros [|].
  Qed.

  Lemma up_term (t : term) xi :
    t`[]`[up xi] = t`[xi]`[].
  Proof.
    rewrite !subst_term_comp. apply subst_term_ext. reflexivity.
  Qed.

  Lemma up_ext sigma tau :
    (forall n, sigma n = tau n) -> forall n, up sigma n = up tau n.
  Proof.
    destruct n; cbn; trivial.
    unfold funcomp. now rewrite H.
  Qed.

  Lemma up_var sigma :
    (forall n, sigma n = var n) -> forall n, up sigma n = var n.
  Proof.
    destruct n; cbn; trivial.
    unfold funcomp. now rewrite H.
  Qed.

  Lemma up_funcomp sigma tau :
    forall n, (up sigma >> subst_term (up tau)) n = up (sigma >> subst_term tau) n.
  Proof.
    intros [|]; cbn; trivial.
    setoid_rewrite subst_term_comp.
    apply subst_term_ext. now intros [|].
  Qed.

  Lemma subst_ext {ff : falsity_flag} (phi : form) sigma tau :
    (forall n, sigma n = tau n) -> phi[sigma] = phi[tau].
  Proof.
    induction phi in sigma, tau |- *; cbn; intros H.
    - reflexivity.
    - f_equal. apply map_ext. intros s. now apply subst_term_ext.
    - now erewrite IHphi1, IHphi2.
    - erewrite IHphi; trivial. now apply up_ext.
  Qed.

  Lemma subst_id {ff : falsity_flag} (phi : form) sigma :
    (forall n, sigma n = var n) -> phi[sigma] = phi.
  Proof.
    induction phi in sigma |- *; cbn; intros H.
    - reflexivity.
    - f_equal. erewrite map_ext; try apply map_id. intros s. now apply subst_term_id.
    - now erewrite IHphi1, IHphi2.
    - erewrite IHphi; trivial. now apply up_var.
  Qed.

  Lemma subst_var {ff : falsity_flag} (phi : form) :
    phi[var] = phi.
  Proof.
    now apply subst_id.
  Qed.

  Lemma subst_comp {ff : falsity_flag} (phi : form) sigma tau :
    phi[sigma][tau] = phi[sigma >> subst_term tau].
  Proof.
    induction phi in sigma, tau |- *; cbn.
    - reflexivity.
    - f_equal. rewrite map_map. apply map_ext. intros s. apply subst_term_comp.
    - now rewrite IHphi1, IHphi2.
    - rewrite IHphi. f_equal. now apply subst_ext, up_funcomp.
  Qed.

  Lemma subst_shift {ff : falsity_flag} (phi : form) s :
    phi[][s..] = phi.
  Proof.
    rewrite subst_comp. apply subst_id. now intros [|].
  Qed.

  Lemma up_form {ff : falsity_flag} xi psi :
    psi[][up xi] = psi[xi][].
  Proof.
    rewrite !subst_comp. apply subst_ext. reflexivity.
  Qed.

  Lemma up_decompose {ff : falsity_flag} sigma phi :
    phi[up (S >> sigma)][(sigma 0)..] = phi[sigma].
  Proof.
    rewrite subst_comp. apply subst_ext.
    intros [].
    - reflexivity.
    - apply subst_term_shift.
  Qed.

End Subst.